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Context

Large-scale supervised machine learning

• Large p, large n, large k

– p : dimension of each observation (input)

– n : number of observations

– k : number of tasks (dimension of outputs)

• Examples: computer vision, bioinformatics, etc.

• Ideal running-time complexity: O(pn+ kn)

– Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

– Mixing statistics and optimization

– Using smoothness to go beyond stochastic gradient descent
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• Least-squares regression (Bach and Moulines, 2013)

– Constant step-size averaged stochastic gradient descent

– Convergence rate of O(1/n) in all situations

• Logistic regression (Bach and Moulines, 2013)

– Online Newton steps with linear time complexity

– Convergence rate of O(1/n) in all situations



Supervised machine learning
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– with g(θ) = 1
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– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)⊗ Φ(xi)

– Data with invertible covariance matrix (low correlation/dimension)

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
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– O(e−ρt) convergence rate for strongly convex functions

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
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convergence rate

• Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error

2. In machine learning, cost functions are averages

⇒ Stochastic approximation



Stochastic approximation

• Goal: Minimizing a function f defined on R
p

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
p

• Stochastic approximation

– (much) broader applicability beyond convex optimization

θn = θn−1 − γnhn(θn−1) with E
[

hn(θn−1)|θn−1

]

= h(θn−1)

– Beyond convex problems, i.i.d assumption, finite dimension, etc.

– Typically asymptotic results

– See, e.g., Kushner and Yin (2003); Benveniste et al. (2012)



Stochastic approximation

• Goal: Minimizing a function f defined on R
p

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
p

• Machine learning - statistics

– loss for a single pair of observations: fn(θ) = ℓ(yn, 〈θ,Φ(xn)〉)
– f(θ) = Efn(θ) = E ℓ(yn, 〈θ,Φ(xn)〉) = generalization error

– Expected gradient: f ′(θ) = Ef ′
n(θ) = E

{

ℓ′(yn, 〈θ,Φ(xn)〉)Φ(xn)
}

– Non-asymptotic results



Convex stochastic approximation

• Key assumption: smoothness and/or strongly convexity

• Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γn f
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n+1

∑n
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α
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Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

– Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan

et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz

et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov

and Vial (2008); Nemirovski et al. (2009)
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• Asymptotic analysis of averaging (Polyak and Juditsky, 1992;

Ruppert, 1988)

– All step sizes γn = Cn−α with α ∈ (1/2, 1) lead to O(n−1) for

smooth strongly convex problems

• A single adaptive algorithm for smooth problems with

convergence rate O(min{1/µn, 1/√n}) in all situations?
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– Generalization error: f(θ) = Efn(θ)
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)4

– Proof based on self-concordance (Nesterov and Nemirovski, 1994)
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Least-mean-square (LMS) algorithm

• Least-squares: f(θ) = 1
2E

[

(yn − 〈Φ(xn), θ〉)2
]

with θ ∈ R
p

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– usually studied without averaging and decreasing step-sizes

– with strong convexity assumption E
[

Φ(xn)⊗Φ(xn)
]

= H < µ · Id
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– Non-asymptotic robust version of Györfi and Walk (1996)
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– Main result: Ef(θ̄n)− f(θ∗) 6
4σ2p

n
+
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• Extension to Hilbert spaces (Dieuleveult and Bach, 2014):

– Achieves minimax statistical rates given decay of spectrum of H



Least-squares - Proof technique

• LMS recursion with εn = yn − 〈Φ(xn), θ∗〉 :

θn − θ∗ =
[

I − γΦ(xn)⊗ Φ(xn)
]

(θn−1 − θ∗) + γ εnΦ(xn)

• Simplified LMS recursion: with H = E
[

Φ(xn)⊗ Φ(xn)
]

θn − θ∗ =
[

I − γH
]

(θn−1 − θ∗) + γ εnΦ(xn)

– Direct proof technique of Polyak and Juditsky (1992), e.g.,

θn − θ∗ =
[

I − γH
]n
(θ0 − θ∗) + γ

n
∑

k=1

[

I − γH
]n−k

εkΦ(xk)

– Exact computations

• Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers

of γ



Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)



Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

– θn does not converge to θ∗ but oscillates around it

– oscillations of order
√
γ

– cf. Kaczmarz method (Strohmer and Vershynin, 2009)

• Ergodic theorem:

– Averaged iterates converge to θ̄γ = θ∗ at rate O(1/n)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)
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Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0



Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0

• θn oscillates around the wrong value θ̄γ 6= θ∗

– moreover, ‖θ∗ − θn‖ = Op(
√
γ)

• Ergodic theorem

– averaged iterates converge to θ̄γ 6= θ∗ at rate O(1/n)

– moreover, ‖θ∗ − θ̄γ‖ = O(γ) (Bach, 2013)

• NB: coherent with earlier results by Nedic and Bertsekas (2000)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Restoring convergence through online Newton steps

• Known facts

1. Averaged SGD with γn ∝ n−1/2 leads to robust rate O(n−1/2)

for all convex functions

2. Averaged SGD with γn constant leads to robust rate O(n−1)

for all convex quadratic functions

3. Newton’s method squares the error at each iteration

for smooth functions

4. A single step of Newton’s method is equivalent to minimizing the

quadratic Taylor expansion

– Online Newton step

– Rate: O((n−1/2)2 + n−1) = O(n−1)

– Complexity: O(p) per iteration for linear predictions
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Restoring convergence through online Newton steps

• The Newton step for f = Efn(θ)
def
= E

[

ℓ(yn, 〈θ,Φ(xn)〉)
]

at θ̃ is

equivalent to minimizing the quadratic approximation

g(θ) = f(θ̃) + 〈f ′(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′(θ̃)(θ − θ̃)〉

= f(θ̃) + 〈Ef ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃,Ef ′′
n(θ̃)(θ − θ̃)〉

= E

[

f(θ̃) + 〈f ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃, f ′′
n(θ̃)(θ − θ̃)〉

]



Restoring convergence through online Newton steps

• The Newton step for f = Efn(θ)
def
= E

[

ℓ(yn, 〈θ,Φ(xn)〉)
]

at θ̃ is

equivalent to minimizing the quadratic approximation

g(θ) = f(θ̃) + 〈f ′(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′(θ̃)(θ − θ̃)〉

= f(θ̃) + 〈Ef ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃,Ef ′′
n(θ̃)(θ − θ̃)〉

= E

[

f(θ̃) + 〈f ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃, f ′′
n(θ̃)(θ − θ̃)〉

]

• Complexity of least-mean-square recursion for g is O(p)

θn = θn−1 − γ
[

f ′
n(θ̃) + f ′′

n(θ̃)(θn−1 − θ̃)
]

– f ′′
n(θ̃) = ℓ′′(yn, 〈θ̃,Φ(xn)〉)Φ(xn)⊗ Φ(xn) has rank one

– New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity



Logistic regression - Proof technique

• Using generalized self-concordance of ϕ : u 7→ log(1 + e−u):

|ϕ′′′(u)| 6 ϕ′′(u)

– NB: difference with regular self-concordance: |ϕ′′′(u)| 6 2ϕ′′(u)3/2

• Using novel high-probability convergence results for regular averaged

stochastic gradient descent

• Requires assumption on the kurtosis in every direction, i.e.,

E〈Φ(xn), η〉4 6 κ
[

E〈Φ(xn), η〉2
]2



Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity



Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity

• Update at each iteration using the current averaged iterate

– Recursion: θn = θn−1 − γ
[

f ′
n(θ̄n−1) + f ′′

n(θ̄n−1)(θn−1 − θ̄n−1)
]

– No provable convergence rate (yet) but best practical behavior

– Note (dis)similarity with regular SGD: θn = θn−1 − γf ′
n(θn−1)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)
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Conclusions

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection



Conclusions

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection

• Extensions and future work

– Going beyond a single pass

– Pre-conditioning

– Proximal extensions fo non-differentiable terms

– kernels and non-parametric estimation

– line-search

– parallelization

– Non-convex problems
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