Efficient and robust stochastic approximation through an online Newton method

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with Eric Moulines - February 2014

Context

Large-scale supervised machine learning

- Large p, large n, large k
 - -p: dimension of each observation (input)
 - -n: number of observations
 - -k: number of tasks (dimension of outputs)
- **Examples**: computer vision, bioinformatics, etc.
- Ideal running-time complexity: O(pn + kn)

Context

Large-scale supervised machine learning

- Large p, large n, large k
 - -p: dimension of each observation (input)
 - -n: number of observations
 - -k: number of tasks (dimension of outputs)
- **Examples**: computer vision, bioinformatics, etc.
- Ideal running-time complexity: O(pn + kn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951)
 - Mixing statistics and optimization

• Introduction: Stochastic gradient and averaging

• Introduction: Stochastic gradient and averaging

- Adaptivity of averaging (Bach, 2013)
 - Averaged stochastic gradient with step-sizes $\propto 1/\sqrt{n}$
 - Local strong convexity: rate of $O\left(\min\left\{\frac{1}{\mu n}, \frac{1}{\sqrt{n}}\right\}\right)$

• Introduction: Stochastic gradient and averaging

- Adaptivity of averaging (Bach, 2013)
 - Averaged stochastic gradient with step-sizes $\propto 1/\sqrt{n}$
 - Local strong convexity: rate of $O\left(\min\left\{\frac{1}{\mu n}, \frac{1}{\sqrt{n}}\right\}\right)$
- Least-squares regression (Bach and Moulines, 2013)
 - Constant step-size averaged stochastic gradient descent
 - Convergence rate of O(1/n) in all situations

• Introduction: Stochastic gradient and averaging

- Adaptivity of averaging (Bach, 2013)
 - Averaged stochastic gradient with step-sizes $\propto 1/\sqrt{n}$
 - Local strong convexity: rate of $O\left(\min\left\{\frac{1}{\mu n}, \frac{1}{\sqrt{n}}\right\}\right)$
- Least-squares regression (Bach and Moulines, 2013)
 - Constant step-size averaged stochastic gradient descent
 - Convergence rate of O(1/n) in all situations
- Logistic regression (Bach and Moulines, 2013)
 - Online Newton steps with linear time complexity
 - Convergence rate of O(1/n) in all situations

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \theta, \Phi(x_i) \rangle) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \theta, \Phi(x_i) \rangle) + \mu \Omega(\theta)$$

$$\text{convex data fitting term + regularizer}$$

• Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$ training cost

• Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \langle \theta, \Phi(x) \rangle)$ testing cost

• Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \theta, \Phi(x_i) \rangle) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

• Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$ training cost

• Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \langle \theta, \Phi(x) \rangle)$ testing cost

- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
 - May be tackled simultaneously

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is *L*-smooth if and only if it is twice differentiable and

 $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \preccurlyeq L \cdot \mathrm{Id}$

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is *L*-smooth if and only if it is twice differentiable and

 $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \preccurlyeq L \cdot \mathrm{Id}$

- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \otimes \Phi(x_i)$
 - Bounded data

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

 $\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \ge g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$

• If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

 $\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \ge g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$
- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \otimes \Phi(x_i)$
 - Data with invertible covariance matrix (low correlation/dimension)

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

 $\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \ge g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, g''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$
- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \otimes \Phi(x_i)$
 - Data with invertible covariance matrix (low correlation/dimension)
- Adding regularization by $\frac{\mu}{2} \|\theta\|^2$

– creates additional bias unless μ is small

Iterative methods for minimizing smooth functions

- Assumption: g convex and smooth on \mathbb{R}^p
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions - $O(e^{-\rho t})$ convergence rate for strongly convex functions
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $O(e^{-\rho 2^t})$ convergence rate

Iterative methods for minimizing smooth functions

- Assumption: g convex and smooth on \mathbb{R}^p
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $O(e^{-\rho t})$ convergence rate for strongly convex functions
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $O(e^{-\rho 2^t})$ convergence rate

• Key insights from Bottou and Bousquet (2008)

In machine learning, no need to optimize below statistical error
 In machine learning, cost functions are averages

 \Rightarrow Stochastic approximation

Stochastic approximation

- Goal: Minimizing a function f defined on \mathbb{R}^p
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n\in\mathbb{R}^p$

• Stochastic approximation

- (much) broader applicability beyond convex optimization

$$\theta_n = \theta_{n-1} - \gamma_n h_n(\theta_{n-1})$$
 with $\mathbb{E}[h_n(\theta_{n-1})|\theta_{n-1}] = h(\theta_{n-1})$

- Beyond convex problems, i.i.d assumption, finite dimension, etc.
- Typically asymptotic results
- See, e.g., Kushner and Yin (2003); Benveniste et al. (2012)

Stochastic approximation

- Goal: Minimizing a function f defined on \mathbb{R}^p
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n\in\mathbb{R}^p$
- Machine learning statistics
 - loss for a single pair of observations: $f_n(\theta) = \ell(y_n, \langle \theta, \Phi(x_n) \rangle)$
 - $f(\theta) = \mathbb{E}f_n(\theta) = \mathbb{E}\ell(y_n, \langle \theta, \Phi(x_n) \rangle) =$ generalization error
 - Expected gradient: $f'(\theta) = \mathbb{E}f'_n(\theta) = \mathbb{E}\left\{\ell'(y_n, \langle \theta, \Phi(x_n) \rangle) \Phi(x_n)\right\}$

- Non-asymptotic results

Convex stochastic approximation

- **Key assumption**: smoothness and/or strongly convexity
- Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n+1} \sum_{k=0}^n \theta_k$
- Which learning rate sequence γ_n ? Classical setting:

$$\gamma_n = C n^{-\alpha}$$

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$

Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$

– Non-strongly convex: $O(n^{-1/2})$

Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$

Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$

- Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Many contributions in optimization and online learning: Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and Vial (2008); Nemirovski et al. (2009)

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$

Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$

- Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992; Ruppert, 1988)
 - All step sizes $\gamma_n = Cn^{-\alpha}$ with $\alpha \in (1/2, 1)$ lead to $O(n^{-1})$ for smooth strongly convex problems

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$

Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$

- Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992; Ruppert, 1988)
 - All step sizes $\gamma_n = Cn^{-\alpha}$ with $\alpha \in (1/2, 1)$ lead to $O(n^{-1})$ for smooth strongly convex problems
- A single adaptive algorithm for smooth problems with convergence rate $O(\min\{1/\mu n, 1/\sqrt{n}\})$ in all situations?

- Logistic regression: $(\Phi(x_n), y_n) \in \mathbb{R}^p \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \langle \theta, \Phi(x_n) \rangle))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$

- Logistic regression: $(\Phi(x_n), y_n) \in \mathbb{R}^p \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \langle \theta, \Phi(x_n) \rangle))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$
- Cannot be strongly convex ⇒ local strong convexity
 - unless restricted to $|\langle \theta, \Phi(x_n) \rangle| \leq M$ (and with constants e^M)
 - $-\mu =$ lowest eigenvalue of the Hessian at the optimum $f''(\theta_*)$

- Logistic regression: $(\Phi(x_n), y_n) \in \mathbb{R}^p \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \langle \theta, \Phi(x_n) \rangle))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$
- Cannot be strongly convex ⇒ local strong convexity
 - unless restricted to $|\langle \theta, \Phi(x_n) \rangle| \leq M$ (and with constants e^M) - μ = lowest eigenvalue of the Hessian at the optimum $f''(\theta_*)$
- n steps of averaged SGD with constant step-size $1/(2R^2\sqrt{n})$
 - with R = radius of data (Bach, 2013):

$$\mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leqslant \min\left\{\frac{1}{\sqrt{n}}, \frac{R^2}{n\mu}\right\} \left(15 + 5R\|\theta_0 - \theta_*\|\right)^4$$

- Proof based on self-concordance (Nesterov and Nemirovski, 1994)

- Logistic regression: $(\Phi(x_n), y_n) \in \mathbb{R}^p \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \langle \theta, \Phi(x_n) \rangle))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$
- Cannot be strongly convex ⇒ local strong convexity
 - unless restricted to $|\langle \theta, \Phi(x_n) \rangle| \leq M$ (and with constants e^M) - μ = lowest eigenvalue of the Hessian at the optimum $f''(\theta_*)$
- *n* steps of averaged SGD with constant step-size $1/(2R^2\sqrt{n})$ - with R = radius of data (Bach, 2013):

$$\mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leqslant \min\left\{\frac{1}{\sqrt{n}}, \frac{R^2}{n\mu}\right\} \left(15 + 5R\|\theta_0 - \theta_*\|\right)^4$$

– A single adaptive algorithm for smooth problems with convergence rate O(1/n) in all situations?

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}[(y_n \langle \Phi(x_n), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^p$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}[\Phi(x_n) \otimes \Phi(x_n)] = H \succcurlyeq \mu \cdot \mathrm{Id}$

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}[(y_n \langle \Phi(x_n), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^p$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}\left[\Phi(x_n) \otimes \Phi(x_n)\right] = H \succcurlyeq \mu \cdot \mathrm{Id}$
- \bullet New analysis for averaging and constant step-size $\gamma = 1/(4R^2)$
 - Assume $\|\Phi(x_n)\| \leq R$ and $|y_n \langle \Phi(x_n), \theta_* \rangle| \leq \sigma$ almost surely

– No assumption regarding lowest eigenvalues of ${\cal H}$

- Main result:
$$\left| \mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leqslant \frac{4\sigma^2 p}{n} + \frac{2R^2 \|\theta_0 - \theta_*\|^2}{n} \right|$$

- Matches statistical lower bound (Tsybakov, 2003)
 - Non-asymptotic robust version of Györfi and Walk (1996)

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}[(y_n \langle \Phi(x_n), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^p$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}\left[\Phi(x_n) \otimes \Phi(x_n)\right] = H \succcurlyeq \mu \cdot \mathrm{Id}$
- \bullet New analysis for averaging and constant step-size $\gamma = 1/(4R^2)$
 - Assume $\|\Phi(x_n)\| \leq R$ and $|y_n \langle \Phi(x_n), \theta_* \rangle| \leq \sigma$ almost surely

– No assumption regarding lowest eigenvalues of ${\cal H}$

- Main result:
$$\mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leq \frac{4\sigma^2 p}{n} + \frac{2R^2 \|\theta_0 - \theta_*\|^2}{n}$$

• Improvement of bias term (Flammarion and Bach, 2014):

$$\min\left\{\frac{R^2\|\theta_0-\theta_*\|^2}{n}, \frac{R^4\langle\theta_0-\theta_*, H^{-1}(\theta_0-\theta_*)\rangle}{n^2}\right\}$$

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}[(y_n \langle \Phi(x_n), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^p$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}\left[\Phi(x_n) \otimes \Phi(x_n)\right] = H \succcurlyeq \mu \cdot \mathrm{Id}$
- \bullet New analysis for averaging and constant step-size $\gamma = 1/(4R^2)$
 - Assume $\|\Phi(x_n)\| \leq R$ and $|y_n \langle \Phi(x_n), \theta_* \rangle| \leq \sigma$ almost surely

– No assumption regarding lowest eigenvalues of ${\cal H}$

- Main result:
$$\mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leq \frac{4\sigma^2 p}{n} + \frac{2R^2 \|\theta_0 - \theta_*\|^2}{n}$$

- Extension to Hilbert spaces (Dieuleveult and Bach, 2014):
 - Achieves minimax statistical rates given decay of spectrum of ${\cal H}$

Least-squares - Proof technique

• LMS recursion with $\varepsilon_n = y_n - \langle \Phi(x_n), \theta_* \rangle$:

 $\theta_n - \theta_* = \left[I - \gamma \Phi(x_n) \otimes \Phi(x_n)\right] (\theta_{n-1} - \theta_*) + \gamma \varepsilon_n \Phi(x_n)$

• Simplified LMS recursion: with $H = \mathbb{E}[\Phi(x_n) \otimes \Phi(x_n)]$

$$\theta_n - \theta_* = \left[I - \gamma \mathbf{H}\right](\theta_{n-1} - \theta_*) + \gamma \varepsilon_n \Phi(x_n)$$

- Direct proof technique of Polyak and Juditsky (1992), e.g.,

$$\theta_n - \theta_* = \left[I - \gamma \mathbf{H}\right]^n (\theta_0 - \theta_*) + \gamma \sum_{k=1}^n \left[I - \gamma \mathbf{H}\right]^{n-k} \varepsilon_k \Phi(x_k)$$
- Exact computations

- Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers of γ

Markov chain interpretation of constant step sizes

• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma \big(\langle \Phi(x_n), \theta_{n-1} \rangle - y_n \big) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}

- with expectation
$$\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$$

Markov chain interpretation of constant step sizes

• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma \big(\langle \Phi(x_n), \theta_{n-1} \rangle - y_n \big) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- For least-squares, $\bar{\theta}_{\gamma} = \theta_{*}$
 - θ_n does not converge to θ_* but oscillates around it
 - oscillations of order $\sqrt{\gamma}$
 - cf. Kaczmarz method (Strohmer and Vershynin, 2009)

• Ergodic theorem:

– Averaged iterates converge to $\bar{\theta}_{\gamma}=\theta_{*}$ at rate O(1/n)

Simulations - synthetic examples

• Gaussian distributions - p=20

Simulations - benchmarks

Beyond least-squares - Markov chain interpretation

- Recursion $\theta_n = \theta_{n-1} \gamma f'_n(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(\mathrm{d}\theta)) \neq \int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$

Beyond least-squares - Markov chain interpretation

- Recursion $\theta_n = \theta_{n-1} \gamma f'_n(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(\mathrm{d}\theta)) \neq \int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$
- θ_n oscillates around the wrong value $\bar{\theta}_{\gamma} \neq \theta_*$

- moreover,
$$\|\theta_* - \theta_n\| = O_p(\sqrt{\gamma})$$

• Ergodic theorem

- averaged iterates converge to $\bar{\theta}_{\gamma} \neq \theta_*$ at rate O(1/n)
- moreover, $\|\theta_* \bar{\theta}_{\gamma}\| = O(\gamma)$ (Bach, 2013)
- NB: coherent with earlier results by Nedic and Bertsekas (2000)

Simulations - synthetic examples

• Gaussian distributions - p=20

• Known facts

- 1. Averaged SGD with $\gamma_n \propto n^{-1/2}$ leads to *robust* rate $O(n^{-1/2})$ for all convex functions
- 2. Averaged SGD with γ_n constant leads to *robust* rate $O(n^{-1})$ for all convex *quadratic* functions
- 3. Newton's method squares the error at each iteration for smooth functions
- 4. A single step of Newton's method is equivalent to minimizing the quadratic Taylor expansion

• Known facts

- 1. Averaged SGD with $\gamma_n \propto n^{-1/2}$ leads to *robust* rate $O(n^{-1/2})$ for all convex functions
- 2. Averaged SGD with γ_n constant leads to *robust* rate $O(n^{-1})$ for all convex *quadratic* functions
- 3. Newton's method squares the error at each iteration for smooth functions
- 4. A single step of Newton's method is equivalent to minimizing the quadratic Taylor expansion
- Online Newton step
 - Rate: $O((n^{-1/2})^2 + n^{-1}) = O(n^{-1})$
 - Complexity: O(p) per iteration for linear predictions

• The Newton step for $f = \mathbb{E}f_n(\theta) \stackrel{\text{def}}{=} \mathbb{E}[\ell(y_n, \langle \theta, \Phi(x_n) \rangle)]$ at $\tilde{\theta}$ is equivalent to minimizing the quadratic approximation

$$g(\theta) = f(\tilde{\theta}) + \langle f'(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= f(\tilde{\theta}) + \langle \mathbb{E}f'_{n}(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, \mathbb{E}f''_{n}(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= \mathbb{E}\Big[f(\tilde{\theta}) + \langle f'_{n}(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''_{n}(\tilde{\theta})(\theta - \tilde{\theta}) \rangle\Big]$$

• The Newton step for $f = \mathbb{E}f_n(\theta) \stackrel{\text{def}}{=} \mathbb{E}[\ell(y_n, \langle \theta, \Phi(x_n) \rangle)]$ at $\tilde{\theta}$ is equivalent to minimizing the quadratic approximation

$$g(\theta) = f(\tilde{\theta}) + \langle f'(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= f(\tilde{\theta}) + \langle \mathbb{E}f'_{n}(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, \mathbb{E}f''_{n}(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= \mathbb{E}\Big[f(\tilde{\theta}) + \langle f'_{n}(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''_{n}(\tilde{\theta})(\theta - \tilde{\theta}) \rangle\Big]$$

• Complexity of least-mean-square recursion for g is O(p)

$$\theta_n = \theta_{n-1} - \gamma \left[f'_n(\tilde{\theta}) + f''_n(\tilde{\theta})(\theta_{n-1} - \tilde{\theta}) \right]$$

 $-f_n''(\tilde{\theta}) = \ell''(y_n, \langle \tilde{\theta}, \Phi(x_n) \rangle) \Phi(x_n) \otimes \Phi(x_n)$ has rank one

New online Newton step without computing/inverting Hessians

Choice of support point for online Newton step

• Two-stage procedure

- (1) Run n/2 iterations of averaged SGD to obtain $\tilde{ heta}$
- (2) Run n/2 iterations of averaged constant step-size LMS
 - Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
 - Provable convergence rate of O(p/n) for logistic regression
 - Additional assumptions but no strong convexity

Logistic regression - Proof technique

• Using generalized self-concordance of $\varphi : u \mapsto \log(1 + e^{-u})$:

 $|\varphi'''(u)| \leqslant \varphi''(u)$

- NB: difference with regular self-concordance: $|\varphi'''(u)| \leq 2\varphi''(u)^{3/2}$
- Using novel high-probability convergence results for regular averaged stochastic gradient descent
- Requires assumption on the kurtosis in every direction, i.e.,

$$\mathbb{E}\langle \Phi(x_n), \eta \rangle^4 \leqslant \kappa \big[\mathbb{E}\langle \Phi(x_n), \eta \rangle^2 \big]^2$$

Choice of support point for online Newton step

• Two-stage procedure

- (1) Run n/2 iterations of averaged SGD to obtain $\tilde{ heta}$
- (2) Run n/2 iterations of averaged constant step-size LMS
 - Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
 - Provable convergence rate of O(p/n) for logistic regression
 - Additional assumptions but no strong convexity

Choice of support point for online Newton step

• Two-stage procedure

- (1) Run n/2 iterations of averaged SGD to obtain $\tilde{\theta}$
- (2) Run n/2 iterations of averaged constant step-size LMS
 - Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
 - Provable convergence rate of O(p/n) for logistic regression
 - Additional assumptions but no strong convexity
- Update at each iteration using the current averaged iterate
 - Recursion: $\theta_n = \theta_{n-1} \gamma \left[f'_n(\bar{\theta}_{n-1}) + f''_n(\bar{\theta}_{n-1})(\theta_{n-1} \bar{\theta}_{n-1}) \right]$
 - No provable convergence rate (yet) but best practical behavior
 - Note (dis)similarity with regular SGD: $\theta_n = \theta_{n-1} \gamma f'_n(\theta_{n-1})$

Simulations - synthetic examples

• Gaussian distributions - p=20

Simulations - benchmarks

Conclusions

- Constant-step-size averaged stochastic gradient descent
 - Reaches convergence rate ${\cal O}(1/n)$ in all regimes
 - Improves on the $O(1/\sqrt{n})$ lower-bound of non-smooth problems
 - Efficient online Newton step for non-quadratic problems
 - Robustness to step-size selection

Conclusions

• Constant-step-size averaged stochastic gradient descent

- Reaches convergence rate ${\cal O}(1/n)$ in all regimes
- Improves on the $O(1/\sqrt{n})$ lower-bound of non-smooth problems
- Efficient online Newton step for non-quadratic problems
- Robustness to step-size selection

• Extensions and future work

- Going beyond a single pass
- Pre-conditioning
- Proximal extensions fo non-differentiable terms
- kernels and non-parametric estimation
- line-search
- parallelization
- Non-convex problems

References

- A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. *Information Theory, IEEE Transactions* on, 58(5):3235–3249, 2012.
- R. Aguech, E. Moulines, and P. Priouret. On a perturbation approach for the analysis of stochastic tracking algorithms. *SIAM J. Control and Optimization*, 39(3):872–899, 2000.
- F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. Technical Report 00804431, HAL, 2013.
- F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate o(1/n). Technical Report 00831977, HAL, 2013.
- Albert Benveniste, Michel Métivier, and Pierre Priouret. *Adaptive algorithms and stochastic approximations*. Springer Publishing Company, Incorporated, 2012.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.
- L. Bottou and Y. Le Cun. On-line learning for very large data sets. *Applied Stochastic Models in Business and Industry*, 21(2):137–151, 2005.
- J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. *Journal of Machine Learning Research*, 10:2899–2934, 2009. ISSN 1532-4435.
- L. Györfi and H. Walk. On the averaged stochastic approximation for linear regression. *SIAM Journal* on Control and Optimization, 34(1):31–61, 1996.

- E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69(2):169–192, 2007.
- H. J. Kushner and G. G. Yin. *Stochastic approximation and recursive algorithms and applications*. Springer-Verlag, second edition, 2003.
- O. Macchi. Adaptive processing: The least mean squares approach with applications in transmission. Wiley West Sussex, 1995.
- A. Nedic and D. Bertsekas. Convergence rate of incremental subgradient algorithms. *Stochastic Optimization: Algorithms and Applications*, pages 263–304, 2000.
- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–1609, 2009.
- A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley & Sons, 1983.
- Y. Nesterov and A. Nemirovski. *Interior-point polynomial algorithms in convex programming*. SIAM studies in Applied Mathematics, 1994.
- Y. Nesterov and J. P. Vial. Confidence level solutions for stochastic programming. *Automatica*, 44(6): 1559–1568, 2008. ISSN 0005-1098.
- B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. *SIAM Journal* on Control and Optimization, 30(4):838–855, 1992.
- H. Robbins and S. Monro. A stochastic approximation method. *Ann. Math. Statistics*, 22:400–407, 1951. ISSN 0003-4851.
- D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report

781, Cornell University Operations Research and Industrial Engineering, 1988.

- S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In *Proc. ICML*, 2008.
- S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In *Proc. ICML*, 2007.
- S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In *proc. COLT*, 2009.
- Thomas Strohmer and Roman Vershynin. A randomized kaczmarz algorithm with exponential convergence. *Journal of Fourier Analysis and Applications*, 15(2):262–278, 2009.
- A. B. Tsybakov. Optimal rates of aggregation. In Proc. COLT, 2003.
- A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge Univ. press, 2000.
- L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. *Journal of Machine Learning Research*, 9:2543–2596, 2010. ISSN 1532-4435.