Synchronous Functional Programming:
The Lucid Synchrone Experiment *

Paul Caspi Grégoire Hamon Marc Pouzet ¥
VERIMAG The MathWorks LRI, Univ. Paris-Sud 11
Grenoble Boston Orsay

1 Introduction

LuciD SYNCHRONE is a programming language dedicated to the design of reactive systems. It is
based on the synchronous model of LUSTRE [25] which it extends with features usually found in
functional languages such as higher-order or constructed data-types. The language is equipped
with several static analysis, all expressed as special type-systems and used to ensure the absence
of certain run-time errors on the final application. It provides, in particular, automatic type and
clock inference and statically detects initialization issues or dead-locks. Finally, the language offers
both data-flow and automata-based programming inside a unique framework.

This chapter is a tutorial introduction to the language. Its aim is to show that techniques can
be applied, at the language level, to ease the specification, implementation, and verification of
reactive systems.

1.1 Programming Reactive Systems

We are interested in programming languages dedicated to the design of reactive systems [31]. Such
systems interact continuously with their external environment and have to meet strong temporal
constraints: emergency braking systems, plane autopilots, electronic stopwatches, etc. In the
mid-70’s, with the shift from mechanical and electronic systems to logical systems, the question
of the computer-based implementation of reactive systems arose. At first, these implementations
used available general-purpose programming languages, such as assembly, C, or ADA. Low-level
languages were prominent as they give strong and precise control over the resources. Reactive
systems often run with very limited memory and their reaction time needs to be statically known.

General-purpose, low-level languages quickly showed their limits. The low-level description
they offer is very far from the specification of the systems, making implementation error prone
and certification activities very difficult. A large number of embedded applications are targeting
critical functions — fly-by-wire systems, control systems in nuclear power plants, etc. As such,
they have to follow constraints imposed by certification authorities that evaluate the quality of a
design before production use, for example the standards DO-178B in avionics and IEC-61508 in
transport.

Better adapted languages were needed. The first idea was to turn to concurrent programming
model, with the goal of getting closer to the specification. Indeed, reactive systems are inherently
concurrent: the system and its environment are evolving in parallel and concurrency is the nat-
ural way to compose systems from more elementary ones. Unfortunately, traditional models of

*Chapter published in Real-Time Systems: Description and Verification Techniques: Theory and Tools, vol. 1,
Editor: Nicolas Navet and Stephan Mertz. ISTE 2008 (Hermes publisher)

fLaboratoire VERIMAG, Centre Equation, 2, avenue de Vignate, 38610 GIERES, France. Email:
Paul.Caspi@imag.fr

fLRI, Université Paris-Sud 11, 91405 Orsay, France. Email: Marc.Pouzet@lri.fr

REFR_Input 1] Add

| P

. o
count_dowr <

o —
false
| MumberOfCyole I
—=

(]

FER_Output

Figure 1: A SCADE design

concurrency come with numerous problems of system analysis, nondeterminism, or compilation.
These models have therefore been seldom used in domains where security is a concern. Moreover,
even if the goal is to get closer to a specification, the obtained models are far from formalisms
traditionally used by engineers (such as continuous control and finite state transition systems).

1.1.1 The Synchronous Languages

Critical industries (e.g., avionics, energy), driven by high security needs, were the firsts to actively
research new development techniques. An answer was proposed at the beginning of the 80’s with
the introduction of synchronous languages [3], the most famous of which are ESTEREL [5], Lus-
TRE [25] and SIGNAL [4]. These languages, based on a mathematical model of concurrency and
time, are designed exclusively to describe reactive systems. The idea of dedicated programming
languages with a limited expressive power, but perfectly adapted to their domain of application, is
essential. The gain obtained lies in program analysis and the ability to offer compile-time guaran-
tees on the runtime behavior of the program. For example, real-time execution and the absence of
deadlocks are guaranteed by construction. Synchronous languages have been successfully applied
in several industries and have helped in bringing formal methods to industrial developments.

Synchronous languages are based on the synchronous hypothesis. This hypothesis comes from
the idea of separating the functional description of a system from the constraints of the architec-
ture on which it will be executed. The functionality of the system can be described by making
an hypothesis of instantaneous computations and communications, as long as it can be verified
afterward that the hardware is fast enough for the constraints imposed by the environment. This
is the classical zero delay model of electronics or control theory. It permits reasoning in logical
time in the specification, without considering the real time taken by computations. Under the
synchronous hypothesis, nondeterminism associated to concurrency disappears, as the machine is
supposed to have infinite resources. It is possible to design high-level programming languages that
feature parallel constructions, but can be compiled to efficient sequential code. The correspon-
dence between logical time and physical time is verified by computing the worst case reaction time
of the programs.

LUSTRE is based on the idea that the restriction of a functional language on streams, similar to
Lucip [2] and the process network of Kahn [32], would be well adapted to the description of reactive
systems. ! LUSTRE is based on a data-flow programming model. A system is described as a set
of equations over sequences. These sequences, or flows, represents the communications between
the components of the system. This programming model is close to the specifications used by
engineers of critical software thus reducing the distance between specification and implementation.
In LUSTRE, the specification is the implementation. Moreover, the language is very well adapted to
the application of efficient techniques for verification (see chapter 6 by Pascal Raymond), test [43],

LL,USTRE is the contraction of Lucid, Synchrone et Temps Réel — Lucid, Synchronous and Real-Time.

Stop Run TIC{
cent=cent+1;
LAP{ START }

Reset ‘v Running
cgnt—O, sec=0; _ml n=0; during: [cent==100] {
disp_cent=0; disp_sec=0; disp_cent=cent; cont=0:
disp_min=0; START di T car— —
- SP_Sec=sec; sec=sec+1;
} disp_min=min; _ }
LAP
T [sec==60] {
\ | START — sec=0;
Lap_stop I< START } min=min+1;
|

Figure 2: A Chronometer in STATEFLOW.

and compilation [26]. The adequation of the language with the domain and the efficiency of the
technique that can be applied on it prompted the industrial success of LUSTRE and of its industrial
version SCADE [44]. SCADE offers a graphical modeling of the LUSTRE equations, close to the
diagrams used by control or circuits designers (figure 1). SCADE comes with formal validation
tools and its code generator is certified (DO-178B, level A), reducing the need for testing. As
of today, SCADE is used by numerous critical industries. It is for example a key element in the
development of the new Airbus A380.

1.1.2 Model Based Design

Meanwhile, non-critical industries continued using general purpose languages, or low-level dedi-
cated languages (norm IEC-1131). Security needs were much lower and did not justify the cost
of changing development methods. It is pushed by the increasing size and complexity of systems,
combined with a need for decreasing development cycles that they finally looked for other methods.
It is the recent and massive adoption of model based development environments, the growing use of
SIMULINK/STATEFLOW and the appearance of UML. Integrated environments offer a description of
systems using high-level graphical formalisms close to automata or data-flow diagrams. They pro-
vide extensive sets of tools for simulation, test, or code-generation. Again, the distance between
specification and implementation has been reduced, the system being automatically generated
from the model.

These tools have usually not been designed with formal development in mind. Their semantics
is often partially and informally specified. This is a serious problem for verification or certification
activities. It is also a growing problem for the development activity itself: the complexity of
the systems increasing, the risk of misinterpreting the models is also increasing. An example
of such an environment is SIMULINK/STATEFLOW [38] (figure 2) an industrial de-facto standard.
SIMULINK/STATEFLOW does not have a formal semantics and it is possible to write programs that
will fail at runtime. On the other hand, the environment offers a complete set of tools, in which
both the model and its environment can be modeled, simulated and code can be automatically
generated.

1.1.3 Converging Needs

Today, the needs of all industries dealing with reactive systems, critical or not, are converging.
They are all facing problems due to the increasing size and complexity of the systems. Synchronous
languages, created to answer the needs of specifics domains (for example critical software for
LUSTRE) are not directly adapted to the description of complex systems mixing several domains.
The needs for verification and system analysis, for a time specific to critical industries, are now
everywhere. The size of the systems requires automation of verification or test generation activities,

themselves required by the global diffusion of systems and the costs induced by conception errors
that go unnoticed. These converging needs require in particular:

e abstraction mechanism at the language level that allow to get even closer to the specification
of the systems, better reusability of components and the creation of libraries;

e techniques of analysis that are automatic and modular, and techniques of code generation
that can offer guarantees on the absence of runtime errors;

e a programming model in which sampled continuous models, such as LUSTRE models, and
control-based description, such as automata, can be arbitrarily composed.

1.2 Lucid Synchrone

The LUucCIiD SYNCHRONE programming language was created to study and experiment extensions
of the synchronous language LUSTRE with higher-level mechanisms such that type and clock
inference, higher-order or imperative control-structures. It started from the observation that there
was a close relationship between three fields, synchronous data-flow programming, the semantics
of data-flow networks [32] and compilation techniques for lazy functional languages [48]. By
studying the links between those fields, we were interested in answering two kinds of questions:
(1) theoretical questions, on the semantics, the static analysis, and the compilation of synchronous
data-flow languages; (2) practical questions, concerning the expressiveness of LUSTRE and the
possibilities of extending it to answer needs of SCADE users.

This paper presents the actual development of the language and illustrate its main features
through a collection of examples. This presentation is voluntarily made informal and technical
details about the semantics of the language can be found in related references. Our purpose is to
convince the reader of the various extensions that can be added to existing synchronous languages
while keeping their strong properties for programming real-time systems. An historical perspective
on the development of the language and how some of its features have been integrated into the
industrial tool SCADE shall be discussed in section 3.

The core LUCID SYNCHRONE language is based on a synchronous data-flow model in the
spirit of LUSTRE and embedded into a functional notation a la ML. The language provides the
main operations of LUSTRE allowing to write, up to syntactic details, any valid LUSTRE program.
It also provides other operators such as the merge that is is essential to combine components
evolving on different rates. These features are illustrated in sections 2.1 to 2.4. The language
incorporates several features usually found in functional languages such as higher-order or data-
types and pattern-maching. Higher-order, which means that a function can be parameterised by
an other function, allows to define generic combinators that can be used as libraries. Combined
with the compiler’s support for separate compilation, this is a key to increase modularity. Higher-
order is illustrated in section 2.5. To answer the growing need for abstraction, the language
supports constructed data-types. Values of that type naturally introduce control behavior and we
associate them to a pattern-matching operation thus generalizing the so-called activation condition
construction (or enable-subsystems) in graphical tools such as SCADE or SIMULINK. Data-types
and pattern-matching are presented in section 2.6. Concurrent processes need to communicate
and, in a dataflow language, this can only be done through inputs and outputs (so-called in-ports
and out-ports in graphical languages), which can be cumbersome. LUCID SYNCHRONE introduces
the notion of a shared memory to ease the communication between several modes of executions.
This mechanism is safe in the sense that the compiler statically checks the non-interference between
the uses of the shared memories, rejecting, in particular programs with concurrent writes. The
language also supports signals as found in ESTEREL and which simplify the writing of control-
dominated systems. Shared memory and signals are presented in section 2.7 and 2.8. Maybe the
most unique feature of LUCID SYNCHRONE is its direct support of hierarchical state machines.
This opens up new ways of programming, as it allows the programmer to combine in any way he
wants dataflow equations and finite state-machine. State machines are illustrated in sections 2.9

and 2.11. Finally, being a functional language, it was interesting to investigate more general
features such as recursion. This part is discussed in section 2.12.

Besides these language extensions, the language features several static analysis in order to
contribute to make programming both easier and safer. In LUCID SYNCHRONE, types are auto-
matically inferred and do not have to be given explicitly given by the programmer. Automatic
type inference and parametric polymorphism have been originally introduced in ML languages
and have proved their interest for general purpose programming [41]. Nonetheless, they were not
provided, as such, in existing synchronous tools. Type polymorphism allows to define generic
components and increase code reuse while type inference frees the programmer from declaring the
type of variables. The language is also founded on the notion of clocks as a way to specify the
various paces in a synchronous system. In LUCID SYNCHRONE, clocks are types and the so-called
clock calculus of synchronous languages which aims at checking the coherency between those paces
is defined as a type inference problem. Finally, the compiler provides two other static analysis also
defined by special type systems. The initialization analysis checks that the behavior of the system
do not depend on the initial values of delays while the causality analysis detects deadlocks.

2 Lucid Synchrone

We cannot present the language without a word about its two parents OBJECTIVE CAML [35] on
one side and LUSTRE on the other. The functional programmer may consider LUCID SYNCHRONE
as a subset of OCAML managing synchronous streams. The synchronous programmer will instead
consider it as an extension of LUSTRE with functional features and control structures. The language
has largely evolved since its first implementation in 1995. We present here the current version

(V3) 2.
2.1 An ML Dataflow Language

2.1.1 Infinite Streams as Basic Objects

LuciD SYNCHRONE is a dataflow language. It manages infinite sequences of streams as primitive
values. A variable z stands for the infinite sequence of values zg, x1, zo, ... that x get during the
execution. In the same way, 1 denotes the infinite sequence 1,1,1,.... The type int denotes the
type of integer sequences. Scalar functions (e.g., +, *) apply point-wisely to streams:

c 3 /
X Zo x1
y Yo Y1
Xty To+Y X1+
if ¢ then x else y Zo Y1
if c then (x,y) else (0,0) | (zo,%) (0,0)

x and y being two integer streams, x+y produces a stream obtained by adding point-wisely the
current values of x and y. Synchrony find a natural characterization here: at the instant 4, all the
streams take their i-th value.

Tuples of streams can be build and are considered as streams, allowing to have a homogeneous
view of a system: every value is a time evolving value.

2.1.2 Temporal Operations: Delay and Initialization

The initialized delay £by (or followed by) comes from LuciD [2], the ancestor of dataflow languages.
This operation takes a first argument that gives the initial value for the result and a second
argument that is the delayed stream. In the following example, x fby y returns the stream y
delayed and initialized with the first value of x.

2The manual and distributions are available at www.lri.fr/~pouzet/lucid-synchrone.

www.lri.fr/~pouzet/lucid-synchrone

a c2
P co
b \ S
a
L)

: co
cl

Figure 3: Hierarchical definition of a 1-bit adder

It is often useful to separate the delay from the initialization. This is obtained by using the
uninitialized delay pre (for previous) and the initialization operator ->. pre x delays its argument
x and has an unspecified value nil at the first instant. x -> y returns the first value of x at its
first instant then the current value of y. The expression x -> pre y is equivalent to x fby y.

X o T X2
y Yo Y Y2
x fby y | wo Yo Y1
pre x nil xo 11
X =>y Zo Y1 Y2

Since the pre operator may introduce undefined values (represented by nil), it is important to
check that the program behavior does not depend on these values. This is done statically by the
initialization analysis.

2.2 Stream Functions

The language makes a distinction between two kinds of functions: combinatorial and sequential. A
function is combinatorial if its output at the current instant only depends on the current value of
its input. This is a stateless function. A sufficient condition for an expression to be combinatorial
is that it does not contain any delay, initialization operator or automaton. This sufficient condition
is easily checked during typing.

A one-bit adder is a typical combinatorial function. It takes three boolean inputs a, b and a
carry c and returns a result s and a new carry co.

let xor (a, b) = (a & not(b)) or (not(a) & b)

let full_add (a, b, c) = (s, co) where
s = xor (xor (a, b), c)
and co = (a & b) or (b & c) or (a & c)

When this program is given to the compiler, we get:

val xor : bool * bool -> bool

val xor :: ’a *x ’a -> ’a

val full_add : bool * bool * bool -> bool * bool
val full_add :: ’a * ’a *x ’a -> ’a *x ’a

For every declaration, the compiler infers types (:) and clocks (::). The type signature bool
* bool -> bool states that xor is a combinatorial function that returns a boolean stream when
receiving a pair of boolean streams. The clock signature >a * ’a -> ’a states that xor is a length
preserving function: it returns a value every time it receives an input. Clocks will be explained
later.

A more efficient adder can be defined as the parallel composition of two half-adders as illus-
trated in figure 3.

let half_add (a,b) = (s, co)
where s = xor (a, b) and co = a & b

let full_add(a,b,c) = (s, co) where
rec (s1, c1) = half_add(a,b)
and (s, c2) = half_add(c, s1)
and co = c2 or cl

Sequential (or state-full) functions, are functions whose output at time n may depend on their
inputs’ history. Sequential functions are introduced with the keyword node and they receive a
different type signature. A front edge detector edge is written:

let node edge c = false -> ¢ & not (pre c)

val edge : bool => bool
val edge :: ’a -> ’a

A possible execution is given in the following diagram.

c f f t t f t
false VA R B B B |
c &mnot (prec) | nil f ¢t f f t
edge c f fot f f ¢

The type signature bool => bool states that edge is a function from boolean streams to
boolean streams and that its result depends on the history of its input. The class of a function is
verified during typing. For example, forgetting the keyword node leads to a type error.

let edge c = false -> c & not (pre c)

>let edge c = false -> ¢ & not (pre c)
s emeccacccsssscaaanannanns
This expression should be combinatorial.

In a dataflow language, stream definitions can be mutually recursive and given in any order.
This is the natural way to describe a system as the parallel composition of subsystems. For
example, the function that decrements a counter according to an boolean stream can be written:

let node count d t = ok where
rec ok = (cpt = 0)
and cpt = 0 -> (if t then pre cpt + 1 else pre cpt) mod d

val count : int -> int => bool
val count :: ’a -> ’a -> ’a

count d t returns the boolean value true when d occurrences of t have been received.

d [3 2 2 2 2 4
t t t t t t t
cpt |3 2 1 2 1 4
ok |t [[t f ¢t

The language is functional, it is possible to write partial applications by fixing one parameter of
a function.

let countl0 t = count 10 t

val countl10 : int => int
val countl0 :: ’a -> ’a

2.3 Multi-sampled Systems

In all our previous examples, all the parallel processes share the same rate. At any instant n,
all the streams take their n-th value. These systems are said to be single-clocked, a synchronous
circuit is a typical example of a single-clocked system.

We now consider systems that evolve at different rates. We use a clock mechanism that was
first introduced in LUSTRE and SIGNAL. Every stream s is paired with a boolean sequence c,
or clock, that defines the instants when the value of s is present (precisely c is true if and only
if s is present). Some operations allow to produce a stream with a slower (sampling) or faster
(oversampling) rate. To be valid, programs have to verify a set of clock constraints, this is done
through the clock calculus. In LUCID SYNCHRONE, clocks are represented by types and the clock
calculus is expressed as a type-inference system.

2.3.1 The Sampling Operator when

The operator when is a sampler allowing to communicate values from fast processes to slower ones
by extracting sub-streams according to a boolean condition.

c ft f t [¢t
X Xo X1 X2 xrs3 T4 Ts5
x when c T xs3 x5
X whenot c | xg T2 T4

The stream x when c is slower that the stream x. Supposing that x and c are produced at a
clock ck, we say that x when c is produced at the clock ck on c.

The function sum that computes the sum of its input (i.e., s,, = X7_x;) can be used at a slower
rate by sampling its input:

let node sum x = s where rec s = x -> pre s + X
let node sampled_sum x ¢ = sum (x when c)

val sampled_sum : int -> bool => int
val sampled_sum :: ’a -> (_cO:’a) -> ’a on _cO

Whereas the type signature abstracts the value of a stream, the clock signature abstract its tem-
poral behavior: it characterizes the instants where the value of a stream is available. sampled_sum
has a functional clock signature that states that for any clock ’a and boolean stream _cO, if the
first argument x has clock ’a, the second argument is equal to _cO and has clock ’a then the
result will receive the clock ’a on _c0 (variables like ¢ are renamed to avoid name conflicts). An
expression with clock *a on _c0 is present when both its clock ’a is true and the boolean stream
_c0 is present and true. Thus, an expression with clock ’a on _cO has a slower rate than an
expression with clock ’a. Coming back to our example, the output of sum (x when c) is present
only when c is true.

This sampled sum can be instantiated with a particular clock. For example:

let clock ten = count 10 true
let node sum_ten x = sampled_sum x ten

val ten : bool

val ten :: ’a

val sum_ten : int => int

val sum_ten :: ’a -> ’a on ten

The keyword clock introduces a clock name (here ten) from a boolean stream. This clock
name can in turn be used to sample a stream.

Clocks express control properties in dataflow systems. Filtering the inputs of a node according
to a boolean condition, for example, means that the node will be executed only when the condition
is true.

c f t f t f f t
1 1 1 1 1 1 1 1
sum 1 2 3 4 5 6 7
(sum 1) when c 2 4 6
1 when c 1 1 1
sum (1 when c) 1 2 3

Thus, sampling the input of a sequential function f is not equivalent, in general, to sampling
its output, that is, (f(z when ¢) # (fx) when c).
Clocks can be nested arbitrarily. For example, a watch can be written:

let clock sixty = count 60 true

let node hour_minute_second second =
let minute = second when sixty in
let hour = minute when sixty in
hour,minute,second

val hour_minute_second ::
’a -> ’a on sixty on sixty * ’a on sixty * ’a

A stream with clock *a on sixty on sixty is present only one instant over 3600 which is the
expected behavior.
2.3.2 The Combination Operator merge

merge slow processes to communicate with faster ones by combining two streams according to a
condition. Two arguments of a merge must have complementary clock.

c foot f fF f 't
X Zo Z1
y Yo Yy Y2 Y3

merge C Xy | Yo To Y1 Y2 Y3 T1

Using the merge operator, we can define a holder (the operator current of LUSTRE) which
hold the value of a stream between to successive sampling. Here, ydef is a default value used
when no value have yet been received:

let node hold ydef c x =y
where rec y = merge ¢ x ((ydef fby y) whenot c)

val hold : ’a -> bool -> ’a => ’a
val hold :: ’a -> (_c0O:’a) -> ’a on _cO -> ’a

2.3.3 Oversampling

Using these two operators, we can define oversampling functions, that is, functions whose internal
rate is faster than the rate of their inputs. In this sense, the language is strictly more expressive
than LUSTRE and can be compared to SIGNAL.

Oversampling appears naturally when considering a long duration task made during several
time step (for example when its computation time is two important or because the architecture
does not have enough resources to make the computation in one step). Consider the computation
of the sequence y,, = (,,)°. This sequence can be computed by writing:

let power x = X * X *¥ X ¥ X ¥ X
val power :: ’a -> ’a

The output is computed at the same rate as the input (as stated by the signature ’a -> ’a).
Four multiplications are necessary at every cycle. Suppose that only one multiplication is feasible
at every instant. We can replace this instantaneous computation by an iteration through time by
slowing the clock of x by a factor of four.

x on four [l
1

y on four

four

Figure 4: A example of oversampling

let clock four = count 4 true

let node iterate cond x = y where
rec i = merge cond x ((1 fby i) whenot cond)
and o = 1 fby (i * merge cond x (o whenot cond))
and y = o when cond

let node spower x = iterate four x

val iterate : bool -> int => int

val iterate :: (_cO:’a) -> ’a on _cO -> ’a on _cO
val spower : int => int

val spower :: ’a on four -> ’a on four

The corresponding dataflow network is given in figure 4.

four t f f f t f f f t
X o T X2
i o Xo To To X1 X1 X1 X1 X2
o 1 22 3 oz oz 2 2 b L
spower x 1 x0 3

5 5 5
power x o it T3

Since the function power has the polymorphic clock signature >a -> ’a, the sequence power
x has the same clock as x. Thus, spower x produces the same sequence as 1 fby (power x) but
with a slower rate.

An important consequence of the use of clocks and automatic inference is the possibility to re-
place every use of (1 fby power x) by spower x without modification of the rest of the program.
The global system is automatically slowed-down to adapt to the clock constraints imposed by the
function spower. This property contributes to the modular design and code reuse. Nonetheless,
because clocks in LUCID SYNCHRONE can be built from any boolean expression, the compiler is
unable to infer quantitative information (which would allow to prove the equivalence between (1
fby power x) and spower x). four is considered by the compiler as a symbolic name and its
periodic aspect is hidden. Recent works have considered an extension of synchronous language
with periodic clocks [10, 14].

2.3.4 Clock Constraints and Synchrony

When stream functions are composed together, they must verify clock constraints. For example,
the arguments of a merge must have complementary clocks and the arguments of an operator
applied point-wisely must have the same clock. Consider for example the program:

10

Unbounded FIFO!
1M
T
JE— &

odd
X o xT1 X2 T3 T4 5
half ¢ f ¢ 7 ¢ f
x when half xo T2 T4
x & (odd x) | zo & xo z1 & T2 To & T4

Figure 5: A non synchronous program

let clock half = count 2 true
let node odd x = x when half
let node wrong x = x & (odd x)

This program adds the stream x to the sub-stream of x obtained by filtering one input over
two 2. This function would compute the sequence (x,&2,)nev. Graphically, the computation
of x & (odd x) corresponds to the Kahn network [32] depicted in figure 5. In this network, the
input x is duplicated, one going through the function odd whose role is to discard one input over
two. The two stream are in turn given to an & gate. If no value is lost, this network cannot be
executed without a buffering mechanism, as time goes on, the size of the buffer will grow and will
finally overflow. This program can not be efficiently compiled and boundedness execution can not
be guaranteed. This is why we reject it statically. The goal of the clock calculus is to reject these
type of program that cannot be executed synchronously without buffering mechanism [9].

In LuciD SYNCHRONE, clocks are types and the clock calculus is expressed as a type inference
problem [12, 19]. When the previous program is given to the compiler, it displays:

> let node wrong x = x & (odd x)
s T aasanan

This expression has clock ’b on half,
but is used with clock ’b.

Using the formal definition of the clock calculus, we can show the following correction theorem:
every well clocked program can be executed synchronously [12, 13]. This result can be compared
to the type preservation theorem in ML languages [41]. Clocks being types, they can be used to
abstract the temporal behavior of a system and be used as programming interfaces. Moreover,
they play a fundamental role during the compilation process to generate efficient code. Intuitively,
clocks become control-structures in the sequential code and the compiler gathers as much as
possible all computations under the same clock (as soon as data-dependences are preserved).

2.4 Static Values

Static values are constant values that are useful to define parameterized system, these parameters
being fixed at the beginning of an execution.

let static m = 100.0
let static g = 9.81
let staticmg =m *. g

3In control-theory, x when half is a half frequency sampler.

11

Figure 6: An Iterator

The compiler checks that a variable which is declared to be static is bound to an expression
that produces a constant stream.

The language considered so far is not that different from LUSTRE. The main differences are
the automatic type and clock inference and the operation merge which is an essential operation in
order to program multi-sampled systems. We now introduce several extensions which are specific
to the language.

2.5 Higher-order Features

Being a functional language, functions are first class objects which can be passed to functions or
returned by functions. For example, the function iter is a serial iterator. Its graphical represen-
tation is given in figure 6.

let node iter init f x = y where
rec y = £ x (init fby y)

val iter : ’a -> (°b -> ’a -> ’a) => ’a
val iter :: ’a -> (b -> ’a -> ’a) -> ’a

such that:

let node sum x = iter 0 (+) x
let node mult x = iter 1 (*) x

Higher-order is compatible with the use of clocks and we can thus write a more general version
of the serial iterator defined in section 2.3.3.

let node iterate cond x init f = y where
rec i = merge cond x ((init fby i) whenot cond)
and o = init fby (f i (merge cond x (o whenot cond)))
and y = o when cond

let node spower x = iterate four x 1 (*)

val iterate : bool -> ’a -> ’a -> (’a -> ’a) => int
val iterate ::
(_c0:’a) > ’a on _cO -> ’a -> (’a -> ’a -> ’a) -> ’a on _c0

val spower : int => int
val spower :: ’a on four -> ’a on four

Higher-order is a natural way to define new primitives from basic ones. For example, the
“activation condition” is a primitive operator in graphical tools like SCADE/LUSTRE or SIMULINK.
It takes a condition c, a function £, a default value default, an input input and computes f (input
when c). It holds the last computed value when c is false.

let node condact c f default input = o where
rec o = merge ¢ (run f (input when c))

12

((default fby o) whenot c)

val condact : bool -> (’a => ’b) -> ’b -> ’a -> ’b
val condact :: (_c0O:’a) -> (’a on _cO -> ’a on _c0) -> ’a -> ’a -> ’a

The keyword run states that its first argument f is a stateful function and thus has a type of the
form t; = to instead of t1 — to.

Using the primitive condact, it is possible to program a classical operator both available in
the SCADE library and in the digital library of SIMULINK. Its graphical representation in SCADE
is given in figure 1. This operator detects a rising edge (false to true transition). The output is
true when a transition has been detected and is sustained for numb_of cycle cycles. The output
is initially false and a rising edge arriving while the output is true is still detected.

let node count_down (res, n) = cpt where
rec cpt = if res then n else (n -> pre (cpt - 1))

let node rising_edge_retrigger rer_input numb_of_cycle = rer_output
where
rec rer_output = (0 < v) & (c or count)
and v =
condact count_down clk O (count, numb_of_cycle)
and ¢ = false fby rer_output
and clock clk = c or count
and count = false -> (rer_input & pre (not rer_input))

Higher-order is useful for the compiler writer as a way to reduce the number of basic primitives
in the language. For the programmer, it brings the possibility to define operators and to build
generic libraries. In LUCID SYNCHRONE, all the static analysis (types, clocks, etc.) are compatible
with higher-order. Note that the higher-order features we have considered in the above examples,
through it increase the modularity can still be statically expanded in order to get a first-order
program.

2.6 Datatypes and Pattern Matching

Until now, we have only considered basic types and tuples. The language also supports structured
datatypes. It is for example possible to define the type number whose value is either an integer or
a float. The type circle defines a circle by its coordinates, its center and its radius.

type number = Int of int | Float of float
type circle = { center: float * float; radius: float }

Programs can be defined by pattern matching according to the structure of a value. Let us
illustrate this on a wheel for which we want to detect the rotation. The wheel is composed of
three colored sections with color blue (Blue), red (Red) and green (Green). A sensor observes the
successive colors and must determine if the wheel is immobile and otherwise, its direction.

The direction is direct (Direct) for a sequence of Red, Green, Blue... and indirect (Indirect)
for the opposite sequence. The direction may also be undetermined (Undetermined) or the wheel
may be immobile (Immobile).

type color = Blue | Red | Green
type dir = Direct | Indirect | Undetermined | Immobile

let node direction i = d where
rec pi = i fby i
and ppi = i fby pi
and d = match ppi, pi, i with
(Red, Red, Red) | (Blue, Blue, Blue)
| (Green, Green, Green) -> Immobile

13

| (_, Blue, Red) | (_, Red, Green)
| (_, Green, Blue) -> Direct

| (_, Red, Blue) | (_, Blue, Green)
| (_, Green, Red) -> Indirect

| _ -> Undetermined
end

The behavior is defined by pattern matching on three successive values of the input i. Each
case (possibly) defines a set of equations. At every instant, the construction match/with selects
the first pattern (from top to bottom) that matches the value of (pii, pi, i) and executes the
corresponding branch. Only one branch is executed during a reaction.

This example illustrates the interest of the pattern matching construct in ML language: a
compiler is able to check its exhaustiveness and completeness. In the LUCID SYNCHRONE compiler,
this analysis strictly follows the one of OCAML [36].

2.7 A Programming Construct to Share the Memory

The pattern-matching construct is a control structure whose behavior is very different from the
one of the if/then/else construct. During a reaction, only one branch is active. On the contrary,
if/then/else is a strict operator and all its argument execute on the same rate. The pattern-
matching construct corresponds to a merge which combines streams with complementary clocks.

With control structures, comes the problem of communicating between the branches of a control
structure. This is a classical problem when dealing with several running modes in a graphical tool
like SCADE or SIMULINK. Each mode is defined by a block diagram and modes are activated in an
exclusive manner. When two modes communicate through the use of some memory, this memory
must be declared on the outside of the block in order to contain the last computed value. To
ease this communication, we introduce constructions to declare, initialize, and access a shared
memory 4. The last computed value of a shared variable o can be accessed by writing last o.
Consider the following system. It has two modes, the mode up increment a shared variable o
whereas the mode down decrements it.

let node up_down m step = o where
rec match m with
true -> do o = last o + step done
| false -> do o = last o - step done
end
and last o = 0

In the above program, the match/with construction combines equations where as it was applied
to expressions in the previous example. The ability for a control-structure to combine equations
eases the partial definition of some shared variables which may not have an explicit definition in
one handler.

The equation last o = 0 defines a shared variable o with initial value 0. The communication
between the two modes is made through the construction last o which contains the last computed
value of o.

step 1t 1 1 1 1 1 1 1 1 1 1
m t t t f f t t t f [¢t
last 0o [0 1 2 3 2 1 2 3 4 3 2
o 1 2 3 2 1 2 3 4 3 2 3

4The SIMULINK tool provides a mechanism that ease the communication between several block diagram. This is
mainly based on the use of imperative variables which can be read or written in different places.

14

This program has the same meaning as the following °. Here, the computation of the shared
variable last o is done outside of the two branches thus en-lighting the fact that it contains the
last computed value of o.

let node up_down m step = o where
rec match m with
true -> do o = last_o + step done
| false -> do o = last_o - step done
end
and last_o = 0 -> pre o

last o is another way to refer to the previous value of a stream and is thus similar to pre o.
There is however a fundamental difference between the two. This difference is a matter of instant
of observation. In a dataflow diagram, pre (¢) denotes a local memory containing the value of its
argument on the last time it has been observed. If pre (e) appears in a block that is executed
from time to time, say on a clock ¢, this means that the argument e is computed and memorized
only when the clock ¢ is true. On the other hand, last o denotes the last value of the variable
o at the clock where o is defined. last o is only defined on variables, not on expressions. last o
is a way to communicate a value between two modes and this is why we call it a shared memory.
The semantics of the previous program is precisely defined as:

let node up_down m step = o where
rec o = merge ¢ ((last_o when c) + (step when c))
((last_o whenot c) - (step whenot c))
and clock ¢ = m
and last_o = 0 -> pre o

In a graphical language, shared variables can be depicted differently to minimize the possible
confusion between last o and pre o.

As a final remark, the introduction of shared memories allows to implicitly complement streams
with their last values. Omitting an equation for some variable x is equivalent to adding an equation
x = last x. This is useful in practice when modes defines several streams, you only need to define
streams that are changing.

2.8 Signals and Signal Patterns

One difference between LUSTRE and ESTEREL is that the former manages streams whereas the
later manages signals. Streams and signals differ in the way they are accessed and produced.
ESTEREL distinguishes two kinds of signals: pure and valued. A pure signal is essentially a
boolean stream, true when the signal is present and false otherwise. A valued signal is a more
complex object: it can be either present of absent and when present, it carries a value. Signals
exhibit an interesting feature for the programmer: they only exists when explicitly emitted. A
stream on the other hand, must be defined in every instant. This feature leads to a more natural
description of control-dominated systems.

ESTEREL-like signals are a particular case of clocked streams and can thus be simulated into a
data-flow calculus without any penalty in term of static analysis or code-generation [16]. Signals
are build and accessed through the use of two programming constructs, emit and present. A
valued signal is simply a pair made of (1) a stream sampled on that condition ¢ packed with (2)
a boolean stream ¢ — its clock — giving the instant where the signal is present °. The clock
signature of a signal z is a dependent pair X(c :).« on ¢ made of a boolean ¢ with clock type «
and a stream containing a value and whose clock type is a on c. We write o sig as a short-cut
for the clock signature X(c: «).cc on c.

5This is precisely how the LUCID SYNCHRONE compiler translates the first program.
61n circuit terminology, a signal is made of a value and an enable which indicate the instant where the value is
valid [47].

15

2.8.1 Signals as Clock Abstractions
A signal can be built from a sampled stream by abstracting its internal clock.

let node within min max x = o where
rec clock ¢ = (min <= x) & (x <= max)
and emit o = x when c

val within : ’a -> ’a -> ’a => int sig
val within :: ’a -> ’a -> ’a -> ’a sig

This function computes a condition ¢ and a sampled stream x when c. The equation emit
o = x when c defines a signal o present and equal to x when c is true. The construction emit
encapsulates the value with its clock, corresponding to a limited form of existential quantification.
This enters exactly in the existing [19] clock calculus based on the Laufer & Odersky type-system.

2.8.2 Testing Presence and Pattern Matching over Signals

The presence of a signal x can be tested using the boolean expression 7z. For example, the
following program counts the number of occurrences of the signal x.

let node count x = cpt where
rec cpt = if ?x then 1 -> pre cpt + 1 else 0 -> pre cpt

val count : ’a sig => int
val count :: ’a sig -> ’a

The language offers a more general mechanism to test the presence of several signals and access
their value. This mechanism is similar to pattern matching and is reminiscent to join-patterns in
the Join-calculus [24].

The following program expects two input signals x and y and returns the sum of x and y when
both signals are emitted. It returns the value of x when only x is emitted, the value of y when
only y is emitted and 0 otherwise.

let node sum x y = o where
present
x(v) & y(w) -> do o = v + w done
| x(vl) -> do o = vl done
| y(v2) -> do o = v2 done
| _ ->do o = 0 done

end
val sum : int sig -> int sig => int
val sum :: ’a sig -> ’a sig -> ’a

Each handler is made of a filter and a set of equations. Filters are treated sequentially. The
filter x(v) & y(w) is verified when both signals x and y are present. In that case, v and w are
bounded to the values of the signals. If this filter is not satisfied, the second one is considered,
etc. The last filter _ defines the default case. Note that x and y are signal expressions whereas v
and w are patterns. Thus, a filter x(4) & y(w) is read: await the instant where x is present and
carry the value 4 and y is present.

Using signals, it is possible to mimic the default construction of SIGNAL. The expression
default x y emits the value of x when x is present, the value of y when x is absent and y is
present. o being a signal, it does not keep implicitly its last value in the remaining case (x and y
absent) and it is considered absent.

let node default x y = o where
present

x(v) -> do emit o = v done

| y(v) -> do emit o = v done

16

end

val default : ’a -> ’a => ’a
val default :: ’a sig -> ’a sig -> ’a sig

This is only a simulation since the clock information — the precise instant where x, y and
default x y are emitted — is hidden. The compiler is not able to state that o is emitted only
when x or y are present.

The use of signals comes naturally when considering control dominated systems. Moreover,
pattern matching over signals is safe in the sense that it is possible to access the value of a signal
only when the signal is emitted. This is an important difference with ESTEREL where the value
of a signal is implicitly sustained and can be accessed even when the signal is not emitted, thus
raising initialization issues.

2.9 State Machines and Mixed Designs

In order to define control dominated systems, it is also possible to directly define finite state
machines. These state machines can be composed with dataflow equations as well as other state
machines and can be arbitrarily nested [17].

An automaton is a set of states and transitions. A state is made of a set of equations and
transitions. Two types of transitions, weak and strong can be fired in a state and for each of them,
the target state can be either entered by history or simply reset.

2.9.1 Weak and Strong Preemption

In a synchronous reaction, we can consider two types of transitions from a state: a transition is
weak when it is inspected at the end of the reaction or strong when it is made immediately, at
the beginning of the reaction. In the former case, the condition determines the active state of the
next reaction, in the later it determines the current active set of equations to be executed.

Here is an example of a two state automaton with weak transitions:

let node weak_switch on_off = o where
automaton
0ff -> do o = false until on_off then On
| On -> do o = true until on_off then Off
end

A state is made of several states (the initial one being the first in the list) and each state defines
a set of shared variables. This automaton has two states 0ff and On each of them defining the
current value of o. The keyword until indicates that o is false until the time (included) where
on_off is true. Then, at the next instant, the active state becomes On. An automaton with weak
transitions corresponds to a Moore automaton. On the contrary, the following function returns
the value true as soon as the input on_off is true. Here, the value of o is defined by the equation
o = false unless the condition on_off is verified. The condition is thus tested before executing
the definitions of the state: it is called a strong transition.

let node strong_switch on_off = o where
automaton
0ff -> do o = false unless on_off then On
| On -> do o = true unless on_off then 0Off
end

The graphical representation of these two automata is given in figure 7. We borrow the notation
introduced by Jean-Louis Colago and inspired by the SYNCCHARTS [1]: a strong transition is
represented by an arrow starting with a circle which indicates that the condition is evaluated at
the same instant as the target state. Reciprocally, a weak transition is represented by an arrow
terminated by a circle, indicating that the condition is evaluated a the same instant as the source
state.

17

on of f on_of f

on of f on off

Figure 7: Weak and strong transitions in an automaton

on_off

weak_switch on_off
strong_switch on_off

N N
| [
o~ (k| =~
| |~
| =+ |~
|~
o~ || =+

S~ | =

We can notice that for any boolean stream on_off, weak_switch on_off produces the same
sequence as strong_switch (false -> pre on_off).

2.9.2 ABRO and Modular Reset

Adding automata to a dataflow language gives ESTEREL-like features. We illustrate it on the so-
called ABRO example which en-lights the interest of synchronous composition and preemption [6].
Its specification is the following:

“Await for the presence of events a and b and emit o at the precise instant where the
two events have been received. Reset this behavior at every occurrence of r”.

We first define a node expect that awaits for the presence of an event.

let node expect a = o where
automaton
S1 -> do o = false unless a then S2
| S2 -> do o = true done
end

let node abo a b = (expect a) & (expect b)

The node abo returns the value true and sustains it as soon as the inputs a and b is true.
This is the parallel composition of two automata composed with an and gate. The node abro
is obtained by making a new state automaton with a strong transition on the condition r. The
target state is reset: every stream or automaton restarts in its initial configuration. This reset is
indicated by the keyword then.

let node abro a b r = o where

automaton
S -> do o = abo a b unless r then S
end

The construction reset/every is a short-cut for such an automaton.

let node abro a b r = o where
reset
o =abo ab
every r

18

2.9.3 Local Definitions to a State

Each state in an automaton is made of a set of equations defining shared and local variables. Local
variables can be used to compute the values of shared variables and weak transitions only. They
cannot be used to compute strong transitions since strong transitions are tested at the beginning
of the reaction. This is checked automatically by the compiler.

The following program sustains the value true for a duration d1, the value false for a duration
d2, then restarts.

let node alternate dl1 d2 = status where
automaton
True ->

let rec c =1 ->prec + 1 in
do status = true
until (¢ = d1) then False

| False ->
let rec c =1 ->prec + 1 in
do status = false
until (c = d2) then True

end

The state True defines a local variable ¢ that is used to compute the weak transition ¢ = di.

2.9.4 Communication between States and Shared Memory

In the above example, there is no communication between the values computed in each state.
The need for such communications appears naturally when considering several running modes.
Consider the following three states automaton.

let node up_down go = o where
rec automaton
Init ->
do o = 0 until go then Up
| Up —>
do o = last o + 1
until (o >= 5) then Down
| Down —>
do o = last o - 1
until (o <= - 5) then Up
end

This program computes the sequence:

go | f f t t t t t t t t t t ¢
o |0 0 0 1 2 3 4 5 4 3 2 1 0

As the initial state is only weakly preempted, the value of last o is defined when entering the Up
state. last o always contain the last computed value of o.

Every state defines the current value of a shared variable. In practice, it is heavy to define the
value of a shared variable in every state. We need a mechanism to implicitly give a default value
to those variables. A natural choice is to maintain the last computed value. Let us consider the
example of a button to adjust an integer value from two boolean values :

let node adjust p m = o where
rec last o = 0
and automaton
Idle —>
do unless p then Incr unless m then Decr

"This example is due to Jean-Louis Colago and Bruno Pagano.

19

| Incr —>

do o = last o + 1 unless (not p) then Idle
| Decr —>

do o = last o - 1 unless (not m) then Idle
end

The absence of equations in the initial state Idle means that o keeps its previous value. Said
differently, an equation o = last o is implicitly added to the state.

2.9.5 Resume or Reset a State

When a transition is fired, it is possible to specify whether the target state is reset (and this is
what has been considered in the previous examples) or not. The language allows to continue (or
resume) the execution of a state in the configuration it had at its previous execution. For example:

let node up_down () = o where
rec automaton
Up -> do o = 0 -> last o + 1 until (o >= 2)
continue Down
| Down -> do o = last o - 1 until (o <= -2)
continue Up
end

The chronogram is now:

ofO 1 2 1 0 -1 -2 -1 0 1 2 -1

Let us notice that last o is necessarily defined when entering the state Down since the state is
only left with a weak transition. Replacing it by a strong transition (unless) raises an initialization
error.

2.10 Parameterized State Machines

We can now consider a more general class of automata where states are parameterized by some
initial computed during the transition. This is useful to reduce the number of states and the
communicate values between a source state and a target state. It also allows to express in a uniform
manner special treatments when entering a state (e.g., transitions on entry of STATEFLOW). The
following program counts occurrences of x.

let node count x = o where
automaton
Zero -> do o = 0 until x then Succ(1)
| Succ(v) -> do o = v until x then Succ(v+1)
end

Consider now a mouse controller whose specification is the following;:

“Produce the event double when the two events click have been received in less than
four top. Emit simple if only one event click has been received”

This corresponds to a three states automaton:

let node counting e = cpt where
rec cpt = if e then 1 -> pre cpt + 1 else 0 -> pre cpt

let node controller click top = (simple, double) where
automaton
Await ->
do simple = false and double = false
until click then One

20

| One ->

do simple = false and double = false

unless click then Emit(false, true)

unless (counting top = 4) then Emit(true, false)
| Emit(x1, x2) ->

do simple = x1 and double = x2

until true then Await
end

The controller awaits for the first occurrence of click then it enters in state One and counts
the number of top. This state is strongly preempted when a second click is received or that the
condition counting top = 4 is true. For example, if click is true, the control goes immediately
in state Emit(false, true), giving the initial values false and true to the parameters x1 and
x2. Thus, at this instant, simple = false and double = true. At the next instant, the control
goes to the initial state Await.

This example illustrates an important feature of state machines in LUCID SYNCHRONE: only
one set of equations is executed during a reaction. Nonetheless, it is possible to combines (at most)
one strong transition followed by a weak transition and this is exactly what has been illustrated
above. As opposed to other formalisms such as the STATECHARTS [30] or the SYNCCHARTS [1],
it is impossible to cross an arbitrary number of states during a reaction leading to simpler design
and debugging.

2.11 Combining State Machines and Signals

Weak or strong transitions are not only made of boolean conditions, they can also test for the
presence of signals as it was done with the present construct. We illustrate it on a system with
two input signals low and high and an output stream o.

let node switch low high = o where
rec automaton
Init -> do o = O then Up(1)
| Up(u) —>
do o = last o + u
unless low(v) then Down(v)
| Down(v) ->
do o = last o - v
unless high(w) then Up(w)

end
val switch : ’a sig -> ’a sig => ’a
val switch :: ’a sig -> ’a sig -> ’a

The condition unless low(v) then Down(v) is read: “goes in the parameter state Down (v)
when the signal low is present and has the value v”. The construct do o = 0 then Up(1) is a
short-cut for do o = 0 until true then Up(1).

high 3 2
low 1 9 2 4
o o 1 2 1 0 -1 -2 -3 -4 -2 0 2

We can thus rewrite the specification of the mouse controller:
type e = Simple | Double

let node counting e = o where
rec o = if 7e then 1 -> pre o + 1 else 0 -> pre o

let node controller click top = e where

21

automaton
Await ->
do until click(_) then One
| One ->
do unless click(_) then Emit Double
unless (counting top = 4) then Emit Simple

| Emit(x) ->
do emit e = x then Await
end
val controller : ’a sig -> ’b sig => ’c sig
val controller :: ’a sig -> ’a sig -> ’a sig

Note that no value is computed in states Await and One. When writing emit o = x, the
programmer states that o is a signal and thus, does not have to be defined in every state (or to
implicitly complement its current value with last o). The signal o is only emitted in the state
Emit and is absent otherwise.

The join use of signals and data-types exhibits an extra property with respect to the use of
boolean to represent events: here, the output o has only three possible values (Simple, Double or
absent) whereas the boolean encoding give four values (with one meaningless).

2.12 Recursion and non Real-time Features

LuciD SYNCHRONE also provides a way to define recursive functions thus leading to possible
non real-time executions. Nonetheless, this feature can be turned-off through a compilation frag,
restricting the type system to only allow recursion on values with a statically bounded size.

A typical example of functional recursion is the sieve of Eratosthene as described in the seminal
paper of Kahn [32] whose synchronous version has been given in [12]. These programs are still
synchronous — parallel composition is the synchronous composition based on a global time scale
— and streams can be efficiently compiled into scalar variables. Functional recursion models the
dynamic creation of process and thus execution in bounded time and space is lost. Recursion can
also be used through a static argument (as this is typically done in hardware functional languages
such as LAvA [7]). In that case, the program executes in bounded time and memory. Nonetheless,
the current version of the compiler does not distinguishes them from the general case and they are
thus rejected when the compilation flag is on. Several examples of recursive functions are available
in the distribution [42].

2.13 Two Classical Examples

We end this presentation with two classical examples. The first one is an inverted pendulum
programmed in a purely dataflow style. The second one is a simple controller for a heater and
illustrates the combination of dataflow and automata.

2.13.1 The Inverted Pendulum

Consider an inverted pendulum with length [, its bottom part with coordinates (xg,yo) being
manually controlled. 6 is the angle of the pendulum. The physical low of the pendulum is given
in figure 8.

We first define a module Misc to build an integrator and derivative (*. stands for the floating
point multiplication).

(* module Misc *)
let node integr t x’ =

let rec x = 0.0 -> t *. x’ +. pre x in x
let node deriv t x = 0.0 -> (x -.(pre x))/. t

The main module is written:

22

1955 = (sin(0)(G + g)) — (cos(6))
x = xo + lsin(0)
y = yo + lcos(0)

Figure 8: The Inverted Pendulum

(* module Pendulum *)

let static dt = 0.05 (* step *)

let static 1 = 10.0 (* length *)

let static g = 9.81 (* acceleration *)

let node integr x’ = Misc.integr dt x’
let node deriv x = Misc.deriv dt x

(* the equation of the pendulum *)
let node equation x0’’ y0’’ = theta where
rec theta =
integr (integr ((sin thetap) *. (y0’’ +. g)
-. (cos thetap) *. x0’’) /. 1)
and thetap = 0.0 fby theta

let node position x0 y0 =
let x0’’ = deriv (deriv x0) in

let yO’’ = deriv (deriv y0) in

let theta = equation x0’’ y0’’ in

let x = x0 +. 1 *. (sin theta) in
let y = yO +. 1 *. (cos theta) in
Draw.make_pend x0 yO x y

let node main () =
let x0,y0 = Draw.mouse_pos () in
let p = Draw.position x0 yO in
Draw.clear_pendulum (p fby p);
Draw.draw_pendulum p;;

The dot notation Misc.integr denotes the function integr from the module Misc.

This example also illustrates the communication between LUCID SYNCHRONE and the host
language (here OCAML) in which auxiliary functions are written. Here, the module Draw exports
several functions (for example, make pend creates a pendulum, mouse_pos returns the current
position of the mouse).

2.13.2 A Heater

The second example is a controller for a gas heater depicted in figure 9.

The front of the heater has a green light indicating a normal functioning whereas a red light
indicates that some problem has occurred (security stop). In case or problem, the heater is stopped.
It can be restarted by pressing a restart button. Finally, it is possible to set the desired water
temperature.

The controller has the following inputs: the stream res is used to restart the heater; expected_temp
is the expected temperature; actual_temp is the actual water temperature; light_on indicates
that the gas is burning; dsecond is a boolean stream giving the base rate of the system. The

23

nok ———>

ok
/.‘ M%

Figure 9: The Heater

output of the controller are the following: open_light lights on the gas; open_gas opens the gas
valve; ok is true for a normal functioning whereas nok indicates a problem.

The purpose of the controller is to keep the water temperature close to the expected temper-
ature. When the water needs to be heated, the controller turns on the gas and light for at most
500 milliseconds. When the light is on, only the gas valve is maintained open. If there is no light
after 500 millisecond, it stops for 100 milliseconds and starts again. If after three tests there is
still no light, the heater is blocked on a security stop. Only pushing the res button restarts the
process.

let static low = 4

let static high = 4

let static delay_on = 500 (* in milliseconds *)
let static delay_off = 100

let node count d
rec ok = cpt =
and cpt = (d -> pre cpt - 1) mod d

let node edge x = false -> not (pre x) & x

The following node decides whether the heater must be turned on. To avoid oscillations, we
introduce an hysteresis mechanism . low and high are two threshold. The first version is purely
dataflow, the second, while equivalent uses the automaton construction.

let node heat expected_temp actual_temp = on_heat where
rec on_heat =
if actual_temp <= expected_temp - low then true
else if actual_temp >= expected_temp + high
then false
else false -> pre on_heat

let node heat expected_temp actual_temp = on_heat where
rec automaton
False ->

do on_heat = false
unless (actual_temp <= expected_temp - low)
then True

| True ->
do on_heat = true
unless (actual_temp >= expected_temp + high)
then False

end

Now, we define a node that turns on the light and gas for 500 millisecond then turn them off
for 100 milliseconds and restarts:

24

let node command dsecond = (open_light, open_gas) where
rec automaton
Open —->
do open_light = true
and open_gas = true
until (count delay_on dsecond) then Silent
| Silent ->
do open_light = false
and open_gas = false
until (count delay_off dsecond) then Open
end

The program that control the aperture of the light and gas is written below:

let node light dsecond on_heat light_on =
(open_light, open_gas, nok) where
rec automaton
Light_off ->
do nok = false
and open_light = false
and open_gas = false
until on_heat then Try
| Light_on ->
do nok = false
and open_light = false
and open_gas = true
until (not on_heat) then Light_off
| Try —>
do
(open_light, open_gas) = command dsecond
until light_on then Light_on
until (count 4 (edge (not open_light)))
then Failure
| Failure ->
do nok = true
and open_light = false
and open_gas = false
done
end

Finally, the main function connect the two components.

let node main
dsecond res expected_temp actual_temp light_on =
(open_light, open_gas, ok, nok) where
rec reset
on_heat = heat expected_temp actual_temp
and
(open_light, open_gas, nok) =
light dsecond on_heat light_on

and
ok = not nok
every res

In all the above examples, we only describe the reactive kernel of the application. From these
definitions, the LUCID SYNCHRONE compiler produces a transition function written in OCAML
which can in turned be linked to any other OCAML program.

25

3 Discussion

In this section we discuss related works and in particular the various embedding of circuit descrip-
tion languages or reactive languages inside general purpose functional languages. Then, we give
an historical perspective on LUCID SYNCHRONE and its use as a prototyping language for various
extension of the industrial tool SCADE.

3.1 Functional Reactive Programming and Circuit Description Lan-
guages

The interest of using a lazy functional language for describing synchronous circuits has been
identified in the early eighties by Mary Sheeran in pFP [45]. Since then, various languages or
libraries have been embedded inside the language HASKELL for describing circuits (HYDRA [40],
LAVA [7]), the architecture of processors (for example, HAWK [39]), reactive systems (FRAN [23],
FRP [49]). Functional languages dedicated to circuit description have also been proposed (for
example, JAazz [47], REFLECT [33]). Circuits and dynamical systems can be modeled directly
in HASKELL, using module defining basic operations (for example, registers, logical operations,
stream transformers) in a way very similar to what synchronous languages such as LUSTRE or
Lucip SYNCHRONE offer. The embedding of these domain specific languages inside HASKELL
benefits from the expressive power of the host language (typing, data and control structures).
The class mechanism of HASKELL [27] can also be used to easily change the representation of
streams in order to obtain the verification of a property, a simulation or a compilation. Multi-
stage [46] techniques are another way to describe a domain specific language. This approach
through an embedding inside a general purpose language is well adapted to circuit description
language where the compilation result is essentially a net-list of boolean operators and registers.
This is nonetheless limited when a compilation to software code is expected (as it is mainly the
case for SCADE/LUSTRE). Even if a net-list can be compiled into sequential code, the obtained
code is very inefficient due to code size increase. Moreover, when non length preserving functions
are considered, as is the case in FRAN or FRP, real-time (execution in bounded time and memory)
can not be statically guaranteed 8. These works do not provide a notion of clock, control structures
mixing dataflow systems and automata nor compilation techniques with dedicated type-systems.
The choice we have made in LUCID SYNCHRONE was to reject more programs in order to obtain
more guarantees at compile time (e.g., synchronous execution, absence of deadlocks). Moreover,
only software compilation has been considered in our work.

3.2 Lucid Synchrone as a Prototyping Language

The development of LUCID SYNCHRONE started around 1995 so as to serve as a laboratory for
experimenting various extensions of synchronous languages. The firsts works showed that it was
possible to define a functional extension of LUSTRE, combining the expressiveness of functional
programming using lazy lists, with the synchronous efficiency [11]. The clock calculus was de-
fined as a dependent type system and generalized to higher-order [12]. The next question was to
understand how to extend compilation techniques. This was answered by using co-algebraic tech-
niques to formalize and to generalize the techniques already used to compile SCADE [13]. These
results combined together lead to the first implementation of a compiler (V1) and had important
practical consequences. Indeed, the definition of the clock calculus as a type system is the key
to clock inference, which makes them much easier to use. The introduction of polymorphism is
an important aspect of code reusability [15]. Automatic inference mechanisms are essential in a
graphical tool like SCADE, in which programs are mainly drawn. They can also be found, but
hidden, in tools like SIMULINK [10].

A partnership started during year 2000 with the SCADE development team at ESTEREL-
TECHNOLOGIES (TELELOGIC at the time), to write a new SCADE compiler. This compiler, RELUC

8Consider, for example, the program in figure 5.

26

(for Retargetable Lustre Compiler), uses the results already applied in LUCID SYNCHRONE, the
clock calculus through typing, as well as new constructions of the language.

The basis of the language being there, work then turned to the design of modular type-based
analysis: causality loops analysis [22] and initialization analysis [18, 20]. The initialization analysis
has been developed in collaboration with Jean-Louis Colago at ESTEREL-TECHNOLOGIES and used
at the same time in the LUCID SYNCHRONE compiler and the RELUC compiler. On real-size
examples (more than 50000 lines of codes), it proved to be really fast and precise, reducing the
number of wrong alarms. Work on the clock calculus also continued. As it was expressed as a
dependent type system, it was natural to embed it in the CoqQ [21] proof assistant, thus getting
both a correction proof [8] and some introspection on the semantics of the language. By looking at
SCADE designs, we observed that this calculus could be also turned into an ML-like type system
basing it on the Laiifer & Odersky extension [34]. Although less expressive than the dependent
type one, it is expressive enough in practice and can be implemented much more efficiently [19].
It is used in the current version of the compiler (V3) and replace the dependent-type based clock
calculus of RELUC. At the same time, several language extensions were also studied: a modular
reinitialization construct [29], the addition of sum types, and a pattern matching operation [28].
These works show the interest of the clock mechanism of synchronous languages, present since
the beginning in both LUSTRE and SIGNAL. Clocks provide a simple and precise semantics for
control structures that can be translated into the code language, thus reusing the existing code
generator. This work was pursued in collaboration with ESTEREL-TECHNOLOGIES and leaded
to the proposition of an extension of LUSTRE with hierarchical automata [17, 16] in the spirit of
the Mode-automata of Maraninchi and Rémond [37]. This extension is also based on the clock
mechanism and automata are translated into the core language. This extension is implemented
in Lucid SYNCHRONE (V3) and in the RELUC compiler at ESTEREL-TECHNOLOGIES. All these
developments are integrated in SCADE 6, the next release of SCADE.

4 Conclusion

This paper has presented the actual development of LucID SYNCHRONE. Based on the synchronous
model of LUSTRE but reformulated in the framework of typed functional languages, it offers higher-
order features, automatic type and clock inference and the ability to describe, in a uniform way,
data and control dominated systems.

The LuciD SYNCHRONE experiment illustrates the various extensions that can be done in
the field of synchronous languages to increase their expressive power and safety while retaining
their basic properties for describing real-time systems. Two natural directions can be drawn from
this work. Onme is about the link with formal verification and proof systems (such as CoQ) with
certified compilation and proof of programs in mind. The other concerns the integration of some
of the principles of synchronous programming as a general model of concurrency (not limited to
real-time) inside a general purpose language.

5 Acknowledgment

The work on LUCID SYNCHRONE has been mainly developed at the Université Pierre et Marie
Curie and greatly benefited from discussions with Thérese Hardin. It is also the result of a long
collaboration with Jean-Louis Colago from ESTEREL-TECHNOLOGIES. We thank them warmly.

References
[1] Charles André. Representation and Analysis of Reactive Behaviors: A Syn-

chronous Approach. In CESA, Lille, july 1996. IEEE-SMC. Available at:
www-mips.unice.fr/~andre/synccharts.html.

27

2]

3]

E. A. Ashcroft and W. W. Wadge. Lucid, the data-flow programming language. A.P.I1.C.
Studies in Data Processing, Academic Press, 1985.

A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The
synchronous languages 12 years later. Proceedings of the IEEE, 91(1), January 2003.

A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous programming with events
and relations: the SIGNAL language and its semantics. Science of Computer Programming,
16:103-149, 1991.

G. Berry and G. Gonthier. The Esterel synchronous programming language, design, seman-
tics, implementation. Science of Computer Programming, 19(2):87-152, 1992.

Gérard Berry. The esterel v5 language primer, version 5.21 release 2.0. Draft book, 1999.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware Design in
Haskell. In International Conference on Functional Programming (ICFP). ACM, 1998.

Sylvain Boulmé and Grégoire Hamon. Certifying Synchrony for Free. In International Confer-
ence on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), volume 2250,
La Havana, Cuba, December 2001. Lecture Notes in Artificial Intelligence, Springer-Verlag.
Short version of A clocked denotational semantics for Lucid-Synchrone in Cogq, available as a
Technical Report (LIP6), at www.lri.fr/~pouzet.

P. Caspi. Clocks in dataflow languages. Theoretical Computer Science, 94:125-140, 1992.

P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating Discrete-Time
Simulink to Lustre. ACM Transactions on Embedded Computing Systems, 2005. Special
Issue on Embedded Software.

Paul Caspi and Marc Pouzet. A Functional Extension to Lustre. In M. A. Orgun and
E. A. Ashcroft, editors, International Symposium on Languages for Intentional Programming,
Sydney, Australia, May 1995. World Scientific.

Paul Caspi and Marc Pouzet. Synchronous Kahn Networks. In ACM SIGPLAN International
Conference on Functional Programming, Philadelphia, Pensylvania, May 1996.

Paul Caspi and Marc Pouzet. A Co-iterative Characterization of Synchronous Stream Func-
tions. In Coalgebraic Methods in Computer Science (CMCS’98), Electronic Notes in Theoret-
ical Computer Science, March 1998. Extended version available as a VERIMAG tech. report
no. 97-07 at www.lri.fr/~pouzet.

Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and
Marc Pouzet. N-Synchronous Kahn Networks: a Relaxed Model of Synchrony for Real-
Time Systems. In ACM International Conference on Principles of Programming Languages
(POPL’06), Charleston, South Carolina, USA, January 2006.

Jean-Louis Colago, Alain Girault, Grégoire Hamon, and Marc Pouzet. Towards a Higher-order
Synchronous Data-flow Language. In ACM Fourth International Conference on Embedded
Software (EMSOFT’04), Pisa, Ttaly, september 2004.

Jean-Louis Colago, Grégoire Hamon, and Marc Pouzet. Mixing Signals and Modes in Syn-
chronous Data-flow Systems. In ACM International Conference on Embedded Software (EM-
SOFT’06), Seoul, South Korea, October 2006.

Jean-Louis Colago, Bruno Pagano, and Marc Pouzet. A Conservative Extension of Syn-
chronous Data-flow with State Machines. In ACM International Conference on Embedded
Software (EMSOFT’05), Jersey city, New Jersey, USA, September 2005.

28

[18]

[19]

[25]

[26]

Jean-Louis Colago and Marc Pouzet. Type-based Initialization Analysis of a Synchronous
Data-flow Language. In Synchronous Languages, Applications, and Programming, volume 65.
Electronic Notes in Theoretical Computer Science, 2002.

Jean-Louis Colago and Marc Pouzet. Clocks as First Class Abstract Types. In Third Interna-
tional Conference on Embedded Software (EMSOFT’03), Philadelphia, Pennsylvania, USA,
october 2003.

Jean-Louis Colago and Marc Pouzet. Type-based Initialization Analysis of a Synchronous
Data-flow Language. International Journal on Software Tools for Technology Transfer
(STTT), 6(3):245-255, August 2004.

The coq proof assistant, 2007. http://coq.inria.fr.

Pascal Cuoq and Marc Pouzet. Modular Causality in a Synchronous Stream Language. In
European Symposium on Programming (ESOP’01), Genova, Italy, April 2001.

Conal Elliott. An embedded modeling language approach to interactive 3d and multimedia
animation. IEEE Transactions on Software Engineering, 25(3):291-308, May-June 1999.

Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of the 23rd ACM Symposium on Principles of Programming
Languages, pages 372—-385, St. Petersburg Beach, Florida, January 21-24 1996. ACM.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming
language LUSTRE. Proceedings of the IEEFE, 79(9):1305-1320, September 1991.

N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code from data-flow pro-
grams. In Third International Symposium on Programming Language Implementation and
Logic Programming, Passau (Germany), August 1991.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type
classes in haskell. ACM Trans. Program. Lang. Syst., 18(2):109-138, 1996.

Grégoire Hamon. Synchronous Data-flow Pattern Matching. In Synchronous Languages,
Applications, and Programming. Electronic Notes in Theoretical Computer Science, 2004.

Grégoire Hamon and Marc Pouzet. Modular Resetting of Synchronous Data-flow Programs. In
ACM International conference on Principles of Declarative Programming (PPDP’00), Mon-
treal, Canada, September 2000.

D. Harel. StateCharts: a Visual Approach to Complex Systems. Science of Computer Pro-
gramming, 8-3:231-275, 1987.

David Harel and Amir Pnueli. On the development of reactive systems. In Logic and Models
of Concurrent Systems, volume 13 of NATO ASI Series, pages 477-498. Springer Verlag,
1985.

Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP 74
Congress. North Holland, Amsterdam, 1974.

Sava Krstic and John Matthews. Semantics of the reFLect Language. In PPDP. ACM, 2004.

Konstantin Laufer and Martin Odersky. An extension of ML with first-class abstract types.
In ACM SIGPLAN Workshop on ML and its Applications, San Francisco, California, pages
78-91, June 1992.

Xavier Leroy. The Objective Caml system release 3.10. Documentation and user’s manual.
Technical report, INRIA, 2007.

29

[36]

[37]

[38]

[39]

[40]

[41]
[42]

Luc Maranget. Les avertissements du filtrage. In Actes des Journées Francophones des
Langages Applicatifs. Inria éditions, 2003.

F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific construct for the
development of safe critical systems. Science of Computer Programming, (46):219-254, 2003.

The Mathworks. Stateflow and Stateflow Coder, User’s Guide, release 13spl edition, Septem-
ber 2003.

J. Matthews, J. Launchbury, and B. Cook. Specifying microprocessors in hawk. In Interna-
tional Conference on Computer Languages. IEEE, 1998.

John O’Donnell. From transistors to computer architecture: Teaching functional circuit
specification in hydra. In Springer-Verlag, editor, Functional Programming Languages in
Education, pages 195-214, 1995.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

Marc Pouzet. Lucid Synchrone, version 3. Tutorial and reference manual. Université Paris-
Sud, LRI, April 2006. Distribution available at: www.lri.fr/~pouzet/lucid-synchrone.

P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive systems.
In 19th IEEFE Real-Time Systems Symposium, Madrid, Spain, December 1998.

SCADE. http://www.esterel-technologies.com/scade/, 2007.

Mary Sheeran. mufp, a language for vlsi design. In ACM Conference on LISP and Functional
Programming, pages 104112, Austin, Texas, 1984.

Walid Taha. Multi-stage programming: Its theory and applications. Technical Report CSE-
99-TH-002, Oregon Graduate Institute of Science and Technology, November 1999.

Jean Vuillemin. On Circuits and Numbers. Technical report, Digital, Paris Research Labo-
ratory, 1993.

P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Computer
Science, 73:231-248, 1990.

Zhanyong Wan and Paul Hudak. Functional reactive programming from first principles. In
International Conference on Programming Language, Design and Implementation (PLDI),

2000.

30

	Introduction
	Programming Reactive Systems
	The Synchronous Languages
	Model Based Design
	Converging Needs

	Lucid Synchrone

	Lucid Synchrone
	An ML Dataflow Language
	Infinite Streams as Basic Objects
	Temporal Operations: Delay and Initialization

	Stream Functions
	Multi-sampled Systems
	The Sampling Operator when
	The Combination Operator merge
	Oversampling
	Clock Constraints and Synchrony

	Static Values
	Higher-order Features
	Datatypes and Pattern Matching
	A Programming Construct to Share the Memory
	Signals and Signal Patterns
	Signals as Clock Abstractions
	Testing Presence and Pattern Matching over Signals

	State Machines and Mixed Designs
	Weak and Strong Preemption
	ABRO and Modular Reset
	Local Definitions to a State
	Communication between States and Shared Memory
	Resume or Reset a State

	Parameterized State Machines
	Combining State Machines and Signals
	Recursion and non Real-time Features
	Two Classical Examples
	The Inverted Pendulum
	A Heater

	Discussion
	Functional Reactive Programming and Circuit Description Languages
	Lucid Synchrone as a Prototyping Language

	Conclusion
	Acknowledgment

