![]() |
SIERRA Sparse Structured Methods for Machine Learning Francis Bach ended December 2014 |
Related courses / tutorials
July
2014: IFCAM
Summer School, Indian Institute of Science, Bangalore -
Large-scale machine learning and convex optimization [slides]
March
2014: YES
Workshop, Eurandom, Eindhoven - Large-scale machine learning and
convex optimization [slides]
September
2013: Fourth Cargese Workshop on Combinatorial Optimization - Machine
learning and convex optimization with submodular functions
July
2012: Computer
Vision and Machine Learning Summer School, Grenoble - Kernel
methods and sparse methods for computer vision
July 2011:
Computer Vision
and Machine Learning Summer School, Paris - Kernel
methods and sparse methods for computer vision
September
2010:
ECML/PKDD
Tutorial on Sparse methods for machine learning (Theory and
algorithms)
July 2010:
Computer Vision
and Machine Learning Summer School, Grenoble - Kernel
methods and sparse methods for computer vision
July 2010:
Signal processing summer
school, Peyresq - Sparse
method for machine learning
June 2010:
CVPR
Tutorial on Sparse Coding and Dictionary Learning for Image Analysis
- slides
of ML part
December 2009:
NIPS
Tutorial on Sparse methods for machine learning (Theory and
algorithms)
September
2009: ICCV
Tutorial on Sparse Coding and Dictionary Learning for Image Analysis
September 2008: Machine
Learning Summer School - Ile de Re - Learning with sparsity inducing
norms (slides)
October 2008: ECCV
Tutorial on Supervised Learning: Introduction
- Part I
(Theory) - Part
II (Algorithms)
January
2008: Workshop
RASMA, Franceville, Gabon - Introduction to kernel methods (slides in
French)
Related publications
2015
A. Defossez, F. Bach. Averaged
Least-Mean-Square: Bias-Variance Trade-offs and Optimal Sampling
Distributions. Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), 2015. [pdf]
S. Lacoste-Julien, F. Lindsten, F. Bach. Sequential
Kernel Herding: Frank-Wolfe Optimization for Particle Filtering.
Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), 2015. [pdf]
2014
F. Bach. Breaking the Curse of
Dimensionality with Convex Neural Networks. Technical report,
HAL-01098505, 2014. [pdf]
J. Mairal, F. Bach, J. Ponce. Sparse
Modeling for Image and Vision Processing. Foundations
and Trends in Computer Vision, 8(2-3):85-283, 2014. [pdf]
D. Garreau, R. Lajugie, S. Arlot and F. Bach. Metric
Learning for Temporal Sequence Alignment. Advances
in Neural Information Processing Systems (NIPS), 2014. [pdf]
A. Dieuleveut, F. Bach. Non-parametric
Stochastic Approximation with Large Step sizes. Technical report,
HAL 01053831, 2014. [pdf]
A. Defazio, F. Bach, S. Lacoste-Julien. SAGA:
A Fast Incremental Gradient Method With Support for Non-Strongly Convex
Composite Objectives. Advances
in Neural Information Processing Systems (NIPS), 2014. [pdf]
R. Gribonval, R. Jenatton, F. Bach. Sparse
and spurious: dictionary learning with noise and outliers.
Technical report, HAL 01025503, 2014. [pdf]
E. Grave, G. Obozinski, F. Bach.
N. Shervashidze and F. Bach. Learning
to Learn for Structured Sparsity. Technical report, HAL 00986380,
2014. [pdf]
[code]
F. Bach. Adaptivity of averaged
stochastic gradient descent to local strong convexity for logistic
regression. Journal of
Machine Learning Research, 15(Feb):595−627, 2014. [pdf]
A. d'Aspremont, F. Bach, L. El Ghaoui. Approximation
Bounds for Sparse Principal Component Analysis. Mathematical
Programming, 2014. [pdf]
2013
F.
Bach. Sharp
analysis of low-rank kernel matrix approximations. Technical
report, HAL 00723365, 2013.
K.
S. Sesh Kumar and F. Bach. Convex
Relaxations for Learning Bounded Treewidth Decomposable Graphs.
Technical report, HAL 00763921, 2012. Proceedings
of the International Conference on Machine Learning (ICML). [pdf]
N. Le Roux, F. Bach. Local
component analysis. Proceedings
of the International Conference on Learning Representations (ICLR),
2013. [
2012
R. Jenatton, A. Gramfort, V.
Michel, G. Obozinski, E. Eger, F. Bach, B. Thirion. Multi-scale
Mining of fMRI data with Hierarchical Structured Sparsity. SIAM
Journal on Imaging Sciences, 2012, 5(3):835-856, 2012. [pdf]
F. Bach, S. Lacoste-Julien, G. Obozinski. On
the Equivalence between Herding and Conditional Gradient Algorithms.
Proceedings of the International
Conference on Machine Learning (ICML), 2012.
F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimization
with sparsity-inducing penalties. Foundations
and Trends in Machine Learning, 4(1):1-106, 2012. [
J. Mairal, F. Bach, J. Ponce. Task-Driven
Dictionary
Learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
34(4):791-804, 2012. [pdf
F. Bach.
C. Archambeau, F. Bach. Multiple
Gaussian process models. Technical Report Arxiv 110.5238, 2011. [pdf]
F. Bach, E. Moulines. Non-Asymptotic
Analysis of Stochastic Approximation Algorithms for Machine Learning.
Advances in Neural Information
Processing Systems (NIPS), 2011. [pdf]
[long-version-pdf-HAL]
M. Schmidt, N. Le Roux, F. Bach.
Convergence Rates of Inexact
Proximal-Gradient Methods for Convex Optimization. Advances
in Neural Information Processing Systems (NIPS), 2011. [pdf]
[
E. Grave, G. Obozinski, F. Bach.
B. Mishra, G. Meyer, F. Bach, R. Sepulchre. Low-rank
optimization with trace norm penalty. Technical report, Arxiv
1112.2318, 2011. [
R. Jenatton, J.-Y. Audibert and F. Bach. Structured
Variable Selection with Sparsity-inducing Norms. Journal of
Machine Learning Research, 12, 2777-2824, 2011. [pdf]
[code]
N. Le Roux, F. Bach. Local component
analysis. Technical report, HAL 00617965, 2011. [
J. Mairal, R. Jenatton, G. Obozinski, F. Bach. Convex
and Network Flow Optimization for Structured Sparsity.
R. Jenatton, J. Mairal, G. Obozinski, F. Bach. Proximal
Methods for Hierarchical Sparse Coding. Journal
of Machine Learning Research, 12,
2297-2334, 2011. [pdf]
F. Couzinie-Devy, J. Mairal, F. Bach and J. Ponce. Dictionary
Learning for Deblurring and Digital Zoom. Technical report, HAL :
inria- 00627402, 2011. [pdf]
Y-L. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun. Ask
the locals: multi-way local pooling for image recognition.
Proceedings of the International Conference on Computer Vision (ICCV),
2011. [pdf]
M. Solnon, S. Arlot, F. Bach. Multi-task
Regression using Minimal Penalties. Technical report, HAL
00610534, 2011. [pdf]
A. Lefèvre, F. Bach, C. Févotte. Online
algorithms for Nonnegative Matrix Factorization with the Itakura-Saito
divergence. Technical report, HAL 00602050, 2011. IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2011. [pdf]
T. Hocking, A. Joulin, F. Bach and J.-P. Vert. Clusterpath:
an Algorithm for Clustering using Convex Fusion Penalties. Proceedings
of the International Conference on
Machine Learning (ICML), 2011. [pdf]
L. Benoît, J. Mairal, F. Bach, J. Ponce, Sparse
Image Representation with Epitomes. Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR),
2011. [pdf]
A. Lefèvre, F. Bach, C. Févotte, Itakura-Saito
nonnegative matrix factorization with group sparsity, Proceedings
of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2011. [pdf]
F. Bach, R. Jenatton, J. Mairal and G. Obozinski. Convex
optimization with sparsity-inducing norms. In S. Sra, S. Nowozin,
S. J. Wright., editors, Optimization for Machine Learning, MIT Press,
2011. [pdf]
2010
F. Bach. Convex Analysis and
Optimization with Submodular Functions: a Tutorial. Technical
report, HAL 00527714, 2010. [pdf]
F. Bach. Structured Sparsity-Inducing
Norms through Submodular Functions. Advances
in Neural Information Processing Systems (NIPS), 2010. [pdf]
[long version, arxiv] [slides]
J. Mairal, R. Jenatton, G. Obozinski, F. Bach. Network
Flow Algorithms for Structured Sparsity. Advances
in Neural Information Processing Systems (NIPS), 2010. [pdf]
F. Bach, S. D. Ahipasaoglu, A. d'Aspremont. Convex
Relaxations for Subset Selection. Technical report Arxiv
1006-3601. [pdf]
M. Hoffman, D. Blei, F. Bach. Online
Learning for Latent Dirichlet Allocation. Advances
in Neural Information Processing Systems (NIPS), 2010. [pdf]
F. Bach, S. D. Ahipasaoglu, A. d'Aspremont. Convex
Relaxations for Subset Selection. Technical report, ArXiv
1006.3601, 2010. [pdf]
R. Jenatton, J. Mairal, G. Obozinski, F. Bach. Proximal
Methods for Sparse Hierarchical Dictionary Learning. Proceedings
of the International Conference on
Machine Learning (ICML), 2010. [pdf]
[slides]
M. Journée, F. Bach, P.-A. Absil and R. Sepulchre. Low-Rank
Optimization on the Cone of Positive Semidefinite Matrices. SIAM
Journal on Optimization, 20(5):2327–2351, 2010. [pdf]
[code]
Y-L. Boureau, F. Bach, Y. LeCun, J. Ponce. Learning
Mid-Level Features For Recognition. Proceedings
of
the Conference on Computer Vision and Pattern Recognition (CVPR),
2010. [pdf]
R. Jenatton, G. Obozinski, F. Bach. Structured
Sparse
Principal Component Analysis. Proceedings of the
International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010. [pdf]
[code]
Sparse modeling software - SPAM (C)
Computing regularization paths for multiple kernel learning - version 1.0 (matlab)
Predictive low-rank decomposition for kernel methods - version 1.0 (matlab/C)
Support Kernel Machine - Multiple kernel learning (matlab)
SimpleMKL - version 1.0 (matlab)
Grouplasso - version 1.0 (matlab)
Hierarchical kernel learning - version 3.0 (matlab)