Learning with Submodular Functions

Francis Bach

Sierra project-team, INRIA - Ecole Normale Supérieure

Machine Learning Summer School, Kyoto September 2012

Submodular functions- References and Links

- References based on from combinatorial optimization
 - Submodular Functions and Optimization (Fujishige, 2005)
 - Discrete convex analysis (Murota, 2003)
- Tutorial paper based on convex optimization (Bach, 2011)
 - www.di.ens.fr/~fbach/submodular_fot.pdf
- Slides for this class
 - www.di.ens.fr/~fbach/submodular_fbach_mlss2012.pdf
- Other tutorial slides and code at submodularity.org/
- Lecture slides at ssli.ee.washington.edu/~bilmes/ee595a_ spring_2011/

Submodularity (almost) everywhere Clustering

• Semi-supervised clustering

• Submodular function minimization

Submodularity (almost) everywhere Sensor placement

- Each sensor covers a certain area (Krause and Guestrin, 2005)
 - Goal: maximize coverage

- Submodular function maximization
- Extension to experimental design (Seeger, 2009)

Submodularity (almost) everywhere Graph cuts

• Submodular function minimization

Submodularity (almost) everywhere Isotonic regression

• Given real numbers x_i , $i = 1, \ldots, p$

• No structure: many zeros do not lead to better interpretability

• No structure: many zeros do not lead to better interpretability

raw data

Structured sparse PCA

raw data

Structured sparse PCA

Submodularity (almost) everywhere Image denoising

• Total variation denoising (Chambolle, 2005)

Submodularity (almost) everywhere Maximum weight spanning trees

- Given an undirected graph G = (V, E) and weights $w : E \mapsto \mathbb{R}_+$
 - find the maximum weight spanning tree

• Greedy algorithm for submodular polyhedron - matroid

Submodularity (almost) everywhere Combinatorial optimization problems

- Set $V = \{1, \ldots, p\}$
- Power set $2^V = \text{set of all subsets, of cardinality } 2^p$
- Minimization/maximization of a set function $F: 2^V \to \mathbb{R}$.

$$\min_{A \subset V} F(A) = \min_{A \in 2^V} F(A)$$

Submodularity (almost) everywhere Combinatorial optimization problems

- Set $V = \{1, \ldots, p\}$
- Power set $2^V = \text{set of all subsets, of cardinality } 2^p$
- Minimization/maximization of a set function $F: 2^V \to \mathbb{R}$.

$$\min_{A \subset V} F(A) = \min_{A \in 2^V} F(A)$$

• Reformulation as (pseudo) Boolean function

Submodularity (almost) everywhere Convex optimization with combinatorial structure

- Supervised learning / signal processing
 - Minimize regularized empirical risk from data (x_i, y_i) , $i = 1, \ldots, n$:

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \Omega(f)$$

– ${\mathcal F}$ is often a vector space, formulation often convex

- Introducing discrete structures within a vector space framework
 - Trees, graphs, etc.
 - Many different approaches (e.g., stochastic processes)
- Submodularity allows the incorporation of discrete structures

Outline

1. Submodular functions

- Definitions
- Examples of submodular functions
- Links with convexity through Lovász extension

2. Submodular optimization

- Minimization
- Links with convex optimization
- Maximization

3. Structured sparsity-inducing norms

- Norms with overlapping groups
- Relaxation of the penalization of supports by submodular functions

• **Definition**: $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$

- NB: equality for *modular* functions
- Always assume $F(\varnothing) = 0$

• **Definition**: $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$

- NB: equality for *modular* functions
- Always assume $F(\varnothing) = 0$
- Equivalent definition:

 $\forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$ $\Leftrightarrow \quad \forall A \subset B, \ \forall k \notin A, \quad F(A \cup \{k\}) - F(A) \ge F(B \cup \{k\}) - F(B)$

- "Concave property": Diminishing return property

• Equivalent definition (easiest to show in practice): F is submodular if and only if $\forall A \subset V, \ \forall j, k \in V \setminus A$:

 $F(A \cup \{k\}) - F(A) \ge F(A \cup \{j,k\}) - F(A \cup \{j\})$

• Equivalent definition (easiest to show in practice): F is submodular if and only if $\forall A \subset V, \ \forall j, k \in V \setminus A$:

 $F(A \cup \{k\}) - F(A) \ge F(A \cup \{j,k\}) - F(A \cup \{j\})$

- Checking submodularity
 - 1. Through the definition directly
 - 2. Closedness properties
 - 3. Through the Lovász extension

Submodular functions Closedness properties

• Positive linear combinations: if F_i 's are all submodular : $2^V \to \mathbb{R}$ and $\alpha_i \ge 0$ for all $i \in \{1, \ldots, m\}$, then

$$A \mapsto \sum_{i=1}^{n} \alpha_i F_i(A)$$
 is submodular

Submodular functions Closedness properties

• Positive linear combinations: if F_i 's are all submodular : $2^V \to \mathbb{R}$ and $\alpha_i \ge 0$ for all $i \in \{1, \dots, m\}$, then

$$A \mapsto \sum_{i=1}^{n} \alpha_i F_i(A)$$
 is submodular

• Restriction/marginalization: if $B \subset V$ and $F : 2^V \to \mathbb{R}$ is submodular, then

 $A\mapsto F(A\cap B)$ is submodular on V and on B

Submodular functions Closedness properties

• Positive linear combinations: if F_i 's are all submodular : $2^V \to \mathbb{R}$ and $\alpha_i \ge 0$ for all $i \in \{1, \dots, m\}$, then

$$A \mapsto \sum_{i=1}^{n} \alpha_i F_i(A)$$
 is submodular

• Restriction/marginalization: if $B \subset V$ and $F : 2^V \to \mathbb{R}$ is submodular, then

 $A \mapsto F(A \cap B)$ is submodular on V and on B

• Contraction/conditioning: if $B \subset V$ and $F : 2^V \to \mathbb{R}$ is submodular, then

 $A\mapsto F(A\cup B)-F(B)$ is submodular on V and on $V\backslash B$

Submodular functions Partial minimization

- Let G be a submodular function on $V \cup W$, where $V \cap W = \varnothing$
- For $A \subset V$, define $F(A) = \min_{B \subset W} G(A \cup B) \min_{B \subset W} G(B)$
- **Property**: the function F is submodular and $F(\emptyset) = 0$

Submodular functions Partial minimization

- Let G be a submodular function on $V \cup W$, where $V \cap W = \varnothing$
- For $A \subset V$, define $F(A) = \min_{B \subset W} G(A \cup B) \min_{B \subset W} G(B)$
- **Property**: the function F is submodular and $F(\emptyset) = 0$
- NB: partial minimization also preserves convexity
- NB: $A \mapsto \max\{F(A), G(A)\}$ and $A \mapsto \min\{F(A), G(A)\}$ might not be submodular

Examples of submodular functions Cardinality-based functions

• Notation for modular function: $s(A) = \sum_{k \in A} s_k$ for $s \in \mathbb{R}^p$

- If $s = 1_V$, then s(A) = |A| (cardinality)

- **Proposition 1**: If $s \in \mathbb{R}^p_+$ and $g : \mathbb{R}_+ \to \mathbb{R}$ is a concave function, then $F : A \mapsto g(s(A))$ is submodular
- Proposition 2: If $F: A \mapsto g(s(A))$ is submodular for all $s \in \mathbb{R}^p_+$, then g is concave
- Classical example:
 - F(A) = 1 if |A| > 0 and 0 otherwise
 - May be rewritten as $F(A) = \max_{k \in V} (1_A)_k$

Examples of submodular functions Covers

- Let W be any "base" set, and for each $k \in V$, a set $S_k \subset W$
- Set cover defined as $F(A) = \left| \bigcup_{k \in A} S_k \right|$
- Proof of submodularity

Examples of submodular functions Cuts

- Given a (un)directed graph, with vertex set V and edge set E
 - F(A) is the total number of edges going from A to $V \setminus A$.

• Generalization with $d: V \times V \to \mathbb{R}_+$

$$F(A) = \sum_{k \in A, j \in V \setminus A} d(k, j)$$

• Proof of submodularity

Examples of submodular functions Entropies

- Given p random variables X_1, \ldots, X_p with finite number of values
 - Define F(A) as the joint entropy of the variables $(X_k)_{k \in A}$ - F is submodular
- Proof of submodularity using data processing inequality (Cover and Thomas, 1991): if $A \subset B$ and $k \notin B$,

 $F(A \cup \{k\}) - F(A) = H(X_A, X_k) - H(X_A) = H(X_k | X_A) \ge H(X_k | X_B)$

- Symmetrized version $G(A) = F(A) + F(V \setminus A) F(V)$ is mutual information between X_A and $X_{V \setminus A}$
- Extension to continuous random variables, e.g., Gaussian: $F(A) = \log \det \Sigma_{AA}$, for some positive definite matrix $\Sigma \in \mathbb{R}^{p \times p}$

Entropies, Gaussian processes and clustering

- Assume a joint Gaussian process with covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$
- Prior distribution on subsets $p(A) = \prod_{k \in A} \eta_k \prod_{k \notin A} (1 \eta_k)$
- \bullet Modeling with independent Gaussian processes on A and $V \backslash A$
- Maximum a posteriori: minimize

$$I(f_A, f_{V \setminus A}) - \sum_{k \in A} \log \eta_k - \sum_{k \in V \setminus A} \log(1 - \eta_k)$$

• Similar to independent component analysis (Hyvärinen et al., 2001)

Examples of submodular functions Flows

- Net-flows from multi-sink multi-source networks (Megiddo, 1974)
- See details in www.di.ens.fr/~fbach/submodular_fot.pdf
- Efficient formulation for set covers

Examples of submodular functions Matroids

- The pair (V, \mathcal{I}) is a matroid with \mathcal{I} its family of independent sets, iff:
- (a) $\emptyset \in \mathcal{I}$ (b) $I_1 \subset I_2 \in \mathcal{I} \Rightarrow I_1 \in \mathcal{I}$ (c) for all $I_1, I_2 \in \mathcal{I}$, $|I_1| < |I_2| \Rightarrow \exists k \in I_2 \setminus I_1, I_1 \cup \{k\} \in \mathcal{I}$
- Rank function of the matroid, defined as $F(A) = \max_{I \subset A, A \in \mathcal{I}} |I|$ is submodular (*direct proof*)
- Graphic matroid (More later!)
 - V edge set of a certain graph ${\cal G}=(U,V)$
 - $\mathcal{I}=$ set of subsets of edges which do not contain any cycle
 - F(A) = |U| minus the number of connected components of the subgraph induced by A

Outline

1. Submodular functions

- Definitions
- Examples of submodular functions
- Links with convexity through Lovász extension

2. Submodular optimization

- Minimization
- Links with convex optimization
- Maximization

3. Structured sparsity-inducing norms

- Norms with overlapping groups
- Relaxation of the penalization of supports by submodular functions

Choquet integral - Lovász extension

- Subsets may be identified with elements of $\{0,1\}^p$
- Given any set-function F and w such that $w_{j_1} \ge \cdots \ge w_{j_p}$, define:

$$f(w) = \sum_{k=1}^{p} w_{j_k} [F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

=
$$\sum_{k=1}^{p-1} (w_{j_k} - w_{j_{k+1}}) F(\{j_1, \dots, j_k\}) + w_{j_p} F(\{j_1, \dots, j_p\})$$

Choquet integral - Lovász extension Properties

$$f(w) = \sum_{k=1}^{p} w_{j_k} [F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

=
$$\sum_{k=1}^{p-1} (w_{j_k} - w_{j_{k+1}}) F(\{j_1, \dots, j_k\}) + w_{j_p} F(\{j_1, \dots, j_p\})$$

- For any set-function F (even not submodular)
 - f is piecewise-linear and positively homogeneous - If $w = 1_A$, $f(w) = F(A) \Rightarrow$ extension from $\{0, 1\}^p$ to \mathbb{R}^p
Choquet integral - Lovász extension **Example with** p = 2

• If $w_1 \ge w_2$, $f(w) = F(\{1\})w_1 + [F(\{1,2\}) - F(\{1\})]w_2$

• If $w_1 \leq w_2$, $f(w) = F(\{2\})w_2 + [F(\{1,2\}) - F(\{2\})]w_1$

(level set $\{w \in \mathbb{R}^2, f(w) = 1\}$ is displayed in blue)

• NB: Compact formulation $f(w) = -[F(\{1\})+F(\{2\})-F(\{1,2\})]\min\{w_1,w_2\}+F(\{1\})w_1+F(\{2\})w_2$

- Theorem (Lovász, 1982): F is submodular if and only if f is convex
- Proof requires additional notions:
 - Submodular and base polyhedra

Submodular and base polyhedra - Definitions

- Submodular polyhedron: $P(F) = \{s \in \mathbb{R}^p, \forall A \subset V, s(A) \leqslant F(A)\}$
- Base polyhedron: $B(F) = P(F) \cap \{s(V) = F(V)\}$

• Property: P(F) has non-empty interior

Submodular and base polyhedra - Properties

- Submodular polyhedron: $P(F) = \{s \in \mathbb{R}^p, \forall A \subset V, s(A) \leq F(A)\}$
- Base polyhedron: $B(F) = P(F) \cap \{s(V) = F(V)\}$
- Many facets (up to 2^p), many extreme points (up to p!)

Submodular and base polyhedra - Properties

- Submodular polyhedron: $P(F) = \{s \in \mathbb{R}^p, \forall A \subset V, s(A) \leq F(A)\}$
- Base polyhedron: $B(F) = P(F) \cap \{s(V) = F(V)\}$
- Many facets (up to 2^p), many extreme points (up to p!)
- Fundamental property (Edmonds, 1970): If *F* is submodular, maximizing linear functions may be done by a "greedy algorithm"
 - Let $w \in \mathbb{R}^p_+$ such that $w_{j_1} \ge \cdots \ge w_{j_p}$
 - Let $s_{j_k} = F(\{j_1, \dots, j_k\}) F(\{j_1, \dots, j_{k-1}\})$ for $k \in \{1, \dots, p\}$
 - Then $f(w) = \max_{s \in P(F)} w^{\top}s = \max_{s \in B(F)} w^{\top}s$
 - Both problems attained at \boldsymbol{s} defined above
- Simple proof by convex duality

Greedy algorithms - Proof

• Lagrange multiplier $\lambda_A \in \mathbb{R}_+$ for $s^{\top} 1_A = s(A) \leqslant F(A)$

$$\max_{s \in P(F)} w^{\top}s = \min_{\lambda_A \ge 0, A \subset V} \max_{s \in \mathbb{R}^p} \left\{ w^{\top}s - \sum_{A \subset V} \lambda_A[s(A) - F(A)] \right\}$$
$$= \min_{\lambda_A \ge 0, A \subset V} \max_{s \in \mathbb{R}^p} \left\{ \sum_{A \subset V} \lambda_A F(A) + \sum_{k=1}^p s_k \left(w_k - \sum_{A \ni k} \lambda_A \right) \right\}$$
$$= \min_{\lambda_A \ge 0, A \subset V} \sum_{A \subset V} \lambda_A F(A) \text{ such that } \forall k \in V, \ w_k = \sum_{A \ni k} \lambda_A$$

- Define $\lambda_{\{j_1,\dots,j_k\}} = w_{j_k} w_{j_{k-1}}$ for $k \in \{1,\dots,p-1\}$, $\lambda_V = w_{j_p}$, and zero otherwise
 - λ is dual feasible and primal/dual costs are equal to f(w)

Proof of greedy algorithm - Showing primal feasibility

• Assume (wlog) $j_k = k$, and $A = (u_1, v_1] \cup \cdots \cup (u_m, v_m]$

• By pursuing applying submodularity, we get: $s(A) \leq F((u_1, v_1] \cup \cdots \cup (u_m, v_m]) = F(A)$, i.e., $s \in P(F)$

Greedy algorithm for matroids

- The pair (V, I) is a matroid with I its family of independent sets, iff:
 (a) Ø ∈ I
 (b) I₁ ⊂ I₂ ∈ I ⇒ I₁ ∈ I
 (c) for all I₁, I₂ ∈ I, |I₁| < |I₂| ⇒ ∃k ∈ I₂\I₁, I₁ ∪ {k} ∈ I
- Rank function, defined as $F(A) = \max_{I \subset A, A \in \mathcal{I}} |I|$ is submodular
- Greedy algorithm:

- Since
$$F(A \cup \{k\}) - F(A) \in \{0, 1\}^p$$
, $s \in \{0, 1\}^p$
 $\Rightarrow w^\top s = \sum_{k, s_k=1} w_k$

- Start with $A = \emptyset$, orders weights w_k in decreasing order and sequentially add element k to A if set A remains independent
- Graphic matroid: Kruskal's algorithm for max. weight spanning tree!

- Theorem (Lovász, 1982): F is submodular if and only if f is convex
- Proof
 - 1. If F is submodular, f is the maximum of linear functions $\Rightarrow f \text{ convex}$
 - 2. If f is convex, let $A, B \subset V$.
 - $1_{A\cup B} + 1_{A\cap B} = 1_A + 1_B$ has components equal to 0 (on $V \setminus (A \cup B)$), 2 (on $A \cap B$) and 1 (on $A \Delta B = (A \setminus B) \cup (B \setminus A)$)
 - Thus $f(1_{A\cup B} + 1_{A\cap B}) = F(A \cup B) + F(A \cap B).$
 - By homogeneity and convexity, $f(1_A + 1_B) \leq f(1_A) + f(1_B)$, which is equal to F(A) + F(B), and thus F is submodular.

• Theorem (Lovász, 1982): If F is submodular, then

$$\min_{A \subset V} F(A) = \min_{w \in \{0,1\}^p} f(w) = \min_{w \in [0,1]^p} f(w)$$

• Proof

1. Since f is an extension of F, $\min_{A \subset V} F(A) = \min_{w \in \{0,1\}^p} f(w) \ge \min_{w \in [0,1]^p} f(w)$ 2. Any $w \in [0,1]^p$ may be decomposed as $w = \sum_{i=1}^m \lambda_i 1_{B_i}$ where $B_1 \subset \cdots \subset B_m = V$, where $\lambda \ge 0$ and $\lambda(V) \le 1$: - Then $f(w) = \sum_{i=1}^m \lambda_i F(B_i) \ge \sum_{i=1}^m \lambda_i \min_{A \subset V} F(A) \ge \min_{A \subset V} F(A)$ (because $\min_{A \subset V} F(A) \le 0$). - Thus $\min_{w \in [0,1]^p} f(w) \ge \min_{A \subset V} F(A)$

• Theorem (Lovász, 1982): If F is submodular, then

$$\min_{A \subset V} F(A) = \min_{w \in \{0,1\}^p} f(w) = \min_{w \in [0,1]^p} f(w)$$

- **Consequence**: Submodular function minimization may be done in polynomial time
 - Ellipsoid algorithm: polynomial time but slow in practice

Submodular functions - Optimization

- Submodular function minimization in $O(p^6)$
 - Schrijver (2000); Iwata et al. (2001); Orlin (2009)
- Efficient active set algorithm with no complexity bound
 - Based on the efficient computability of the support function
 - Fujishige and Isotani (2011); Wolfe (1976)
- Special cases with faster algorithms: cuts, flows
- Active area of research
 - Machine learning: Stobbe and Krause (2010), Jegelka, Lin, and Bilmes (2011)
 - Combinatorial optimization: see Satoru Iwata's talk
 - Convex optimization: See next part of tutorial

Submodular functions - Summary

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

Submodular functions - Summary

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

$$\begin{aligned} \forall A,B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\})-F(A) \text{ is non-increasing} \end{aligned}$$

Intuition 1: defined like concave functions ("diminishing returns")
 – Example: F : A → g(Card(A)) is submodular if g is concave

Submodular functions - Summary

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

$$\begin{aligned} \forall A,B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing} \end{aligned}$$

- Intuition 1: defined like concave functions ("diminishing returns")
 - Example: $F : A \mapsto g(Card(A))$ is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory

Submodular functions - Examples

• Concave functions of the cardinality: g(|A|)

• Cuts

- Entropies
 - $H((X_k)_{k \in A})$ from p random variables X_1, \ldots, X_p
 - Gaussian variables $H((X_k)_{k\in A}) \propto \log \det \Sigma_{AA}$
 - Functions of eigenvalues of sub-matrices
- Network flows
 - Efficient representation for set covers
- Rank functions of matroids

Submodular functions - Lovász extension

• Given any set-function F and w such that $w_{j_1} \ge \cdots \ge w_{j_p}$, define:

$$f(w) = \sum_{k=1}^{p} w_{j_k} [F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

=
$$\sum_{k=1}^{p-1} (w_{j_k} - w_{j_{k+1}}) F(\{j_1, \dots, j_k\}) + w_{j_p} F(\{j_1, \dots, j_p\})$$

- If $w = 1_A$, $f(w) = F(A) \Rightarrow$ extension from $\{0, 1\}^p$ to \mathbb{R}^p (subsets may be identified with elements of $\{0, 1\}^p$)
- -f is piecewise affine and positively homogeneous
- F is submodular if and only if f is convex
 - Minimizing f(w) on $w \in [0,1]^p$ equivalent to minimizing F on 2^V

Submodular functions - Submodular polyhedra

- Submodular polyhedron: $P(F) = \{s \in \mathbb{R}^p, \forall A \subset V, s(A) \leqslant F(A)\}$
- Base polyhedron: $B(F) = P(F) \cap \{s(V) = F(V)\}$
- Link with Lovász extension (Edmonds, 1970; Lovász, 1982):

- if
$$w \in \mathbb{R}^p_+$$
, then $\max_{s \in P(F)} w^\top s = f(w)$
- if $w \in \mathbb{R}^p$, then $\max_{s \in B(F)} w^\top s = f(w)$

- Maximizer obtained by greedy algorithm:
 - Sort the components of w, as $w_{j_1} \ge \cdots \ge w_{j_p}$ - Set $s_{j_k} = F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})$
- Other operations on submodular polyhedra (see, e.g., Bach, 2011)

Outline

1. Submodular functions

- Definitions
- Examples of submodular functions
- Links with convexity through Lovász extension

2. Submodular optimization

- Minimization
- Links with convex optimization
- Maximization

3. Structured sparsity-inducing norms

- Norms with overlapping groups
- Relaxation of the penalization of supports by submodular functions

Submodular optimization problems Outline

• Submodular function minimization

- Properties of minimizers
- Combinatorial algorithms
- Approximate minimization of the Lovász extension

• Convex optimization with the Lovász extension

- Separable optimization problems
- Application to submodular function minimization

• Submodular function maximization

- Simple algorithms with approximate optimality guarantees

Submodularity (almost) everywhere Clustering

• Semi-supervised clustering

• Submodular function minimization

Submodularity (almost) everywhere Graph cuts

• Submodular function minimization

Submodular function minimization Properties

- Let $F: 2^V \to \mathbb{R}$ be a submodular function (such that $F(\emptyset) = 0$)
- Optimality conditions: $A \subset V$ is a minimizer of F if and only if A is a minimizer of F over all subsets of A and all supersets of A
 - Proof: $F(A) + F(B) \ge F(A \cup B) + F(A \cap B)$
- Lattice of minimizers: if A and B are minimizers, so are $A \cup B$ and $A \cap B$

Submodular function minimization Dual problem

- Let $F: 2^V \to \mathbb{R}$ be a submodular function (such that $F(\emptyset) = 0$)
- Convex duality:

$$\min_{A \subset V} F(A) = \min_{w \in [0,1]^p} f(w)$$

=
$$\min_{w \in [0,1]^p} \max_{s \in B(F)} w^{\top}s$$

=
$$\max_{s \in B(F)} \min_{w \in [0,1]^p} w^{\top}s = \max_{s \in B(F)} s_{-}(V)$$

- Optimality conditions: The pair (A, s) is optimal if and only if $s \in B(F)$ and $\{s < 0\} \subset A \subset \{s \leqslant 0\}$ and s(A) = F(A)
 - *Proof*: $F(A) \ge s(A) = s(A \cap \{s < 0\}) + s(A \cap \{s > 0\})$ ≥ $s(A \cap \{s < 0\}) \ge s_{-}(V)$

Exact submodular function minimization Combinatorial algorithms

- Algorithms based on $\min_{A \subset V} F(A) = \max_{s \in B(F)} s_{-}(V)$
- Output the subset A and a base $s \in B(F)$ such that A is tight for s and $\{s < 0\} \subset A \subset \{s \leqslant 0\}$, as a certificate of optimality
- Best algorithms have polynomial complexity (Schrijver, 2000; Iwata et al., 2001; Orlin, 2009) (typically $O(p^6)$ or more)
- Update a sequence of convex combination of vertices of B(F) obtained from the greedy algorithm using a specific order:
 - Based only on function evaluations
- Recent algorithms using efficient reformulations in terms of generalized graph cuts (Jegelka et al., 2011)

Exact submodular function minimization Symmetric submodular functions

- A submodular function F is said symmetric if for all $B \subset V$, $F(V \backslash B) = F(B)$
 - Then, by applying submodularity, $\forall A \subset V$, $F(A) \ge 0$
- Example: undirected cuts, mutual information
- Minimization in $O(p^3)$ over all *non-trivial* subsets of V (Queyranne, 1998)
- NB: extension to minimization of posimodular functions (Nagamochi and Ibaraki, 1998), i.e., of functions that satisfies

 $\forall A, B \subset V, \ F(A) + F(B) \ge F(A \setminus B) + F(B \setminus A).$

Approximate submodular function minimization

- For most machine learning applications, no need to obtain exact minimum
 - For convex optimization, see, e.g., Bottou and Bousquet (2008)

$$\min_{A \subset V} F(A) = \min_{w \in \{0,1\}^p} f(w) = \min_{w \in [0,1]^p} f(w)$$

Approximate submodular function minimization

- For most machine learning applications, no need to obtain exact minimum
 - For convex optimization, see, e.g., Bottou and Bousquet (2008)

$$\min_{A \subset V} F(A) = \min_{w \in \{0,1\}^p} f(w) = \min_{w \in [0,1]^p} f(w)$$

- Subgradient of $f(w) = \max_{s \in B(F)} s^{\top} w$ through the greedy algorithm
- Using projected subgradient descent to minimize f on $[0,1]^p$
 - Iteration: $w_t = \prod_{[0,1]^p} \left(w_{t-1} \frac{C}{\sqrt{t}} s_t \right)$ where $s_t \in \partial f(w_{t-1})$
 - Convergence rate: $f(w_t) \min_{w \in [0,1]^p} f(w) \leq \frac{C}{\sqrt{t}}$ with primal/dual guarantees (Nesterov, 2003; Bach, 2011)

Approximate submodular function minimization Projected subgradient descent

- Assume (wlog.) that $\forall k \in V$, $F(\{k\}) \ge 0$ and $F(V \setminus \{k\}) \ge F(V)$
- Denote $D^2 = \sum_{k \in V} \left\{ F(\{k\}) + F(V \setminus \{k\}) F(V) \right\}$

• Iteration:
$$w_t = \prod_{[0,1]^p} \left(w_{t-1} - \frac{D}{\sqrt{pt}} s_t \right)$$
 with $s_t \in \underset{s \in B(F)}{\operatorname{argmin}} w_{t-1}^\top s_t$

• **Proposition**: t iterations of subgradient descent outputs a set A_t (and a certificate of optimality s_t) such that

$$F(A_t) - \min_{B \subset V} F(B) \leqslant F(A_t) - (s_t) - (V) \leqslant \frac{Dp^{1/2}}{\sqrt{t}}$$

Submodular optimization problems Outline

• Submodular function minimization

- Properties of minimizers
- Combinatorial algorithms
- Approximate minimization of the Lovász extension

• Convex optimization with the Lovász extension

- Separable optimization problems
- Application to submodular function minimization

• Submodular function maximization

- Simple algorithms with approximate optimality guarantees

Separable optimization on base polyhedron

• **Optimization of convex functions** of the form $\left\lfloor \Psi(w) + f(w) \right\rfloor$ with f Lovász extension of F

• Structured sparsity

- Regularized risk minimization penalized by the Lovász extension
- Total variation denoising isotonic regression

• $F(A) = \sum_{k \in A, j \in V \setminus A} d(k, j) \Rightarrow f(w) = \sum_{k, j \in V} d(k, j)(w_k - w_j)_+$

• d symmetric $\Rightarrow f = \text{total variation}$

Isotonic regression

• Given real numbers x_i , $i = 1, \ldots, p$ - Find $y \in \mathbb{R}^p$ that minimizes $\frac{1}{2} \sum_{i=1}^p (x_i - y_i)^2$ such that $\forall i, y_i \leq y_{i+1}$ • •

X

• For a directed chain, f(y) = 0 if and only if $\forall i, y_i \leq y_{i+1}$

• Minimize
$$\frac{1}{2} \sum_{j=1}^{p} (x_i - y_i)^2 + \lambda f(y)$$
 for λ large

Separable optimization on base polyhedron

• **Optimization of convex functions** of the form $\left\lfloor \Psi(w) + f(w) \right\rfloor$ with f Lovász extension of F

• Structured sparsity

- Regularized risk minimization penalized by the Lovász extension
- Total variation denoising isotonic regression

Separable optimization on base polyhedron

• **Optimization of convex functions** of the form $\left\lfloor \Psi(w) + f(w) \right\rfloor$ with f Lovász extension of F

• Structured sparsity

- Regularized risk minimization penalized by the Lovász extension
- Total variation denoising isotonic regression
- **Proximal methods** (see next part of the tutorial)
 - Minimize $\Psi(w) + f(w)$ for smooth Ψ as soon as the following "proximal" problem may be obtained efficiently

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w - z\|_2^2 + f(w) = \min_{w \in \mathbb{R}^p} \sum_{k=1}^p \frac{1}{2} (w_k - z_k)^2 + f(w)$$

• Submodular function minimization

Separable optimization on base polyhedron Convex duality

- Let $\psi_k : \mathbb{R} \to \mathbb{R}$, $k \in \{1, \dots, p\}$ be p functions. Assume
 - Each ψ_k is strictly convex
 - $-\sup_{\alpha\in\mathbb{R}}\psi_j'(\alpha)=+\infty \text{ and } \inf_{\alpha\in\mathbb{R}}\psi_j'(\alpha)=-\infty$
 - Denote $\psi_1^*, \ldots, \psi_p^*$ their Fenchel-conjugates (then with full domain)
Separable optimization on base polyhedron Convex duality

- Let $\psi_k : \mathbb{R} \to \mathbb{R}$, $k \in \{1, \dots, p\}$ be p functions. Assume
 - Each ψ_k is strictly convex
 - $-\sup_{\alpha\in\mathbb{R}}\psi_j'(\alpha)=+\infty \text{ and } \inf_{\alpha\in\mathbb{R}}\psi_j'(\alpha)=-\infty$
 - Denote $\psi_1^*, \ldots, \psi_p^*$ their Fenchel-conjugates (then with full domain)

$$\min_{w \in \mathbb{R}^p} f(w) + \sum_{j=1}^p \psi_i(w_j) = \min_{w \in \mathbb{R}^p} \max_{s \in B(F)} w^\top s + \sum_{j=1}^p \psi_j(w_j)$$
$$= \max_{s \in B(F)} \min_{w \in \mathbb{R}^p} w^\top s + \sum_{j=1}^p \psi_j(w_j)$$
$$= \max_{s \in B(F)} - \sum_{j=1}^p \psi_j^*(-s_j)$$

Separable optimization on base polyhedron Equivalence with submodular function minimization

- For $\alpha \in \mathbb{R}$, let $A^{\alpha} \subset V$ be a minimizer of $A \mapsto F(A) + \sum_{j \in A} \psi'_j(\alpha)$
- Let u be the unique minimizer of $w \mapsto f(w) + \sum_{j=1}^{p} \psi_j(w_j)$
- **Proposition** (Chambolle and Darbon, 2009):
 - Given A^{α} for all $\alpha \in \mathbb{R}$, then $\forall j, u_j = \sup(\{\alpha \in \mathbb{R}, j \in A^{\alpha}\})$
 - Given u, then $A \mapsto F(A) + \sum_{j \in A} \psi'_j(\alpha)$ has minimal minimizer $\{w^* > \alpha\}$ and maximal minimizer $\{w^* \ge \alpha\}$
- Separable optimization equivalent to a sequence of submodular function minimizations

Equivalence with submodular function minimization Proof sketch (Bach, 2011)

• Duality gap for
$$\min_{w \in \mathbb{R}^p} f(w) + \sum_{j=1}^p \psi_i(w_j) = \max_{s \in B(F)} - \sum_{j=1}^p \psi_j^*(-s_j)$$

$$f(w) + \sum_{j=1}^{p} \psi_{i}(w_{j}) - \sum_{j=1}^{p} \psi_{j}^{*}(-s_{j})$$

= $f(w) - w^{\top}s + \sum_{j=1}^{p} \left\{ \psi_{j}(w_{j}) + \psi_{j}^{*}(-s_{j}) + w_{j}s_{j} \right\}$
= $\int_{-\infty}^{+\infty} \left\{ (F + \psi'(\alpha))(\{w \ge \alpha\}) - (s + \psi'(\alpha))_{-}(V) \right\} d\alpha$

 Duality gap for convex problems = sums of duality gaps for combinatorial problems

Separable optimization on base polyhedron Quadratic case

- Let F be a submodular function and $w \in \mathbb{R}^p$ the unique minimizer of $w \mapsto f(w) + \frac{1}{2} ||w||_2^2$. Then:
- (a) s = -w is the point in B(F) with minimum ℓ_2 -norm (b) For all $\lambda \in \mathbb{R}$, the maximal minimizer of $A \mapsto F(A) + \lambda |A|$ is
 - $\{w \ge -\lambda\}$ and the minimal minimizer of F is $\{w > -\lambda\}$

Consequences

- Threshold at 0 the minimum norm point in B(F) to minimize F (Fujishige and Isotani, 2011)
- Minimizing submodular functions with cardinality constraints (Nagano et al., 2011)

From convex to combinatorial optimization

• Solving
$$\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$$
 to solve $\min_{A \subset V} F(A)$

– Thresholding solutions w at zero if $\forall k \in V, \psi'_k(0) = 0$

- For quadratic functions $\psi_k(w_k) = \frac{1}{2}w_k^2$, equivalent to projecting 0 on B(F) (Fujishige, 2005)
- minimum-norm-point algorithm (Fujishige and Isotani, 2011)

From convex to combinatorial optimization and vice-versa...

• Solving
$$\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$$
 to solve $\min_{A \subset V} F(A)$

– Thresholding solutions w at zero if $\forall k \in V, \psi_k'(0) = 0$

- For quadratic functions $\psi_k(w_k) = \frac{1}{2}w_k^2$, equivalent to projecting 0 on B(F) (Fujishige, 2005)
- minimum-norm-point algorithm (Fujishige and Isotani, 2011)

• Solving
$$\min_{A \subset V} F(A) - t(A)$$
 to solve $\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$

- General decomposition strategy (Groenevelt, 1991)
- Efficient only when submodular minimization is efficient

Solving
$$\min_{A \subset V} F(A) - t(A)$$
 to solve $\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$

- General recursive divide-and-conquer algorithm (Groenevelt, 1991)
- NB: Dual version of Fujishige (2005)
 - 1. Compute minimizer $t \in \mathbb{R}^p$ of $\sum_{j \in V} \psi_j^*(-t_j)$ s.t. t(V) = F(V)
 - 2. Compute minimizer A of F(A) t(A)
 - 3. If A = V, then t is optimal. Exit.
 - 4. Compute a minimizer s_A of $\sum_{j \in A} \psi_j^*(-s_j)$ over $s \in B(F_A)$ where $F_A : 2^A \to \mathbb{R}$ is the restriction of F to A, i.e., $F_A(B) = F(A)$
 - 5. Compute a minimizer $s_{V\setminus A}$ of $\sum_{j\in V\setminus A} \psi_j^*(-s_j)$ over $s\in B(F^A)$ where $F^A(B) = F(A\cup B) - F(A)$, for $B \subset V\setminus A$
 - 6. Concatenate s_A and $s_{V \setminus A}$. Exit.

Solving $\min_{w \in \mathbb{R}^p} \sum_{k \in V} \psi_k(w_k) + f(w)$ to solve $\min_{A \subset V} F(A)$

- Dual problem: $\max_{s \in B(F)} \sum_{j=1}^{p} \psi_j^*(-s_j)$
- Constrained optimization when linear function can be maximized
 - Frank-Wolfe algorithms
- Two main types for convex functions

• **Goal**:
$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w\|_2^2 + f(w) = \max_{s \in B(F)} -\frac{1}{2} \|s\|_2^2$$

- Can only maximize linear functions on ${\cal B}({\cal F})$
- Two types of "Frank-wolfe" algorithms
- 1. Active set algorithm (\Leftrightarrow min-norm-point)
 - Sequence of maximizations of linear functions over B(F) + overheads (affine projections)
 - Finite convergence, but no complexity bounds

Minimum-norm-point algorithms

2

• **Goal**:
$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w\|_2^2 + f(w) = \max_{s \in B(F)} -\frac{1}{2} \|s\|_2^2$$

- Can only maximize linear functions on ${\cal B}({\cal F})$
- Two types of "Frank-wolfe" algorithms
- 1. Active set algorithm (\Leftrightarrow min-norm-point)
 - Sequence of maximizations of linear functions over B(F) + overheads (affine projections)
 - Finite convergence, but no complexity bounds
- 2. Conditional gradient
 - Sequence of maximizations of linear functions over ${\cal B}({\cal F})$
 - Approximate optimality bound

Conditional gradient with line search

4

• **Proposition**: t steps of conditional gradient (with line search) outputs $s_t \in B(F)$ and $w_t = -s_t$, such that

$$f(w_t) + \frac{1}{2} \|w_t\|_2^2 - \text{OPT} \leqslant f(w_t) + \frac{1}{2} \|w_t\|_2^2 + \frac{1}{2} \|s_t\|_2^2 \leqslant \frac{2D^2}{t}$$

• **Proposition**: t steps of conditional gradient (with line search) outputs $s_t \in B(F)$ and $w_t = -s_t$, such that

$$f(w_t) + \frac{1}{2} \|w_t\|_2^2 - \text{OPT} \leqslant f(w_t) + \frac{1}{2} \|w_t\|_2^2 + \frac{1}{2} \|s_t\|_2^2 \leqslant \frac{2D^2}{t}$$

- Improved primal candidate through isotonic regression
 - -f(w) is linear on any set of w with fixed ordering
 - May be optimized using isotonic regression ("pool-adjacent-violator") in ${\cal O}(n)$ (see, e.g. Best and Chakravarti, 1990)
 - Given $w_t = -s_t$, keep the ordering and reoptimize

• **Proposition**: t steps of conditional gradient (with line search) outputs $s_t \in B(F)$ and $w_t = -s_t$, such that

$$f(w_t) + \frac{1}{2} \|w_t\|_2^2 - \text{OPT} \leqslant f(w_t) + \frac{1}{2} \|w_t\|_2^2 + \frac{1}{2} \|s_t\|_2^2 \leqslant \frac{2D^2}{t}$$

- Improved primal candidate through isotonic regression
 - -f(w) is linear on any set of w with fixed ordering
 - May be optimized using isotonic regression ("pool-adjacent-violator") in ${\cal O}(n)$ (see, e.g. Best and Chakravarti, 1990)
 - Given $w_t = -s_t$, keep the ordering and reoptimize
- Better bound for submodular function minimization?

From quadratic optimization on B(F) to submodular function minimization

• **Proposition**: If w is ε -optimal for $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w||_2^2 + f(w)$, then at least a levet set A of w is $(\frac{\sqrt{\varepsilon p}}{2})$ -optimal for submodular function minimization

• If
$$\varepsilon = \frac{2D^2}{t}$$
, $\frac{\sqrt{\varepsilon p}}{2} = \frac{Dp^{1/2}}{\sqrt{2t}} \Rightarrow$ no provable gains, but:

- Bound on the iterates A_t (with additional assumptions)
- Possible thresolding for acceleration

From quadratic optimization on B(F) to submodular function minimization

• **Proposition**: If w is ε -optimal for $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w||_2^2 + f(w)$, then at least a levet set A of w is $(\frac{\sqrt{\varepsilon p}}{2})$ -optimal for submodular function minimization

• If
$$\varepsilon = \frac{2D^2}{t}$$
, $\frac{\sqrt{\varepsilon p}}{2} = \frac{Dp^{1/2}}{\sqrt{2t}} \Rightarrow$ no provable gains, but:

- Bound on the iterates A_t (with additional assumptions)
- Possible thresolding for acceleration
- Lower complexity bound for SFM
 - **Proposition**: no algorithm that is based **only** on a sequence of greedy algorithms obtained from linear combinations of bases can improve on the subgradient bound (after p/2 iterations).

Simulations on standard benchmark "DIMACS Genrmf-wide", p = 430

• Submodular function minimization

- (Left) optimal value minus dual function values $(s_t)_-(V)$ (in dashed, certified duality gap)
- (Right) Primal function values $F(A_t)$ minus optimal value

Simulations on standard benchmark "DIMACS Genrmf-long", p = 575

• Submodular function minimization

- (Left) optimal value minus dual function values $(s_t)_-(V)$ (in dashed, certified duality gap)
- (Right) Primal function values $F(A_t)$ minus optimal value

Simulations on standard benchmark

• Separable quadratic optimization

- (Left) optimal value minus dual function values $-\frac{1}{2}||s_t||_2^2$ (in dashed, certified duality gap)
- (Right) Primal function values $f(w_t) + \frac{1}{2} ||w_t||_2^2$ minus optimal value (in dashed, before the pool-adjacent-violator correction)

Submodularity (almost) everywhere Sensor placement

- Each sensor covers a certain area (Krause and Guestrin, 2005)
 - Goal: maximize coverage

- Submodular function maximization
- Extension to experimental design (Seeger, 2009)

Submodular function maximization

- Occurs in various form in applications but is NP-hard
- Unconstrained maximization: Feige et al. (2007) shows that that for non-negative functions, a random subset already achieves at least 1/4 of the optimal value, while local search techniques achieve at least 1/2
- Maximizing non-decreasing submodular functions with cardinality constraint
 - Greedy algorithm achieves (1-1/e) of the optimal value
 - Proof (Nemhauser et al., 1978)

Maximization with cardinality constraint

• Let $A^* = \{b_1, \dots, b_k\}$ be a maximizer of F with k elements, and a_j the j-th selected element. Let $\rho_j = F(\{a_1, \dots, a_j\}) - F(\{a_1, \dots, a_{j-1}\})$

 $F(A^*) \leqslant F(A^* \cup A_{j-1})$ because F is non-decreasing,

$$= F(A_{j-1}) + \sum_{i=1}^{k} \left[F(A_{j-1} \cup \{b_1, \dots, b_i\}) - F(A_{j-1} \cup \{b_1, \dots, b_{i-1}\}) \right]$$

$$\leqslant F(A_{j-1}) + \sum_{i=1}^{k} \left[F(A_{j-1} \cup \{b_i\}) - F(A_{j-1}) \right] \text{ by submodularity,}$$

$$\leqslant F(A_{j-1}) + k\rho_j \text{ by definition of the greedy algorithm,}$$

$$= \sum_{i=1}^{j-1} \rho_i + k\rho_j.$$

• Minimize $\sum_{i=1}^{k} \rho_i$: $\rho_j = (k-1)^{j-1} k^{-j} F(A^*)$

Submodular optimization problems Summary

• Submodular function minimization

- Properties of minimizers
- Combinatorial algorithms
- Approximate minimization of the Lovász extension

• Convex optimization with the Lovász extension

- Separable optimization problems
- Application to submodular function minimization

• Submodular function maximization

- Simple algorithms with approximate optimality guarantees

Outline

1. Submodular functions

- Definitions
- Examples of submodular functions
- Links with convexity through Lovász extension

2. Submodular optimization

- Minimization
- Links with convex optimization
- Maximization

3. Structured sparsity-inducing norms

- Norms with overlapping groups
- Relaxation of the penalization of supports by submodular functions

Sparsity in supervised machine learning

- Observed data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, $i = 1, \dots, n$
 - Response vector $y = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$
 - Design matrix $X = (x_1, \ldots, x_n)^\top \in \mathbb{R}^{n \times p}$
- Regularized empirical risk minimization:

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \Omega(w) = \left[\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w) \right]$$

- Norm Ω to promote sparsity
 - square loss + ℓ_1 -norm \Rightarrow basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
 - Proxy for interpretability
 - Allow high-dimensional inference: $\log p$

$$\log p = O(n)$$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

Sparsity in unsupervised machine learning

• Multiple responses/signals $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Only responses are observed \Rightarrow **Dictionary learning**
 - Learn $X = (x^1, \dots, x^p) \in \mathbb{R}^{n \times p}$ such that $\forall j, \|x^j\|_2 \leqslant 1$

$$\min_{X=(x^1,\ldots,x^p)} \min_{w^1,\ldots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al. (2009a)
- sparse PCA: replace $||x^j||_2 \leq 1$ by $\Theta(x^j) \leq 1$

Sparsity in signal processing

• Multiple responses/signals $x = (x^1, \dots, x^k) \in \mathbb{R}^{n \times k}$

$$\min_{\alpha^1,\dots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Only responses are observed \Rightarrow **Dictionary learning**
 - Learn $D = (d^1, \dots, d^p) \in \mathbb{R}^{n \times p}$ such that $\forall j, \|d^j\|_2 \leqslant 1$

$$\min_{D=(d^1,\ldots,d^p)} \min_{\alpha^1,\ldots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Olshausen and Field (1997); Elad and Aharon (2006); Mairal et al.
 (2009a)
- sparse PCA: replace $||d^j||_2 \leq 1$ by $\Theta(d^j) \leq 1$

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

raw data

sparse PCA

 \bullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

raw data

sparse PCA

 \bullet Unstructed sparse PCA \Rightarrow many zeros do not lead to better interpretability

raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion in face identification

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Modelling of text corpora (Jenatton et al., 2010)

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

Why structured sparsity?

• Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

• Stability and identifiability

- Optimization problem $\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \|w\|_1$ is unstable
- "Codes" w^j often used in later processing (Mairal et al., 2009c)

• Prediction or estimation performance

 When prior knowledge matches data (Haupt and Nowak, 2006; Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

• Numerical efficiency

- Non-linear variable selection with 2^p subsets (Bach, 2008)

Classical approaches to structured sparsity

• Many application domains

- Computer vision (Cevher et al., 2008; Mairal et al., 2009b)
- Neuro-imaging (Gramfort and Kowalski, 2009; Jenatton et al., 2011)
- Bio-informatics (Rapaport et al., 2008; Kim and Xing, 2010)

• Non-convex approaches

Haupt and Nowak (2006); Baraniuk et al. (2008); Huang et al. (2009)

• Convex approaches

- Design of sparsity-inducing norms

Sparsity-inducing norms

• Popular choice for Ω

– The ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- with ${\bf H}$ a partition of $\{1,\ldots,p\}$
- The ℓ_1 - ℓ_2 norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_1 -norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)

Unit norm balls Geometric interpretation

 $||w||_2$

 $||w||_1$

 $\sqrt{w_1^2 + w_2^2} + |w_3|$

Sparsity-inducing norms

• Popular choice for Ω

– The ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- with ${\bf H}$ a partition of $\{1,\ldots,p\}$
- The ℓ_1 - ℓ_2 norm sets to zero groups of non-overlapping variables (as opposed to single variables for the ℓ_1 -norm)
- For the square loss, group Lasso (Yuan and Lin, 2006)
- However, the ℓ_1 - ℓ_2 norm encodes **fixed/static prior information**, requires to know in advance how to group the variables

 $|G_3|$

 \bullet What happens if the set of groups ${\bf H}$ is not a partition anymore?

Structured sparsity with overlapping groups (Jenatton, Audibert, and Bach, 2009a)

• When penalizing by the ℓ_1 - ℓ_2 norm,

$$\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$$

- The ℓ_1 norm induces sparsity at the group level:
 - * Some w_G 's are set to zero
- Inside the groups, the ℓ_2 norm does not promote sparsity

Structured sparsity with overlapping groups (Jenatton, Audibert, and Bach, 2009a)

- When penalizing by the ℓ_1 - ℓ_2 norm,
 - $\sum_{G \in \mathbf{H}} \|w_G\|_2 = \sum_{G \in \mathbf{H}} \left(\sum_{j \in G} w_j^2\right)^{1/2}$
 - The ℓ_1 norm induces sparsity at the group level:
 - * Some w_G 's are set to zero
 - Inside the groups, the ℓ_2 norm does not promote sparsity
- The zero pattern of w is given by

$$\{j, w_j = 0\} = \bigcup_{G \in \mathbf{H}'} G$$
 for some $\mathbf{H}' \subseteq \mathbf{H}$

• Zero patterns are unions of groups

Examples of set of groups ${\bf H}$

• Selection of contiguous patterns on a sequence, p=6

- ${\bf H}$ is the set of blue groups
- Any union of blue groups set to zero leads to the selection of a contiguous pattern

Examples of set of groups ${\bf H}$

 \bullet Selection of rectangles on a 2-D grids, p=25

- H is the set of blue/green groups (with their not displayed complements)
- Any union of blue/green groups set to zero leads to the selection of a rectangle

Examples of set of groups ${\bf H}$

• Selection of diamond-shaped patterns on a 2-D grids, p = 25.

 It is possible to extend such settings to 3-D space, or more complex topologies

Unit norm balls Geometric interpretation

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a **proximal method** (differentiable functions)

$$-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} J(w_t) + (w - w_t)^\top \nabla J(w_t) + \frac{L}{2} ||w - w_t||_2^2 - w_{t+1} = w_t - \frac{1}{L} \nabla J(w_t)$$

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a **proximal method** (differentiable functions)

$$-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} J(w_t) + (w - w_t)^\top \nabla J(w_t) + \frac{B}{2} ||w - w_t||_2^2$$

$$-w_{t+1} = w_t - \frac{1}{B} \nabla J(w_t)$$

• Problems of the form: $\lim_{w \in \mathbb{R}^p} L(w) + \lambda \Omega(w)$

 $-w_{t+1} = \arg\min_{w \in \mathbb{R}^p} L(w_t) + (w - w_t)^\top \nabla L(w_t) + \lambda \Omega(w) + \frac{B}{2} ||w - w_t||_2^2$ - $\Omega(w) = ||w||_1 \Rightarrow$ Thresholded gradient descent

- Similar convergence rates than smooth optimization
 - Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

Sparse Structured PCA (Jenatton, Obozinski, and Bach, 2009b)

• Learning sparse and structured dictionary elements:

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^{i} - Xw^{i}\|_{2}^{2} + \lambda \sum_{j=1}^{p} \Omega(x^{j}) \text{ s.t. } \forall i, \|w^{i}\|_{2} \leq 1$$

Application to face databases (1/3)

• NMF obtains partially local features

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

 \bullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (2/3)

(unstructured) sparse PCA Structured sparse PCA

 \bullet Enforce selection of convex nonzero patterns \Rightarrow robustness to occlusion

Application to face databases (3/3)

• Quantitative performance evaluation on classification task

Dictionary learning vs. sparse structured PCA Exchange roles of X and w

• Sparse structured PCA (structured dictionary elements):

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^i - Xw^i\|_2^2 + \lambda \sum_{j=1}^{k} \Omega(x^j) \text{ s.t. } \forall i, \ \|w^i\|_2 \le 1$$

• Dictionary learning with structured sparsity for codes w:

$$\min_{W \in \mathbb{R}^{k \times n}, X \in \mathbb{R}^{p \times k}} \frac{1}{n} \sum_{i=1}^{n} \|y^i - Xw^i\|_2^2 + \lambda \Omega(w^i) \text{ s.t. } \forall j, \|x^j\|_2 \leq 1.$$

- Optimization: proximal methods
 - Requires solving many times $\min_{w \in \mathbb{R}^p} \frac{1}{2} \|y w\|_2^2 + \lambda \Omega(w)$
 - Modularity of implementation if proximal step is efficient (Jenatton et al., 2010; Mairal et al., 2010)

Hierarchical dictionary learning (Jenatton, Mairal, Obozinski, and Bach, 2010)

- Structure on codes w (not on dictionary X)
- Hierarchical penalization: $\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_2$ where groups G in \mathbf{H} are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)

Hierarchical dictionary learning Modelling of text corpora

- Each document is modelled through word counts
- Low-rank matrix factorization of word-document matrix
- Probabilistic topic models (Blei et al., 2003)
 - Similar structures based on non parametric Bayesian methods (Blei et al., 2004)
 - Can we achieve similar performance with simple matrix factorization formulation?

Modelling of text corpora - Dictionary tree

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Input

 ℓ_1 -norm

Structured norm

Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Background

 ℓ_1 -norm

Structured norm

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Application to neuro-imaging Structured sparsity for fMRI (Jenatton et al., 2011)

- "Brain reading": prediction of (seen) object size
- Multi-scale activity levels through hierarchical penalization

Structured sparse PCA on resting state activity (Varoquaux, Jenatton, Gramfort, Obozinski, Thirion, and Bach, 2010)

ℓ_1 -norm = convex envelope of cardinality of support

- Let $w \in \mathbb{R}^p$. Let $V = \{1, \ldots, p\}$ and $\operatorname{Supp}(w) = \{j \in V, w_j \neq 0\}$
- Cardinality of support: $||w||_0 = Card(Supp(w))$
- Convex envelope = largest convex lower bound (see, e.g., Boyd and Vandenberghe, 2004)

• ℓ_1 -norm = convex envelope of ℓ_0 -quasi-norm on the ℓ_∞ -ball $[-1,1]^p$

Convex envelopes of general functions of the support (Bach, 2010)

- Let $F: 2^V \to \mathbb{R}$ be a set-function
 - Assume F is non-decreasing (i.e., $A \subset B \Rightarrow F(A) \leqslant F(B)$)
 - Explicit prior knowledge on supports (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)
- Define $\Theta(w) = F(\operatorname{Supp}(w))$: How to get its convex envelope?
 - 1. Possible if F is also **submodular**
 - 2. Allows **unified** theory and algorithm
 - 3. Provides new regularizers

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$

 $\Leftrightarrow \ \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

Intuition 1: defined like concave functions ("diminishing returns")
– Example: F : A → g(Card(A)) is submodular if g is concave

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\begin{aligned} \forall A,B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing} \end{aligned}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory
- Used in several areas of signal processing and machine learning
 - Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
 - Optimal design (Krause and Guestrin, 2005)

Submodular functions - Examples

• Concave functions of the cardinality: g(|A|)

• Cuts

- Entropies
 - $H((X_k)_{k \in A})$ from p random variables X_1, \ldots, X_p
 - Gaussian variables $H((X_k)_{k\in A}) \propto \log \det \Sigma_{AA}$
 - Functions of eigenvalues of sub-matrices
- Network flows
 - Efficient representation for set covers
- Rank functions of matroids
Submodular functions - Lovász extension

- Subsets may be identified with elements of $\{0,1\}^p$
- Given any set-function F and w such that $w_{j_1} \ge \cdots \ge w_{j_p}$, define:

$$f(w) = \sum_{k=1}^{p} w_{j_k}[F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

- If $w = 1_A$, $f(w) = F(A) \Rightarrow$ extension from $\{0, 1\}^p$ to \mathbb{R}^p - f is piecewise affine and positively homogeneous
- F is submodular if and only if f is convex (Lovász, 1982)

Submodular functions and structured sparsity

- Let $F: 2^V \to \mathbb{R}$ be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of $\Theta : w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F

Submodular functions and structured sparsity

- Let $F: 2^V \to \mathbb{R}$ be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of $\Theta : w \mapsto F(\operatorname{Supp}(w))$ on the ℓ_{∞} -ball is $\Omega : w \mapsto f(|w|)$ where f is the Lovász extension of F
- Sparsity-inducing properties: Ω is a polyhedral norm

- A if stable if for all $B \supset A$, $B \neq A \Rightarrow F(B) > F(A)$
- With probability one, stable sets are the only allowed active sets

Polyhedral unit balls

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty}$$

- ℓ_1 - ℓ_∞ norm \Rightarrow sparsity at the group level
- Some w_G 's are set to zero for some groups G

$$(\operatorname{Supp}(w))^c = \bigcup_{G \in \mathbf{H}'} G$$
 for some $\mathbf{H}' \subseteq \mathbf{H}$

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \Rightarrow F(A) = \operatorname{Card}(\{G \in \mathbf{H}, \ G \cap A \neq \emptyset\})$$

- ℓ_1 - ℓ_∞ norm \Rightarrow sparsity at the group level
- Some w_G 's are set to zero for some groups G

$$(\operatorname{Supp}(w))^c = \bigcup_{G \in \mathbf{H}} G$$
 for some $\mathbf{H}' \subseteq \mathbf{H}$

- Justification not only limited to allowed sparsity patterns

Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

• H is the set of blue groups: any union of blue groups set to zero leads to the selection of a **contiguous pattern**

Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence

- H is the set of blue groups: any union of blue groups set to zero leads to the selection of a **contiguous pattern**
- $\sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \Rightarrow F(A) = p 2 + \operatorname{Range}(A) \text{ if } A \neq \emptyset$
 - Jump from 0 to p-1: tends to include all variables simultaneously
 - Add $\nu |A|$ to smooth the kink: all sparsity patterns are possible
 - Contiguous patterns are favored (and not forced)

Extensions of norms with overlapping groups

• Selection of rectangles (at any position) in a 2-D grids

• Hierarchies

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \quad \Rightarrow \quad F(A) = \operatorname{Card}(\{G \in \mathbf{H}, \ G \cap A \neq \emptyset\})$$

- Justification not only limited to allowed sparsity patterns

Submodular functions and structured sparsity Examples

- From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathbf{H}} \|w_G\|_{\infty} \quad \Rightarrow \quad F(A) = \operatorname{Card}(\{G \in \mathbf{H}, \ G \cap A \neq \emptyset\})$$

- Justification not only limited to allowed sparsity patterns
- From F(A) to $\Omega(w)$: provides new sparsity-inducing norms

 $- F(A) = g(Card(A)) \Rightarrow \Omega$ is a combination of **order statistics**

– Non-factorial priors for supervised learning: Ω depends on the eigenvalues of $X_A^\top X_A$ and not simply on the cardinality of A

Non-factorial priors for supervised learning

• Joint variable selection and regularization. Given support $A \subset V$,

$$\min_{w_A \in \mathbb{R}^A} \frac{1}{2n} \|y - X_A w_A\|_2^2 + \frac{\lambda}{2} \|w_A\|_2^2$$

- Minimizing with respect to A will always lead to A = V
- Information/model selection criterion F(A)

$$\min_{A \subset V} \min_{w_A \in \mathbb{R}^A} \frac{1}{2n} \|y - X_A w_A\|_2^2 + \frac{\lambda}{2} \|w_A\|_2^2 + F(A)$$

$$\Leftrightarrow \quad \min_{w \in \mathbb{R}^p} \frac{1}{2n} \|y - Xw\|_2^2 + \frac{\lambda}{2} \|w\|_2^2 + F(\operatorname{Supp}(w))$$

Non-factorial priors for supervised learning

- Selection of subset A from design $X \in \mathbb{R}^{n \times p}$ with ℓ_2 -penalization
- Frequentist analysis (Mallow's C_L): tr $X_A^{\top} X_A (X_A^{\top} X_A + \lambda I)^{-1}$
 - Not submodular
- Bayesian analysis (marginal likelihood): $\log \det(X_A^{\top}X_A + \lambda I)$

- Submodular (also true for $tr(X_A^{\top}X_A)^{1/2}$)

p	n	k	submod.	ℓ_2 vs. submod.	ℓ_1 vs. submod.	greedy vs. submod.
120	120	80	40.8 ± 0.8	-2.6 ± 0.5	$\textbf{0.6}\pm\textbf{0.0}$	$\textbf{21.8} \pm \textbf{0.9}$
120	120	40	35.9 ± 0.8	$\textbf{2.4}\pm\textbf{0.4}$	$\textbf{0.3}\pm\textbf{0.0}$	$\textbf{15.8} \pm \textbf{1.0}$
120	120	20	29.0 ± 1.0	$\textbf{9.4}\pm\textbf{0.5}$	$\textbf{-0.1}\pm0.0$	$\textbf{6.7} \pm \textbf{0.9}$
120	120	10	20.4 ± 1.0	$\textbf{17.5}\pm\textbf{0.5}$	-0.2 ± 0.0	-2.8 ± 0.8
120	20	20	49.4 ± 2.0	0.4 ± 0.5	$\textbf{2.2} \pm \textbf{0.8}$	$\textbf{23.5} \pm \textbf{2.1}$
120	20	10	49.2 ± 2.0	0.0 ± 0.6	1.0 ± 0.8	$\textbf{20.3} \pm \textbf{2.6}$
120	20	6	43.5 ± 2.0	$\textbf{3.5} \pm \textbf{0.8}$	$\textbf{0.9}\pm\textbf{0.6}$	$\textbf{24.4} \pm \textbf{3.0}$
120	20	4	41.0 ± 2.1	4.8 ± 0.7	-1.3 ± 0.5	$\textbf{25.1} \pm \textbf{3.5}$

Unified optimization algorithms

- Polyhedral norm with $O(3^p)$ faces and extreme points
 - Not suitable to linear programming toolboxes
- Subgradient ($w \mapsto \Omega(w)$ non-differentiable)
 - subgradient may be obtained in polynomial time \Rightarrow too slow

Unified optimization algorithms

- Polyhedral norm with $O(3^p)$ faces and extreme points
 - Not suitable to linear programming toolboxes
- Subgradient ($w \mapsto \Omega(w)$ non-differentiable)
 - subgradient may be obtained in polynomial time \Rightarrow too slow
- **Proximal methods** (e.g., Beck and Teboulle, 2009)
 - $\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w)$: differentiable + non-differentiable
 - Efficient when (P): $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w v||_2^2 + \lambda \Omega(w)$ is "easy"
- Proposition: (P) is equivalent to $\min_{A \subset V} \lambda F(A) \sum_{j \in A} |v_j|$ with minimum-norm-point algorithm
 - Possible complexity bound ${\cal O}(p^6)$, but empirically ${\cal O}(p^2)$ (or more)
 - Faster algorithm for special case (Mairal et al., 2010)

Proximal methods for Lovász extensions

• **Proposition** (Chambolle and Darbon, 2009): let w^* be the solution of $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w - v||_2^2 + \lambda f(w)$. Then the solutions of

$$\min_{A \subset V} \lambda F(A) + \sum_{j \in A} (\alpha - v_j)$$

are the sets A^{α} such that $\{w^* > \alpha\} \subset A^{\alpha} \subset \{w^* \ge \alpha\}$

- Parametric submodular function optimization
 - General decomposition strategy for f(|w|) and f(w) (Groenevelt, 1991)
 - Efficient only when submodular minimization is efficient
 - Otherwise, minimum-norm-point algorithm (a.k.a. Frank Wolfe) is preferable

Comparison of optimization algorithms

- Synthetic example with p = 1000 and $F(A) = |A|^{1/2}$
- ISTA: proximal method
- FISTA: accelerated variant (Beck and Teboulle, 2009)

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010) Small scale

• Specific norms which can be implemented through network flows

Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010) Large scale

• Specific norms which can be implemented through network flows

Unified theoretical analysis

• Decomposability

- Key to theoretical analysis (Negahban et al., 2009)
- **Property**: $\forall w \in \mathbb{R}^p$, and $\forall J \subset V$, if $\min_{j \in J} |w_j| \ge \max_{j \in J^c} |w_j|$, then $\Omega(w) = \Omega_J(w_J) + \Omega^J(w_{J^c})$

• Support recovery

 Extension of known sufficient condition (Zhao and Yu, 2006; Negahban and Wainwright, 2008)

• High-dimensional inference

- Extension of known sufficient condition (Bickel et al., 2009)
- Matches with analysis of Negahban et al. (2009) for common cases

Support recovery - $\min_{w \in \mathbb{R}^p} \frac{1}{2n} ||y - Xw||_2^2 + \lambda \Omega(w)$

Notation

$$-\rho(J) = \min_{B \subset J^c} \frac{F(B \cup J) - F(J)}{F(B)} \in (0, 1] \text{ (for } J \text{ stable)}$$
$$-c(J) = \sup_{w \in \mathbb{R}^p} \Omega_J(w_J) / ||w_J||_2 \leq |J|^{1/2} \max_{k \in V} F(\{k\})$$

- Proposition
 - Assume $y = Xw^* + \sigma\varepsilon$, with $\varepsilon \sim \mathcal{N}(0,I)$
 - J = smallest stable set containing the support of w^*
 - Assume $\nu = \min_{j, w_j^* \neq 0} |w_j^*| > 0$ - Let $Q = \frac{1}{n} X^\top X \in \mathbb{R}^{p \times p}$. Assume $\kappa = \lambda_{\min}(Q_{JJ}) > 0$ - Assume that for $\eta > 0$, $(\Omega^J)^*[(\Omega_J(Q_{JJ}^{-1}Q_{Jj}))_{j \in J^c}] \leq 1 - \eta$ - If $\lambda \leq \frac{\kappa \nu}{2c(J)}$, \hat{w} has support equal to J, with probability larger than $1 - 3P(\Omega^*(z) > \frac{\lambda \eta \rho(J) \sqrt{n}}{2\sigma})$
 - \boldsymbol{z} is a multivariate normal with covariance matrix \boldsymbol{Q}

Consistency - $\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|y - Xw\|_2^2 + \lambda \Omega(w)$

Proposition

– Assume
$$y = Xw^* + \sigma \varepsilon$$
, with $\varepsilon \sim \mathcal{N}(0, I)$

-J = smallest stable set containing the support of w^*

- Let
$$Q = \frac{1}{n} X^{\top} X \in \mathbb{R}^{p \times p}$$

- Assume that $\forall \Delta$ s.t. $\Omega^{J}(\Delta_{J^{c}}) \leq 3\Omega_{J}(\Delta_{J}), \ \Delta^{\top}Q\Delta \geq \kappa \|\Delta_{J}\|_{2}^{2}$ - Then $\left[\Omega(\hat{w} - w^{*}) \leq \frac{24c(J)^{2}\lambda}{\kappa o(J)^{2}}\right]$ and $\left[\frac{1}{n}\|X\hat{w} - Xw^{*}\|_{2}^{2} \leq \frac{36c(J)^{2}\lambda^{2}}{\kappa \rho(J)^{2}}\right]$

- Then
$$\left| \Omega(\hat{w} - w^*) \leqslant \frac{24c(J)^2 \lambda}{\kappa \rho(J)^2} \right|$$
 and $\left| \frac{1}{n} \right|$

with probability larger than $1 - P(\Omega^*(z) > \frac{\lambda \rho(J) \sqrt{n}}{2\sigma})$

- -z is a multivariate normal with covariance matrix Q
- **Concentration inequality** (z normal with covariance matrix Q):
 - $-\mathcal{T}$ set of stable inseparable sets

- Then
$$P(\Omega^*(z) > t) \leq \sum_{A \in \mathcal{T}} 2^{|A|} \exp\left(-\frac{t^2 F(A)^2/2}{1^\top Q_{AA^1}}\right)$$

Symmetric submodular functions (Bach, 2011)

- Let $F: 2^V \to \mathbb{R}$ be a symmetric submodular set-function
- Proposition: The Lovász extension f(w) is the convex envelope of the function $w \mapsto \max_{\alpha \in \mathbb{R}} F(\{w \ge \alpha\})$ on the set $[0,1]^p + \mathbb{R}1_V = \{w \in \mathbb{R}^p, \max_{k \in V} w_k - \min_{k \in V} w_k \le 1\}.$

Symmetric submodular functions (Bach, 2011)

- Let $F: 2^V \to \mathbb{R}$ be a symmetric submodular set-function
- Proposition: The Lovász extension f(w) is the convex envelope of the function w → max_{α∈ℝ} F({w ≥ α}) on the set [0,1]^p + ℝ1_V = {w ∈ ℝ^p, max_{k∈V} w_k - min_{k∈V} w_k ≤ 1}.

Symmetric submodular functions - Examples

- \bullet From $\Omega(w)$ to F(A): provides new insights into existing norms
 - Cuts total variation

$$F(A) = \sum_{k \in A, j \in V \setminus A} d(k, j) \Rightarrow f(w) = \sum_{k, j \in V} d(k, j)(w_k - w_j)_+$$

- NB: graph may be directed

Symmetric submodular functions - Examples

• From F(A) to $\Omega(w)$: provides new sparsity-inducing norms

– $F(A) = g(Card(A)) \Rightarrow$ priors on the size and numbers of clusters

 Convex formulations for clustering (Hocking, Joulin, Bach, and Vert, 2011)

Symmetric submodular functions - Examples

- From F(A) to $\Omega(w)$: provides new sparsity-inducing norms
 - Regular functions (Boykov et al., 2001; Chambolle and Darbon, 2009)

ℓ_q -relaxation of combinatorial penalties (Obozinski and Bach, 2011)

- Main result of Bach (2010):
 - f(|w|) is the convex envelope of $F(\operatorname{Supp}(w))$ on $[-1,1]^p$
- Problems:
 - Limited to submodular functions
 - Limited to $\ell_\infty\text{-relaxation:}$ undesired artefacts

From ℓ_∞ to ℓ_2

• Variational formulations for subquadratic norms (Bach et al., 2011)

$$\Omega(w) = \min_{\eta \in \mathbb{R}^p_+} \frac{1}{2} \sum_{j=1}^p \frac{w_j^2}{\eta_j} + \frac{1}{2} g(\eta) = \min_{\eta \in H} \sqrt{\sum_{j=1}^p \frac{w_j^2}{\eta_j}}$$

where g is a convex homogeneous and $H=\{\eta,g(\eta)\leqslant 1\}$

- Often used for computational reasons (Lasso, group Lasso)
- May also be used to define a norm (Micchelli et al., 2011)

From ℓ_∞ to ℓ_2

• Variational formulations for subquadratic norms (Bach et al., 2011)

$$\Omega(w) = \min_{\eta \in \mathbb{R}^p_+} \frac{1}{2} \sum_{j=1}^p \frac{w_j^2}{\eta_j} + \frac{1}{2} g(\eta) = \min_{\eta \in H} \sqrt{\sum_{j=1}^p \frac{w_j^2}{\eta_j}}$$

where g is a convex homogeneous and $H=\{\eta,g(\eta)\leqslant 1\}$

- Often used for computational reasons (Lasso, group Lasso)
- May also be used to define a norm (Micchelli et al., 2011)
- If F is a nondecreasing submodular function with Lovász extension f

- Define
$$\Omega_2(w) = \min_{\eta \in \mathbb{R}^p_+} \frac{1}{2} \sum_{j=1}^p \frac{w_j^2}{\eta_j} + \frac{1}{2} f(\eta)$$

- Is it the convex relaxation of some natural function?

ℓ_q -relaxation of submodular penalties (Obozinski and Bach, 2011)

 $\bullet\ F$ a nondecreasing submodular function with Lovász extension f

• Define
$$\Omega_q(w) = \min_{\eta \in \mathbb{R}^p_+} \frac{1}{q} \sum_{i \in V} \frac{|w_i|^q}{\eta_i^{q-1}} + \frac{1}{r} f(\eta)$$
 with $\frac{1}{q} + \frac{1}{r} = 1$.

- **Proposition 1**: Ω_q is the convex envelope of $w \mapsto F(\operatorname{Supp}(w)) \|w\|_q$
- **Proposition 2**: Ω_q is the homogeneous convex envelope of $w \mapsto \frac{1}{r}F(\operatorname{Supp}(w)) + \frac{1}{q} ||w||_q^q$
- Jointly penalizing and regularizing

– Special cases
$$q=1$$
, $q=2$ and $q=\infty$

Some simple examples

- Recover results of Bach (2010) when $q = \infty$ and F submodular
- However
 - when ${\bf H}$ is not a partition and $q<\infty,\ \Omega_q$ is not in general an $\ell_1/\ell_q\text{-norm}$!
 - ${\cal F}$ does not need to be submodular
- \Rightarrow New norms

ℓ_q -relaxation of combinatorial penalties (Obozinski and Bach, 2011)

- F any strictly positive set-function (with potentially infinite values)
- Jointly penalizing and regularizing. Two formulations:
 - homogeneous convex envelope of $w\mapsto F(\operatorname{Supp}(w))+\|w\|_q^q$
 - convex envelope of $w \mapsto F(\operatorname{Supp}(w)) \|w\|_q$
- Proposition: These envelopes are equal to a constant times a norm $\Omega_q^F=\Omega_q$ defined through its dual norm

- its dual norm is equal to
$$\left(\Omega_q\right)^*(s) = \max_{A \subset V} \frac{\|s_A\|_r}{F(A)^{1/r}}$$
, with $\frac{1}{q} + \frac{1}{r} = 1$

• Three-line proof

ℓ_q -relaxation of combinatorial penalties **Proof**

• Denote $\Theta(w) = ||w||_q F(\operatorname{Supp}(w))^{1/r}$, and compute its Fenchel conjugate:

$$\Theta^{*}(s) = \max_{w \in \mathbb{R}^{p}} w^{\top} s - \|w\|_{q} F(\operatorname{Supp}(w))^{1/r}$$

=
$$\max_{A \subset V} \max_{w_{A} \in (\mathbb{R}^{*})^{A}} w_{A}^{\top} s_{A} - \|w_{A}\|_{q} F(A)^{1/r}$$

=
$$\max_{A \subset V} \iota_{\{\|s_{A}\|_{r} \leqslant F(A)^{1/r}\}} = \iota_{\{\Omega_{q}^{*}(s) \leqslant 1\}},$$

where $\iota_{\{s\in S\}}$ is the indicator of the set S

• Consequence: If F is submodular and $q = +\infty$, $\Omega(w) = f(|w|)$

How tight is the relaxation? What information of F is kept after the relaxation?

- \bullet When F is submodular and $q=\infty$
 - the Lovász extension $f=\Omega_\infty$ is said to "extend" F because $\Omega^F_\infty(1_A)=f(1_A)=F(A)$
- In general we can still consider the function : $G(A) \stackrel{\Delta}{=} \Omega^F_{\infty}(1_A)$
 - Do we have G(A) = F(A)?
 - How is G related to F?
 - What is the norm Ω^G_{∞} which is associated with G?

Lower combinatorial envelope

• Given a function $F: 2^V \to \mathbb{R}$, define its *lower combinatorial envelope* as the function G given by

$$G(A) = \max_{s \in P(F)} s(A)$$

with $P(F) = \{s \in \mathbb{R}^p, \forall A \subset V, s(A) \leq F(A)\}.$

- Lemma 1 (Idempotence)
 - P(F) = P(G)
 - -G is its own lower combinatorial envelope
 - For all $q \ge 1, \ \Omega_q^F = \Omega_q^G$
- Lemma 2 (Extension property)

$$\Omega_{\infty}^{F}(1_{A}) = \max_{(\Omega_{\infty}^{F})^{*}(s) \le 1} 1_{A}^{\top}s = \max_{s \in P(F)} s^{\top}1_{A} = G(A)$$
Conclusion

• Structured sparsity for machine learning and statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms

Conclusion

• Structured sparsity for machine learning and statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions: unified analysis and algorithms

• On-going work on structured sparsity

- Norm design beyond submodular functions
- Instance of general framework of Chandrasekaran et al. (2010)
- Links with greedy methods (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)
- Links between norm Ω , support Supp(w), and design X (see, e.g., Grave, Obozinski, and Bach, 2011)
- Achieving $\log p = O(n)$ algorithmically (Bach, 2008)

Conclusion

- Submodular functions to encode discrete structures
 - Structured sparsity-inducing norms
- Convex optimization for submodular function optimization
 - Approximate optimization using classical iterative algorithms
- Future work
 - Primal-dual optimization
 - Going beyond linear programming

References

- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems, 2008.
- F. Bach. Structured sparsity-inducing norms through submodular functions. In NIPS, 2010.
- F. Bach. Convex analysis and optimization with submodular functions: a tutorial. Technical Report 00527714, HAL, 2010.
- F. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. 2011. URL http://hal.inria.fr/hal-00645271/en.
- F. Bach. Shaping level sets with submodular functions. In Adv. NIPS, 2011.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Technical Report 00613125, HAL, 2011.
- R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sensing. Technical report, arXiv:0808.3572, 2008.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.
- M. J. Best and N. Chakravarti. Active set algorithms for isotonic regression; a unifying framework. *Mathematical Programming*, 47(1):425–439, 1990.
- P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 37(4):1705–1732, 2009.

- D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. *The Journal of Machine Learning Research*, 3:993–1022, January 2003.
- D. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. *Advances in neural information processing systems*, 16:106, 2004.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural Information Processing Systems (NIPS), volume 20, 2008.
- S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. *IEEE Trans. PAMI*, 23(11):1222–1239, 2001.
- V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal recovery using markov random fields. In *Advances in Neural Information Processing Systems*, 2008.
- A. Chambolle. Total variation minimization and a class of binary MRF models. In *Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 136–152. Springer, 2005.
- A. Chambolle and J. Darbon. On total variation minimization and surface evolution using parametric maximum flows. *International Journal of Computer Vision*, 84(3):288–307, 2009.
- V. Chandrasekaran, B. Recht, P.A. Parrilo, and A.S. Willsky. The convex geometry of linear inverse problems. *Arxiv preprint arXiv:1012.0621*, 2010.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Review*, 43(1):129–159, 2001.
- T. M. Cover and J. A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 1991.
- J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial optimization -

Eureka, you shrink!, pages 11-26. Springer, 1970.

- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745, 2006.
- U. Feige, V.S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular functions. In *Proc. Symposium on Foundations of Computer Science*, pages 461–471. IEEE Computer Society, 2007.
- S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.
- S. Fujishige and S. Isotani. A submodular function minimization algorithm based on the minimum-norm base. *Pacific Journal of Optimization*, 7:3–17, 2011.
- A. Gramfort and M. Kowalski. Improving M/EEG source localization with an inter-condition sparse prior. In *IEEE International Symposium on Biomedical Imaging*, 2009.
- E. Grave, G. Obozinski, and F. Bach. Trace lasso: a trace norm regularization for correlated designs. *Arxiv preprint arXiv:1109.1990*, 2011.
- H. Groenevelt. Two algorithms for maximizing a separable concave function over a polymatroid feasible region. *European Journal of Operational Research*, 54(2):227–236, 1991.
- J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. *IEEE Transactions on Information Theory*, 52(9):4036–4048, 2006.
- T. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: an algorithm for clustering using convex fusion penalties. In *Proc. ICML*, 2011.
- J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In *Proceedings of the 26th International Conference on Machine Learning (ICML)*, 2009.
- A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons, 2001.

- S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for minimizing submodular functions. *Journal of the ACM*, 48(4):761–777, 2001.
- Stefanie Jegelka, Hui Lin, and Jeff A. Bilmes. Fast approximate submodular minimization. In *Neural Information Processing Society (NIPS)*, Granada, Spain, December 2011.
- R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.
- R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In *Submitted to ICML*, 2010.
- R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and B. Thirion. Multi-scale mining of fmri data with hierarchical structured sparsity. Technical report, Preprint arXiv:1105.0363, 2011. In submission to SIAM Journal on Imaging Sciences.
- K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In *Proceedings of CVPR*, 2009.
- S. Kim and E. P. Xing. Tree-guided group Lasso for multi-task regression with structured sparsity. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2010.
- A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In *Proc.* UAI, 2005.
- L. Lovász. Submodular functions and convexity. *Mathematical programming: the state of the art, Bonn*, pages 235–257, 1982.

- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Technical report, arXiv:0908.0050, 2009a.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In *Computer Vision, 2009 IEEE 12th International Conference on*, pages 2272–2279. IEEE, 2009b.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. *Advances in Neural Information Processing Systems (NIPS)*, 21, 2009c.
- J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In *NIPS*, 2010.
- N. Megiddo. Optimal flows in networks with multiple sources and sinks. *Mathematical Programming*, 7(1):97–107, 1974.
- C.A. Micchelli, J.M. Morales, and M. Pontil. Regularizers for structured sparsity. *Arxiv preprint* arXiv:1010.0556, 2011.
- K. Murota. Discrete convex analysis. Number 10. Society for Industrial Mathematics, 2003.
- H. Nagamochi and T. Ibaraki. A note on minimizing submodular functions. *Information Processing Letters*, 67(5):239–244, 1998.
- K. Nagano, Y. Kawahara, and K. Aihara. Size-constrained submodular minimization through minimum norm base. In *Proc. ICML*, 2011.
- S. Negahban and M. J. Wainwright. Joint support recovery under high-dimensional scaling: Benefits and perils of ℓ_1 - ℓ_{∞} -regularization. In *Adv. NIPS*, 2008.
- S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional

analysis of M-estimators with decomposable regularizers. 2009.

- G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for maximizing submodular set functions–i. *Mathematical Programming*, 14(1):265–294, 1978.
- Y. Nesterov. Introductory lectures on convex optimization: A basic course. Kluwer Academic Pub, 2003.
- Y. Nesterov. Gradient methods for minimizing composite objective function. *Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep*, 76, 2007.
- G. Obozinski and F. Bach. Convex relaxation of combinatorial penalties. Technical report, HAL, 2011.
- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? *Vision Research*, 37:3311–3325, 1997.
- J.B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization. *Mathematical Programming*, 118(2):237–251, 2009.
- M. Queyranne. Minimizing symmetric submodular functions. *Mathematical Programming*, 82(1):3–12, 1998.
- F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused SVM. *Bioinformatics*, 24(13):i375–i382, Jul 2008.
- A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial time. *Journal of Combinatorial Theory, Series B*, 80(2):346–355, 2000.
- M. Seeger. On the submodularity of linear experimental design, 2009. http://lapmal.epfl.ch/ papers/subm_lindesign.pdf.
- P. Stobbe and A. Krause. Efficient minimization of decomposable submodular functions. In Adv. NIPS,

2010.

- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.
- G. Varoquaux, R. Jenatton, A. Gramfort, G. Obozinski, B. Thirion, and F. Bach. Sparse structured dictionary learning for brain resting-state activity modeling. In *NIPS Workshop on Practical Applications of Sparse Modeling: Open Issues and New Directions*, 2010.
- P. Wolfe. Finding the nearest point in a polytope. *Math. Progr.*, 11(1):128–149, 1976.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of The Royal Statistical Society Series B*, 68(1):49–67, 2006.
- P. Zhao and B. Yu. On model selection consistency of Lasso. *Journal of Machine Learning Research*, 7:2541–2563, 2006.
- P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. *Annals of Statistics*, 37(6A):3468–3497, 2009.