
Learning Theory from First Principles

May 26, 2025

Francis Bach

francis.bach@inria.fr

Copyright in this Work has been licensed exclusively to The MIT Press,
http://mitpress.mit.edu, which will be releasing the final version to the public in
2024. All inquiries regarding rights should be addressed to The MIT Press, Rights and
Permissions Department.

francis.bach@inria.fr
http://mitpress.mit.edu




Contents

Preface xi

I Preliminaries 1

1 Mathematical Preliminaries 3
1.1 Linear Algebra and Differentiable Calculus . . . . . . . . . . . . . . . . . 3

1.1.1 Minimization of Quadratic Forms . . . . . . . . . . . . . . . . . . . 3
1.1.2 Inverting a 2× 2 Matrix . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Inverting Matrices Defined by Blocks, Matrix Inversion Lemma . . 4
1.1.4 Eigenvalue and Singular Value Decomposition . . . . . . . . . . . . 6
1.1.5 Differential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Concentration Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Hoeffding’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 McDiarmid’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Bernstein’s Inequality (�) . . . . . . . . . . . . . . . . . . . . . . 14
1.2.4 Expectation of the Maximum . . . . . . . . . . . . . . . . . . . . . 16
1.2.5 Estimation of Expectations through Quadrature (��) . . . . . . . 18
1.2.6 Concentration Inequalities for Random Matrices (��) . . . . . . . 19

2 Introduction to Supervised Learning 21
2.1 From Training Data to Predictions . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Supervised Learning Problems and Loss Functions . . . . . . . . . 25
2.2.2 Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Bayes Risk and Bayes Predictor . . . . . . . . . . . . . . . . . . . . 28

2.3 Learning from Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Local Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Empirical Risk Minimization . . . . . . . . . . . . . . . . . . . . . 32

2.4 Statistical Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



iv CONTENTS

2.4.1 Measures of Performance . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Notions of Consistency over Classes of Problems . . . . . . . . . . 36

2.5 “No Free Lunch” Theorems (�) . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Quest for Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Beyond Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 Summary–Book Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Linear Least-Squares Regression 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Least-Squares Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Ordinary Least-Squares Estimator . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Closed-Form Solution . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.3 Numerical Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Statistical Analysis of Ordinary Least-Squares . . . . . . . . . . . . . . . . 49
3.5 Fixed Design Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Statistical Properties of the OLS Estimator . . . . . . . . . . . . . 52
3.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Ridge Least-Squares Regression . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Lower Bound (�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8 Random Design Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8.1 Gaussian Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8.2 General Designs (��) . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Principal Component Analysis (�) . . . . . . . . . . . . . . . . . . . . . . 66
3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

II Generalization Bounds for Learning Algorithms 69

4 Empirical Risk Minimization 71
4.1 Convexification of the Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Convex Surrogates . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.2 Geometric Interpretation of the Support Vector Machine (�) . . . 74
4.1.3 Conditional Φ-risk and Classification Calibration (�) . . . . . . . . 76
4.1.4 Relation between Risk and Φ-risk (��) . . . . . . . . . . . . . . . 79

4.2 Risk Minimization Decomposition . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Approximation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Estimation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Application of McDiarmid’s Inequality . . . . . . . . . . . . . . . . 86
4.4.2 Easy Case I: Quadratic Functions . . . . . . . . . . . . . . . . . . . 87
4.4.3 Easy Case II: Finite Number of Models . . . . . . . . . . . . . . . 88
4.4.4 Beyond Finitely Many Models through Covering Numbers (�) . . 89

4.5 Rademacher Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.1 Symmetrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



CONTENTS v

4.5.2 Lipschitz-Continuous Losses . . . . . . . . . . . . . . . . . . . . . . 94
4.5.3 Ball-Constrained Linear Predictions . . . . . . . . . . . . . . . . . 96
4.5.4 Putting Things Together (Linear Predictions) . . . . . . . . . . . . 97
4.5.5 From Constrained to Regularized Estimation (�) . . . . . . . . . 98
4.5.6 Extensions and Improvements . . . . . . . . . . . . . . . . . . . . . 102

4.6 Model Selection (�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6.1 Structural Risk Minimization (�) . . . . . . . . . . . . . . . . . . . 104
4.6.2 Selection Based on Validation Set (�) . . . . . . . . . . . . . . . . 104

4.7 Relation with Asymptotic Statistics (�) . . . . . . . . . . . . . . . . . . . 105
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Optimization for Machine Learning 109
5.1 Optimization in Machine Learning . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Simplest Analysis: Ordinary Least-Squares . . . . . . . . . . . . . 112
5.2.2 Convex Functions and Their Properties . . . . . . . . . . . . . . . 116
5.2.3 Analysis of Gradient Descent for Strongly Convex and Smooth

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.4 Analysis of Gradient Descent for Convex and Smooth Functions (�) 124
5.2.5 Beyond Gradient Descent (�) . . . . . . . . . . . . . . . . . . . . 126
5.2.6 Nonconvex Objective Functions (�) . . . . . . . . . . . . . . . . . 129

5.3 Gradient Methods on Nonsmooth Problems . . . . . . . . . . . . . . . . . 130
5.4 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.1 Strongly Convex Problems (�) . . . . . . . . . . . . . . . . . . . . 139
5.4.2 Adaptive Methods (�) . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.4.3 Bias-Variance Trade-offs for Least-Squares (�) . . . . . . . . . . . 143
5.4.4 Variance Reduction (�) . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6 Local Averaging Methods 155
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 Local Averaging Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.1 Linear Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2.2 Partition Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.3 Nearest-Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2.4 Nadaraya-Watson Estimator (aka Kernel Regression) (�) . . . . . 162

6.3 Generic Simplest Consistency Analysis . . . . . . . . . . . . . . . . . . . . 163
6.3.1 Fixed Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3.2 k-nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3.3 Kernel Regression (Nadaraya-Watson) (�) . . . . . . . . . . . . . 170

6.4 Universal Consistency (�) . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.5 Adaptivity (��) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



vi CONTENTS

7 Kernel Methods 179
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2 Representer Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.3 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.3.1 Linear and Polynomial Kernels . . . . . . . . . . . . . . . . . . . . 186
7.3.2 Translation-Invariant Kernels on [0, 1] . . . . . . . . . . . . . . . . 187
7.3.3 Translation-Invariant Kernels on Rd . . . . . . . . . . . . . . . . . 191
7.3.4 Beyond Vectorial Input Spaces (�) . . . . . . . . . . . . . . . . . . 194

7.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.4.1 Representer Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.4.2 Column Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.4.3 Random Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.4.4 Dual Algorithms (�) . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.4.5 Stochastic Gradient Descent (�) . . . . . . . . . . . . . . . . . . . 200
7.4.6 Kernelization of Linear Algorithms . . . . . . . . . . . . . . . . . . 201

7.5 Generalization Guarantees–Lipschitz-continuous Losses . . . . . . . . . . . 202
7.5.1 Risk Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.5.2 Approximation Error for Translation-Invariant Kernels on R

d . . . 205
7.6 Theoretical Analysis of Ridge Regression (�) . . . . . . . . . . . . . . . . 208

7.6.1 Kernel Ridge Regression as a Linear Estimator . . . . . . . . . . . 208
7.6.2 Bias and Variance Decomposition (�) . . . . . . . . . . . . . . . . 209
7.6.3 Relating Empirical and Population Covariance Operators . . . . . 212
7.6.4 Analysis for Well-Specified Problems (�) . . . . . . . . . . . . . . . 214
7.6.5 Analysis beyond Well-Specified Problems (�) . . . . . . . . . . . . 216
7.6.6 Balancing Bias and Variance (�) . . . . . . . . . . . . . . . . . . . 217

7.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8 Sparse Methods 221
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.1.1 Dedicated Proof Technique for Constrained Least-Squares . . . . . 223
8.1.2 Probabilistic and Combinatorial Lemmas . . . . . . . . . . . . . . 224

8.2 Variable Selection by the ℓ0-penalty . . . . . . . . . . . . . . . . . . . . . 226
8.2.1 Assuming That k Is Known . . . . . . . . . . . . . . . . . . . . . . 226
8.2.2 Sparsity-Adaptive Estimation (Unknown k) (�) . . . . . . . . . . . 228

8.3 Variable Selection by ℓ1-regularization . . . . . . . . . . . . . . . . . . . . 231
8.3.1 Intuition and Algorithms . . . . . . . . . . . . . . . . . . . . . . . 231
8.3.2 Slow Rates–Random Design . . . . . . . . . . . . . . . . . . . . . . 234
8.3.3 Slow Rates–Fixed Design (Square Loss) . . . . . . . . . . . . . . . 236
8.3.4 Fast Rates–Fixed Design (�) . . . . . . . . . . . . . . . . . . . . . 238
8.3.5 Zoo of Conditions (��) . . . . . . . . . . . . . . . . . . . . . . . . 239
8.3.6 Fast Rates–Random Design (�) . . . . . . . . . . . . . . . . . . . . 241

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243



CONTENTS vii

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

9 Neural Networks 247
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
9.2 Single Hidden-Layer Neural Network . . . . . . . . . . . . . . . . . . . . . 249

9.2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9.2.2 Rectified Linear Units and Homogeneity . . . . . . . . . . . . . . . 253
9.2.3 Estimation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

9.3 Approximation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
9.3.1 Universal Approximation Property in One Dimension . . . . . . . 256
9.3.2 Infinitely Many Neurons and the Variation Norm . . . . . . . . . . 257
9.3.3 Variation Norm in One Dimension . . . . . . . . . . . . . . . . . . 260
9.3.4 Variation Norm in an Arbitrary Dimension . . . . . . . . . . . . . 263
9.3.5 Precise Approximation Properties . . . . . . . . . . . . . . . . . . 265
9.3.6 From the Variation Norm to a Finite Number of Neurons (�) . . . 266

9.4 Generalization Performance for Neural Networks . . . . . . . . . . . . . . 269
9.5 Relationship with Kernel Methods (�) . . . . . . . . . . . . . . . . . . . . 271

9.5.1 From a Banach Space F1 to a Hilbert Space F2 (�) . . . . . . . . . 271
9.5.2 Kernel Function (��) . . . . . . . . . . . . . . . . . . . . . . . . . 273
9.5.3 Upper Bound on RKHS Norm (��) . . . . . . . . . . . . . . . . . 275

9.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
9.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

III Special Topics 281

10 Ensemble Learning 283
10.1 Averaging/Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

10.1.1 Independent Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 284
10.1.2 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

10.2 Random Projections and Averaging . . . . . . . . . . . . . . . . . . . . . 288
10.2.1 Gaussian Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
10.2.2 Random Projections . . . . . . . . . . . . . . . . . . . . . . . . . . 292

10.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
10.3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
10.3.2 Incremental Learning . . . . . . . . . . . . . . . . . . . . . . . . . 301
10.3.3 Matching Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
10.3.4 Adaboost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
10.3.5 Greedy Algorithm Based on Gradient Boosting . . . . . . . . . . . 304
10.3.6 Convergence of Expected Risk . . . . . . . . . . . . . . . . . . . . 308
10.3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311



viii CONTENTS

11 From Online Learning to Bandits 313
11.1 First-Order Online Convex Optimization . . . . . . . . . . . . . . . . . . . 315

11.1.1 Convex Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
11.1.2 Strongly Convex Case (�) . . . . . . . . . . . . . . . . . . . . . . 318
11.1.3 Online Mirror Descent (�) . . . . . . . . . . . . . . . . . . . . . . . 319
11.1.4 Lower Bounds (��) . . . . . . . . . . . . . . . . . . . . . . . . . . 321

11.2 Zeroth-Order Convex Optimization . . . . . . . . . . . . . . . . . . . . . . 323
11.2.1 Smooth Stochastic Gradient Descent . . . . . . . . . . . . . . . . . 325
11.2.2 Stochastic Smoothing (�) . . . . . . . . . . . . . . . . . . . . . . . 328
11.2.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

11.3 Multiarmed Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
11.3.1 Need for an Exploration-Exploitation Trade-off . . . . . . . . . . . 333
11.3.2 “Explore-Then-Commit” . . . . . . . . . . . . . . . . . . . . . . . . 333
11.3.3 Optimism in the Face of Uncertainty (�) . . . . . . . . . . . . . . 336
11.3.4 Adversarial Bandits (�) . . . . . . . . . . . . . . . . . . . . . . . . 339

11.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

12 Overparameterized Models 343
12.1 Implicit Bias of Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 344

12.1.1 Least-Squares Regression . . . . . . . . . . . . . . . . . . . . . . . 344
12.1.2 Separable Classification . . . . . . . . . . . . . . . . . . . . . . . . 346
12.1.3 Beyond Convex Problems (�) . . . . . . . . . . . . . . . . . . . . . 351
12.1.4 Remarks on Implicit Bias . . . . . . . . . . . . . . . . . . . . . . . 354

12.2 Double Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
12.2.1 The Double Descent Phenomenon . . . . . . . . . . . . . . . . . . 355
12.2.2 Empirical Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
12.2.3 Linear Regression with Gaussian Inputs . . . . . . . . . . . . . . . 358
12.2.4 Linear Regression with Gaussian Projections (��) . . . . . . . . . 360

12.3 Global Convergence of Gradient Descent . . . . . . . . . . . . . . . . . . . 365
12.3.1 Mean Field Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
12.3.2 From Linear Networks to Positive-Definite Matrices . . . . . . . . 370
12.3.3 Global Convergence for Positive-Definite Matrices . . . . . . . . . 370
12.3.4 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

12.4 Lazy Regime and Neural Tangent Kernels (�) . . . . . . . . . . . . . . . . 375
12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

13 Structured Prediction 379
13.1 Multicategory Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 380

13.1.1 Extension of Classical Convex Surrogates . . . . . . . . . . . . . . 380
13.1.2 Generalization Bound I: Stochastic Gradient Descent . . . . . . . . 383
13.1.3 Generalization Bound II: Rademacher Complexities (�) . . . . . . 384

13.2 General Setup and Examples . . . . . . . . . . . . . . . . . . . . . . . . . 387
13.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
13.2.2 Structure Encoding Loss Functions . . . . . . . . . . . . . . . . . . 390



CONTENTS ix

13.3 Surrogate Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
13.3.1 Score Functions and Decoding Step . . . . . . . . . . . . . . . . . . 392
13.3.2 Fisher Consistency and Calibration Functions . . . . . . . . . . . . 392
13.3.3 Main Surrogate Frameworks . . . . . . . . . . . . . . . . . . . . . . 393

13.4 Smooth/Quadratic Surrogates . . . . . . . . . . . . . . . . . . . . . . . . . 393
13.4.1 Quadratic Surrogate . . . . . . . . . . . . . . . . . . . . . . . . . . 393
13.4.2 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . 394
13.4.3 Linear Estimators and Decoding Steps . . . . . . . . . . . . . . . . 395
13.4.4 Smooth Surrogates (�) . . . . . . . . . . . . . . . . . . . . . . . . . 396

13.5 Max-Margin Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
13.5.1 Structured Support Vector Machines . . . . . . . . . . . . . . . . . 399
13.5.2 Max-Min Formulations (��) . . . . . . . . . . . . . . . . . . . . . 399

13.6 Generalization Bounds (�) . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
13.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

13.7.1 Robust Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
13.7.2 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

13.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

14 Probabilistic Methods 409
14.1 From Empirical Risks to Log-Likelihoods . . . . . . . . . . . . . . . . . . 409

14.1.1 Conditional Likelihoods . . . . . . . . . . . . . . . . . . . . . . . . 411
14.1.2 Classical Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
14.1.3 Sparse Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
14.1.4 On the Relationship between MAP and MMSE (�) . . . . . . . . . 413

14.2 Discriminative versus Generative Models . . . . . . . . . . . . . . . . . . . 417
14.2.1 Linear Discriminant Analysis and Softmax Regression . . . . . . . 417
14.2.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
14.2.3 Maximum Likelihood Estimations . . . . . . . . . . . . . . . . . . 419

14.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
14.3.1 Computational Handling of Posterior Distributions . . . . . . . . . 421
14.3.2 Model Selection through Marginal Likelihood . . . . . . . . . . . . 422

14.4 PAC-Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
14.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
14.4.2 Uniformly Bounded Loss Functions . . . . . . . . . . . . . . . . . . 424

14.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

15 Lower Bounds 427
15.1 Statistical Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

15.1.1 Minimax Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . 428
15.1.2 Reduction to a Hypothesis Test . . . . . . . . . . . . . . . . . . . . 429
15.1.3 Review of Information Theory . . . . . . . . . . . . . . . . . . . . 431
15.1.4 Lower Bound on Hypothesis Testing Based on Information Theory 434
15.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
15.1.6 Minimax Lower Bounds through Bayesian Analysis . . . . . . . . . 438



x CONTENTS

15.2 Optimization Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 441
15.2.1 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 441
15.2.2 Nonconvex Optimization (�) . . . . . . . . . . . . . . . . . . . . . 443

15.3 Lower Bounds for Stochastic Gradient Descent (�) . . . . . . . . . . . . . 447
15.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Conclusion 451

References 453



Preface

Why study learning theory? Data have become ubiquitous in science, engineering,
industry, and personal life, leading to the need for automated processing. Machine learn-
ing is concerned with making predictions from training examples and is used in all of
these areas, in small and large problems, with a variety of learning models, ranging from
simple linear models to deep neural networks. It has now become an important part of
the algorithmic toolbox.

How can we make sense of these practical successes? Can we extract a few principles
to understand current learning methods and guide the design of new techniques for new
applications or to adapt to new computational environments? This is precisely the goal of
learning theory. Beyond being already mathematically rich and interesting (as it imports
from many mathematical fields), most behaviors seen in practice can, in principle, be un-
derstood with sufficient effort and idealizations. In return, once understood, appropriate
modifications can be made to obtain even greater success.

Why read this book? The goal of this textbook is to present old and recent results
in learning theory for the most widely used learning architectures. Doing so, a few prin-
ciples are laid out to understand the overfitting and underfitting phenomena, as well
as a systematic exposition of the three types of components in their analysis, estima-
tion, approximation, and optimization errors. Moreover, the goal is not only to show
that learning methods can learn given sufficient amounts of data but also to understand
how quickly (or slowly) they learn, with a particular eye toward adaptivity to specific
structures that make learning faster (such as smoothness of the prediction functions or
dependence on low-dimensional subspaces).

This book is geared toward theory-oriented students, as well as students who want
to acquire a basic mathematical understanding of algorithms used throughout machine
learning and associated fields that are significant users of learning methods (such as
computer vision and natural language processing). Moreover, it is well suited to students
and researchers coming from other areas of applied mathematics or computer science
who want to learn about the theory behind machine learning. Finally, since many simple
proofs have been put together, it can serve as a reference for researchers in theoretical
machine learning.

xi



xii PREFACE

A particular effort will be made to prove many results from first principles while
keeping the exposition as simple as possible. This will naturally lead to a choice of key re-
sults showcasing the essential concepts in learning theory in simple but relevant instances.
A few general results will also be presented without proof. Of course, the concept of first
principles is subjective, and I will assume the readers have a good knowledge of linear
algebra, probability theory, and differential calculus.

Moreover, I will focus on the part of learning theory that deals with algorithms that
can be run in practice, and thus, all algorithmic frameworks described in this book
are routinely used. Since many modern learning methods are based on optimization,
chapter 5 is dedicated to that topic. For most learning methods, some simple illustrative
experiments are presented, with accompanying code (MATLAB and Python for the
moment, and Julia in the future) so students can see for themselves that the algorithms are
simple and effective in synthetic experiments. Exercises currently come without solutions
and are meant to help students understand the related material.

Finally, the third part of the book provides an in-depth discussion of modern special
topics such as online learning, ensemble learning, structured prediction, and overparam-
eterized models.

Note that this is not an introductory textbook on machine learning. There are al-
ready several good ones in several languages (see, e.g., Alpaydin, 2020; Lindholm et al.,
2022; Azencott, 2019; Alpaydin, 2022). This textbook focuses on learning theory–that is,
deriving mathematical guarantees for the most widely used learning algorithms and char-
acterizing what makes a particular algorithmic framework successful. In particular, given
that many modern methods are based on optimization algorithms, we put a significant
emphasis on gradient-based methods and their relation with machine learning.

A key goal of the book is to look at the simplest results to make them easier to
understand, rather than focusing on material that is more advanced but potentially too
hard at first and that provides only marginally better understanding. Throughout the
book, we propose references to more modern work that goes deeper.

Book organization. The book comprises three main parts: an introduction, a core
part, and special topics. Readers are encouraged to read the first two parts to understand
the main concepts fully and can pick and choose among the special topic chapters in a
second reading or if used in a two-semester class.

All chapters start with a summary of the main concepts and results that will be cov-
ered. All the simulation experiments are available at https://www.di.ens.fr/~fbach/ltfp/
as MATLAB and Python code. Many exercises are proposed and are embedded in the
text with dedicated paragraphs, with a few mentioned within the text (e.g., as “proof left
as an exercise”). These exercises are meant to deepen the understanding of the nearby
material, by proposing extensions or applications.

Sections or more advanced exercises are denoted by �, ��, or ���, with the number
of diamonds denoting the level of complexity. Comments or suggestions are most welcome
and should be sent to francis.bach@inria.fr.

https://www.di.ens.fr/~fbach/ltfp/
francis.bach@inria.fr


PREFACE xiii

Many topics are not covered at all, and many others are not covered in depth. There
are many good textbooks on learning theory that go deeper or wider (e.g., Christmann
and Steinwart, 2008; Koltchinskii, 2011; Mohri et al., 2018; Shalev-Shwartz and Ben-
David, 2014). See also the nice notes from Alexander Rakhlin and Karthik Sridharan,1

as well as from Michael Wolf.2

In particular, the book focuses primarily on real-valued prediction functions, as it
has become the de facto standard for modern machine learning techniques, even when
predicting discrete-valued outputs. Thus, although its historical importance and influ-
ence are crucial, I choose not to present the Vapnik-Chervonenkis dimension (see, e.g.,
Vapnik and Chervonenkis, 2015), and instead base my generic bounds on Rademacher
complexities. This focus on real-valued prediction functions makes least-squares regres-
sion a central part of the theory, which is well appreciated by students. Moreover, this
allows for drawing links with the related statistical literature.

Some areas, such as online learning or probabilistic methods, are described in a single
chapter to draw links with the classical theory and encourage readers to learn more about
them through dedicated books. I have also included chapter 12 on overparameterized
models and chapter 13 on structured prediction, which present modern topics in machine
learning. More generally, the goal in the third part of the book (special topics) was, for
each chapter, to introduce new concepts, while remaining a few steps away from the core
material and using unified notations.

A book is always a work in progress. In particular, there are still typos and almost
surely places where more details are needed; readers are most welcome to report them to
me (and then get credit for it). I am convinced that more straightforward mathematical
arguments are possible in many places in the book. Please let me know if you have any
elegant and simple ideas I have overlooked.

Mathematical notations. Throughout the textbook, I provide unified notations:

• Random variables: given a set X, we will use the lowercase notation for a random
variable with values in X, as well as for its observations. Probability distributions
will be denoted µ or p and expectations as E[f(x)] =

∫
X
f(x)dp(x). This is slightly

ambiguous but will not cause major problems (and is standard in research papers).
In this book, following most of the learning theory literature, we will gloss over mea-
surability issues to avoid overformalizations. For a detailed treatment, see Devroye
et al. (1996) and Christmann and Steinwart (2008).

• Norms on Rd: we will consider the usual ℓp-norms on Rd, defined through ‖x‖pp =∑d
i=1 |xi|p for p ∈ [1,∞), with ‖x‖∞ = maxi∈{1,...,d} |xi|.

• For a symmetric matrix A ∈ Rn×n, A < 0 means that A is positive semidefinite (i.e.,
all of its eigenvalues are nonnegative), and for two symmetric matrices A and B,
A < B means that A−B < 0. For a vector λ ∈ Rn, Diag(λ) is the diagonal matrix
with diagonal vector λ.

1http://www.mit.edu/~rakhlin/notes.html.
2https://mediatum.ub.tum.de/doc/1723378/1723378.pdf.

http://www.mit.edu/~rakhlin/notes.html
https://mediatum.ub.tum.de/doc/1723378/1723378.pdf


xiv PREFACE

• For a differentiable function f : Rd → R, its gradient at x is denoted f ′(x) ∈ Rd,
and if it is twice differentiable, its Hessian is denoted as f ′′(x) ∈ Rd×d.

How to use this book? The first nine chapters (in sequence, without the diamond
parts) are adapted for a one-semester upper-undergraduate or graduate class, if possible,
after an introductory course on machine learning. The following six chapters can be read
mostly in any order and are here to deepen the understanding of some special topics; they
can be read as homework assignments (using the exercises) or taught within a longer (e.g.,
two-semester) class. The book is intended to be adapted to self-study, with the first nine
chapters being read in sequence and the last six in random order. In all situations,
chapter 1, on mathematical preliminaries, can be read quickly and studied in more detail
when relevant notions are needed in subsequent chapters.

Acknowledgments. This textbook is extracted from lecture notes from a class that I
have taught (unfortunately online, but this gave me an opportunity to write more detailed
notes) during the Fall 2020 semester, with extra passes during the classes I taught in the
Spring 2021, Fall 2021, Fall 2022, and Fall 2023 semesters.

These class notes have been adapted from the notes of many colleagues I had the
pleasure to work with, in particular Lénäıc Chizat, Pierre Gaillard, Alessandro Rudi,
and Simon Lacoste-Julien. Special thanks to Lénäıc Chizat for his help with chapter 9
on neural networks and for proofreading many of the chapters, to Jaouad Mourtada
for his help on lower bounds and random design analysis for least-squares regression, to
Alex Nowak-Vila for his help on calibration functions, to Vivien Cabannes for the help on
consistency proofs for local averaging techniques, to Alessandro Rudi for his help on kernel
methods, to Adrien Taylor for his help on chapter 5 on optimization, to Marc Lelarge for
his help on overparameterized models, Olivier Cappé for his help on multiarmed bandits,
and Lawrence Stewart for his help on neural network architectures. The notes from
Philippe Rigollet have been a very precious help for chapter 8 on model selection. The
careful readings of large portions of the text by Bertille Follain and Gabriel Stoltz have
been very helpful. Feedback from the anonymous reviewers has also been useful.

Former and current collaborators also helped in the final stages by reading carefully,
annotating, and commenting a chapter: Elöıse Berthier, Raphaël Berthier, Vivien Ca-
bannes, Aymeric Dieuleveut, Nicolas Flammarion, Pierre Gaillard, Hadrien Hendrickx,
David Holzmüller, Dmitrii Ostrovskii, Loucas Pillaud-Vivien, Alessandro Rudi, Kevin
Scaman, and Adrien Taylor. This was greatly appreciated.

Typos and suggestions have been highlighted by Ritobrata Ghosh, Thanh Nguyen-
Tang, Ishaan Gulrajani, Johannes Oswald, Seijin Kobayashi, Mathieu Dagreou, Dimitri
Meunier, Antoine Moulin, Laurent Condat, Quentin Duchemin, Quentin Berthet, Math-
ieu Bloch, Fabien Pesquerel, Guillaume Bied, Uladzimir Yahorau, Pierre Dognin, Vi-
hari Piratla, Tim Tsz-Kit Lau, Samy Clementz, Mohammad Alkousa, Elöıse Berthier,
Pierre Marion, Vincent Liu, Atsushi Nitanda, Cheik Traoré, Ruiyuan Huang, Naoyuki
Terashita, Jiangrui Kang, Moritz Haas, Mastane Achab, Berné Nortier, Cassidy Laidlaw,
Jing Wang, Motonobu Kanagawa, Shane Hoeberichts, Dishank Jain, Aymeric Dieuleveut,



PREFACE xv

Steffen Grünewälder, Claire Boyer, Bernhard Schölkopf, Piyushi Manupriya, Qingyue
Zhao, Thomas Pock, Eliot Beyler, Yves Leconte, Jean Pichon, Brieuc Antoine Dit Ur-
ban, Théo Voldoire, Guénolé Joubioux, Adéchola Kouande, Zhu Wang, Leon Rofagha,
John Zarka, Liviu Aolaritei, Gaétan Marceau Caron, Ivan Barrientos, Thomas Boudou,
Sebastian Gruber, Julien Stoehr, Jingxin Zhang, Sacha Braun, Noâm Boussouf, Abder-
rahmane Kasmi, Jacques Sun, Sebastiano Scardera, Mariem Aalabou, Pierre Cornilleau,
Eric Moulines, Alexandre Olech, Nabil Kahalé, Aaron Mishkin, Patrik Wolf, Jan Quan

(△! Add your name to the list by sending me typos and comments!).

I am grateful to Elizabeth Swayze, Matthew Valades, Susan McClung, Roger Wood,
Emma Donovan, Jitendra Kumar, and everyone at MIT Press for their assistance in
preparing and publishing this book.





Part I

Preliminaries

1





Chapter 1

Mathematical Preliminaries

Chapter Summary
• Linear algebra: A bag of tricks to avoid lengthy and faulty computations.
• Concentration inequalities: For n independent random variables, the deviation

between the empirical average and the expectation is of the order O(1/
√
n). What

is in the big O, and how does it depend explicitly on problem parameters?

The mathematical analysis and design of machine learning algorithms require spe-
cialized tools beyond classic linear algebra, differential calculus, and probability. In this
chapter, I will review these nonelementary mathematical tools used throughout the book:
first, linear algebra tricks, and then concentration inequalities. The chapter can be safely
skipped for readers familiar with linear algebra and concentration inequalities since the
relevant results will be referenced when needed.

1.1 Linear Algebra and Differentiable Calculus

This section reviews basic linear algebra and differential calculus results that will be
used throughout the book. Using these usually greatly simplifies computations. Matrix
notations will be used as much as possible.

1.1.1 Minimization of Quadratic Forms

Given a positive-definite (and hence invertible) symmetric matrix A ∈ Rn×n and vector
b ∈ Rn, the minimization of quadratic forms with linear terms can be done in closed form:

inf
x∈Rn

1

2
x⊤Ax − b⊤x = −1

2
b⊤A−1b,

3



4 CHAPTER 1. MATHEMATICAL PRELIMINARIES

with the minimizer x∗ = A−1b obtained by zeroing the gradient f ′(x) = Ax − b of the
function f(x) = 1

2x
⊤Ax− b⊤x. Moreover, we have

1

2
x⊤Ax− b⊤x =

1

2
(x− x∗)⊤A(x − x∗)− 1

2
b⊤A−1b.

If A were not invertible (simply positive semidefinite) and b were not in the column space
of A, then the infimum would be −∞.

Note that this result is often used in various forms, such as

b⊤x 6
1

2
b⊤A−1b +

1

2
x⊤Ax with equality if and only if b = Ax.

This form is exactly the Fenchel-Young inequality1 for quadratic forms (see chapter 5),

and it is often used in one dimension in the form ab 6 a2

2η + ηb2

2 for any η > 0 (and

equality if and only if η = a/b).

1.1.2 Inverting a 2× 2 Matrix

Solving small systems happens frequently, as well as inverting small matrices. This can

be easily done in two dimensions. Let M =
(
a b
c d

)
be a 2× 2 matrix. If ad− bc 6= 0, then

we may invert it as follows:

M−1 =

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

This can be checked by multiplying the two matrices or using Cramer’s rule,2 and it can
be generalized to matrices defined by blocks, as we discuss next.

1.1.3 Inverting Matrices Defined by Blocks, Matrix Inversion
Lemma

The example given above may be generalized to matrices of the form M =
(
A B
C D

)
, with

blocks of consistent sizes (note that A and D have to be square matrices). The inverse
of M may be obtained by applying directly Gaussian elimination3 in block form. Given

the two matrices M =
(
A B
C D

)
and N =

(
I 0
0 I

)
, we may linearly combine rows (with the

same coefficients for the two matrices). Once M has been transformed into the identity
matrix, N has been transformed to the inverse of M .

We make the simplifying assumption that A is invertible; we use the notation M/A =
D−CA−1B for the Schur complement of block A and also assume that M/A is invertible.

1For a discussion of this term, see https://en.wikipedia.org/wiki/Convex_conjugate.
2See https://en.wikipedia.org/wiki/Cramer’s_rule.
3See https://en.wikipedia.org/wiki/Gaussian_elimination.

https://en.wikipedia.org/wiki/Convex_conjugate
https://en.wikipedia.org/wiki/Cramer's_rule
https://en.wikipedia.org/wiki/Gaussian_elimination


1.1. LINEAR ALGEBRA AND DIFFERENTIABLE CALCULUS 5

We thus get by Gaussian elimination, referring to Li, i = 1, 2 as the two lines of blocks,

so for the first matrix M =
(
L1

L2

)
:

Original matrices:

(
A B
C D

) (
I 0
0 I

)

L2 ← L2 − CA−1L1 :

(
A B
0 M/A

) (
I 0

−CA−1 I

)

L2 ← (M/A)−1L2 :

(
A B
0 I

) (
I 0

−(M/A)−1CA−1 (M/A)−1

)

L1 ← L1 −BL2 :

(
A 0
0 I

) (
I +B(M/A)−1CA−1 −B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)

L1 ← A−1L1 :

(
I 0
0 I

) (
A−1+A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
.

This shows that

M−1 =

(
A B
C D

)−1

=

(
A−1+A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
. (1.1)

Moreover, by doing the same operations but by first setting the upper-right block to zero,
and assuming that D and M/D = A−BD−1C are invertible, we obtain

M−1 =

(
A B
C D

)−1

=

(
(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1+D−1C(M/D)−1BD−1

)
. (1.2)

By identifying the upper-left and lower-right blocks in equations (1.1) and (1.2), we
obtain the following identities (sometimes referred to as Woodbury matrix identities, or
the matrix inversion lemma):

(
A−BD−1C

)−1
= A−1 +A−1B(D − CA−1B)−1CA−1

(
D − CA−1B

)−1
= D−1 +D−1C(A−BD−1C)−1BD−1.

Another classical formulation is
(
A−BD−1C

)−1
B = A−1B(D − CA−1B)−1D.

These are particularly interesting when the blocks A and D have very different sizes, as
the inverse of a large matrix may be obtained from the inverse of a small matrix.

The lemma is often applied when C = B⊤, A = I, and D = −I, which leads to

(I +BB⊤)−1 = I −B(I +B⊤B)−1B⊤, (1.3)

and, once right-multiplied by B, this leads to the following compact formula (which is
easier to rederive and remember than equation (1.3)):

(I +BB⊤)−1B = B(I +B⊤B)−1.

These equalities are commonly used for both theoretical and algorithmic purposes.



6 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Exercise 1.1 For α ∈ R such that α 6= −1/n and 1n ∈ Rn the vector of all 1s, show that
we have (I + α1n1⊤n )−1 = I − α

1+nα1n1⊤n .

Exercise 1.2 (�) Show that we can block-diagonalize the matrices M and M−1 as

M =

(
A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 M/A

)(
I A−1B
0 I

)

M−1 =

(
A B
C D

)−1

=

(
I −A−1B
0 I

)(
A−1 0

0 (M/A)−1

)(
I 0

−CA−1 I

)
.

Exercise 1.3 Show that det
((

A B
C D

))
= det(M/A) det(A) = det(M/D) det(D).

Conditional covariance matrices for Gaussian vectors (�). The identities shown
above can be used to compute conditional mean vectors and covariance matrices for Gaus-
sian vectors (in this book, we will favor the denomination “Gaussian” over “normal”). If

we have a Gaussian vector
(
x
y

)
with x ∈ Rm and y ∈ Rn, with the mean vector defined

by block as µ =
(
µx

µy

)
, and the covariance matrix Σ =

(
Σxx Σxy

Σyx Σyy

)
< 0 (defined with blocks

of appropriate sizes), then the joint density p(x, y) of (x, y) is proportional to

exp

(
− 1

2

(
x− µx
y − µy

)⊤(
Σxx Σxy
Σyx Σyy

)−1(
x− µx
y − µy

))
.

By writing it as the product of a function of x and a function of (x, y), we can get that x
is Gaussian with mean µx and covariance matrix Σx, and that given x = x′, y is Gaussian
with mean µy|x′ = µy + ΣyxΣ−1

xx (x′ − µx) (which depends on x′) and covariance matrix
Σy|x = Σyy − ΣyxΣ−1

xxΣxy (which does not depend on x′).

Exercise 1.4 (�) Prove the identities µy|x′ = µy + ΣyxΣ−1
xx (x′ − µx) and covariance

matrix Σy|x = Σyy − ΣyxΣ−1
xxΣxy.

1.1.4 Eigenvalue and Singular Value Decomposition

In this book, we will often use eigenvalue decompositions of symmetric matrices. If
A ∈ Rn×n is a symmetric matrix, there are an orthogonal matrix U ∈ Rn×n (i.e., such
that U⊤U = UU⊤ = I) and a vector λ ∈ Rn of eigenvalues, such that A = U Diag(λ)U⊤.
If ui ∈ Rn denotes the ith column of U , then we have A =

∑n
i=1 λiuiu

⊤
i , and Aui = λiui.

A symmetric matrix is said to be positive semidefinite if and only if all its eigenvalues
are nonnegative.

Given a rectangular matrixX ∈ Rn×d, such that n > d, there are an orthogonal matrix
V ∈ Rd×d (i.e., such that V ⊤V = V V ⊤ = I), a matrix U ∈ Rn×d with orthonormal
columns (i.e., such that U⊤U = I, but UU⊤ 6= I if n > d), and a vector s ∈ Rd+ of
singular values, such that X = U Diag(s)V ⊤; this is often called the “economy-size”



1.2. CONCENTRATION INEQUALITIES 7

singular value decomposition (SVD) of the matrix X . If ui ∈ Rn and vi ∈ Rd denote the

ith columns of U and V , then we have X =
∑d

i=1 siuiv
⊤
i , and Xvi = siui, X

⊤ui = sivi.

There are several ways of relating eigenvalues and singular values. For example, if si
is a singular value of X , then s2i is an eigenvalue of XX⊤ and X⊤X . Moreover, the

eigenvalues of the matrix
(

0 X
X⊤ 0

)
are zero, the singular values of X , and their opposites.

For further properties of eigenvalues and singular values, see Golub and Loan (1996),
Stewart and Sun (1990) and Bhatia (2013).

Exercise 1.5 Express the eigenvectors of XX⊤ and X⊤X using the singular vectors
of X.

Exercise 1.6 Express the eigenvectors of
(

0 X
X⊤ 0

)
using the singular vectors of X.

1.1.5 Differential Calculus

Throughout this book, we will compute gradients and Hessians of functions in almost all
cases in matrix notations. Here are some classic examples:

• Quadratic forms: assuming A = A⊤, with F (θ) = 1
2θ

⊤Aθ − b⊤θ, F ′(θ) = Aθ − b,
F ′′(θ) = A. If A is not symmetric, then we have F ′(θ) = 1

2 (A + A⊤)θ − b and
F ′′(θ) = 1

2 (A+A⊤).

• Least-squares with X ∈ R
n×d and y ∈ R

n: F (θ) = 1
2n‖y − Xθ‖22. Then F ′(θ) =

1
nX

⊤(Xθ − y) and F ′′(θ) = 1
nX

⊤X .

Exercise 1.7 Show that for the logistic regression objective function defined as F (θ) =
1
n

∑n
i=1 log(1 + exp(−yi(Xθ)i)), with X ∈ Rn×d and y ∈ {−1, 1}n, then F ′(θ) = 1

nX
⊤g,

where g ∈ R
n is defined as gi = −yiσ(−yi(Xθ)i), with σ(u) = (1 + e−u)−1 the sig-

moid function. Show that the Hessian is 1
nX

⊤ Diag(h)X, with h ∈ Rn defined as
hi = σ(yi(Xθ)i)σ(−yi(Xθ)i).
Exercise 1.8 (Functions on matrices) Let A be a symmetric matrix. Show that the
gradient of the function M 7→ tr(AM−1), defined on invertible symmetric matrices, is
equal to M 7→ −M−1AM−1. Show that the gradient of M 7→ log det(M) is M 7→M−1.

1.2 Concentration Inequalities

All the results presented in this textbook rely on the simple probabilistic assumption that
data are independently and identically distributed (i.i.d.). The primary goal, then, is to
relate empirical averages to expectations.

The key (very classical) insight behind probabilistic inequalities used in machine
learning is that when you have n independent zero-mean random variables, the natu-
ral “magnitude” of their average is 1/

√
n times smaller than their average magnitude.

The simplest instance of this phenomenon is that if Z1, . . . , Zn ∈ R are i.i.d. with variance



8 CHAPTER 1. MATHEMATICAL PRELIMINARIES

σ2 = E
[
(Z − E[Z])2

]
, then the variance of the sum is the sum of the variances, and

var

[
1

n

n∑

i=1

Zi

]
=

1

n2

n∑

i=1

var[Zi] =
σ2

n
.

△! Be careful with error measures or magnitudes: some are squared, but some
are not. Therefore, the 1/

√
n becomes 1/n after taking the square (this is a

trivial point, but it typically leads to confusion).

The equality shown above can be interpreted as

E

[(
1

n

n∑

i=1

Zi − E[Z]

)2]
=
σ2

n
, (1.4)

which provides the simplest proof of the law of large numbers when variances exist and
also highlights the convergence in the squared mean of the random variable 1

n

∑n
i=1 Zi to

the constant E[Z].

From moments to deviation bounds. Given an inequality on the moments of a
random variable, deviation bounds can be derived. Markov’s inequality (see the proof in
exercise 1.9 below) states that

P(Y > ε) 6
1

ε
E[Y ], (1.5)

for all nonnegative random variables Y with finite expectation and any scalar ε > 0.
Chebyshev’s inequality is obtained by applying Markov’s inequality to the random vari-
able Y = (X − E[X ])2 for the random variable X with finite mean E[X ] and variance
var[X ], leading to

P(|X − E[X ]| > ε) = P(|X − E[X ]|2 > ε2) 6
1

ε2
var[X ].

Thus, from the mean E[Z] and the variance σ2

n of the random variable 1
n

∑n
i=1 Zi, as

computed in equation (1.4), we obtain the deviation bounds

P

(∣∣∣∣
1

n

n∑

i=1

Zi − E[Z]

∣∣∣∣ > ε

)
6

1

ε2
E

[(
1

n

n∑

i=1

Zi − E[Z]

)2]
=

σ2

nε2
,

which implies convergence in probability.4

To characterize the deviations more finely, there are two classical tools: the central
limit theorem, which states that 1

n

∑n
i=1 Zi is approximately Gaussian with mean E[Z]

4See https://en.wikipedia.org/wiki/Convergence_of_random_variables for a discussion on con-
vergence of random variables.

https://en.wikipedia.org/wiki/Convergence_of_random_variables


1.2. CONCENTRATION INEQUALITIES 9

and variance σ2/n. This is an asymptotic statement: formally,
√
n( 1

n

∑n
i=1 Zi − E[Z])

converges in distribution to a Gaussian distribution with mean zero and variance σ2.
Although it gives the correct scaling in n, in this textbook, we will look primarily at
nonasymptotic results that quantify the deviation for any n.

△! In what follows, we will always provide versions of inequalities for averages of
random variables (even though some authors equivalently consider sums).

Before describing various concentration inequalities, let us recall the classical union
bound : given events indexed by f ∈ F (which can have a countably infinite number of
elements), we have

P

( ⋃

f∈F

Af

)
6

∑

f∈F

P(Af ).

It has (among many other uses in machine learning) a direct application in upper-
bounding the tail probability of the supremum of random variables:

P

(
sup
f∈F

Zf > t
)

= P

( ⋃

f∈F

{Zf > t}
)

6
∑

f∈F

P(Zf > t).

We will only cover the most useful inequalities for machine learning. For more ad-
vanced inequalities, see other sources, such as Boucheron et al. (2013) and Vershynin
(2018).

Homogeneity. △! Random variables or vectors typically have a unit, and it is always
helpful to perform some basic dimensional analysis5 to spot mistakes. For example, when
performing linear predictions of the form y = x⊤θ, the unit of y is the one of x times
that of θ. Typically, these units are encapsulated in the constants describing the problem
(such as the noise standard deviation for y or bounds for x and θ).

Exercise 1.9 Let Y be a nonnegative random variable with finite expectation, and ε > 0.
Show that ε1Y>ε 6 Y almost surely and prove Markov’s inequality in equation (1.5).

Exercise 1.10 (Chernoff bound) Let X be a random variable. Show that for any
t ∈ R and s > 0, we have P(X > t) 6 e−stE[esX ].

Exercise 1.11 Let Y be a nonnegative random variable with finite expectation. Show
that E[Y ] =

∫∞
0

P(Y > t)dt.

Jensen’s inequality. Beyond the union bound, another key tool in probabilistic mod-
eling is Jensen’s inequality, which allows to obtain bounds for the expectation of convex
functions of random variables (see extension to functions defined on Rd in section 5.2.2).

5See https://en.wikipedia.org/wiki/Dimensional_analysis.

https://en.wikipedia.org/wiki/Dimensional_analysis


10 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Proposition 1.1 (Jensen’s inequality on R) If F : R → R is convex and X is a
real-valued random variable, then

F
(
E[X ]

)
6 E

[
F (X)

]
. (1.6)

Stated in words: “The image of the average is smaller than the average of the images.”

△! When using Jensen’s inequality, be extra careful about the direction of the inequality.

1.2.1 Hoeffding’s Inequality

The simplest concentration inequality considers bounded real-valued random variables.

Proposition 1.2 (Hoeffding’s inequality) If Z1, . . . , Zn are independent random vari-
ables such that Zi ∈ [0, 1] almost surely, then, for any t > 0,

P

(
1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi] > t

)
6 exp(−2nt2). (1.7)

Proof The usual proof uses standard convexity arguments and is divided into two parts.

(1) Lemma: If Z ∈ [0, 1] almost surely, then E
[

exp(s(Z − E[Z]))
]
6 exp(s2/8) for any

s > 0.

Proof: We can compute the first two derivatives of the function ϕ defined as ϕ(s) =
log(E

[
exp(s(Z − E[Z]))

]
), which is a “log-sum-exp” function, often referred to as

the “cumulant generating function.” We can compute the derivatives of ϕ as

ϕ′(s) =
E
[
(Z − E[Z])es(Z−E[Z])

]

E
[
es(Z−E[Z])

]

ϕ′′(s) =
E
[
(Z − E[Z])2es(Z−E[Z])

]

E
[
es(Z−E[Z])

] −
[
E
[
(Z − E[Z])es(Z−E[Z])

]

E
[
es(Z−E[Z])

]
]2
.

We thus get ϕ(0) = ϕ′(0) = 0, and ϕ′′(s) is the variance of some random variable
Z̃ ∈ [0, 1], with distribution with density z 7→ es(z−E[Z])/E

[
es(Z−E[Z])

]
with respect

to the distribution of Z. We recall that the variance of Z̃ is the minimum squared
deviation to a constant and can thus bound this variance as

var(Z̃) = inf
ν∈[0,1]

E[(Z̃ − ν)2] 6 E[(Z̃ − 1/2)2] =
1

4
E[(2Z̃ − 1)2] 6

1

4
,

since 2Z̃ − 1 ∈ [−1, 1] almost surely. Thus, for all s > 0, ϕ′′(s) 6 1/4, and by

Taylor’s formula, ϕ(s) 6 ϕ(0) + ϕ′(0)s+ 1
4 · s

2

2 = s2

8 .

(2) For any t > 0, and denoting Z̄ = 1
n

∑n
i=1 Zi, we get:

P
(
Z̄ − E[Z̄] > t

)

= P
(

exp(s(Z̄ − E[Z̄])) > exp(st)
)

by monotonicity of the exponential,

6 exp(−st)E
[

exp(s(Z̄ − E[Z̄]))
]

using Markov’s inequality (equation (1.5)).



1.2. CONCENTRATION INEQUALITIES 11

Then, using independence, we get

P
(
Z̄ − E[Z̄] > t

)
6 exp(−st)

n∏

i=1

E

[
exp

( s
n

(Zi − E[Zi])
)]

6 exp(−st)
n∏

i=1

exp
( s2

8n2

)
= exp

(
− st+

s2

8n

)
,

using the lemma at the beginning of the proof. This last bound is minimized for
s = 4nt. We then get the result.

Note the difference with the central limit theorem, which states that when n goes to
infinity, the probability in equation (1.7) is asymptotically equivalent to

1√
2πσ2/n

∫ ∞

t

exp
(
− nz2

2σ2

)
dz, which can be shown to be less than exp

(
− nt2

2σ2

)
,

where σ2 = limn→+∞
1
n

∑n
i=1 var(Zi) (see exercise 1.12). The central limit theorem is

more precise (as it involves the variance of Zi and not an almost sure bound) but is
asymptotic. Bernstein’s inequalities (see section 1.2.3) will be between the central limit
theorem and Hoeffding’s inequality, as they use both the variance and an almost sure
bound.

Exercise 1.12 (�) For X a Gaussian random variable with mean 0 and variance 1,
show that for t > 0, 1

4 exp(−t2) 6 P(X > t) 6 exp(−t2/2).

Extensions. We get the following corollary by just applying the inequality to Zi’s and
1− Zi’s and using the union bound.

Corollary 1.1 (Two-sided Hoeffding’s inequality) If Z1, . . . , Zn are independent
random variables such that Zi ∈ [0, 1] almost surely, then, for any t > 0,

P

(∣∣∣∣
1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]

∣∣∣∣ > t

)
6 2 exp(−2nt2). (1.8)

We can make the following observations:

• Hoeffding’s inequality can be extended to the assumption that Zi ∈ [a, b] almost
surely, leading to

P

(∣∣∣∣
1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]

∣∣∣∣ > t

)
6 2 exp(−2nt2/(a− b)2).

• Such an inequality is often used “in the other direction,” starting from the proba-
bility and deriving t from it as follows: For any δ ∈ (0, 1), with probability greater



12 CHAPTER 1. MATHEMATICAL PRELIMINARIES

than 1− δ, we have

∣∣∣∣
1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]

∣∣∣∣ <
|a− b|√

2n

√
log

(2

δ

)
.

Note the dependence in n is 1/
√
n while the dependence in δ is logarithmic (corre-

sponding to the exponential tail bound in t).

Exercise 1.13 Show the one-sided inequality: with probability greater than 1 − δ,
1
n

∑n
i=1 Zi − 1

n

∑n
i=1 E[Zi] <

|a−b|√
2n

√
log

(
1
δ

)
.

• When Zi ∈ [ai, bi] almost surely, with potentially different ai’s and bi’s, the probabil-
ity upper bound can be replaced by 2 exp(−2nt2/c2), where c2 = 1

n

∑n
i=1(bi − ai)2.

• The result extends to martingales with essentially the same proof, leading to Azuma’s
inequality (see exercise 1.14).

Exercise 1.14 (Azuma’s inequality (�)) Assume that the sequence of random
variables (Zi)i>0, satisfies E(Zi|Fi−1) = 0 for an increasing sequence of increasing
“σ-fields” (Fi)i>0,

6 and |Zi| 6 ci almost surely, for i > 1. Then

P

(
1

n

n∑

i=1

Zi > t

)
6 exp

( −n2t2

2(c21 + · · ·+ c2n)

)
.

• Hoeffding’s inequality is often extended to so-called “sub-Gaussian” random vari-
ables; that is, random variables X for which there exists τ ∈ R+ such that the
following bound on the Laplace transform7 of X holds:

∀s ∈ R, E
[

exp(s(X − E[X ]))
]
6 exp

(τ2s2
2

)
,

which is exactly what we used in the proof of proposition 1.2. In other words, a
random variable with values in [a, b] is sub-Gaussian with constant τ2 = (b−a)2/4.
For these sub-Gaussian variables, we have similar concentration inequalities. For
example, we have the usual two versions of the tail bound (see also exercise 1.16):

∀t > 0, P(|Z − E[Z]| > t) 6 2 exp
(
− t2

2τ2

)
(1.9)

⇔ ∀δ ∈ (0, 1], |Z − E[Z]| 6 τ

√
2 log

(2

δ

)
with probability 1− δ. (1.10)

Exercise 1.15 Show that a Gaussian random variable with variance σ2 is sub-
Gaussian with constant σ2.

6See more details in https://en.wikipedia.org/wiki/Azuma’s_inequality.
7See https://en.wikipedia.org/wiki/Laplace_transform.

https://en.wikipedia.org/wiki/Azuma's_inequality
https://en.wikipedia.org/wiki/Laplace_transform


1.2. CONCENTRATION INEQUALITIES 13

Exercise 1.16 If Z1, . . . , Zn are independent random variables which are sub-Gaus-

sian with constant τ2, show that P
(∣∣ 1
n

∑n
i=1 Zi− 1

n

∑n
i=1 E[Zi]

∣∣ > t
)
6 2 exp(− nt2

2τ2 )
for any t > 0.

• Sub-Gaussian random variables can be defined in several other ways, equivalent (up
to constants) to the bound on the Laplace transform. See exercises 1.17 and 1.18.

Exercise 1.17 (�) Let Z be a random variable that is sub-Gaussian with con-

stant τ2. Then, by using the tail bound P(|Z − E[Z]| > t) 6 2 exp(− t2

2τ2 ) in equa-
tion (1.9), show that for any positive integer q, E[(Z − E[Z])2q] 6 2 · q!(2τ2)q.

Exercise 1.18 (��) Let Z be a random variable such that for any positive inte-
ger q, E[(Z − E[Z])2q] 6 (2q)q!(2τ2)q. Then show that Z is sub-Gaussian with
parameter 24τ2.

Exercise 1.19 Assume that the random variable Z has almost surely nonnegative values
and finite second-order moment. Show that for any s > 0, we have log

(
E[e−sZ ]

)
6

−sE[Z] + s2

2 E[Z2].

1.2.2 McDiarmid’s Inequality

Given n independent random variables, it may be useful to concentrate other quantities
than their average. What is needed is that the function of these random variables has
“bounded variation.”

Proposition 1.3 (McDiarmid’s inequality) Let Z1, . . . , Zn be independent random
variables (in any measurable space Z), and f : Zn → R a function of “bounded variation”;
that is, such that for all i ∈ {1, . . . , n}, and all z1, . . . , zn, z

′
i ∈ Z, we have

|f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| 6 c.

Then
P
(∣∣f(Z1, . . . , Zn)− E[f(Z1, . . . , Zn)]

∣∣ > t
)
6 2 exp(−2t2/(nc2)).

Proof (�) The proof generalizes the formulation of Hoeffding’s inequality in equa-
tion (1.8), which corresponds to f(z) = 1

n

∑n
i=1 zi and c = 1

n . We will only consider the
one-sided inequality:

P
(
f(Z1, . . . , Zn)− E[f(Z1, . . . , Zn)] > t

)
6 exp(−2t2/(nc2)),

which is sufficient to get the two-sided inequality using the union bound.

We introduce the random variables, for i ∈ {1, . . . , n}:

Vi = E[f(Z1, . . . , Zn)|Z1, . . . , Zi]− E[f(Z1, . . . , Zn)|Z1, . . . , Zi−1],

with V1 = E[f(Z1, . . . , Zn)|Z1] − E[f(Z1, . . . , Zn)]. We have E[Vi|Z1, . . . , Zi−1] = 0.
Moreover, given Z1, . . . , Zi−1, the maximal value of Vi minus the minimal value of Vi



14 CHAPTER 1. MATHEMATICAL PRELIMINARIES

is almost surely less than c as a consequence of the bounded variation assumption,
since it is the difference of two terms that are conditional expectations of values of f
taken at arguments that only differ in the ith variable. Moreover, through a telescoping
sum, we have f(Z1, . . . , Zn) − E[f(Z1, . . . , Zn)] =

∑n
i=1 Vi. Using the same argument

as in part (1) of the proof of Hoeffding’s inequality (page 10), we get for any s > 0,

E
[
esVi |Z1, . . . , Zi−1] 6 es

2c2/8, and we can obtain a proof with the same steps as part (2)
of the same proof (page 10) by being careful with conditioning, for any s > 0:

P

( n∑

i=1

Vi > t

)
6 exp(−st) · E

[
exp

(
s

n∑

i=1

Vi

)]
using Markov’s inequality,

= exp(−st) · E
[

exp

(
s

n−1∑

i=1

Vi

)
E
[

exp(sVn)
∣∣Z1, . . . , Zn−1

]]
,

since V1, . . . , Vn−1 are in the σ-algebra generated by Z1, . . . , Zn−1,

6 exp(−st+ s2c2/8) · E
[

exp
(
s
n−1∑

i=1

Vi

)]
,

using the bound on E
[
esVn |Z1, . . . , Zn−1] given above. Applying the same reasoning n

times, we get a probability that is less than exp(−st+ns2c2/8) and the desired result by
minimizing with respect to s (leading to s = 4t/(nc2)).

This inequality will be used to provide high-probability bounds on the estimation
error in empirical risk minimization in section 4.4.1.

Exercise 1.20 (�) Use McDiarmid’s inequality to prove a Hoeffding-type bound for vec-
tors: If Z1, . . . , Zn ∈ Rd are independent centered vectors such that ‖Zi‖2 6 c almost
surely, then with probability greater than 1− δ, we have

∥∥∥∥
1

n

n∑

i=1

Zi

∥∥∥∥
2

6
c√
n

(
1 +

√
2 log

1

δ

)
.

1.2.3 Bernstein’s Inequality (�)

As mentioned earlier, Hoeffding’s inequality only uses an almost sure bound, but not
explicitly the variance, as the central limit theorem uses (but only with an asymptotic
result). Bernstein’s inequality allows the use of variance to get a finer nonasymptotic
result.

Proposition 1.4 (Bernstein’s inequality) Let Z1, . . . , Zn be n independent random
variables such that |Zi| 6 c almost surely and E[Zi] = 0. Then, for t > 0,

P

(∣∣∣∣
1

n

n∑

i=1

Zi

∣∣∣∣ > t

)
6 2 exp

(
− nt2

2σ2 + 2ct/3

)
, (1.11)



1.2. CONCENTRATION INEQUALITIES 15

where σ2 = 1
n

∑n
i=1 var(Zi). Moreover, for δ ∈ (0, 1), with probability greater than 1− δ,

we have ∣∣∣∣
1

n

n∑

i=1

Zi

∣∣∣∣ 6
√

2σ2 log(2/δ)

n
+

2c log(2/δ)

3n
. (1.12)

Proof The proof is also divided into two parts, first with a lemma on the Laplace
transform.

(a) Lemma: If |Z| 6 c almost surely, E[Z] = 0, and E[Z2] = σ2, then for any s > 0, we

have E[esZ ] 6 exp
(
σ2

c2 (esc − 1− sc)
)
.

Proof: Using the power series expansion of the exponential, we get

E[esZ ] = 1 + E[sZ] +

∞∑

k=2

sk

k!
E[Zk] = 1 +

∞∑

k=2

sk

k!
E[Zk] because Z has zero mean,

6 1 +

∞∑

k=2

sk

k!
E[|Z|k−2|Z|2] 6 1 +

∞∑

k=2

sk

k!
ck−2σ2 = 1 +

σ2

c2
(
esc − 1− sc

)
.

Using the bound 1 + α 6 eα as valid for all α ∈ R leads to the desired result.

(b) With σ2
i = var(Zi), we have the following one-sided inequality:

P

(
1

n

n∑

i=1

Zi > t

)
= P

(
exp

(
s

n∑

i=1

Zi

)
> exp(nst)

)

by monotonicity of the exponential,

6 E

[
exp

(
s

n∑

i=1

Zi

)]
e−nst using Markov’s inequality,

6 e−nst
n∏

i=1

exp
(σ2

i

c2
(esc−1−sc)

)
=e−nst exp

(nσ2

c2
(esc−1−sc)

)
,

using the lemma stated at the beginning of the proof. We now need to find an

upper bound on the minimal value (with respect to s) of −nst+ nσ2

c2 (esc−1−sc) =
nσ2

c2

(
esc−1−sc− αsc), with α = ct/σ2. We first bound for u = sc, eu − 1 − u =∑∞

k=0
uk+2

(k+2)! 6
∑∞
k=0

uk+2

2·3k , since (k + 2)! = 2 · 3 · · · (k + 2) > 2 · 3k. Thus, for

u ∈ (0, 3), we get

eu − 1− u 6
u2

2

∞∑

k=0

(u/3)k =
u2

2

1

1− u/3 .

Using the candidate u = α
1+α/3 (which leads to a candidate s = u/c), we get

1− u/3 = 1− α/3
1+α/3 = 3

α+3 , and thus

eu− 1−u−αu 6
u2

2

1

1− u/3 −αu =
α2

2(1 + α/3)2
α+ 3

3
− α2

1 + α/3
= − α2

2(1 + α/3)
.



16 CHAPTER 1. MATHEMATICAL PRELIMINARIES

This exactly leads to the one-sided version of equation (1.11).

To get equation (1.12) from the two-sided version of equation (1.11), we solve in t

the equation 2 exp
( −nt2
2σ2+2ct/3

)
= δ ⇔ log 2

δ = nt2

2σ2+2ct/3 . Solving the quadratic

equation in t leads to (using (a+ b)1/2 6 a1/2 + b1/2):

t =
1

2

[ 2c

3n
log

2

δ
+
(( 2c

3n
log

2

δ

)2

+
8σ2

n
log

2

δ

)1/2]
6

2c

3n
log

2

δ
+

1

2

(8σ2

n
log

2

δ

)1/2

,

which leads to equation (1.12).

Note here that we get the same dependence as for the central limit theorem for small
deviations t (and a strict improvement on Hoeffding’s inequality because the variance is
essentially bounded by the squared diameter of the support). In contrast, for large t, the
dependence in t is worse than Hoeffding’s inequality.

Beyond zero mean random variables. Bernstein’s inequality can also be applied
when the random variables Zi do not have zero means. Then equation (1.11) is replaced
by

P

(∣∣∣∣
1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]

∣∣∣∣ > t

)
6 2 exp

(
− nt2

2σ2 + 2ct/3

)
, (1.13)

with a corresponding single-sided inequality.

Exercise 1.21 (�) Prove the inequality in equation (1.13).

1.2.4 Expectation of the Maximum

Concentration inequalities bound the deviation from the expectation. Often, computing
the expectation is tricky, particularly for the maxima of random variables. In a nutshell,
taking the maximum of n bounded random variables leads to an extra factor of

√
logn.

Note here that we do not impose independence. We will consider other tools such as
Rademacher complexities in section 4.5. See figure 1.1 for an illustration.

△! This logarithmic factor appears many times in this textbook and can often be traced
to the expectation of a maximum and to the Gaussian decay of tail bounds.

△! The variables do not need to be independent.

Proposition 1.5 (Expectation of the maximum) If Z1, . . . , Zn are (potentially de-
pendent) zero-mean real random variables that are sub-Gaussian with constant τ2, then

E
[

max{Z1, . . . , Zn}
]
6

√
2τ2 logn.



1.2. CONCENTRATION INEQUALITIES 17

Proof We have

E
[

max{Z1, . . . , Zn}
]
6

1

t
logE

[
etmax{Z1,...,Zn}] by Jensen’s inequality,

=
1

t
logE

[
max{etZ1 , . . . , etZn}

]

6
1

t
logE

[
etZ1 + · · ·+ etZn

]
bounding the max by the sum,

6
1

t
log(neτ

2t2/2)=
logn

t
+τ2

t

2
=
√

2τ2 logn with t=τ−1
√

2 logn,

using the definition of sub-Gaussianity in section 1.2.1 (and the fact that the variables
have zero means).

While we consider a direct proof using Laplace transforms earlier in this discussion,
we can prove a similar result using Gaussian tail bounds together with the union bound:

P(max{U1, . . . , Un} > t) 6 P(U1 > t) + · · ·+ P(Un > t),

for random variables U1, . . . , Un. In other words, the dependence in the probability δ

as
√

log(2δ ) in equation (1.10) is directly related to the term
√

logn (see exercise 1.22).

We will see a different dependence in n in section 8.1.2 for the maximum of the squared
norms of Gaussians.

Exercise 1.22 Assume that Z1, . . . , Zn are random variables that are sub-Gaussian with
constant τ2 and have zero means. Show that E

[
max{|Z1|, . . . , |Zn|}

]
6

√
2τ2 log(2n).

Prove the same result up to a universal constant using the tail bounds P(|Zi| > t) 6

2 exp(− t2

2τ2 ) together with the union bound, and the property E[|Y |] =
∫ +∞
0 P(|Y | > t)dt

for any random variable Y such that E[|Y |] exists.

Exercise 1.23 (��) Assume that Z1, . . . , Zn are independent Gaussian random vari-
ables with mean zero and variance σ2. Provide a lower bound for E[max{Z1, . . . , Zn}] of
the form c

√
logn for c > 0.

Exercise 1.24 Assume that Z1, . . . , Zn are sub-Gaussian random variables with common
sub-Gaussianity parameter τ , and potentially different means µ1, . . . , µn. For a fixed set
of nonnegative weights π1, . . . , πn that sum to 1, and δ ∈ (0, 1), show that with probability
greater than 1 − δ, for all i ∈ {1, . . . , n}, |zi − µi| 6 τ

√
2 log(1/πi) + τ

√
2 log(2/δ). If

ı̂ ∈ arg mini∈{1,...,n}
{
zi + τ

√
2 log(1/πi)

}
, show that with probability greater than 1 − δ,

µı̂ 6 mini∈{1,...,n}
{
µi + 2τ

√
2 log(1/πi)

}
+ 2τ

√
2 log(2/δ).

Exercise 1.25 (��) Consider a convex function f : Rd → R such that f(0) = 0 and f
is L-smooth with respect to the norm Ω; that is, f is continuously differentiable and for
all θ, η ∈ Rd, f(θ) 6 f(η) + f ′(η)⊤(θ − η) + L

2 Ω(θ − η)2. Let Zi ∈ Rd be independent



18 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Figure 1.1. Expectation of the maximum of n independent standard Gaussian random
variables. Left: illustration of the cumulative maximum max{Z1, . . . , Zn}. Middle: 10
samples of the cumulative maximum as a function of

√
logn. Right: mean and standard

deviations from 1,000 replications. Notice the linear growth in
√

log n, which is compatible
with our bounds.

zero-mean random vectors with E[Ω(Zi)
2] 6 σ2, for i = 1, . . . , n. Show by induction in n

that E[f(Z1 + · · ·+ Zn)] 6 nLσ
2

2 .

1.2.5 Estimation of Expectations through Quadrature (��)

In machine learning, the generalization error is an expectation of a function (the loss as-
sociated with a specific prediction function) of a random variable (the pair input/output).
This generalization error is naturally approximated by an empirical average given some
i.i.d. samples, with a convergence rate of O(1/

√
n) from n samples (as shown, e.g., from

Hoeffding’s inequality).

In this section, we briefly present quadrature methods whose aim is to estimate the
same expectation, but with potentially nonrandom observations. For simplicity, we con-
sider a random variable X uniformly distributed in [0, 1], and the task of computing the

expectation of a function f : [0, 1] → R (i.e., I = E[f(X)] =
∫ 1

0
f(x)dx), noting that

there are many variants of such methods (see, e.g., Davis and Rabinowitz, 1984; Brass
and Petras, 2011), and that these techniques extend to higher dimensions (Holtz, 2010).
Moreover, while we focus on equally spaced data in the interval, so-called “quasi-random”
methods lead to better convergence rates (Niederreiter, 1992).

We consider uniformly spaced grid points on [0, 1], as it can serve as an idealization of
random sampling when studying regression models, particularly in chapters 6 and 7. That
is, we consider xi = i

n for i ∈ {0, . . . , n} (with n + 1 points). The classical trapezoidal
rule considers the approximation

Î =
1

n

[1

2
f(x0) +

n−1∑

i=1

f(xi) +
1

2
f(xn)

]
=

1

2n

n∑

i=1

{
f(xi−1) + f(xi)

}
.

It corresponds to approximating f by its piecewise interpolant on [xi−1, xi] based on
values at {xi−1, xi} (see proof in exercise 1.26).



1.2. CONCENTRATION INEQUALITIES 19

The error |I − Î| then depends on the regularity of f . We have a decomposition of
the error as the integral between f and its piecewise affine interpolant:

I − Î =

n∑

i=1

(∫ xi

xi−1

f(x)dx− xi − xi−1

2

[
f(xi) + f(xi−1)

])

=

n∑

i=1

(∫ xi

xi−1

f(x)dx−
∫ xi

xi−1

{ xi − x
xi − xi−1

f(xi−1) +
x− xi−1

xi − xi−1
f(xi)

}
dx

)
.

If f is twice differentiable and has a second derivative bounded by L uniformly in ab-
solute value, then we have the bound (which can be obtained by Taylor’s formula; see
exercise 1.26):

|I − Î| 6

n∑

i=1

L

2

∫ xi

xi−1

(xi − x)(x − xi−1)dx =
n∑

i=1

L

12
(xi − xi−1)3 =

L

12n2
.

We thus have an error bound in O(1/n2) if we assume two bounded derivatives. We
typically get an error of O(1/ns) for such numerical integration methods if we assume s
bounded derivatives (with the appropriate rule, such as Simpson’s rule, which makes a
piecewise quadratic interpolation). See exercises 1.27 and 1.28.

Exercise 1.26 Consider a function g : [0, 1] → R. Show that the piecewise interpolant
based on values at {0, 1} equals g̃ : x 7→ (1 − x)g(0) + xg(1) and that its integral equals
1
2g(0) + 1

2g(1). Assuming g is twice differentiable with second-derivative bounded in mag-

nitude by L, show that for all x ∈ [0, 1], |g(x)− g̃(x)| 6 L
2 x(1− x).

Exercise 1.27 Show that the trapezoidal rule leads to an error in O(1/n) if we assume
only one bounded derivative.

Exercise 1.28 (�) Show that for 1-periodic functions, the trapezoidal rule leads to an
error in O(1/ns) if we assume s bounded derivatives.

1.2.6 Concentration Inequalities for Random Matrices (��)

As it turns out, the concentration inequalities that have been presented in this chapter
apply equally well to matrices with the positive semidefinite order. The following bounds
are adapted from Tropp (2012) and presented without proofs, with the following nota-
tions: λmax(M) denotes the largest eigenvalue of the symmetric matrix M ; in contrast,
‖M‖op denotes the largest singular value of a potentially rectangular matrix M , and
A 4 B if and only if B −A is positive semidefinite.

Proposition 1.6 (Matrix Hoeffding bound (Tropp, 2012, theorem 1.3)) Given
n independent symmetric matricesMi ∈ R

d×d, such that for all i ∈ {1, . . . , n}, E[Mi] = 0,
M2
i 4 C2

i almost surely, with σ2 = λmax

(
1
n

∑n
i=1 C

2
i

)
. Then for all t > 0,

P

(
λmax

(
1

n

n∑

i=1

Mi

)
> t

)
6 d · exp

(
− nt2

8σ2

)
.



20 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Proposition 1.7 (Matrix Bernstein bound (Tropp, 2012, theorem 1.4)) Given
n independent symmetric matricesMi ∈ Rd×d, such that for all i ∈ {1, . . . , n}, E[Mi] = 0,
λmax(Mi) 6 c almost surely, with σ2 = λmax

(
1
n

∑n
i=1 E[M2

i ]
)
. Then for all t > 0,

P

(
λmax

(
1

n

n∑

i=1

Mi

)
> t

)
6 d · exp

(
− nt2/2

σ2 + ct/3

)
.

We can make the following observations:

• Note the similarity with the corresponding bounds for scalar random variables when
d = 1. McDiarmid’s inequality can also be extended (Tropp, 2012, corollary 7.5).

• These bounds also apply to rectangular matrices Mi ∈ Rd1×d2 by considering the

symmetric matrices M̃i =
(

0 Mi

M⊤
i 0

)
∈ R(d1+d2)×(d1+d2), whose eigenvalues are plus

and minus the singular values of Mi; see section 1.1.4 and Stewart and Sun (1990,
theorem 4.2).

Exercise 1.29 Assume that the matrices Mi ∈ Rd1×d2 are independent, have zero mean,
and ‖Mi‖op 6 c almost surely for all i ∈ {1, . . . , n}. Show that

P

(∥∥∥∥
1

n

n∑

i=1

Mi

∥∥∥∥
op

> t

)
6 (d1 + d2) · exp

(
− nt2

8c2

)
.

Moreover, with σ2 = max
{
λmax

(
1
n

∑n
i=1M

⊤
i Mi

)
, λmax

(
1
n

∑n
i=1MiM

⊤
i

)}
, show that

P

(∥∥∥∥
1

n

n∑

i=1

Mi

∥∥∥∥
op

> t

)
6 (d1 + d2) · exp

(
− nt2/2

σ2 + ct/3

)
.

Infinite-dimensional covariance operators (��). As used within chapter 7, we will
need to extend the results given above, which depend on the underlying dimension, to
the notion of “intrinsic dimension,” which can still be finite if the underlying dimension
is infinite. That is, we have this bound from Minsker (2017, equation (3.9)):

Proposition 1.8 (Matrix Bernstein bound–intrinsic dimension) Given n indepen-
dent random bounded self-adjoint operators Mi on a Hilbert space, such that for all
i ∈ {1, . . . , n}, E[Mi] = 0, λmax(Mi) 6 c almost surely, and 1

n

∑n
i=1 E[M2

i ] 4 V . Then
for all t > 0,

P

(
λmax

(
1

n

n∑

i=1

Mi

)
> t

)
6 d ·

(
1 +

6

n2t4
(σ2 + ct/3)2

)
exp

(
− nt2/2

σ2 + ct/3

)
,

for σ2 > λmax(V ) and d = tr(V )
σ2 . When t > c

3n + σ√
n
, then we get the upper bound

7d exp
(
− nt2/2

σ2+ct/3

)
.



Chapter 2

Introduction to Supervised
Learning

Chapter Summary
• Decision theory (loss, risk, optimal predictors): What is the optimal prediction and

performance given infinite data and infinite computational resources?
• Statistical learning theory: When is an algorithm “consistent”?
• “No free lunch” theorems: Learning is impossible without making assumptions.

In this chapter, we present the supervised learning problem, which is the main object
of study in this book. After a short introduction highlighting the main motivating prac-
tical examples in section 2.1, the decision-theoretic probabilistic framework set forth in
section 2.2 provides the traditional mathematical formalization, with the notions of loss,
risk, and optimal predictor. This will precisely define the goals and evaluation standards
of machine learning that will be applied to the learning algorithms presented throughout
this book. Section 2.3 then presents the two main classes of learning algorithms: local
averaging techniques, and methods based on empirical risk minimization. Notions of
statistical consistencies are described in section 2.4; studying the consistency of learning
methods will be our main objective in this book: as shown in section 2.5 on “no free
lunch” theorems, no method can perform uniformly well, and assumptions have to be
made to obtain meaningful quantitative results, as shown in section 2.6. We conclude
this introductory chapter by presenting in section 2.7 classical extensions to the basic
supervised learning frameworks, and, in section 2.8, a summary and an outline of the
subsequent chapters of this book.

21



22 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

2.1 From Training Data to Predictions

Main goal. Given some observations (xi, yi) ∈ X × Y, i = 1, . . . , n, of inputs/outputs,
features/labels, covariates/responses (which are referred to as the “training data”), the
main goal of supervised learning is to predict a new y ∈ Y given a new previously unseen
x ∈ X. The unobserved data are usually referred to as the “testing data.”

△! There are few fundamental differences between machine learning and the branch of
statistics dealing with regression and its various extensions, particularly when providing
theoretical guarantees. The focus on algorithms and computational scalability is arguably
stronger within machine learning (but also exists in statistics). At the same time, the
emphasis on models and their interpretability beyond their predictive performance is more
prominent within statistics (but also exists in machine learning). See also the discussion
in section 4.7.

Examples. Supervised learning is used in many areas of science, engineering, and in-
dustry. There are thus many examples where X and Y can be very diverse:

• Inputs x ∈ X: They can be images, sounds, videos, text documents, proteins, se-
quences of DNA bases, web pages, social network activities, sensors from industry,
financial time series, etc. The set X may thus have a variety of structures that can
be leveraged. All learning methods that we present in this textbook will use at some
point a vector space representation of inputs, either by building an explicit mapping
from X to a vector space (such as Rd) or implicitly by using a notion of pairwise
dissimilarity or similarity between pairs of inputs. The choice of these representa-
tions is highly domain-dependent. However, we note that (1) common topologies
are encountered in many diverse areas (such as sequences or two-dimensional or
three-dimensional objects), and thus common tools are used, and (2) learning these
representations is an active area of research (see discussions in chapters 7 and 9).

In this textbook, we will primarily consider that inputs are d-dimensional vectors,
with d potentially large (up to 106 or 109).

• Outputs y ∈ Y: The most classical examples are binary labels Y = {0, 1} or
Y = {−1, 1}, multicategory classification problems with Y = {1, . . . , k}, and classical
regression with real responses/outputs Y = R. These will be the main examples that
we examine in most of the book. Note, however, that most of the concepts extend
to the more general structured prediction setup, where more general structured
outputs (e.g., graph prediction, visual scene analysis, source separation, ranking)
can be considered (see chapter 13).

Why is it difficult? Supervised learning is difficult (and thus interesting) for a variety
of reasons:

• The label y may not be a deterministic function of x: Given x ∈ X, the outputs
are noisy; that is, y is a random function of x. When y ∈ R, we will often make
the simplifying “additive noise” assumption that y = f(x)+ε with some zero-mean



2.1. FROM TRAINING DATA TO PREDICTIONS 23

noise ε, but in general, we only assume that there is a conditional distribution of y
given x. This stochasticity is typically due to diverging views between labelers or
dependence on random external unobserved quantities (i.e., y = f(x, z), with z
random and not observed, which is common, e.g., in medical applications, where
we need to predict a future occurrence of a disease based on limited information
about patients).

• The prediction function f may be quite complex, highly nonlinear when X is a
vector space, and even hard to define when X is not a vector space.

• Only a few x’s are observed: we thus need interpolation and potentially extrapo-
lation (see the following diagram for an illustration for X = Y = R), and therefore
overfitting (predicting well on the training data but not as well on the testing data)
is always a possibility.

Training data

Testing data
Interpolation

Extrapolation

x

y

Moreover, the training observations may not be uniformly distributed in X. In
this book, they will be assumed to be random, but some analyses will rely on
deterministically located inputs to simplify some theoretical arguments.

• The input space X may be very large (i.e., with high dimension when this is a vector
space). This leads to both computational issues (scalability) and statistical issues
(generalization to unseen data). One usually refers to this problem as the curse of
dimensionality.

• There may be a weak link between training and testing distributions. In other
words, the data at training time can have different characteristics than the data at
testing time.

• The criterion for performance is not always well defined.

Main formalization. Most modern theoretical analyses of supervised learning rely on a
probabilistic formulation; that is, we see (xi, yi) as a realization of random variables. The
criterion is to maximize the expectation of some performance measure with respect to the
distribution of the test data (in this book, maximizing the performance will be obtained
by minimizing a loss function). The main assumption is that the random variables
(xi, yi) are independent and identically distributed (i.i.d.) with the same distribution as
the testing distribution. In this book, we will ignore the potential mismatch between



24 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

train and test distributions (although this is an important research topic, as in most
applications, training data are not i.i.d. from the same distribution as the test data).

A machine learning algorithm A is then a function that goes from a dataset (i.e., an
element of (X× Y)n) to a function from X to Y. In other words, the output of a machine
learning algorithm is itself an algorithm.

Practical performance evaluation. In practice, we do not have access to the test
distribution but samples from it. In most cases, the data given to the machine learning
user are split into three parts:

• The training set, on which learning models will be estimated.

• The validation set, to estimate hyperparameters (all learning techniques have some)
to optimize the performance measure.

• The testing set, to evaluate the performance of the final chosen model:

Training Validation Testing

Available data

△! In theory, the test set can be used only once. In practice, this is unfortu-
nately only sometimes the case. If the test data are seen multiple times, the
estimation of the performance on unseen data is overestimated.

Cross-validation is often preferred, to use a maximal amount of training data and
reduce the variability of the validation procedure: the available data are divided into k
folds (typically k = 5 or 10), and all models are estimated k times, each time choosing a
different fold as validation data (see the pink data below), and averaging the k obtained
error measures. Cross-validation can be applied to any learning method, and its detailed
theoretical analysis is an active area of research (see Arlot and Celisse, 2010, and the
many references therein).

TestingAvailable data

“Debugging” a machine learning implementation is often an art: on top of commonly
found bugs, the learning method may not predict well enough with testing data. This



2.2. DECISION THEORY 25

is where theory can be useful to understand when a method is supposed to work or not.
This is the primary goal of this book.

Model selection. Most machine learning models have hyperparameters (e.g., regular-
ization weight, size of the model, number of parameters). To estimate them from data, the
common practical approach is to use validation approaches like those highlighted thus
far. It is also possible to use penalization techniques based on generalization bounds.
These two approaches are analyzed in section 4.6.

Random design versus fixed design. What we have described is often referred to as
the “random design” setup in statistics, where both x and y are assumed to be random
and sampled i.i.d. It is common to simplify the analysis by considering that the input
data x1, . . . , xn are deterministic, either because they are actually deterministic (e.g.,
equally spaced in the input space X) or by conditioning on them if they are actually
random. This will be referred to as the “fixed design” setting and studied precisely in
the context of least-squares regression in chapter 3.

In the context of fixed design analysis, the error is evaluated “within-sample” (i.e.,
for the same input points x1, . . . , xn, but over new associated outputs). This explic-
itly removes the difficulty of extrapolating to new inputs, hence a simplification in the
mathematical analysis.

2.2 Decision Theory

Main question. In this section, we tackle the following question: What is the optimal
performance, regardless of the finiteness of the training data? In other words, what should
be done if we have a perfect knowledge of the underlying probability distribution of the
data? We will thus introduce the concepts of loss function, risk, and Bayes predictor.

We consider a fixed (testing) distribution p(x,y) on X × Y, with marginal distribu-
tion p(x) on X. Note that we make no assumptions at this point on the input space X.

△! We will almost always use the overloaded notation p, to denote p(x,y) and p(x), where
the context can always make the definition unambiguous. For example, when f : X→ R

and g : X×Y→ R, we have E[f(x)] =
∫
X
f(x)dp(x) and E[g(x, y)] =

∫
X×Y

g(x, y)dp(x, y).

△! We ignore measurability issues on purpose. The interested reader can look at Christ-
mann and Steinwart (2008) for a more formal presentation.

2.2.1 Supervised Learning Problems and Loss Functions

We consider a loss function ℓ : Y × Y → R (often R+), where ℓ(y, z) is the loss of
predicting z while the true label is y.

△! Some authors swap y and z in the definition of the loss.



26 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

△! Some related research communities (e.g., economics) use the concept of “utility,”
which is then maximized.

The loss function only concerns the output space Y independent of the input space X.
The main examples are as follows, each corresponding to a particular supervised learning
problem (note that for each problem, different losses may be considered):

• Binary classification: Y = {0, 1} (or often Y = {−1, 1}, or, less often, when
seen as a subcase of the multicategory situation below, Y = {1, 2}); the “0–1 loss”
defined as ℓ(y, z) = 1y 6=z is the most commonly used; that is, 0 if y is equal to z
(no mistake), and 1 otherwise (mistake).

△! It is very common to mix the two conventions Y= {0, 1} and Y= {−1, 1}:
double-check which convention is used when using toolboxes.

• Multicategory classification: Y = {1, . . . , k}, and ℓ(y, z) = 1y 6=z (0–1 loss).

• Regression: Y = R and ℓ(y, z) = (y−z)2 (square loss). The absolute loss ℓ(y, z) =
|y − z| is often used for robust estimation (since the penalty for large errors is
smaller).

• Structured prediction: while this textbook focuses primarily on the three ex-
amples above, there are many practical problems where Y is more complicated,
with associated algorithms and theoretical results. For example, when Y = {0, 1}k
(leading to multilabel classification), the Hamming loss ℓ(y, z) =

∑k
j=1 1yj 6=zj is

commonly used; also, ranking problems involve losses on permutations. See chap-
ter 13 for a detailed treatment.

Throughout this textbook, we will assume that the loss function is given to us. Note
that in practice, the final user imposes the loss function, as this is how models will be
evaluated. Clearly, a single real number may not be enough to characterize the entire
prediction behavior. For example, in binary classification, there are two types of errors,
false positives and false negatives, which can be considered simultaneously. Since we now
have two performance measures, we typically need a curve to characterize the performance
of a prediction function. This is precisely what receiver operating characteristic (ROC)
curves are achieving (see, e.g., Bach et al., 2006, and references therein). For simplicity,
we stick to a single loss function ℓ in this book.

△! While the loss function ℓ will be used to define the generalization performance in
section 2.2.2, for computational reasons, learning algorithms may explicitly minimize a
different (but related) loss function, with better computational properties. This loss
function used in training is often called a “surrogate.” This will be studied in the context
of binary classification in section 4.1, and more generally for structured prediction in
chapter 13.



2.2. DECISION THEORY 27

2.2.2 Risks

Given the loss function ℓ : Y×Y→ R, we can define the expected risk (also referred to as
generalization error, or testing error) of a function f : X → Y, as the expectation of the
loss function between the output y and the prediction f(x).

Definition 2.1 (Expected risk) Given a prediction function f : X→ Y, a loss function
ℓ : Y× Y→ R, and a probability distribution p on X× Y, the expected risk of f is defined
as

R(f) = E
[
ℓ(y, f(x))

]
=

∫

X×Y

ℓ(y, f(x))dp(x, y).

The risk depends on the distribution p on (x, y). We sometimes use the notation Rp(f)
to make it explicit. The expected risk is our main performance criterion in this textbook.

△!
Be careful with the randomness, or lack thereof, of f : when performing learn-
ing from data, f will depend on the random training data, not on the testing
data, and thus R(f) is typically random because of the dependence on the
training data. However, as a function on functions, the expected risk R is
deterministic.

Note that sometimes we consider random predictions; that is, for any x, we output a
distribution on y, and then the risk is taken as the expectation over the randomness of
the outputs.

Averaging the loss on the training data defines the empirical risk, or training error.

Definition 2.2 (Empirical risk) Given a prediction function f : X → Y, a loss func-
tion ℓ : Y × Y → R, and data (xi, yi) ∈ X × Y, i = 1, . . . , n, the empirical risk of f is
defined as

R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi)).

Note that R̂ is a random function on functions (and is often applied to random functions,
with dependent randomness as both will depend on the training data).

Special cases. For the classical losses defined earlier, the expected and empirical risks
have specific formulations:

• Binary classification: Y = {0, 1} (or often Y = {−1, 1}), and ℓ(y, z) = 1y 6=z (0–1
loss). We can express the risk as R(f) = P(f(x) 6= y). This is simply the probability
of making a mistake on the testing data (error rate), while the empirical risk is the
proportion of mistakes on the training data.

△! In practice, the accuracy, which is 1 minus the error rate, is often reported.

• Multicategory classification: Y = {1, . . . , k}, and ℓ(y, z) = 1y 6=z (0–1 loss). We
can also express the risk as R(f) = P(f(x) 6= y). This is also the probability of
making a mistake (error rate).



28 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

• Regression: Y = R and ℓ(y, z) = (y − z)2 (square loss). The risk is then equal to
R(f) = E

[
(y − f(x))2

]
, often referred to as “mean squared error.”

2.2.3 Bayes Risk and Bayes Predictor

Now that we have defined the performance criterion for supervised learning (the expected
risk), the main question we tackle here is: What is the best prediction function f (re-
gardless of the training data)?

Using the conditional expectation and its associated law of total expectation, we have

R(f) = E
[
ℓ(y, f(x))

]
= E

[
E[ℓ(y, f(x))|x]

]
,

which we can rewrite, for a fixed x′ ∈ X:

R(f) = Ex′∼p
[
E
[
ℓ(y, f(x′))|x = x′

]]
=

∫

X

E
[
ℓ(y, f(x′))|x = x′

]
dp(x′).

△! To distinguish between the random variable x and a value it may take, we use the
notation x′.

From the conditional distribution given any x′ ∈ X (i.e., y|x = x′), we can define the
conditional risk for any z ∈ Y (it is a deterministic function of z and x′):

r(z|x′) = E
[
ℓ(y, z)|x = x′

]
,

which leads to

R(f) =

∫

X

r(f(x′)|x′)dp(x′).

To find a minimizing function f : X → R, let us first assume that the set X is finite: in
this situation, the risk can be expressed as a sum of functions that depends on a single
value of f ; that is, R(f) =

∑
x′∈X

r(f(x′)|x′)P(x=x′). Therefore, we can minimize with
respect to each f(x′) independently. Therefore, a minimizer of R(f) can be obtained by
considering for any x′ ∈ X, the function value f(x′) to be equal to a minimizer z ∈ Y of
r(z|x′) = E

[
ℓ(y, z)|x = x′

]
. This extends beyond finite sets, as shown next.

△! Minimizing the expected risk with respect to a function f in a restricted set does not
lead to such decoupling.

Proposition 2.1 (Bayes predictor and Bayes risk) The expected risk is minimized
at a Bayes predictor f∗ : X→ Y, satisfying for all x′ ∈ X,

f∗(x′) ∈ arg min
z∈Y

E
[
ℓ(y, z)|x = x′

]
= arg min

z∈Y

r(z|x′). (2.1)

The Bayes risk R∗ is the risk of all Bayes predictors and is equal to

R∗ = Ex′∼p
[

inf
z∈Y

E
[
ℓ(y, z)|x = x′

]]
.



2.2. DECISION THEORY 29

Proof We have R(f)−R∗ = R(f)−R(f∗) =

∫

X

[
r(f(x′)|x′)−min

z∈Y
r(z|x′)

]
dp(x′), which

shows the proposition.

Note that (1) the Bayes predictor is not always unique, but that all lead to the same
Bayes risk (e.g., in binary classification when P(y = 1|x) = 1/2); and (2) that the Bayes
risk is usually nonzero (unless the dependence between x and y is deterministic). Given
a supervised learning problem, the Bayes risk is the optimal performance; we define the
excess risk as the deviation with respect to the optimal risk.

Definition 2.3 (Excess risk) The excess risk of a function f : X → Y is equal to
R(f)− R∗ (it is always nonnegative).

Therefore, machine learning could be seen trivial: given the distribution y|x for any x,
the optimal predictor is known and given by equation (2.1). The difficulty will be that
this distribution is unknown.

Special cases. For our usual set of losses, we can compute the Bayes predictors in
closed form as follows:

• Binary classification: the Bayes predictor for Y = {−1, 1} and ℓ(y, z) = 1y 6=z is
such that

f∗(x′) ∈ arg min
z∈{−1,1}

P(y 6= z|x = x′) = arg min
z∈{−1,1}

1− P(y = z|x = x′)

= arg max
z∈{−1,1}

P(y = z|x = x′).

The optimal classifier will select the most likely class given x′. Using the notation
η(x′) = P(y = 1|x = x′), then, if η(x′) > 1/2, f∗(x′) = 1, while if η(x′) < 1/2,
f∗(x′) = −1. What happens for η(x′) = 1/2 is irrelevant, as the expected error is
the same for the two potential predictions.

The Bayes risk is then equal to R∗ = E
[

min{η(x), 1 − η(x)}
]
, which in general

is strictly positive (unless η(x) ∈ {0, 1} almost surely–that is, y is a deterministic
function of x).

This extends directly to multiple categories Y = {1, . . . , k}, for k > 2, where we
have f∗(x′) ∈ arg max

i∈{1,...,k}
P(y = i|x = x′).

△! These Bayes predictors and risks are valid only for the 0–1 loss. Less symmetric
losses are common in applications (e.g., for spam detection) and would lead to
different formulas (see exercise 2.1 and chapter 13).



30 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

• Regression: the Bayes predictor for Y = R and ℓ(y, z) = (y − z)2 is such that1

f∗(x′) ∈ arg min
z∈R

E
[
(y − z)2|x = x′

]

= arg min
z∈R

{
E
[
(y − E[y|x = x′])2|x = x′

]
+ (z − E[y|x = x′])2

}
.

This leads to the conditional expectation f∗(x′) = E[y|x = x′], with a Bayes risk
equal to the expected conditional variance.

Exercise 2.1 Consider binary classification with Y = {−1, 1} with the loss function
ℓ(−1,−1) = ℓ(1, 1) = 0 and ℓ(−1, 1) = c− > 0 (cost of a false positive), ℓ(1,−1) = c+ > 0
(cost of a false negative). Compute a Bayes predictor at x as a function of E[y|x].

Exercise 2.2 We consider a learning problem on X × Y, with Y = R and the absolute
loss defined as ℓ(y, z) = |y − z|. Compute a Bayes predictor f∗ : X→ R.

Exercise 2.3 We consider a learning problem on X × Y, with Y = R and the “pinball”
loss ℓ(y, z) = α(y − z)+ + (1 − α)(z − y)+, for α ∈ (0, 1). Compute a Bayes predictor
f∗ : X→ R. Provide an interpretation in terms of quantiles.

Exercise 2.4 (�) Characterize Bayes predictors for regression with the “ε-insensitive”
loss defined as ℓ(y, z) = max{0, |y − z| − ε}. If for each x, y is supported in an interval
of length less than 2ε, what are the Bayes predictors?

Exercise 2.5 (Inverting predictions) Consider the binary classification problem with
Y = {−1, 1} and the 0–1 loss. Relate the risk of a prediction f to that of its opposite −f .

Exercise 2.6 (“Chance” predictions) Consider binary classification problems with
the 0–1 loss. What is the risk of a random prediction rule where we predict the two
classes with equal probabilities independent of input x? Address the same question with
multiple categories.

Exercise 2.7 (�) Consider a random prediction rule where we predict from the proba-
bility distribution of y given x. When is this achieving the Bayes risk?

2.3 Learning from Data

The decision theory framework outlined in section 2.2, with notations summarized in
table 2.1, gives a test performance criterion and optimal predictors, but it depends on
the full knowledge of the test distribution p. We now briefly review how we can obtain
good prediction functions from training data; that is, data sampled i.i.d. from the same
distribution.

1We use the law of total variance: E[(y − a)2] = var(y) + (E[y] − a)2 for any random variable y and
constant a ∈ R, which can be shown by expanding the square.



2.3. LEARNING FROM DATA 31

Table 2.1. Summary of notions and notations presented in this chapter and used through-
out this book.

X Input space
Y Output space
p Joint distribution on X× Y

(x1, y1, . . . , xn, yn) Training data
f : X→ Y Prediction function
ℓ(y, z) Loss function between output y and prediction z
R(f) = E[ℓ(y, f(x))] Expected risk of prediction function f

R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)) Empirical risk of prediction function f

f∗(x′) = arg minz∈Y E[ℓ(y, z)|x = x′] Bayes prediction at x′

R∗ = Ex′∼p infz∈Y E[ℓ(y, z)|x = x′] Bayes risk

Two main classes of prediction algorithms will be studied in this textbook:

(1) Local averaging (chapter 6).

(2) Empirical risk minimization (chapters 3, 4, 7, 8, 9, 11, 12, and 13).

Note that there are prediction algorithms that do not fit precisely into one of these two
categories, such as boosting or ensemble classifiers (which perform several empirical risk
minimizations, in series or parallel, see chapter 10). Moreover, some situations do not
fit the classical i.i.d. framework, such as in online learning (see chapter 11). Finally, we
consider probabilistic methods in chapter 14, which rely on a different principle.

2.3.1 Local Averaging

The goal here is to approximate/emulate the Bayes predictor (e.g., f∗(x′) = E[y|x = x′]
for least-squares regression, or f∗(x′) = arg maxz∈Y P(y = z|x = x′) for classification with
the 0–1 loss) from empirical data. This is often done by explicit or implicit estimation of
the conditional distribution by local averaging (k-nearest neighbors, which is used as the
primary example for this chapter; Nadaraya-Watson estimators; or decision trees). We
briefly outline here the main properties for one instance of these algorithms; see chapter 6
for details.

The k-nearest-neighbor classifier. Given n observations (x1, y1), . . . , (xn, yn) where
X is a metric space and Y ∈ {−1,+1}, a new point xtest is classified by a majority vote
among the k-nearest neighbors of xtest.

We consider the 3-nearest-neighbor classifier on a particular testing point (which will
be predicted as 1):



32 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

Class −1

Class +1

Testing point

• Pros: (1) no optimization or training, (2) often easy to implement, and (3) can get
very good performance in low dimensions (in particular for nonlinear dependences
between x and y).

• Cons: (1) slow at query time: must pass through all training data at each testing
point (there are algorithmic tools to reduce complexity; see chapter 6); (2) bad
for high-dimensional data (because of the curse of dimensionality; more on this in
chapter 6); (3) the choice of local distance function is crucial; and (4) the choice of
width hyperparameters (or k) has to be performed.

• Plot of training errors and testing errors as functions of k for a typical problem.
When k is too large, there is underfitting (the learned function is too close to a
constant, which is too simple), while for k too small, there is overfitting (there is a
strong discrepancy between the testing and training errors).

k

Errors

1 n

Test

Train

Underfitting

Overfitting

◦ Exercise 2.8 How would the curve move when n increases (assuming the same
balance between classes)?

2.3.2 Empirical Risk Minimization

Consider a parameterized family of prediction functions (often referred to as models)
fθ : X → Y for θ ∈ Θ (typically a subset of a vector space). This class of learning
methods aims at minimizing the empirical risk with respect to θ ∈ Θ:

R̂(fθ) =
1

n

n∑

i=1

ℓ(yi, fθ(xi)).

This defines an estimator θ̂ ∈ arg min
θ∈Θ

R̂(fθ), and thus a prediction function fθ̂ : X→ Y.

The most classic example is linear least-squares regression (studied thoroughly in
chapter 3), where we minimize 1

n

∑n
i=1(yi − θ⊤ϕ(xi))

2, and f is linear in some feature



2.3. LEARNING FROM DATA 33

vector ϕ(x) ∈ Rd (there is no need for X to be a vector space). The vector ϕ(x) can
be quite large (or even implicit, like in kernel methods; see chapter 7). Other examples
include neural networks (chapter 9).

• Pros: (1) can be relatively easy to optimize (e.g., least-squares with its simple
derivation and numerical algebra; see chapter 3), many algorithms are available
(primarily based on gradient descent; see chapter 5); and (2) can be applied in any
dimension (if a suitable feature vector is available).

• Cons: (1) can be relatively hard to optimize when the optimization formulation
is not convex (e.g., neural networks); (2) need a suitable feature vector for linear
methods; (3) the dependence on parameters can be complex (e.g., neural networks);
(4) need some capacity control to avoid overfitting; and (5) require to parameterize
functions with values in {0, 1} (see chapter 4 for the use of convex surrogates).

Risk decomposition. The material in this section will be studied further in more
detail in chapter 4.

• Risk decomposition in estimation error + approximation error: given any θ̂ ∈ Θ,
we can write the excess risk of fθ̂ as

R(fθ̂)− R∗ =
{
R(fθ̂)− inf

θ′∈Θ
R(fθ′)

}
+
{

inf
θ′∈Θ

R(fθ′)− R∗
}

= estimation error + approximation error.

The approximation error
{

infθ′∈Θ R(fθ′)−R∗} is always nonnegative, does not de-
pend on the chosen fθ̂, and depends only on the class of functions parameterized by
θ ∈ Θ. It is thus always a deterministic quantity, which characterizes the modeling
assumptions made by the chosen class of functions. When Θ grows, the approxima-
tion error goes down to zero if arbitrary functions can be approximated arbitrarily
well by functions fθ. It is also independent of the number n of observations.

The estimation error
{
R(fθ̂) − infθ′∈Θ R(fθ′)

}
is also always nonnegative and is

typically random because the function fθ̂ is random. It typically decreases in n and
increases when Θ grows.

Overall, the typical error curves look like this:

“Size” of Θ

Errors

Test

Train

OverfittingUnderfitting

• Typically, we will see in later chapters that the estimation error is often decomposed



34 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

as follows, for θ′ a minimizer on Θ of the expected risk R(fθ′):

R(fθ̂)− R(fθ′) =
{
R(fθ̂)− R̂(fθ̂)

}
+
{
R̂(fθ̂)− R̂(fθ′)

}
+
{
R̂(fθ′)− R(fθ′)

}

6 2 sup
θ∈Θ

∣∣R̂(fθ)− R(fθ)
∣∣ + empirical optimization error,

where the empirical optimization error is supθ∈Θ

{
R̂(fθ̂) − R̂(fθ)

}
(it is equal to

zero for exact empirical risk minimizers, but it is not when using the optimiza-
tion algorithms from chapter 5 in practice). The uniform deviation defined as

supθ∈Θ

∣∣R̂(fθ)−R(fθ)
∣∣ grows with the “size” of Θ (e.g., number or norm of param-

eters), and usually decays with n. See more details in chapter 4.

Capacity control. To avoid overfitting, we need to make sure that the set of allowed
functions is not too large by typically reducing the number of parameters or by restricting
the norm of predictors (thus by lowering the “size” of Θ): this leads to constrained
optimization and still allows for risk decompositions as done previously.

Capacity control can also be done by regularization; that is, by minimizing

R̂(fθ) + λΩ(θ) =
1

n

n∑

i=1

ℓ(yi, fθ(xi)) + λΩ(θ),

where Ω(θ) controls the complexity of fθ. The main example is ridge regression:

min
θ∈Rd

1

n

n∑

i=1

(yi − θ⊤ϕ(xi))
2 + λ‖θ‖22.

Regularization is often easier for optimization but harder to analyze (see chapters 4
and 5).

△! There is a difference between parameters (e.g., θ) learned on the training data
and hyperparameters (e.g., λ) estimated on the validation data.

Examples of approximations by polynomials in one-dimensional regression.
We consider (x, y) ∈ R × R, with prediction functions that are polynomials of order k,
from k = 0 (constant functions) to k = 14 (this corresponds to linear regression with
fθ(x) of the form θ⊤ϕ(x), where ϕ(x) = (1, x, . . . , xk)⊤ ∈ Rk+1). For each k, the model
has k + 1 parameters. The training error (using square loss) is minimized with n = 20
observations. The data were generated with inputs uniformly distributed on [−1, 1] and
outputs as the quadratic function f(x) = x2 − 1

2 of the inputs plus some independent
additive noise (Gaussian with standard deviation 1/4). As shown in figures 2.1 and 2.2,
the training error monotonically decreases in k while the testing error goes down and
then up. Note the strong overfitting when k is large (third row in figure 2.1).



2.3. LEARNING FROM DATA 35

Figure 2.1. Polynomial regression with increasing orders k. Plots of estimated functions
in red, with training and testing errors. The Bayes prediction function f∗(x) = E[y|x] is
plotted in blue (it is the same for all plots).

Figure 2.2. Polynomial regression with increasing orders. Plots of training and testing
errors with error bars (computed as standard deviations obtained from 32 replications),
together with the Bayes error. Note that the variance is increasing with the order k.



36 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

2.4 Statistical Learning Theory

The goal of learning theory is to provide some guarantees of performance on unseen data
given some properties of the learning problem. A common assumption is that the data
Dn(p) = {(x1, y1), . . . , (xn, yn)} are obtained as i.i.d. observations from some unknown
distribution p from some family P. The family P of probability distributions on (x, y)
encapsulates the properties of the learning problem and one may consider conditions on
the distributions of inputs or on the conditional distributions of outputs given inputs.

As seen earlier, algorithm A is a mapping from Dn(p) (for any n) to a function from
X to Y. The expected risk depends on the probability distribution p ∈ P, as Rp(f). The
goal is to find A such that the excess expected risk

Rp
(
A(Dn(p))

)
− R∗

p

is small, where R∗
p is the Bayes risk (which depends on the joint distribution p), assuming

that Dn(p) is sampled from p, but without knowing which p ∈ P is considered. Moreover,
the risk is random because Dn(p) is random.

2.4.1 Measures of Performance

There are several ways of dealing with the randomness of the expected risk of the estimator
to obtain a criterion:

• Expected error : we measure performance as

E
[
Rp

(
A(Dn(p))

)]
,

where the expectation is with respect to the training data. Algorithm A is called
consistent in expectation for distribution p, if

E
[
Rp

(
A(Dn(p))

)]
− R∗

p

goes to zero when n tends to infinity. In this book, we will primarily use this notion
of consistency.

• Probably approximately correct (PAC) learning: for a given δ ∈ (0, 1) and ε > 0:

P

(
Rp

(
A(Dn(p))

)
− R∗

p 6 ε
)
> 1− δ.

The goal of learning theory in this framework is then to find an ε that is as small
as possible (typically as a function of δ and n). The notion of PAC consistency
corresponds, for any ε > 0, to have such an inequality for each n and a sequence δn
that tends to zero.

2.4.2 Notions of Consistency over Classes of Problems

An algorithm is called universally consistent (in expectation) if for all probability distri-
butions p = p(x,y) on (x, y), algorithm A is consistent in expectation for the distribution p.



2.4. STATISTICAL LEARNING THEORY 37

△! Be careful with the order of quantifiers: the convergence speed of the excess risk to-
ward zero will depend on p. See the “no free lunch” theorem in section 2.5 that highlights
that having a uniform rate over all distributions is hopeless.

Most often, we want to study uniform consistency within a class P of distributions
satisfying some regularity properties (e.g., the inputs live in a compact space or the de-
pendence between y and x has at most some complexity, e.g., linear in some feature vector
or with a certain number of bounded derivatives). We thus aim at finding algorithm A

such that

sup
p∈P

{
E
[
Rp

(
A(Dn(p))

)]
− R∗

p

}

is as small as possible. The so-called minimax risk is equal to

inf
A

sup
p∈P

{
E
[
Rp

(
A(Dn(p))

)]
− R∗

p

}
.

This is typically a function of the sample size n and parameters that are characteristic of
X, Y and the allowed set of problems P (e.g., dimension of X, model size). To compute
estimates of the minimax risk, several techniques exist:

• Upper-bounding the optimal excess risk: one given algorithm with a convergence
proof provides an upper bound. This is the main focus of this book.

• Lower-bounding the optimal excess risk: in some setups, it is possible to show that
the infimum over all algorithms is greater than a certain quantity. See chapter 15
for a description of techniques to obtain such lower bounds. Machine learners are
happy when upper bounds and lower bounds match (up to constant factors).

Nonasymptotic versus asymptotic analysis. Theoretical results in learning theory
can be nonasymptotic, with an upper bound with explicit dependence on all quantities;
the bound is then valid for all n, even if it is sometimes vacuous (e.g., a bound greater
than 1 for a loss uniformly bounded by 1).

The analysis can also be asymptotic, where, for example, n goes to infinity and limits
are taken. Alternatively, several quantities can be made to grow simultaneously, which
is common in random matrix theory, where dimension d of the features and number n of
observations both tend to infinity, with a ratio tending to a constant (see, e.g., Potters
and Bouchaud, 2020). See also the discussion in section 4.7.

△!
The key aspect here is (arguably) how these rates depend on the problem.
Specifically, the choice of in expectation versus in high probability, or asymp-
totic versus nonasymptotic, does not really matter as long as the problem
parameters explicitly appear.



38 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

2.5 “No Free Lunch” Theorems (�)

Although it may be tempting to define the optimal learning algorithm that works opti-
mally for all distributions, this is impossible. In other words, learning is only possible
with assumptions. See chapter 7 of Devroye et al. (1996) for more details.

Proposition 2.2 shows that for any algorithm, for a fixed n, there is a data distribution
that makes the algorithm useless (with a risk that is the same as the chance level).

Proposition 2.2 (No free lunch–fixed n) Consider binary classification with 0–1 loss
and X infinite. Let P denote the set of all probability distributions on X×{0, 1}. For any
n > 0 and any learning algorithm A,

sup
p∈P

{
E
[
Rp

(
A(Dn(p))

)]
− R∗

p

}
> 1/2.

Proof (��) Let k be a positive integer. Without loss of generality, we can assume that
N ⊂ X. The main ideas of the proof are (1) to construct a probability distribution
supported on k elements in N, where k is large compared to n (which is fixed), and to
show that the knowledge of n labels does not imply doing well on all k elements, and (2)
to choose parameters of this distribution (the binary vector r defined next) with largest
possible expected risk and compare this worst performance to the performance obtained
by a random choice of parameters.

Given r ∈ {0, 1}k, we define the joint distribution p on (x, y) such that we have
P(x = j, y = rj) = 1/k for j ∈ {1, . . . , k}; that is, for x, we choose one of the first k
elements uniformly at random, and then y is selected deterministically as y = rx. Thus,
the Bayes risk is zero (because there is a deterministic relationship): R∗

p = 0.

Denoting f̂Dn = A(Dn(p)) as the classifier, and S(r) = E
[
Rp(f̂Dn)

]
as the expectation

of the expected risk, we want to maximize S(r) with respect to r ∈ {0, 1}k; the maximum
is greater than the expectation of S(r) for any probability distribution q on r, in particular
the uniform distribution (each rj being an independent unbiased Bernoulli variable).
Then

max
r∈{0,1}k

S(r) > Er∼q[S(r)]

= P(f̂Dn(x) 6= y) = P(f̂Dn(x) 6= rx),

because y = rx almost surely. Note that we take expectations and probabilities with
respect to x1, . . . , xn, x, and r (all being independent of each other).

Then we get, using that Dn(p) = {x1, rx1 , . . . , xn, rxn},

Er∼q[S(r)] = P(f̂Dn(x) 6= rx)

= E
[
P
(
f̂Dn(x) 6=rx

∣∣x1, . . . , xn, rx1 , . . . , rxn

)]
by the law of total expectation,

> E
[
P
(
f̂Dn(x) 6= rx & x /∈ {x1, . . . , xn}

∣∣x1, . . . , xn, rx1 , . . . , rxn

)]

by monotonicity of probabilities,

= E

[1

2
P
(
x /∈ {x1, . . . , xn}

∣∣x1, . . . , xn, rx1 , . . . , rxn

)]
,



2.6. QUEST FOR ADAPTIVITY 39

because P
(
f̂Dn(x) 6= rx

∣∣x /∈ {x1, . . . , xn}, x1, . . . , xn, rx1 , . . . , rxn

)
= 1/2 (the label y = rx

has the same probability of being 0 or 1, i.e., a random guess, given that x was not
observed). Thus,

Er∼q[S(r)] >
1

2
P
(
x /∈ {x1, . . . , xn}

)
=

1

2
E

[ n∏

i=1

P(xi 6= x|x)
]

=
1

2

(
1− 1/k

)n
.

Given n, we can let k tend to infinity to conclude.

A caveat of proposition 2.2 is that the hard distribution used in the proof above may
depend on n (from the proof, it takes k values, with k tending to infinity fast enough
compared with n). The following proposition (theorem 7.2 from Devroye et al., 1996) is
given without proof; it is much “stronger,” as it more convincingly shows that learning
can be arbitrarily slow without assumption (note that the earlier one is not a corollary
of the later one).

Proposition 2.3 (No free lunch–sequence of errors) Consider a binary classifica-
tion problem with the 0–1 loss, with X infinite. Let P denote the set of all probability
distributions on X×{0, 1}. For any decreasing sequence an tending to zero and such that
a1 6 1/16, for any learning algorithm A, there exists p ∈ P such that for all n > 1:

E
[
Rp

(
A(Dn(p))

)]
− R∗

p > an.

2.6 Quest for Adaptivity

As seen in section 2.5, no method can be universal and achieve a good convergence rate
on all problems. However, such negative results consider classes of problems that are
arbitrarily large. In this textbook, we will consider reduced sets of learning problems by
considering X = Rd and putting restrictions on the target function f∗ based on smoothness
and/or dependence on an unknown low-dimensional projection. That is, the most general
set of functions will be the set of Lipschitz-continuous functions, for which the optimal
rate will be essentially proportional to O(n−1/d), typical of the curse of dimensionality (as
the required number n of observations to reach a given precision is exponential in d). No
method can beat this–not k-nearest-neighbors, not kernel methods, and not even neural
networks (see lower bounds on performance in chapter 15).

When the target function is smoother (i.e., with all derivatives up to orderm bounded),
then we will see that kernel methods (chapter 7) and neural networks (chapter 9), with the
proper choice of the regularization parameter, will lead to the optimal rate of O(n−m/d).

When the target function moreover depends only on an r-dimensional linear projec-
tion, neural networks (if the optimization problem is solved correctly) will have the extra
ability to lead to rates of the form O(n−m/r) instead of O(n−m/d). This is not the case
for kernel methods (see chapter 9).

Note that another form of adaptivity, which is often considered, may apply in situa-
tions where the input data lie on a submanifold of Rd (e.g., an affine subspace), where



40 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

for most methods presented in this textbook, adaptivity is obtained. In the convergence
rate, d can be replaced by the dimension of the subspace (or submanifold) where the data
live. For more, see Kpotufe (2011) for k-nearest neighbors, and Hamm and Steinwart
(2021) for kernel methods.

See more details in https://francisbach.com/quest-for-adaptivity/, as well as chap-
ters 7 and 9 for detailed results regarding adaptivity for kernel methods and neural
networks.

2.7 Beyond Supervised Learning

This textbook focuses primarily on the traditional supervised learning paradigm, with
i.i.d. data and where the training and testing distributions match. Many applications
require extensions to this basic framework, which also lead to many interesting theoretical
developments that are out of scope. Next, we present briefly some of these extensions,
with references for further reading.

Unsupervised learning. While in supervised learning, both inputs and outputs (e.g.,
labels) are observed, and the main goal is to model how the output depends on the input,
in unsupervised learning only inputs are given. The goal is then to find some structure
within the data– for example, an affine subspace around which the data live for principal
component analysis (PCA, studied in section 3.9), the separation of the data in several
groups (for clustering), or the identification of an explicit latent variable model (such as
with matrix factorization). The new representation of the data is typically either used
for visualization (then, with two or three dimensions), or for reducing dimension before
applying a supervised learning algorithm.

While supervised learning relied on an explicit decision-theoretic framework, it is not
always clear how to characterize performance and perform evaluation in unsupervised
learning; each method typically has an ad hoc empirical criterion, such as reconstruction
of the data, full or partial (like in self-supervised learning); or log-likelihood when prob-
abilistic models are used (see chapter 14), in particular graphical models (Bishop, 2006;
Murphy, 2012). Often, intermediate representations are used for subsequent processing
(see, e.g., Goodfellow et al., 2016).

Theoretical guarantees can be obtained for the sampling behavior and recovery of spe-
cific structures when assumed (e.g., for clustering or dimension reduction), with a variety
of results in manifold learning, matrix factorization methods such as K-means, PCA, or
sparse dictionary learning (Mairal et al., 2014), outlier/novelty detection (Pimentel et al.,
2014), or independent component analysis (Hyvärinen et al., 2001).

Semisupervised learning. This is the intermediate situation between supervised and
unsupervised, with typically a few labeled examples and typically many unlabeled exam-
ples. Several frameworks exist based on various assumptions (Chapelle et al., 2010; van
Engelen and Hoos, 2020).

https://francisbach.com/quest-for-adaptivity/


2.8. SUMMARY–BOOK OUTLINE 41

Active learning. This is a similar setting to semisupervised learning, but the user
can choose which unlabeled point to label to maximize performance once new labels are
obtained. The selection of samples to label is often done by computing some form of
uncertainty estimation on the unlabeled data points (see, e.g., Settles, 2009).

Online learning. Mostly in a supervised setting, this framework allows us to go beyond
the training/testing splits, where data are acquired and predictions are made on the fly,
with a criterion that takes into account the sequential nature of learning. See Cesa-
Bianchi and Lugosi (2006), Hazan (2022), and chapter 11.

Reinforcement learning. On top of the sequential nature of learning already present
in online learning, predictions may influence the future sampling distributions; for exam-
ple, in situations where some agents interact with an environment (Sutton and Barto,
2018), with algorithms relying on similar concepts to optimal control (Liberzon, 2011).

Generative modeling. A key task in computer vision or natural language processing is
to generate images or text documents based on simple “prompts.” Here, the goal is often
not to give an output that minimizes some loss, but rather to sample from a distribution
that reflects the natural variability of images and text, given the prompt. Sampling
from such high-dimensional distributions is a practical and theoretical challenge, where
diffusion models prove particularly useful (see, e.g., Chan, 2024, and references therein).

2.8 Summary–Book Outline

Now that the main concepts are introduced, we can give an outline of the chapters of this
book, which we have separated into three parts.

Part I: Preliminaries. Part I contains chapter 1 on mathematical preliminaries, this
introductory chapter, and chapter 3, on linear least-squares regression. We start with
least-squares, as it allows the introduction of the main concepts of the book, such as
underfitting, overfitting, regularization, using only simple linear algebra, without the
need for more advanced analytic or probabilistic tools.

Part II: Generalization bounds for learning algorithms. Part II is dedicated to
the core concepts in learning theory and should be studied sequentially.

• Empirical risk minimization: Chapter 4 is dedicated to methods based on the
minimization of the potentially regularized or constrained regularized risk, with
the introduction of the key concept of Rademacher complexity, which analyzes
estimation errors efficiently. Convex surrogates for binary classification are also
introduced to allow the use of only real-valued prediction functions.

• Optimization: Chapter 5 shows how gradient-based techniques can be used to
approximately minimize the empirical risk and, through stochastic gradient descent



42 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

(SGD), obtain generalization bounds for finitely-parameterized linear models (which
are linear in their parameters), leading to convex objective functions.

• Local averaging methods: Chapter 6 is the first chapter dealing with so-called
“nonparametric” methods that can potentially adapt to complex prediction func-
tions. This class of methods explicitly builds a prediction function mimicking the
Bayes predictor (without any optimization algorithm), such as k-nearest-neighbor
methods. These methods are classically subject to the curse of dimensionality.

• Kernel methods: Chapter 7 presents the most general class of linear models that
can be infinite-dimensional and adapt to complex prediction functions. They are
made computationally feasible using the “kernel trick,” and they still rely on convex
optimization, so they lead to strong theoretical guarantees, particularly by adapting
to the smoothness of the target prediction function.

• Sparse methods: While chapter 7 focused on Euclidean or Hilbertian regulariza-
tion techniques for linear models, chapter 8 considers regularization by sparsity-
inducing penalties such as the ℓ1-norm or the ℓ0-penalty, leading to the high-
dimensional phenomenon that learning is possible even with potentially exponen-
tially many irrelevant variables.

• Neural networks: Chapter 9 presents a class of prediction functions that are
not linearly parameterized, leading to nonconvex optimization problems, where ob-
taining a global optimum is not certain. The chapter studies approximation and
estimation errors, showing the adaptivity of neural networks to smoothness and
linear latent variables (in particular for nonlinear variable selection).

Part III: Special topics. Part III presents a series of chapters on special topics that
can be read in essentially any order.

• Ensemble learning: Chapter 10 presents a class of techniques aiming at combin-
ing several predictors obtained from the same model class but learned on slightly
modified datasets. This can be done in parallel, such as in bagging techniques, or
sequentially, such as in boosting methods.

• From online learning to bandits: Chapter 11 considers sequential decision prob-
lems within the regret framework, focusing first on online convex optimization, then
on zeroth-order optimization (without access to gradients), and finally multiarmed
bandits.

• Overparameterized models: Chapter 12 presents a series of results related to
models with a large number of parameters (enough to fit the training data perfectly)
and trained with gradient descent (GD). We present the implicit bias of GD in linear
models toward minimum Euclidean norm solutions and then the double descent
phenomenon, before looking at implicit biases and global convergence for nonconvex
optimization problems.

• Structured prediction: Chapter 13 goes beyond the traditional regression and
binary classification frameworks by first considering multicategory classification and



2.8. SUMMARY–BOOK OUTLINE 43

then the general framework of structured prediction, where output spaces can be
arbitrarily complex.

• Probabilistic methods: Chapter 14 presents a collection of results related to
probabilistic modeling, highlighting that probabilistic interpretations can some-
times be misleading but also naturally lead to model selection frameworks through
Bayesian inference and PAC–Bayesian analysis.

• Lower bounds on generalization and optimization errors: While most of the
book is dedicated to obtaining upper bounds on the generalization or optimization
errors of our algorithms, chapter 15 considers lower bounds on such errors, showing
how many algorithms presented in this book are, in fact, optimal for a specific class
of learning or optimization problems.





Chapter 3

Linear Least-Squares
Regression

Chapter Summary
• Ordinary least-squares estimator: Least-squares regression with linearly parame-

terized predictors leads to a linear system of size d (the number of predictors).
• Guarantees in the fixed design setting with no regularization: When the inputs are

assumed deterministic and d < n, the excess risk is equal to σ2d/n, where σ2 is the
prediction noise variance.

• Ridge regression: With ℓ2-regularization, excess risk bounds become dimension
independent and allow high-dimensional feature vectors where d > n.

• Guarantees in the random design setting: Although they are harder to show, they
have a similar form.

• Lower bound of generalization error: Under well-specification, the rate σ2d/n can-
not be improved.

3.1 Introduction

In this chapter, we introduce and analyze linear least-squares regression, a tool that can
be traced to Legendre (1805) and Gauss (1809).1

Why should we study linear least-squares regression? Has there not been any progress
since 1805? Here are a few reasons:

• It already captures many of the concepts in learning theory, such as the bias-variance
trade-off, as well as the dependence of generalization performance on the underlying

1See https://en.wikipedia.org/wiki/Least_squares for an interesting discussion and the claim that
Gauss had known about it already in 1795.

45

https://en.wikipedia.org/wiki/Least_squares


46 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

dimension of the problem with no regularization, or on dimensionless quantities
when regularization is added.

• Because of its simplicity, many results can be easily derived without the need for
complicated mathematics, both in terms of algorithms and statistical analysis (sim-
ple linear algebra for the simplest results in the fixed design setting).

• Using nonlinear features, this approach can lead to arbitrary nonlinear predictions
(see the discussion of kernel methods in chapter 7).

In subsequent chapters, we will extend many of these results beyond least-squares
regression with the proper additional mathematical tools.

3.2 Least-Squares Framework

We recall the goal of supervised machine learning from chapter 2: we are given some
training data composed of observations (xi, yi) ∈ X × Y, i = 1, . . . , n, which are pairs
of inputs/outputs, sometimes referred to as features/responses. Given a new x ∈ X, the
goal is to predict y ∈ Y (testing data) with a regression function f such that y ≈ f(x).
We assume that Y = R and we use the square loss ℓ(y, z) = (y − z)2, for which we know
from chapter 2 that the optimal predictor is f∗(x) = E[y|x] (see section 2.2.3).

In this chapter, we consider empirical risk minimization for regression problems. We
choose a parameterized family of prediction functions (often referred to as “models”)
fθ : X→ Y = R for some parameter θ ∈ Θ and minimize the empirical risk:

1

n

n∑

i=1

(yi − fθ(xi))2,

leading to the estimator θ̂ ∈ arg minθ∈Θ
1
n

∑n
i=1(yi − fθ(xi))2. Note that in most cases,

the Bayes predictor f∗ does not belong to the class of functions {fθ, θ ∈ Θ}; that is, the
model is said to be misspecified.

Least-squares regression can be carried out with parameterizations of the function fθ
that may be nonlinear in the parameter θ (such as for neural networks in chapter 9). In
this chapter, we will consider only situations where fθ(x) is linear in θ, which is thus
assumed to live in a vector space, taken to be Rd for simplicity.

△! Being linear in x or linear in θ is different!

While we assume linearity in parameter θ, nothing forces fθ(x) to be linear in input x.
In fact, even the concept of linearity may be meaningless if X is not a vector space. If
fθ(x) is linear in θ ∈ Rd, then it has to be a linear combination of the form fθ(x) =∑d

i=1 αi(x)θi, where αi : X→ R, i = 1, . . . , d, are d functions. By concatenating them in
a vector ϕ(x) ∈ Rd where ϕ(x)i = αi(x), we get the representation

fθ(x) = ϕ(x)⊤θ.



3.3. ORDINARY LEAST-SQUARES ESTIMATOR 47

The vector ϕ(x) ∈ Rd is typically called the feature vector, which we assume to be known
(in other words, it is given to us and can be computed explicitly when needed). We thus
consider minimizing the empirical risk:

R̂(θ) =
1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ)2. (3.1)

When X ⊂ Rd, we can make the extra assumption that fθ is an affine function in x, which
can be obtained through ϕ(x) =

(
x
1

)
= (x⊤, 1)⊤ ∈ Rd+1. Another classical assumption

is to consider vectors ϕ(x) composed of monomials (so that prediction functions are
polynomials, as done in experiments in section 3.5.2). We will see in chapter 7 (kernel
methods) that we can consider infinite-dimensional features.

Matrix notation. The cost function shown in equation (3.1) can be rewritten in matrix
notation. Let y = (y1, . . . , yn)⊤ ∈ Rn be the vector of outputs (sometimes called the
response vector), and Φ ∈ R

n×d the matrix of inputs, whose rows are ϕ(xi)
⊤. It is called

the design matrix or data matrix. In this notation, the empirical risk is

R̂(θ) =
1

n
‖y − Φθ‖22, (3.2)

where ‖α‖22 =
∑d
j=1 α

2
j is the squared ℓ2-norm of α.

△! It is sometimes tempting at first to avoid matrix notation. We strongly advise against
it, as it leads to lengthy and error-prone formulas.

3.3 Ordinary Least-Squares Estimator

We assume that the matrix Φ ∈ Rn×d has full column rank (i.e., the rank of Φ is d). In
particular, the problem is said to be “overdetermined,” and we must have d 6 n; that is,
more observations than feature dimension. Equivalently, we assume that Φ⊤Φ ∈ Rd×d is
invertible.

Definition 3.1 (OLS) When Φ has full column rank, the minimizer of equation (3.2)
is unique and called the ordinary least-squares (OLS) estimator.

3.3.1 Closed-Form Solution

Since the objective function is quadratic, the gradient will be linear, and zeroing it will
lead to a closed-form solution through a linear system.

Proposition 3.1 When Φ has full column rank, the OLS estimator exists and is unique.
It is given by

θ̂ = (Φ⊤Φ)−1Φ⊤y.



48 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

Denote the noncentered2 empirical covariance matrix as Σ̂ = 1
nΦ⊤Φ ∈ Rd×d; we have

θ̂ = 1
n Σ̂−1Φ⊤y.

Proof Since the function R̂ is coercive (i.e., going to infinity at infinity) and continuous,

it admits at least a minimizer. Moreover, it is differentiable, so a minimizer θ̂ must satisfy
R̂′(θ̂) = 0 where R̂′(θ) ∈ Rd is the gradient of R̂ at θ. For all θ ∈ Rd, we get, by expanding
the square and computing the gradient:

R̂(θ) =
1

n

(
‖y‖22 − 2θ⊤Φ⊤y + θ⊤Φ⊤Φθ

)
and R̂′(θ) =

2

n

(
Φ⊤Φθ − Φ⊤y

)
.

The condition R̂′(θ̂) = 0 gives the so-called normal equation:

Φ⊤Φθ̂ = Φ⊤y.

The multidimensional linear normal equations have a unique solution: θ̂ = (Φ⊤Φ)−1Φ⊤y.

This shows the uniqueness of the minimizer of R̂, as well as its closed-form expression.

Another way to show the uniqueness of the minimizer is by showing that R̂ is strongly
convex since the Hessian R̂′′(θ) = 2Σ̂ is positive-definite for all θ ∈ Rd (convexity will be
studied in chapter 5).

△! For readers worried about carrying a factor of 2 in the gradients, we will use an
additional factor 1/2 in the chapters on optimization (e.g., chapter 5).

3.3.2 Geometric Interpretation

The OLS estimator has a natural geometric interpretation.

Proposition 3.2 The vector of predictions Φθ̂ = Φ(Φ⊤Φ)−1Φ⊤y is the orthogonal pro-
jection of y ∈ R

n onto im(Φ) ⊂ R
n, the column space of Φ.

Proof Let us show that Π = Φ(Φ⊤Φ)−1Φ⊤ ∈ Rn×n is the orthogonal projection on
im(Φ). For any a ∈ Rd, it holds ΠΦa = Φ(Φ⊤Φ)−1Φ⊤Φa = Φa, so Πu = u for all
u ∈ im(Φ). Also, since im(Φ)⊥ = null(Φ⊤), then for all u′ ∈ im(Φ)⊥, Φ⊤u′ = 0,
and hence Πu′ = Φ(Φ⊤Φ)−1(Φ⊤u′) = 0. These properties characterize the orthogonal

projection on im(Φ). Alternatively, we directly have Φθ̂ = arg minz∈im(Φ) ‖y − z‖22.
We can thus interpret the OLS estimation as doing the following (see the following plot
for an illustration):

1. Compute the projection ȳ of y onto the image of Φ.

2. Solve the linear system Φθ = ȳ, which has a unique solution.

2The centered covariance matrix would be 1
n

∑n
i=1[ϕ(xi)−µ̂][ϕ(xi)−µ̂]⊤, where µ̂= 1

n

∑n
i=1ϕ(xi)∈Rd

is the empirical mean, while we consider Σ̂ = 1
n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤.



3.4. STATISTICAL ANALYSIS OF ORDINARY LEAST-SQUARES 49

im(Φ)
0

y

ȳ

3.3.3 Numerical Resolution

While the closed-form θ̂ = (Φ⊤Φ)−1Φ⊤y is convenient for analysis, inverting Φ⊤Φ is
sometimes unstable and has a large computational cost when d is large. The following
methods are usually preferred.

QR factorization. The QR decomposition factorizes the matrix Φ as Φ = QR, where
Q ∈ Rn×d has orthonormal columns; that is, Q⊤Q = I and R ∈ Rd×d is upper triangular
(see Golub and Loan, 1996). Computing a QR decomposition is faster and more stable
than inverting a matrix. We then have Φ⊤Φ = R⊤Q⊤QR = R⊤R, and R is thus the
Cholesky factor of the positive semidefinite matrix Φ⊤Φ ∈ Rd. One then has, since R is
invertible,

(Φ⊤Φ)θ̂ = Φ⊤y ⇔ R⊤Q⊤QRθ̂ = R⊤Q⊤y ⇔ R⊤Rθ̂ = R⊤Q⊤y ⇔ Rθ̂ = Q⊤y.

It only remains to solve a triangular linear system, which is easy. The overall running
time complexity remains O(d3). The conjugate gradient algorithm can also be used (see
Golub and Loan, 1996, for details).

Gradient descent. We can bypass the need for matrix inversion or factorization using
gradient descent (GD). It consists in approximately minimizing R̂ by taking an initial
point θ0 ∈ Rd and iteratively going toward the minimizer by following the opposite of the
gradient:

θt = θt−1 − γR̂′(θt−1) for t > 1,

where γ > 0 is the step size. When these iterates converge, they do toward the OLS
estimator since a fixed-point θ satisfies R̂′(θ) = 0. We will study such algorithms in
chapter 5, with running-time complexities going down to linear in d, e.g., O(nd).

3.4 Statistical Analysis of Ordinary Least-Squares

In this section, we provide guarantees on the predictive performance of the OLS estimator.
There are two classical settings of analysis for least-squares regression:



50 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

• Random design. In this setting, both the inputs and the outputs are random. This is
the classical setting of supervised machine learning, where the goal is generalization
to unseen data (as in chapter 2). Since obtaining guarantees is mathematically
more complicated, it will be done after the fixed design setting.

• Fixed design. In this setting, we assume that the input data (x1, . . . , xn) are not
random (but the output data (y1, . . . , yn) are themselves random), and we are inter-
ested in obtaining a small prediction error on those input points only. Alternatively,
this can be seen as a prediction problem where the input distribution is the empirical
distribution of (x1, . . . , xn).

Our goal is thus to minimize the fixed design risk (where thus Φ is deterministic):

R(θ) = Ey

[
1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ)2

]
= Ey

[ 1

n
‖y − Φθ‖22

]
. (3.3)

This assumption allows a complete analysis with basic linear algebra. It is justified
in some settings, such as when the inputs are equally spaced along a fixed grid, but
is otherwise just a simplifying assumption. It can also be understood as learning
the optimal vector Φθ∗ ∈ Rn of best predictions instead of a function from X to R.

In the fixed design setting, we want to estimate well a label vector y resampled from
the same distribution as the observed y, and no attempts are made to generalize to
unseen input points x ∈ X. The risk in equation (3.3) is often called the in-sample
prediction error, and the task can be seen as “denoising” the labels.

We will first consider the fixed design setting, where the celebrated rate σ2d/n will appear
naturally.

3.5 Fixed Design Setting

We thus assume that Φ is deterministic, and as before, that Σ̂ = 1
nΦ⊤Φ is invertible.

Any guarantee requires assumptions about how the data are generated. We assume the
following:

• There is a vector θ∗ ∈ R
d such that the relationship between input and output is

for i ∈ {1, . . . , n}
yi = ϕ(xi)

⊤θ∗ + εi. (3.4)

• All noise variables εi, i ∈ {1, . . . , n}, are independent, with expectation E[εi] = 0
and variance E[ε2i ] = σ2.

The vector ε ∈ R
n accounts for variabilities in the output due to unobserved factors or

noise. The “homoscedasticity” assumption above, where the noise variances are uniform,
is made for simplicity (and allows the later bound σ2d/n to be an equality). Note that
to prove upper bounds in generalization error, we could also only assume that E[ε2i ] 6 σ2

for each i ∈ {1, . . . , n}. The noise variance σ2 is the expected squared error between the
observations yi and the model ϕ(xi)

⊤θ∗, as illustrated below:



3.5. FIXED DESIGN SETTING 51

x

y

ϕ(x)⊤θ∗

σ

△! In equation (3.4), we assume the model is well specified ; that is, the target function
is a linear function of ϕ(x). In general, an additional approximation error is incurred
because of a misspecified model (see chapter 4).

Relationship to maximum likelihood estimation. If, in the fixed design setting, we
make the stronger assumption that the noise is Gaussian with mean zero and variance σ2

(i.e., εi = yi−ϕ(xi)
⊤θ∗ ∼ N(0, σ2)), then the least mean-squares estimator of θ∗ coincides

with the maximum likelihood estimator (where Φ is assumed to be fixed). Indeed, the
density/likelihood of y is, using independence between the noise variables εi and the
density of the Gaussian distribution,

p(y|θ, σ2) =

n∏

i=1

1√
2πσ2

exp
(
− (yi − ϕ(xi)

⊤θ)2/(2σ2)
)
.

Taking the logarithm and removing constants, the maximum likelihood estimator (θ̃, σ̃2)
minimizes

1

2σ2

n∑

i=1

(yi − ϕ(xi)
⊤θ)2 +

n

2
log(σ2).

We immediately see that θ̃ = θ̂; that is, OLS corresponds to maximum likelihood.

△! While maximum likelihood under a Gaussian model provides an interesting interpre-
tation, the Gaussian assumption is not needed for the forthcoming analysis.

Exercise 3.1 In the Gaussian model given above, show that σ̃2 the maximum likelihood
estimator of σ2 is equal to σ̃2 = 1

n

∑n
i=1(yi − ϕ(xi)

⊤θ̂)2.

Denoting by R∗ the minimum value of R(θ) = Ey

[
1
n‖y − Φθ‖22

]
over Rd, proposi-

tion 3.3 shows that it is attained at θ∗ and is equal to σ2.

Proposition 3.3 (Risk decomposition for OLS–fixed design) Under the linear
model and fixed design assumptions made in this section, for any θ ∈ R

d, we have R∗ = σ2

and

R(θ)− R∗ = ‖θ − θ∗‖2Σ̂,

where Σ̂ = 1
nΦ⊤Φ is the input covariance matrix and ‖θ‖2

Σ̂
= θ⊤Σ̂θ. If θ̂ is now a random



52 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

variable (such as an estimator of θ∗), then

E[R(θ̂)]− R∗ = ‖E[θ̂]− θ∗‖2Σ̂︸ ︷︷ ︸
Bias

+E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]

︸ ︷︷ ︸
Variance

.

Proof We have, using y = Φθ∗ + ε, with E[ε] = 0 and E[‖ε‖22] = nσ2,

R(θ) = Ey

[
1

n
‖y − Φθ‖22

]
= Eε

[
1

n
‖Φθ∗ + ε− Φθ‖22

]

=
1

n
Eε

[
‖Φ(θ∗ − θ)‖22 + ‖ε‖22 + 2

(
Φ(θ∗ − θ)

)⊤
ε
]

= σ2 +
1

n
(θ − θ∗)⊤Φ⊤Φ(θ − θ∗).

Since Σ̂ = 1
nΦ⊤Φ is invertible, this shows that θ∗ is the unique global minimizer of R(θ),

and the minimum value R∗ is equal to σ2. This shows the first claim.

Now if θ is random, we perform the usual bias/variance decomposition:

E[R(θ̂)]− R∗ = E

[
‖θ̂ − E[θ̂] + E[θ̂]− θ∗‖2Σ̂

]

= E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]
+ 2E

[
(θ̂ − E[θ̂])⊤Σ̂(E[θ̂]− θ∗)

]
+ E

[
‖E[θ̂]− θ∗‖2Σ̂

]

= E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]
+ 0 + ‖E[θ̂]− θ∗‖2Σ̂.

(This is also a simple application of the law of total variance for vectors; that is, E
[
‖z −

a‖2M
]

= ‖E[z]− a‖2M + E
[
‖z − E[z]‖2M

]
, applied to a = θ∗, M = Σ̂, and z = θ̂.)

Note that the quantity ‖ ·‖Σ̂ is called the “Mahalanobis distance” norm (it is a true norm

whenever Σ̂ is positive-definite). It is the norm on the parameter space induced by the
input data.

3.5.1 Statistical Properties of the OLS Estimator

We can now analyze the properties of the OLS estimator, which has a closed form θ̂ =
(Φ⊤Φ)−1Φ⊤y = Σ̂−1( 1

nΦ⊤y), with the model y = Φθ∗ + ε. The only randomness comes

from ε, and, to compute the expectation and variance of θ̂, we thus need to compute the
expectation of linear and quadratic forms in ε.

Proposition 3.4 (Estimation properties of OLS) The OLS estimator θ̂ has the fol-
lowing properties:

1. It is unbiased; that is, E[θ̂] = θ∗.

2. Its variance is var(θ̂) = E
[
(θ̂ − θ∗)(θ̂ − θ∗)⊤

]
= σ2

n Σ̂−1, where Σ̂−1 is often called
the precision matrix.



3.5. FIXED DESIGN SETTING 53

Proof Since E[y] = Φθ∗, we have directly E[θ̂] = (Φ⊤Φ)−1Φ⊤Φθ∗ = θ∗. Moreover,

θ̂ − θ∗ = (Φ⊤Φ)−1Φ⊤(Φθ∗ + ε)− θ∗ = (Φ⊤Φ)−1Φ⊤ε. Thus, using E[εε⊤] = σ2I, we get

var(θ̂)=E
[
(Φ⊤Φ)−1Φ⊤εε⊤Φ(Φ⊤Φ)−1

]
=σ2(Φ⊤Φ)−1(Φ⊤Φ)(Φ⊤Φ)−1 =σ2(Φ⊤Φ)−1,

which leads to the desired result σ2

n Σ̂−1.

We can now put back the expressions of the bias (equal to 0) and variance in the risk
decomposition of proposition 3.3.

Proposition 3.5 (Risk of OLS) The excess risk of the OLS estimator equals

E
[
R(θ̂)

]
− R∗ =

σ2d

n
. (3.5)

Proof Note here that the expectation is over ε only, as we are in the fixed design setting.
Using the risk decomposition of proposition 3.3 and the fact that E[θ̂] = θ∗, we have

E
[
R(θ̂)

]
− R∗ = E

[
‖θ̂ − θ∗‖2Σ̂

]
.

Thus, using proposition 3.4, we have, using the “trace trick,”

E
[
R(θ̂)

]
− R∗ = E

[
‖θ̂ − θ∗‖2Σ̂

]
= E

[
(θ̂ − θ∗)⊤Σ̂(θ̂ − θ∗)

]

= E
[

tr((θ̂ − θ∗)⊤Σ̂(θ̂ − θ∗))
]

= E
[

tr((θ̂ − θ∗)(θ̂ − θ∗)⊤Σ̂)
]

= tr[var(θ̂)Σ̂] = tr
[σ2

n
Σ̂−1Σ̂

]
=
σ2

n
tr(I) =

σ2d

n
,

since the identity matrix is of size d × d. We can also give a direct proof: Using the
identity θ̂ − θ∗ = (Φ⊤Φ)−1Φ⊤ε, we get

E[R(θ̂)]− R∗ = E
[
‖(Φ⊤Φ)−1Φ⊤ε‖2

Σ̂

]

=
1

n
E
[
ε⊤Φ(Φ⊤Φ)−1Φ⊤Φ(Φ⊤Φ)−1Φ⊤ε

]
=

1

n
E
[
ε⊤Φ(Φ⊤Φ)−1Φ⊤ε

]

=
1

n
E
[
ε⊤Πε

]
=

1

n
E
[
tr(Πεε⊤)

]
=
σ2

n
tr(Π) =

σ2d

n
,

where we used that Π = Φ(Φ⊤Φ)−1Φ⊤ is the orthogonal projection on im(Φ), which is
d-dimensional.

We can make the following observations:

• In the fixed design setting, OLS thus leads to unbiased estimation, with an excess
risk of σ2d/n.

• △! In the fixed design setting, the expectation over ε appears twice: (1) in the
definition of the testing risk of some arbitrary θ in equation (3.3), and (2) when
taking an expectation over the data in equation (3.5) to compute the expectation

of the testing risk for the OLS estimator θ̂.



54 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

• In exercise 3.2, we have an expression of the expected training error, which is equal
to n−d

n σ2 = σ2− d
nσ

2, while the expected testing error is σ2+ d
nσ

2. We thus see
that in the context of least-squares regression, the training error underestimates
(in expectation) the testing error by a factor of 2σ2d/n, which characterizes the
amount of overfitting. This difference can be used to perform model selection.3

Exercise 3.2 Show that the expected empirical risk is equal to E[R̂(θ̂)] = n−d
n σ2. In

particular, when n > d, deduce that an unbiased estimator of the noise variance σ2

is given by 1
n−d‖y − Φθ̂‖22.

• On the positive side, the math is elementary, and as we will show in section 3.7,
the obtained convergence rate is optimal.

• On the negative side, for the excess risk being small compared to σ2, we need d/n
to be small, which seems to exclude high-dimensional problems where d is close to n
(let alone problems where d > n or d much larger than n). Regularization (ridge in
this chapter or with the ℓ1-norm in chapter 8) will come to the rescue.

• This is only for the fixed design setting. We consider the random design setting
next, which is a bit more involved mathematically, primarily because of the presence
of Σ̂−1, which does not cancel any further, leading to the term Σ̂−1Σ, where Σ is
the population covariance matrix.

Exercise 3.3 (General noise) Consider the fixed design regression model y = Φθ∗ + ε
with ε with zero mean and covariance matrix equal to C ∈ Rn×n (not σ2I anymore). Show
that the expected excess risk of the OLS estimator is equal to 1

n tr
[
Φ(Φ⊤Φ)−1Φ⊤C

]
.

Exercise 3.4 (Multivariate regression (�)) Consider Y = R
k and the multivariate

regression model y = θ⊤∗ ϕ(x) + ε ∈ Rk, where θ∗ ∈ Rd×k, and ε has zero-mean with
covariance matrix S ∈ Rk×k. In the fixed regression setting with design matrix Φ ∈ Rn×d

and Y ∈ Rn×k the matrix of responses obtained from i.i.d. εi ∈ Rk, i = 1, . . . , n, derive
the OLS estimator minimizing 1

n‖Y −Φθ‖2F and its excess risk (where ‖M‖F denotes the
Frobenius norm defined as the square root of the sum the squared components of M).

3.5.2 Experiments

To illustrate the bound σ2d/n, we consider polynomial regression in one dimension, with
x ∈ R and the feature vector ϕ(x) = (1, x, x2, . . . , xk)⊤ ∈ Rk+1, so d = k + 1. The
inputs are sampled from the uniform distribution in [−1, 1], while the optimal regression
function is a degree-2 polynomial f(x) = x2− 1

2 (blue curve in figure 3.1). Gaussian noise
with standard deviation 1

4 is added to generate the outputs (black crosses). The OLS
estimator is plotted in red for various values of n, from n = 10 to n = 1, 000, for k = 5.
We can observe in figure 3.1 that the testing error goes down when n increases.

We can now plot in figure 3.2 the expected excess risk as a function of n, estimated by
32 replications of the experiment, together with the bound. In the right plot, we consider

3See https://en.wikipedia.org/wiki/Mallows’s_Cp.

https://en.wikipedia.org/wiki/Mallows's_Cp


3.5. FIXED DESIGN SETTING 55

Figure 3.1. Polynomial regression in one dimension with a varying number of observations
(from n = 10 to n = 1, 000 with training and testing errors. Blue: Optimal prediction,
red: estimated prediction by OLS with degree-5 polynomials.



56 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

Figure 3.2. Convergence rate for polynomial regression with error bars (obtained from
32 replications by adding/subtracting standard deviations), plotted in logarithmic scale,
with fixed design (left plot) and random design (right plot). The large error bars for
small n in the right plot are due to the lower error bar being negative before taking the
logarithm.

the random design setting (generalization error, considered in section 3.8), while in the
left plot, we consider the fixed design setting (in-sample error). Notice the closeness of
the bound for all n for the fixed design (as predicted by our bounds), while this is valid
only for n large enough in the random design setting.

3.6 Ridge Least-Squares Regression

Least-squares in high dimensions. When d/n approaches 1, we are essentially mem-
orizing the observations yi (that is, e.g., when d = n and Φ is a square invertible matrix,
θ = Φ−1y leads to y = Φθ; that is, OLS will lead to a perfect fit, which is typically
not good for generalization to unseen data; see more details in chapter 12). Also, when
d > n, Φ⊤Φ is not invertible, and the normal equations admit a linear subspace of
solutions. These behaviors of OLS in high dimensions (d large) are often undesirable.

Two main classes of solutions exist to fix these issues: dimension reduction and reg-
ularization. Dimension reduction aims to replace the feature vector ϕ(x) with another
feature vector of lower dimension, with a classical method being principal component anal-
ysis (PCA), presented in section 3.9, or random projections (presented in section 10.2.2).
Regularization adds a term to the least-squares objective, typically either an ℓ1-penalty
‖θ‖1 (leading to Lasso regression; see chapter 8) or ‖θ‖22 (leading to ridge regression, as
done in this chapter and in chapter 7).

Definition 3.2 (Ridge least-squares regression estimator) For a regularization pa-

rameter λ > 0, we define the ridge least-squares estimator θ̂λ as the minimizer of

min
θ∈Rd

1

n
‖y − Φθ‖22 + λ‖θ‖22.



3.6. RIDGE LEAST-SQUARES REGRESSION 57

The ridge regression estimator can be obtained in closed form. Note that we no longer
require Φ⊤Φ to be invertible.

Proposition 3.6 We recall that Σ̂ = 1
nΦ⊤Φ ∈ Rd×d. We have θ̂λ =

1

n
(Σ̂ + λI)−1Φ⊤y.

Proof As with the proof of proposition 3.1, we can compute the gradient of the objective
function, which is equal to 2

n

(
Φ⊤Φθ − Φ⊤y

)
+ 2λθ. Setting it to zero leads to the esti-

mator. Note that when λ > 0, the linear system always has a unique solution regardless
of the invertibility of Σ̂.

Exercise 3.5 Using the matrix inversion lemma (discussed in section 1.1.3), show that

the ridge regression estimator given in proposition 3.6 can also be written as θ̂λ = (Φ⊤Φ+
nλI)−1Φ⊤y = Φ⊤(ΦΦ⊤ + nλI)−1y. What could be the computational benefits?

As for the OLS estimator, we can analyze its statistical properties under the linear
model and fixed design assumptions. See chapter 7 for an analysis of random design and
potentially infinite-dimensional features.

Proposition 3.7 Under the linear model assumption (and for the fixed design setting),

the ridge least-squares estimator θ̂λ = 1
n (Σ̂ + λI)−1Φ⊤y has the following excess risk:

E
[
R(θ̂λ)

]
− R∗ = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ +

σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
.

Proof We use the risk decomposition of proposition 3.3 into a bias term B and a variance
term V . Since we have E[θ̂λ] = 1

n (Σ̂+λI)−1Φ⊤Φθ∗ = (Σ̂+λI)−1Σ̂θ∗ = θ∗−λ(Σ̂+λI)−1θ∗,

it follows that, using the fact that Σ̂ and (Σ̂ + λI)−1 commute,

B = ‖E[θ̂λ]− θ∗‖2Σ̂ = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗.

For the variance term, using the fact that E[εε⊤] = σ2I, we have

V = E

[
‖θ̂λ − E[θ̂λ]‖2

Σ̂

]
= E

[∥∥∥ 1

n
(Σ̂ + λI)−1Φ⊤ε

∥∥∥
2

Σ̂

]

= E

[ 1

n2
tr
(
ε⊤Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1Φ⊤ε

) ]

= E

[ 1

n2
tr
(

Φ⊤εε⊤Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1
) ]

=
σ2

n
tr
(
Σ̂(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1

)
.

The proof ends by summing the bias and variance terms.

We can make the following observations:

• The result given above is also a bias/variance decomposition with the bias equal

to B = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗, and the variance equal to V = σ2

n tr
[
Σ̂2(Σ̂ + λI)−2

]
.

They are plotted in figure 3.3.



58 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

Figure 3.3. Polynomial regression (same setup as figure 3.2, with n = 300), with k = 5:
bias/variance trade-offs for ridge regression as a function of λ. We can see the mono-
tonicity of bias and variance with respect to λ and the presence of an optimal choice of λ.

• The bias/variance decomposition can be related to the decomposition in approxi-
mation error and estimation error presented in section 2.3.2 and further developed
in chapter 4. The bias term is the part of the excess risk due to the regularization
term constraining the proper estimation of the model. It plays the role of the ap-
proximation error, while the variance term characterizes the effect of the noise and
plays the role of the estimation error.

• The bias term is increasing in λ and equal to zero for λ = 0 if Σ̂ is invertible, while
when λ goes to infinity, the bias goes to θ⊤∗ Σ̂θ∗. It is independent of n and plays
the role of the approximation error in the risk decomposition.

• The variance term is decreasing in λ and is equal to σ2d/n for λ = 0 if Σ̂ is invertible,
and converging to zero when λ goes to infinity. It depends on n and plays the role
of the estimation error in the risk decomposition.

• The quantity tr
[
Σ̂2(Σ̂+λI)−2

]
is called the “degrees of freedom” and is often consid-

ered as an implicit number of parameters. It can be expressed as
∑d

j=1 λ
2
j/(λj + λ)2,

where (λj)j∈{1,...,d} are the eigenvalues of Σ̂. This quantity will be important in
analyzing kernel methods in chapter 7. Since the function µ 7→ µ2/(µ + λ)2 is
increasing from 0 to 1 (when µ goes from 0 to +∞), close to zero if µ ≪ λ, and
close to 1 if µ ≫ λ, the degrees of freedom provide a soft count of the number of
eigenvalues that are larger than λ.

• Observe how this converges to the OLS estimator (when defined) as λ→ 0.

• In most cases, λ = 0 is not the optimal choice; that is, biased estimation (with
controlled bias) is preferable to unbiased estimation. In other words, the mean-
square error is minimized for a biased estimator.

Choice of λ. Based on the expression for the risk, we can tune the regularization
parameter λ to obtain a potentially better bound than with the OLS (which corresponds
to λ = 0 and the excess risk σ2d/n).



3.6. RIDGE LEAST-SQUARES REGRESSION 59

Proposition 3.8 (Choice of regularization parameter) With the choice of regular-

ization parameter λ∗ =
σ tr(Σ̂)1/2

‖θ∗‖2
√
n
, we have

E
[
R(θ̂λ∗)

]
− R∗ 6

σ tr(Σ̂)1/2‖θ∗‖2√
n

.

Proof We have gotten, using the fact that the eigenvalues of (Σ̂ + λI)−2λΣ̂ are less
than 1/2 (which is a simple consequence of (µ+ λ)−2µλ 6 1/2⇔ (µ+ λ)2 > 2λµ for all

eigenvalues µ of Σ̂),

B = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ = λθ⊤∗ (Σ̂ + λI)−2λΣ̂θ∗ 6
λ

2
‖θ∗‖22.

Similarly, we have4 V =
σ2

n
tr
[
Σ̂2(Σ̂ +λI)−2

]
=
σ2

λn
tr
[
Σ̂λΣ̂(Σ̂ + λI)−2

]
6
σ2 tr Σ̂

2λn
. This

leads to

E
[
R(θ̂λ∗)

]
− R∗ 6

λ

2
‖θ∗‖22 +

σ2 tr(Σ̂)

2λn
. (3.6)

The bound above is of the form aλ + b/λ for a, b > 0, and is minimized for λ =
√
b/a

with optimal value 2
√
ab. This is how λ∗ is chosen (i.e., chosen to minimize the upper

bound on B + V ), which leads to the desired result.

We can make the following observations:

• If we write R = maxi∈{1,...,n} ‖ϕ(xi)‖2, then we have

tr(Σ̂) =

d∑

j=1

Σ̂jj =
1

n

n∑

i=1

d∑

j=1

ϕ(xi)
2
j =

1

n

n∑

i=1

‖ϕ(xi)‖22 6 R2.

Thus, dimension d plays no explicit role in the excess risk bound and could even
be infinite (given that R and ‖θ∗‖2 remain finite). This type of bounds is called
dimension-free bounds (see more details in chapter 7). Note, however, that in
practice, R often increases with dimension d.

△! The number of parameters is usually not the best way to measure the gener-
alization capabilities of a learning method; here, the maximal feature norm R
is more informative and depends on how the data are normalized.

• Comparing this bound with that of the OLS estimator, we see that it converges
slower to 0 as a function of n (from n−1 to n−1/2), but it has a milder dependence
on the noise (from σ2 to σ). The presence of a fast rate in O(n−1) with a potentially

4Using the properties (proof using eigenvalue decompositions left as an exercise) that for any vector u,
any symmetric matrix M , and any symmetric positive semidefinite matrix A, u⊤Mu 6 ‖u‖22 · λmax(M)
and tr(AM) 6 tr(A) · λmax(M).



60 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

large constant and of a slow rate O(n−1/2) with a smaller constant will be explored
several times in this book.

△! Depending on n and the constants, the fast rate result is not always the
best.

• The value of λ∗ involves quantities that we typically do not know in practice (such
as σ and ‖θ∗‖2). This is still useful to highlight the existence of some λ with good
predictions (which can be found by cross-validation, as presented in section 2.1).

• Note here that the choice of λ∗ =
σ
√

tr(Σ̂)

‖θ∗‖2
√
n

is optimizing the upper bound λ
2 ‖θ∗‖22 +

σ2 tr Σ̂
2λn , and is thus typically not optimal for the true expected risk.

• We can check the unit homogeneity of the various formulas by a basic dimensional
analysis. We use the bracket notation to denote the unit. Then [λ] × [θ]2 = [y2] =
[σ2] since λ‖θ‖22 appears in the same objective function as y2 (or σ2). Moreover,
we have [y] = [σ] = [ϕ][θ], leading to [λ] = [ϕ]2. The value of λ suggested in

proposition 3.8 has the dimension [ϕ]×[σ]
[θ] , which is indeed equal to [ϕ]2. Similarly,

we can check that the bias and variance terms have the correct dimensions.

Choosing λ in practice. The regularization λ is an example of a hyperparameter. This
term broadly refers to any quantity that influences the behavior of a machine learning
algorithm and that is left to choose by the practitioner. While theory often offers guide-
lines and qualitative understanding on best choosing the hyperparameters, their precise
numerical value depends on quantities that are often difficult to know or even guess. In
practice, we typically resort to validation and cross-validation.

Exercise 3.6 Compute the expected risk of the estimators obtained by regularizing by
θ⊤Λθ instead of λ‖θ‖22, where Λ ∈ Rd×d is a positive-definite matrix.

Exercise 3.7 (�) Consider the “leave-one-out” estimator θ−iλ ∈ Rd obtained, for each
i ∈ {1, . . . , n}, by minimizing 1

n

∑
j 6=i(yj − θ⊤ϕ(xj))

2 + λ‖θ‖22. Given the matrix H =

Φ(Φ⊤Φ + nλI)−1Φ⊤ ∈ Rn×n, and its diagonal h = diag(H) ∈ Rn, show that

1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ−iλ )2 =

1

n
‖(I −Diag(h))−1(I −H)y‖22,

where Diag(h) denotes the diagonal matrix with h as its diagonal. Hint: use Woodbury
matrix identities from section 1.1.3.

3.7 Lower Bound (�)

In this section, our aim is to compute a lower bound on the excess risk for any estimator
that is a function of Φ and y. This lower bound will turn out to be equal to the upper



3.7. LOWER BOUND (�) 61

bound on the excess risk obtained from the OLS estimator, namely σ2d/n, showing that
this estimator is optimal.

To show a lower bound in the fixed design setting, we will consider only Gaussian
noise (to obtain lower bounds, we can specialize the problem as much as we want); that
is, ε has a joint Gaussian distribution with mean zero and covariance matrix σ2I. We
follow the elegant and simple proof technique outlined by Mourtada (2022).

The only unknown in the model is the location of θ∗. To make the dependence on θ∗
explicit, we denote by Rθ∗(θ)−R∗ the excess risk (in chapter 2, we were using the notation
Rp to make the dependence on the distribution p explicit), which is equal to

Rθ∗(θ) − R∗ = ‖θ − θ∗‖2Σ̂.
Our goal is to lower-bound

sup
θ∗∈Rd

Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
− R∗,

over all functions A from Rn to Rd (these functions are allowed to depend on the observed
deterministic quantities such as Φ). Indeed, algorithms take y = Φθ∗ + ε ∈ Rn as input
and then output a vector of parameters in R

d.

The main idea, which is classical in the Bayesian analysis of learning algorithms,
is to lower-bound the supremum by the expectation with respect to some probability
distribution on θ∗, called the “prior distribution” in Bayesian statistics. That is, we
have, for any algorithm/estimator A (for a parameter λ > 0 that will be chosen to tend
to zero later in the discussion),

sup
θ∗∈Rd

Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
> E

θ∗∼N(0, σ
2

λn I)
Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
. (3.7)

Here, we choose the Gaussian distribution with mean 0 and covariance matrix σ2

λnI as a
prior distribution since this will lead to closed-form computations.

Using the expression of the excess risk (and using σ2 = R∗), we thus get the lower
bound

E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖A(Φθ∗ + ε)− θ∗‖2Σ̂

]
− σ2,

which we need to minimize with respect to A. By making θ∗ random, we now have a
joint Gaussian distribution for (θ∗, ε). The joint distribution of (θ∗, y) = (θ∗,Φθ∗ + ε) is
also Gaussian, with mean zero and covariance matrix:

( σ2

λnI
σ2

λnΦ⊤

σ2

λnΦ σ2

λnΦΦ⊤+σ2I

)
=
σ2

λn

(
I Φ⊤

Φ ΦΦ⊤+nλI

)
.

We need to perform an operation similar to computing the Bayes predictor in chapter 2.
This will be done by conditioning on y by writing

E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖A(Φθ∗ + ε)− θ∗‖2Σ̂

]
= E(θ∗,y)

[
‖A(y)− θ∗‖2Σ̂

]

=

∫

Rn

( ∫

Rd

‖A(y)− θ∗‖2Σ̂dp(θ∗|y)
)
dp(y).



62 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

Thus, for each y, the optimal A(y) has to minimize
∫
Rd ‖A(y) − θ∗‖2Σ̂dp(θ∗|y), which is

exactly the posterior mean of θ∗ given y. Indeed, the vector that minimizes the expected
squared deviation is the expectation (exactly like when we computed the Bayes predictor
for regression), here applied to the distribution p(θ∗|y).

Since the joint distribution of (θ∗, y) is Gaussian with known parameters, we could use
classical results about conditioning for Gaussian vectors (see section 1.1.3). We instead
use the property that for Gaussian variables, the posterior mean given y is equal to the
posterior mode given y; that is, it can be obtained by maximizing the log-likelihood
log p(θ∗, y) with respect to θ∗. Up to constants and using independence of ε and θ∗, this
log-likelihood is the sum of the log-likelihoods of ε and θ∗:

− 1

2σ2
‖ε‖2 − λn

2σ2
‖θ∗‖22 = − 1

2σ2
‖y − Φθ∗‖2 −

λn

2σ2
‖θ∗‖22,

which is exactly (up to a sign and a constant) the ridge regression cost function in
section 3.6. Thus, from proposition 3.6, we have A∗(y) = (Φ⊤Φ + nλI)−1Φ⊤y, and we
can compute the corresponding optimal risk, to get

inf
A

sup
θ∗∈Rd

Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
− R∗

> inf
A

E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
− R∗ using equation (3.7),

= E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
Rθ∗(A∗(Φθ∗ + ε))

]
− R∗

using equality of posterior mean and posterior mode,

= E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖A∗(Φθ∗ + ε)− θ∗‖2Σ̂

]
using the expression of the risk,

= E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖(Φ⊤Φ+nλI)−1Φ⊤(Φθ∗+ε)−θ∗‖2Σ̂

]

using the closed-form expression of the OLS estimator,

= E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖(Φ⊤Φ + nλI)−1Φ⊤ε− nλ(Φ⊤Φ + nλI)−1θ∗‖2Σ̂

]

= E
θ∗∼N(0, σ

2

λn I)

[
‖−nλ(Φ⊤Φ+nλI)−1θ∗‖2Σ̂

]
+ Eε∼N(0,σ2I)

[
‖(Φ⊤Φ+nλI)−1Φ⊤ε‖2

Σ̂

]

by independence of ε and θ∗,

= λ2E
θ∗∼N(0, σ

2

λn I)

[
θ⊤∗ (Σ̂+λI)−1Σ̂(Σ̂+λI)−1θ∗

]
+

1

n2
Eε∼N(0,σ2I)

[
ε⊤ΦΣ̂(Σ̂+λI)−2Φ⊤ε

]

= λ2
σ2

nλ
tr
[
(Σ̂ + λI)−2Σ̂

]
+
σ2

n
tr
[
(Σ̂ + λI)−2Σ̂2

]

=
σ2

n
tr
[
(Σ̂ + λI)−2(λΣ̂ + Σ̂2)

]
=
σ2

n
tr
[
(Σ̂ + λI)−1Σ̂

]
.

When Φ (and thus Σ̂) has full rank, σ
2

n tr
[
(Σ̂ + λI)−1Σ̂

]
tends to σ2

n tr(I) = σ2d
n when λ

tends to zero (otherwise, it tends to σ2

n rank(Φ)). This shows that

inf
A

sup
θ∗∈Rd

Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
− R∗ >

σ2d

n
.



3.8. RANDOM DESIGN ANALYSIS 63

This gives us a lower bound on testing error, which exactly matches the upper bound
obtained by OLS. Note that this lower bound is the infimum over all potential estimators
of the worst-case error for all potential choices of θ∗; it thus shows that in this worst-case
sense, ridge regression cannot improve on OLS (but it often does for particular choices
of θ∗). To go beyond least-squares, such lower bounds are significantly harder to show.
See the more general discussion in the dedicated chapter 15.

3.8 Random Design Analysis

In this section, we consider the regular random design setting; that is, both x and y are
considered random, and each pair (xi, yi) is assumed i.i.d. from a probability distribution p
on X×R. We aim to show that the bound on the excess risk that we have shown for the
fixed design setting (namely σ2d/n) is still valid. We will make the following assumptions
regarding the joint distribution p, transposed from the fixed design setting to the random
design setting:

• There is a vector θ∗ ∈ Rd such that the relationship between input and output is,
for all i,

yi = ϕ(xi)
⊤θ∗ + εi.

• The noise distribution of εi ∈ R is independent from xi, and E[εi] = 0 and with
variance E[ε2i ] = σ2 (and the same assumption holds for all i, as observations are
i.i.d.).

With the assumption made in this section, E[yi|xi] = ϕ(xi)
⊤θ∗, and thus, we perform

empirical risk minimization where our class of functions includes the Bayes predictor.
This situation is often referred to as the well-specified setting. The risk also has a simple
expression, given in proposition 3.9.

Proposition 3.9 (Excess risk for random design least-squares regression) Un-
der the random design linear model, for any θ ∈ Rd, the excess risk is equal to

R(θ)− R∗ = ‖θ − θ∗‖2Σ,

where Σ = E[ϕ(x)ϕ(x)⊤ ] is the noncentered covariance matrix, and R∗ = σ2.

Proof We have, for a pair (x0, y0) sampled from the same distribution as all (xi, yi),
i = 1, . . . , n, with ε0 the corresponding noise variable,

R(θ) = E
[
(y0 − θ⊤ϕ(x0))2

]
= E

[
(θ⊤∗ ϕ(x0) + ε0 − θ⊤ϕ(x0))2

]

= E
[
((θ∗ − θ)⊤ϕ(x0))2

]
+ E

[
ε20
]

+ E
[
2ε0(θ∗ − θ)⊤ϕ(x0)

]

= E
[
(θ∗ − θ)⊤ϕ(x0)ϕ(x0)⊤(θ∗ − θ)

]
+ E

[
ε20
]

+ 0,

since ε0 and x0 are independent and E[ε0] = 0, leading to R(θ) = (θ−θ∗)⊤Σ(θ−θ∗)+σ2,
which leads to the desired result.

Note that the only difference with the fixed design setting is the replacement of Σ̂ with Σ.
We can now express the risk of the OLS estimator.



64 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

Proposition 3.10 Under the random design linear model, assuming that Σ̂ is invertible,
the expected excess risk of the OLS estimator is equal to

σ2

n
E
[

tr(ΣΣ̂−1)
]
.

Proof Since the OLS estimator is equal to θ̂ = 1
n Σ̂−1Φ⊤y = 1

n Σ̂−1Φ⊤(Φθ∗ + ε) =

θ∗ + 1
n Σ̂−1Φ⊤ε, we have, using proposition 3.9,

E[R(θ̂)]− R∗ = E

[( 1

n
Σ̂−1Φ⊤ε

)⊤
Σ
( 1

n
Σ̂−1Φ⊤ε

)]

= E

[
tr
(

Σ
( 1

n
Σ̂−1Φ⊤ε

)( 1

n
Σ̂−1Φ⊤ε

)⊤)]
=

1

n2
E
[

tr
(
ΣΣ̂−1Φ⊤εε⊤ΦΣ̂−1

)]

=
1

n2
E
[

tr
(
ΣΣ̂−1Φ⊤

E[εε⊤]ΦΣ̂−1
)]

=
1

n2
E
[
σ2 tr

(
ΣΣ̂−1Φ⊤ΦΣ̂−1

)]

=
σ2

n
E
[

tr(ΣΣ̂−1)
]
.

Thus, to compute the expected risk of the OLS estimator, we need to compute
E
[

tr(ΣΣ̂−1)
]
. One difficulty here is the potential noninvertibility of Σ̂. Under simple

assumptions (e.g., ϕ(x) has a strictly positive density on Rd), as soon as n > d, Σ̂ is
almost surely invertible. However, its smallest eigenvalue can be very small. Additional
assumptions are then needed to control it (see, e.g., section 3 from Mourtada, 2022).

Exercise 3.8 Show that for the random design setting with the same assumptions as
proposition 3.10, the expected risk of the ridge regression estimator is

E
[
R(θ̂λ)− R∗] = λ2E

[
θ⊤∗ (Σ̂ + λI)−1Σ(Σ̂ + λI)−1θ∗

]
+
σ2

n
E

[
tr
[
(Σ̂ + λI)−2Σ̂Σ

]]
.

3.8.1 Gaussian Designs

Suppose that we assume that ϕ(x) has a Gaussian distribution with mean 0 and covari-
ance matrix Σ. In that case, we can directly compute the desired expectation by first
considering z = Σ−1/2ϕ(x), which has a standard Gaussian distribution (i.e., with mean
zero and identity covariance matrix), with the corresponding normalized design matrix

Z ∈ R
n×d such that Φ = ZΣ1/2, and compute E

[
tr(ΣΣ̂−1)

]
= nE

[
tr(Z⊤Z)−1

]
.

Note that E[Z⊤Z] = nI, and by convexity of function M 7→ tr(M−1) on the cone
of positive-definite matrices, using Jensen’s inequality, we see that E

[
tr((Z⊤Z)−1)

]
>

tr
(
E[Z⊤Z])−1

)
= d

n (here, we have not used the Gaussian assumption). However, this
bound is in the wrong direction (this often happens with Jensen’s inequality).

It turns out that for Gaussians, the matrix (Z⊤Z)−1 has a specific distribution, called
the “inverse Wishart distribution,”5 with an expectation that can be computed exactly

5See https://en.wikipedia.org/wiki/Inverse-Wishart_distribution.

https://en.wikipedia.org/wiki/Inverse-Wishart_distribution


3.8. RANDOM DESIGN ANALYSIS 65

as E[(Z⊤Z)−1] = 1
n−d−1I. Thus, we have E

[
tr(Z⊤Z)−1

]
= d

n−d−1 if n > d + 1, leading
to the expected excess risk of

σ2d

n− d− 1
=
σ2d

n

1

1− (d+ 1)/n
. (3.8)

See Breiman and Freedman (1983) for further details. Note here that for Gaussian designs,
the expected risk is precisely equal to the expression in equation (3.8) and that later in
this book, we will only consider upper bounds. See also a further analysis in section 12.2.3
in the context of double descent.

Overall, in the Gaussian case, we have an explicit nonasymptotic bound on the risk,
which is asymptotically equivalent to σ2d/n when n goes to infinity.

3.8.2 General Designs (��)

This last, more technical subsection highlights how the Gaussian assumption can be
avoided. The main idea is to show that with high probability, the lowest eigenvalue
of Σ−1/2Σ̂Σ−1/2 is larger than some 1 − t for some t ∈ (0, 1). Since the excess risk is

the expectation of σ2

n tr(ΣΣ̂−1), this immediately shows that, with high probability, the

excess risk is less than σ2d
n

1
1−t .

To obtain such results, concentration inequalities for matrices are needed next, such as
described by Tropp (2012), Hsu et al. (2012), Oliveira (2016), and Lecué and Mendelson
(2016). Also, see complementary results by Mourtada (2022).

Matrix concentration inequality. We will use the matrix Bernstein bound, adapted
from theorem 1.4 of Tropp (2012), already discussed in section 1.2.6 and recalled here.

Proposition 3.11 (Matrix Bernstein bound) Given n independent symmetric ma-
trices Mi ∈ Rd×d, such that for all i ∈ {1, . . . , n}, E[Mi] = 0, λmax(Mi) 6 b almost
surely, for all t > 0, we have

P

(
λmax

(
1

n

n∑

i=1

Mi

)
> t

)
6 d · exp

(
− nt2/2

τ2 + bt/3

)
,

for τ2 = λmax

(
1
n

∑n
i=1 E[M2

i ]
)
.

Application to rescaled covariance matrices. We can now prove proposition 3.12,
which will give the desired high-probability bound for the excess risk with one extra
assumption. Next, we will use the partial order between symmetric matrices, defined as
A < B ⇔ B 4 A⇔ A−B is positive semidefinite.

Proposition 3.12 Given Σ = E[ϕ(x)ϕ(x)⊤ ] ∈ Rd×d, and i.i.d. observations ϕ(x1), . . . ,
ϕ(xn) ∈ Rd, assume that, for some ρ > 0,

E

[
ϕ(x)⊤Σ−1ϕ(x)ϕ(x)ϕ(x)⊤

]
4 ρdΣ. (3.9)



66 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

For δ ∈ (0, 1), if n > 5ρd log d
δ , then with probability greater than 1− δ,

Σ−1/2Σ̂Σ−1/2 <
1

4
I. (3.10)

Before giving the proof, note that from the discussion earlier, the bound in equation (3.10)

leads to an excess risk that is less than σ2d
n

1
1−t = 4σ

2d
n for t = 3/4. Moreover, which is no

surprise, the bound is nonvacuous only for n > d (and, in fact, because of the constraint
on n, more than a constant times d log d). The extra assumption in equation (3.9) can be
interpreted as follows: We consider the random vector z = Σ−1/2ϕ(x) ∈ R

d, which is such
that E[zz⊤] = I and E[‖z‖22] = d. The assumption in equation (3.9) is then equivalent to

λmax

(
E
[
‖z‖2zz⊤

])
6 ρd. (3.11)

A sufficient condition is that almost surely, ‖z‖22 6 ρd; that is, ϕ(x)⊤Σ−1ϕ(x) 6 ρd.
Moreover, we always have ρ > 1,6 and, for a Gaussian distribution with zero mean for z,
one can check as an exercise that ρ = (1 + 2/d). Similar results will be obtained for ridge
regression in chapter 7.

Proof Consider the random symmetric matrix Mi = I−ziz⊤i , which satisfies E[Mi] = 0,
λmax(Mi) 6 1 almost surely, and E[M2

i ] = E
[
‖zi‖2ziz⊤i

]
− I with the largest eigenvalue

less than ρd (by equation (3.11)). We thus have for any t > 0, using proposition 3.11:

P

(
λmax

(
I − 1

n
Z⊤Z

)
> t

)
6 d · exp

(
− nt2/2

ρd+ t/3

)
.

Thus, if t is such that nt2

2ρd+2t/3 > log d
δ , then, with probability greater than 1−δ, we have

I − 1
nZ

⊤Z = I −Σ−1/2Σ̂Σ−1/2 4 tI; that is, the desired result Σ−1/2Σ̂Σ−1/2 < (1− t)I.
For t = 3/4, the condition becomes n > (32ρd/9 + 8/9) log d

δ , which is implied by

n > 5ρd log d
δ since we always have ρ > 1 and 5 > 32+8

9 .

3.9 Principal Component Analysis (�)

Unsupervised dimension reduction is an effective way of reducing the number of features,
either for computational efficiency (by storing and manipulating smaller feature vectors)
or to avoid overfitting in a way that is complementary to ridge regularization. In this
section, we present principal component analysis (PCA), which corresponds to looking
for a low-dimensional subspace that contains approximately all feature vectors.

We consider n feature vectors ϕ(x1), . . . , ϕ(xn) ∈ Rd, with the corresponding design
matrix Φ ∈ Rn×d. PCA aims at finding a subspace of dimension k such that all feature
vectors are close to their orthogonal projections onto that subspace (see the following

6From equation (3.11), we have d2 = (E[‖z‖22])
2 6 E[‖z‖42] = E[‖z‖22 tr(zz

⊤)] = tr(E[‖z‖22zz
⊤]) 6

dλmax(E[‖z‖22 zz⊤]) 6 ρd2.



3.9. PRINCIPAL COMPONENT ANALYSIS (�) 67

illustration for d = 2 and k = 1, where the goal is to minimize the sum of squares of all
dotted segments).

ϕ(xi) ∈ R
2

In the formulation presented in this subsection, we consider a linear subspace (which
contains 0), but it is common in practice to look for the optimal affine subspace (which
may not contain 0), which can be done by first centering the data; that is, subtracting
the mean from all feature vectors.

Formulation as an eigenvalue problem. We can parameterize (nonuniquely) the
subspace by an orthonormal basis V ∈ R

d×k such that V ⊤V = I. Then each feature
vector ϕ(xi), i = 1, . . . , n, has projection V V ⊤ϕ(xi), and thus the design matrix of all
projected vectors is ΦV V ⊤, and the optimal V is found by minimizing

‖Φ− ΦV V ⊤‖2F = tr
[
(Φ− ΦV V ⊤)⊤(Φ− ΦV V ⊤)

]

= tr
[
Φ⊤Φ

]
+ tr

[
V V ⊤Φ⊤ΦV V ⊤]− 2 tr

[
Φ⊤ΦV V ⊤]

= tr
[
Φ⊤Φ

]
− tr

[
V ⊤Φ⊤ΦV

]
.

Thus, minimizing ‖Φ−ΦV V ⊤‖2F is equivalent to maximizing tr
[
V ⊤Φ⊤ΦV

]
with respect

to a matrix V ∈ Rd×k with orthonormal columns. Given an eigenvalue decomposition of
the noncentered empirical covariance matrix Σ̂ = 1

nΦ⊤Φ = U Diag(λ)U⊤, with U ∈ Rd×d

orthogonal and λ a vector with nonincreasing components, an optimal V is obtained by
taking the first k columns of U ; that is, a basis of the principal subspace of dimension k.
Such a basis can be computed by various algorithms from numerical algebra (Golub and
Loan, 1996). See exercise 3.9 for a simple alternating optimization algorithm.

Exercise 3.9 (�) Given Φ ∈ Rn×d, we consider minimizing ‖Φ−AD‖2F with respect to
D ∈ Rk×d and A ∈ Rn×k. Show that the optimal solution is such that AD is the data
matrix after performing PCA. Using the singular value decomposition of Φ, show that
an alternating minimization algorithm that iteratively minimizes ‖Φ−AD‖2F with respect
to A, and then D, converges to the global optimum for almost all initializations of D;
compute the corresponding updates.

Exercise 3.10 (K-means clustering) Given Φ ∈ Rn×d, we consider minimizing the
objective ‖Φ−AD‖2F with respect to D ∈ R

k×d and A ∈ {0, 1}n×k such that each row of A
sums to 1. Compute the updates of an alternating optimization algorithm that minimizes
‖Φ−AD‖2F.



68 CHAPTER 3. LINEAR LEAST-SQUARES REGRESSION

PCA and least-squares regression (��). While regularization is a common way to
avoid overfitting for least-squares regression (as shown in section 3.6), performing PCA
and then unregularized OLS provides an alternative with similar behavior. That is, we
now consider the feature vector ΦV ∈ Rn×k, and minimize ‖y − ΦV η‖22 with respect
to η ∈ Rk, with solution η = (V ⊤Φ⊤ΦV )−1V ⊤Φ⊤y, leading to the prediction vector
ΦV η = ΦV (V ⊤Φ⊤ΦV )−1V ⊤Φ⊤y ∈ Rn.

If we assume the linear model y = Φθ∗ + ε as in section 3.5, we can compute the
excess risk of the estimator based on PCA as follows (using E[ε] = 0 and E[εε⊤] = σ2I):

1

n
Eε

[
‖ΦV η − Φθ∗‖22

]
=

σ2k

n
+

1

n

∥∥ΦV (V ⊤Φ⊤ΦV )−1V ⊤Φ⊤Φθ∗ − Φθ∗
∥∥2
2

=
σ2k

n
+ θ⊤∗ Σ̂θ∗ − θ⊤∗ Σ̂V (V ⊤Σ̂V )−1V ⊤Σ̂θ∗

using that Σ̂ = 1
nΦ⊤Φ. We can then use that the columns of V are eigenvectors of Σ̂ so

that Σ̂V = V D and V ⊤Σ̂V = D, for a diagonal matrix D ∈ Rk×k, leading to

1

n
Eε

[
‖ΦV η − Φθ∗‖22

]
=

σ2k

n
+ θ∗Σ̂θ∗ − θ⊤∗ V DV ⊤θ∗ =

σ2k

n
+ θ∗Σ̂θ∗ − θ⊤∗ V V ⊤Σ̂V V ⊤θ∗

=
σ2k

n
+ θ⊤∗ (I − V V ⊤)Σ̂(I − V V ⊤)θ∗.

Since V is composed of the eigenvectors of Σ̂ with the k largest eigenvalues, the matrix
(I − V V ⊤)Σ̂(I − V V ⊤) has all of its eigenvalues less than λk+1, where λk+1 is the

(k+1)th-largest eigenvalue of Σ̂, which is less than 1/(k+1) times tr[Σ̂] (the sum of all
the eigenvalues). Thus, the excess risk of OLS after PCA is less than

σ2k

n
+ ‖θ∗‖22

tr[Σ̂]

k
,

which is similar to equation (3.6) (for ridge regression). A good value of k is then the

closest integer to ‖θ∗‖2 · (tr[Σ̂])1/2
√
n/σ, leading, up to constants, to the same excess risk

than for ridge regression, with the identification k ∼ 1
λ tr[Σ̂].

3.10 Conclusion

In this chapter, we have considered the simplest machine learning setup; that is, square
loss and prediction functions linearly parameterized by a finite-dimensional parameter.
This simple setup led to estimation algorithms based on numerical linear algebra (solv-
ing linear systems) and a statistical analysis based on simple probabilistic arguments
(mostly variance computations). In particular, we highlighted the importance of regular-
ization, which allows good predictive performance with high-dimensional features through
dimension-free bounds.

Going beyond the square loss will require iterative algorithms based on optimization
(presented in chapter 5) and a more refined statistical analysis with deeper probabilistic
tools (presented in chapter 4).



Part II

Generalization Bounds for
Learning Algorithms

69





Chapter 4

Empirical Risk Minimization

Chapter Summary
• Convexification of the risk: For binary classification, optimal predictions can be

achieved with convex surrogates.
• Risk decomposition: The risk can be decomposed into the sum of the approximation

error (which characterizes the modeling assumptions made by the chosen class of
functions) and the estimation error (which characterizes the effect of having a finite
number of observations).

• Rademacher complexity: To study estimation errors and compute expected uniform
deviations of real-valued outputs, Rademacher complexities, also referred to as
Rademacher averages, are a very flexible and powerful tool that allows obtaining
uniform deviation bounds. This leads to dimension-independent upper bounds on
estimation errors for constrained or penalized linear predictors.

As outlined in chapter 2, given a joint distribution p on X × Y, and n independent
and identically distributed observations (i.i.d.) from p, our goal is to learn a function
f : X → Y with minimum risk R(f) = E[ℓ(y, f(x))], or equivalently minimum expected
excess risk:

R(f)− R∗ = R(f)− inf
g measurable

R(g).

In this chapter, we will consider methods based on empirical risk minimization, with a
focus on statistical analysis (i.e., generalization to unseen data); optimization algorithms
to efficiently find approximate minimizers will be studied in chapter 5. Before looking at
the necessary probabilistic tools, we will show how problems where the output space is
not a vector space, such as binary classification with Y = {−1, 1}, can be reformulated
as real-valued outputs, with so-called convex surrogates of loss functions.

71



72 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

4.1 Convexification of the Risk

In this section, for simplicity, we focus on binary classification where Y = {−1, 1} with
the 0–1 loss, but many of the concepts extend to the more general structured prediction
setup (see chapter 13).

As our goal is to estimate a binary-valued function, the first idea that comes to mind
is to minimize the empirical risk over a hypothesis space of binary-valued functions f
(or equivalently, the subsets of X by considering the set {x ∈ X, f(x) = 1}). However,
this approach leads to a combinatorial problem that can be computationally intractable.
Moreover, how to control the capacity (i.e., how to regularize) for these types of hypoth-
esis spaces needs to be clarified. Learning a real-valued function instead through the
framework of convex surrogates simplifies and overcomes this problem as it convexifies it.
Classical penalty-based regularization techniques can then be used for theoretical analysis
(this chapter) and gradient-based methods for efficient algorithms (chapter 5).

This choice of treating classification problems through real-valued prediction functions
allows us to avoid introducing Vapnik-Chervonenkis dimensions (see Vapnik and Cher-
vonenkis, 2015) to obtain general convergence results for empirical risk minimization. In
this chapter, we will use instead the generic tool of Rademacher complexities (presented
in section 4.5).

Instead of learning f : X→ {−1, 1}, we will thus learn a real-valued function g : X→ R

and define f(x) = sign(g(x)), where

sign(a) =

{
1 if a > 0
−1 if a < 0.

There are several conventions to define a prediction f(x) ∈ {−1, 1} when g(x) = 0;
a common one is to always choose one of the two labels. In this book, to preserve
symmetry between −1 and 1 and to make sure that the loss function can be expressed as
a function of yg(x), we consider random predictions; that is, when g(x) = 0, the classifier
f(x) is sampled uniformly at random in {−1, 1}, independently from all other random
quantities. When computing the loss incurred by the prediction f(x), we will always take
the expectation with respect to this random choice. Note that in practice, having g(x)
exactly equal to 0 occurs rarely, so the choice of convention makes no visible difference.

The 0–1 risk of function f = sign ◦ g, still denoted as R(g) (△! note the slight over-
loading of notations R(g) = R(sign ◦ g)), is then equal to, separating between situations
where g(x) = 0 or not,

R(g) = P(f(x) 6= y) = E[1g(x) 6=01f(x) 6=y] + E[1g(x)=01f(x) 6=y]

= E[1yg(x)<0] +
1

2
E[1g(x)=0] = E

[
Φ0−1(yg(x))

]
,

where Φ0−1 : R→ R is defined as

Φ0−1(u) =





1 if u < 0
1
2 if u = 0
0 if u > 0,

(4.1)



4.1. CONVEXIFICATION OF THE RISK 73

Figure 4.1. Classical convex surrogates for binary classification with the 0–1 loss, with
Φ0−1 defined in equation (4.1).

and is called the “margin-based” 0–1 loss function or simply the 0–1 loss function.

△! Note the slightly overloaded notation where the 0–1 loss function is defined on R,
compared to the 0–1 loss function from chapter 2, which is defined on {−1, 1}× {−1, 1}.

In practice, for empirical risk minimization, we then minimize with respect to the
function g : X→ R the corresponding empirical risk 1

n

∑n
i=1 Φ0−1(yig(xi)). The function

Φ0−1 is not continuous (and thus also nonconvex) and leads to difficult optimization
problems.

4.1.1 Convex Surrogates

A key concept in machine learning is the use of convex surrogates, where we replace
Φ0−1 by another function Φ with better numerical properties (mostly convexity). See the
classic examples discussed next and plotted in figure 4.1.

Instead of minimizing the classical risk R(g) or its empirical version, one then mini-
mizes the Φ-risk (and its empirical version), defined as

RΦ(g) = E[Φ(yg(x))].

In this context, the function g is sometimes called the score function.

The critical question tackled in this section is: Does it make sense to convexify the
problem? In other words, does it lead to good predictions for the 0–1 loss?

Classical examples. We first review the primary examples used in practice:

• Quadratic/square loss: Φ(u) = (u − 1)2, leading to, since we have y2 = 1,
Φ(yg(x)) = (y − g(x))2 = (g(x)− y)2. We get back least-squares regression, ignore
that the labels have to belong to {−1, 1}, and take the sign of g(x) for the prediction.
Note the overpenalization for a large positive value of yg(x) that will not be present
for the other losses discussed next (which are nonincreasing).



74 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

• Logistic loss: Φ(u) = log(1 + e−u), leading to

Φ(yg(x)) = log(1 + e−yg(x)) = − log
( 1

1 + e−yg(x)

)
= − log(σ(yg(x))),

where σ(v) = 1
1+e−v is the sigmoid function. Note the link with maximum likelihood

estimation, where we define the model through

P(y = 1|x) = σ(g(x)) and P(y = −1|x) = σ(−g(x)) = 1− σ(g(x)).

The risk is, then, the negative conditional log-likelihood E[− log p(y|x)]. It is also
often called the “cross-entropy loss.”1 See more details about probabilistic methods
in chapter 14.

• Hinge loss: Φ(u) = max(1−u, 0). With linear predictors, this leads to the support
vector machine (SVM), and yg(x) is often called the “margin” in this context. This
loss has a geometric interpretation (see section 4.1.2).2

• Squared hinge loss: Φ(u) = max(1− u, 0)2. This is a smooth counterpart to the
regular hinge loss.

• Exponential loss: Φ(u) = exp(−u). This loss is often used within the boosting
framework presented in section 10.3, in particular through the Adaboost algorithm
(section 10.3.4).

Section 4.1 analyzes precisely how replacing the 0–1 loss with convex surrogates still
leads to optimal predictions. This allows us to focus only on real-valued prediction func-
tions in the rest of this book. We will consider loss functions ℓ(y, f(x)), which will be
the square loss (y − f(x))2 for regression, and any of the ones mentioned previously for
binary classification; that is, Φ(yf(x)). We will consider alternatives and extensions in
chapter 13 (on structured prediction).

4.1.2 Geometric Interpretation of the Support Vector Machine
(�)

Given its historical importance, this section provides a geometrical perspective on the
hinge loss to highlight why it leads to a learning architecture called the “support vector
machine (SVM).” We consider n observations (xi, yi) ∈ Rd × {−1, 1}, for i = 1, . . . , n.

Separable data (Vapnik and Chervonenkis, 1964). We first assume that the data
are separable by an affine hyperplane; that is, there are w ∈ Rd and b ∈ R such that for
all i ∈ {1, . . . , n}, yi(w⊤xi + b) > 0. Among the infinitely many separating hyperplanes,
we aim to select the one maximizing the distance to the closest points, as illustrated:

1See https://en.wikipedia.org/wiki/Logistic_regression for details.
2See also https://en.wikipedia.org/wiki/Support_vector_machine for details.

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Support_vector_machine


4.1. CONVEXIFICATION OF THE RISK 75

w⊤x + b = 0

The distance from xi to the hyperplane {x ∈ Rd, w⊤x+ b = 0} is equal to |w⊤xi+b|
‖w‖2

,

and thus, the minimal distance is

min
i∈{1,...,n}

yi(w
⊤xi + b)

‖w‖2
,

and we thus aim at maximizing this quantity. Because of the invariance by rescal-
ing (i.e., we can multiply w and b by the same scalar constant without modifying the
affine separator), this problem is equivalent to minimizing ‖w‖2 with the constraint that
mini∈{1,...,n} yi(w

⊤xi + b) > 1, and thus to the following problem:

min
w∈Rd, b∈R

1

2
‖w‖22 such that ∀i ∈ {1, . . . , n}, yi(w⊤xi + b) > 1. (4.2)

General data (Cortes and Vapnik, 1995). When a hyperplane may not separate
data, then we can introduce so-called “slack variables” ξi > 0, i = 1, . . . , n, allowing
the constraint yi(w

⊤xi + b) > 1 to be violated by introducing the modified constraint
yi(w

⊤xi + b) > 1− ξi instead. The overall amount of slack is then minimized, leading to
the following problem (with C > 0):

min
w∈Rd, b∈R, ξ∈Rn

1

2
‖w‖22+C

n∑

i=1

ξi such that ∀i ∈ {1, . . . , n}, yi(w⊤xi+b) > 1−ξi, ξi > 0.

(4.3)
We can minimize in closed form with respect to each ξi through ξi = (1−yi(w⊤xi+ b))+.
With λ = 1

nC , the problem in equation (4.3) is thus equivalent to

min
w∈Rd, b∈R

1

n

n∑

i=1

(1− yi(w⊤xi + b))+ +
λ

2
‖w‖22,

which is exactly an ℓ2-regularized empirical risk minimization with the hinge loss for the
prediction function f(x) = w⊤x+ b.



76 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

Lagrange dual and support vectors (�). The problem in equation (4.3) is a lin-
early constrained convex optimization problem that can be analyzed using Lagrangian
duality (see, e.g., Boyd and Vandenberghe, 2004). We consider nonnegative Lagrange
multipliers αi and βi, i ∈ {1, . . . , n}, and the following Lagrangian:

L(w, b, ξ, α, β) =
1

2
‖w‖22 + C

n∑

i=1

ξi −
n∑

i=1

αi
(
yi(w

⊤xi + b)− 1 + ξi
)
−

n∑

i=1

βiξi.

Minimizing with respect to ξ ∈ Rn leads to the equality constraints that for all i ∈
{1, . . . , n}, αi + βi = C, while minimizing with respect to b leads to the constraint∑n

i=1 yiαi = 0. Finally, minimizing with respect to w can be done in closed form as
w =

∑n
i=1 αiyixi. Overall, this leads to the dual optimization problem

max
α∈Rn

n∑

i=1

αi−
1

2

n∑

i,j=1

αiαjyiyjx
⊤
i xj such that

n∑

i=1

yiαi = 0 and ∀i ∈ {1, . . . , n}, αi ∈ [0, C].

As we will show in chapter 7 for all ℓ2-regularized learning problems with linear predictors,
the optimization problem only depends on the dot products x⊤i xj , i, j = 1, . . . , n. The
optimal predictor can be written as a linear combination of input data points xi, i =
1, . . . , n. Moreover, for optimal primal and dual variables, the complementary slackness
conditions for linear inequality constraints lead to αi

(
yi(w

⊤xi + b) − 1 + ξi
)

= 0 and
(C − αi)ξi = 0. This implies that αi = 0 as soon as yi(w

⊤xi + b) > 1, and thus many of
the αi’s equal zero, and the optimal predictor is a linear combination of only some of the
data points xi’s which are then called “support vectors.” The sparsity of the αi’s can be
employed computationally (Platt, 1998), but statistically, given that in high dimensions,
the number of support vectors is typically proportional to the number n of observations
(Steinwart, 2003), this sparsity alone cannot directly justify the potential superiority of
the hinge loss over other convex surrogates.

4.1.3 Conditional Φ-risk and Classification Calibration (�)

From margin bounds to convergence to optimal predictions. All the convex
surrogates presented in section 4.1.1 are upper bounds on the 0–1 loss or can be made so
with rescaling. This simple fact allows us to get a variety of so-called “margin bounds”
where the 0–1 risk is upper-bounded by the Φ-risk. When the Φ-risk equals zero, which
can occur only for problems with deterministic labels, this leads to a guarantee that the
resulting classifier is the optimal one. In nondeterministic settings, however, the Φ-risk
will be strictly positive, and while the margin bound shows that the error is controlled,
it does not lead to guarantees that the resulting classifier is close to leading to optimal
predictions.

We now study the tools dedicated to obtaining such guarantees, with, in section 4.1.3,
the concept of classification calibration (making sure that minimizing the Φ-risk also leads
to a minimizer of the 0–1 risk), and, in section 4.1.4, a quantitative relation between the
two excess risks.



4.1. CONVEXIFICATION OF THE RISK 77

If we denote η(x) = P(y = 1|x) ∈ [0, 1], then we have E[y|x] = 2η(x)− 1, and, as seen
in section 2.2.3, the Bayes risk (the best possible 0–1 expected risk) is equal to

R∗ = E[min(η(x), 1 − η(x))] = E
[
1
2 − 1

2 |E[y|x]|
]
,

and one optimal classifier is f∗(x) = sign(2η(x) − 1) = sign(E[y|x])–noting that when
η(x) = 1/2, our convention of random choice for the sign function is compatible with the
fact that in this situation all predictions are optimal.

A key remark is that there are many potential other functions g(x) than 2η(x)− 1 so
that f∗(x) = sign(g(x)) is optimal, namely, all functions g such that g(x) has the same
sign as 2η(x) − 1, which leads to many possibilities beyond 2η(x) − 1. In this section,
we will mostly focus on functions of the form g(x) = b(2η(x) − 1), where b : R → R is
sign-preserving; that is, b(u) > 0 if u > 0, and b(u) 6 0 if u 6 0.

This section aims to ensure that the minimizers of the expected Φ-risk lead to optimal
predictions by ensuring that its minimizer g(x) has the same sign as 2η(x)− 1.

Square loss. Before moving on to general functions Φ, the square loss leads to simple
arguments. Indeed, as seen in chapter 2, the function minimizing the expected Φ-risk
is then g(x) = E[y|x] = 2η(x) − 1, and taking its sign leads to the optimal prediction.
Thus, using the square loss for binary classification leads to optimal predictions in the
population case.

General losses. To study the impact of using the Φ-risk beyond the square loss, we
first look at the conditional risk for a given x (as for the 0–1 loss, the function g that will
minimize the Φ-risk can be determined by looking at each x separately). Then, knowledge
of the probability η(x) = P(y = 1|x) is sufficient to characterize the optimal prediction
at that x, and the ensuing excess risk.

Definition 4.1 (Conditional Φ-risk and 0–1 risk) For ξ ∈ [0, 1] and u ∈ R, we de-
fine the conditional Φ-risk as

CΦ
ξ (u) = ξΦ(u) + (1− ξ)Φ(−u),

and the conditional 0–1 risk as, with Φ0−1 defined in equation (4.1),

Cξ(u) = ξΦ0−1(u) + (1 − ξ)Φ0−1(−u).

With these definitions, we can compute the Φ-risk and 0–1 risk of a function g : X→ R

as follows:
RΦ(g) = E

[
CΦ
η(x)(g(x))

]
and R(g) = E

[
Cη(x)(g(x))

]
.

Note that with our convention Φ0−1(0) = 1
2 , we have C1/2(u) = 1

2 for all u ∈ R.

The least that we can expect from a convex surrogate is that in the population case,
where all x’s decouple, the optimal g(x) obtained by minimizing the conditional Φ-risk
CΦ
η(x) exactly leads to the same prediction as the Bayes predictor, which minimizes Cη(x)



78 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

(at least when this prediction is unique, i.e., η(x) 6= 1
2 ). We thus need that for ξ 6= 1

2 , the
minimizers of the function CΦ

ξ are also minimizers of Cξ.

Since the set minimizers of Cξ is R∗
+ when ξ > 1/2 (i.e., when η(x) > 1

2 , the optimal
prediction at this x is +1), and R∗

− when ξ < 1
2 (i.e., when η(x) < 1

2 , the optimal
prediction at this x is −1), we want that for any ξ ∈ [0, 1]\{ 12} (with R∗

+ the set of strictly
positive numbers, and a similar notation R∗

− for the set of strictly negative numbers):

(Positive optimal prediction) ξ >
1

2
⇔ arg min

u∈R

CΦ
ξ (u) ⊂ R

∗
+ (4.4)

(Negative optimal prediction) ξ <
1

2
⇔ arg min

u∈R

CΦ
ξ (u) ⊂ R

∗
− (4.5)

(in this discussion, we assume for simplicity that the argmins above are non-empty;
degenerate cases are left as an exercise). A function Φ that satisfies these two statements is
said to be classification-calibrated, or simply calibrated. The resulting binary classification
method is then said “Fisher consistent.” It turns out that when Φ is convex, a simple
sufficient and necessary condition is available, as described in proposition 4.1.

Proposition 4.1 (Bartlett et al., 2006) Let Φ : R → R be a convex function. The
surrogate function Φ is classification-calibrated if and only if Φ is differentiable at 0 and
Φ′(0) < 0.

Proof Since Φ is convex, so is Cξ for any ξ ∈ [0, 1], and thus we simply consider left and
right derivatives at zero to obtain conditions about the location of minimizers, with the
two possibilities (a) and (b) shown next (minimizer in R∗

+ if and only if the right derivative
at zero is strictly negative, and minimizer in R∗

− if and only if the left derivative at zero
is strictly positive):

u

C
Φ

ξ (u)

u

C
Φ

ξ (u)

(CΦ
ξ )′(0+)=ξΦ′(0+)−(1−ξ)Φ′(0−)<0 (CΦ

ξ )′(0−)=ξΦ′(0−)−(1−ξ)Φ′(0+)>0

(a) ⇔ (b) ⇔
arg minu∈R

CΦ
ξ (u) ⊂ R

∗
+ arg minu∈R

CΦ
ξ (u) ⊂ R

∗
−

Assume that Φ is calibrated. By letting ξ tend to 1
2+ in equation (a) above, this leads

to (CΦ
1/2)′(0+) = 1

2

[
Φ′(0+)−Φ′(0−)

]
6 0. Since Φ is convex, we always have the inequality

Φ′(0+)−Φ′(0−) > 0. Thus, the left and right derivatives are equal, which implies that Φ
is differentiable at 0. Then (CΦ

ξ )′(0) = (2ξ − 1)Φ′(0), and from equations (4.4) and (a),
we need to have Φ′(0) < 0.

For the other direction of the equivalence, assume that Φ is differentiable at 0 and



4.1. CONVEXIFICATION OF THE RISK 79

Φ′(0) < 0. Then (CΦ
ξ )′(0) = (2ξ − 1)Φ′(0); equations (4.4) and (4.5) are then direct

consequences of equations (a) and (b).

Note that proposition 4.1 excludes the convex surrogate u 7→ (−u)+ = max{−u, 0},
which is not differentiable at zero. Moreover, all examples from section 4.1.1 are cali-
brated.

We now assume that Φ is classification-calibrated and convex; that is, Φ is convex, Φ
is differentiable at 0, and Φ′(0) < 0.

△! In the context of classification with probabilistic models, where a model for P(y = 1|x)
is learned, calibration may also refer to the accuracy of the estimate of this probability.
See Silva Filho et al. (2023) and references therein.

4.1.4 Relation between Risk and Φ-risk (��)

Now that we know that for any x ∈ X, minimizing Cη(x)(g(x)) with respect to g(x)
leads to the optimal prediction through sign(g(x)), we would like to make sure that an
explicit control of the excess Φ-risk (which we aim to accomplish with empirical risk
minimization using tools from later sections) leads to an explicit control of the original
excess risk. In other words, we are looking for an increasing function H : R+ → R+ such
that R(g)−R∗ 6 H

[
RΦ(g)−R∗

Φ

]
, where R∗

Φ is the minimum possible Φ-risk. Function H
is often called the calibration function. This section shows that this calibration is the
identity for the hinge loss (corresponding to the SVM), while it can be the square root
for smooth convex surrogates such as the square and logistic losses. We will in fact look
for the function G = H−1 so that G

[
R(g) − R∗] 6 RΦ(g) − R∗

Φ, following the general
frameworks of Zhang (2004b) and Bartlett et al. (2006).

△!
As opposed to the least-squares regression case, where the loss function used
for testing is directly the one used within empirical risk minimization, there are
two notions here: the testing error R(g), which is obtained after thresholding
at zero the function g; and the quantity RΦ(g), which is sometimes called the
testing loss, or, in this book, the surrogate expected risk.

In terms of conditional risks introduced in definition 4.1, classification-calibration
meant that for all ξ ∈ [0, 1]\{ 12}, arg minCΦ

ξ ⊂ arg minCξ. The validity of the calibration
function for the expected risk will be a consequence of the identity

∀u ∈ R, G
[
Cξ(u)− inf

u′∈R

Cξ(u
′)
]

6 CΦ
ξ (u)− inf

u′∈R

CΦ
ξ (u′), (4.6)

which relates the excess conditional Φ-risk and the excess 0–1 risk. Indeed, if equa-



80 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

tion (4.6) is satisfied and G is convex, then by Jensen’s inequality,

G
[
R(g)− R∗] = G

(
E

[
Cη(x)(g(x))− inf

u′∈R

Cη(x)(u
′)
])

6 E

[
G
(
Cη(x)(g(x))− inf

u′∈R

Cη(x)(u
′)
)]

6 E

[
CΦ
η(x)(g(x))− inf

u′∈R

CΦ
η(x)(u

′)
]

= RΦ(g)− R∗
Φ,

which is the desired calibration inequality.

Expression for the excess conditional 0–1 risk. For ξ = 1
2 , the function Cξ is

constant equal to 1
2 , so the corresponding excess risk is equal to zero. If ξ > 1

2 , then, as
illustrated below, infu′∈R Cη(x)(u

′) = 1− ξ, and is attained on R∗
+:

u

Cξ(u)

1−1

ξ

1−ξ

0–1 loss

The excess 0–1 risk Cξ(u)− infu′∈R Cξ(u
′) is equal to 2ξ − 1 if u < 0, 0 if u > 0, and

ξ − 1
2 if u = 0, leading to

∀u ∈ R, Cξ(u)− inf
u′∈R

Cξ(u
′) = (2ξ − 1)Φ0−1(u) 6 (2ξ − 1)1u60.

If ξ < 1
2 , the same reasoning leads to the quantity (1 − 2ξ)Φ0−1(−u) 6 (1 − 2ξ)1−u60,

which we can combine into, for any ξ ∈ [0, 1],

∀u ∈ R, Cξ(u)− inf
u′∈R

Cξ(u
′) = |2ξ − 1| · Φ0−1((2ξ − 1)u) 6 |2ξ − 1| · 1(2ξ−1)u60.

We can also obtain the more practical bound

∀u ∈ R, Cξ(u)− inf
u′∈R

Cξ(u
′) 6 |2ξ − 1− b(u)| · 1(2ξ−1)u60 6 |2ξ − 1− b(u)|, (4.7)

for any sign-preserving function b (the inequality is true for ξ = 1
2 , and for ξ > 1

2 , it
is implied by (2ξ − 1) · 1u60 6 (2ξ − 1 − b(u)) · 1u60, which is true as soon as b is
sign-preserving).

Quadratic loss. For the square loss Φ(v) = (v−1)2, we have CΦ
ξ (u)− infu′∈R C

Φ
ξ (u′) =

(2ξ − 1 − u)2; thus, equation (4.7) with b(u) = u directly leads to equation (4.6) with
G(σ) = σ2. Therefore,

R(g)− R(g∗) 6
(
RΦ(g)− R∗

Φ

)1/2
, (4.8)

which is a calibration result that we extend next to smooth surrogates.



4.1. CONVEXIFICATION OF THE RISK 81

Smooth surrogates. We consider smooth losses of the form (up to additive and
multiplicative constants) Φ(u) = a(u) − u, where a(u) = 1

2u
2 for the quadratic loss,

a(u) = 2 log(eu/2 + e−u/2) for the logistic loss. We assume that a is even and β-smooth
with β > 0 (i.e., as will be defined in chapter 5, a′′(u) 6 β for all u ∈ R). This implies3

that for all u ∈ R and α ∈ R,

a(u)− αu − inf
u′∈R

{
a(u′)− αu′

}
>

1

2β
|α− a′(u)|2, (4.9)

leading to CΦ
ξ (u) = ξΦ(u) + (1− ξ)Φ(−u) = a(u)− (2ξ − 1)u and thus,

CΦ
ξ (u)− inf

u′∈R

CΦ
ξ (u′) = a(u)− (2ξ − 1)u− inf

u′∈R

{
a(u′)− (2ξ − 1)u′

}

>
1

2β

(
2ξ − 1− a′(u)

)2
by equation (4.9),

>
1

2β

[
Cξ(u)− inf

u′∈R

Cξ(u
′)
]2

from equation (4.7).

This leads to equation (4.6) with G(σ) = σ2

2β , which implies

R(g)− R∗ 6
√

2β
(
RΦ(g)− R∗

Φ

)1/2
.

This leads to the calibration function H(σ) =
√
σ for the square loss and H(σ) =

√
2σ

for the logistic loss (with the normalization from section 4.1.1).

Exercise 4.1 (�) On top of the assumptions made in this section, assume that a(0) = 0.
Show that if a∗ is the Fenchel conjugate of a, then for any function g : X → R, we have
a∗
(
R(g)− R∗) 6 RΦ(g)− R∗

Φ.

Hinge loss. For the hinge loss, for all ξ ∈ [0, 1], the function CΦ
ξ is continuous piecewise

affine, with kinks at −1 and +1. For ξ > 1
2 , as illustrated below, it is minimized for u = 1,

and the excess risk is piecewise affine.

u

C
Φ

ξ (u)

1−1

Hinge loss

3Using the Fenchel conjugate a∗ : R → R, which is (1/β)-strongly convex (see chapter 5), we have
a(u)−αu− infu′∈R

{
a(u′)−αu′} = a∗(α)−uα− infα′∈R

{
a∗(α′)−uα′} > 1

2β
|α−α′|2, where α′ = a′(u)

is the minimizer of infα′∈R

{
a∗(α′) − uα′} (Boyd and Vandenberghe, 2004). A direct proof may be

obtained as follows: define the function b : u 7→ a(u)− αu, and take u′ a minimizer of b; by smoothness,

b(u′) 6 b(u− 1
β
b′(u)) 6 b(u) + b′(u)

(
− 1

β
b′(u)

)
+ β

2

∣∣− 1
β
b′(u)

∣∣2 = b(u) − 1
2β

b′(u)2, which exactly leads

to equation (4.9). See also exercise 5.11.



82 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

For ξ > 1
2 , we can compare the excess conditional Φ-risk with the excess risk for the

0–1 conditional risk: these two are equal for u = 0− and 1, while the excess hinge risk
is always larger. By symmetry, it is also true for ξ < 1

2 , and this is trivially true at
ξ = 1

2 (since the excess 0–1 risk is 0). Thus, we have shown that equation (4.6) is true
for G the identity function (i.e., H(σ) = σ). In other words, for the hinge loss, we have
R(g)− R∗ 6 RΦ(g)− R∗

Φ; that is, the excess Φ-risk directly controls the excess 0–1 risk.

Note that only when the Bayes risk is zero (i.e., η(x) ∈ {0, 1} almost surely), then
the fact that the hinge loss is an upper bound on the 0–1 loss is enough to show that the
excess risk is less than the excess Φ-risk (indeed, the two optimal risks R∗ and R∗

Φ are
equal to zero), but this is not the case otherwise.

Exercise 4.2 (��) Consider a convex function Φ : R → R, which is differentiable at
zero with Φ′(0) < 0. Define G(z) = Φ(0)− infu∈R

{
1+z
2 Φ(u) + 1−z

2 Φ(−u)
}
. Show that G

is convex, G(0) = 0, and G
[
R(g) − R∗] 6 RΦ(g) − R∗

Φ for any function g : X → R.
Compute G for the exponential loss.

We can make the following observations:

• For the nonsmooth hinge loss, the calibration function is identity, so if the excess
Φ-risk goes to zero at a specific rate, the excess risk goes to zero at the same rate.
In contrast, for smooth losses, the upper bound only ensures a worse rate with a
square root. Therefore, when going from the excess Φ-risk to the excess risk (i.e.,
after thresholding function g at zero), the observed rates may be worse. However,
as will be shown in chapter 5, smooth losses can be easier to optimize, and, for
the square loss, better generalization bounds can be obtained (see section 7.6).
Moreover, as shown next, the choice of surrogate also impacts the approximation
error. There are, thus, multiple trade-offs between these two types of losses, and
no clear superiority of one over the other.

• Note that the noiseless case where η(x) ∈ {0, 1} (zero Bayes risk) leads to a stronger
calibration function, as well as a series of intermediate “low-noise” conditions (see
Bartlett et al., 2006, for details, as well as exercise 4.3).

Exercise 4.3 (�) Assume that |2η(x) − 1| > ε almost surely for some ε ∈ (0, 1]. Show
that for any smooth convex classification-calibrated function Φ : R → R of the form
Φ(v) = a(v) − v as in this section, then we have R(g) − R(g∗) 6 ε

a∗(ε)

[
RΦ(g) − R∗

Φ

]
for

any function g : X→ R.

Impact on approximation errors (�). For the same binary classification problem,
several convex surrogates can be used. While the Bayes classifier is always the same
(i.e., f∗(x) = sign(2η(x) − 1)), the minimizer of the population Φ-risk will be different.
For example, for the hinge loss, the minimizer g(x) is exactly sign(2η(x) − 1), while
for losses of the form like above Φ(v) = a(v) − v, we have a′(g(x)) = 2η(x) − 1, and
thus for the square loss, g(x) = 2η(x) − 1, while for the logistic loss, one can check
that g(x) = 2 atanh(2η(x) − 1) (with atanh the hyperbolic arc tangent; proof left as an



4.1. CONVEXIFICATION OF THE RISK 83

Figure 4.2. Optimal score functions for Gaussian class-conditional densities in one di-
mension. Left: conditional densities; right: optimal score functions for the square loss
(g∗(x) = 2η(x) − 1), the hinge loss (g∗(x) = sign(2η(x) − 1)), and the logistic loss
(g∗(x) = 2 atanh(2η(x)− 1)).

exercise). See the examples in figure 4.2, with X = R and Gaussian class-conditional
densities, showing that optimal scores (right plot) may be very different for different
convex surrogates.

The choice of surrogates will have an impact since to attain the minimal Φ-risk, differ-
ent assumptions are needed on the class of functions used for empirical risk minimization;
that is, sign(2η(x)− 1) has to be in the class of functions that we use (for the hinge loss),
2η(x) − 1 for the square loss, or 2 atanh(2η(x) − 1) for the logistic loss. If these func-
tions are not in the class of models, they have to be well-approximated, which could be
harder for the hinge loss since sign(2η(x) − 1) may be less regular than 2η(x) − 1 or
2 atanh(2η(x) − 1) (see also exercise 4.4 and section 14.2).

Exercise 4.4 For the logistic loss, show that for data generated with class-conditional
densities of x|y = 1 and x|y = −1, which are Gaussians with the same covariance matrix,
the function g(x) minimizing the expected logistic loss is affine in x. This model is
often referred to as “linear discriminant analysis (LDA).” Provide an extension to the
multicategory setting.

Beyond calibration and loss consistency. The main property proved in this section
is R(g)− R∗ ≤ H

[
RΦ(g) − R∗

Φ

]
for any prediction function g : X→ R, for a function H

that tends to zero at zero. When the space of functions chosen for g is flexible enough
to reach the minimizer of RΦ, such as for kernel methods (chapter 7) or neural networks
with sufficiently many neurons (chapter 9), then g will reach the minimum risk R(g).
Such properties will also be available for structured prediction in chapter 13.

However, it is common in practice, in particular in high dimensions, to use a restricted
class of models, in particular linear models, where reaching the minimum Φ-risk is not
possible anymore. In such setups, a more refined notion of consistency can be defined
and studied (see, e.g., Long and Servedio, 2013).



84 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

4.2 Risk Minimization Decomposition

We now consider a family F of prediction functions f : X→ R. Empirical risk minimiza-
tion aims to compute

f̂ ∈ arg min
f∈F

R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi))

with algorithms presented in chapter 5. We consider loss functions that are defined for
real-valued outputs even for binary classification problems through the use of surrogates
presented in section 4.1.1.

We can decompose the risk into two terms as follows:

R(f̂)− R∗ =
{
R(f̂)− inf

f ′∈F
R(f ′)

}
+
{

inf
f ′∈F

R(f ′)− R∗
}

= estimation error + approximation error.

A classic example is the situation where a subset of Rd parameterizes the family
of functions; that is, F = {fθ, θ ∈ Θ}, for Θ ⊂ Rd. This includes neural networks
(chapter 9) and the simplest case of linear models of the form fθ(x) = θ⊤ϕ(x) for a
particular feature vector ϕ(x) (such as in chapter 3). We will use linear models with
Lipschitz-continuous loss functions as a motivating example, most often with constraints
or penalties on the ℓ2-norm ‖θ‖2, but other norms can be considered as well (such as the
ℓ1-norm in chapter 8).

We now turn separately to the approximation and estimation errors.

4.3 Approximation Error

The approximation error inff∈F R(f)−R∗ is deterministic and depends on the underlying
distribution and class F of functions: the larger the class, the smaller the approximation
error.

Bounding the approximation error requires assumptions on the Bayes predictor (some-
times also called the “target function”) f∗, and hence on the testing distribution.

In this section, we will focus on F = {fθ, θ ∈ Θ} for Θ ⊂ R
d (we will consider

infinite dimensions in chapter 7), and convex Lipschitz-continuous losses (with respect to
the second variable), assuming that θ∗ is the minimizer of R(fθ) over θ ∈ Rd, which is
assumed to exist (typically, θ∗ does not belong to Θ). This implies that the approximation
error decomposes into

inf
θ∈Θ

R(fθ)− R∗ =
{

inf
θ∈Θ

R(fθ)− inf
θ′∈Rd

R(fθ′)
}

+
{

inf
θ′∈Rd

R(fθ′)− R∗
}
.

• The second term infθ′∈Rd R(fθ′) − R∗ is the incompressible approximation error
coming from the chosen set of models fθ. For flexible models such as kernel methods



4.4. ESTIMATION ERROR 85

(chapter 7) or neural networks (chapter 9), this incompressible error can be made
as small as desired.

• The function θ 7→ R(fθ)− infθ′∈Rd R(fθ′) is nonnegative on Rd and can be typically
upper-bounded by a specific norm (or its square) Ω(θ−θ∗), and we can see the first
term above inf

θ∈Θ
R(fθ)− inf

θ′∈Rd
R(fθ′) as a notion of “distance” between θ∗ and Θ.

For example, if the loss that is considered is G-Lipschitz-continuous with respect
to the second variable (which is possible for regression or when using a convex
surrogate for binary classification as presented in section 4.1), we have

R(fθ)− R(fθ′) = E
[
ℓ(y, fθ(x)) − ℓ(y, fθ′(x))

]
6 GE

[
|fθ(x) − fθ′(x)|

]
,

and thus, this first part of the approximation error is upper-bounded by G times
the distance between fθ∗ and F = {fθ, θ ∈ Θ}, for a particular pseudodistance
(θ, θ′) 7→ E

[
|fθ(x)−fθ′(x)|

]
(missing the property of θ = θ′ being the only possibility

to be zero).

A classical example will be fθ(x) = θ⊤ϕ(x), and Θ = {θ ∈ Rd, ‖θ‖2 6 D}, leading
to the upper bound4

inf
θ∈Θ

R(fθ)− inf
θ∈Rd

R(fθ) 6 G inf
‖θ‖26D

E
[
‖ϕ(x)‖2

]
·‖θ−θ∗‖2 6 GE

[
‖ϕ(x)‖2

]
(‖θ∗‖2−D)+,

which is equal to zero if ‖θ∗‖2 6 D (well-specified model).

Exercise 4.5 Show that for Θ = {θ ∈ Rd, ‖θ‖1 6 D} (ℓ1-norm instead of the
ℓ2-norm), we have

inf
θ∈Θ

R(fθ)− inf
θ∈Rd

R(fθ) 6 GE
[
‖ϕ(x)‖∞

]
(‖θ∗‖1 −D)+.

Generalize to all norms.

4.4 Estimation Error

We will consider general techniques and apply them as illustrations to linear models with
bounded ℓ2-norm by D and G-Lipschitz-losses. See further applications in chapters 7
(kernel methods) and 9 (neural networks).

The estimation error is often decomposed using gF ∈ arg ming∈F R(g) as the minimizer

of the expected risk for our class of models and f̂ ∈ arg minf∈F R̂(f) as the minimizer of

4The identity inf‖θ‖26D ‖θ − θ∗‖2 = (‖θ∗‖2 − D)+ can be shown by looking for the optimal θ
proportional to θ∗ and optimizing with respect to the proportionality constant.



86 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

the empirical risk:

R(f̂)− inf
f∈F

R(f) = R(f̂)−R(gF)

=
{
R(f̂)−R̂(f̂)

}
+
{
R̂(f̂)−R̂(gF)

}
+

{
R̂(gF)−R(gF)

}

6 sup
f∈F

{
R(f)−R̂(f)

}
+
{
R̂(f̂)−R̂(gF)

}
+ sup
f∈F

{
R̂(f)− R(f)

}

6 sup
f∈F

{
R(f)−R̂(f)

}
+0+sup

f∈F

{
R̂(f)−R(f)

}
by definition of f̂ . (4.10)

This is often further upper-bounded by 2 supf∈F

∣∣R̂(f)−R(f)
∣∣. We can make the following

observations:

• The key tool to remove the statistical dependence between R̂ and f̂ is to take a
uniform bound. This will also be used in section 8.1.1 on sparse methods for square
loss.

• When f̂ is not the global minimizer of R̂ but satisfies R̂(f̂) 6 inff∈F R̂(f) + ε, then
the optimization error ε has to be added to the estimation error considered in this
section for the empirical risk minimizer (see more details in chapter 5).

• The uniform deviation grows with the “size” of F, is a random quantity (because of
its dependence on data), and usually decays with n. See the examples that follow.

• A key issue is that we need a uniform control for all f ∈ F: with a single f , we could
apply any concentration inequality to the random variable ℓ(y, f(x)) to obtain a
bound in O(1/

√
n); however, when controlling the maximal deviations over many

functions f , there is always a small chance that one of these deviations gets large.
We thus need explicit control of this phenomenon, which we now tackle by first
showing that we can focus on the expectation alone.

Since the estimation error is a random quantity, we need to bound it using prob-
abilistic tools. This can be done either in high probability or in expectation. In the
next subsection, we show how concentration inequalities allow us to focus on control in
expectation.

4.4.1 Application of McDiarmid’s Inequality

Let H(z1, . . . , zn) = supf∈F

{
R(f)− R̂(f)

}
, where the random variables zi = (xi, yi) are

i.i.d., and R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)). We assume that the loss functions for all (x, y) in

the support of the data generating distribution and f ∈ F are between 0 and some ℓ∞
(for most loss functions, this is a consequence of having bounded prediction functions).5

For a single function f ∈ F, we can control the deviation between R̂(f), which is an
empirical average of bounded independent random variables, and its expectation R(f)
through Hoeffding’s inequality, presented in detail and proved in section 1.2.1: for any

5For extensions to sub-Gaussian distributions rather than distributions with bounded support, see
theorem 3 in Meir and Zhang (2003).



4.4. ESTIMATION ERROR 87

δ ∈ (0, 1), with probability greater than 1− δ,

R(f)− R̂(f) 6
ℓ∞√
2n

√
log

1

δ
.

Such control can be extended beyond a single function f . When changing a single zi ∈
X×Y into z′i ∈ X×Y, the deviation in H is almost surely at most 1

nℓ∞.6 Thus, applying
McDiarmid’s inequality (see section 1.2.2), with probability greater than 1− δ, we have

H(z1, . . . , zn)− E[H(z1, . . . , zn)] 6
ℓ∞√
2n

√
log

1

δ
.

We thus only need to bound the expectation of supf∈F

{
R(f)− R̂(f)

}
and of the similar

quantity supf∈F

{
R̂(f)−R(f)

}
(which will typically have the same bound), and add on

top of it ℓ∞√
2n

√
log 2

δ , to ensure a high-probability bound.7

We now provide a series of bounds for these expectations, from simple to more refined,
culminating in Rademacher complexities in section 4.5.

4.4.2 Easy Case I: Quadratic Functions

We will show what happens with a quadratic loss function and an ℓ2-ball constraint. We
remember that in this case, ℓ(y, θ⊤ϕ(x)) = (y − θ⊤ϕ(x))2, leading to

R̂(f)− R(f) = θ⊤
( 1

n

n∑

i=1

ϕ(xi)ϕ(xi)
⊤ − E

[
ϕ(x)ϕ(x)⊤

])
θ

−2θ⊤
( 1

n

n∑

i=1

yiϕ(xi)− E
[
yϕ(x)

])
+
( 1

n

n∑

i=1

y2i − E
[
y2
])
.

Hence, the supremum can be upper-bounded in closed form as

sup
‖θ‖26D

|R(f)− R̂(f)| 6 D2
∥∥∥ 1

n

n∑

i=1

ϕ(xi)ϕ(xi)
⊤ − E

[
ϕ(x)ϕ(x)⊤

]∥∥∥
op

+2D
∥∥∥ 1

n

n∑

i=1

yiϕ(xi)− E
[
yϕ(x)

]∥∥∥
2

+
∣∣∣ 1

n

n∑

i=1

y2i − E
[
y2
]∣∣∣,

where ‖M‖op is the operator norm of matrix M , defined as ‖M‖op = sup‖u‖2=1 ‖Mu‖2
(for which we have |u⊤Mu| 6 ‖M‖op‖u‖22 for any vector u).

Thus, to get a uniform bound, we simply need to upper-bound the three nonuniform
expectations of deviations, and therefore of order O(1/

√
n), and we get an overall uniform

6For a fixed function f ∈ F, only one term in the average is changed, with value in [0, ℓ∞], and thus
a deviation of at most 1

n
ℓ∞. This can be extended to the supremum by a simple computation left as an

exercise.
7When combining two bounds in probability, the union bound leads to the term 2/δ instead of 1/δ;

for more details, see section 1.2.1.



88 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

deviation bound. This case gives the impression that it should be possible to get such a
rate in O(1/

√
n) for other types of losses than the quadratic loss. However, closed-form

calculations are impossible, so we must introduce new tools.

Exercise 4.6 (�) Provide an explicit bound on sup‖θ‖26D |R(f) − R̂(f)|, and compare
it to using Rademacher complexities in section 4.5. The concentration of averages of
matrices from section 1.2.6 can be used.

△! Note that from now on, in the following sections, unless otherwise stated, we
do not require the loss to be convex.

4.4.3 Easy Case II: Finite Number of Models

We assume in this section that the loss functions are bounded between 0 and ℓ∞. We can
then upper-bound the uniform deviation using the union bound (as detailed in section 1.2)
to get

P

(
sup
f∈F

∣∣R̂(f)− R(f)
∣∣ > t

)
6

∑

f∈F

P

(∣∣R̂(f)− R(f)
∣∣ > t

)
.

We have, for f ∈ F fixed, R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)), and we can apply Hoeffding’s

inequality from section 1.2.1 (as done in section 4.4.1) to bound each P
(∣∣R̂(f)−R(f)

∣∣ > t
)
,

leading to

P

(
sup
f∈F

∣∣R̂(f)− R(f)
∣∣ > t

)
6

∑

f∈F

2 exp(−2nt2/ℓ2∞) = 2|F| exp(−2nt2/ℓ2∞).

Thus, by setting δ = 2|F| exp(−2nt2ℓ2∞) and finding the corresponding t, with probability
greater than 1− δ, we get (using

√
a+ b 6

√
a+
√
b):

sup
f∈F

∣∣R̂(f)− R(f)
∣∣ 6 t =

ℓ∞√
2n

√
log

2|F|
δ

=
ℓ∞√
2n

√
log(2|F|) + log

1

δ

6 ℓ∞

√
log(2|F|)

2n
+

ℓ∞√
2n

√
log

1

δ
,

which is an upper bound on uniform deviations.

Exercise 4.7 (�) In terms of expectation, show the following (using the proof of the max
of random variables from section 1.2.4, which applies because bounded random variables
are sub-Gaussian):

E

[
sup
f∈F

∣∣R̂(f)− R(f)
∣∣
]
6 ℓ∞

√
log(2|F|)

2n
.

Thus, according to the bound, learning is possible when the logarithm log(|F|) of
the number of models is significantly smaller than n. This is the first generic control of
uniform deviations.



4.4. ESTIMATION ERROR 89

△! Note that this is only an upper bound, and learning is possible with infinitely many
models (the most classical scenario). See the following subsections.

4.4.4 Beyond Finitely Many Models through Covering Numbers
(�)

The simple idea behind covering numbers is to deal with function spaces with infinitely
many elements by approximating them through a finite number of elements. This is often
referred to as an “ε-net argument.”

For simplicity, we assume that the loss functions are regular; for example, that they
are G-Lipschitz-continuous with respect to their second argument. Then, as already seen
in section 4.3, we have, for any f, f ′ ∈ F,

∣∣R(f)− R(f ′)
∣∣ 6 G · E

[
|f(x)− f ′(x)|

]
= G ·∆(f, f ′). (4.11)

Covering numbers. We assume that there arem = m(ε) elements f1, . . . , fm such that
for any f ∈ F, ∃i ∈ {1, . . . ,m} such that ∆(f, fi) 6 ε for ∆ defined in equation (4.11).
The minimal possible number m(ε) is the covering number of F at precision ε. See the
example here in two dimensions of a covering with Euclidean balls:

The covering number m(ε) is a nonincreasing function of ε. Typically, m(ε) grows
with ε as a power ε−d when ε → 0, where d is the underlying dimension. Indeed, for
the ℓ∞-metric, if (in a certain parameterization) F is included in a ball of radius c in the
ℓ∞-ball of dimension d, it can be easily covered by (c/ε)d cubes of length 2ε (if c > ε),
as illustrated:



90 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

2ε

2c

Given that all norms are equivalent in dimension d, we get the same dependence in
ε−d of m(ε) for all bounded subsets of a finite-dimensional vector space, and thus logm(ε)
grows as d log 1

ε when ε tends to zero. This dependence in dimension generalizes to all
norms (see exercise 4.8).

Exercise 4.8 Let m(ε) be the covering number of a unit ball of Rd by balls of radius ε for

an arbitrary norm. Using comparisons of volumes, show that
(
1
ε

)d
6 m(ε) 6

(
1 + 2

ε

)d
.

For some sets (e.g., all Lipschitz-continuous functions with bounded Lipschitz-constant
in d dimensions), logm(ε) grows faster, such as ε−d. See, for instance, Wainwright (2019).

ε-net argument. Given a cover of F, for all f ∈ F, and with (fi)i∈{1,...,m(ε)} being

the associated cover elements, using that both R̂ and R are G-Lipschitz-continuous with
respect to the distance ∆, we have, for any i ∈ {1, . . . ,m(ε)},

∣∣R̂(f)− R(f)
∣∣ 6

∣∣R̂(f)− R̂(fi)
∣∣ +

∣∣R̂(fi)− R(fi)
∣∣ +

∣∣R(fi)− R(f)
∣∣

6 2G ·∆(f, fi) +
∣∣R̂(fi)− R(fi)

∣∣

6 2G ·∆(f, fi) + sup
j∈{1,...,m(ε)}

∣∣R̂(fj)− R(fj)
∣∣.

Taking the minimum with respect to i, and using the cover property, we get

∣∣R̂(f)− R(f)
∣∣ 6 2Gε+ sup

j∈{1,...,m(ε)}

∣∣R̂(fj)− R(fj)
∣∣

This implies, using section 4.4.3 that with probability greater than 1− δ,

sup
f∈F

∣∣R̂(f)− R(f)
∣∣ 6 2Gε+ ℓ∞

√
log(2m(ε)))

2n
+

ℓ∞√
2n

√
log

1

δ
.

Therefore, if m(ε) ∼ ε−d, ignoring constants, we need to upper-bound the quantity
ε +

√
d log(1/ε)/n. The choice ε ∝ 1/

√
n leads to a rate proportional to

√
(d/n) log(n),

which shows that the dependence in n is also close to 1/
√
n. Unfortunately, unless refined

computations of covering numbers or more advanced tools (such as “chaining”) are used,



4.5. RADEMACHER COMPLEXITY 91

this often leads to a nonoptimal dependence on dimension and/or number of observations
(see, e.g., Wainwright, 2019, for examples of these refinements).

Two powerful tools that allow sharp bounds at a reasonable cost are Rademacher
complexity (Boucheron et al., 2005) and Gaussian complexity (Bartlett and Mendelson,
2002). In this book, we will focus on Rademacher complexity, which we now present.

4.5 Rademacher Complexity

We consider n i.i.d. random variables z1, . . . , zn ∈ Z, and a class H of functions from Z

to R. In our context, the space of functions is related to the learning problem as z = (x, y),
and H = {(x, y) 7→ ℓ(y, f(x)), f ∈ F}.

Our goal in this section is to provide an upper bound on supf∈F

{
R(f)−R̂(f)

}
, which

is equal to

sup
h∈H

{
E[h(z)]− 1

n

n∑

i=1

h(zi)

}
,

where E[h(z)] denotes the expectation with respect to a variable having the same distri-
bution as all zi’s.

We denote the data D = {z1, . . . , zn}, and define the Rademacher complexity of the
class of functions H from Z to R as follows:

Rn(H) = Eε,D

[
sup
h∈H

1

n

n∑

i=1

εih(zi)

]
, (4.12)

where ε ∈ Rn is a vector of independent Rademacher random variables (i.e., taking values
−1 or 1 with equal probability), which is also independent of D. It is a deterministic
quantity that depends only on n, H, and the common distribution of all zi’s.

Stated in words, the Rademacher complexity is equal to the expectation of the maxi-
mal dot product between values of function h at the observations zi and random labels.
It measures the “capacity” of the set of functions H. We will see later that it can be com-
puted (or simply upper-bounded) in many interesting cases, leading to powerful bounds.
The term “Rademacher average” is also commonly used.

△! Be careful with the two notations Rn(H) (Rademacher complexity) and R(f) (risk of
the prediction function f), not to be confused with the feature norm R often used with
linear models.

Exercise 4.9 Show the following properties of Rademacher complexities (see Bartlett
and Mendelson, 2002, for more details):

• If H ⊂ H′, then Rn(H) 6 Rn(H′).

• Rn(H + H′) = Rn(H) + Rn(H′).

• If α ∈ R, Rn(αH) = |α| · Rn(H).



92 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

• If h0 : Z→ R, Rn(H + {h0}) = Rn(H).

• Rn(H) = Rn(convex hull(H)).

Exercise 4.10 (Massart’s lemma) Assume that H = {h1, . . . , hm}, and almost surely
we have the bound 1

n

∑n
i=1 hj(xi)

2 6 R2 for all j ∈ {1, . . . ,m}. Show that the Rademacher

complexity of the class of functions H satisfies Rn(H) 6
√

2 logm
n R.

4.5.1 Symmetrization

First, we relate the Rademacher complexity to the uniform deviation through a general
symmetrization property, which shows that the Rademacher complexity directly controls
the expected uniform deviation.

Proposition 4.2 (Symmetrization) Given the Rademacher complexity of H defined
in equation (4.12), we have

E

[
sup
h∈H

{
1

n

n∑

i=1

h(zi)−E[h(z)]

}]
6 2Rn(H) , E

[
sup
h∈H

{
E[h(z)]− 1

n

n∑

i=1

h(zi)

}]
6 2Rn(H).

Proof (�) Let D′ = {z′1, . . . , z′n} be an independent copy of the data D = {z1, . . . , zn}.
Let (εi)i∈{1,...,n} be i.i.d. Rademacher random variables, which are also independent of

D and D′. Using that for all i in {1, . . . , n}, E[h(z′i)|D] = E[h(z)] and E[h(zi)|D] = h(zi),
we have

E

[
sup
h∈H

{
E[h(z)]− 1

n

n∑

i=1

h(zi)

}]
= E

[
sup
h∈H

{
1

n

n∑

i=1

E[h(z′i)|D]− 1

n

n∑

i=1

h(zi)

}]

= E

[
sup
h∈H

{
1

n

n∑

i=1

E
[
h(z′i)− h(zi)

∣∣D
]}]

,

by definition of the independent copy D′. Then

E

[
sup
h∈H

{
E[h(z)]− 1

n

n∑

i=1

h(zi)

}]
6 E

[
E

[
sup
h∈H

{
1

n

n∑

i=1

[
h(z′i)− h(zi)

]}∣∣∣∣D
]]
,

using that the supremum of the expectation is less than the expectation of the supremum.
Thus, by the towering law of expectation, we get

E

[
sup
h∈H

{
E[h(z)]− 1

n

n∑

i=1

h(zi)

}]
6 E

[
sup
h∈H

{
1

n

n∑

i=1

[
h(z′i)− h(zi)

]}]
.



4.5. RADEMACHER COMPLEXITY 93

We can now use the symmetry of the laws of εi and h(z′i)− h(zi), to get

E

[
sup
h∈H

{
E[h(z)]− 1

n

n∑

i=1

h(zi)

}]

6 E

[
sup
h∈H

{
1

n

n∑

i=1

εi
(
h(z′i)− h(zi)

)}]

6 E

[
sup
h∈H

{
1

n

n∑

i=1

εi
(
h(zi)

)}]
+ E

[
sup
h∈H

{
1

n

n∑

i=1

εi
(
− h(zi)

)}]

= 2E

[
sup
h∈H

{
1

n

n∑

i=1

εih(zi)

}]
= 2Rn(H).

The reasoning is identical for E
[
suph∈H

{
1
n

∑n
i=1 h(zi)− E[h(z)]

}]
6 2Rn(H).

Proposition 4.2 only bounds the expectation of the deviation between the empirical
average and the expectation by the Rademacher average. Together with concentration in-
equalities from section 1.2, we can obtain high-probability bounds, as done in section 4.4.1
with McDiarmid’s inequality.

Exercise 4.11 (�) The Gaussian complexity of a class of functions H from Z to R is de-
fined as Gn(H) = Eε,D

[
suph∈H

1
n

∑n
i=1 εih(zi)

]
, where ε ∈ Rn is a vector of independent

Gaussian variables with mean zero and variance 1. Show that (1) Rn(H) 6
√

π
2 ·Gn(H)

and (2) Gn(H) 6
√

2 log(2n) ·Rn(H).

Empirical Rademacher complexities (�). The Rademacher complexity Rn(H) de-
fined in equation (4.12) is a deterministic quantity that depends on the distribution of
inputs. When using bounds in high probability through McDiarmid’s inequality in sec-
tion 4.4.1, we obtained that if h(z) ∈ [0, ℓ∞] for all h ∈ H, then with probability greater
than 1− δ, for all h ∈ H,

E[h(z)] 6
1

n

n∑

i=1

h(zi) + 2Rn(H) +
ℓ∞√
2n

√
log

1

δ
.

While we provide estimates based on simple information on the input distribution, an
empirical version can be defined that does not take the expectation with respect to the
data; that is,

R̂n(H) = Eε

[
sup
h∈H

1

n

n∑

i=1

εih(zi)

]
, (4.13)

which is now a random quantity that is computable from the training data and the class
of functions. We can also use McDiarmid’s inequality to bound the difference between



94 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

Rn(H) and R̂n(H), obtain a similar high-probability bound as before, that is,

E[h(z)] 6
1

n

n∑

i=1

h(zi) + 2R̂n(H) + 3
ℓ∞√
2n

√
log

2

δ
, (4.14)

which is now computable (if one can compute the empirical Rademacher complexity).
Note that the factor of 3 = 1 + 2 comes from applying McDiarmid’s inequality twice,
once for suph∈H

{
R(h) − R̂(f)

}
and once for R̂n(H) (with then an extra factor of 2

since it appears as 2R̂n(H)). Empirical Rademacher complexities are data-dependent
complexity estimates that can be used for model selection (see section 4.6).

4.5.2 Lipschitz-Continuous Losses

A particularly appealing property in this context is shown in proposition 4.3 and is some-
times called the “contraction principle,” using a simple proof from lemma 5 in Meir and
Zhang (2003); see also section 4.5 in Ledoux and Talagrand (1991). See proposition 4.4
for a similar result for the Rademacher complexity defined with absolute values (and then
with an extra factor of 2), and section 13.1.3 for extensions to vector-valued prediction
functions.

Proposition 4.3 (Contraction principle–Lipschitz-continuous functions) .
Given any functions b, ai : Θ → R (no assumption) and ϕi : R → R any 1-Lipschitz-
functions, for i = 1, . . . , n, we have, for ε ∈ Rn, a vector of independent Rademacher
random variables:

Eε

[
sup
θ∈Θ

{
b(θ) +

n∑

i=1

εiϕi(ai(θ))
}]

6 Eε

[
sup
θ∈Θ

{
b(θ) +

n∑

i=1

εiai(θ)
}]
.

Proof (�) Consider a proof by induction on n. The case n = 0 is trivial, and we show how

to go from n > 0 to n+1. We thus consider Eε1,...,εn+1

[
sup
θ∈Θ

{
b(θ)+

n+1∑

i=1

εiϕi(ai(θ))
}]

and

compute the expectation with respect to εn+1 explicitly, by considering the two potential
values with probability 1/2:

Eε1,...,εn+1

[
sup
θ∈Θ

{
b(θ) +

n+1∑

i=1

εiϕi(ai(θ))
}]

=
1

2
Eε1,...,εn

[
sup
θ∈Θ

{
b(θ)+

n∑

i=1

εiϕi(ai(θ)) + ϕn+1(an+1(θ))
}]

+
1

2
Eε1,...,εn

[
sup
θ∈Θ

{
b(θ)+

n∑

i=1

εiϕi(ai(θ)) − ϕn+1(an+1(θ))
}]
,



4.5. RADEMACHER COMPLEXITY 95

which is equal to

Eε1,...,εn

[
sup
θ,θ′∈Θ

{ b(θ)+b(θ′)

2

+

n∑

i=1

εi
ϕi(ai(θ))+ϕi(ai(θ

′))

2
+
ϕn+1(an+1(θ))−ϕn+1(an+1(θ′))

2

}]
,

by assembling the terms. By taking the supremum over (θ, θ′) and (θ′, θ), we get

Eε1,...,εn

[
sup
θ,θ′∈Θ

{b(θ)+b(θ′)

2

+

n∑

i=1

εi
ϕi(ai(θ))+ϕi(ai(θ

′))

2
+
|ϕn+1(an+1(θ))−ϕn+1(an+1(θ′))|

2

}]

6Eε1,...,εn

[
sup
θ,θ′∈Θ

{b(θ) + b(θ′)

2
+

n∑

i=1

εi
ϕi(ai(θ)) + ϕi(ai(θ

′))

2
+
|an+1(θ)− an+1(θ′)|

2

}]
,

using Lipschitz continuity of ϕn+1. We can redo the same sequence of equalities with
ϕn+1 being the identity to obtain that the last expression is equal to

Eεn+1Eε1,...,εn

[
sup
θ∈Θ

{
b(θ) + εn+1an+1(θ) +

n∑

i=1

εiϕi(ai(θ))
}]

6 Eε1,...,εn,εn+1

[
sup
θ∈Θ

{
b(θ) + εn+1an+1(θ) +

n∑

i=1

εiai(θ)
}]

by the induction hypothesis,

which leads to the desired result.

We can apply this contraction principle to our supervised learning situations where ui 7→
ℓ(yi, ui) is G-Lipschitz-continuous for all i almost surely (which is possible for regression
or when using a convex surrogate for binary classification as presented in section 4.1),
leading to, by the contraction principle (applied conditioned on the data D to b = 0,
Θ = {(f(x1), . . . , f(xn)), f ∈ F} ⊂ R

n and ai(θ) = θi, ϕi(ui) = ℓ(yi, ui)),

Eε

[
sup
f∈F

1

n

n∑

i=1

εiℓ(yi, f(xi))

∣∣∣∣ D
]

6 G · Eε
[

sup
f∈F

1

n

n∑

i=1

εif(xi)

∣∣∣∣ D
]
,

which leads to

Rn(H) 6 G · Rn(F). (4.15)

Thus, the Rademacher complexity of the class of prediction functions controls the uniform
deviations of the empirical risk. We consider simple examples in section 4.5.3 but give
before, without proof, a contraction result that we will need in section 9.2.3 (see proof of
theorem 4.12 in Ledoux and Talagrand, 1991), with an extra factor of 2.



96 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

Proposition 4.4 (Contraction principle–absolute values) Given any functions
ai : Θ→ R (without further assumption) and any 1-Lipschitz-functions ϕi : R→ R such
that ϕi(0) = 0, for i = 1, . . . , n, we have, for ε ∈ Rn a vector of independent Rademacher
random variables,

Eε

[
sup
θ∈Θ

∣∣∣∣
n∑

i=1

εiϕi(ai(θ))

∣∣∣∣
]
6 2Eε

[
sup
θ∈Θ

∣∣∣∣
n∑

i=1

εiai(θ)

∣∣∣∣
]
.

4.5.3 Ball-Constrained Linear Predictions

We now assume that F = {fθ(x) = θ⊤ϕ(x), Ω(θ) 6 D}, where Ω is a norm on Rd. We
denote the design matrix by Φ ∈ Rn×d. We have (with expectations with respect to
both ε and the data)

Rn(F) = E

[
sup

Ω(θ)6D

{ 1

n

n∑

i=1

εiθ
⊤ϕ(xi)

}]
= E

[
sup

Ω(θ)6D

1

n
ε⊤Φθ

]

=
D

n
E

[
Ω∗(Φ⊤ε)

]
,

where Ω∗(u) = supΩ(θ)61 u
⊤θ is the dual norm of Ω. For example, when Ω is the ℓp-norm,

with p ∈ [1,∞], then Ω∗ is the ℓq-norm, where q is such that 1
p + 1

q = 1 (e.g., ‖·‖∗2 = ‖·‖2,

‖ · ‖∗1 = ‖ · ‖∞, and ‖ · ‖∗∞ = ‖ · ‖1). For more details, see Boyd and Vandenberghe (2004).

Thus, computing Rademacher complexities is equivalent to computing expectations
of norms. When Ω = ‖ · ‖2, we get

Rn(F) =
D

n
E
[
‖Φ⊤ε‖2

]
6
D

n

√
E [‖Φ⊤ε‖22] by Jensen’s inequality,

6
D

n

√
E [tr[Φ⊤εε⊤Φ]] =

D

n

√
E [tr[Φ⊤Φ]], using that E[εε⊤] = I,

=
D

n

√√√√
n∑

i=1

E
[
(ΦΦ⊤)i

]
=
D

n

√√√√
n∑

i=1

E
[
‖ϕ(xi)‖22

]
=

D√
n

√
E
[
‖ϕ(x)‖22

]
. (4.16)

We thus obtain a dimension-independent Rademacher complexity that we will use in the
summary in section 4.5.4. While E

[
‖ϕ(x)‖22

]
can be quite large in practice, the lack

of explicit dependence in dimension makes it possible to consider infinite-dimensional
feature vectors, so long as this quantity is controlled.

Exercise 4.12 (ℓ1-norm) Assume that almost surely, ‖ϕ(x)‖∞ 6 R. Show that the
Rademacher complexity Rn(F) for F = {fθ(x) = θ⊤ϕ(x), Ω(θ) 6 D}, with Ω = ‖ · ‖1, is
upper-bounded by RD

(2 log(2d)
n

)1/2
.

Exercise 4.13 (�) Let p ∈ (1, 2], and q such that 1/p + 1/q = 1. Assume that almost
surely, ‖ϕ(x)‖q 6 R. Show that the Rademacher complexity Rn(F) for F = {fθ(x) =



4.5. RADEMACHER COMPLEXITY 97

θ⊤ϕ(x), Ω(θ) 6 D}, with Ω = ‖ · ‖p, is upper-bounded by RD√
n

1√
p−1

(hint: use exer-

cise 1.25). Recover the result of exercise 4.12 by taking p = 1 + 1
log(2d) .

4.5.4 Putting Things Together (Linear Predictions)

We now consider a linear model based on some feature map ϕ : X → Rd and apply the
Rademacher results from section 4.5.3 to obtain a bound on the estimation error. We
then look at the approximation error.

Estimation error. With all the elements discussed previously, we can now propose
the following general result (where no convexity of the loss function is assumed) for the
estimation error. Note that there is no explicit dependence on the underlying dimension d,
which will be important in chapter 7, where we consider infinite-dimensional feature
spaces.

Proposition 4.5 (Estimation error–linear predictions) Assume that the loss func-
tion is G-Lipschitz-continuous, with a set of linear prediction functions F = {fθ(x) =

θ⊤ϕ(x), ‖θ‖2 6 D}, where E[‖ϕ(x)‖22] 6 R2. Let f̂ = fθ̂ ∈ F be the minimizer of the
empirical risk, then

E
[
R(fθ̂)

]
6 inf

‖θ‖26D
R(fθ) +

4GRD√
n

.

Proof Using proposition 4.2 to relate the uniform deviation to the Rademacher aver-
age, equation (4.15) to take care of the Lipschitz-continuous loss, and equation (4.16)
to account for the ℓ2-norm constraint, we get the desired result. Note that the factor
of 4 comes from symmetrization (proposition 4.2, which leads to a factor of 2), and equa-
tion (4.10) in section 4.4 (which leads to another factor of 2).

Approximation error. If we assume that there is a minimizer θ∗ of R(fθ) over Rd, the
approximation error (of using a ball of θ rather than the whole Rd) is upper-bounded by,
following derivations from section 4.3 and using Cauchy-Schwarz and Jensen’s inequalities,

inf
‖θ‖26D

R(fθ)− R(fθ∗) 6 G inf
‖θ‖26D

E
[
|fθ(x) − fθ∗(x)|

]
= G inf

‖θ‖26D
E
[
|ϕ(x)⊤(θ − θ∗)|

]

6 G inf
‖θ‖26D

‖θ − θ∗‖2 · E
[
‖ϕ(x)‖2

]
6 GR inf

‖θ‖26D
‖θ − θ∗‖2.

This leads to

E
[
R(fθ̂)

]
− R(fθ∗) 6 GR inf

‖θ‖26D
‖θ − θ∗‖2 +

4GRD√
n

= GR(‖θ∗‖2 −D)+ +
4GRD√

n
.

We see that for D = ‖θ∗‖2, we obtain the bound 4GR‖θ∗‖2√
n

, but this setting requires

knowing ‖θ∗‖2, which is not possible in practice (see section 4.5.5 for penalized problems,
which do not have this issue). If D is too large, the estimation error increases (overfitting).



98 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

At the same time, if D is too small, the approximation error can quickly kick in (with a
value that does not go to zero when n tends to infinity), leading to underfitting. Note
that on top of this approximation error, we need to add the incompressible one due to
the choice of a linear model.

Exercise 4.14 Consider a learning problem with 1-Lipschitz-continuous loss (with re-
spect to the second variable), a function class fθ(x) = θ⊤ϕ(x), ‖θ‖1 6 D, and ϕ : X→ Rd,
with ‖ϕ(x)‖∞ almost surely less than R. Given the expected risk R(fθ) and the empirical

risk R̂(fθ). Show that E
[
R(fθ̂)

]
6 inf‖θ‖16D R(fθ) + 4RD

√
2 log(2d)/n, for the con-

strained empirical risk minimizer fθ̂.

4.5.5 From Constrained to Regularized Estimation (�)

In practice, it is preferable to penalize by the norm Ω(θ) instead of constraining. While
the respective sets of solutions when letting the respective constraint and regularization
parameters vary are the same, the main reason is that the hyperparameter is easier to
find, and the optimization is typically easier. We first consider the squared ℓ2-norm in
this section. Moreover, we use the (overloaded) notation R(θ) = R(fθ) and R̂(θ) = R̂(fθ)
as we only consider the same linear predictors fθ = ϕ(·)⊤θ, for θ ∈ Rd.

We now denote θ̂λ as a minimizer of

R̂(θ) +
λ

2
‖θ‖22 = R̂(fθ) +

λ

2
‖θ‖22. (4.17)

If the loss function is always nonnegative, then
λ

2
‖θ̂λ‖22 6 R̂(θ̂λ)+

λ

2
‖θ̂λ‖22 6 R̂(0), leading

to a bound ‖θ̂λ‖2 = O(1/
√
λ). Thus, with D = O(1/

√
λ) in the bound of proposition 4.5,

this leads to an excess risk in O(1/
√
λn), which is not optimal.

We now give a stronger result using the strong convexity of the squared ℓ2-norm (with
now a convex loss), adapted from Sridharan et al. (2009) and Bartlett et al. (2005).

Proposition 4.6 (Fast rates for regularized objectives) Assume the loss function
is G-Lipschitz-continuous and convex in the second argument, with linear prediction func-
tions x 7→ θ⊤ϕ(x) for θ ∈ Rd, where ‖ϕ(x)‖2 6 R almost surely. Let θ̂λ ∈ Rd be the
minimizer of the regularized empirical risk in equation (4.17); then

E
[
R(θ̂λ)

]
6 inf
θ∈Rd

{
R(θ) +

λ

2
‖θ‖22

}
+

24G2R2

λn
.

Proof (��) For this proof, we use the notation Rλ(θ) = R(θ) + λ
2 ‖θ‖22, with minimum

value R∗
λ attained at θ∗λ (which is unique by strong convexity). We also use the notation

R̂λ(θ) = R̂(θ) + λ
2 ‖θ‖22.

We consider the convex set Cε = {θ ∈ Rd, Rλ(θ) − R∗
λ 6 ε} of ε-optimal predictors,

for an ε > 0 to be chosen later. By strong convexity (see section 5.2.3 for more details),
we have Rλ(θ) − R∗

λ > λ
2 ‖θ − θ∗λ‖22 for all θ ∈ Rd, and thus Cε is included in the ℓ2-ball

Bε with center θ∗λ and radius
√

2ε/λ.



4.5. RADEMACHER COMPLEXITY 99

The proof works as follows: if θ̂λ /∈ Cε, then we can find η in the segment joining
θ∗λ and θ̂λ, which is in the boundary of Cε (i.e., such that Rλ(η) − R∗

λ = ε). Because

η ∈ Cε ⊂ Bε, it cannot be too far from θ∗λ, as ‖η − θ∗λ‖2 6
√

2ε/λ.

BεCε

η

θ∗
λ

θ̂λ

However, using uniform deviation bounds, uniformly on Bε, |R̂λ − Rλ| will be, with
high probability, less than a constant times GR

√
ε
λn , leading to a contradiction if this

quantity is greater than a constant times ε, which occurs when ε ∝ G2R2

λn , which is the
desired scaling. We now make this reasoning precise.

On the segment [θ∗λ, θ̂λ] we thus choose η exactly on the boundary of Cε, that is,

such that Rλ(η) − R∗
λ = ε. Moreover, by convexity of the empirical risk R̂, we have

R̂λ(η) 6 max
{
R̂λ(θ∗λ), R̂λ(θ̂λ)

}
= R̂λ(θ∗λ). This implies that

Rλ(η)−R̂λ(η)+R̂λ(θ∗λ)−Rλ(θ∗λ) =
{
Rλ(η)−Rλ(θ∗λ)

}
+
{
R̂λ(θ∗λ)−R̂λ(η)

}
> ε. (4.18)

Using the uniform deviation bound on an ℓ2-ball of radius
√

2ε/λ, derived in section 4.5.3
based on Rademacher averages,

E

[
sup
ξ∈Bε

{
R(ξ)− R̂(ξ)

}]
6 2 · GR√

n
·
√

2ε/λ .

This implies for A = supξ∈Bε

{
Rλ(ξ)−Rλ(θ∗λ)−

[
R̂λ(ξ)− R̂λ(θ∗λ)

]}
, that its expectation

satisfies E[A] 6 2GR√
n

√
2ε/λ + E[R̂λ(θ∗λ) − Rλ(θ∗λ)] = 2GR√

n

√
2ε/λ. We can now apply

McDiarmid’s inequality (as in section 4.4.1) since changing a single data point leads to
an absolute difference 2

nGR
√

2ε/λ, leading to, with probability greater than 1− δ,

A 6 E[A] +
2

n
GR

√
2ε/λ

√
n

2

√
log

1

δ
6
GR

√
2ε/λ√
n

(
2 +

√
2 log

1

δ

)
.

We thus get a contradiction when ε > A (since η ∈ Cε implies that A > ε because of
equation (4.18)), that is, we can take, in the limit ε→ A (which leads to an equation in ε
that can be solved):

ε =

[
GR

√
2/λ√
n

(
2 +

√
2 log

1

δ

)]2
,

leading to the bound which is valid with probability greater than 1− δ:

R(θ̂λ)− R∗
λ 6

[
GR

√
2/λ√
n

(
2 +

√
2 log

1

δ

)]2
6

2G2R2

λn

(
8 + 4 log

1

δ

)
.



100 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

By integration of the bound,8 we obtain the desired result.

Note that we obtain a fast rate in O(R2/(λn)), which has a better dependence in n
but depends on λ, which can be very small in practice. One classical choice of λ that we
have seen in chapter 3 also applies here, as λ ∝ GR√

n‖θ∗‖ , leading to the slow rate

E
[
R(fθ̂λ)

]
6 R(fθ∗) +O

(GR√
n
‖θ∗‖2

)
.

This result is similar to the one obtained in section 3.6 for ridge (least-squares) regression,
but now for all Lipschitz-continuous losses. Note that the amount of regularization to get
the result discussed here still depends on the unknown quantity ‖θ∗‖2. Next, we consider
the general case of penalization by a norm, where we will obtain similar results but with
a hyperparameter that does not depend on the unknown norm of ‖θ∗‖2.

Exercise 4.15 (��) Extend the result in proposition 4.6 to features that are almost
surely bounded in the ℓp-norm by R, and a regularizer ψ that is strongly convex with respect
to the ℓp-norm; that is, such that for all θ, η ∈ Rd, ψ(θ) > ψ(η)+ψ′(η)⊤(θ−η)+ µ

2 ‖θ−η‖2p,
for some µ > 0, where ψ′(η) is a subgradient of ψ at η. Hint: use exercise 4.13.

Norm-penalized estimation (��). While proposition 4.6 considered squared ℓ2-
norm penalization and relied on specific properties of the ℓ2-norm, we now consider
penalization by any nonsquared norm. That is, we now focus on the following objective
function:

R̂λ(θ) =
1

n

n∑

i=1

ℓ(yi, θ
⊤ϕ(xi)) + λΩ(θ) = R̂(θ) + λΩ(θ), (4.19)

for any norm Ω on Rd, with Ω∗ denoting the dual norm. Proposition 4.7 provides an
estimation rate in O(1/

√
n), with a proof that is similar to the one of proposition 4.6.

Proposition 4.7 (Norm-penalized estimation) Assume that the unregularized risk
R(θ) = E

[
ℓ(y, θ⊤ϕ(x))

]
is minimized at some θ∗ ∈ Rd, the function θ 7→ ℓ(y, θ⊤ϕ(x)) is

convex and GR-Lipschitz continuous on the set {θ ∈ Rd, Ω(θ) 6 2Ω(θ∗)}, and Ω∗(ϕ(x)) 6
R almost surely. Denote ρΩ = supΩ∗(z1),...,Ω∗(zn)61 Eε

[
Ω∗( 1√

n

∑n
i=1 εizi

)]
, where ε ∈

{−1, 1}n is a vector of independent Rademacher random variables. For any δ ∈ (0, 1)

and for the regularization parameter λ = 4GR√
n

(
ρΩ +

√
1
2 log 1

δ

)
, with probability at least

1− δ, any minimizer θ̂λ of equation (4.19) satisfies:

R(θ̂λ) 6 R(θ∗) + Ω(θ∗)
8GR√
n

(
ρΩ +

√
1

2
log

1

δ

)
.

Proof (��) Let θ∗λ be a minimizer of the population regularized risk Rλ(θ) defined as
Rλ(θ) = R(θ) + λΩ(θ). As in the proof of proposition 4.6, we consider the set Cε =

8We use the following lemma: if Z is a nonnegative random variable such that Z 6 u + v log 1
δ
with

probability at least 1− δ for all δ ∈ (0, 1), then E[Z] 6 u+ v.



4.5. RADEMACHER COMPLEXITY 101

{
θ ∈ Rd, Rλ(θ)−Rλ(θ∗λ) 6 ε

}
of ε-optimal predictors, with an ε to be chosen later. We

first show that Cε is included in the set Bε = {θ ∈ Rd, Ω(θ) 6 Ω(θ∗) + ε/λ}. This is
a consequence of the following series of inequalities that are using the optimality of θ∗
for R and of θ∗λ for Rλ: if θ ∈ Cε,

R(θ) + λΩ(θ) 6 R(θ∗λ) + λΩ(θ∗λ) + ε 6 R(θ∗) + λΩ(θ∗) + ε 6 R(θ) + λΩ(θ∗) + ε,

which implies that θ ∈ Bε. We are thus in the same setup as the proof of proposition 4.6
(and thus the same illustrative plot), but with a set Bε that only imposes that θ is
bounded, not that θ is closed to θ∗λ. We set ε = λΩ(θ∗) so that we have Bε = {θ ∈
Rd, Ω(θ) 6 2Ω(θ∗)}, with λ to be determined next.

We now show that with high probability, we must have θ̂λ ∈ Cε. If θ̂λ /∈ Cε, since
θ∗λ ∈ Cε, there is an element η in the segment [θ∗λ, θ̂λ] which is in the boundary of Cε;

that is, so that Rλ(η)−Rλ(θ∗λ) = ε. Since the empirical risk is convex, we have R̂λ(η) 6

max
{
R̂λ(θ∗λ), R̂λ(θ̂λ)

}
= R̂λ(θ∗λ). Thus,

R̂(θ∗λ)− R̂(η)− R(θ∗λ) + R(η) =
{
R̂λ(θ∗λ)− R̂λ(η)

}
+
{
Rλ(η)− Rλ(θ∗λ)

}

> Rλ(η)− Rλ(θ∗λ) = ε. (4.20)

In order to derive uniform deviation bounds, we notice that ρΩ is such that the Rademacher
complexity of the set of loss functions for linear predictors such that Ω(θ) 6 2Ω(θ∗), is
less than 1√

n
ρΩGR · 2Ω(θ∗) (see section 4.5.3). Thus, using McDiarmid’s inequality as in

section 4.4.1, with probability greater than 1− δ, for all θ such that Ω(θ) 6 2Ω(θ∗),

R(θ)− R(θ∗λ) 6 R̂(θ)− R̂(θ∗λ) +
4ρΩGRΩ(θ∗)√

n
+

2GRΩ(θ∗)√
n

√
2 log

1

δ
.

Thus, if we choose λ so that ε = λΩ(θ∗) > 4ρΩGRΩ(θ∗)√
n

+ 2GRΩ(θ∗)√
n

√
2 log 1

δ , we obtain

a contradiction to equation (4.20) for θ = η. Thus, with such a λ, with probability at

least 1− δ, we have θ̂λ ∈ Cε; that is,

Rλ(θ̂λ)− Rλ(θ∗λ) 6 ε = λΩ(θ∗). (4.21)

Then, by taking the limiting λ = 4GR√
n

(
ρΩ +

√
1
2 log 1

δ

)
, we get:

R(θ̂λ) 6 Rλ(θ̂λ) 6 Rλ(θ∗λ) + λΩ(θ∗) from equation (4.21),

6 Rλ(θ∗) + λΩ(θ∗) = R(θ∗) + 2λΩ(θ∗)

6 R(θ∗) + Ω(θ∗)
8GR√
n

(
ρΩ +

√
1

2
log

1

δ

)
,

which is the desired result. Note that the key element in this proposition is that the value
of λ does not depend on Ω(θ∗).



102 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

Proposition 4.7 can be applied to most of the losses and norms we consider in this
book. For example, for the ℓ2-norm, we have ρΩ = 1, while for the ℓ1-norm, we have
ρΩ =

√
2 log(2d). In terms of losses, for the logistic loss, we have G = 1, while for the

square loss (with a factor of 1/2) with a model y = ϕ(x)⊤θ∗+ε with |ε| 6 σ almost surely,
we get G = σ + 3RΩ(θ∗) (proof left as an exercise). See section 8.3.6 for an alternative
proof framework for the square loss.

4.5.6 Extensions and Improvements

In this chapter, we have focused on the simplest situations for empirical risk minimization:
regression or binary classification with i.i.d. data. Statistical learning theory investigates
many more complex cases along several lines:

• Slower rates than 1/
√
n: In this chapter, we primarily studied the estimation

error that decays as 1/
√
n. When balancing it with approximation error (by adapt-

ing norm constraints or regularization parameters), we will obtain slower rates,
but with weaker assumptions, in chapter 7 (kernel methods) and chapter 9 (neural
networks).

• Faster rates with discrete outputs: Further analysis can be carried out when
dealing with binary classification, or more generally discrete outputs, with poten-
tially different convergence rates for the convex surrogate and the original loss func-
tion (i.e., after thresholding, where sometimes exponential rates can be obtained).
This is often done under so-called “low noise” conditions (see, e.g., Koltchinskii and
Beznosova, 2005; Audibert and Tsybakov, 2007), as briefly explored in exercise 4.3
(in section 4.1.4).

• Other generic learning theory frameworks: In this chapter, we have focused
primarily on the tools of Rademacher averages to obtain generic learning bounds.
Other frameworks lead to similar bounds but from different mathematical perspec-
tives. For example, PAC-Bayesian analysis (Catoni, 2007; Zhang, 2006) is described
in section 14.4, while stability-based arguments (Bousquet and Elisseeff, 2002) lead
to similar results (see exercise 4.16).

Exercise 4.16 (�) Consider a learning algorithm and a distribution p on (x, y)
such that for all (x, y) ∈ X × Y, and two outputs f, g : X → Y of the learn-
ing algorithm on datasets of n observations that differ by a single observation,
|ℓ(y, f(x)) − ℓ(y, g(x))| 6 βn, an assumption referred to as “uniform stability.”
Show that the expected deviation between the expected risk and the empirical risk of
the algorithm’s output is bounded by βn. With the same assumptions as in propo-

sition 4.6, show that we have βn = 2G2R2

λn (see Bousquet and Elisseeff, 2002, for
more details).

• Beyond independent observations: Much of statistical learning theory deals
with the simplifying assumptions that observations are i.i.d. from the same distri-
bution as the one used during the testing phase. This leads to the reasonably simple
results presented in this chapter. Several lines of work deal with situations when



4.6. MODEL SELECTION (�) 103

data are not independent: among them, online learning presented in chapter 11
shows that many classical algorithms are indeed robust to such dependence. An-
other avenue coming from statistics is to make some assumptions on the dependence
between observations, the most classical one being that the sequence of observations
(xi, yi)i>1 form a Markov chain, and thus satisfies “mixing conditions” (see, e.g.,
Mohri and Rostamizadeh, 2010).

• Mismatch between training and testing distributions: In many applica-
tion scenarios, the testing distribution may deviate from the training distribution:
the input distribution of x may be different while the conditional distribution of y
given x remains the same, a situation commonly referred to as “covariate shift”;
or the entire distribution of (x, y) may deviate (often referred to as the need for
“domain adaptation”). If no assumption is made on the proximity of these two dis-
tributions, no guarantee can be obtained. Several ideas have been explored to derive
algorithms and guarantees, such as importance reweighting (Sugiyama et al., 2007)
or finding projections of the data with similar test and train distributions (Ganin
et al., 2016).

• Semisupervised learning: In many applications, many unlabeled observations
are available (i.e., only with the input x being available). To take advantage of
the abundance of unlabeled data, some assumptions are typically made to show an
improvement in learning algorithms, such as the “cluster assumption” (points in the
same class tend to cluster together) or “low-density separation” (for classification,
decision boundaries tend to be in regions with few input observations). Many
algorithms exist, such as Laplacian regularization (see Cabannes et al., 2021, and
references therein) or discriminative clustering (Xu et al., 2004; Bach and Harchaoui,
2007).

4.6 Model Selection (�)

Throughout this chapter, we have considered a family F of functions from X to Y and
have obtained generalization bounds for the minimizer f̂ ∈ F of the empirical risk R̂.
Assuming that the loss function ℓ(y, f(x)) is almost surely in [0, ℓ∞], we have obtained in
section 4.4.1, together with the Rademacher complexities in section 4.5, a bound of the
form

sup
f∈F

∣∣R(f)− R̂(f)
∣∣ 6 2Rn(H) +

ℓ∞√
2n

√
log

2

δ
, (4.22)

with probability greater than 1− δ, with the Rademacher complexity Rn(H) of the class
of functions H = {(x, y) 7→ ℓ(y, f(x)), f ∈ F}. This leads to, with probability greater
than 1− δ,

R(f̂) 6 R̂(f̂) + 2Rn(H) +
ℓ∞√
2n

√
log

2

δ
, (4.23)

which is a data-dependent generalization bound in high probability. Moreover, at the end
of section 4.5.1, we have seen that we could also use the empirical Rademacher complexity,



104 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

which can be more easily computed (with fewer assumptions), and with a similar bound
in equation (4.14).

We now consider a finite (but potentially large) number m of models F1, . . . ,Fm,
together with their associated loss function spaces H1, . . . ,Hm and their generalization
bounds for the empirical risk minimizer based on Rademacher complexities. In this
section, we consider how to choose the best corresponding empirical risk minimizer among
f̂1, . . . , f̂m. We consider two approaches, either based on minimizing a penalized data-
generalization bound (also referred to as “structural risk minimization”) or simply using a
validation set. For these two methods, we assume that we can enumerate allm models and
minimize the appropriate criterion. This is not tractable when m is large; see chapter 8
for efficient methods in the context of variable selection.

In both cases, we consider a set of positive weights π1, . . . , πm that sum to 1. We can
typically choose πi = 1/m for all i ∈ {1, . . . ,m}; we can also consider other choices, in
particular when m gets large (even potentially infinite) and we are willing to put more
prior weight on certain models.

4.6.1 Structural Risk Minimization (�)

We minimize the data-dependent generalization bounds plus an additional parameter to
take into account the prior on models; that is,

ı̂ = arg min
i∈{1,...,m}

{
R̂(f̂i) + 2Rn(Hi) +

ℓ∞√
2n

√
log

1

πi

}
. (4.24)

We can then use equation (4.23) for each of the m models, with πiδ instead of δ, and use
the union bound (so equation (4.22) is satisfied for all models) to get, with probability
greater than 1− δ,

R(f̂ı̂) 6 R̂(f̂ı̂) + 2Rn(Hı̂) +
ℓ∞√
2n

√
log

2

δπı̂
using equation (4.22),

6 min
i∈{1,...,m}

{
R̂(f̂i) + 2Rn(Hi) +

ℓ∞√
2n

√
log

1

πi

}
+

ℓ∞√
2n

√
log

2

δ

by definition of ı̂ in equation (4.24),

6 min
i∈{1,...,m}

{
inf
fi∈Fi

R(fi) + 4Rn(Hi) + 2
ℓ∞√
2n

√
log

1

πi

}
+ 2

ℓ∞√
2n

√
log

2

δ
, (4.25)

by reusing equation (4.22) for all i ∈ {1, . . . ,m}. For example, when π1 = · · · = πm =
1/m, we thus find that the model selection procedure pays an extra price of

√
log(m)/n

on top of the individual generalization bounds (with slightly worse constants).

4.6.2 Selection Based on Validation Set (�)

We assume here that we have kept a proportion ρ ∈ (0, 1) of the training data as a
validation set (assuming for simplicity that ρn is an integer). We then have an empirical



4.7. RELATION WITH ASYMPTOTIC STATISTICS (�) 105

risk based on (1−ρ)n observations, we which now denote as R̂
(training)
(1−ρ)n , and a validation

empirical risk denoted as R̂
(validation)
ρn . Given the m minimizers f̂i of the training empirical

risks R̂
(training)
(1−ρ)n (fi) over fi ∈ Fi, for i ∈ {1, . . . ,m}, we choose ı̂ that minimizes the

following criterion:

R̂(validation)
ρn (f̂i) +

ℓ∞√
2ρn

√
log

1

πi

(for uniform weights π1 = · · · = πm = 1/m, this is simply the minimizer of the valida-
tion risk). We can then use Hoeffding’s inequality (with respect to the randomness of

the validation set, for which each f̂i is deterministic) and the union bound to get the
generalization bound (as in section 4.6.1), with probability greater than 1− δ,

R(f̂ı̂) 6 min
i∈{1,...,m}

R(f̂i) +
ℓ∞√
2ρn

√
log

1

πi
+

ℓ∞√
2ρn

√
log

2

δ
,

which shows an extra price proportional to
√

log(m)/(ρn) (for uniform weights), high-
lighting the fact that the validation set proportion ρ ∈ (0, 1) should not be too small. We
can also obtain a result similar to the one in section 4.6.1 by using the same generalization
bounds based on Rademacher averages; that is, with probability greater than 1− 2δ,

R(f̂ı̂) 6 min
i∈{1,...,m}

{
inf
fi∈Fi

R(fi) + 2R(1−ρ)n(Hi) +
ℓ∞√
2n

( 1√
ρ

+
1√

1− ρ
)√

log
1

πi

}

+
ℓ∞√
2n

( 1√
ρ

+
1√

1− ρ
)√

log
2

δ
.

Suppose that ρ is bounded away from 0 and 1 (which the bound pushes to impose).
In that case, we obtain a bound that is similar to equation (4.25), with the difference
that the performance of validation methods is, in practice, much better than the bound
guarantees (while data-dependent bound optimization may not exhibit such adaptivity).

4.7 Relation with Asymptotic Statistics (�)

In this last section, we relate the nonasymptotic analysis presented in this chapter to
results from asymptotic statistics (see the comprehensive book by van der Vaart (2000),
which presents this large body of literature).

To make this concrete, we consider a set of models F = {fθ : X → R, θ ∈ Rd}
parameterized by a vector θ ∈ Rd. We consider the empirical risk and expected risks
(with a slight overloading of notations):

R(θ) = R(fθ) = E
[
ℓ(y, fθ(x))

]
and R̂(θ) = R̂(fθ) =

1

n

n∑

i=1

ℓ(yi, fθ(xi)).

We assume that we have a loss function ℓ : Y × R → R (such as for regression or any of
the convex surrogates for classification), which is sufficiently differentiable with respect



106 CHAPTER 4. EMPIRICAL RISK MINIMIZATION

to the second variable, so that theorems 5.21 or 5.41 on “M-estimation” (which cover
empirical risk minimization) from van der Vaart (2000) apply. In this section, we will
only report their final result and provide an intuitive justification.

We assume that θ∗ ∈ Rd is a minimizer of R(θ) and that the Hessian R′′(θ∗) is positive-
definite (it has to be positive semidefinite, as θ∗ is a minimizer; we assume invertibility
on top of it).

We let θ̂n denote a minimizer of R̂. Since R̂′(θ∗) = 1
n

∑n
i=1

∂ℓ(yi,fθ(xi))
∂θ

∣∣
θ=θ∗

, by the

law of large numbers, R̂′(θ∗) tends to R′(θ∗) = 0 (e.g., almost surely), and we should thus

expect that θ̂n (which is defined through R̂′(θ̂n) = 0) tends to θ∗ (all these statements
can be made rigorous; see van der Vaart, 2000).

Then, a Taylor expansion of R̂′ around θ∗ leads to

0 = R̂′(θ̂n) ≈ R̂′(θ∗) + R̂′′(θ∗)(θ̂n − θ∗).

By the law of large numbers, R̂′′(θ∗) tends to H(θ∗) = R′′(θ∗) when n tends to infinity,
and thus we obtain

θ̂n − θ∗ ≈ R′′(θ∗)−1R̂′(θ∗) = H(θ∗)−1R̂′(θ∗).

Moreover, R̂′(θ∗) is the average of n i.i.d. random vectors, and by the central limit
theorem, it is asymptotically Gaussian with mean zero and covariance matrix equal to
1
nG(θ∗) = 1

nE
[(∂ℓ(y,fθ(x))

∂θ

)(∂ℓ(y,fθ(x))
∂θ

)⊤∣∣
θ=θ∗

]
, where G(θ∗) is referred to as the Fisher

information matrix. Therefore, we intuitively find that θ̂n is asymptotically Gaussian
with mean θ∗ and covariance matrix 1

nH(θ∗)−1G(θ∗)H(θ∗)−1.

This asymptotic result has the nice consequence that

E
[
‖θ̂n − θ∗‖22

]
∼ 1

n
tr
[
H(θ∗)−1G(θ∗)H(θ∗)−1

]

E
[
R(θ̂n)− R(θ∗)

]
∼ 1

2n
tr
[
H(θ∗)−1G(θ∗)

]
.

For example, for well-specified linear regression (as analyzed in chapter 3), it turns out
that we have G(θ∗) = σ2H(θ∗) (proof left as an exercise), and thus we recover the rate
σ2d/n.

Benefits of the asymptotic analysis. As shown earlier, the asymptotic analysis gives
a precise picture of the asymptotic behavior of empirical risk minimization. Much more
than simply providing an upper bound on E

[
R(θ̂n)−R(θ∗)

]
, it also gives a limit Gaussian

distribution for θ̂n and a fast rate as O(1/n). Moreover, because we have limits, we can
compare limits between various learning algorithms and claim asymptotic superiority or
inferiority of one method over another, which comparing upper bounds cannot achieve.

Thus, an asymptotic analysis does not suffer from the potential looseness of nonasymp-
totic bounds that often rely on crude approximations (in particular the ones leading to
excess risk in 1/

√
n), and, while they are valid even for small n and still often exhibit the

desired behavior of n, are overly pessimistic.



4.8. SUMMARY 107

Pitfalls of the asymptotic analysis. The main drawback of this analysis is that it
is. . . asymptotic. That is, n tends to infinity, and it is impossible to tell without further
analysis when the asymptotic behavior will kick in. Sometimes this is for reasonably
small n, and sometimes for large n. Further asymptotic expansions can be carried out,
but small sample effects are hard to characterize, particularly when the underlying di-
mension d gets large.

Bridging the gap. Studying the validity of the asymptotic expansion described here
can be done in several ways. See, for example, Ostrovskii and Bach (2021) and references
therein for finite-dimensional models, and chapter 7 for nonasymptotic results similar to
σ2d/n when the dimension of the feature space gets infinite. See also examples in Christ-
mann and Steinwart (2008). Another line of work considers asymptotic analyses where
several quantities (e.g., dimension d of the features and number n of observations) tend
to infinity, with a ratio tending to a constant (see, e.g., Potters and Bouchaud, 2020).

4.8 Summary

In this chapter, we have first introduced convex surrogates for binary classification prob-
lems to avoid performing optimization on functions with values in {−1, 1}. This comes
with generalization guarantees that will be extended in chapter 13 to multiple categories
and, more generally, to structured output spaces.

The chapter’s core was dedicated to introducing Rademacher complexities, which are
flexible tools to study estimation errors in many settings. This led to simple bounds
for linear models and ball constraints, which will be extended to infinite-dimensional
settings in chapter 7 and neural networks in chapter 9. Other frameworks exist to obtain
similar bounds, such as the PAC-Bayes framework presented in detail in section 14.4,
often leading to tighter bounds.

While this chapter was dedicated to the statistical analysis of empirical risk mini-
mizers, the next chapter is dedicated to optimization algorithms aimed at approximating
such minimizers, notably stochastic gradient descent (SGD), which also naturally exhibits
good generalization performance.





Chapter 5

Optimization for Machine
Learning

Chapter Summary
• Gradient descent (GD): The workhorse first-order algorithm for optimization, which

converges exponentially fast for well-conditioned convex problems.
• Stochastic gradient descent (SGD): The workhorse first-order algorithm for large-

scale machine learning, which converges as 1/t or 1/
√
t, where t is the number of

iterations.
• Generalization bounds through SGD: With only a single pass on the data, there is

no risk of overfitting, and we obtain generalization bounds for unseen data.
• Variance reduction: When minimizing strongly convex finite sums, this class of

algorithms is exponentially convergent while having a small iteration complexity.

In this chapter, we present optimization algorithms based on GD and analyze their
performance, mainly on convex objective functions. We will consider generic algorithms
that have applications beyond machine learning as well as algorithms dedicated to ma-
chine learning (such as SGD methods). See Nesterov (2018); Bubeck (2015) for further
details.

5.1 Optimization in Machine Learning

In supervised machine learning, we are given n independent and identically distributed
(i.i.d.) samples (xi, yi), i = 1, . . . , n of a couple of random variables (x, y) on X× Y, and

109



110 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

the goal is to find a predictor f : X→ R with a small risk on unseen data:

R(f) = E[ℓ(y, f(x))],

where ℓ : Y × R → R is a loss function. This loss is typically convex in the second
argument (e.g., square loss or logistic loss; see chapter 4), which is often considered a
weak assumption (since it still allows using arbitrarily complex prediction functions).

In the empirical risk minimization approach described in chapter 4, we choose the
predictor by minimizing the empirical risk over a parameterized set of predictors, poten-
tially with regularization. For a parameterization {fθ}θ∈Rd and a regularizer Ω : Rd → R

(e.g., Ω(θ) = ‖θ‖22 or Ω(θ) = ‖θ‖1), this leads to the minimization of the following objec-
tive function:

F (θ) =
1

n

n∑

i=1

ℓ(yi, fθ(xi)) + Ω(θ). (5.1)

In optimization, the function F : Rd → R is called the objective function.

In general, the minimizer has no closed form. Even when it has one (e.g., linear
predictor and square loss as discussed in chapter 3), it could be expensive to compute for
large problems. We thus resort to iterative algorithms.

Accuracy of iterative algorithms. Solving optimization problems with high accu-
racy is computationally expensive, and the goal is not to minimize the training objective,
but rather the error on unseen data.

Then, what accuracy is necessary in machine learning? If the algorithm returns θ̂
and we define θ∗ ∈ arg minθ∈Rd R(fθ), from section 2.3.2, the excess risk is the sum of
the approximation error (which characterizes the error due to the use of a specific set of
models {fθ}) and the estimation error, which can be decomposed as follows:

R(fθ̂)− inf
θ∈Rd

R(fθ) =
{
R(fθ̂)− R̂(fθ̂)

}
+
{
R̂(fθ̂)− R̂(fθ∗)

}
+
{
R̂(fθ∗)− R(fθ∗)

}
,

6
{
R(fθ̂)− R̂(fθ̂)

}
︸ ︷︷ ︸

deviation - I

+
{
R̂(fθ̂)− inf

θ∈Rd
R̂(fθ)

}

︸ ︷︷ ︸
optimization error

+
{
R̂(fθ∗)− R(fθ∗)

}
︸ ︷︷ ︸

deviation - II

.

On top of the two parts based on the deviation between the expected and empirical
risks, we added the second term, the optimization error, which will equal zero if θ̂ is the
minimizer of R̂. It is thus sufficient to reach an optimization accuracy of the order of the
deviation error (usually of the order O(1/

√
n) or O(1/n); see chapters 3 and 4). Note that

for machine learning, the optimization error defined here corresponds to characterizing
approximate solutions through function values. While this will be one central focal point
in this chapter, we will also consider other performance measures.

In this chapter, we will first look at minimization without focusing on machine learning
problems (section 5.2), with both smooth and nonsmooth objective functions. We will
then look at stochastic gradient descent (SGD) in section 5.4, which can be used to



5.2. GRADIENT DESCENT 111

obtain bounds on both the training and testing risks. We then briefly present adaptive
methods in section 5.4.2, bias-variance decompositions for least-squares in section 5.4.3,
and variance reduction in section 5.4.4.

△!
The notation θ∗ may typically mean different things in optimization and ma-
chine learning: minimizer of the regularized empirical risk, or minimizer of
the expected risk. For the sake of clarity, we will use the notation η∗ for the
minimizer of empirical (potentially regularized) risk (i.e., when we look at op-
timization problems), and θ∗ for the minimizer of the expected risk (i.e., when
we look at statistical problems).

△! Sometimes we mention solving a problem with high precision. This corre-
sponds to a low optimization error.

In this chapter, we primarily focus on GD methods for convex optimization problems,
which, in learning terms, correspond to predictors that are linear in their parameters (an
assumption that will be relaxed in subsequent chapters) and a convex loss function such
as the logistic loss or the square loss. We first consider so-called “batch” methods, which
do not use the finite sum structure of the objective function in equation (5.1) before
moving on to stochastic gradient methods, which do take into account this structure for
enhanced computational efficiency.

△! As for bounds on the estimation error in section 4.5.4, most of the convergence
bounds in this section do not have any explicit dependence on the underlying dimension
d. They thus apply in infinite-dimensional Hilbert spaces and can be made practically
implementable in finite dimension using the “kernel trick” (see section 7.4).

5.2 Gradient Descent

Suppose that we want to solve, for the function F : Rd → R, the optimization problem

min
θ∈Rd

F (θ).

We assume that we are given access to certain “oracles”: the kth-order oracle corresponds
to the access to θ 7→ (F (θ), F ′(θ), . . . , F (k)(θ)); that is, all partial derivatives up to order k.
All algorithms will call these oracles; thus, their computational complexity will depend
directly on the complexity of the oracles. For example, for least-squares regression with
a design matrix in Rn×d, computing a single gradient of the empirical risk costs O(nd).

In this section, for the algorithms and proofs, we do not assume that function F is the
regularized empirical risk, but this situation will be our motivating example throughout.
First, we will study gradient descent, a first-order algorithm.

Algorithm 5.1 (Gradient descent) Pick θ0 ∈ Rd and for t > 1, let

θt = θt−1 − γtF ′(θt−1), (5.2)



112 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

for a well (potentially adaptively) chosen step-size sequence (γt)t>1.

For machine learning problems where the empirical risk is minimized, computing the
gradient F ′(θt−1) requires computing all gradients of θ 7→ ℓ(yi, fθ(xi)) and averaging
them.

There are many ways to choose the step size γt–either constant, decaying, or through
a line search.1 In practice, using some form of line search is usually advantageous and is
implemented in most applications. See Armijo (1966) and Goldstein (1962) for conver-
gence guarantees with typical procedures (such as backtracking or Armijo line search). In
this chapter, since we want to focus on the simplest algorithms and proofs, we will focus
on step sizes that depend explicitly on problem constants, and sometimes on the iteration
number. When gradients are not available, gradient estimates may be built from function
values (see, e.g., Nesterov and Spokoiny, 2017, and chapter 11 of this book). Note that
the differences between convergence rates with and without line searches are generally not
significant (see exercise 5.2, about quadratic functions), with sometimes some differences
when exact line search is used (see, e.g., Bolte and Pauwels, 2022). At the same time,
practical behavior is significantly improved with line search.

We start with the simplest example–namely, convex quadratic functions, where the
most important concepts already appear.

5.2.1 Simplest Analysis: Ordinary Least-Squares

We start with a case where the analysis is explicit: ordinary least-squares (OLS; see
chapter 3 for the statistical analysis of this estimator). Let Φ ∈ Rn×d be the design
matrix and y ∈ Rn the vector of responses. Least-squares estimation amounts to finding
a minimizer η∗ of

F (θ) =
1

2n
‖Φθ − y‖22. (5.3)

△! A factor of 1
2 has been added compared to chapter 3 to avoid a factor of 2 for gradients.

The gradient of F is F ′(θ) = 1
nΦ⊤(Φθ − y) = 1

nΦ⊤Φθ − 1
nΦ⊤y. Thus, denoting

H = 1
nΦ⊤Φ ∈ Rd×d for the Hessian matrix (equal for all θ, denoted as Σ̂ in chapter 3),

minimizers η∗ are characterized by F ′(η∗) = 0; that is,

Hη∗ =
1

n
Φ⊤y.

Since 1
nΦ⊤y ∈ Rd is in the column space of H , there is always a minimizer, but unless

H is invertible, the minimizer is not unique. However, all minimizers η∗ have the same
function value F (η∗), and we have, from a simple exact Taylor expansion (and using
F ′(η∗) = 0),

F (θ) − F (η∗) = F ′(η∗)⊤(θ − η∗) +
1

2
(θ − η∗)⊤H(θ − η∗) =

1

2
(θ − η∗)⊤H(θ − η∗).

1See, e.g., https://en.wikipedia.org/wiki/Line_search.

https://en.wikipedia.org/wiki/Line_search


5.2. GRADIENT DESCENT 113

Two quantities will be important in the following developments: the largest eigenvalue L
and the smallest eigenvalue µ of the Hessian matrix H . As a consequence of the convexity
of the objective, we have 0 6 µ 6 L. We denote as κ = L

µ > 1 the condition number.

Note that for least-squares regression, µ is the lowest eigenvalue of the noncentered
empirical covariance matrix, and it is zero as soon as d > n, and, in most practical cases,
it is very small. When adding a regularizer λ

2 ‖θ‖22 (as in ridge regression), then µ > λ
(but then λ typically decreases with n, often between 1/

√
n and 1/n; see section 7.6.4 in

chapter 7 for more details).

Closed-form expression. GD iterates with fixed step size γt = γ can be computed as
follows:

θt = θt−1 − γF ′(θt−1) = θt−1 − γ
[ 1

n
Φ⊤(Φθt−1 − y)

]
= θt−1 − γH(θt−1 − η∗),

leading to

θt − η∗ = θt−1 − η∗ − γH(θt−1 − η∗) = (I − γH)(θt−1 − η∗);

that is, we have a linear recursion, and we can unroll the recursion and now write

θt − η∗ = (I − γH)t(θ0 − η∗).

We can now look at various measures of performance:

‖θt − η∗‖22 = (θ0 − η∗)⊤(I − γH)2t(θ0 − η∗)

F (θt)− F (η∗) =
1

2
(θ0 − η∗)⊤(I − γH)tH(I − γH)t(θ0 − η∗)

=
1

2
(θ0 − η∗)⊤(I − γH)2tH(θ0 − η∗), since matrices commute.

The two optimization performance measures differ by the presence of the Hessian ma-
trix H in the measure based on function values.

Convergence in distance to the minimizer. If we hope to have ‖θt − η∗‖22 going
to zero, we need to have a single minimizer η∗, and thus H has to be invertible; that
is, µ > 0. Given the form of ‖θt − η∗‖22, we simply need to bound the eigenvalues of
(I − γH)2t (since for a positive semidefinite matrix M , u⊤Mu 6 λmax(M)‖u‖22 for all
vectors u).

The eigenvalues of (I − γH)2t are exactly (1 − γλ)2t for λ being an eigenvalue of H
(all of them are in the interval [µ, L]). Thus, all the eigenvalues of (I − γH)2t have a
magnitude less than (

max
λ∈[µ,L]

|1− γλ|
)2t

.

We can then have several strategies for choosing the step size γ:



114 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

• Optimal choice: One can check that minimizing maxλ∈[µ,L] |1 − γλ| is done by

setting γ = 2/(µ+ L), with an optimal value equal to κ−1
κ+1 = 1 − 2

κ+1 ∈ (0, 1). See
the following geometric proof:

γ1/L 1/µ

max{|1− γL|, |1− γµ|}

|1− γµ|

|1− γL|

2/(L+ µ)

• Choice independent of µ: With the simpler (slightly smaller) choice γ = 1/L, we
get maxλ∈[µ,L] |1−γλ| = 1− µ

L = 1− 1
κ , which is only slightly larger than the value

for the optimal choice. Note that all step sizes strictly less than 2/L will lead to
exponential convergence.

For example, with the weaker choice γ = 1/L, we get

‖θt − η∗‖22 6

(
1− 1

κ

)2t

‖θ0 − η∗‖22,

which is often referred to as exponential, geometric, or linear convergence.

△! The term “linear” in this context is sometimes confusing and corresponds to a number
of significant digits that grows linearly with the number of iterations.

We can further bound
(
1 − 1

κ

)2t
6 exp(−1/κ)2t = exp(−2t/κ), and thus the charac-

teristic time of convergence is of order κ. We will often make the calculation

ε = exp(−2t/κ)⇔ t =
κ

2
log

1

ε
.

Thus, for a relative reduction of squared distance to the optimum of ε, we need at most
t = κ

2 log 1
ε iterations.

For κ = +∞ (i.e., µ = 0), the result remains true but simply says that for all
minimizers, ‖θt − η∗‖22 6 ‖θ0 − η∗‖22, which is a good sign (the algorithm does not move
away from minimizers), but not indicative of any form of convergence. We will need to
use a different criterion.

Convergence in function values. Using the same step size γ = 1/L as before, and
using the upper bound on eigenvalues of (I − γH)2t (which are all less than (1− 1/κ)2t),
we get

F (θt)− F (η∗) 6
(

1− 1

κ

)2t

[F (θ0)− F (η∗)] 6 exp(−2t/κ)[F (θ0)− F (η∗)]. (5.4)

When κ <∞ (i.e., µ > 0), we also obtain linear convergence for this criterion, but when
κ =∞, this is noninformative.



5.2. GRADIENT DESCENT 115

To obtain a convergence rate, we will need to bound the eigenvalues of (I − γH)2tH
instead of (I − γH)2t. The key difference is that for eigenvalues λ of H that are close to
zero, (1 − γλ)2t does not have a strong contracting effect, but the eigenvalues count less
as they are multiplied by λ in the bound.

We can make this trade-off precise, for γ 6 1/L, as

∣∣λ(1 − γλ)2t
∣∣ 6 λ exp(−γλ)2t = λ exp(−2tγλ)

=
1

2tγ
2tγλ exp(−2tγλ) 6

1

2tγ
sup
α>0

α exp(−α) =
1

2etγ
6

1

4tγ
,

where we used that αe−α is maximized over R+ at α = 1 (as the derivative is e−α(1−α)).

This leads to, with the largest step size γ = 1/L:

F (θt)− F (η∗) 6
1

8tγ
‖θ0 − η∗‖22 =

L

8t
‖θ0 − η∗‖22. (5.5)

We can make the following observations:

• △! The convergence results in exp(−2t/κ) in equation (5.4) for invertible Hessians,
or 1/t in general in equation (5.5) are only upper bounds! It is good to understand
the gap between the bounds and the actual performance, as this is possible for
quadratic objective functions.

For the exponentially convergent case, when the step-size γ is strictly less than 2/L,
the lowest eigenvalue µ dictates the rate for all eigenvalues. So, if the eigenvalues
are well spread (or if only one eigenvalue is very small), there can be quite a strong
discrepancy between the bound and the actual behavior.

For the rate in 1/t, the bound in eigenvalues is tight when tγλ is of order 1 (namely,
when λ is of order 1/(tγ)). Thus, to see an O(1/t) convergence rate in practice, we
need to have sufficiently many small eigenvalues. As t grows, we often go to a local
linear convergence phase where the smallest nonzero eigenvalue of H kicks in. See
the simulations in figure 5.1, exercise 5.1, and section 12.1.1 for more details.

Exercise 5.1 Let µ+ be the smallest nonzero eigenvalue of H. Show that GD is
linearly convergent with a convergence rate proportional to (1 − µ+/L)2t after t
iterations.

• From errors to numbers of iterations: As already mentioned, the bound in equa-
tion (5.4) says that after t steps, the reduction in suboptimality in function values is
multiplied by ε = exp(−2t/κ). This can be reinterpretated as a need of t = κ

2 log 1
ε

iterations to reach a relative error ε.

• Can an algorithm having the same access to oracles of F do better?

If we have access to matrix-vector products with matrix Φ, then the conjugate
gradient algorithm can be used with convergence rates in exp(−t/√κ) and 1/t2

(see Golub and Loan, 1996). With only access to gradients of F (which is a bit



116 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

Figure 5.1. GD on two least-squares problems with step size γ = 1/L, and two dif-
ferent sets of eigenvalues (λk)k∈{1,...,d} of the Hessian, together with the bound from
equation (5.5). Left: semilogarithmic scale. Right: joint logarithmic scale.

weaker), Nesterov acceleration (see section 5.2.5) will lead to the same convergence
rates as conjugate gradient, which are then optimal (in a sense that will be defined
later in this chapter and described in more detail in chapter 15).

• Can we extend beyond least-squares regression? The convergence results given here
will generalize to convex functions (see section 5.2.2), but with less direct proofs.
Nonconvex objectives are discussed in section 5.2.6.

Experiments. Here, we consider two quadratic optimization problems in dimension
d = 1, 000, with two different decays of eigenvalues (λk)k∈{1,...,d} for the Hessian ma-
trix H : one as 1/k (in blue) and one in 1/k2 (in red), and for which we plot in figure 5.1
the optimization error for function values, both in semilogarithmic plots (left) and full-
logarithmic plots (right). For slow decays (blue), we see the linear convergence kicking
in (line in the left “semilog” plot), while for fast decays (red), we obtain a polynomial
rate that is not exponential (line in the right “log-log” plot). Note that the bound in
equation (5.5) is very pessimistic and does not lead to the observed power of t (which, as
can be checked as an exercise, should be 1/

√
t for t small enough compared to d).

Exercise 5.2 (Exact line search (�)) For the quadratic objective in equation (5.3),

show that the optimal step size γt in equation (5.2) is equal to γt =
‖F ′(θt−1)‖2

2

||F ′(θt−1)⊤HF ′(θt−1)
.

Show that when F is strongly convex, we have F (θt)−F (η∗) 6
(
κ−1
κ+1

)2[
F (θt−1)−F (η∗)

]
,

and compare the rate with constant step size GD. Hint: prove and use the Kantorovich

inequality sup‖z‖2=1 z
⊤Hzz⊤H−1z = (L+µ)2

4µL .

5.2.2 Convex Functions and Their Properties

We now wish to analyze GD (and later its stochastic version, SGD) in a broader setting.
We will always assume convexity, although these algorithms are also used (and can some-



5.2. GRADIENT DESCENT 117

times also be analyzed) when this assumption does not hold (see section 5.2.6). In other
words, convexity is most often used for analysis rather than to define the algorithm. In
this section, we present the main properties of convex functions that we will need in this
book.

Definition 5.1 (Convex function) A differentiable function F : Rd → R is said to be
convex if and only if

F (η) > F (θ) + F ′(θ)⊤(η − θ), ∀η, θ ∈ R
d. (5.6)

This corresponds to the function F being above its tangent at θ, as illustrated here:

η

F (η)

θ

F (θ) + F ′(θ)⊤(η − θ)

If f is twice-differentiable, this is equivalent to requiring F ′′(x) < 0, ∀x ∈ Rd; here, <
denotes the semidefinite partial ordering–also called the “Löwner order”–characterized
by A < B ⇔ A −B is positive semidefinite; see Boyd and Vandenberghe (2004); Bhatia
(2009).

An important consequence that we will use a lot in this chapter is, for all θ ∈ Rd (and
using η = η∗),

F (η∗) > F (θ) + F ′(θ)⊤(η∗ − θ) ⇔ F (θ) − F (η∗) 6 F ′(θ)⊤(θ − η∗); (5.7)

that is, the distance to optimum in function values is upper-bounded by a function of the
gradient.

A more general definition of convexity (without gradients) is that ∀θ, η ∈ Rd and
α ∈ [0, 1]:

F (αη + (1− α)θ) 6 αF (η) + (1− α)F (θ),

which generalizes to the usual Jensen’s inequality, as in proposition 5.1.2

Proposition 5.1 (Jensen’s inequality) If F : Rd → R is convex and µ is a probability
measure on Rd, then

F
(∫

Rd

θdµ(θ)
)
6

∫

Rd

F (θ)dµ(θ). (5.8)

Stated in words: “The image of the average is smaller than the average of the images.”

△! When using Jensen’s inequality, be extra careful about the direction of the inequality.

2See also section 1.2 and several applications in https://francisbach.com/jensen-inequality/.

https://francisbach.com/jensen-inequality/


118 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

Exercise 5.3 Assume that function F : Rd → R is strictly convex; that is, ∀θ, η ∈ Rd

such that θ 6= η and α ∈ (0, 1), F (αη+ (1−α)θ) < αF (η) + (1−α)F (θ). Show that there
is equality in Jensen’s inequality in equation (5.8) if and only if the random variable θ is
almost surely constant.

The class of convex functions satisfies the following stability properties (proofs left as
an exercise); for more properties, see Boyd and Vandenberghe (2004):

• If (Fj)j∈{1,...,m} are convex and (αj)j∈{1,...,m} are nonnegative, then
∑m

j=1 αjFj
and maxj∈{1,...,m} Fj are convex.

• If F : Rd → R is convex and A : Rd
′ → Rd is affine then F ◦A : Rd

′ → R is convex.

• If F : Rd1+d2 → R is convex, so is the function x1 7→ infx2∈Rd2 F (x1, x2) on Rd1 .

Classical machine learning example. Problems of the form in equation (5.1) are
convex if the loss ℓ is convex in the second variable, fθ(x) is linear in θ, and Ω is convex.
These thus correspond to linear models (in their parameters), and not to nonlinear models
such as neural networks, which are studied in chapter 9.

Global optimality from local information. It is also worth emphasizing the prop-
erty expressed in proposition 5.2 (immediate from equation (5.7)).

Proposition 5.2 Assume that F : Rd → R is convex and differentiable. Then η∗ ∈ Rd

is a global minimizer of F if and only if F ′(η∗) = 0.

Thus, for convex functions, we only need to look for stationary points. This is not
the case for potentially nonconvex functions. For example, in one dimension below, all
red points are stationary points that are not the global minimum (shown is in green).

θ

The situation is even more complex in higher dimensions. Note that without convexity
assumptions, optimization of Lipschitz-continuous functions will need exponential time
in dimension in the worst case (see section 15.2.2).

Exercise 5.4 Identify all stationary points in the function in R2 depicted here:



5.2. GRADIENT DESCENT 119

5.2.3 Analysis of Gradient Descent for Strongly Convex and
Smooth Functions

The analysis of optimization algorithms requires assumptions on the objective functions,
like the ones introduced in this section. From these assumptions, additional properties are
derived (typically inequalities), and then most convergence proofs look for a nonnegative
“Lyapunov function” (sometimes called a “potential function”) that goes down along the
iterations. More precisely, if V : Rd → R+ is such that V (θt) 6 (1 − α)V (θt−1), then
V (θt) 6 (1 − α)tV (θ0) and we obtain linear convergence to a minimizer of V (which is
usually chosen to be a minimizer of F ). The task is then to find the appropriate Lyapunov
function; for slower convergence rates, weaker forms of decrease for Lyapunov functions
will be considered.

We first consider an assumption allowing exponential convergence rates.

Definition 5.2 (Strong convexity) A differentiable function F is said to be µ-strongly-
convex, with µ > 0, if and only if

F (η) > F (θ) + F ′(θ)⊤(η − θ) +
µ

2
‖η − θ‖22, ∀η, θ ∈ R

d. (5.9)

Function F is strongly convex if and only if function F is strictly above its tangent and
the difference is at least quadratic in the distance to the point where the two coincide.
This notably allows us to define quadratic lower bounds on F , as shown here:

η

F (η)

θ

F (θ) + F ′(θ)⊤(η − θ)

F (θ) + F ′(θ)⊤(η − θ) + µ
2‖η − θ‖22

For twice-differentiable functions, this is equivalent to F ′′(θ) < µI for all θ ∈ Rd;
that is, all eigenvalues of F ′′(θ) are greater than or equal to µ (see Nesterov, 2018), but
nonsmooth functions can be strongly convex, since, as a consequence of exercise 5.5, we
can add µ

2 ‖ · ‖22 to any potentially nonsmooth convex function to make it µ-strongly-
convex.

Exercise 5.5 Show that function F : Rd → R is µ-strongly-convex if and only if function
θ 7→ F (θ)− µ

2 ‖θ‖22 is convex.

Exercise 5.6 Show that if function F : Rd → R is µ-strongly-convex, then it has a
unique minimizer.



120 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

Exercise 5.7 (�) Show that the differentiable convex function F : Rd → R is µ-strongly
convex if and only if for all θ, η ∈ Rd, ‖F ′(θ) − F ′(η)‖2 > µ‖θ − η‖2.

Strong convexity through regularization. When an objective function F is convex,
then F + µ

2 ‖ · ‖22 is µ-strongly convex (see exercise 5.5). In practice, in machine learning
problems with linear models, such that the empirical risk is convex, strong convexity most
often comes from the regularizer (and thus µ decays with n), leading to condition numbers
that grow with n (typically in

√
n or n). While the regularizer was added in section 3.6

to improve generalization, we see in this section that it also leads to faster optimization
algorithms, showing that statistical and optimization performances are often aligned.

 Lojasiewicz’s inequality. Strong convexity implies that F admits a unique mini-
mizer η∗, which is characterized by F ′(η∗) = 0. Moreover, this guarantees that the
gradient is large when a point is far from optimal (in function values):

Lemma 5.1 ( Lojasiewicz’s inequality) If F is differentiable and µ-strongly convex
with unique minimizer η∗, then we have

‖F ′(θ)‖22 > 2µ(F (θ)− F (η∗)), ∀θ ∈ R
d.

Proof The right side of equation (5.9) is strongly convex in η and minimized with
η̃ = θ − 1

µF
′(θ). Plugging this value into the bound and minimizing the left side by

taking η = η∗, we get F (η∗) > F (θ)− 1
µ‖F ′(θ)‖22 + 1

2µ‖F ′(θ)‖22 = F (θ)− 1
2µ‖F ′(θ)‖22. The

conclusion follows by rearranging.

Note that while strong convexity is a sufficient condition for the  Lojasiewicz’s inequality,
it is not necessary, and it may lead to exponential convergence without strong convexity
(see, e.g., section 12.1.1).

To obtain exponential convergence rates, strong convexity is typically associated with
smoothness, which we now define.

Definition 5.3 (Smoothness) A differentiable function F is said to be L-smooth if and
only if

|F (η)− F (θ)− F ′(θ)⊤(η − θ)| 6 L

2
‖θ − η‖22, ∀θ, η ∈ R

d. (5.10)

This is equivalent to F having a L-Lipschitz-continuous gradient with respect to the ℓ2-
norm; that is, ‖F ′(θ) − F ′(η)‖2 6 L‖θ − η‖2, ∀θ, η ∈ Rd (proof left as an exercise). For
twice-differentiable functions, this is equivalent to −LI 4 F ′′(θ) 4 LI (see Nesterov,
2018). If the function is also µ-strongly-convex, then all eigenvalues of all Hessians are
in the interval [µ, L].

Note that when F is convex and L-smooth, we have a quadratic upper bound that is
tight at any given point (strong convexity implies the corresponding lower bound with L
replaced by µ), as shown here:



5.2. GRADIENT DESCENT 121

η

F (η)

θ

F (θ) + F ′(θ)⊤(η − θ)

F (θ) + F ′(θ)⊤(η − θ) + L
2‖η − θ‖22

When a function is both smooth and strongly convex, we denote by κ = L/µ > 1
its condition number (for quadratic functions, the Hessian is the same at all points, and
we recover the definition from section 5.2.1). See the following examples of level sets of
functions with varying condition numbers; the condition number affects the shapes of the
level sets:

(Small κ = L/µ) (Large κ = L/µ)

The performance of GD will depend on this condition number. In the following plot,
the steps of the “steepest descent” method (i.e., GD with exact line search) are plotted;
with a small condition number (left), we get fast convergence, while for a large condition
number (right), we get oscillations.

(Small κ = L/µ) (Large κ = L/µ)



122 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

Exercise 5.8 (�) Consider angle α between the descent direction −F ′(θ) and the de-

viation to optimum θ − η∗, defined through cosα = F ′(θ)⊤(θ−η∗)
‖F ′(θ)‖·‖θ−η∗‖2

. Show that for a

µ-strongly-convex, L-smooth quadratic function, cosα >
2
√
µL

L+µ . (Hint: prove and use the

Kantorovich inequality sup‖z‖2=1 z
⊤Hzz⊤H−1z = (L+µ)2

4µL .) (��) Show that the same

result holds without the assumption that F is quadratic. (Hint: use the co-coercivity of
the function θ 7→ F (θ)− µ

2 ‖θ‖22 from proposition 5.4.)

For machine learning problems, such as linear predictions and smooth losses (square
or logistic), we have smooth problems. If we use a squared ℓ2-regularizer µ

2 ‖ · ‖22 , we
get a µ-strongly convex problem. Note that when using regularization, as explained in
chapters 3 and 4, the value of µ decays with n, typically between 1/n and 1/

√
n (see also

section 7.6.4), leading to condition numbers between
√
n and n.

In this context, GD on the empirical risk is often called a “batch” technique because
all the data points are accessed at every iteration. In proposition 5.3, we show that GD
converges exponentially for such smooth and strongly convex problems, thus extending
the result for quadratic functions from section 5.2.1.

Proposition 5.3 (Convergence of GD for smooth strongly convex functions) aa
Assume that F is L-smooth and µ-strongly convex. Choosing γt = 1/L, the iterates (θt)t>0

of GD on F satisfy

F (θt)− F (η∗) 6
(

1− 1

κ

)t
(F (θ0)− F (η∗)) 6 exp(−t/κ)(F (θ0)− F (η∗)).

Proof By the smoothness inequality in equation (5.10) applied to θt−1 and the next
iterate θt = θt−1−F ′(θt−1)/L, we have the following descent property, with γt = 1/L:

F (θt) = F
(
θt−1−F ′(θt−1)/L

)
6 F (θt−1)+F ′(θt−1)⊤(−F ′(θt−1)/L)+

L

2
‖−F ′(θt−1)/L‖22

= F (θt−1)− 1

L
‖F ′(θt−1)‖22 +

1

2L
‖F ′(θt−1)‖22.

Rearranging, we get

F (θt)− F (η∗) 6 F (θt−1)− F (η∗)− 1

2L
‖F ′(θt−1)‖22.

Using lemma 5.1, it follows that

F (θt)− F (η∗) 6 (1− µ/L)(F (θt−1)− F (η∗)) 6 exp(−µ/L)(F (θt−1)− F (η∗)).

We conclude by recursion on t and with the definition κ = L/µ.

We can make the following observations:

• As mentioned before, we necessarily have µ 6 L; the ratio κ = L/µ is called the
condition number. It is a property of the objective function, which may be hard



5.2. GRADIENT DESCENT 123

or easy to minimize. It is not invariant under linear changes of variables θ → Aθ,
where A is an invertible linear map; finding a good A to reduce the condition
number is the main principle behind preconditioning techniques (see, e.g., Nocedal
and Wright, 1999, for more details, as well as the end of section 5.2.5).

• If we only assume that the function is smooth and convex (not strongly convex),
then GD with the constant step size γ = 1/L also converges when a minimizer
exists, but at a slower rate in O(1/t). See section 5.2.4.

• Choosing the step size only requires an upper bound L on the smoothness constant
(if it is overestimated, the convergence rate only degrades slightly).

• Writing the update (θt − θt−1)/γ = −F ′(θt−1), this algorithm can be seen, under
the smoothness assumption, as the discretization of the gradient flow

d

dt
η(t) = −F ′(η),

where η(tγ) ≈ θt. This analogy can lead to several insights and proof ideas (see,
e.g., Scieur et al., 2017, and chapter 12 where this analogy is studied further for
nonconvex problems).

• For this class of functions (convex and smooth), first-order methods exist that
achieve a faster rate, showing that GD is not optimal. However, these improved
algorithms also have drawbacks (lack of adaptivity, instability to noise, etc.). See
section 5.2.5.

Exercise 5.9 Compute all constants for ℓ2-regularized logistic regression and for ridge
regression.

Adaptivity. Note that GD is adaptive to strong convexity: the exact same algorithm
applies to both strongly convex and convex cases, and the two bounds apply. This
adaptivity is important in practice, as often, locally around the global optimum, the
strong convexity constant converges to the minimal eigenvalue of the Hessian at η∗, which
can be significantly larger than µ (the global constant).

Fenchel conjugate (�). Given some convex function F : R
d → R, an important

tool is the Fenchel-Legendre conjugate F ∗, defined as F ∗(α) = supθ∈Rd α⊤θ − F (θ). In
particular, when we allow extended-value functions (which may take the value +∞), we
can represent functions defined on a convex domain, and we find, under simple regularity
conditions, that the conjugate of the conjugate of a convex function is the function itself.
Thus, any convex function can be seen as a maximum of affine functions. Moreover,
suppose that the original function is not convex. In that case, the bi-conjugate is often
referred to as the “convex envelope” and is the tightest convex lower bound (this is often
used when designing convex relaxations of nonconvex problems). Moreover, using Fenchel
conjugation is crucial when dealing with convex duality (which we will not cover in this
chapter). See Boyd and Vandenberghe (2004) for details.



124 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

Exercise 5.10 Let F be an L-smooth convex function on Rd. Show that its Fenchel
conjugate is (1/L)-strongly convex.

Exercise 5.11 (Fenchel-Young inequality) Let F be an L-smooth convex function
on R

d and F ∗ be its Fenchel conjugate. Show that for any θ, z ∈ R
d, we have F (θ) +

F ∗(z)− z⊤θ > 0, if and only if z = F ′(θ). (�) Show in addition that we have the lower
bound F (θ) + F ∗(z)− z⊤θ > 1

2L‖z − F ′(θ)‖22.

5.2.4 Analysis of Gradient Descent for Convex and Smooth Func-
tions (�)

To obtain the 1/t convergence rate without strong convexity (as we found in section 5.2.1
for quadratic functions), we will need an extra property of convex, smooth functions,
sometimes called “co-coercivity.” This is an instance of inequalities that we need to use
to circumvent the lack of closed form for iterations.

Proposition 5.4 (Co-coercivity) If F is a convex L-smooth function on Rd, then for
all θ, η ∈ Rd, we have

1

L
‖F ′(θ)− F ′(η)‖22 6

[
F ′(θ)− F ′(η)

]⊤
(θ − η). (5.11)

Moreover, we have

F (θ) > F (η) + F ′(η)⊤(θ − η) +
1

2L
‖F ′(θ)− F ′(η)‖22. (5.12)

Proof We will prove equation (5.12), which implies equation (5.11), by applying it twice
with η and θ swapped and summing them. Using convexity (to obtain the left inequality)
and smoothness (to obtain the right inequality), we have, for any ξ ∈ R

d,

F (η) + F ′(η)⊤(ξ − η) 6 F (ξ) 6 F (θ) + F ′(θ)⊤(ξ − θ) +
L

2
‖θ − ξ‖22. (5.13)

We can find the ξ minimizing the difference between the rightmost and leftmost terms in
equation (5.13) by setting the gradient of the difference with respect to ξ to zero, leading
to F ′(η) − F ′(θ) − L(ξ − θ) = 0. Putting this value of ξ back in equation (5.13) and
rearranging terms lead to equation (5.12).

We can now state the following convergence result for GD with potentially no strong con-
vexity. Up to constants, we obtain the same rate for quadratic functions in equation (5.5).

Proposition 5.5 (Convergence of GD for smooth convex functions) Assume
that F is L-smooth and convex, with a global minimizer η∗. Choosing γt = 1/L, the
iterates (θt)t>0 of GD on F satisfy, for t > 0,

F (θt)− F (η∗) 6
L

2t
‖θ0 − η∗‖22.



5.2. GRADIENT DESCENT 125

Proof (�) Following Bansal and Gupta (2019), the Lyapunov function that we will
choose is

Vt(θt) = t[F (θt)− F (η∗)] +
L

2
‖θt − η∗‖22,

and our goal is to show that it decays along iterations (the requirement is thus weaker
than for exponential convergence). We can split the difference in Lyapunov functions into
three terms (each with its own color):

Vt(θt)− Vt−1(θt−1)

= t[F (θt)− F (θt−1)] + F (θt−1)− F (η∗) +
L

2
‖θt − η∗‖22 −

L

2
‖θt−1 − η∗‖22.

To bound it, we do the following:

• We use F (θt)−F (θt−1) 6 − 1
2L‖F ′(θt−1)‖22 as in the proof of proposition 5.3.

• We use F (θt−1)− F (η∗) 6 F ′(θt−1)⊤(θt−1 − η∗), as a consequence of convexity
(function above the tangent at θt−1), as in equation (5.7).

• We use L
2 ‖θt − η∗‖22 − L

2 ‖θt−1 − η∗‖22 = −Lγ(θt−1 − η∗)⊤F ′(θt−1) + Lγ2

2 ‖F ′(θt−1)‖22
by expanding the square.

This leads to, with the step size γ = 1/L,

Vt(θt)− Vt−1(θt−1) 6 t
[
− 1

2L
‖F ′(θt−1)‖22

]
+ F ′(θt−1)⊤(θt−1 − η∗)

−Lγ(θt−1 − η∗)⊤F ′(θt−1) +
Lγ2

2
‖F ′(θt−1)‖22

= − t− 1

2L
‖F ′(θt−1)‖22 6 0,

which leads to t[F (θt) − F (η∗)] 6 Vt(θt) 6 V0(θ0) = L
2 ‖θ0 − η∗‖22, and thus the desired

bound F (θt)− F (η∗) 6 L
2t‖θ0 − η∗‖22.

This proof is mysterious on purpose: the choice of Lyapunov function seems arbi-
trary at first, but all inequalities lead to nice cancellations. These proofs are sometimes
hard to design. For an interesting line of work trying to automate these proofs, see
https://francisbach.com/computer-aided-analyses/, and see exercises 5.12 and 5.13 for
simpler more direct proofs.

Exercise 5.12 (Alternative convergence proof - I) Consider an L-smooth convex
function with a global minimizer η∗, and GD with step size γt = 1/L:

• Using proposition 5.4, show that ‖θt−η∗‖22 6 ‖θt−1−η∗‖22− 1
LF

′(θt−1)⊤(θt−1−η∗).

• Show that F (θt) 6 F (θt−1).

• Using a telescoping sum, show that F (θt)− F (η∗) 6 L
t+1‖θ0 − η∗‖22.

Exercise 5.13 (Alternative convergence proof - II (�)) Consider an L-smooth con-
vex function with a global minimizer η∗, and GD with step size γt = 1/L:

https://francisbach.com/computer-aided-analyses/


126 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

• Show that ‖θt − η∗‖22 6 ‖θt−1 − η∗‖22 for all t > 1.

• Show that F (θt) 6 F (θt−1)− 1
2L‖F ′(θt−1)‖22 for all t > 1.

• Denoting ∆t = F (θt)−F (η∗), show that ∆t 6 ∆t−1− 1
2L‖θ0−η∗‖2

2
∆2
t−1 for all t > 1.

Conclude that ∆t 6
2L
t+4‖θ0 − η∗‖22.

Early-stopping for machine learning (��). An inspection of the proof of proposi-
tion 5.5 shows that throughout, a minimizer η∗ can be replaced by any η ∈ Rd, leading
to (for the step size γ = 1/L):

t[F (θt)− F (η)] +
L

2
‖θt − η‖22 6

L

2
‖θ0 − η‖22. (5.14)

When F (θ) = R̂(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤ϕ(xi)), for a smooth loss function (with con-
stant G2), for linear predictions with feature ℓ2-norms smaller than R, we have L 6 G2R

2.
Moreover, if the loss is nonnegative, less than G0 at zero predictions, and also Lipschitz-
continuous (with constant G1), such as the logistic loss, we showed in section 4.5.4 that
for any D,

E

[
sup

‖θ‖26D

{
R(θ)− R̂(θ)

}]
6

2G1RD√
n

. (5.15)

Then from equation (5.14), assuming that we initialize with θ0 = 0, we get for η = 0,
G2R

2

2 ‖θt‖22 6 tG0; that is, ‖θt‖2 6
(

2G0

G2R2 t
)1/2

. This leads to for any η ∈ Rd, using
equation (5.15):

E
[
R(θt)

]
6 R(η) + E

[
R̂(θt)− R̂(η)

]
+

2G1R√
n

( 2G0

G2R2
t
)1/2

6 R(η) +
G2R

2

2t
‖η‖22 +

2
√

2G1G
1/2
0

G
1/2
2

√
t√
n
,

showing that if t = o(n) (we do not take too many steps), the testing error is controlled.
In particular, if θ∗ is a minimizer of the expected risk R, then with t =

√
n, we obtain

E
[
R(θt)

]
− R(θ∗) = O(n−1/4). This bound with early-stopping of GD is not as good as

O(n−1/2), which we will obtain through explicit regularization at the end of section 5.3.
Note that early-stopped SGD will also lead to a bound in O(n−1/2) (at a much cheaper
computational cost). We will revisit early-stopping of batch algorithms when we describe
boosting procedures in section 10.3.

5.2.5 Beyond Gradient Descent (�)

While GD is the simplest algorithm with a simple analysis, there are multiple extensions
that we will only briefly mention here (see more details by Nesterov, 2004, 2018).



5.2. GRADIENT DESCENT 127

Nesterov acceleration. For strongly convex functions, a simple modification of GD
allows for obtaining better convergence rates. The algorithm is as follows and is based
on updating the following two iterates:

θt = ηt−1 −
1

L
g′(ηt−1) (5.16)

ηt = θt +
1−

√
µ/L

1 +
√
µ/L

(θt − θt−1). (5.17)

The convergence rate is then F (θt)−F (η∗) 6 L‖θ0 − η∗‖22(1−
√
µ/L)t, which is equal to

L‖θ0 − η∗‖22(1−1/
√
κ)t; that is, the characteristic time to convergence goes from κ to

√
κ.

If κ is large (typically of order
√
n or n for machine learning), the gains are substantial.

In practice, this leads to significant improvements. See a detailed description and many
extensions by d’Aspremont et al. (2021).

For convex functions, we need the extrapolation step to depend on t as follows:

θt = ηt−1 −
1

L
F ′(ηt−1) (5.18)

ηt = θt +
t− 1

t+ 2
(θt − θt−1). (5.19)

This simple modification dates back to Nesterov (1983) and leads to the following conver-

gence rate F (θt)−F (η∗) 6
2L‖θ0−η∗‖2

2

(t+1)2 . See exercises 5.14 and 5.15, as well as d’Aspremont

et al. (2021) for more details.

Moreover, the last two rates are known to be optimal for the considered problems.
For algorithms that access gradients and combine them linearly to select a new query
point, it is impossible to have better dimension-independent rates. See Nesterov (2013)
and chapter 15 for more details.

Exercise 5.14 (��) For the updates in equations (5.16) and (5.17), show that for the

Lyapunov function V (θ, η) = f(θ) − f(η∗) + µ
2

∥∥θ − η∗ + (1 +
√
L/µ)(η − θ)

∥∥2
2
, then we

have V (θt, ηt) 6 (1 −
√
µ/L)V (θt−1, ηt−1). Show that this implies a convergence rate

proportional to (1−
√
µ/L)t.

Exercise 5.15 (��) For the updates in equations (5.18) and (5.19), show that for the

Lyapunov function Vt(θ, η) =
(
t+1
2

)2[
f(θ) − f(η∗)

]
+ L

2

∥∥η − η∗ + t
2 (η − θ)

∥∥2

2
, then we

have Vt(θt, ηt) 6 Vt−1(θt−1, ηt−1). Show that this implies a convergence rate proportional
to 1/t2.

Newton method. Given θt−1, the Newton method minimizes the second-order Taylor
expansion around θt−1 (or, equivalently, finds a zero of F ′ by using a first-order Taylor
expansion of F ′ around θt−1):

F (θt−1) + F ′(θt−1)⊤(θ − θt−1) +
1

2
(θ − θt−1)⊤F ′′(θt−1)⊤(θ − θt−1).



128 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

The gradient of this quadratic function is F ′(θt−1) + F ′′(θt−1)⊤(θ− θt−1), and setting it
to zero leads to θt = θt−1 − F ′′(θt−1)−1F ′(θt−1), which is an expensive iteration, as the
running-time complexity is O(d3) in general for solving the linear system. It leads to local
quadratic convergence: if ‖θt−1 − θ∗‖2 small enough, for some constant C, one can show
(C‖θt − θ∗‖2) 6 (C‖θt−1 − θ∗‖2)2. See Boyd and Vandenberghe (2004) for more details
and conditions for global convergence, in particular through the use of self-concordance,
which is a property that relates third- and second-order derivatives.

△! The term “quadratic” is sometimes confusing and corresponds to a number of signif-
icant digits that doubles at each iteration.

Note that for machine learning problems, quadratic convergence may be overkill com-
pared to the computational complexity of each iteration since cost functions are averages
of n terms and naturally have some uncertainty of order O(1/

√
n).

Exercise 5.16 (�) Assume that function F is µ-strongly convex, twice-differentiable,
and such that the Hessian is Lipschitz-continuous: ‖f ′′(θ)− f ′′(η)‖op 6M‖θ− η‖2. Us-
ing Taylor’s formula with an integral remainder, show that for the iterates of Newton’s
method, ‖∇F (θt)‖2 6 M

2µ2 ‖∇F (θt−1)‖22. Show that this implies local quadratic conver-
gence.

Proximal gradient descent (�). Many optimization problems are said to be “com-
posite”; that is, the objective function F is the sum of a smooth function G and a
nonsmooth function H (such as a norm). It turns out that a simple modification of GD
allows us to benefit from the fast convergence rates of smooth optimization (compared to
the slower rates for nonsmooth optimization that we would obtain from the subgradient
method described in section 5.3).

For this, we need to first see GD as a proximal method. Indeed, one may see the
iteration θt = θt−1 − 1

LG
′(θt−1) as

θt = arg min
θ∈Rd

G(θt−1) + (θ − θt−1)⊤G′(θt−1) +
L

2
‖θ − θt−1‖22,

where, for a L-smooth function G, the objective function given here is an upper bound
of G(θ) that is tight at θt−1 (see equation (5.10)).

While this reformulation does not bring much for GD, we can extend this to the
composite problem and consider the following iteration, where H is left as is :

θt = arg min
θ∈Rd

G(θt−1) + (θ − θt−1)⊤G′(θt−1) +
L

2
‖θ − θt−1‖22 +H(θ). (5.20)

It turns out that the convergence rates for G+H are the same as smooth optimization,
with potential acceleration (Nesterov, 2013; Beck and Teboulle, 2009); see a proof in
exercise 5.17.

The crux is to be able to compute the proximal update in equation (5.20); that is,
minimize with respect to θ functions of the form L

2 ‖θ − η‖22 + H(θ). When H is the



5.2. GRADIENT DESCENT 129

indicator function of a convex set (which is equal to 0 inside the set, and +∞ otherwise),
we get projected GD. When H is the ℓ1-norm (i.e., H = λ‖ · ‖1), this can be shown to
be a soft-thresholding step, as for each coordinate θi = (|ηi| − λ/L)+

ηi
|ηi| (the proof is

left as an exercise). See applications to model selection and sparsity-inducing norms in
chapter 8.

Exercise 5.17 (Convergence of proximal gradient method) Consider a convex L-
smooth function G and a convex function H defined on Rd. We consider the update in
equation (5.20) and a minimizer η∗ of G+H.

• Show that G(θt) 6 G(θt−1) +G′(θt−1)⊤(θt − θt−1) + L
2 ‖θt − θt−1‖22.

• Show that G(θt−1) 6 G(η∗) +G′(θt−1)⊤(θt−1 − η∗).

• Show that H(θt) 6 H(η∗) + (Lθt−1 − Lθt −G′(θt−1))⊤(θt − η∗).

• Deduce that G(θt) +H(θt) 6 G(η∗) +H(η∗) + L
2 ‖θt−1 − η∗‖22 − L

2 ‖θt − η∗‖22.
• Conclude that for t > 1, G(θt) +H(θt)−

[
G(η∗) +H(η∗)

]
6 L

2t‖θ0 − η∗‖22.

Preconditioning (�). The convergence rate of GD depends crucially on the condition
number κ, which is not invariant under linear rescaling of the problem. That is, if we
equivalently aim to minimize G(θ̃) = F (Aθ̃) for some invertible matrix A ∈ Rd×d and a
twice-differentiable function F , the gradient of G is G′(θ̃) = A⊤F ′(Aθ̃), and thus GD on
function G can be written as θ̃t = θ̃t−1 − γG′(θ̃) = θ̃t−1 − γA⊤F ′(Aθ̃t−1), which can be
rewritten as θt = θt−1 − γAA⊤F ′(θt−1) with the change of variable θ = Aθ̃. This is thus
equivalent to premultiplying the gradient of F by the positive-definite matrix AA⊤.

This will be advantageous when the condition number of G is smaller than that of F .
For example, for a quadratic function F with constant Hessian matrix H ∈ Rd×d, tak-
ing A as an inverse square root of H leads to the minimal possible value of the condition
number, and thus the preconditioned gradient iteration (here, equal to the Newton step)
converges in one iteration. Such a value of A optimizes the condition number but is not
computationally efficient, and various conditioners can be used in practice (for functions
with varying Hessians), based on diagonal approximations of the Hessian, random pro-
jections (Martinsson and Tropp, 2020), or incomplete Cholesky factorizations (Golub and
Loan, 1996). Such preconditioning is also useful in nonsmooth situations (see section 5.4.2
in the context of SGD).

5.2.6 Nonconvex Objective Functions (�)

For smooth, potentially nonconvex objective functions, the best that one can hope for
is to converge to a stationary point θ such that F ′(θ) = 0. The proof that follows
provides the weaker result that at least one iterate has a small gradient. Indeed, using
the same Taylor expansion as in the convex case (which is still valid), we get, using the
L-smoothness of F ,

F (θt) 6 F (θt−1)− 1

2L
‖F ′(θt−1)‖22,



130 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

leading to, summing these inequalities for all iterations between 1 and t,

1

2Lt

t∑

s=1

‖F ′(θs−1)‖22 6
F (θ0)− F (θt)

t
6
F (θ0)− infη∈Rd F (η)

t
.

Thus, there is one s in {0, . . . , t − 1} for which ‖F ′(θs)‖22 6 O(1/t). Without further
assumptions, this does not imply that any of the iterates is close to a stationary point.
See an extension of this proof for SGD in exercise 5.30.

5.3 Gradient Methods on Nonsmooth Problems

We now relax our assumptions and only require Lipschitz continuity in addition to con-
vexity. The rates will be slower, but extending to stochastic gradients will be easier.

Definition 5.4 (Lipschitz-continuous function) Function F : Rd → R is said to be
B-Lipschitz-continuous if and only if

|F (η)− F (θ)| 6 B‖η − θ‖2, ∀θ, η ∈ R
d.

This setting is usually referred to as nonsmooth optimization.

Exercise 5.18 Show that if F is differentiable, B-Lipschitz-continuity is equivalent to
the assumption ‖F ′(θ)‖2 6 B, ∀θ ∈ Rd.

From gradients to subgradients. We can apply nonsmooth optimization to objective
functions that are not differentiable (such as the hinge loss from section 4.1.2). For convex
Lipschitz-continuous objectives, one can show that the function is almost everywhere
differentiable (see, e.g., Nekvinda and Zaj́ıček, 1988). In points where it is not, one can
define the set of slopes of lower-bounding tangents as the subdifferential and any element
of it as a subgradient. That is, we can define the subdifferential as (see the illustration
that follows):

∂F (θ) =
{
z ∈ R

d, ∀η ∈ R
d, F (η) > F (θ) + z⊤(η − θ)

}
.

η

F (η)

θ

F (θ) + z⊤(η − θ)



5.3. GRADIENT METHODS ON NONSMOOTH PROBLEMS 131

For a convex function defined on Rd, the subdifferential happens to be a nonempty
convex set at all points θ. Moreover, when F is differentiable with gradient F ′(θ), the
subdifferential is reduced to a point; that is, ∂F (θ) = {F ′(θ)}. For example, the absolute
value θ 7→ |θ| has a subdifferential equal to [−1, 1] at zero. See more details in Rockafellar
(1997).

The GD iteration is then meant as using any subgradient z ∈ ∂F (θt−1) instead of
F ′(θt−1), for which we will only need that the function is above the tangent defined by
this subgradient. The method is then often referred to as the “subgradient method” (it
is not a descent method anymore, i.e., the function values may increase occasionally).

Exercise 5.19 Compute the subdifferential of θ 7→ |θ| and θ 7→ (1− yθ⊤x)+ for the label
y ∈ {−1, 1} and the input x ∈ Rd.

Convergence rate of the subgradient method. We can prove convergence of the
GD algorithm, now with a decaying step size and a slower rate than for smooth functions.

△! As with SGD in the next section, and as opposed to GD for smooth functions in
section 5.2, the objective function for the subgradient method for nonsmooth functions
may not decrease at every iteration.

Proposition 5.6 (Convergence of the subgradient method) Assume that F is con-
vex and B-Lipschitz-continuous, and admits a minimizer η∗ that satisfies ‖η∗−θ0‖2 6 D.
By choosing γt = D

B
√
t
, the iterates (θt)t>0 of GD on F satisfy

min
06s6t−1

{
F (θs)− F (η∗)

}
6 DB

2 + log(t)

2
√
t

. (5.21)

Proof We look at how θt approaches η∗; that is, we try to use ‖θt− η∗‖22 as a Lyapunov
function. We have

‖θt − η∗‖22 = ‖θt−1 − γtF ′(θt−1)− η∗‖22
= ‖θt−1 − η∗‖22 − 2γtF

′(θt−1)⊤(θt−1 − η∗) + γ2t ‖F ′(θt−1)‖22.

Combining this with the convexity inequality F (θt−1) − F (η∗) 6 F ′(θt−1)⊤(θt−1 − η∗)
from equation (5.7), using the boundedness of the gradients (i.e., ‖F ′(θt−1)‖22 6 B2), it
follows that

‖θt − η∗‖22 6 ‖θt−1 − η∗‖22 − 2γt[F (θt−1)− F (η∗)] + γ2tB
2.

We are in a situation where the Lyapunov function θ 7→ ‖θ − η∗‖22 is not decreasing
along iterations because of the term γ2tB

2. It is then classical to isolate the negative term
−2γt[F (θt−1)−F (η∗)] and sum inequalities. Thus, by isolating the distance to optimum
in function values, we get

γt(F (θt−1)− F (η∗)) 6
1

2

(
‖θt−1 − η∗‖22 − ‖θt − η∗‖22

)
+

1

2
γ2tB

2. (5.22)



132 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

It is sufficient to sum these inequalities to get (in fact, for any η∗ ∈ Rd, not only the
minimizer)

1∑t
s=1 γs

t∑

s=1

γs (F (θs−1)− F (η∗)) 6
‖θ0 − η∗‖22
2
∑t
s=1 γs

+B2

∑t
s=1 γ

2
s

2
∑t
s=1 γs

.

As a weighted average, the left side is larger than min06s6t−1{F (θs)− F (η∗)}, and also

larger than F (θ̄t)− F (η∗), where θ̄t = (
∑t

s=1 γsθs−1)/(
∑t
s=1 γs) by Jensen’s inequality.

The upper bound goes to 0 if
∑t
s=1 γs goes to +∞ (to forget the initial condition)

and γt → 0 (to converge to the global optimum). Let us choose γs = τ/
√
s for some

τ > 0. By using the series-integral comparisons that follow, we get the bound

min
06s6t−1

{
F (θs)− F (η∗)

}
6

1

2
√
t

(D2

τ
+ τB2(1 + log(t))

)
.

We choose τ = D/B (which is suggested by optimizing the previous bound without
the logarithmic term), which leads to the result. In the proof, we used the inequality∑t

s=1
1√
s
>

∑t
s=1

1√
t

=
√
t, and the following series-integral comparisons for decreasing

functions:
∑t

s=1
1
s = 1 +

∑t
s=2

1
s 6 1 +

∫ t
1
ds
s = 1 + log(t).

The proof scheme given here is very flexible. It can be extended in the following
directions:

• There is no need to know in advance an upper bound D on the distance to optimum;
we then get, with an arbitraryD with the same step size γt = D

B
√
t
, a rate of the form

BD
2
√
t

(‖θ0−η∗‖2
2

D2 +(1+log(t))
)
. Moreover, a slightly modified version of the subgradient

method removes the need to know the Lipschitz constant. See exercise 5.20.

Exercise 5.20 Consider the iteration θt = θt−1 − γ′
t

‖F ′(θt−1)‖2
F ′(θt−1). Show that

with the step size γ′t = D/
√
t (independent of B), we get the following guarantee:

min06s6t−1 F (θs)− F (η∗) 6 DB 2+log(t)

2
√
t

.

• The algorithm applies to constrained minimization over a convex set by insert-
ing a projection step at each iteration (the proof, which uses the contractivity of
orthogonal projections, is essentially the same; see exercise 5.21).

Exercise 5.21 Let K ⊂ Rd be a convex closed set, and denote as ΠK(θ) the orthog-
onal projection of θ onto K, defined as ΠK(θ) = arg minη∈K ‖η − θ‖22. Show that
function ΠK is contractive; that is, for all θ, η ∈ Rd, ‖ΠK(θ)−ΠK(η)‖2 6 ‖θ−η‖2.
For the algorithm θt = ΠK(θt−1 − γtF ′(θt−1)), and with η∗ being a minimizer of F
on K, show that the guarantee of proposition 5.6 still holds.

• The algorithm applies to nondifferentiable convex and Lipschitz objective functions
(using subgradients; i.e., any vector satisfying equation (5.6) in place of F ′(θt)).



5.3. GRADIENT METHODS ON NONSMOOTH PROBLEMS 133

• The algorithm can be applied to “non-Euclidean geometries,” where we consider
bounds on the iterates or the gradient with different quantities, such as Bregman
divergences. This can be done using the “mirror descent” framework, and for
instance, can be applied to obtain multiplicative updates (see, e.g., Juditsky and
Nemirovski, 2011a,b; Bubeck, 2015). See more details in the online and stochastic
cases in section 11.1.3.

Exercise 5.22 (�) Let F : Rd → R be a differentiable function, and ψ : Rd → R

a strictly convex function.

• Show that the minimizer of F (θ) + F ′(θ)⊤(η − θ) + 1
2γ ‖η − θ‖22 is equal to

η = θ − γF ′(θ).

• Show that the Bregman divergence Dψ(η, θ), defined as Dψ(η, θ) = ψ(η) −
ψ(θ) − ψ′(θ)⊤(η − θ), is nonnegative and equal to zero if and only if η = θ.

• Show that the minimizer of F (θ) +F ′(θ)⊤(η− θ) + 1
γDψ(η, θ) satisfies ψ′(η) =

ψ′(θ) − γF ′(θ). Show that the same conclusion holds if ψ is only defined on
an open convex set K ⊂ Rd, and the gradient ψ′ is a bijection from K to Rd.

• Provide an explicit form of the resulting algorithm when ψ(θ) =
∑d

i=1 θi log θi.

• Often, the uniformly averaged iterate is used, such as 1
t

∑t−1
s=0 θs. Convergence rates

(without the log t factor) can be obtained with a slightly more involved proof using
the Abel summation formula (see also section 11.1.1).

Exercise 5.23 (�) Consider the same assumptions as exercise 5.21 and the same
algorithm with orthogonal projections. With D being the diameter of K, show that
for the average iterate θ̄t = 1

t

∑t−1
s=0 θs, we have F (θ̄t)− F (θ∗) 6 3BD

2
√
t
.

• The algorithm with the decaying step size γt is an “anytime” algorithm; that is,
it can be stopped at any time t, and the bound in equation (5.21) then applies.
Computations are often easier when considering a constant step size γ that depends
on the number of iterations T that the user wishes to perform, with T being usually
referred to as the “horizon.” Starting from equation (5.22), we get the bound

1

T

T∑

t=1

F (θt−1)− F (θ∗) 6
D2

2γT
+
γB2

2
, (5.23)

where the optimal γ can be obtained as γ = D/(B
√
T ) and there is an optimized

rate of DB/
√
T . We gain on the logarithmic factor, but we no longer have an

anytime algorithm (since the bound applies only at time T ). This also applies to
SGD in section 5.4. In these situations, a “doubling trick” can be used, leading to
an anytime algorithm with the same guarantee but undesirable practical behavior
as the algorithm makes substantial changes at each iteration that is a power of 2
(see exercise 5.24).

• Stochastic gradients can be used, as presented in section 5.4 (one interpretation is
that the subgradient method is so slow that it is robust to noisy gradients).



134 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

• The proof technique used for proposition 5.6 will be used several times in this book,
for SGD in section 5.4 as well as for online learning in section 11.1.

Exercise 5.24 (Doubling trick for subgradient method) Consider an algorithm

that successively applies the SGD iteration with step size γ = D/(B
√

2k) during 2k itera-
tions, for k = 0, 1, . . . . Show that after t subgradient iterations, the observed best expected
value of F is less than a constant times DB/

√
t.

Exercise 5.25 Compute all constants for ℓ2-regularized logistic regression and the sup-
port vector machine (SVM) with linear predictors (section 4.1).

Machine learning with linear predictions and Lipschitz-continuous losses. For
specialized machine learning problems, we can now close the loop on the discussion out-
lined in section 5.1 regarding the need to take into account the optimization error on top
of the deviations between empirical means and expectations (which correspond to the es-
timation error for the minimizer of the empirical risk). For convex Lipschitz-continuous
losses (with constant G) such as the logistic loss or the hinge loss, for linear predictions
with feature ℓ2-norms smaller than R, a parameter bounded in the ℓ2-norm by D, we
showed in section 4.5.4 that the estimation error for the empirical risk minimizer was
upper-bounded by a constant times GRD/

√
n. From equation (5.23), the optimization

error after t iterations of the subgradient method is upper-bounded by a constant times
GRD/

√
t since the Lipschitz constant of the objective function is B 6 GR.

Adding these two bounds, there is no need to have the number of iterations t larger
than the number of observations n. However, since each full gradient computation requires
computing n gradients for the individual loss functions associated with a single data point,
the total number of such gradient computations is tn ≈ n2, which is not scalable when n
is large. We now show how SGD can turn this number to n with the same upper bound
on the generalization error.

5.4 Stochastic Gradient Descent

For machine learning problems, where F (θ) = 1
n

∑n
i=1 ℓ(yi, fθ(xi)) + Ω(θ), at each iter-

ation, the GD algorithm requires computing a “full” gradient F ′(θt−1), which could be
costly, as it requires accessing the entire dataset (all n pairs of observations). An alterna-
tive is to instead only compute unbiased stochastic estimations of the gradient gt(θt−1);
that is, such that

E[gt(θt−1)|θt−1] = F ′(θt−1), (5.24)

which could be much faster to compute, in particular by accessing fewer observations.

△! Note that we need to condition over θt−1 because θt−1 encapsulates all the randomness
due to past iterations, and we only require fresh randomness at time t.

△! Somewhat surprisingly, this unbiasedness does not need to be coupled with a vanishing
variance: while there are always errors in the gradient, the use of a decreasing step size will



5.4. STOCHASTIC GRADIENT DESCENT 135

ensure convergence. If the noise in the gradient is not unbiased, then we get convergence
only if the noise magnitudes go to zero (see, e.g., d’Aspremont, 2008; Schmidt et al., 2011
and references therein).

This leads to algorithm 5.2.

Algorithm 5.2 (Stochastic gradient descent) Choose a step-size sequence (γt)t>0,
pick θ0 ∈ Rd, and for t > 1, let

θt = θt−1 − γtgt(θt−1),

where gt(θt−1) satisfies equation (5.24).

SGD in machine learning. There are two ways to use SGD for supervised machine
learning:

• Empirical risk minimization: If F (θ) = 1
n

∑n
i=1 ℓ(yi, fθ(xi)) then at iteration t,

we can choose uniformly at random i(t) ∈ {1, . . . , n} and define gt as the gradient
of θ 7→ ℓ(yi(t), fθ(xi(t))). Here, the randomness comes from the random choice of
indices.

There are “mini-batch” variants where, at each iteration, the gradient is averaged
over a random subset of the indices (we then reduce the variance of the gradient
estimate, but we use more gradients, and thus the running time increases; see
exercise 5.27). We then converge to a minimizer η∗ of the empirical risk.

Note here that since we sample with replacement, a given function will be selected
several times, even within n iterations. Sampling without replacement can also
be studied, but its analysis is more involved (see, e.g., Nagaraj et al., 2019, and
references therein).

• Expected risk minimization: If F (θ) = E[ℓ(y, fθ(x))] is the expected nonob-
servable risk, then at iteration t, we can take a fresh sample (xt, yt) and define gt
as the gradient of θ 7→ ℓ(yt, fθ(xt)), for which, if we swap the orders of expectation
and differentiation, we get unbiasedness. Note here that to preserve unbiasedness,
only a single pass is allowed (otherwise, this would create dependencies that would
break it) and the randomness comes from the observations (xt, yt) themselves.

Here, we directly minimize the generalization risk. The counterpart is that if we
have only n samples, then we can run only n SGD iterations, and when n grows,
the iterates will converge to a minimizer θ∗ of the expected risk.

Note that in practice, multiple passes over the data (i.e., using each observation
multiple times) often lead to better performance. To avoid overfitting, either a
regularization term is added to the empirical risk or the SGD algorithm is stopped
before its convergence (and typically when some validation risk stops decreasing),
which is referred to as regularization by “early-stopping.”

We can study these two situations using the latter one by considering the empirical
risk as the expectation with respect to the empirical distribution of the data (and we



136 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

thus use the notation θ∗ to refer to the global minimizer).

△! SGD is not a descent method: the function values often go up, but they go
down “on average.” See, for example, an illustration in figure 5.2.

Under the same usual assumptions on the objective functions, we now study SGD
with the following assumptions:

• (H-1) unbiased gradient: E[gt(θt−1)|θt−1] = F ′(θt−1), ∀t > 1

• (H-2) bounded gradient: ‖gt(θt−1)‖22 6 B2 almost surely, ∀t > 1

Assumption (H-2) could be replaced by other regularity conditions (e.g., Lipschitz-
continuous gradients; see exercise 5.28 for SGD for smooth functions). Assumption (H-1)
is crucial and is often obtained by considering independent gradient functions gt, for
which we have E[gt(·)] = F ′(·).
Proposition 5.7 (Convergence of SGD) Assume that F is convex, is B-Lipschitz,
and admits a minimizer θ∗ that satisfies ‖θ∗−θ0‖2 6 D. Further, assume that the stochas-
tic gradients satisfy assumptions (H-1) and (H-2). Then, choosing γt = (D/B)/

√
t, the

iterates (θt)t>0 of SGD on F satisfy

E
[
F (θ̄t)− F (θ∗)

]
6 DB

2 + log(t)

2
√
t

,

where θ̄t = (
∑t

s=1 γsθs−1)/(
∑t
s=1 γs).

We state our bound in terms of the average iterates because the cost of finding the best
iterate could be higher than that of evaluating a stochastic gradient (since we cannot
compute F in general).

Proof We follow essentially the same proof as in the deterministic case (proposition 5.6),
adding some expectations at well-chosen places. We have

E
[
‖θt − θ∗‖22

]
= E

[
‖θt−1 − γtgt(θt−1)− θ∗‖22

]

= E
[
‖θt−1 − θ∗‖22

]
− 2γtE

[
gt(θt−1)⊤(θt−1 − θ∗)

]
+ γ2t E

[
‖gt(θt−1)‖22

]
.

We can then compute the expectation of the middle term as

E
[
gt(θt−1)⊤(θt−1 − θ∗)

]
= E

[
E
[
gt(θt−1)⊤(θt−1 − θ∗)

∣∣θt−1

]]

= E
[
E
[
gt(θt−1)

∣∣θt−1

]⊤
(θt−1 − θ∗)

]
= E

[
F ′(θt−1)⊤(θt−1 − θ∗)

]
,

where we have crucially used the unbiasedness assumption (H-1). This leads to

E
[
‖θt − θ∗‖22

]
6 E

[
‖θt−1 − θ∗‖22

]
− 2γtE

[
F ′(θt−1)⊤(θt−1 − θ∗)

]
+ γ2tB

2.

Thus, combining the last inequality with the convexity inequality from equation (5.7)
(i.e., F (θt−1)− F (θ∗) 6 F ′(θt−1)⊤(θt−1 − θ∗)), we get

γtE[F (θt−1)− F (θ∗)] 6
1

2

(
E
[
‖θt−1 − θ∗‖22

]
− E

[
‖θt − θ∗‖22

])
+

1

2
γ2tB

2. (5.25)



5.4. STOCHASTIC GRADIENT DESCENT 137

Except for the expectations, this is the same bound as equation (5.22), so we can conclude
as in the proof of proposition 5.6.

We can make the following observations:

• Averaging of iterates is often performed after a certain number of iterations (e.g.,
one pass over the data when doing multiple passes): having such a “burn-in” period
speeds up the algorithms by forgetting initial conditions faster.

• Many authors consider the projected version of the algorithm, where after the gra-
dient step, we orthogonally project onto the ball of radius D and center θ0. The
bound is then exactly the same.

• As with the subgradient method in equation (5.23), we can consider a constant step
size γ to obtain

1

T

T∑

t=1

E
[
F (θt−1)

]
− F (θ∗) 6

D2

2γT
+
γB2

2
,

from which we get E
[
F (θ̄t)

]
− F (θ∗) 6 D2

2γT + γB2

2 = DB√
T

for the specific choice

γ = D/(B
√
T ), which depends on the horizon T , and for the uniformly averaged

iterate θ̄t.

• The result that we obtain, when applied to a single-pass SGD, is a generalization
bound; that is, after n iterations, we have an excess risk proportional to 1/

√
n,

corresponding to the excess risk compared to the best predictor fθ.

This is to be compared to using results from chapter 4 (uniform deviation bounds)
and nonstochastic GD. It turns out that the estimation error due to having n
observations is exactly the same as the generalization bound obtained by SGD
(see section 4.5.4). Still, we need to add the estimation error of the empirical risk
minimizer on top of the optimization error proportional to 1/

√
t (with the same

constants). The bounds match if t = n; that is, we run n iterations of GD on the
empirical risk. This leads to a running time complexity of O(tnd) = O(n2d) instead
of O(nd) using SGD; hence the strong gains in using SGD.

△! We are still comparing upper bounds.

• The bound in O(BD/
√
t) is optimal for this class of problem. That is, as shown

by Agarwal et al. (2012), among all algorithms that can query stochastic gradi-
ents, having a better convergence rate (up to some constants) is impossible. See
section 15.3 for a detailed proof.

• As opposed to the deterministic case, the use of smoothness does not lead to sig-
nificantly better results (see exercise 5.28).

• An inspection of the proof shows that we can replace the almost sure bounds
‖gt(θt−1)‖22 6 B2 by bounds in expectation E

[
‖gt(θt−1)‖22

]
6 B2. For machine

learning problems with linear predictions where feature vectors have ℓ2-norms boun-
ded by R and a G-Lipschitz-continuous loss, the gradient gt(θt−1) is the gradient
of function θ 7→ ℓ(yt, ϕ(xt)

⊤θ) taken at θt−1, and thus its squared norm is less



138 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

than G2 · ‖ϕ(xt)‖22. An almost sure bound, therefore, is G2R2, while a bound in
expectation is G2 · E

[
‖ϕ(xt)‖22

]
, which is stronger.

• In section 11.1, we will extend the analysis of this section to online learning, where
the function that is optimized can change at every iteration, leading to guarantees
that are more robust to nonstationary problems.

• We can obtain a result in high probability, using an extension of Hoeffding’s in-
equality to “differences of martingales,” as shown in exercise 5.26 below.

Exercise 5.26 (High-probability bound for SGD (�)) Using the same assumptions
and notations as in proposition 5.7, we consider the projected SGD iteration: θt =
ΠD(θt−1 − γtgt), where ΠD is the orthogonal projection on the ℓ2-ball with center 0 and
radius D. Denoting zt = −γt(θt−1 − θ∗)⊤[gt − F ′(θt−1)], show that E[zt|Ft−1] = 0 and
|zt| 6 4γtBD almost surely, and

γt[F (θt−1)− F (θ∗)] 6
1

2

(
E
[
‖θt−1 − θ∗‖22

]
− E

[
‖θt − θ∗‖22

])
+

1

2
γ2tB

2 + zt.

Using Azuma’s inequality (see exercise 1.14), show that with probability at least 1 − δ,
then, for the weighted average θ̄t defined in proposition 5.7, for any step sizes γt:

F (θ̄t)− F (θ∗) 6
2D2

∑t
s=1 γs

+B2

∑t
s=1 γ

2
s

2
∑t
s=1 γs

+ 4BD

(∑t
s=1 γ

2
s

)1/2
∑t

s=1 γs

√
2 log

1

δ
,

and for a constant step size, γt = γ, F (θ̄t)− F (θ∗) 6 2D2

γT + γB2

2 + 4DB√
t

√
2 log 1

δ (for the

uniformly averaged iterate).

SGD or GD on the empirical risk? As seen previously, the number of iterations to
reach a given precision will be larger for SGD than for smooth deterministic GD, but with
a complexity that is typically n times faster. Thus, for high precision–that is, low values
of F (θ) − F (η∗) (which is not needed for machine learning)–the number of iterations
of SGD may become prohibitively large, and deterministic full GD could be preferred.
However, for low precision and large n, SGD is the method of choice (see also recent
improvements that allow exponential convergence with cheap iteration costs, described
in section 5.4.4).

In particular, as mentioned earlier, for the linear prediction case described at the
end of section 5.3, we obtain the exact same rate in proposition 5.7 as for nonstochastic
GD on the empirical risk. If sampling from the n observations with replacement, after
t = n steps, the sum of the optimization error and the estimation error of the empirical
risk minimizer is of the same order O(GRD/

√
n), with only n accesses to individual loss

gradients (instead of n2 with batch methods–thus, with a big improvement). Moreover,
with a single pass over the data, proposition 5.7 is directly a generalization performance
result with the same rate.

Exercise 5.27 (Minibatch SGD) Consider the mini-batch version of SGD, where at
every iteration, we replace gt(θt−1) by the average of m independent samples of stochastic



5.4. STOCHASTIC GRADIENT DESCENT 139

gradients at θt−1. Show that the convergence result of proposition 5.7 still holds.
(�) Which assumption on gradients would improve the convergence rate?

Exercise 5.28 (SGD for smooth functions (�)) Consider independent and identi-
cally distributed (i.i.d.) convex L-smooth random functions ft : R

d → R, t > 1, with
expectation F : Rd → R, which has a minimizer θ∗ ∈ Rd. Consider the SGD recursion
θt = θt−1−γtf ′

t(θt−1), with γt being a deterministic step-size sequence. Using co-coercivity
(proposition 5.4), show that

E
[
‖θt−θ∗‖22

]
6 E

[
‖θt−1−θ∗‖22

]
−2γt(1−γtL)E

[
F ′(θt−1)⊤(θt−1−θ∗)

]
+2γ2tE

[
‖f ′
t(θ∗)‖22

]
.

Extend the proof of proposition 5.7 to obtain an explicit rate in O(1/
√
t). (�) Show that

the minibatch version leads to an improvement in the rate (as opposed to the nonsmooth
case in exercise 5.27).

Exercise 5.29 (Nonuniform sampling (�)) Consider the function F : Rd × Z → R,
which is convex with respect to the first variable, with a subgradient F ′(θ, z) with respect
to the first variable that is bounded in the ℓ2-norm by a constant B(z) that depends on z.
Consider a distribution p on Z. We aim to minimize Ez∼p[F (θ, z)], but we sample from
a distribution q, with density dq/dp(z) with respect to p to get i.i.d. random zt, t > 1.
Consider the recursion θt = θt−1 − γ

dq/dp(zt)
F ′(θt−1, zt). Provide a convergence rate for

this algorithm and show how a good choice of q leads to significant improvements over
the choice q = p when B(z) is far from uniform in z. Apply this result to the SVM when
applying SGD to the empirical risk.

Exercise 5.30 (SGD for nonconvex functions) Consider an L-smooth potentially
nonconvex function F , and the SGD recursion with constant step size γ, with unbiased
and bounded gradient estimates (e.g., assumptions (H-1) and (H-2)).

• Show that E
[
F (θt)

]
6 E

[
F (θt−1)

]
− γE

[
‖F ′(θt−1)‖22

]
+ LB2γ2

2 .

• Show that 1
t

∑t
s=1 E

[
‖F ′(θs−1)‖22

]
6 1

γt

[
F (θ0)− infη∈Rd F (η)

]
+ LB2γ

2 .

5.4.1 Strongly Convex Problems (�)

We consider the regularized problem G(θ) = F (θ) + µ
2 ‖θ‖22, with the same assumptions

(H-1) and (H-2) as before, and started at θ0 = 0. The SGD iteration is then, with gt(θt−1)
a stochastic subgradient of F at θt−1:

θt = θt−1 − γt
[
gt(θt−1) + µθt−1

]
. (5.26)

We then have an improved convergence rate in O(1/t) with a different decay for the step
size γt, in 1/t rather than 1/

√
t.

Proposition 5.8 (Convergence of SGD for strongly convex problems) Assume
that F is convex, is B-Lipschitz, and that F + µ

2 ‖ · ‖22 admits a necessarily unique min-
imizer θ∗. Assume that the stochastic gradient g satisfies assumptions (H-1) and (H-2).



140 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

Then, choosing γt = 1/(µt), the iterates (θt)t>0 of the SGD recursion from equation (5.26)
satisfy

E
[
G(θ̄t)−G(θ∗)

]
6

2B2(1 + log t)

µt
,

where θ̄t = 1
t

∑t
s=1 θs−1.

Proof The beginning of this proof is essentially the same as for convex problems, leading
to (with the new terms in blue):

E
[
‖θt − θ∗‖22

]
= E

[
‖θt−1 − γt(gt(θt−1)+µθt−1)− θ∗‖22

]

= E
[
‖θt−1 − θ∗‖22

]
−2γtE

[
(gt(θt−1)+µθt−1)⊤(θt−1−θ∗)

]

+γ2tE
[
‖gt(θt−1)+µθt−1‖22

]
.

From the iterations in equation (5.26), we see that θt = (1−γtµ)θt−1 +γtµ
[
− 1
µgt(θt−1)

]

is a convex combination of gradients divided by −µ, and thus, since all gradients are
bounded in norm by B, ‖gt(θt−1) + µθt−1‖22 is always less than 4B2. Therefore,

E
[
‖θt − θ∗‖22

]
6 E

[
‖θt−1 − θ∗‖22

]
− 2γtE

[
G′(θt−1)⊤(θt−1 − θ∗)

]
+ 4γ2tB

2.

Therefore, combining with the inequality coming from strong convexity (see equa-
tion (5.9)) G(θt−1)−G(θ∗)+µ

2 ‖θt−1 − θ∗‖22 6 G′(θt−1)⊤(θt−1 − θ∗), it follows

γtE[G(θt−1)−G(θ∗)] 6
1

2

(
(1−γtµ)E

[
‖θt−1 − θ∗‖22

]
− E

[
‖θt − θ∗‖22

])
+ 2γ2tB

2,

and thus, now using the specific step-size choice γt = 1/(µt):

E[G(θt−1)−G(θ∗)] 6
1

2

(
(γ−1
t − µ)E

[
‖θt−1 − θ∗‖22

]
− γ−1

t E
[
‖θt − θ∗‖22

])
+ 2γtB

2,

=
1

2

(
µ(t− 1)E

[
‖θt−1 − θ∗‖22

]
− µtE

[
‖θt − θ∗‖22

])
+

2B2

µt
.

Thus, we get a telescoping sum: summing between all indices between 1 and t, and using
the bound

∑t
s=1

1
s 6 1 + log t, we get the desired result.

We can make the following observations:

• For smooth problems, we can show a similar bound of the form O(κ/t). For
quadratic problems, constant step sizes can be used with averaging, leading to
improved convergence rates (Bach and Moulines, 2013). See exercise 5.31.

Exercise 5.31 (�) Consider the minimization of F (θ) = 1
2θ

⊤Hθ − c⊤θ, where
H ∈ Rd× is positive-definite (and thus invertible), and the recursion θt = θt−1 −
γ[F ′(θt−1) + εt], where all εt’s are independent, with zero mean and covariance
matrix equal to C. Compute explicitly E

[
F (θt) − F (θ∗)

]
, and provide an upper

bound of E
[
F (θ̄t)− F (θ∗)

]
, where θ̄t = 1

t

∑t−1
s=0 θs.



5.4. STOCHASTIC GRADIENT DESCENT 141

• The bound in O(B2/µt) is optimal for this class of problems. That is, as shown
by Agarwal et al. (2012), among all algorithms that can query stochastic gradi-
ents, having a better convergence rate (up to some constants) is impossible (see
section 15.3).

• We note that for the same regularized problem, we could use a step size proportional
to DB/

√
t and obtain a bound proportional to DB/

√
t, which looks worse than

B2/(µt) but can, in fact, be better when µ is very small.

Note also the loss of adaptivity: the step size now depends on the problem’s diffi-
culty (this was different for deterministic GD). See the experiments that follow for
illustrations.

• When applied in a single pass over the data, the resulting rate in O(B2/µn) is the
same, up to logarithmic terms, as the generalization bound for the minimizer of the
regularized empirical risk in proposition 4.6.

Exercise 5.32 With the same assumptions as proposition 5.8, show that with the step

size γt = 2
µ(t+1) , and with θ̄t = 2

t(t+1)

∑t
s=1 sθs−1, we have E

[
G(θ̄t)−G(θ∗)

]
6 8B2

µ(t+1) .

Exercise 5.33 Consider the minimization of F (θ) = E
[
‖θ − z‖22/2

]
from i.i.d. observa-

tions z1, . . . , zt. Show that the t-th iterate of SGD equals 1
t (z1 + · · ·+ zt).

Experiments. Here, we consider a simple binary classification problem with linear
predictors in dimension d = 40 (inputs generated from a Gaussian distribution, with
binary outputs obtained as the sign of a linear function with additive Gaussian noise),
with n = 400 observations, and observe features with the ℓ2-norm bounded by R. We
consider the hinge loss with a squared ℓ2-regularizer µ

2 ‖ · ‖22 (i.e., the SVM presented in
section 4.1.2). We measure the excess training objective. We consider two values of µ
and compare the two step sizes γt = 1/(R2

√
t) and γt = 1/(µt) in figure 5.2. We see that

for the larger value of µ (top plot), the strongly convex step size is better. This is not the
case for small µ (bottom plot). Note the strong variability for the step size γt = 1/(µt)
in early iterations.

These experiments highlight the danger of a step size equal to 1/(µt). In practice, it
is often preferable to use γt = 1/(B2

√
t+ µt), as shown in exercise 5.34.

Exercise 5.34 (��) With the same assumptions as in proposition 5.8, with step size
γt = 1/(B2

√
t+ µt), provide a convergence rate for the averaged iterate.

5.4.2 Adaptive Methods (�)

The discussion on preconditioning for GD on smooth functions at the end of section 5.2.5
can be adapted to stochastic gradient methods for nonsmooth problems. In this section,
we highlight the potential gains and give references for precise results. We focus on a
linear prediction problem with i.i.d. features bounded in the ℓ2-norm by R, and a convex
G-Lipschitz-continuous loss function, in the setting of proposition 5.7. For a constant



142 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

Figure 5.2. Comparison of step sizes for SGD for the SVM, for two values of the regular-
ization parameter µ (top: large µ = 10−1; bottom: small µ = 10−3). The performance is
measured with a single run (hence the variability) on the excess training objective (left:
regular plot; right: log-log plot).



5.4. STOCHASTIC GRADIENT DESCENT 143

step size γ, in the proof of proposition 5.7, we obtained an expected excess risk equal to,
starting from θ0 = 0,

1

2γt
‖θ∗‖22 +

γG2

2
tr[Σ],

where Σ = E[ϕ(x)ϕ(x)⊤ ] is the covariance matrix of the features. Optimizing over γ

leads to the overall rate of G‖θ∗‖2√
t

√
tr[Σ].

As done at the end of section 5.2.5, premultiplying each gradient by the matrix AA⊤

is equivalent to minimizing the expectation of ℓ(y, ϕ(x)⊤Aθ̃), which itself corresponds
to replacing the feature map ϕ by A⊤ϕ, and θ∗ by A−1θ∗. The complexity bound then
becomes

1

2γt
θ⊤∗ (AA⊤)−1θ∗ +

γG2

2
tr[ΣAA⊤].

Matrix M = (γAA⊤)−1, which is the inverse of the matrix multiplying the gradient in
the SGD iteration, can be optimized in the specific situation where we restrict matrix M
to be diagonal with diagonal m ∈ Rd. We then obtain the bound

1

2t
‖θ∗‖2∞ ·

d∑

j=1

mj +
G2

2

d∑

j=1

Σjj
mj

,

with optimal mj equal to Σ
1/2
jj G

√
t/‖θ∗‖∞ and an overall rate equal to G‖θ∗‖∞√

t

∑d
j=1 Σ

1/2
jj ,

which can be substantially smaller than the corresponding rate with uniform m, propor-

tional to G‖θ∗‖∞√
t

√
d
∑d

j=1 Σjj ; this is in particular the case when the Σjj ’s have hetero-

geneous values.

In practice, before running the learning algorithm, we can estimate the required ele-
ments of Σ, the noncentered covariance matrix of the features, and, more generally, the
covariance of the gradients. These quantities can be estimated online, leading to the
Adagrad (Duchi et al., 2011), or Adam (Kingma and Ba, 2014) algorithms, which come
with specific complexity bounds (see, e.g., Défossez et al., 2022).

5.4.3 Bias-Variance Trade-offs for Least-Squares (�)

In this section, we consider the least-squares learning problems studied in chapter 3; that
is, we assume that we have i.i.d. observations (xi, yi) ∈ X × R, for i > 1, assuming that
there is a feature map ϕ : X → Rd and θ∗ ∈ Rd such that yi = ϕ(xi)

⊤θ∗ + εi, where εi
has mean zero and variance σ2, and is independent of xi. The goal of this section is to
relate the performance of single-pass SGD to the regularized empirical risk minimization
studied in sections 3.3 and 3.6, and to study the impact of noise on SGD precisely.

The SGD recursion, often referred to as the “least-mean-squares (LMS)” recursion,
can be written as, with a constant step size:,

θt = θt−1 − γ(θ⊤t−1ϕ(xt)− yt)ϕ(xt) = θt−1 − γ(θ⊤t−1ϕ(xt)− θ⊤∗ ϕ(xt)− εt)ϕ(xt),



144 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

leading to

θt − θ∗ = (I − γϕ(xt)ϕ(xt)
⊤)(θt−1 − θ∗) + γεtϕ(xt). (5.27)

Thus, as in the deterministic case in section 5.2.1, we obtain a linear dynamical system,
this time with random coefficients.

Classical analysis. We can first use a similar proof as in previous sections; that is,
expanding equation (5.27),

‖θt − θ∗‖22 = ‖θt−1 − θ∗‖22 + ‖γϕ(xt)ϕ(xt)
⊤(θt−1 − θ∗)‖22

−2γ(θt−1 − θ∗)⊤ϕ(xt)ϕ(xt)
⊤(θt−1 − θ∗) + ‖γεtϕ(xt)‖22

+2γεtϕ(xt)
⊤(I − γϕ(xt)ϕ(xt)

⊤)(θt−1 − θ∗),

leading to, with Ft−1 the information up to time t−1 (generated by x1, y1, . . . , xt−1, yt−1),
and using that ‖ϕ(xt)‖22 6 R2 almost surely, and E

[
‖ϕ(xt)‖22ϕ(xt)ϕ(xt)

⊤] 4 R2Σ, for

Σ = E
[
ϕ(xt)ϕ(xt)

⊤]:

E
[
‖θt − θ∗‖22

∣∣Ft−1

]
6 ‖θt−1 − θ∗‖22 + (γ2R2 − 2γ)(θt−1 − θ∗)⊤Σ(θt−1 − θ∗) + γ2σ2R2.

This leads to, with F (θ) − F (θ∗) = 1
2 (θ − θ∗)⊤Σ(θ − θ∗), for γ 6 1/R2,

E
[
F (θt−1)− F (θ∗)

]
6

1

2γ

(
E
[
‖θt−1 − θ∗‖22

]
− E

[
‖θt − θ∗‖22

])
+
γσ2R2

2
,

and thus, for the average θ̄t = 1
t

∑t
s=1 θs−1, using Jensen’s inequality,

E
[
F (θ̄t)

]
− F (θ∗) 6

1

2γt
‖θ0 − θ∗‖22 +

γσ2R2

2
, (5.28)

which is a similar result to the nonsmooth case but with an explicit bias/variance de-
composition where the noise variance σ2 explicitly appears, as well as the norm of θ∗.
Note that it requires the step size to depend on the number of total iterations to obtain
convergence. When applied in a single pass over the data, we end up with a generalization
bound which is similar to the one for ridge regression in section 3.6, but now with an
efficient algorithm.

Exercise 5.35 (Weaker assumptions) Consider a joint distribution on (x, y) ∈ X×R,
and a feature map ϕ : X → Rd bounded by R in the ℓ2-norm. Denoting θ∗ a minimizer
of E

[
(y − ϕ(x)⊤θ)2

]
with respect to θ, show that the bound in equation (5.28) applies

with σ2 = E
[
(y − ϕ(x)⊤θ∗)2

]
.

However, for least-mean-squares, a finer analysis can be performed, explicitly allowing
constant step sizes and a clear relationship with generalization bounds for least-squares
regression outlined in chapter 3, which we present next.



5.4. STOCHASTIC GRADIENT DESCENT 145

Finer analysis of the LMS recursion (��). A detailed analysis of the LMS recursion
in equation (5.27) is out of the scope of this book. However, a simplified recursion with
essentially the same behavior can be analyzed with simple linear algebra tools. To obtain
this simplified recursion, we rewrite equation (5.27) as

θt − θ∗ = (I − γΣ)(θt−1 − θ∗) + γεtϕ(xt) + γ(Σ− ϕ(xt)ϕ(xt)
⊤)(θt−1 − θ∗),

which is the recursion of the expected risk, corresponding to the term (I−γΣ)(θt−1−θ∗),
plus additional stochastic terms with zero conditional mean. One of them, γεtϕ(xt) is
purely additive (i.e., it does not depend on θt−1) and has a constant nonzero variance,
while the other one, γ(Σ− ϕ(xt)ϕ(xt)

⊤)(θt−1 − θ∗) is multiplicative and has a variance
that will go to zero as iterates converge to θ∗. The simplified recursion ignores that term,
and we now study the recursion (started at η0 = θ0):

ηt − θ∗ = (I − γΣ)(ηt−1 − θ∗) + γεtϕ(xt), (5.29)

which also corresponds to replacing ϕ(xt)ϕ(xt)
⊤ in equation (5.27) by its expectation Σ.

We can then explicitly unroll the recursion as

ηt − θ∗ = (I − γΣ)t(η0 − θ∗) +

t∑

u=1

γεu(I − γΣ)t−uϕ(xu),

with two parts, one that only depends on the initialization (i.e., (I−γΣ)t(η0−θ∗)), which
is precisely the deterministic recursion from section 5.2.1, and which we call the “bias,”
and a part that depends on the noise variables εu, u = 1, . . . , t, which we refer to as the
“variance.” Assuming that these noise variables are independent of x, the two parts can
be considered totally independently when looking at expectations.

We then have, for the averaged iterates, using
∑t−1

v=0(I−γΣ)v = (γΣ)−1
[
I−(I−γΣ)t

]

several times,

η̄
(bias)
t − θ∗ =

1

t

t−1∑

v=0

(I − γΣ)v(η0 − θ∗) =
1

t
(γΣ)−1

[
I − (I − γΣ)t

]
(η0 − θ∗)

η̄
(var)
t − θ∗ =

1

t

t−1∑

v=1

v∑

u=1

γεu(I − γΣ)v−uϕ(xu) =
γ

t

t−1∑

u=1

t−1∑

v=u

(I − γΣ)v−uεuϕ(xu)

=
1

t

t−1∑

u=1

Σ−1
[
I − (I − γΣ)t−u

]
εuϕ(xu),

leading to, using γ 6 1
R2 (which implies I − γΣ < 0) for t > 0:

∥∥η̄(bias)t − θ∗
∥∥2
Σ

=
1

t2
(η0 − θ∗)⊤(γΣ)−2

[
I − (I − γΣ)t

]2
Σ(η0 − θ∗)

6
1

γ2t2
(η0 − θ∗)⊤Σ−1(η0 − θ∗),

E

[∥∥η̄(var)t − θ∗
∥∥2
Σ

]
=

σ2

t2

t−1∑

u=1

tr
[
Σ2Σ−2

[
I − (I − γΣ)t−u

]2]
6
σ2d

t
.



146 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

θ̄γ

θ0

θn

θ̄n

θ∗

Figure 5.3. The iterates of SGD form a Markov chain, which is homogeneous when the
step size γ is constant. It typically converges to a stationary distribution with expec-
tation θ̄γ , which happens to be the global minimum θ∗ for quadratic costs (and with a
deviation of γ2 in general). The nonaveraged iterates go from the initial condition θ0 to
the vicinity of θ̄γ , while the averaged iterates converge to that expectation θ̄γ .

We thus obtain two terms, the variance in σ2d
t , which exists because the optimal prediction

is not equal to the response, and the bias in 1
γ2t2 (η0−θ∗)⊤Σ−1(η0−θ∗), which corresponds

to the forgetting of initial conditions. It is worth comparing to the same quantities
for the nonaveraged iterates: the bias is upper-bounded by (using the same constants)
1

γ2t2 (η0 − θ∗)⊤Σ−1(η0 − θ∗), but it is typically faster when the lowest eigenvalue of Σ is

strictly positive. The variance term is only of order γσ2 tr[Σ] (thus, with no convergence).
This is illustrated in figure 5.3; note that averaged SGD with constant step size converges
to the global optimum only for the quadratic loss (see Bach and Moulines, 2013, for an
extension to the logistic loss).

When t = n iterations are performed, these should be compared to the excess risk for
the least-squares estimators defined in section 3.3, obtained by minimizing the empirical
risk (only with the fixed design assumption). The variance is the same as σ2d/n = O(1/n),
while the bias is in O(1/n2) and seems smaller in the dependence on n. However, in high-
dimensional problems, it can start to be larger for small n, highlighting the impact of
forgetting initial conditions (see, e.g., Défossez and Bach, 2015).

The analysis provided in this section can be extended in several ways, for the “true”
multiplicative noise, with similar results (Bach and Moulines, 2013; Défossez and Bach,
2015), in order to obtain dimension-free results akin to section 3.6 (Dieuleveut and Bach,
2016; Dieuleveut et al., 2017), and to go beyond least-squares regression by studying
logistic regression (Bach, 2014).

5.4.4 Variance Reduction (�)

We now consider a finite sum F (θ) = 1
n

∑n
i=1 fi(θ), where each fi is R2-smooth (e.g.,

logistic regression with features bounded by R in the ℓ2-norm), and which is such that F
is µ-strongly convex (e.g., by adding µ

2 ‖θ‖22 to each fi, or by benefiting from the strong
convexity of the sum). We denote by κ = R2/µ the condition number of the problem
(note that it is larger than L/µ, where L is the smoothness constant of F ).

Using SGD, the convergence rate has been shown to be O(κ/t) in section 5.4.1, with



5.4. STOCHASTIC GRADIENT DESCENT 147

iterations of complexity O(d), while for GD, the convergence rate is O(exp(−t/κ)) (see
section 5.2.3), but each iteration has complexity O(nd). We now present a result allowing
exponential convergence with an iteration cost of O(d).

The idea is to use a form of variance reduction, made possible by keeping past gradients

in memory. We denote by z
(t)
i ∈ R

d the version of gradient i stored at time t.

The SAGA algorithm (Defazio et al., 2014), which combines the earlier algorithms
SAG (Schmidt et al., 2017) and SVRG (Johnson and Zhang, 2013; Zhang et al., 2013),
works as follows: at every iteration, an index i(t) is selected uniformly at random in
{1, . . . , n}, and we perform the iteration

θt = θt−1 − γ
[
f ′
i(t)(θt−1) +

1

n

n∑

i=1

z
(t−1)
i − z(t−1)

i(t)

]
,

with z
(t)
i(t) = f ′

i(t)(θt−1) and all others z
(t)
i left unchanged (i.e., the same as z

(t−1)
i ). Stated

in words, we add to the update with the stochastic gradient f ′
i(t)(θt−1) the corrective

term 1
n

∑n
i=1 z

(t−1)
i − z(t−1)

i(t) , which has zero expectation with respect to i(t). Thus, since

the expectation of f ′
i(t)(θt−1) with respect to i(t) is equal to the full gradient F ′(θ), the

update is unbiased, as for regular SGD. The goal is to reduce its variance.

The idea behind variance reduction is that if the random variable z
(t−1)
i(t) (only consid-

ering the source of randomness coming from i(t)) is positively correlated with f ′
i(t)(θt−1),

then the variance is reduced and larger step sizes can be used.

As the algorithm converges, then z
(t)
i converges to f ′

i(η∗) (the individual gradient at

optimum). We will show that simultaneously θt converges to η∗ and z
(t)
i converges to

f ′
i(η∗) for all i, all at the same speed.

Proposition 5.9 (Convergence of SAGA) If initializing with z
(0)
i = f ′

i(θ0) at the
initial point θ0 ∈ Rd, for all i ∈ {1, . . . , n}, we have, for the choice of step size γ = 1

4R2 ,

E
[
‖θt − η∗‖22

]
6

(
1−min

{ 1

3n
,

3µ

16R2

})t(
1 +

n

4

)
‖θ0 − η∗‖22. (5.30)

Proof (��) As with all proofs in this chapter, the proof consists in finding a Lyapunov
function that decays along iterations.

Step 1. We first try our usual Lyapunov function, making the differences ‖z(t)i −f ′
i(η∗)‖22

appear, with the update θt = θt−1−γωt, with ωt =
[
f ′
i(t)(θt−1)+ 1

n

∑n
i=1 z

(t−1)
i −z(t−1)

i(t)

]
:

‖θt−η∗‖22 = ‖θt−1−η∗‖22 − 2γ(θt−1−η∗)⊤ωt + γ2
∥∥ωt

∥∥2
2

by expanding the square,

Ei(t)

[
‖θt−η∗‖22

]
= ‖θt−1−η∗‖22 − 2γ(θt−1−η∗)⊤F ′(θt−1)

+γ2Ei(t)

[∥∥∥f ′
i(t)(θt−1) +

1

n

n∑

i=1

z
(t−1)
i − z(t−1)

i(t)

∥∥∥
2

2

]
,



148 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

using the unbiasedness of the stochastic gradient. We further get

Ei(t)

[
‖θt − η∗‖22

]
6 ‖θt−1 − η∗‖22 − 2γ(θt−1 − η∗)⊤F ′(θt−1)

+2γ2Ei(t)

[∥∥f ′
i(t)(θt−1)− f ′

i(t)(η∗)
∥∥2
2

]
+ 2γ2Ei(t)

[∥∥f ′
i(t)(η∗)− z(t−1)

i(t) +
1

n

n∑

i=1

z
(t−1)
i

∥∥2
2

]
,

using ‖a + b‖22 6 2‖a‖22 + 2‖b‖22. To bound Ei(t)

[∥∥f ′
i(t)(θt−1)− f ′

i(t)(η∗)
∥∥2
2

]
, we use co-

coercivity of all functions fi (see proposition 5.4), to get

Ei(t)

[∥∥f ′
i(t)(θt−1)−f ′

i(t)(η∗)
∥∥2
2

]
=

1

n

n∑

i=1

∥∥f ′
i(θt−1)− f ′

i(η∗)
∥∥2

2

6
1

n

n∑

i=1

R2[f ′
i(θt−1)− f ′

i(η∗)]⊤(θt−1 − η∗)

= R2F ′(θt−1)⊤(θt−1−η∗) since
n∑

i=1

f ′
i(η∗) = 0. (5.31)

To bound Ei(t)

[∥∥f ′
i(t)(η∗)− z(t−1)

i(t) + 1
n

∑n
i=1 z

(t−1)
i

∥∥2
2

]
, we use the inequality between vari-

ance and second moment Ei(t)

[
‖Z − Ei(t)Z‖22

]
6 Ei(t)

[
‖Z‖22

]
. We thus get

Ei(t)

[
‖θt−η∗‖22

]
6 ‖θt−1−η∗‖22 − 2γ(θt−1−η∗)⊤F ′(θt−1) + 2γ2R2(θt−1 − η∗)⊤F ′(θt−1)

+2γ2
1

n

n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2

2
,

= ‖θt−1−η∗‖22 − 2γ(1−γR2)(θt−1−η∗)⊤F ′(θt−1)

+2
γ2

n

n∑

i=1

∥∥f ′
i(η∗)−z(t−1)

i

∥∥2
2
.

Step 2. We see the term
∑n

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2
2

appearing, so we try to study how it

varies across iterations. We have, by definition of the updates of the vectors z
(t)
i ,

n∑

i=1

∥∥f ′
i(η∗)− z(t)i

∥∥2
2

=

n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2
2

−
∥∥f ′
i(t)(η∗)−z(t−1)

i(t)

∥∥2

2
+
∥∥f ′
i(t)(η∗)−f ′

i(t)(θt−1)
∥∥2

2
.

Taking expectations with respect to i(t), we get

Ei(t)

[ n∑

i=1

∥∥f ′
i(η∗)−z(t)i

∥∥2
2

]
=

(
1− 1

n

) n∑

i=1

∥∥f ′
i(η∗)−z(t−1)

i

∥∥2
2

+
1

n

n∑

i=1

∥∥f ′
i(η∗)−f ′

i(θt−1)
∥∥2

2

6
(
1− 1

n

) n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2
2

+ R2(θt−1 − η∗)⊤F ′(θt−1),



5.4. STOCHASTIC GRADIENT DESCENT 149

where we use the bound in equation (5.31). Thus, for a positive real number ∆ to be
chosen later,

Ei(t)

[
‖θt − η∗‖22 + ∆

n∑

i=1

∥∥f ′
i(η∗)− z(t)i

∥∥2
2

]

6 ‖θt−1 − η∗‖22 − 2γ(1− γR2 − R2∆

2γ
)(θt−1 − η∗)⊤F ′(θt−1)

+
[
2
γ2

n∆
+ (1− 1/n)

]
∆

n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2

2
.

With ∆ = 3γ2 and γ = 1
4R2 , we get 1− γR2 − R2∆

2γ = 3
8 and 2 γ2

n∆ = 2
3n . Moreover, using

the identity (θt−1 − η∗)⊤F ′(θt−1) > µ‖θt−1 − η∗‖22 as a consequence of strong convexity,
we then get

Ei(t)

[
‖θt − η∗‖22 + ∆

n∑

i=1

∥∥f ′
i(η∗)− z(t)i

∥∥2
2

]

6

(
1−min

{ 1

3n
,

3µ

16R2

})[
‖θt−1 − η∗‖22 + ∆

n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2
2

]
.

Thus, by applying this inequality at all times from 1 to t, we get:

E
[
‖θt − η∗‖22

]
6

(
1−min

{ 1

3n
,

3µ

16R2

})t[
‖θ0 − η∗‖22 +

3

16R4

n∑

i=1

∥∥f ′
i(η∗)− z(0)i

∥∥2
2

]
.

If initializing with z
(0)
i = f ′

i(θ0), we get the desired bound by using the Lipschitz-
continuity of each f ′

i , which leads to (1 + 3n
16 )‖θ0 − η∗‖22 6 (1 + n

4 )‖θ0 − η∗‖22. This
leads to the final bound in equation (5.30).

We can make the following observations:

• The contraction rate after one iteration is
(
1−min

{
1
3n ,

3µ
16R2

})
, which is less than

exp
(
− min

{
1
3n ,

3µ
16R2

})
. Thus, after an effective pass over the data (i.e., n itera-

tions), the contracting rate is exp
(
− min

{
1
3 ,

3µn
16R2

})
. It is only an effective pass

because after we sample n indices with replacement, we will not see all the functions
(while some will be seen several times).

To have a contracting effect of ε (i.e., having ‖θt − η∗‖22 6 ε‖θ0 − η∗‖22), we need
to have exp

(
− tmin

{
1
3n ,

3µ
16R2

})
2n 6 ε, which is equivalent to having at least

this number of iterations t > max
{

3n, 16R
2

3µ

}
log 2n

ε . It just suffices to have t >
(
3n + 16R2

3µ

)
log 2n

ε , and thus the running time complexity is equal to d times the
minimal number; that is,

d
(

3n+
16R2

3µ

)
log

2n

ε
.

This is to be contrasted with batch GD with step size γ = 1/R2 (which is the

simplest step size that can be computed easily), whose complexity is dn
R2

µ
log

1

ε
.



150 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

Figure 5.4. Comparison of stochastic gradient algorithms for logistic regression. Top:
n = 1, 000; bottom: n = 10, 000. Left: training objective in semilog plot; right: expected
risk estimated with n (independent) test points.

We replace the product of n and condition number κ = R2

µ by a sum, which is
significant where κ is large.

• Multiple extensions of this result are available, such as a rate for non-strongly-
convex functions, adaptivity to strong convexity, proximal extensions, and accel-
eration. It is also worth mentioning that the need to store past gradients can be
alleviated (see Gower et al., 2020, for more details).

• Note that these fast algorithms allow very small optimization errors and the best
testing risks will typically be obtained after a few (10 to 100) passes.

Experiments. Here, we consider ℓ2-regularized logistic regression and compare GD,
SGD, and SAGA, all with their corresponding step sizes coming from the theoretical



5.5. CONCLUSION 151

analysis, with two values of n. We use a simple binary classification problem with linear
predictors in dimension d = 40 (inputs generated from a Gaussian distribution, with
binary outputs obtained as the sign of a linear function with additive Gaussian noise),
with two different numbers of observations n, and the regularization parameter µ = R2/n.
See figure 5.4 (top: small n, bottom: large n). We see that for early iterations, SGD
dominates GD, while for larger numbers of iterations, GD is faster. This last effect
is not seen for large numbers of observations in figure 5.4 (right), where SGD always
dominates GD. SAGA gets to machine precision after 50 effective passes over the data in
these two cases. Note also the better performance on the testing data.

5.5 Conclusion

Convex finite-dimensional problems. We can now provide a summary of conver-
gence rates, with the main rates that we have seen in this chapter (and some that we have
not seen) for convex objective functions. We distinguish between convex and strongly con-
vex, and between smooth and nonsmooth, as well as between deterministic and stochastic
methods. In the following table, L is the smoothness constant, µ the strong convexity con-
stant, and B the Lipschitz constant (below, we ignore multiplicative factors that involve
the initial distance to optimum in ℓ2-norm or function values, to focus on the dependence
in t and the conditioning of the problem for the strongly convex case):

Convex Strongly Convex

Nonsmooth Deterministic:
∣∣∣1/
√
t Deterministic: B2/(tµ)

Stochastic: 1/
√
t Stochastic: B2/(tµ)

Smooth Deterministic:
∣∣∣1/t2 Deterministic: exp(−t

√
µ/L)

Stochastic: 1/
√
t Stochastic: L/(tµ)

Finite sum:
∣∣∣n/t Finite sum: exp(−min{1/n, µ/L}t)

The convergence rates are often written as a number t of accesses to individual gra-
dients to achieve excess function values of ε. This corresponds to inverting each formula
for ε as a function of t to a formula for t as a function of ε. This leads to the following
table:

Convex Strongly Convex

Nonsmooth Deterministic:
∣∣∣1/ε2 Deterministic: B2/(εµ)

Stochastic: 1/ε2 Stochastic: B2/(εµ)

Smooth Deterministic:
∣∣∣1/
√
ε Deterministic:

√
L/µ log(1/ε)

Stochastic: 1/ε2 Stochastic: L/(εµ)

Finite sum:
∣∣∣n/ε Finite sum: max{n, L/µ} log(1/ε)



152 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

△!
As in the rest of the book, where we obtain explicit convergence rates, the
homogeneity of all quantities can be checked (see exercise 5.36). In the context
of optimization, this ensures that algorithms are invariant under a change of
variable θ → αθ for α 6= 0.

Exercise 5.36 Check the homogeneity of all quantities of this section (step size and
convergence rates).

Note that many important themes in first-order optimization have not been discussed
here, such as Frank-Wolfe methods (presented in chapter 9), coordinate descent, or dual-
ity. See Nesterov (2018) and Bubeck (2015) for further details. See also chapters 7 and 9
for optimization methods for kernel methods and neural networks.

For strongly convex smooth problems, the following illustration also provides a good
summary, with GD being along a line in a semilog plot (i.e., exponential convergence)
but with a staircase effect due to the lack of progress while computing the full gradient,
SGD starting fast but having trouble reaching low optimization error, with variance
reduction getting the best of both worlds, together with a faster rate of convergence than
regular GD:

Gradient descent (GD)

Stochastic gradient descent (SGD)

Variance reduction

Running time

lo
g(
ex
ce
ss

co
st
)

Beyond finite-dimensional problems. Supervised machine learning problems lead-
ing to finite-dimensional convex objective functions are essentially problems with predic-
tion functions that are linear in their parameters, with a feature map that can be explicitly
computed. In chapter 7, we extend some of the algorithms seen in this chapter to fea-
tures that are available only through dot products ϕ(x)⊤ϕ(x′). In section 10.3, we also
consider infinite-dimensional sets of predictors optimized through boosting procedures.

Beyond convex problems. Complexity bounds can be obtained beyond convex prob-
lems, as shown briefly in section 5.2.6 and exercise 5.30. However, they certify only that
the gradient norm will go to zero, not that a global optimum has been approximately
reached. Objective functions obtained from neural network training provide an important
class of nonconvex objective functions, which we consider in chapter 9.



5.5. CONCLUSION 153

Generalization bounds: Rademacher or SGD? In chapter 4, we showed how to
obtain generalization bounds for the constrained or regularized empirical risk minimizer.
They relied on Rademacher complexities, which apply to all Lipschitz-continuous loss
functions (but not necessarily convex). However, they leave open how to obtain algorith-
mically such minimizers. In this section, we have not only seen algorithms to obtain such
minimizers through gradient-based techniques, but also single-pass SGD that directly
provides the same generalization bound on unseen data for an efficient algorithm. We
will see in section 11.1.3 how this extends to the mirror descent framework to account for
non-Euclidean geometries.

These two ways of obtaining generalization bounds will also be compared for multi-
category classification in chapter 13, where SGD-based bounds will lead to better bounds.





Chapter 6

Local Averaging Methods

Chapter Summary
• Nonparametric estimation: This is the book’s first chapter discussing nonparamet-

ric methods, which are not based on parametric models and can adapt to complex
target functions.

• “Linear” estimators: These are based on assigning weight functions to each obser-
vation so that each observation can vote for its label with the corresponding weight
(typically, these estimators are nonlinear in the input variables).

• Partitioning estimates: The input space is cut into nonoverlapping cells, and the
predictor is piecewise constant.

• Nadaraya-Watson estimators (aka kernel regression): Each observation assigns a
weight proportional to its distance in input space.

• k-nearest neighbors: Each observation assigns an equal weight to its k-nearest
neighbors, with a majority vote among the corresponding labels.

• Consistency: All these methods can provably learn complex Lipschitz-continuous
nonlinear functions with a convergence rate of the form O(n−2/(d+2)), where d is
the underlying input dimension, leading to the curse of dimensionality.

6.1 Introduction

As in previous chapters, we consider the supervised learning setup, where we are being
given a training set: observations (xi, yi) ∈ X × Y, i = 1, . . . , n of inputs/outputs are
assumed to be independent and identically distributed (i.i.d.) random variables with
common distribution p. We consider a loss function ℓ : Y × Y → R, where ℓ(y, z) is the
loss of predicting z when the true label is y.

155



156 CHAPTER 6. LOCAL AVERAGING METHODS

Our goal is to minimize the expected risk; that is, the generalization performance of
a prediction function f from X to Y:

R(f) = E
[
ℓ(y, f(x))

]
,

where the expectation is computed with respect to the distribution p.

△! As in the rest of the book, we assume that the testing distribution is the same as the
training distribution.

△! Be careful with the randomness (or lack thereof) of f : The estimator f̂ that we will

use depends on the training data, not on the testing data, and thus R(f̂) is random
because of the dependence on the training data.

As seen in chapter 2, the two classical cases are

• Binary classification: Y = {−1, 1} (or often Y = {0, 1}), and ℓ(y, z) = 1y 6=z (0–1
loss). Then R(f) = P(f(x) 6= y).

• Regression: Y = R and ℓ(y, z) = (y−z)2 (square loss). Then R(f) = E[(y−f(x))2].

As seen in chapter 2, minimizing the expected risk leads to an optimal target function,
called the “Bayes predictor” f∗ ∈ arg minR(f) = E

[
ℓ(y, f(x))

]
. As shown in section 2.2.3,

the optimal predictor can be obtained from the conditional distribution of y|x as

f∗(x) ∈ arg min
z∈Y

E[ℓ(y, z)|x].

Note that (1) the Bayes predictor is not unique, but all Bayes predictors lead to the
same Bayes risk, and (2) the Bayes risk is usually nonzero (unless the dependence between
x and y is deterministic). The goal of supervised machine learning is thus to estimate f∗,
knowing only the training data D = {(x1, y1), . . . , (xn, yn)} and the loss ℓ, with the goal
of minimizing the risk or the excess risk R(f)− R∗. We have the following special cases
to consider:

• For binary classification: Y = {−1, 1} and ℓ(y, z) = 1y 6=z, the Bayes predictor is
equal to f∗(x) ∈ arg maxi∈{0,1} P(y = i|x). This extends naturally to multicategory
classification with the Bayes predictor f∗(x) ∈ arg max

i∈{1,...,k}
P(y = i|x).

If a convex surrogate from section 4.1.1 is used, such as the logistic loss ℓ(y, z) =

log(1 + exp(−yz)) for z ∈ R, then the target function is f∗(x) = log P(y=1|x)
P(y=−1|x) .

• For regression: Y = R and ℓ(y, z) = (y − z)2, the Bayes predictor is f∗(x) = E[y|x].
Moreover, we have R(f)− R∗ =

∫
X

(f(x)− f∗(x))2dp(x) = ‖f − f∗‖2L2(p)
.

In chapters 3 and 4, we explored methods based on empirical risk minimization, with
explicit finite-dimensional models (often linear in their parameters) that may not be
flexible enough to adapt to complex target functions. We now explore methods that can,
starting with local averaging methods, which are not based on empirical risk minimization.
Later in this book, we will study kernel methods (chapter 7), neural networks (chapter 9),
and boosting methods (section 10.3).



6.2. LOCAL AVERAGING METHODS 157

6.2 Local Averaging Methods

In local averaging methods, we aim at approximating the target function f∗ directly,
without any form of optimization. This will be done by approximating the conditional
distribution p(y|x) of y given x, by some p̂(y|x). We then replace the target function

f∗(x) ∈ arg minz∈Y

∫
Y
ℓ(y, z)dp(y|x) by f̂(x) ∈ arg minz∈Y

∫
Y
ℓ(y, z)dp̂(y|x). These are

often called “plug-in” estimators.

In the usual cases, this leads to the following predictions:

• For classification with the 0–1 loss: f̂(x) ∈ arg max
j∈{1,...,k}

P̂(y = j|x).

• For regression with the square loss: f̂(x) =
∫
Y
y dp̂(y|x).

6.2.1 Linear Estimators

In this chapter, we will consider linear estimators, where the conditional distribution is
of the form

p̂(y|x) =

n∑

i=1

ŵi(x)δyi(y),

where δyi is the Dirac probability distribution at yi (putting a unit mass at yi), and the
weight functions ŵi : X→ R, i = 1, . . . , n depend on the input data only (for simplicity)
and satisfies (almost surely in x):

∀x ∈ X, ∀i ∈ {1, . . . , n}, ŵi(x) > 0, and

n∑

i=1

ŵi(x) = 1. (6.1)

These conditions ensure that for all x ∈ X, p̂(·|x) is a probability distribution.

△! Some references allow the weights not to sum to 1.

For our running examples, this leads to the following predictions:

• For classification: f̂(x) ∈ arg max
j∈{1,...,k}

n∑

i=1

ŵi(x)1yi=j ; that is, each observation (xi, yi)

votes for its label with weight ŵi(x), a strategy often called “majority vote.”

• For regression: Y = R: f̂(x) =

n∑

i=1

ŵi(x)yi. This is why the terminology “linear

estimators” is sometimes used: as a function of the response vector in Rn, the
estimator is linear (note that this is also the case for kernel ridge regression in

chapter 7; see section 7.6.1). If we only consider predictions f̂(xi) at the observed

inputs, the vector ŷ ∈ Rn of predictions ŷi = f̂(xi), for i ∈ {1, . . . , n} is of the
form ŷ = Hy, where the matrix H ∈ Rn×n, often called the “smoothing matrix” or
the “hat matrix,” is such that Hij = ŵj(xi). From equation (6.1), the smoothing
matrix H is stochastic; that is, with nonnegative elements and rows that sum to
one.



158 CHAPTER 6. LOCAL AVERAGING METHODS

Figure 6.1. Weights of linear estimators in dimension d = 1 for the three types of local
averaging estimators. The n = 8 weight functions x 7→ ŵi(x), i = 1, . . . , n, are plotted
with the observations in black.

△! For X = Rd, linear estimators typically do not lead to prediction functions that
are linear in their inputs.

Note that in addition to being a linear estimator, the estimator satisfies additional
properties: if the same constant is added to all outputs, the exact same constant
is added to the prediction function; moreover, given two vectors of outputs y and
y′ ∈ Rn with two prediction functions f̂ and f̂ ′, if yi 6 y′i for all i ∈ {1, . . . , n},
then f̂(x) 6 f̂ ′(x) for all x ∈ X.

Construction of weight functions. In most cases, for any i, the weight function
ŵi(x) is large for training points xi that are close to x, and small otherwise. We now
show three classical ways of building them: (1) partition estimators, (2) nearest-neighbors,
and (3) Nadaraya-Watson estimators (aka kernel regression). See the examples shown in
figure 6.1.

6.2.2 Partition Estimators

If X =
⋃
j∈J Aj is a partition (such that for all distinct j, j′ ∈ J , Aj ∩ Aj′ = ∅) of X

with a countable index set J (which we will assume to be finite for simplicity, equal to
{1, . . . , |J |}), then we can consider for any x ∈ X the corresponding element A(x) of the
partition (i.e., A(x) is the unique Aj , j ∈ J , such that x ∈ Aj), and define

ŵi(x) =
1xi∈A(x)∑n
i′=1 1xi′∈A(x)

, (6.2)

with the convention that if no training data point lies in A(x), then ŵi(x) is equal to 1/n
for each i ∈ {1, . . . , n}. This implies that each ŵi is piecewise constant with respect to
the partition; that is, for any nonempty cell Aj (i.e., such that at least one observation
falls in Aj), for any x ∈ Aj , the vectors (ŵi(x))i∈{1,...,n} have weights equal to 1/nAj for
i ∈ Aj , where nAj is the number of training points in set Aj , and 0 otherwise.



6.2. LOCAL AVERAGING METHODS 159

Equivalence with least-squares regression. When applied to regression where the
estimator is f̂(x)=

∑n
i=1 ŵi(x)yi, using a partition estimator can be seen as a least-squares

estimator with feature vector
(
ϕ(x)
1

)
=
((1x∈Aj

)j∈J

1

)
∈ R|J|+1, as we now show.

Indeed, we then aim to estimate
(
θ
η

)
∈ R|J|+1 for the prediction function

f̂(x) =
∑

j∈J
θj1x∈Aj + η.

From training data (x1, y1), . . . , (xn, yn), as shown in chapter 3, we can directly estimate
the constant term as η = ȳ = 1

n

∑n
i=1 yi, while for the other components, we need to

solve the multidimensional normal equation

n∑

i=1

ϕ(xi)ϕ(xi)
⊤ θ =

n∑

i=1

(yi − ȳ)ϕ(xi).

It turns out that matrix Σ̂ = 1
n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤ is diagonal where for each j ∈ J ,

nΣ̂jj is equal to the number nAj of data points lying in cell Aj . This implies that for a
nonempty cell Aj , θj is the average of all yi− ȳ, for all i such that xi lies in Aj . Thus, for
all x ∈ Aj , the prediction is exactly θj + ȳ, as obtained from weights in equation (6.2).
For empty cells, θj is not determined by the normal equation given above, and if we set
it to zero, we recover our convention of predicting as the mean of all labels.

△! Other conventions exist (such as all zero weights when no data point lies in A(x)).

This equivalence with least-squares estimation with a diagonal (whether empirical or
not) noncentered covariance matrix makes it attractive for theoretical purposes: as shown
in section 6.3.1, we can essentially import results from chapter 3; moreover, partition-
ing estimators provide particularly simple examples of least-squares estimator since the
inversion of the population and expected covariance matrices can be done in closed form.

Choice of partitions. There are two standard applications of partition estimators:

• Fixed partitions: For example, when X = [0, 1]d, we can consider cubes of
length h, with |J | = h−d, as illustrated in dimension d = 2 with |J | = 25:

A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

A16

A21

A17

A22

A18

A23

A19

A24

A20

A25

A1

Note here that the computation time for each x ∈ X is not necessarily proportional
to |J | but rather to n (by simply considering the bins where the data lie). This esti-
mator is sometimes called a “regressogram.” We need then to choose bandwidth h
(see analysis in section 6.3.1). See figure 6.2 for an illustration in one dimension.



160 CHAPTER 6. LOCAL AVERAGING METHODS

• Decision trees: For data in a hypercube, we can recursively partition it by select-
ing a variable to split, leading to a maximum reduction in errors when defining the
partitioning estimate.1 A model selection criterion is then needed to control the
number of cells in the partition (see, e.g., section 9.2 from Friedman et al., 2009).
Note here that the partition depends on the labels (so the analysis given here does
not apply unless the partitioning is learned on data different from the one used for
the estimation).

Figure 6.2. Regressograms in dimension d = 1, with three values of |J | (the number of
sets in the partition). Here, n = 100 input data points are distributed uniformly on [0, 1],
and, for i ∈ {1, . . . , n}, the outputs yi equal 1

2 − |xi− 1
2 |+ εi, where εi is a Gaussian with

mean zero and variance σ2 = 1
100 . We can observe both underfitting (|J | too small) and

overfitting (|J | too large). Note that the target function f∗ is piecewise affine, and on the
affine parts, the estimator is far from linear; that is, the estimator cannot take advantage
of extra regularity (see section 6.5 for more details).

6.2.3 Nearest-Neighbors

Given an integer k > 1, and a distance ∆ on X, for any x ∈ X, we can order the n
observations so that

∆(xi1(x), x) 6 ∆(xi2(x), x) 6 · · · 6 ∆(xin(x), x),

where {i1(x), . . . , in(x)} = {1, . . . , n} and ties are broken randomly2 (i.e., for all x ∈ X,
the indices that come first are sampled randomly). See the illustration below:

1See more details in https://en.wikipedia.org/wiki/Decision_tree_learning.
2Other conventions share the weights among all ties.

https://en.wikipedia.org/wiki/Decision_tree_learning


6.2. LOCAL AVERAGING METHODS 161

x

xi1(x)

xi2(x)

xi3(x)

xi4(x)

We then define

ŵi(x) = 1/k if i ∈ {i1(x), . . . , ik(x)}, and 0 otherwise.

Given a new input x ∈ Rd, the nearest neighbor predictor looks at the k nearest
points xi in the dataset {(x1, y1), . . . , (xn, yn)} and predicts a majority vote among
them (for classification) or simply the averaged response (for regression). The number of
nearest-neighbors is the hyperparameter, which needs to be estimated (typically by cross-
validation); see section 6.3.2 for an analysis. A one-dimensional example is illustrated in
figure 6.3. For k = 1, the prediction function is piecewise constant, with each constant
piece corresponding to a region where a given observation is the nearest-neighbor, leading,
in two dimensions, to the Voronoi diagram, with all regions displayed3:

Algorithms. Given a test point x ∈ X, the naive algorithm looks at all training data
points for computing the predicted response. Thus the complexity is O(nd) per test
point in Rd. When n is large, this is costly in terms of both time and memory. Index-
ing techniques exist for (potentially approximate) nearest-neighbor search, such as “k-d
trees,”4 with typically a logarithmic complexity in n (but with some additional compil-
ing time), and a memory footprint that can grow exponentially in dimension (see, e.g.,
Shakhnarovich et al., 2005).

Exercise 6.1 For k-nearest-neighbors and partitioning estimates, what is the pattern of
nonzeros in the smoothing matrix H ∈ Rn×n?

3See more details about Voronoi diagrams in https://en.wikipedia.org/wiki/Voronoi_diagram.
4See https://en.wikipedia.org/wiki/K-d_tree.

https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/K-d_tree


162 CHAPTER 6. LOCAL AVERAGING METHODS

Figure 6.3. k-nearest neighbor regression in dimension d = 1, with three values of k (the
number of neighbors), with the same data as figure 6.2. We can observe both underfitting
(k too large) and overfitting (k too small).

6.2.4 Nadaraya-Watson Estimator (aka Kernel Regression) (�)

Given a kernel function k : X× X→ R+, which is pointwise nonnegative, we define

ŵi(x) =
k(x, xi)∑n
i′=1 k(x, xi′ )

,

with the convention that if k(x, xi) = 0 for all i ∈ {1, . . . , n}, then ŵi(x) is equal to
1/n for each i (which is the same convention used for estimators based on partitions in
section 6.2.2).

In most cases where X ⊂ Rd, we take k(x, x′) = h−dq
(
1
h (x−x′)

)
for a certain function

q : Rd → R+ that has large values around 0, with h > 0 as a bandwidth parameter to
be selected (see the analysis in section 6.3.3). If we assume that q is integrable with an
integral equal to 1, then k(·, x′) is a probability density with mass around x′, which gets
more concentrated as h goes to zero. See the following illustration for the two typical
kernel functions (sometimes called “windows”):

qh, h small

x

qh, h large

Box kernel

qh, h small

x

qh, h large

Gaussian kernel

Typical examples are:

• Box kernel: q(x) ∝ 1‖x‖261, which leads to a weight function ŵi with many zeros.
See the following for an illustration of this point in dimension d = 2:



6.3. GENERIC SIMPLEST CONSISTENCY ANALYSIS 163

x h

• Gaussian kernel q(x) ∝ e−‖x‖2
2/2, where we use the fact that it is nonnegative

pointwise, as opposed to positive-definiteness (discussed in chapter 7).5 See a one-
dimensional experiment in figure 6.4.

In terms of algorithms, with a naive algorithm, for every test point, all the input data
have to be considered (i.e., with a complexity proportional to n). The same techniques
used for an efficient k-nearest-neighbor search (e.g., k-d-trees) can also be applied here.
Algorithms based on the fast Fourier transform can also be used (Silverman, 1982).

Figure 6.4. Nadaraya-Watson regression in dimension d = 1, with three values of h (the
bandwidth), for the Gaussian kernel, with the same data as figure 6.2. We can observe
both underfitting (h too large), and overfitting (h too small).

6.3 Generic Simplest Consistency Analysis

For simplicity, here we only consider the regression case. For classification, convex sur-
rogate techniques such as those used in section 4.1 can be used, with, for example, the
square loss or the logistic loss (with a square root calibration function on top of the least-
squares excess risk; see exercise 6.2). Still, better rates can be obtained directly (see, e.g.,
Audibert and Tsybakov, 2007; Chaudhuri and Dasgupta, 2014).

We make the following generic simplifying assumptions (weaker ones could be consid-
ered with more involved proofs):

5See also https://francisbach.com/cursed-kernels/.

https://francisbach.com/cursed-kernels/


164 CHAPTER 6. LOCAL AVERAGING METHODS

(H-1) Bounded noise: There is σ > 0 such that (y−E[y|x])2 6 σ2 almost surely. We could
also consider a weaker assumption that the conditional variance E

[
(y− E[y|x])2|x

]

is bounded by σ2 almost surely.

(H-2) Regular target function: The target function f∗(x) = E[y|x] isB-Lipschitz-continuous
with respect to a distance ∆. For weaker assumptions, see section 6.4.

We have, with the target function f∗(x) = E[y|x], at a test point x ∈ X (and using the
fact that the weights ŵi(x) sum to 1),

f̂(x) − f∗(x) =

n∑

i=1

yiŵi(x) − E[y|x]

=

n∑

i=1

ŵi(x)
[
yi − E[yi|xi]

]
+

n∑

i=1

ŵi(x)
[
E[yi|xi]− E[y|x]

]

=

n∑

i=1

ŵi(x)
[
yi − E[yi|xi]

]
+

n∑

i=1

ŵi(x)
[
f∗(xi)− f∗(x)

]
.

Given x1, . . . , xn (and because we have assumed that the weight functions do not depend
on the labels), the left term has zero expectation, while the right term is deterministic.
We thus have, using the independence of all (xi, yi), i = 1, . . . , n, and for x being fixed
(taking expectations uniquely with respect to labels y1, . . . , yn):

E
[
(f̂(x)− f∗(x))2

∣∣x1, . . . , xn
]

=
(
E[f̂(x)

∣∣x1, . . . , xn]− f∗(x)
)2

+ var
[
f̂(x)

∣∣x1, . . . , xn
]

=
[ n∑

i=1

ŵi(x)
(
f∗(xi)− f∗(x)

)]2
+

n∑

i=1

ŵi(x)2E
[(
yi − E[yi|xi]

)2∣∣xi
]

= bias + variance,

with a “bias” term that is zero if f∗ is constant,6 and a “variance” term that is zero
when y is a deterministic function of x (i.e., σ = 0). Note that at this point, we only had
equalities in the argument; we can now upper-bound as

E
[
(f̂(x) − f∗(x))2

∣∣x1, . . . , xn
]

6

[ n∑

i=1

ŵi(x)
∣∣f∗(xi)− f∗(x)

∣∣
]2

+ σ2
n∑

i=1

ŵi(x)2 using (H-1), (6.3)

6

[ n∑

i=1

ŵi(x)B∆(xi, x)
]]2

+ σ2
n∑

i=1

ŵi(x)2 using (H-2),

6 B2
n∑

i=1

ŵi(x)∆(xi, x)2 + σ2
n∑

i=1

ŵi(x)2 using Jensen’s inequality. (6.4)

6What we call “bias” in this book is sometimes referred to as the “squared bias.”



6.3. GENERIC SIMPLEST CONSISTENCY ANALYSIS 165

Note that in the last inequality in equation (6.4), having the weight vector ŵ(x) in the
simplex is crucial. We then have for the expected excess risk this generic bound, which
we will use for all three cases (partitions, k-nearest-neighbor, and Nadaraya-Watson):

∫

X

E[(f̂(x)−f∗(x))2]dp(x) 6 B2

∫

X

E

[ n∑

i=1

ŵi(x)∆(xi, x)2
]
dp(x)+σ2

n∑

i=1

∫

X

E[ŵi(x)2]dp(x).

(6.5)

△! The expectation is with respect to the training data. The expectation with respect
to the testing point x is kept as an integral to avoid confusion.

This upper bound can be divided into two terms:

• A variance term σ2
∑n

i=1

∫
X
E[ŵi(x)2]dp(x), which depends on the noise on top of

the optimal predictions. Since the weights sum to 1, we can write
∑n

i=1 E[ŵi(x)2] =∑n
i=1 E[(ŵi(x)−1/n)2]+1/n; that is, up to a vanishing constant, the variance term

measures the deviation from uniform weights.

• A bias term B2
∫
X
E

[∑n
i=1 ŵi(x)∆(xi, x)2

]
dp(x), which depends on the regularity

of the target function through the constant B. It will be small if the weight vectors
ŵ(x) put most of their mass on observations xi that are close to x.

This leads to two conditions: both variance and bias have to go to zero when n grows,
corresponding to two explicit expressions that depend on the weights. For the variance,
the worst-case scenario is that ŵi(x)2 ≈ ŵi(x); that is, weights are putting all the mass
into a single label (which is usually different for different testing points), thus leading to
overfitting. For the bias, the worst-case scenario is that weights are uniform (leading to
underfitting).

In the following, we will specialize to X a subset of Rd, with a distribution with a
density with some minor regularity properties (all will have compact support, i.e., X is
compact), where we show that a proper setting of the hyperparameters leads to good
predictions. This will be done for all three cases of local averaging methods.

We look at universal consistency in section 6.4, where we will relax assumption (H-2).

Exercise 6.2 For the binary classification problem, with Y = {−1, 1}, assume that
f∗(x) = E[y|x] is B-Lipschitz-continuous. Using section 4.1.4, show that the excess risk
of the majority vote is upper-bounded by

(
B2

∫

X

E

[ n∑

i=1

ŵi(x)∆(xi, x)2
]
dp(x) + σ2

n∑

i=1

∫

X

E[ŵi(x)2]dp(x)

)1/2

.

6.3.1 Fixed Partition

For the partitioning estimate defined in section 6.2.2, we can prove the following conver-
gence rate.

Proposition 6.1 (Convergence rate for partition estimates) Assume a bounded
noise (assumption (H-1)), a Lipschitz-continuous target function (assumption (H-2)),



166 CHAPTER 6. LOCAL AVERAGING METHODS

Figure 6.5. Learning curves for all three local averaging methods as a function of the
corresponding hyperparameter. Left: regressogram (hyperparameter = number |J | of sets
in the partition); middle: k-nearest-neighbor (hyperparameter = number of neighbors k);
right: Nadaraya-Watson (hyperparameter = bandwidth h). In all three cases, we see a
trade-off between underfitting and overfitting.

and a partition of the bounded support X of p, as X =
⋃
j∈J Aj; then, for the partitioning

estimate f̂ , we have

∫

X

E
[
(f̂(x) − f∗(x))2

]
dp(x) 6

(
8σ2 +

B2

2
diam(X)2

) |J |
n

+B2 max
j∈J

diam(Aj)
2. (6.6)

Optimal trade-off between bias and variance. Before we look at the proof (which is
based on equation (6.5)), we can look at the consequence of the bound in equation (6.6).

We need to balance the terms (up to constants) maxj∈J diam(Aj)
2 and |J|

n . In the
simplest situation of the unit cube [0, 1]d, with |J | = h−d cubes of length h, we get
|J|
n = 1

nhd and maxj∈J diam(Aj)
2 = h2, which, with h = n−1/(2+d) to make them equal,

leads to a rate proportional to n−2/(2+d). As shown by Györfi et al. (2006), this rate is
optimal for the estimation of Lipschitz-continuous functions (see also chapter 15).

While optimal, this is a very slow rate and a typical example of the curse of dimen-
sionality. For this rate to be small, n has to be exponentially large in dimension. This is
unavoidable with so little regularity (only bounded first-order derivatives). In chapter 7
(and also in section 6.5), we show how to use the smoothness of the target function to
get significantly improved bounds (local averaging cannot take strong advantage of such
smoothness). In chapters 8 and 9, we will use dependence on a small number of variables.

Experiments. For the problem shown in section 6.2, we plot in figure 6.5 (left) training
and testing errors averaged over 32 replications (with error bars showing the standard
deviations), where we clearly see the trade-off in the choice of |J |.

Proof of proposition 6.1 (�) We consider an element Aj of the partition with at least
one observation in it (a nonempty cell). Then for x ∈ Aj , and i among the indices of the



6.3. GENERIC SIMPLEST CONSISTENCY ANALYSIS 167

points lying in Aj , ŵi(x) = 1/nAj where nAj ∈ {1, . . . , n} is the number of data points
lying in Aj .

Variance. From equation (6.5), the variance term is bounded from above by σ2 times

n∑

i=1

ŵi(x)2 = nAj

1

n2
Aj

=
1

nAj

.

If Aj contains no input observations, then all weights are equal to 1/n, and this sum is
equal to n× 1

n2 = 1
n for all x ∈ Aj . Thus, we get

∫

X

E

[ n∑

i=1

ŵi(x)2
]
dp(x) =

∫

X

∑

j∈J
1x∈AjE

[ 1

nAj

1nAj
>0 +

1

n
1nAj

=0

]
dp(x)

=
∑

j∈J
P(Aj) · E

[ 1

nAj

1nAj
>0 +

1

n
1nAj

=0

]
.

Intuitively, by the law of large numbers, nAj/n tends to P(Aj), so the variance term is

expected to be of the order σ2
∑

j∈J P(Aj)
1

nP(Aj)
= σ2 |J|

n , which is to be expected from

section 3.4, as this is essentially equivalent to least-squares regression with |J | features
(1x∈Aj)j∈J . We now make this precise.

We consider the decomposition of the variance term

∫

X

E

[ n∑

i=1

ŵi(x)2
]
dp(x) 6

∑

j∈J
P(Aj)E

[116nAj
6n

2 P(Aj)

nAj

+
1nAj

>n
2 P(Aj)

nAj

+
1nAj

=0

n

]
(6.7)

6
∑

j∈J
P(Aj)

[
P

(nAj

n
6

P(Aj)

2

)
+

2

nP(Aj)
+

1

n
P(nAj =0)

]
.

We can then estimate the required probabilities: P(nAj = 0) = (1 − P(Aj))
n, and, using

Bernstein’s inequality (single-sided version of equation (1.13) in section 1.2.3) for the
random variables 1xi∈Aj , which have mean and variance upper-bounded by P(Aj), we
get:

P

(nAj

n
6

1

2
P(Aj)

)
= P

(nAj

n
6 P(Aj)−

1

2
P(Aj)

)
(6.8)

6 exp
(
− nP(Aj)

2/4

2P(Aj) + 2(P(Aj)/2)/3

)
6 exp(−nP(Aj)/10) 6

5

nP(Aj)
,

where we have used αe−α 6 1/2 for any α > 0. This leads to the bound

∫

X

E

[ n∑

i=1

ŵi(x)2
]
dp(x) 6

∑

j∈J
P(Aj)E

[ 5

nP(Aj)
+

2

nP(Aj)
+

1

nP(Aj)

]
6

8|J |
n
.



168 CHAPTER 6. LOCAL AVERAGING METHODS

Bias. We have, for x ∈ Aj and a nonempty cell,

n∑

i=1

ŵi(x)∆(x, xi)
2 6 diam(Aj)

2,

with
∑n
i=1 ŵi(x)∆(x, xi)

2 = 1
n

∑n
i=1 ∆(x, xi)

2 6 diam(X)2 for empty cells. Thus, sepa-
rating the cases nAj = 0 and nAj > 0:

∫

X

E

[ n∑

i=1

ŵi(x)∆(x, xi)
2

]
dp(x) 6

∑

j∈J
P(Aj)E

[
diam(Aj)

21nAj
>0 + diam(X)21nAj

=0

]

6
∑

j∈J
P(Aj)

[
diam(Aj)

2 + (1 − P(Aj))
ndiam(X)2

]

=
∑

j∈J
P(Aj)diam(Aj)

2+
∑

j∈J
P(Aj)(1−P(Aj))

n diam(X)2.

Using that u(1− u)n 6 ue−nu 6 1/(2n) for u ∈ [0, 1], we get

∫

X

E

[ n∑

i=1

ŵi(x)∆(x, xi)
2

]
dp(x)6

∑

j∈J
P(Aj)diam(Aj)

2 +
1

2

|J |
n
× diam(X)2,

which leads to the desired term.

6.3.2 k-nearest Neighbor

Here, since all weights are equal to zero, except k of them, which are equal to 1
k , we

have
∑n
i=1 ŵi(x)2 = 1

k , so the variance term will go down as soon as k tends to infinity.
For the bias term, the needed term

∑n
i=1 ŵi(x)∆(xi, x)2 is equal to the average of the

squared distances between x and its k-nearest neighbors within {x1, . . . , xn}, and this is
less than the expected distance to the kth-nearest neighbor xik(x), for which lemmas 6.1
and 6.2, taken from theorem 2.4 by Biau and Devroye (2015), give an estimate for the
ℓ∞-distance, and thus for all distances by equivalence of norms on Rd.

Lemma 6.1 (Distance to nearest neighbor) Consider a probability distribution with
compact support in X ⊂ Rd, and n+1 points x1, . . . , xn, xn+1 sampled i.i.d. from X. Then
the expected squared ℓ∞-distance between xn+1 and its first-nearest neighbor is less than

4diam(X)2

n2/d for d > 2, and less than 2
ndiam(X)2 for d = 1.

Proof We denote by x(i) a nearest neighbor of xi among the other n points. Since all
n + 1 points are i.i.d., we can permute the indices without changing the distributions,
and all ‖xi − x(i)‖2∞ have the same distribution as ‖xn+1 − x(n+1)‖2∞; thus, we can

instead compute 1
n+1

∑n+1
i=1 E

[
‖xi − x(i)‖2∞

]
. We denote by Ri = ‖xi − x(i)‖∞ and, for

simplicity, assume Ri > 0 for all i (the general case is left as an exercise). Then the sets
Bi = {x ∈ Rd, ‖x− xi‖∞ < Ri

2 } are disjoint since for i 6= j, ‖xi − xj‖∞ > max{Ri, Rj}.



6.3. GENERIC SIMPLEST CONSISTENCY ANALYSIS 169

See the following illustration in two dimensions, with squares representing sets Bi centered
at xi (represented as dots):

Moreover, their union has a diameter less than diam(X)+diam(X) = 2diam(X). Thus,
the volume of the union of all sets Bi, which is equal to the sum of their volumes, is less

than
(
2diam(X)

)d
. Thus, we have

∑n+1
i=1 R

d
i 6

(
2diam(X)

)d
. Therefore, by Jensen’s

inequality, for d > 2,

( 1

n+ 1

n+1∑

i=1

R2
i

)d/2
6

1

n+ 1

n+1∑

i=1

(Ri)
d 6

2ddiam(X)d

n+ 1
,

leading to the desired result. For d = 1, we have
(

1
n+1

∑n+1
i=1 R

2
i

)
6diam(X)

(
1

n+1

∑n+1
i=1 Ri

)
,

which is less than 2
n+1diam(X)2.

Lemma 6.2 (Distance to k-nearest-neighbor) Let k > 1. Consider a probability
distribution with compact support in X ⊂ Rd, and n+ 1 points x1, . . . , xn, xn+1 sampled
i.i.d. from X. Then the expected squared ℓ∞-distance between xn+1 and its k-nearest

neighbor is less than 8diam(X)2
(
2k
n

)2/d
for d > 2, and less than 8k

n diam(X)2 for d = 1.

Proof (�) Without loss of generality, we assume that 2k 6 n (otherwise, the proposed
bounds are trivial). We can then divide randomly (and independently) the n first points
into 2k sets of a size of approximately n

2k . We denote xj(k) a 1-nearest neighbor of xn+1

within the jth set. The squared distance from xn+1 to the k-nearest neighbor among all
first n points is less than the kth smallest of the distances ‖xn+1−xj(k)‖2∞, j ∈ {1, . . . , 2k}
because we take a k-nearest neighbor over a smaller set. This kth smallest distance is
less than 1

k

∑2k
j=1 ‖xn+1 − xj(k)‖2∞ (it is a general fact that the k-smallest element among

nonnegative p elements is less than their sum divided by p− k, applied here for p = 2k).

Thus, using lemma 6.1 on the 1-nearest neighbor from n
2k points, we get that the

desired averaged distance is less than, for d > 2,

1

k

2k∑

j=1

4
diam(X)2

( n2k )2/d
= 8

diam(X)2

n2/d
(2k)2/d.

A similar argument can be extended to d = 1 (proof left as an exercise).



170 CHAPTER 6. LOCAL AVERAGING METHODS

Putting things together, we get the following result for the consistency of k-nearest neigh-
bor regression.

Proposition 6.2 (Convergence rate for k-nearest neighbors) Assume a bounded
noise (assumption (H-1)), a Lipschitz-continuous target function (assumption (H-2)),
and an input distribution with bounded support X. Then for the k-nearest-neighbor esti-
mate f̂ with the ℓ∞-norm, we have, for d > 2,

∫

X

E
[
(f̂(x) − f∗(x))2

]
dp(x) 6

σ2

k
+ 8B2diam(X)2

(2k

n

)2/d

. (6.9)

Balancing the two terms in equation (6.9) is obtained with k ∝ n2/(2+d), and we get the
same result as for the other local averaging schemes. See more details in Chen and Shah
(2018) and Biau and Devroye (2015).

Exercise 6.3 Show that if the Bayes rate is 0 (i.e., σ = 0), then the 1-nearest-neighbor
predictor is consistent.

Experiments. For the problem shown in section 6.2, we plot in figure 6.5 (middle)
training and testing errors averaged over 32 replications (with error bars showing the
standard deviations), where we clearly see the trade-off in the choice of k.

6.3.3 Kernel Regression (Nadaraya-Watson) (�)

In this section, we assume that X = Rd, and for simplicity, that the distribution of the
inputs has a density (also denoted as p) with respect to the Lebesgue measure. We also
assume that the kernel is of the form k(x, x′) = qh(x − x′) = h−dq( 1

h (x − x′)) for a
probability density q : Rd → R+. The function qh is also the density of hz when z has
density q(z) (it thus gets more concentrated around 0 as h tends to zero). With these
notations, the weights can be written as

ŵi(x) =
qh(x− xi)∑n
j=1 qh(x− xj)

.

Smoothing by convolution. When performing kernel regression, quantities of the
form 1

n

∑n
i=1 qh(x− xi)g(xi) naturally appear. When the number n of observations goes

to infinity and x is fixed, by the law of large numbers, it tends to

∫

Rd

qh(x− z)g(z)p(z)dz

almost surely, which is exactly the convolution between function qh and function pg,
which we can denote as [(pg)∗ qh](x). Function qh is a probability density that puts most
of its weights at a range of values of order h (e.g., for kernels like the Gaussian kernel
or the box kernel). Thus, convolution will smooth function pg by averaging values at
range h. Therefore, when h goes to zero, it converges to the function pg itself. See the
following example for g = 1:



6.3. GENERIC SIMPLEST CONSISTENCY ANALYSIS 171

x

p(x)

Smoothed(p)(x)

We can now look at the generalization bound from equation (6.5), and see how it
applies to kernel regression. We now consider the ℓ2-distance for simplicity and the
variance and bias terms separately, first with an asymptotic informal result where both h
tends to zero and n tends to infinity, and then with a formal result.

Variance term. We have, for fixed x ∈ X:

n

n∑

i=1

ŵi(x)2 =
1
n

∑n
i=1 qh(x− xi)2(

1
n

∑n
i=1 qh(x− xi)

)2 .

Using the law of large numbers and the smoothing reasoning previously discussed, this
sum n

∑n
i=1 ŵi(x)2 is converging almost surely to

∫
Rd qh(x− z)2p(z)dz

( ∫
Rd qh(x− z)p(z)dz

)2 =
[q2h ∗ p](x)

[qh ∗ p](x)2
. (6.10)

When h tends to zero, then the denominator [qh ∗ p](x)2 in equation (6.10) tends to
p(x)2 because the bandwidth of the smoothing goes to zero. The numerator in equa-
tion (6.10) corresponds, up to a multiplicative constant, to the smoothing of p by the

density x 7→ qh(x)
2

∫
Rd
qh(u)2du

, and it is thus asymptotically equivalent to p(x)
∫
Rd qh(u)2du =

p(x)h−d
∫
Rd q(u)2du.

Overall, when n tends to infinity, and h tends to zero, we get, asymptotically for x
fixed,

n∑

i=1

ŵi(x)2 ∼ 1

nhd
1

p(x)

∫

Rd

q(u)2du,

and thus, still asymptotically,

∫

X

[ n∑

i=1

ŵi(x)2
]
p(x)dx ∼ 1

nhd
vol(supp(p))

∫

Rd

q(u)2du,

where vol(supp(p)) is the volume of the support of p in Rd (the closure of all x for which
p(x) > 0), which we assume to be bounded.

Bias. With the same intuitive reasoning, we get when n tends to infinity (for ∆ the
ℓ2-norm distance):

n∑

i=1

ŵi(x)∆(xi, x)2 →
∫
Rd qh(x− z)‖x− z‖22 p(z)dz∫

Rd qh(x− z)p(z)dz
.



172 CHAPTER 6. LOCAL AVERAGING METHODS

The denominator has the same shape as for the variance term and tends to p(x) when h
tends to zero. With the change of variable u = 1

h (x − z), the numerator is equal
to

∫
Rd qh(x − z)‖x − z‖22p(z)dz = h2

∫
Rd q(u)‖u‖22p(x − uh)du, which is equivalent to

h2p(x)
∫
Rd q(u)‖u‖22du when h tends to zero. Overall, when n tends to infinity and h

tends to zero, we get

∫

X

[ n∑

i=1

ŵi(x)∆(xi, x)2
]
p(x)dx ∼ h2

∫

Rd

q(u)‖u‖22du.

Therefore, overall we get an asymptotic bound proportional to (up to constants depending
on q)

σ2

nhd
+B2h2,

leading to the same upper bound as for partitioning estimates by setting h ∝ n−1/(d+2).

Formal reasoning (��). We can make this informal reasoning more formal using
concentration inequalities, leading to nonasymptotic bounds of the same nature (simply
more complicated) that make explicit the joint dependence on n and h. We will prove
the result given in proposition 6.3.

Proposition 6.3 (Convergence rate for Nadaraya-Watson estimation) Assume
a bounded noise (assumption (H-1)), a Lipschitz-continuous target function (assumption
(H-2)), and a function q : Rd → R such that

∫
Rd q(z)dz = 1, and ‖q‖∞ = supz∈Rd q(z)

is finite. Moreover, assume that p has bounded support X and density upper-bounded by
‖p‖∞. Then, for the Nadaraya-Watson estimate f̂ , we have
∫

X

E[(f̂(x) − f∗(x))2]dp(x) 6

[
8‖q‖∞
nhd

(
σ2 +

B

2
diam(X)2

)
+ 2Bh2‖p‖∞c

]
· Ch, (6.11)

where c =
∫
Rd q(u)‖u‖22du and Ch =

∫
X

p(x)
[qh∗p](x)dx.

With additional assumptions, we can show that the constant Ch remains bounded when h
tends to zero (see exercise 6.4). Before giving the proof for this proposition, we note that
the optimal bandwidth parameter is indeed proportional to h ∝ n−1/(d+2), with an overall
excess risk proportional to n−2/(d+2), like the two other types of estimators.

△! As opposed to positive-definite kernel methods in chapter 7, for local aver-
aging, consistency is only achieved if the bandwidth tends to zero when the
number n of observations tends to infinity.

Proof of proposition 6.3 (��) As for the proof for partitioning estimates (equa-
tion (6.7)), to deal with the denominator in the definition of the weights, we can first use
Bernstein’s inequality (single-sided version of equation (1.13) in section 1.2.3), applied to
the random variables qh(x− xi), which is almost surely in [0, h−d‖q‖∞], to bound

P

(
1

n

n∑

i=1

qh(x− xi) 6 E[qh(x− z)]− ε
)
6 exp

(
− nε2

2E[q2h(x− z)] + 2‖q‖∞h−dε/3
)
.



6.3. GENERIC SIMPLEST CONSISTENCY ANALYSIS 173

We get with ε = 1
2E[qh(x− z)], using E[q2h(x− z)] 6 ‖q‖∞h−dE[qh(x− z)], for the event

A(x) =
{

1
n

∑n
i=1 qh(x−xi) 6 1

2E[qh(x− z)]
}

(which corresponds to equation (6.8) in the
proof of proposition 6.1),

P
(
A(x)

)
6 exp

( −n4 (E[qh(x− z)])2

2E[q2h(x − z)] + E[qh(x− z)]h−d‖q‖∞/3
)

6 exp
(−n4E[qh(x− z)]

(7/3)h−d‖q‖∞

)
6

‖q‖∞
nhdE[qh(x − z)]

· 1
e

28

3
6

4‖q‖∞
nhdE[qh(x − z)]

, (6.12)

where we have used αe−α 6 1/e for α > 0. We can now bound bias and variance.

Variance. For a fixed x ∈ X, we get, since ŵi(x) = q
(
1
h (x− xi)

)
/
∑n
j=1 q

(
1
h (x− xj)

)
,

E

[ n∑

i=1

ŵi(x)2
]

= E

[
1A(x)

n∑

i=1

ŵi(x)2
]

+ E

[
1A(x)c

n∑

i=1

ŵi(x)2
]

6 P(A(x)) +
4

(
nE[qh(x− z)]

)2E
[ n∑

i=1

q
( 1

h
(x− xi)

)2
]

6
4‖q‖∞

nhdE[qh(x− z)]
+

4E
[
qh(x− z)2

]

n
[
Eqh(x− z)

]2 6
8‖q‖∞

nhdE[qh(x− z)]
.

Moreover, we have E[qh(x−z)] =
∫
Rd p(x−hu)q(u)du = [p∗qh](x). This leads to an overall

bound on the variance term as σ2

∫

X

E

[ n∑

i=1

ŵi(x)2
]
p(x)dx 6

8‖q‖∞σ2

nhd

∫

X

p(x)

[p ∗ qh](x)
dx.

Bias. We have a similar reasoning for the bias term. Indeed, we get for a given x ∈ X,
using the bound in equation (6.12),

E

[ n∑

i=1

ŵi(x)‖x − xi‖22
]

= E

[
1A(x)

n∑

i=1

ŵi(x)‖x− xi‖22
]

+ E

[
1A(x)c

n∑

i=1

ŵi(x)‖x − xi‖22
]

6 P(A(x)) · diam(X)2 +
2

nE[qh(x− z)]
· nE[qh(x− z)‖x− z‖22]

6
4‖q‖∞

nhd[qh ∗ p](x)
· diam(X)2 +

2h2

[qh ∗ p](x)
·
∫

Rd

q(u)‖u‖22p(x− uh)du

6
4‖q‖∞

nhd[qh ∗ p](x)
· diam(X)2 +

2h2‖p‖∞
[qh ∗ p](x)

·
∫

Rd

q(u)‖u‖22du.

This leads to an overall bound on the bias term equal to B2

∫

X

E

[ n∑

i=1

ŵi(x)‖x−xi‖22
]
p(x)dx,

which is less than B2
∫
X

p(x)
[qh∗p](x)dx ·

[
4‖q‖∞

nhd diam(X)2 + 2h2‖p‖∞
( ∫

Rd q(u)‖u‖22du
)]
.



174 CHAPTER 6. LOCAL AVERAGING METHODS

Putting things together, we get that the excess risk
∫
X
E[(f̂(x)− f∗(x))2]dp(x) is less

than
[

8‖q‖∞
nhd

(
σ2 +

B

2
diam(X)2

)
+ 2Bh2‖p‖∞

(∫

Rd

q(u)‖u‖22du
)]
·
∫

X

p(x)

[qh ∗ p](x)
dx,

which is exactly the desired bound.

Exercise 6.4 Assume that the support X of the density p of inputs is bounded and that p
is strictly positive and continuously differentiable on X. Show that for h small enough

(with an explicit upper bound), then Ch =
∫
X

p(x)
[qh∗p](x)dx 6 2vol(X).

Experiments. For the problem shown in section 6.2, we plot in figure 6.5 (right) train-
ing and testing errors averaged over 32 replications (with error bars showing the standard
deviations), where we clearly see the trade-off in the choice of h.

6.4 Universal Consistency (�)

Earlier in this chapter, we have required the following conditions on the weights:

•

∫

X

E

[ n∑

i=1

ŵi(x)∆(xi, x)2
]
dp(x) → 0 when n tends to infinity, to ensure that the

bias goes to zero.

•

∫

X

n∑

i=1

E[ŵi(x)2]dp(x) → 0 when n tends to infinity, to ensure that the variance

goes to zero.

This was enough to show consistency when the target function is Lipschitz-continuous
in Rd. This also led to a precise rate of convergence, which turns out to be optimal for
learning with target functions that are Lipschitz-continuous and for which the curse of
dimensionality cannot be avoided (see chapter 15).

To show universal consistency (i.e., consistency for any square-integrable functions),
we need an extra technical assumption, which was first outlined by Stone (1977): there
is c > 0 such that for any nonnegative integrable function h : X→ R+,

∫

X

n∑

i=1

E
[
ŵi(x)h(xi)

]
dp(x) 6 c ·

∫

X

h(x)dp(x). (6.13)

△! In this discussion, as in the rest of this chapter, we only take the expectation with
respect to the training data, while we use the integral notation to take the expectation
with respect to the training distribution.

If equation (6.13) is satisfied, for any ε > 0, and for any target function f∗ ∈ L2(p), we
can find function g, which is B(ε)-Lipschitz-continuous and such that ‖f∗ − g‖L2(p) 6 ε,



6.4. UNIVERSAL CONSISTENCY (�) 175

because the set of Lipschitz-continuous functions is dense in L2(p) (see, e.g., Ambrosio
et al., 2013).

Then we have, for a given x ∈ X,

E

[( n∑

i=1

ŵi(x)
[
f∗(xi)− f∗(x)

])2]

6 E

[( n∑

i=1

ŵi(x)
(∣∣f∗(xi)− g(xi)

∣∣ +
∣∣g(xi)− g(x)

∣∣ +
∣∣g(x)− f∗(x)

∣∣
)2]

6 3E

[( n∑

i=1

ŵi(x)
∣∣f∗(xi)− g(xi)

∣∣
)2]

+ 3E

[( n∑

i=1

ŵi(x)
∣∣g(xi)− g(x)

∣∣
)2]

+3E

[( n∑

i=1

ŵi(x)
∣∣g(x)− f∗(x)

∣∣
)2]

using the inequality (a+b+c)2 6 3a2+3b2+3c2,

6 3E

[( n∑

i=1

ŵi(x)
∣∣f∗(xi)− g(xi)

∣∣
)2]

+ 3E

[( n∑

i=1

ŵi(x)B(ε)∆(x, xi)

)2]

+3E
[∣∣g(x)− f∗(x)

∣∣2
]

since weights sum to 1, and g is Lipschitz-continuous.

We can further upper-bound E
[(∑n

i=1 ŵi(x)
[
f∗(xi)− f∗(x)

])2]
by

3E

[ n∑

i=1

ŵi(x)
∣∣f∗(xi)− g(xi)

∣∣2
]

+ 3B(ε)2E

[ n∑

i=1

ŵi(x)∆(x, xi)
2

]

+3E
[∣∣g(x)− f∗(x)

∣∣2
]

using Jensen’s inequality on the second term,

6 3c · E
[∣∣f∗(x) − g(x)

∣∣2] + 3B(ε)2E

[ n∑

i=1

ŵi(x)∆(x, xi)
2

]
+ 3E

[∣∣g(x)− f∗(x)
∣∣2
]
,

using equation (6.13). We can now integrate with respect to x to get

∫

X

E

[( n∑

i=1

ŵi(x)
[
f∗(xi)− f∗(x)

])2]
dp(x)

6 3c · ε2 + 3B(ε)2
∫

X

E

[ n∑

i=1

ŵi(x)∆(x, xi)
2

]
dp(x) + 3ε2. (6.14)

Proving universal consistency. We can then combine the bound in equation (6.14)
(which gives a bound on the bias) with equation (6.3), starting from the excess risk,∫
X
E
[
(f̂(x)− f∗(x))2

]
dp(x), less than

∫

X

E

[( n∑

i=1

ŵi(x)
∣∣f∗(xi)− f∗(x)

∣∣
)2]

dp(x) + σ2

∫

X

E

[ n∑

i=1

ŵi(x)2
]
dp(x),

which is the sum of a bias term and a variance term; and for which, together with
equation (6.14), we can use the same tools for consistency as for equation (6.5).



176 CHAPTER 6. LOCAL AVERAGING METHODS

To prove universal consistency, we fix a certain ε > 0, from which we obtain a
Lipschitz constant B(ε). For such B(ε), we know how to make the (squared) bias
term B(ε)2

∫
X
E
[∑n

i=1 ŵi(x)∆(x, xi)
2
]
dp(x)+σ2

∫
X
E
[∑n

i=1 ŵi(x)2
]
dp(x) less than ε, by

choosing an appropriate hyperparameter and a number of observations n (see previous
sections). Thus, if the extra condition in equation (6.13) is satisfied, these three methods
are universally consistent. Note that, in general, n has to grow unbounded when ε tends
to zero without any a priori bound (since B(ε) cannot be bounded without assumptions
on the target function).

We can now look at the three cases:

• Partitioning: We have then c = 2, and we get universal consistency. Indeed, using
the same notations as in sections 6.2.2 and 6.3.1, we have for any fixed x ∈ Aj ,
j ∈ J , and f a nonnegative function:

n∑

i=1

E
[
ŵi(x)f(xi)

]
= E

[
1nAj

>0
1

nAj

∑

i s.t. xi∈Aj

f(xi) + 1nAj
=0

1

n

n∑

i=1

f(xi)

]

= E

[ n∑

i=1

1xi∈Ajf(xi)

1 +
∑

i′ 6=i 1xi′∈Aj

+1nAj
=0

1

n

n∑

i=1

f(xi)

]

6

n∑

i=1

E
[
1xi∈Ajf(xi)

]
· E

[ 1

1 +
∑
i′ 6=i 1xi′∈Aj

]
+ E[f(z)]

by independence of x1, . . . , xn,

6 nE
[
1xi∈Ajf(xi)

]
· 1

nP(Aj)
+ E[f(z)] using exercise 6.5,

= E[f(z)|z ∈ Aj ] + E[f(z)],

where z is distributed as x. Thus, integrating with respect to x and summing over
j ∈ J , we get

∫

X

n∑

i=1

E
[
ŵi(x)h(xi)

]
dp(x) 6

∑

j∈J

(
P(Aj)E[f(z)|z ∈ Aj ] +P(Aj)·E[f(z)]

)
= 2E[f(z)],

which is exactly equation (6.13) with c = 2.

Exercise 6.5 If Z1, . . . , Zm are i.i.d. Bernoulli random variables with parameter
ρ ∈ (0, 1]. Show that E

[
1

1+Z1+···+Zm

]
6 1

(m+1)ρ .

• Kernel regression: It can be shown using the same type of techniques outlined for
consistency for Lipschitz-continuous functions.

• k-nearest neighbor: The condition in equation (6.13) is not easy to show and is often
referred to as “Stone’s lemma.” See lemma 10.7 from Biau and Devroye (2015).



6.5. ADAPTIVITY (��) 177

6.5 Adaptivity (��)

As shown earlier in this chapter, all local averaging techniques achieve the same per-
formance on Lipschitz-continuous functions, which is an unavoidable bad performance
when d grows (the curse of dimensionality). One extra order of smoothness (i.e., on Rd,
two bounded derivatives) can be used to lead to a convergence rate proportional to
n−4/(4+d) (see section 5.4 in Wasserman, 2006). However, the higher smoothness of
the target function does not seem to be easy to use; that is, even if the target func-
tion is very smooth, the local averaging techniques will not be able to attain better
convergence rates. The impossibility comes from the bias term, which is the square of∑n

i=1 ŵi(x)
[
f∗(xi)−f∗(x)

]
in section 6.3: when f∗ is once differentiable, f∗(xi)−f∗(x) =

O(‖xi − x‖) and this is what we used in the proofs; when f∗ is twice-differentiable, by
a Taylor expansion, f∗(xi) − f∗(x) = (xi − x)⊤(f∗)′(x) + O(‖xi − x‖2), and we can
choose weights such that

∑n
i=1 ŵi(x)(x−xi) = O(‖x−xi‖2) (this is possible because the

components of x − xi may take positive and negative values, leading to potential can-
cellations; see exercise 6.6); but when f is three times differentiable or more, obtaining
a term O(‖xi − x‖3) that would come from a Taylor expansion is possible only if the
weights satisfy

∑n
i=1 ŵi(x)(x − xi)(x− xi)⊤ = O(‖xi − x‖3), which is not possible when

the weights are nonnegative as no cancellations are possible.

Positive-definite kernel methods will provide simple ways in chapter 7, as well as
neural networks in chapter 9, to take advantage of smoothness. Among local averaging
techniques, however, there are ways to do it. For example, using locally linear regression,
where one solves for any test point x, the following local least-squares regression problem
with an affine function:

inf
β1∈Rd, β0∈R

n∑

i=1

ŵi(x)(yi − β⊤
1 xi − β0)2.

(note that the regular regressogram corresponds to setting β1 = 0). In other words we
solve

inf
β1∈Rd, β0∈R

∫

Y

(y − β⊤
1 x− β0)2dp̂(y|x).

The running time is now O(nd2) per testing point, as we have to solve a linear least-
squares (see chapter 3), but the performance, both empirical and theoretical, improves
over plain local averaging (Tsybakov, 2008). See an example with the regressogram
weights in figure 6.6. In order to be adaptive to higher degrees of smoothness, local
polynomial regression can be used at an increased computational cost (see, e.g., Fan
et al., 1997, and references therein).



178 CHAPTER 6. LOCAL AVERAGING METHODS

Figure 6.6. Locally affine regression based on the regressogram, on the same data as
figure 6.2, for three values of the number |J | of sets within in the partition. Notice the
difference between this and figure 6.2.

Exercise 6.6 (�) For the Nadaraya Watson estimator, show that when the target func-
tion and the kernel are twice continuously differentiable, then the bias term is bounded by
a constant times h4. Show that the optimal bandwidth selection leads to a rate proportional
to n−4/(4+d).

6.6 Conclusion

In this chapter, we have explored local averaging methods, which employ the explicit
formula for the Bayes predictor and explicitly aim at approximating it without the need
for optimization (as opposed to all the other methods presented in this book). While
they can potentially adapt to complex prediction functions, they suffer from the curse of
dimensionality (i.e., the number of observations has to be exponential in dimension to
create good predictions). Without further assumptions, this is unavoidable, but in the
following chapters, we will see that other learning techniques can take advantage of extra
assumptions, such as the smoothness of the prediction function (kernels in chapter 7 and
neural networks in chapter 9), and dependence being only a linear projection of the inputs
(this will be possible only for neural networks). A key feature of these methods is that
they will not look at local interactions with characteristic distance tending to zero when
the number of observations goes to infinity (as local averaging does to reach statistical
consistency).

Like all techniques presented in this book, local averaging methods can also be used
within ensemble methods that combine several predictors learned on modifications of the
original dataset (see chapter 10).



Chapter 7

Kernel Methods

Chapter Summary
• Kernels and representer theorem: Learning with infinite-dimensional linear models

can be done in an amount of time that depends on the number of observations,
using a positive-definite kernel function.

• Kernels on Rd: Such models include polynomials and classical smooth Sobolev
spaces (functions with square-integrable partial derivatives of order greater
than d/2).

• Algorithms: Convex optimization algorithms can be applied with theoretical guar-
antees and many dedicated developments to avoid the quadratic complexity of
computing the kernel matrix.

• Analysis of well-specified models: When the target function is in the associated
function space, learning can be done with rates that are independent of dimension.

• Analysis of misspecified models: If the target function is not in the function space,
the curse of dimensionality cannot be avoided in the worst-case situation, but the
methods are adaptive to any amount of intermediate smoothness.

• Sharp analysis of ridge regression: For the square loss, a more involved analysis
leads to optimal rates in various situations in Rd.

In this chapter, we consider positive-definite kernel methods, with only a brief account
of the main results. For more details, see Schölkopf and Smola (2001), Shawe-Taylor and
Cristianini (2004), Christmann and Steinwart (2008), and teaching slides from Jean-
Philippe Vert (available from https://jpvert.github.io/).

179

https://jpvert.github.io/


180 CHAPTER 7. KERNEL METHODS

7.1 Introduction

In this chapter, we study empirical risk minimization for linear models–that is, prediction
functions fθ : X → R that are linear in their parameters θ (i.e., functions of the form
fθ(x) = 〈θ, ϕ(x)〉H), where ϕ : X→ H and H is a Hilbert space (essentially a Euclidean
space with potentially infinite dimension)1 and θ ∈ H. We will often use the notation
〈θ, ϕ(x)〉 in this chapter instead of 〈θ, ϕ(x)〉H when doing so is not ambiguous.

The key differences between this chapter and chapter 3 on least-squares estimation
are that (1) we are not restricted to the square loss (although many of the same con-
cepts will play a role, in particular, in the analysis of ridge regression); and (2) we will
explicitly allow infinite-dimensional models, thus extending the dimension-free bounds
from chapter 3. The notion of kernel function (or simply kernel) k(x, y) = 〈ϕ(x), ϕ(y)〉H
will be particularly fruitful.

Why is this relevant? The study of infinite-dimensional linear methods is important
for several reasons:

• Understanding linear models in finite but very large input dimensions requires tools
from infinite-dimensional analysis.

• Kernel methods allow the handling of very expressive models, embedded in the
framework of linear models.

• Kernel methods lead to simple and stable algorithms, with theoretical guarantees
and adaptivity to the smoothness of the target function (as opposed to local aver-
aging techniques from chapter 6). They can be applied in high dimensions, with
good practical performance (note that for supervised learning problems with many
observations in domains such as computer vision and natural language processing,
they do not achieve the state of the art anymore, which is now set by neural net-
works presented in chapter 9). They can also be applied to many numerical analysis
tasks (Schaback and Wendland, 2006).

• They can be easily applied when input observations are not vectors (see section 7.3.4).

• They are helpful to understand other models such as neural networks (see chapter 9)
and overparameterized models (see chapter 12).

△! The type of kernel considered here is different from the ones in chapter 6. The
ones here are positive-definite, while the ones from chapter 6 are nonnegative.
See more details in https://francisbach.com/cursed-kernels/.

1More precisely, this is a vector space that is endowed with an inner product and is complete for
the associated normed space topology. See https://en.wikipedia.org/wiki/Hilbert_space for more
details.

https://francisbach.com/cursed-kernels/
https://en.wikipedia.org/wiki/Hilbert_space


7.2. REPRESENTER THEOREM 181

7.2 Representer Theorem

Dealing with infinite-dimensional models initially seems impossible because algorithms
cannot be run in infinite dimensions. In this section, we show how the kernel function
plays a crucial role in achieving lower-dimensional algorithms.

As a motivation, we consider the optimization problem coming from machine learning
with linear models, with data (xi, yi) ∈ X× Y, i = 1, . . . , n:

min
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈ϕ(xi), θ〉) +
λ

2
‖θ‖2, (7.1)

assuming that the loss function ℓ is already from Y×R→ R and not from Y×Y→ R (e.g.,
hinge loss, logistic loss or least-squares; see section 4.1). Here, ϕ : X → H is the feature
map, and dot products and norms are taken with respect to the Hilbertian structure of H

The key property of the objective function in equation (7.1) is that it accesses the
input observations x1, . . . , xn ∈ X only through dot products 〈θ, ϕ(xi)〉, i = 1, . . . , n,
and that we penalize using the Hilbertian norm ‖θ‖. The following proposition is crucial
and has an elementary proof, due to Kimeldorf and Wahba (1971) for corollary 7.1, and
to Schölkopf et al. (2001) for the general form presented in proposition 7.1.

Proposition 7.1 (Representer theorem) Consider a feature map ϕ : X → H. Let
(x1, . . . , xn) ∈ Xn, and assume that the functional Ψ : Rn+1 → R is strictly increasing
with respect to the last variable. Then the infimum of

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2)

can be obtained by restricting to a vector θ in the span of ϕ(x1), . . . , ϕ(xn); that is, of the
form

θ =

n∑

i=1

αiϕ(xi),

with α ∈ Rn.

Proof Let θ ∈ H, and HD =
{∑n

i=1 αiϕ(xi), α ∈ Rn
}
⊂ H, the linear span of the

observed feature vectors. Let θD ∈ HD and θ⊥ ∈ H⊥
D be such that θ = θD + θ⊥,

a decomposition that is using the Hilbertian structure of H. Then ∀i ∈ {1, . . . , n},
〈θ, ϕ(xi)〉 = 〈θD, ϕ(xi)〉+〈θ⊥, ϕ(xi)〉 with 〈θ⊥, ϕ(xi)〉 = 0, by definition of the orthogonal:

HD

0

θ

θD

From the Pythagorean theorem, we get ‖θ‖2 = ‖θD‖2 + ‖θ⊥‖2. Therefore, we have

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2) = Ψ(〈θD, ϕ(x1)〉, . . . , 〈θD, ϕ(xn)〉, ‖θD‖2 + ‖θ⊥‖2)

> Ψ(〈θD, ϕ(x1)〉, . . . , 〈θD, ϕ(xn)〉, ‖θD‖2),



182 CHAPTER 7. KERNEL METHODS

with equality if and only if θ⊥ = 0 (since Ψ is strictly increasing with respect to the last
variable). Thus,

inf
θ∈H

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2) = inf
θ∈HD

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2),

which is exactly the desired result.

This implies that the minimizer of equation (7.1) can be found among the vectors of
the form θ =

∑n
i=1 αiϕ(xi), and thus as a finite-dimensional optimization problem (of

dimension n).

Corollary 7.1 (Representer theorem for supervised learning) For λ > 0, the in-
fimum of 1

n

∑n
i=1 ℓ(yi, 〈θ, ϕ(xi)〉) + λ

2 ‖θ‖2 can be obtained by restricting to vector θ of the
form θ =

∑n
i=1 αiϕ(xi), with α ∈ Rn.

It is important to note that there is no assumption on the loss function ℓ. In particular,
no convexity is assumed. This is to be contrasted to the use of duality in section 7.4.4,
where convexity will play a major role and similar α’s will be defined (but with some
notable differences).

Given corollary 7.1, we can reformulate the learning problem. We will need the kernel
function k : X×X→ R, which is a symmetric function equal to the dot product between
feature vectors:

k(x, x′) = 〈ϕ(x), ϕ(x′)〉.
We then have, if θ =

∑n
i=1 αiϕ(xi),

∀j ∈ {1, . . . , n}, 〈θ, ϕ(xj)〉 =

n∑

i=1

αik(xi, xj) = (Kα)j ,

where K ∈ Rn×n is the kernel matrix (Gram matrix of the feature vectors), such that
Kij = 〈ϕ(xi), ϕ(xj)〉 = k(xi, xj), and

‖θ‖2 =
n∑

i=1

n∑

j=1

αiαj〈ϕ(xi), ϕ(xj)〉 =
n∑

i=1

n∑

j=1

αiαjKij = α⊤Kα.

We can then write the optimization problem solely as a function of y, K, and α:

inf
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈θ, ϕ(xi)〉) +
λ

2
‖θ‖2 = inf

α∈Rn

1

n

n∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα. (7.2)

Note that for any test point x ∈ X, we have defined the prediction function as

f(x) = 〈θ, ϕ(x)〉 =

n∑

i=1

αi〈ϕ(xi), ϕ(x)〉 =

n∑

i=1

αik(x, xi).

Thus, the input observations are summarized in the kernel matrix and the kernel
function, regardless of the dimension of H. Moreover, explicitly computing the feature
vector ϕ(x) is never needed, as we solely need dot products. This is the kernel trick,
which allows one to do the following:



7.3. KERNELS 183

• Replace the search space H by Rn; this is interesting computationally when the
dimension of H is infinite or very large (see more details in section 7.4).

• Separate the representation problem (design of kernels on a set X) and the design
of algorithms and their analysis (which only use the kernel matrix K); this is in-
teresting because a wide range of kernels can be defined for many data types (see
more details in section 7.3).

Minimum norm interpolation. The representer theorem can be extended to an in-
terpolating estimator with essentially the same proof (see proposition 7.2).

Proposition 7.2 Given x1, . . . , xn ∈ X, and y ∈ Rn such that there is at least one θ ∈ H

such that yi = 〈θ, ϕ(xi)〉 for all i ∈ {1, . . . , n}, then among all these θ ∈ H that interpolate
the data, the one of minimum norm can be expressed as θ =

∑n
i=1 αiϕ(xi), with α ∈ R

n

such that y = Kα. (This system must then have a solution.)

7.3 Kernels

In section 7.2, we have introduced the kernel function k : X × X → R as obtained from
a dot product k(x, x′) = 〈ϕ(x), ϕ(x′)〉. The associated kernel matrix is then a matrix
of dot products between pairs of points (i.e., the Gram matrix of feature vectors) and
is thus symmetric positive semidefinite (see the proof of proposition 7.3); that is, all its
eigenvalues are nonnegative, or, equivalently, ∀α ∈ Rn, α⊤Kα > 0. Reciprocally, it turns
out that this simple property is enough to ensure the existence of a feature function.

△! If H = Rd, and Φ ∈ Rn×d is the matrix of features (design matrix in the context of
regression) with the ith row composed of ϕ(xi), then K = ΦΦ⊤ ∈ Rn×n is the kernel
matrix, while 1

nΦ⊤Φ ∈ Rd×d is the empirical noncentered covariance matrix.

Definition 7.1 (Positive-definite kernels) A function k : X × X → R is a positive-
definite kernel if and only if all kernel matrices resulting from this kernel function are
symmetric positive semidefinite.

The following important proposition dates back to Aronszajn (1950) and comes with
an elegant constructive proof. Note the total absence of assumptions on the set X.

Proposition 7.3 (Aronszajn, 1950) The function k : X×X→ R is a positive-definite
kernel if and only if there exists a Hilbert space H, and a function ϕ : X→ H such that
for all x, x′ ∈ X, k(x, x′) = 〈ϕ(x), ϕ(x′)〉H.

Partial proof We first assume that k(x, x′) = 〈ϕ(x), ϕ(x′)〉H. Then, for any α ∈ Rn

and points x1, . . . , xn ∈ X, we have, for the kernel matrix K associated with these points,

α⊤Kα =
n∑

i,j=1

αiαj〈ϕ(xi), ϕ(xj)〉H =

∥∥∥∥
n∑

i=1

αiϕ(xi)

∥∥∥∥
2

H

> 0.

Thus, k is a positive-definite kernel.

For the other direction, we consider a positive-definite kernel, and we will construct
a space of functions explicitly from X to R with a dot product. We define H′ ⊂ RX as



184 CHAPTER 7. KERNEL METHODS

the set of linear combinations of kernel functions
∑n
i=1 αik(·, xi) for any integer n, any

set of n points, and any α ∈ Rn. This is a vector space on which we can define a dot
product through

〈 n∑

i=1

αik(·, xi),
m∑

j=1

βjk(·, x′j)
〉

=

n∑

i=1

m∑

j=1

αiβjk(xi, x
′
j). (7.3)

We first check that this is a well-defined function on H′ ×H′; that is, the value does not
depend on the chosen representation as a linear combination of kernel functions. Indeed,
if we denote f =

∑n
i=1 αik(·, xi), then the dot product in equation (7.3) is equal to∑m

j=1 βjf(x′j) and thus depends only on the values of f , not on its representation (and
it is similar for the function on the right of the dot product).

This dot product is bi-linear and always nonnegative when applied to the same func-
tion (i.e., in equation (7.3), when α = β and the points (xi) and (x′j) are the same, we get
a nonnegative number because k is positive-definite). Moreover, this dot product satisfies
the two properties for any f ∈ H′, x, x′ ∈ X:

〈k(·, x), f〉 = f(x) and 〈k(·, x), k(·, x′)〉 = k(x, x′).

These are called “reproducing properties” and correspond to an explicit construction of
the feature map ϕ(x) = k(·, x).

To obtain a dot product, we only need to show that 〈f, f〉 = 0 implies f = 0. This
can be shown using Cauchy-Schwarz inequality,2 leading to, for any x ∈ X, the sequence
of bounds f(x)2 = 〈f, k(·, x)〉2 6 〈f, f〉〈k(·, x), k(·, x)〉 = 〈f, f〉k(x, x), leading to f = 0
as soon as 〈f, f〉 = 0.

Space H′ is called “pre-Hilbertian” because it is not complete.3 It can be completed
into a Hilbert space H with the same reproducing property. See Aronszajn (1950) and
Berlinet and Thomas-Agnan (2004) for more details.

We can make the following observations:

• H is called the “feature space,” and ϕ the “feature map,” which goes from the
“input space” X to H. Note that the existence of a feature map is needed only for
the analysis (e.g., in sections 7.5 and 7.6), since algorithms will only use the kernel
function values (see section 7.4).

• No assumption is needed about the input space X, and no regularity assumption is
needed for k. Up to isomorphisms, the feature map and space happen to be unique.
For any positive-definite kernel k, the particular space of functions that we built
is called the reproducing kernel Hilbert space (RKHS) associated with k, for which
ϕ(x) = k(·, x).

2The Cauchy-Schwarz inequality applies to bi-linear forms that are symmetric positive semidefinite,
but may not be positive-definite; that is, 〈f, f〉 = 0 may not imply that f = 0.

3See https://en.wikipedia.org/wiki/Complete_metric_space for definitions.

https://en.wikipedia.org/wiki/Complete_metric_space


7.3. KERNELS 185

• A classical intuitive interpretation of the reproducing property identity 〈k(·, x), f〉 =
f(x) is that the function evaluation is the dot product with a function (this is, in
fact, another characterization; see exercise 7.1). This implies that not all Hilbert
spaces of real-valued functions on X are RKHSs. Indeed, for example, if L2(Rd)
(the space of square-integrable functions with respect to the Lebesgue measure)
was an RKHS, this would mean that there is a function k : X × X → R such that
f(x) = 〈f, k(·, x)〉L2(Rd) =

∫
Rd k(x, x′)f(x′)dx′. In other words, k(x, x′)dx′ would

be a Dirac measure at x, which is impossible (as Dirac measures have no density
with respect to the Lebesgue measure). Thus, L2(Rd) is a Hilbert space that is too
large to be an RKHS. We will see in the subsequent discussion that smaller spaces
of functions, with square-integrable derivatives of sufficiently high order, will be
RKHSs.

• Given a positive-definite kernel k, we can thus associate it with some feature map ϕ
such that k(x, y) = 〈ϕ(x), ϕ(y)〉H , but also with a space of functions on X with a
given norm, either directly through the RKHS or by looking at all functions fθ of
the form fθ(x) = 〈θ, ϕ(x)〉H, with a regularization term ‖θ‖2H. These two views are
equivalent.

△! From now on, we will denote elements of the Hilbert space H through the
notation f ∈ H to highlight the fact that we are considering a space of functions
from X to R, except for optimization algorithms in section 7.4, where we will use
the notation 〈θ, ϕ(x)〉H instead of f(x).

• In this chapter, following the same route as the rest of the book, we will adopt the
decision-theoretic approach set forth in section 2.2, with notions of loss functions
and risks. Positive-definite kernels and their associated function spaces can also
be studied using Bayesian inference through Gaussian processes, as briefly outlined
in section 14.3. See more details in Rasmussen and Williams (2006) and explicit
algorithmic and theoretical connections with results from this chapter in Kanagawa
et al. (2018).

Exercise 7.1 (��) Let H be a Hilbert space of real-valued functions on X endowed with
a dot product 〈·, ·〉H, such that for any x ∈ X, the linear form f 7→ f(x) is bounded (i.e.,
supf∈H, ‖f‖H61 |f(x)| is finite). Using the Riesz representation theorem, show that this
is an RKHS.

Kernel calculus. The set of positive-definite kernels on a set X is a cone; that is, it is
closed under addition and multiplication by a positive constant. In other words, if k1 and
k2 are two positive-definite kernels and λ1, λ2 > 0, then so is λ1k1 +λ2k2. A simple proof
follows from considering two feature maps ϕ1 : X → H1 and ϕ2 : X → H2, and noticing

that x 7→
(λ1/2

1 ϕ1(x)

λ
1/2
2 ϕ2(x)

)
∈ H1 ×H2 is a feature map for λ1k1 + λ2k2 (note the alternative

proof using that the sum of two positive semidefinite matrices is positive semidefinite).

Moreover, positive-definite kernels are closed under pointwise multiplication; that is,
if k1 and k2 are positive-definite kernels on the set X, so is (x, x′) 7→ k1(x, x′)k2(x, x′). For



186 CHAPTER 7. KERNEL METHODS

finite-dimensional kernels, where we can consider feature spaces H1 = Rd1 and H2 = Rd2 ,
the product kernel is associated with a feature space of dimension d1d2 and the feature
map x 7→

[
ϕ1(x)i1ϕ2(x)i2

]
i1∈{1,...,d1},i2∈{1,...,d2}. The general proof is left as an exercise.

Exercise 7.2 Show that if k : X×X→ R is a positive-definite kernel, so is the function
(x, x′) 7→ ek(x,x

′).

Kernels = features and functions. A positive-definite kernel thus defines a feature
map and a space of functions. Sometimes the feature map is easy to find, and other times
it is not (but in practice, we never need it). In the next subsections, we will look at the
main examples and describe the associated spaces of functions (and the corresponding
norms).

We now look at different ways of building the kernels by starting first from the feature
vector (e.g., linear kernels), from the kernel and explicit feature map (polynomial kernel),
from the norm (translation-invariant kernel on [0, 1]), or from the kernel without explicit
features (translation-invariant kernel on Rd).

7.3.1 Linear and Polynomial Kernels

We start this discussion with the most obvious kernels on X = R
d, for which feature maps

are easily found.

Linear kernel. We define k(x, x′) = x⊤x′. This kernel corresponds to a function space
composed of linear functions fθ(x) = θ⊤x, with an ℓ2-penalty ‖θ‖22. The kernel trick
can be useful when the input data have huge dimension d but are quite sparse (i.e., with
many zeros), such as in text processing, so that the dot product x⊤x′ can be computed
in time o(d).

Polynomial kernel. For s a positive integer, kernel k(x, x′) = (x⊤x′)s is positive-
definite as an integer power of a kernel and can be explicitly expanded as follows (with
the binomial theorem)4:

k(x, x′) =

( d∑

i=1

xix
′
i

)s
=

∑

α1+···+αd=s

(
s

α1, . . . , αd

)
(x1x

′
1)α1 · · · (xdx

′
d)αd

︸ ︷︷ ︸
(x

α1
1 ···xαd

d
)((x′

1)
α1 ···(x′

d
)αd)

,

where the sum is over all nonnegative integer vectors (α1, . . . , αd) that sum to s. We

have an explicit feature map: ϕ(x) =
((

s
α1,...,αd

) 1
2xα1

1 · · ·xαd

d

)
α1+···+αd=s

, and the set of

functions is the set of degree-s homogeneous5 polynomials on Rd, which has dimension(
d+s−1
s

)
.

4See https://en.wikipedia.org/wiki/Binomial_theorem.
5A function f : Rd → R is said to be homogeneous if there is s ∈ R+ such that for all x ∈ Rd, and

λ ∈ R+, f(λx) = λsf(x).

https://en.wikipedia.org/wiki/Binomial_theorem


7.3. KERNELS 187

When d and s grow, the feature space dimension grows as ds and an explicit represen-
tation is not desirable; the kernel trick can then be advantageous. Note, however, that
the associated norm (which penalizes coefficients of the polynomials) is hard to interpret
(as a small change in a single high-order coefficient can lead to significant changes).

Exercise 7.3 Show that kernel k(x, x′) = (1+x⊤x′)s corresponds to the set of all mono-
mials xα1

1 · · ·xαd

d such that α1+ · · ·+αd 6 s. Also, show that the dimension of the feature

space is
(
d+s
s

)
.

As an illustration, when using a polynomial kernel of degree 2, the set of functions
that are linear in the feature map is therefore the set of quadratic functions. Thus, in
a binary classification problem where data can be separated by an ellipsoid, this can be
obtained by linear separation in the feature space. See the following illustration:

x1

x2

x21

x22

7.3.2 Translation-Invariant Kernels on [0, 1]

We now consider X = [0, 1] and kernels of the form k(x, x′) = q(x − x′) with function
q : [0, 1] → R, which is assumed to be 1-periodic. We will show how they emerge from
penalties on the Fourier coefficients of functions, which we quickly review here.6

Fourier series. We will consider complex-valued functions and use complex exponen-
tials, but all developments could be carried out with cosines and sines. Fourier series cor-
respond to an orthonormal decomposition of square-integrable functions on [0, 1], which
are naturally extended to 1-periodic functions on R. More precisely, the set of functions
x 7→ e2imπx for m ∈ Z is an orthonormal basis of L2([0, 1]). Therefore, any squared
integrable function that is 1-periodic can be expanded in this orthonormal basis; that

is, q(x) =
∑
m∈Z

e2imπxq̂m, with q̂m =
∫ 1

0
q(x)e−2imπxdx ∈ C, for m ∈ Z, obtained by

projection q to the element of the basis. Function q is real-valued if and only if for
all m ∈ Z, q̂−m = q̂∗m (the complex conjugate of q̂m). We will also need Parseval’s
identity, which is exactly the Pythagorean theorem in the orthonormal basis; that is,∫ 1

0
|q(x)|2dx =

∑
m∈Z
|q̂m|2.

Translation-invariant kernels. When presenting translation-invariant kernels, we
can choose to start from the kernel or the associated squared norm. In this section,

6See https://en.wikipedia.org/wiki/Fourier_series for more details.

https://en.wikipedia.org/wiki/Fourier_series


188 CHAPTER 7. KERNEL METHODS

we start from the squared norm, while in section 7.3.3, we start from the kernel.

Given a function f ∈ L2([0, 1]) decomposed into its Fourier series as

f(x) =
∑

m∈Z

e2imπxf̂m,

we consider the weighted norm

‖f‖2c =
∑

m∈Z

cm|f̂m|2,

with c ∈ RZ

+; this penalty can be interpreted through a feature map and its associated dot
product. Indeed, consider the Hilbert space ℓ2(Z) of complex-valued square-summable
sequences endowed with the dot product 〈a, b〉 =

∑
m∈Z

amb
∗
m for a, b ∈ ℓ2(Z). Then,

take the feature vector ϕ(x)m = e−2imπx/
√
cm, and θ ∈ ℓ2(Z), such that θm = f̂m

√
cm, so

f(x) = 〈θ, ϕ(x)〉 and ‖θ‖2ℓ2(Z) =
∑
m∈Z
|θm|2 is equal to the norm ‖f‖2c =

∑
m∈Z

cm|f̂m|2.

Thus, the associated kernel is

k(x, x′) =
∑

m∈Z

ϕ(x)mϕ(x′)∗m =
∑

m∈Z

e2imπx√
cm

e−2imπx′

√
cm

=
∑

m∈Z

1

cm
e2imπ(x−x

′),

which takes the form q(x − x′) for a 1-periodic function q with Fourier series q̂m = 1
cm

for all m ∈ Z.

What we showed here is that any penalty of the form
∑

m∈Z
cm|f̂m|2 defines a squared

RKHS norm as soon as cm is strictly positive for all m ∈ Z, and
∑
m∈Z

1
cm

is finite. The
kernel function then takes the form k(x, x′) = q(x−x′), with q being 1-periodic, and such
that the Fourier series has nonnegative real values q̂m = c−1

m . In the other direction, all
such kernels are positive-definite (see the extension to Rd discussed in section 7.3.3).

Penalization of derivatives. For power-law penalties based on the sequence (cm)m∈Z,
there is a natural link with penalties on derivatives, as, if f is s-times differentiable7 with a
square-integrable derivative, we have, by differentiating the Fourier series representation,

f (s)(x) =
∑

m∈Z

(2imπ)se2imπxf̂m.

Thus, from Parseval’s theorem, we get:

∫ 1

0

|f (s)(x)|2dx = (2π)2s
∑

m∈Z

m2s|f̂m|2.

In this chapter, we will consider penalizing such derivatives, leading to Sobolev spaces
on [0, 1] (see extensions in section 7.3.3). The following examples are often considered:

7More precisely, f is 1-periodic and almost everywhere s-times differentiable with
∫ 1
0 (f(s)(x))2dx

bounded.



7.3. KERNELS 189

• Bernoulli polynomials: We can consider c0 = 1 and cm = m2s for m 6= 0, for

which the associated norm is ‖f‖2H = 1
(2π)2s

∫ 1

0
|f (s)(x)|2dx +

( ∫ 1

0
f(x)dx

)2
. The

corresponding kernel k(x, x′) can then be written as

k(x, x′) =
∑

m∈Z

c−1
m e2imπ(x−x

′) = 1 +
∑

m>1

2 cos[2πm(x− x′)]
m2s

= q(x− x′).

To have an expression for q (and thus k) in closed form, we notice that if we take
the 2sth-order derivative of q, we get

q(2s)(t) = 2(−1)s(2π)2s
∑

m>1

cos[2πmt] = (2π)2s(−1)s
∑

m∈Z

exp[2iπmt]− (2π)2s(−1)s,

which is equal to (2π)2s(−1)s−1 for t /∈ Z. Thus, if we define {t} = t− ⌊t⌋ ∈ [0, 1),
the fractional part of t, the function q should be a polynomial in {t} of degree 2s,

with largest coefficient (−1)s−1 (2π)2s

(2s)! .

To compute the exact polynomial for s = 1, we can check (by computing the

Fourier series coefficients by integration) that {t} = 1
2 − 1

2π

∑
m>1

2 sin[2πmt]
m , and by

integrating between 0 and t, that 1
2{t}2 = {t}

2 + 1
(2π)2

∑
m>1

2(cos[2πmt]−1)
m2 . Using

that
∑

m>1
1
m2 = π2

6 , this leads to q(t) = 2π2{t}2 − 2π2{t} + π2/3 + 1. which is
plotted in figure 7.1 (left).

For s > 1, it turns out we have k(x, x′) = 1 + (−1)s−1 (2π)2s

(2s)! B2s({x − x′}), where

B2s the (2s)th Bernoulli polynomial,8 from which we can confirm the computation
above for s = 1 since B2(t) = t2 − t+ 1/6.

Exercise 7.4 Show that for s = 2, we have for all x, x′ ∈ [0, 1], k(x, x′) = q(x−x′),
with q(t) = 1− (2π)4

24

(
{t}4 − 2{t}3 + {t}2 − 1

30

)
.

• Periodic exponential kernel: Here, we can consider cm = 1 + α2|m|2, for which

we also have a closed-form formula, with the norm ‖f‖2H = α2

(2π)2

∫ 1

0
|f ′(x)|2dx +

∫ 1

0 |f(x)|2dx.

Exercise 7.5 (���) Show that we have k(x, x′) =
∑

m∈Z

e2imπ(x−x′)

1+α2|m|2 = q(x − x′)

for q(t) = π
α

∣∣cosh π
α (1−2|{t+1/2}−1/2|)

sinh π
α

. Hint: use the Cauchy residue formula.9

8See https://en.wikipedia.org/wiki/Bernoulli_polynomials.
9See https://francisbach.com/cauchy-residue-formula/.

https://en.wikipedia.org/wiki/Bernoulli_polynomials
https://francisbach.com/cauchy-residue-formula/


190 CHAPTER 7. KERNEL METHODS

Figure 7.1. Translation-invariant kernels on [0, 1], of the form k(x, x′) = q(x−x′), with q
1-periodic, for the kernels based on Bernoulli polynomials (left and middle), and for the
periodic exponential kernel (right). Kernels are normalized so k(x, x) = 1.

These kernels are mainly used for their simplicity and explicit feature map, which are
simpler than the kernels described next, which are most used in practice (with similar links
to Sobolev spaces). Note also that for inputs uniformly distributed on [0, 1], the Fourier
basis will be an orthogonal eigenbasis of the covariance operator with eigenvalues c−1

m

(see section 7.6.6). Note that the link between orthonormal bases and positive-definite
kernels is more general; see exercises 7.6 and 7.7, as well as Steinwart and Scovel (2012).

We saw that for the kernel q(x− x′) with Fourier series q̂m for q, the associated norm

is
∑
m∈Z

|f̂m|2
q̂m

. We now extend this to Fourier transforms (instead of Fourier series).

Exercise 7.6 (Mercer kernels) Consider a probability distribution p on a set X, an
orthonormal basis (ϕi)i∈I of the Hilbert space L2(p) of square-integrable functions (with I
countable), and a summable positive sequence (λi)i∈I . Show that the function defined as
k(x, x′) =

∑
i∈I λiϕi(x)ϕi(x

′) is a positive-definite kernel and describe an associated
feature space.

Exercise 7.7 (Mercer decomposition (��)) Consider a probability distribution p on
a set X, a positive-definite kernel k : X×X→ R, and the operator T defined on L2(p) as
Tf(y) =

∫
X
k(x, y)f(x)dp(x).

• Show that if
∣∣∫
X

∫
X
k(x, y)2dp(x)dp(y) is finite, then the operator T is bounded (it is

an instance of Hilbert-Schmidt integral operator10).

• Given an orthonormal basis (ei)i∈I of L2(p) composed of eigenvectors for T (which
is assumed to exist), show that the corresponding eigenvalues (λi)i∈I are nonnegative
and k(x, x′) =

∑
i∈I λiϕi(x)ϕi(x

′) (convergence meant in the norm L2(p)).

10See https://en.wikipedia.org/wiki/Hilbert-Schmidt_integral_operator.

https://en.wikipedia.org/wiki/Hilbert-Schmidt_integral_operator


7.3. KERNELS 191

7.3.3 Translation-Invariant Kernels on Rd

We now consider X = Rd and a kernel of the form k(x, x′) = q(x − x′), with function
q : Rd → R, which we refer to as “translation-invariant,” as it is invariant under the
addition of the same constant to both arguments. We start with a short review of Fourier
transforms.11

Fourier transforms. The Fourier transform f̂ : Rd → C of an integrable function
f : Rd → C can be defined through

f̂(ω) =

∫

Rd

f(x)e−iω
⊤xdx,

which is then a continuous function of ω. It can naturally be extended to an operator
on all square-integrable functions, and under appropriate conditions on f (e.g., both f

and f̂ integrable), we can recover f from its Fourier transform; that is,

f(x) =
1

(2π)d

∫

Rd

f̂(ω)eiω
⊤xdω.

Moreover, Parseval’s identity leads to

∫

Rd

|f(x)|2dx =
1

(2π)d

∫

Rd

|f̂(ω)|2dω.

Translation-invariant kernels. Proposition 7.4 gives conditions under which we ob-
tain a positive-definite kernel.

Proposition 7.4 (Bochner’s theorem) A translation-invariant kernel k defined as
k(x, x′) = q(x−x′) is positive-definite if and only if q is the inverse Fourier transform of
a nonnegative Borel measure.

Partial proof Here, we are just giving the proof of the direction we need for the purposes
of this discussion. Assume that

q(x− x′) =
1

(2π)d

∫

Rd

ei(x−x
′)⊤ωdµ(ω)

for a nonnegative measure µ. Let x1, . . . , xn ∈ R
d and α1, . . . , αn ∈ R. We have

n∑

s,j=1

αsαjk(xs, xj) =

n∑

s,j=1

αsαjq(xs − xj) =
1

(2π)d

n∑

s,j=1

αsαj

∫

Rd

eiω
⊤(xs−xj)dµ(ω)

=
1

(2π)d

∫

Rd

( n∑

s,j=1

αsαje
iω⊤xs(eiω

⊤xj )∗
)
dµ(ω)

=
1

(2π)d

∫

Rd

∣∣∣∣
n∑

s=1

αse
iω⊤xs

∣∣∣∣
2

dµ(ω) > 0,

11See https://en.wikipedia.org/wiki/Fourier_transform for more details.

https://en.wikipedia.org/wiki/Fourier_transform


192 CHAPTER 7. KERNEL METHODS

which shows the positive-definiteness. See Reed and Simon (1978) and theorem 2.7 from
Varadhan (2001) for a proof of the other direction.

In practice, when q and q̂ are both integrable, the associated kernel is positive-definite if
and only if ∀ω ∈ Rd, q̂(ω) > 0.

Construction of the associated norm. We first give an intuitive nonrigorous rea-
soning: We have an explicit representation as

k(x, x′) =
1

(2π)d

∫

Rd

√
q̂(ω)eiω

⊤x
(√

q̂(ω)eiω
⊤x′)∗

dω =

∫

Rd

ϕ(x)ωϕ(x′)∗ωdω,

which takes the form 〈ϕ(x), ϕ(x′)〉, with ϕ(x)ω = 1
(2π)d/2

√
q̂(ω)eiω

⊤x (it is nonrigorous be-

cause the index ω belongs to Rd, which is not countable). If we consider function f defined

as f(x) =
∫
Rd ϕ(x)ωθωdω = 〈ϕ(x), θ〉, then we need to have θω = 1

(2π)d/2
f̂(ω)/

√
q̂(ω).

The squared norm of θ is then equal to 1
(2π)d

∫
Rd

|f̂(w)|2
q̂(ω) dω, where f̂ denotes the Fourier

transform of f . Therefore, the norm of a function f ∈ H should be

‖f‖2H =
1

(2π)d

∫

Rd

|f̂(w)|2
q̂(ω)

dω. (7.4)

Given the candidate for the norm and the associated dot product, we can simply check
that this is the correct one by showing the reproducing property 〈f, k(·, x)〉 for this dot
product (proof left as an exercise). Note the similarity with the penalty for the kernel on
[0, 1] (see more similarity next with links with derivatives).

Link with derivatives. When f has partial derivatives, the Fourier transform of ∂f
∂xj

equals iωj multiplied by the Fourier transform of f . This leads to, using Parseval’s the-

orem, 1
(2π)d

∫
Rd |ωj |2|f̂(w)|2dω =

∫
Rd

∣∣ ∂f
∂xj

(x)
∣∣2dx, which extends to higher-order deriva-

tives as follows:

1

(2π)d

∫

Rd

|ωj11 · · ·ωjdd |2|f̂(w)|2dω =

∫

Rd

∣∣∣∣
∂jf

∂xj11 · · · ∂xjdd
(x)

∣∣∣∣
2

dx, (7.5)

for a vector j ∈ Nd. This will allow us to find corresponding norms by expanding q̂(ω)−1

as a sum of monomials. We now consider the main classical examples.

Exponential kernel. This is the kernel q(x − x′) = exp(−‖x − x′‖2/r), where r is
often referred to as the “kernel bandwidth” (with unit homogeneous to x), for which the

Fourier transform can be computed as q̂(ω) = 2dπ(d−1)/2Γ((d + 1)/2) rd

(1+r2‖ω‖2
2)

(d+1)/2 .

See Rasmussen and Williams (2006, p. 84). Thus, for d being odd, q̂(ω)−1 is a sum
of monomials, and looking at their orders, we see that the corresponding RKHS norm
(i.e., the norm on the space of functions on Rd that our kernel defines) is penalizing all
derivatives up to the total order (d + 1)/2; that is, in equation (7.5), for all j ∈ Nd such



7.3. KERNELS 193

that j1 + · · ·+ jd 6 (d+ 1)/2, which is a Sobolev space. For d even, we get a fractional
Sobolev space.12

In particular, for d = 1, we have q̂(ω) = 2r
1+r2ω2 , and thus

‖f‖2H =
1

2π

∫

R

|f̂(w)|2
q̂(ω)

dω =
1

2r

1

2π

∫

R

|f̂(ω)|2dω +
r

2

1

2π

∫

R

|ωf̂(ω)|2dω

=
1

2r

∫

R

|f(x)|2dx+
r

2

∫

R

|f ′(x)|2dx,

and we recover the Sobolev space of functions with square-integrable derivatives.

△!
The constant r is homogeneous (in terms of unit) to input x, while the con-
stant R will be homogeneous to features ϕ(x) (i.e., square roots of kernel
values). A common rule of thumb is to choose r to be a quantile (such as the
median) of all pairwise distances ‖xi − xj‖2 of the training data.

Gaussian kernel. This is the kernel q(x − x′) = exp(−‖x − x′‖22/r2) (still with a
kernel bandwidth r), for which the Fourier transform can be explicitly computed as
q̂(ω) = (πr2)d/2 exp(−r2‖ω‖22/4). By expanding q̂(ω)−1 through its power series as

q̂(ω)−1 = (πr2)−d/2
∑∞

s=0
(r‖ω‖2)

2s

4ss! , this corresponds to an RKHS norm that is penal-
izing all derivatives of all orders. Note that all members of this RKHS (the associated
function space) are infinitely differentiable and, therefore, much smoother than functions
coming from the exponential kernel (the RKHS is smaller); see figure 7.2.

Matern kernels and Sobolev spaces. More generally, one can define a series of
kernels such that q̂(ω) is proportional to rd(1 + r2‖ω‖22)−s for s > d/2, to ensure inte-
grability of the Fourier transform. These so-called “Matern kernels” all correspond to
Sobolev spaces of order s and can be computed in closed form; see section 2.10 in Stein
(2012). A key fact is that to be an RKHS, a Sobolev space has to have many derivatives
when d grows; in particular, having only first-order derivatives (s = 1) leads to an RKHS
only for d = 1, and having s = 0 (i.e., for L2(Rd)) never does.

For s = d+1
2 , we obtain the exponential kernel k(x, x′) = exp(−‖x − x′‖2/r). For

s = d+3
2 , we have k(x, x′) ∝ (1 +

√
3‖x− x′‖2/r) exp(−

√
3‖x− x′‖2/r); and for s = d+5

2 ,

we have k(x, x′) ∝ (1 +
√

5‖x− x′‖2/r + 5
3‖x− x′‖22/r2) exp(−

√
5‖x− x′‖2/r). General

values s also lead to closed-form formulas (through Bessel functions); see Rasmussen and
Williams (2006, p. 84).

Density in L2(Rd). For all the kernels discussed here, the set H is dense in L2(Rd)
(the set of square-integrable functions with respect to the Lebesgue measure), meaning
that all functions in L2(Rd) can be approached (with respect to L2-norm) by a function
in H. This is made quantitative in section 7.5.2.

12See https://en.wikipedia.org/wiki/Sobolev_space.

https://en.wikipedia.org/wiki/Sobolev_space


194 CHAPTER 7. KERNEL METHODS

Figure 7.2. Examples of functions in the RKHS for several kernels. All functions are the
minimum norm interpolators of the yellow points for the corresponding RKHS.

△! In this chapter, we will later consider two spaces of integrable functions, with respect
to the Lebesgue measure (which is not a probability measure), which we denote as L2(Rd),
and with respect to the probability measure of the input data, which we denote as L2(p).
If p has a density with respect to the Lebesgue measure and this density dp

dx is uniformly

bounded, then L2(R
d) ⊂ L2(p); more precisely, ‖f‖L2(p) 6

∥∥ dp
dx

∥∥1/2
∞ ‖f‖L2(Rd). However,

the converse is not true, simply because being an element of L2(R
d) imposes zero limit at

infinity, which being an element of L2(p) does not impose; moreover, nonzero constants
are in L2(p) but not in L2(Rd). Note, moreover, that

∥∥ dp
dx

∥∥
∞ is typically exponential in d

and is homogeneous to r−d (in terms of units), where r is homogeneous to x.

Examples of members of RKHS. Here, we sampled n = 10 random points in [−1, 1]
with 10 random responses y1, . . . , yn, and we look for the function f ∈ H such that f(xi) =
yi for all i ∈ {1 . . . , n} and with minimum norm. Given the representer theorem, we can
write f(x) =

∑n
i=1 αik(x, xi), and the interpolation condition implies that Kα = y, and

thus α = K−1y (see proposition 7.2).

We consider several kernels in figure 7.2, going from close to piecewise affine interpola-
tion to infinitely differentiable functions (for the Gaussian kernel). Note that each RKHS
implicitly imposes an a priori on the function reconstruction by penalizing by an induced
norm: see how smoothness requirements between Gaussian and exponential kernel lead
to different interpolations.

7.3.4 Beyond Vectorial Input Spaces (�)

While our theoretical analysis of kernel methods focuses on kernels on Rd and their link
with differentiability properties of the target function, kernels can be applied to a wide
variety of problems with various input types. We give a number of classic examples in
this discussion (see more details by Shawe-Taylor and Cristianini, 2004):



7.3. KERNELS 195

• Subsets of a given set V : For example, function k, defined as k(A,B) = |A∩B|
|A∪B| , is a

positive-definite kernel (classically referred to as the “Jaccard index”).13

• Point clouds: A point cloud in Rd is a finite subset of Rd, in no particular order.
Such clouds occur, for example, in computer vision or graphics. To build a kernel
for such objects, a simple first idea is to compute the empirical average of a certain
feature vector (which ignores the ordering of the points) and then use a kernel on
these averages. Other kernels may be obtained as functions of the concatenation of
the two point clouds (see more details in Cuturi et al., 2005). These constructions
extend to probability distributions.

• Text documents/web pages: With the usual “bag of words” assumption, we repre-
sent a text document or a web page by considering a vocabulary of “words” (this
could be groups of letters, single original words, or groups of words or letters), and
counting the number of occurrences of each word in the corresponding document.
This gives a typically high-dimensional feature vector ϕ(x) (with the vocabulary
size as the dimension). Using linear functions on this feature provides cheap and
stable predictors on such data types (better models that take into account the word
order can be obtained, such as neural networks, at the expense of significantly more
computational resources). See sources like Joulin et al. (2017) for examples.

• Sequences: Given some finite alphabet A, we consider the set X of finite sequences
in A of arbitrary length. A classical infinite-dimensional feature space is indexed
by X itself, and for y ∈ X, ϕ(x)y is equal to 1 if y is a subsequence of x (we could
also count the number of times that subsequence y appears in x, or we could add
a weight that depends on y; e.g., to penalize longer subsequences). This kernel
has an infinite-dimensional feature space, but for two sequences x and x′, we can
enumerate all subsequences of x and x′ and compare them in polynomial time to
compute the kernel function (there also are much faster algorithms; see Gusfield,
1997). These kernels have many applications in bioinformatics (Schölkopf et al.,
2004).

The same techniques can be extended to more general combinatorial objects such
as trees and graphs (see Shawe-Taylor and Cristianini, 2004).

• Images: Before neural networks took over in the 2010s with the use of large amounts
of data, several kernels were designed for images, with often a bag-of-words assump-
tion that provides invariance by translation. The key is what to consider as “words”;
that is, the presence of specific local patterns in the image and the regions under
which this assumption is made. See Zhang et al. (2007) for details.

13See https://en.wikipedia.org/wiki/Jaccard_index.

https://en.wikipedia.org/wiki/Jaccard_index


196 CHAPTER 7. KERNEL METHODS

7.4 Algorithms

In this section, we describe algorithms aimed at solving

min
f∈H

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2H, (7.6)

for ℓ being convex with respect to its second variable. We assume that features are
bounded; that is, for all i ∈ {1, . . . , n}, k(xi, xi) = ‖ϕ(xi)‖2H 6 R2.

7.4.1 Representer Theorem

We can directly apply the representer theorem, as done in equation (7.2), and try to solve

min
α∈Rn

1

n

n∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα,

which is a convex optimization problem since ℓ is assumed convex with respect to the
second variable, and K is positive-semidefinite.

In the particular case of the square loss (ridge regression), this leads to

min
α∈Rn

1

2n
‖y −Kα‖22 +

λ

2
α⊤Kα,

and setting the gradient to zero, we get (K2 + nλK)α = Ky, with a solution

α = (K + nλI)−1y, (7.7)

which is not unique when K is not invertible.

However, in general (for the square loss and beyond), it is an ill-conditioned optimiza-
tion problem because K often has very small eigenvalues (more on this in section 7.4.4).
When the loss is smooth, the Hessians are equal to 1

nK Diag(h)K + λK, where h ∈ Rn

is a vector of second-order derivatives of ℓ, so that the Hessians are ill conditioned (i.e.,
with a large condition number).14

A better alternative is to first compute a square root of K as K = ΦΦ⊤, where
Φ ∈ Rn×m, and m is the rank of K, and solve

min
β∈Rm

1

n

n∑

i=1

ℓ(yi, (Φβ)i) +
λ

2
‖β‖22, (7.8)

with optimality condition 1
nΦ⊤g+λβ = 0, where g ∈ R

n is the vector of gradients defined
as gi = ℓ′(yi, (Φβ)i) for all i ∈ {1, . . . , n} (derivative with respect to the second variable).
We can then obtain α ∈ Rn as α = − 1

λng, so that β = Φ⊤α.

14For example, for the square loss, where Diag(h) = I, the condition number of the 1
n
K2 + λK is at

least the one of K.



7.4. ALGORITHMS 197

Note that this corresponds to an explicit feature space representation (i.e., the rows
of Φ correspond to features in Rm for the corresponding data point). For ridge regression,
the objective function’s Hessian is equal to 1

nΦ⊤Φ+λI, which is well conditioned because
its lowest eigenvalue is greater than λ and is thus directly controlled by regularization.

Computing a square root can be done in several ways through Cholesky decomposition
or singular value decomposition (SVD), in running time O(m2n) (see Golub and Loan,
1996).

7.4.2 Column Sampling

To approximate K, approximate square roots are a very useful tool, and among various
algorithms, approximating K ∈ R

n×n from a subset of its columns can be done as K ≈
K(V, I)K(I, I)−1K(I, V ), where K(A,B) is the submatrix of K obtained by taking rows
from the set A ⊂ {1, . . . , n} and columns from B ⊂ {1, . . . , n}, and V = {1, . . . , n}. See
the following for an illustration when I = {1, . . . ,m} and a partition of the kernel matrix:

K(I, I)

K(J, I) K(J, J)

K(I, J)

This corresponds to an approximate square root Φ = K(V, I)K(I, I)−1/2 ∈ Rn×m,
with m = |I|, and it can be computed in time O(m2n) (computing the entire kernel matrix
is not even needed). Then, the complexity is typically O(m2n) instead of O(n3) (e.g.,
when using matrix inversion for ridge regression; for faster algorithms, see section 7.4.5),
and is thus linear in n.

This approximation technique is standard in linear algebra (see, e.g., Mahoney and
Drineas, 2009; Martinsson and Tropp, 2020) and is often called “Nyström approxima-
tion” in the context of machine learning (Williams and Seeger, 2000). It proves to be
particularly useful when columns are chosen randomly (see the theoretical analysis by
Rudi et al., 2015).

Exercise 7.8 (�) Show that column sampling corresponds to approximating optimally
each ϕ(xj), j /∈ I, by a linear combination of ϕ(xi), i ∈ I.

Exercise 7.9 Show that the matrix K − K(V, I)K(I, I)−1K(I, V ) is positive-definite.
If ‖M‖∗ denotes the nuclear norm (sum of absolute values of eigenvalues of symmetric
matrix M), show that the approximation error ‖K −K(V, I)K(I, I)−1K(I, V )‖∗ can be
computed without the need to compute the entire matrix K.



198 CHAPTER 7. KERNEL METHODS

7.4.3 Random Features

Some kernels have a special form that leads to specific approximation schemes; that is,

k(x, x′) =

∫

V

ϕ(x, v)ϕ(x′, v)dτ(v) = 〈ϕ(x, ·), ϕ(x′, ·)〉L2(τ),

where τ is a probability distribution on a space V and ϕ(x, v) ∈ R. We can then approx-
imate the expectation by an empirical average:

k̂(x, x′) =
1

m

m∑

j=1

ϕ(x, vj)ϕ(x′, vj),

where the vj ’s are sampled independently and identically distributed (i.i.d.) from τ . We
can thus use an explicit feature representation ϕ̂(x) =

(
1√
m
ϕ(x, vj)

)
j∈{1,...,m} and solve

min
β∈Rm

1

n

n∑

i=1

ℓ(yi, ϕ̂(xi)
⊤β) +

λ

2
‖β‖22,

with a predictor x 7→ β⊤ϕ̂(x), with any algorithm from chapter 5.

For this scheme to make sense, the number m of random features has to be significantly
smaller than n (otherwise, it is as efficient to use the square root of K as in equation (7.8),
with no approximation), which is often sufficient in practice (see an analysis by Rudi and
Rosasco, 2017).

△! Note that here, dimension reduction is performed independent of the input data; that
is, the random feature functions ϕ(·, vj) are selected before the data are observed, as
opposed to column sampling, which is a data-dependent dimension reduction scheme.

The two classic examples are

• Translation-invariant kernels (section 7.3.3): For these kernels, we have k(x, x′) =

q(x − x′) = 1
(2π)d

∫
Rd q̂(ω)eiω

⊤(x−x′)dω, for which we can take complex-valued fea-

tures ϕ(x, ω) =
√
q(0)eiω

⊤x ∈ C, where ω is sampled from the distribution with

density 1
(2π)d

q̂(ω)
q(0) , which is a Gaussian distribution for the Gaussian kernel. Alterna-

tively, one can use a real-valued feature (instead of a complex-valued one) by using√
2 cos(ω⊤x+ b) with b sampled uniformly in [0, 2π] (Rahimi and Recht, 2008).

• Neural networks with random weights: We can start from an expectation, for
which the sampled features are classical (e.g., ϕ(x, v) = σ(v⊤x) for some function
σ : R→ R). For the rectified linear unit (ReLU; i.e., σ(α) = max{0, α}), and for v

sampled uniformly on the sphere, we have k(x, x′) = ‖x‖2‖x′‖2

2(d+1)π

[
(π−η) cos η+sin η

]
,

where cos η = x⊤x′

‖x‖2·‖x′‖2
(Le Roux and Bengio, 2007). (The proof is left as an

exercise.) Therefore, we can view a neural network with a large number of hidden
neurons, with random input weights and not optimized as a kernel method. See a
thorough discussion of this point in chapter 9 (section 9.5).



7.4. ALGORITHMS 199

Exercise 7.10 In the setup of exercise 7.6, provide a random feature expansion of Mercer
kernels.

7.4.4 Dual Algorithms (�)

For the following two algorithms, we go back to the notation f(x) = 〈ϕ(x), θ〉, with
θ ∈ H, because it is more adapted (and is a direct infinite-dimensional extension of the
algorithms from chapter 5). To solve minθ∈H

1
n

∑n
i=1 ℓ(yi, 〈ϕ(xi), θ〉) + λ

2 ‖θ‖2, for a loss
that is convex with respect to the second variable, we can derive a Lagrange dual in
the following way (for an introduction to Lagrange duality, see Boyd and Vandenberghe,
2004). We start by reformulating this as a constrained problem:

min
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈ϕ(xi), θ〉) +
λ

2
‖θ‖2

= min
θ∈H, u∈Rn

1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖θ‖2 such that ∀i ∈ {1, . . . , n}, 〈ϕ(xi), θ〉 = ui.

By Lagrange duality, this is equal to (with λ added on top of the regular multiplier α for
convenience):

max
α∈Rn

min
θ∈H, u∈Rn

1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖θ‖2 + λ

n∑

i=1

αi
(
ui − 〈ϕ(xi), θ〉

)

= max
α∈Rn

{
1

n

n∑

i=1

min
ui∈R

{
ℓ(yi, ui)+nλαiui}+ min

θ∈H

{λ
2
‖θ‖2−λ

n∑

i=1

αi〈ϕ(xi), θ〉
}}

by reordering terms. We can then optimize in closed form with respect to θ, as:

max
α∈Rn

{
1

n

n∑

i=1

min
ui∈R

{
ℓ(yi, ui) + nλαiui} −

λ

2

∥∥∥∥
n∑

i=1

αiϕ(xi)

∥∥∥∥
2}

with θ =

n∑

i=1

αiϕ(xi),

= max
α∈Rn

{
1

n

n∑

i=1

min
ui∈R

{
ℓ(yi, ui) + nλαiui} −

λ

2
α⊤Kα

}
, (7.9)

with θ=
∑n
i=1 αiϕ(xi) at optimum. Since the functions αi 7→ minui∈R

{
ℓ(yi, ui)+nλαiui}

are concave (as minima of affine functions), this is a concave maximization problem.

Note the similarity with the representer theorem (existence of α ∈ Rn such that
θ =

∑n
i=1 αiϕ(xi)) and the dissimilarity (one is a minimization problem, and another

is a maximization problem). Moreover, when the loss is smooth, one can show that
the function αi 7→ minui∈R

{
ℓ(yi, ui) + nλαiui} is a strongly concave function,15 and

15More precisely, if ui 7→ ℓi(yi, ui) is L-smooth, then the function αi 7→ −minui∈R

{
ℓ(yi, ui)+nλαiui}

is (nλ/L)-strongly-convex (proof left as an exercise).



200 CHAPTER 7. KERNEL METHODS

thus relatively easy to optimize (in other words, the associated condition numbers of
dual problems are smaller than when using the representer theorem). See exercises 7.11
and 7.12.

Exercise 7.11 (a) For ridge regression, compute the dual problem and compare the con-
dition number of the primal problem and the condition number of the dual problem; (b)
compare the two formulations to the use of normal equations as in chapter 3, and relate
the two using the matrix inversion lemma (ΦΦ⊤ + nλI)−1Φ = Φ(Φ⊤Φ + nλI)−1.

Exercise 7.12 Write down the dual problem in equation (7.9) for the logistic loss and
the for the hinge loss (compare the results to section 4.1.2).

Exercise 7.13 (Unregularized constant term) Consider the minimization problem
minθ∈H,c∈R

1
n

∑n
i=1 ℓ(yi, 〈ϕ(xi), θ〉+c)+ λ

2 ‖θ‖2. If the loss function is convex with respect
to the second variable, show that the dual problem is the one in equation (7.9) with the
additional constraint that

∑n
i=1 αi = 0. Without any assumption on the loss function,

show that we can restrict the search space for θ to all combinations
∑n
i=1 αiϕ(xi) with

the same constraint that
∑n

i=1 αi = 0.

Exercise 7.14 (Limit of Gaussian kernel for infinite bandwidth) Consider the
minimization problem minθ∈H,c∈R

1
n

∑n
i=1 ℓ(yi, 〈ϕ(xi), θ〉+c)+ λ

2 ‖θ‖2 from exercise 7.13.
For the Gaussian kernel k(x, x′) = exp(−‖x−x′‖22/r2), show that when r tends to infinity,
the resulting prediction function is the same as the one obtained by the linear kernel
k(x, x′) = x⊤x′ with the regularization parameter λr2/2.

Exercise 7.15 (Optimization of the kernel) Show that for convex loss functions, the
maximal value in equation (7.9) is a convex function of the kernel matrix K. For the
square loss, show that it is equal to λ

2 y
⊤(K + nλI)−1y.

7.4.5 Stochastic Gradient Descent (�)

When minimizing an expectation

min
θ∈H

{
E
[
ℓ(y, 〈ϕ(x), θ〉)

]
+
λ

2
‖θ‖2

}

as in chapter 5, the stochastic gradient algorithm leads to the recursion

θt = θt−1 − γt
[
ℓ′(yt, 〈ϕ(xt), θt−1〉)ϕ(xt) + λθt−1

]
,

where (xt, yt) is an i.i.d. sample from the distribution defining the expectation, and ℓ′ is
the derivative with respect to the second variable.

When initializing at θ0 = 0, θt is a linear combination of all ϕ(xi), i = 1, . . . , t, and
thus we can write

θt =

t∑

i=1

α
(t)
i ϕ(xi),



7.4. ALGORITHMS 201

with α(0) = 0, and the recursion in α as

α
(t)
i = (1− γtλ)α

(t−1)
i for i ∈ {1, . . . , t− 1}, and α

(t)
t = −γtℓ′

(
yt,

t−1∑

i=1

α
(t−1)
i k(xt, xi)

)
.

The complexity after t iterations is O(t2) kernel evaluations. The convergence rates from
chapter 5 apply. More precisely, if the loss is G-Lipschitz continuous, then, for Fλ(θ) =
E
[
ℓ(y, 〈ϕ(x), θ〉)

]
+ λ

2 ‖θ‖2, we have, for the averaged iterate θt (from proposition 5.8),

E
[
Fλ(θ̄t)

]
− inf
θ∈H

Fλ(θ) 6
2G2R2(1 + log t)

λt
.

△!
When doing a single pass with t = n, then Fλ(θ) is the regularized ex-
pected risk, and we obtain a generalization bound (i.e., on unseen data)
for the expected risk F (θ) = E

[
ℓ(y, 〈ϕ(x), θ〉)

]
, leading to E

[
F (θ̄n)

]
6

2G2R2(1+log n)
λn + infθ∈H

{
F (θ) + λ

2 ‖θ‖2H
}

. These bounds are similar to the
ones in section 7.5 (which assume that a regularized empirical risk minimizer
is available).

Exercise 7.16 (�) Consider the minimization of F (θ) = E
[
ℓ(y, 〈ϕ(x), θ〉)

]
using con-

stant step-size SGD for a convex G-Lipschitz-continuous loss and features almost surely
bounded by R. Show that after t steps (initialized at θ0 = 0 and with step size γ), the

averaged iterate θ̄t satisfies E
[
F (θ̄t)

]
6 infθ∈H

{
F (θ) +

‖θ‖2
H

2γt

}
+ γG2R2

2 .

7.4.6 Kernelization of Linear Algorithms

Beyond supervised learning, many unsupervised learning algorithms can be “kernelized,”
such as principal component analysis (PCA, as presented in section 3.9), K-means, or
canonical correlation analysis.16 Indeed, these algorithms can be cast only through the
matrices of dot products between observations and can thus be applied after the feature
transformation ϕ : X → H, and run implicitly only using the kernel function k(x, x′) =
〈ϕ(x), ϕ(x′)〉. See Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004) for
details as well as exercises 7.17 and 7.18.

Exercise 7.17 (Kernel PCA) We consider n observations x1, . . . , xn in a set X equip-
ped with a positive-definite kernel and feature map ϕ from X to H. Show that the largest
eigenvector of the empirical noncentered covariance operator 1

n

∑n
i=1 ϕ(xi) ⊗ ϕ(xi) is

proportional to
∑n

i=1 αiϕ(xi), where α ∈ R
n is an eigenvector of the n× n kernel matrix

associated with the largest eigenvalue. Given the RKHS H associated with kernel k, relate
this eigenvalue problem to the maximizer of 1

n

∑n
i=1 f(xi)

2 subject to ‖f‖H = 1.

16See https://en.wikipedia.org/wiki/Canonical_correlation.

https://en.wikipedia.org/wiki/Canonical_correlation


202 CHAPTER 7. KERNEL METHODS

Exercise 7.18 (Kernel K-means) Show that the K-means clustering algorithm17 can
be expressed only using dot products.

Exercise 7.19 (Kernel quadrature) We consider a probability distribution p on a
set X equipped with a positive-definite kernel k with feature map ϕ : X → H. For a
function f that is linear in ϕ, we want to approximate

∫
X
f(x)dp(x) from a linear com-

bination
∑n
i=1 αif(xi) with α ∈ Rn.

(a) Show that

∣∣∣∣
∫

X

f(x)dp(x) −
n∑

i=1

αif(xi)

∣∣∣∣ 6 ‖f‖ ·
∥∥∥∥
∫

X

ϕ(x)dp(x) −
n∑

i=1

αiϕ(xi)

∥∥∥∥.

(b) Express the square of the right side with the kernel function and show how to minimize
it with respect to α ∈ Rn.
(c) Show that if the points x1, . . . , xn are sampled i.i.d. from p and αi = 1/n for all i,

then E

[∥∥ ∫
X
ϕ(x)dp(x) −∑n

i=1 αiϕ(xi)
∥∥2

]
6 1

nE[k(x, x)].

Exercise 7.20 Consider a binary classification problems with data (x1, y1), . . . , (xn, yn)
in X × {−1, 1}, with a positive kernel k defined on X with feature map ϕ : X → H. Let
µ+ (µ−) be the mean of all feature vectors for positive (negative) labels. We consider
the classification rule that predicts 1 if ‖ϕ(x) − µ+‖2H < ‖ϕ(x) − µ−‖2H and −1 other-
wise. Compute the classification rule only using kernel functions and compare it to local
averaging methods from chapter 6.

7.5 Generalization Guarantees–Lipschitz-continuous
Losses

In this section, we consider a G-Lipschitz-continuous loss function and a minimizer f̂
(c)
D

of the constrained problem

min
f∈H

1

n

n∑

i=1

ℓ(yi, f(xi)) such that ‖f‖H 6 D, (7.10)

as well as the unique minimizer f̂
(r)
λ of the regularized problem

min
f∈H

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2H. (7.11)

We denote as R(f) = E
[
ℓ(y, f(x))

]
the expected risk, and as f∗ one of its minimizers

(which we assume to be square-integrable). For the square loss, see section 7.6.

17See https://en.wikipedia.org/wiki/K-means_clustering.

https://en.wikipedia.org/wiki/K-means_clustering


7.5. GENERALIZATION GUARANTEES–LIPSCHITZ-CONTINUOUS LOSSES 203

As in section 4.3, we can first relate the excess risk to the L2-norm of f − f∗ as (using
Jensen’s inequality)

R(f)− R(f∗) 6 E
[
|ℓ(y, f(x))− ℓ(y, f∗(x))|

]
6 GE

[
|f(x) − f∗(x)|

]

6 G
√
E
[
|f(x)− f∗(x)|2

]
= G‖f − f∗‖L2(p);

that is, the excess risk is dominated by the L2(p)-norm of f − f∗. For X = Rd, and
probability measures with bounded density with respect to the Lebesgue measure, we

have shown in section 7.3.3 that ‖f‖L2(p) 6
∥∥ dp
dx

∥∥1/2

∞ ‖f‖L2(Rd), so we can replace in upper

bounds the quantity G‖f − f∗‖L2(p) by G
∥∥ dp
dx

∥∥1/2
∞ ‖f − f∗‖L2(Rd).

7.5.1 Risk Decomposition

We now assume that supx∈X k(x, x) 6 R2, compatible with the convention in earlier
chapters on linear models (e.g., section 4.5.3) that ‖ϕ(x)‖2H 6 R2 for all x ∈ X. Note
that for translation-invariant kernels of the form k(x, x′) = q(x− x′), this is always true
with R2 = q(0) = k(x, x) for all x ∈ X.

Constrained problem. Dimension-free results from chapter 4 (proposition 4.5), based
on Rademacher complexities, immediately apply, and we obtain that the estimation error
is bounded from above by 4GDR√

n
, leading to

E
[
R(f̂

(c)
D )

]
− R(f∗) 6

4GDR√
n

+G inf
‖f‖H6D

‖f − f∗‖L2(p). (7.12)

(The first term is the estimation error of using the empirical risk minimizer constrained
to the ball of the RKHS norm less than D; the second term is the approximation error.)

To find the optimal D (to balance estimation and approximation error), we can min-
imize the bound with respect to D, leading to (using |a|+ |b| 6

√
2(a2 + b2))

inf
D>0

4GRD√
n

+G inf
‖f‖H6D

‖f−f∗‖L2(p) = inf
f∈H

{4GR‖f‖H√
n

+G‖f−f∗‖L2(p)

}

6 G

√
2 inf
f∈H

{
‖f−f∗‖2L2(p)

+
16R2

n
‖f‖2

H

}
. (7.13)

Note that if we consider D equal to
√
n

4R

√
inff∈H

{
‖f − f∗‖2L2(p)

+ 16R2

n ‖f‖2H
}

, we can

obtain a bound proportional to equation (7.13) (proof left as an exercise).

Overall, we need to understand how the deterministic quantity

A(µ, f∗) = inf
f∈H

{
‖f − f∗‖2L2(p)

+ µ‖f‖2H
}

(7.14)

goes to zero when µ goes to zero. (Note that we define A(µ, f∗) through a regularized
estimation problem to study trade-offs between estimation and approximation errors, and



204 CHAPTER 7. KERNEL METHODS

this is not a justification to use 16R2/n as a regularization parameter in practice.) A few
situations are possible:

• If the target function f∗ happens to be in H (a well-specified problem), then we
have A(µ, f∗) 6 µ‖f∗‖2H, and thus it tends to zero as O(µ) when µ tends to zero.
This is the best-case scenario, and it requires that the target function is sufficiently
regular (e.g., with at least d/2 derivatives for X = Rd). Then, using it with µ =
16R2/n, the overall excess risk in equation (7.12) goes to zero as G

√
2A(µ, f∗) 6

4
√

2GR‖f∗‖H/
√
n = O(1/

√
n). Moreover, the suggested value ofD not surprisingly

is exactly ‖f∗‖H.

• The target function f∗ is not in H (a misspecified problem), but it can be approached
arbitrarily closely in the L2(p)-norm by a function in H; in other words, f∗ is in
the closure of H in L2(p). In this situation, A(µ, f∗) goes to zero as µ goes to zero,
but without an explicit rate if no further assumptions are made.

For X = Rd, and the distribution p of inputs with a bounded density with respect to
the Lebesgue measure, and for the translation-invariant kernels from section 7.3.3,
this closure includes all of L2(Rd), so this case includes most potential functions.
See section 7.5.2 for explicit rates.

• Otherwise, denoting as ΠH̄(f∗) the orthogonal projection in L2(p) of f∗ on the
closure of H, by the Pythagorean theorem, we have A(µ, f∗) = A(µ,ΠH̄(f∗)) +
‖f∗ − ΠH̄(f∗)‖2L2(p)

; that is, there is an incompressible error due to a choice of
function space that is not large enough.

Note that we will use the same reasoning based on equation (7.14) for neural networks
in section 9.4.

Regularized problem (�). For the regularized problem, we can use the bound from
chapter 4 (proposition 4.6):

E
[
R(f̂

(r)
λ )

]
− R(f∗) 6

24G2R2

λn
+ inf
f∈H

{
G‖f − f∗‖L2(p) +

λ

2
‖f‖2H

}
.

We can now minimize the bound with respect to λ, leading to a joint optimization problem

over (λ, f). With f fixed, the optimal λ is λ = 4
√
3RG

‖f‖H

√
n

and we obtain the bound:

G inf
f∈H

{
‖f − f∗‖L2(p) +

4
√

3R√
n
‖f‖H

}
6 G

√
2 inf
f∈H

{
‖f − f∗‖2L2(p)

+
48R2

n
‖f‖2

H

}
,

which is the same bound as for the constrained problem, but on a more commonly used
optimization problem in practice. Note that for well-specified problems, the suggested

regularization parameter is λ = 4
√
3RG

‖f∗‖H

√
n

(similar value as in section 4.5.5).



7.5. GENERALIZATION GUARANTEES–LIPSCHITZ-CONTINUOUS LOSSES 205

7.5.2 Approximation Error for Translation-Invariant Kernels on Rd

We start by analyzing kernel methods’ approximation error for translation-invariant ker-
nels. Given a distribution p of inputs, the goal is to compute

A(µ, f∗) = inf
f∈H

{
‖f − f∗‖2L2(p)

+ µ‖f‖2H
}
,

where f∗ is the target function (e.g., the minimizer of the test risk), which we assume is
square-integrable (i.e., in L2(p)). If A(µ, f∗) tends to zero when µ tends to zero for any
fixed f∗, kernel-based supervised learning leads to universally consistent algorithms.

We assume that ‖f − f∗‖2L2(p)
6 C

rd
‖f − f∗‖2L2(Rd) (e.g., with C = rd‖dp/dx‖∞,

where dp/dx is the density of p), where we have introduced the constant r to preserve
the homogeneity of units. Moreover, for simplicity, we assume that ‖f∗‖L2(Rd) is finite
(which implies that f∗ has to go to zero at infinity). We now give bounds on

Ã(µ, f∗) = inf
f∈H

{
1
rd
‖f − f∗‖2L2(Rd) + µ‖f‖2H

}
,

keeping in mind that A(µ, f∗) 6 (C/rd)Ã(µrd/C, f∗). Remember from section 7.5.1 that

if f∗ ∈ H (the best-case scenario), then both A(µ, f∗) and Ã(µ, f∗) are less than µ‖f∗‖2H.

Explicit approximation. We have, for the translation-invariant kernels defined in

section 7.3.3, an explicit formulation of the norm ‖ · ‖H as ‖f‖2H = 1
(2π)d

∫
Rd

|f̂(ω)|2
q̂(ω) dω

(see equation (7.4)), and thus

Ã(µ, f∗) = inf
f̂∈L2(Rd)

1

(2π)d

∫

Rd

[
1
rd |f̂(ω)− f̂∗(ω)|2 + µ

|f̂(ω)|2
q̂(ω)

]
dω.

This is an optimization problem in infinite dimension, but like for the computation of
the Bayes risk in section 2.2.3, the optimization with respect to f̂ can be performed
independently for each ω, which is a quadratic problem in f̂(ω). Setting the derivative

with respect to f̂(ω) to zero leads to 0 = 2 1
rd

(f̂(ω) − f̂∗(ω)) + 2µ f̂(ω)q̂(ω) , and thus f̂(ω) =

f̂∗(ω)
1+µrdq̂(ω)−1 . In terms of the objective function, we get

Ã(µ, f∗) =
1

(2πr)d

∫

Rd

|f̂∗(ω)|2
(

1− 1

1+µrdq̂(ω)−1

)
dω =

1

(2πr)d

∫

Rd

|f̂∗(ω)|2 µrd

q̂(ω)+µrd
dω.

When µ goes to zero, we see that for each ω, f̂µ(ω) tends to f̂∗(ω). By the dominated

convergence theorem, Ã(µ, f∗) goes to zero when µ goes to zero.

Without further assumptions, it is impossible to obtain a convergence rate (otherwise,
the “no free lunch” theorem from chapter 2 would be invalidated). However, this is
possible when assuming regularity properties for f∗.

△! Note that the universal approximation properties of translation-invariant ker-
nels do not require the kernel bandwidth r to go to zero (as opposed to smooth-
ing kernels from chapter 6).



206 CHAPTER 7. KERNEL METHODS

Sobolev spaces (�). Assume that f∗ belongs to the Sobolev space of order t; that is,

1

(2πr)d

∫

Rd

(1 + r2‖ω‖22)t|f̂∗(ω)|2dω < +∞ (7.15)

for some t > 0 (i.e., f∗ with square-integrable partial derivatives up to order t). Then we

can further bound Ã(µ, f∗) as follows:

Ã(µ, f∗) 6
1

(2πr)d

∫

Rd

(1 + r2‖ω‖22)t|f̂∗(ω)|2dω × sup
ω∈Rd

{ µrd

q̂(ω) + µrd
1

(1 + r2‖ω‖22)t
}
.

If we now assume q̂(ω) ∝ rd(1 + r2‖ω‖22)−s (Matern kernels; see section 7.3.3), with
s > d/2 to get an RKHS. We have two cases:

• When t > s, f∗ ∈ H, and Ã(µ, f∗) 6 µ‖f∗‖2H.

• When t < s (i.e., the function is not inside the RKHS H), then we get a bound
proportional to, using a + b > t

sa + (1 − t
s )b > at/sb1−t/s) (proof using Jensen’s

inequality for the logarithm),

Ã(µ, f∗) = O

(
sup
ω∈Rd

{ µrd

q̂(ω) + µrd
1

(1 + r2‖ω‖22)t
})

= O

(
sup
ω∈Rd

{ µrd

q̂(ω)t/s(µrd)1−t/s
1

(1 + r2‖ω‖22)t
}

= O(µt/s)

)
.

Exercise 7.21 (�) Find an upper bound of Ã(µ, f∗) for the same assumption on f∗, but
with the Gaussian kernel.

△! There are two regularities, with two constraints: t > 0 for the target function,
and s > d/2 for the kernel.

Putting things together. For Lipschitz-continuous losses and target functions that
satisfy equation (7.15), we get from equations (7.12) and (7.13) an expected excess risk

of the order
(
Ã(R2/n, f∗)

)1/2
= O(n−t/(2s)), when t 6 s. For example, when t = 1 (i.e.,

only first-order derivatives are assumed to be square-integrable), then for s = d/2 + 1/2
(exponential kernel), we obtain a rate of O(n−1/(d+1))), which is similar to the rate
obtained with local averaging techniques in chapter 6. (Note here that we are in a
Lipschitz-loss setup, which leads to worse rates; see the square loss in section 7.6.) Thus,
kernel methods do not escape the curse of dimensionality (which is unavoidable anyway
if f is only assumed to be differentiable).

However, with the proper choice of the regularization parameter, they can benefit
from extra smoothness of the target function: in the very favorable case, where f∗ ∈ H

(i.e., t > s), then we obtain a dimension-independent rate of 1/
√
n. In intermediate



7.5. GENERALIZATION GUARANTEES–LIPSCHITZ-CONTINUOUS LOSSES 207

scenarios t ∈ [1, s] = [1, d/2 + 1/2], the rates O(n−t/(d+1)) fall in between. This is why
kernel methods are said to be adaptive to the smoothness of the target function: for a
fixed kernel defined by order s, we get adaptivity to a whole range of regularity order t
of the target function.

△!
When we say that in the smooth case, the bounds are independent of the
underlying dimension d, we refer to the dependency in terms of powers of n.
Yet, the constants in front of these decaying terms may still behave badly in d
(e.g., exponential).

Approximation bounds (�). In some analysis setups (such as those explored in sec-
tion 9.3.5), it is required to approximate some f∗ up to ε with the minimum possible
RKHS norm. This can be done as follows.

A bound on the quantity A(µ, f∗) = inff∈H

{
‖f − f∗‖2L2(p)

+µ‖f‖2H
}

of the form cµα

for α ∈ (0, 1) leads to the following bound:

inf
f∈H
‖f‖2H such that ‖f − f∗‖L2(p) 6 ε

= inf
f∈H

sup
µ>0

{
‖f‖2H + µ(‖f − f∗‖2L2(p)

− ε2)
}

using Lagrangian duality,

= sup
µ>0

{
µA(µ−1, f∗)− µε2

}
6 sup

µ>0

{
µcµ−α − µε2

}
.

The optimal µ is such that (1 − α)cµ−α = ε2, leading to an approximation bound pro-
portional to ε2(1−1/α) = ε−2(1−α)/α.

Applied to α = t/s as before, this leads to an RKHS norm proportional to ε−(1−α)/α =
ε1−s/t to get an error less than ‖f − f∗‖L2(Rd) 6 ε. So when t = 1 (single derivative for
the target function) and s > d/2 (for the Sobolev kernel), we get a norm of the order
ε−(1/α−1) = ε−(s−1) > ε−d/2+1, which explodes exponentially in dimension, which is
another way of formulating the curse of dimensionality.

Relationship between Lipschitz-continuous functions and Sobolev spaces (��).
In chapter 6, on local averaging methods, as well as in chapter 9, on neural networks, we
consider Lipschitz-continuous functions on a subset of Rd, which we take here to be the
ball with center 0 and radius r. To apply results from this chapter, we need to extend
them to a function g on Rd with a controlled squared Sobolev norm with order t = 1; that
is, 1

rd

∫
Rd

(
|g(x)|2 + r2‖g′(x)‖22

)
dx. Then, the estimation rates for Sobolev space of order

t (i.e., O(n−1/(1+d))) applies to Lipschitz-continuous functions on an Euclidean ball.

For this, we also need to impose a bound on the value of f at 0; that is, we assume
|f(0)| 6 rD (with a dependence in r that ensures unit homogeneity), and f is D-Lipschitz-
continuous on the ball with center 0 and radius r. We now show that we can extend it to
function g with a squared Sobolev norm that is less than a constant cd (which depends
on d) times r2D2.



208 CHAPTER 7. KERNEL METHODS

We define function g, which is equal to f on the ball of radius r, equal to 0 out-
side of the ball of radius 2r, and equal to g(x) = f(rx/‖x‖2)(2 − ‖x‖2/r) for ‖x‖2 ∈
[r, 2r]; that is, on each ray {ty, t ∈ [r, 2r]}, for y ∈ Rd of unit norm, function g goes
linearly from f(y) to 0. Function g is continuous and has bounded derivatives al-
most everywhere. On the ball of radius 2r, |g(x)| 6 2rD, while when ‖x‖2 ∈ [r, 2r],
g′(x) = − 1

r f(rx/‖x‖2)x/‖x‖2 + r
‖x‖2

(I − xx⊤/‖x‖22)f ′(rx/‖x‖2)(2 − ‖x‖2/r), leading

to, by the Pythagorean theorem, ‖g′(x)‖22 = 1
r2 |f(rx/‖x‖2)|2 + r2

‖x‖2
2
(2 − ‖x‖2/r)2‖(I −

xx⊤/‖x‖22)f ′(rx/‖x‖2)‖22 6 1
r2 |2rD|2+D2 = 5D2. Thus, 1

rd

∫
Rd

(
|g(x)|2+r2‖g′(x)‖22

)
dx 6

9r2D22d πd/2

Γ(1+d/2) , since the volume of the Euclidean unit ball is equal to πd/2

Γ(1+d/2) . Thus,

constant cd is less than 9·2dπd/2

Γ(1+d/2) .

7.6 Theoretical Analysis of Ridge Regression (�)

In this section, we provide finer results for ridge regression (i.e., square loss and penaliza-
tion by squared norm) used within kernel methods. Compared to the analysis performed
in section 3.6, there are three difficulties:

• We go from fixed design to random design: This will require finer probabilistic
arguments to relate population and empirical covariance operators.

• We need to go infinite-dimensional: In terms of notation, this will mean not using
transposes of matrices but rather dot products and tensor products, which is a
minor modification.

• The infimum of the expected risk over linear functions parameterized by θ ∈ H

may not be attained by an element of H, but by an element of its closure in L2(p).
This is important, as this allows access to a potentially large set of functions and
requires more care.

△! In this section, since we consider two different Hilbert spaces L2(p) and H, we will
use the notations ‖ · ‖L2(p) and ‖ · ‖H for their norms (and similarly for their associated
dot products).

7.6.1 Kernel Ridge Regression as a Linear Estimator

We consider n i.i.d. observations (xi, yi) ∈ X × R, i = 1, . . . , n, and we aim to minimize,
for λ > 0,

1

n

n∑

i=1

(yi − f(xi))
2 + λ‖f‖2H.

Like the local averaging methods described in chapter 6, the ridge regression estimator
happens to be a linear estimator that depends linearly on the response vector (but, of
course, nonlinearly in x in general). Indeed, using the representer theorem from equa-
tion (7.2), the estimator is f(x) =

∑n
i=1 αik(x, xi), with α ∈ Rn defined in equation (7.7)



7.6. THEORETICAL ANALYSIS OF RIDGE REGRESSION (�) 209

as α = (K + nλI)−1y, where K ∈ Rn×n is the kernel matrix. We can then write

f(x) =

n∑

i=1

ŵi(x)yi,

with ŵ(x) = (K + nλI)−1q(x) ∈ Rn, where q(x) ∈ Rn is defined as qi(x) = k(x, xi).
The smoothing matrix H (as defined in section 6.2.1) is then symmetric equal to H =
K(K + nλI)−1.

The key differences with local averaging are that (1) the weights do not sum to 1
(i.e.,

∑n
i=1 ŵi(x) may be different from 1); and (2) the weights are not constrained to be

nonnegative. While the first difference can be removed using centering (see exercise 7.22),
the second is more fundamental: allowing the weights to be negative will enable the
adaptivity to smoothness, which local averaging methods missed (see section 6.5). See
also section 13.4.3 for the use of ridge regression and linear estimators in the context of
structured prediction.

Exercise 7.22 Consider the optimization problem minθ,η
1
2n‖y−Φθ− η1n‖22 + λ

2 ‖θ‖22 in
the variables θ ∈ Rd and η ∈ R, where Φ ∈ Rn×d is the design matrix obtained from
feature map ϕ and data points x1, . . . , xn, y ∈ Rn, and 1n ∈ Rn is the vector of all
1s. Show that the optimal values of θ and η are θ = Φ⊤α and η = 1

n1⊤n (y − Φθ), with
α = Πn(ΠnKΠn + nλI)−1Πny, and Πn = I − 1

n1n1⊤n . Show that the prediction function
f(x) = ϕ(x)⊤θ + η takes the form

∑n
i=1 ŵi(x)yi with weights that sum to 1.

Exercise 7.23 (�) For x1, . . . , xn equally spaced in [0, 1] and for a translation-invariant
kernel from section 7.3.2, compute the eigenvalues of the kernel matrix and the smoothing
matrix.

7.6.2 Bias and Variance Decomposition (�)

Beyond fixed-design finite-dimensional analysis. In chapter 3, we considered ridge
regression in the fixed design setting (where the input data were assumed to be deter-
ministic) and a finite-dimensional feature space H, and obtained in proposition 3.7 the

following exact expression of the excess risk of the ridge regression estimator θ̂λ, assuming
that yi = 〈θ∗, ϕ(xi)〉+ εi, with εi independent of xi and where E[εi] = 0, E[ε2i ] = σ2:

E
[
(θ̂λ − θ∗)⊤Σ̂(θ̂λ − θ∗)

]
= λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ +

σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
. (7.16)

For the random design assumption (the usual machine learning setting), we first need to
obtain a value for the expected risk. Moreover, we need to replace the matrix notation
to apply to infinite-dimensional H, where the minimizer has a potentially infinite norm
(in other words, the minimizer is only in the closure of H).

Modeling assumptions. We assume that

yi = f∗(xi) + εi,



210 CHAPTER 7. KERNEL METHODS

with (for simplicity) E[εi|xi] = 0, and E[ε2i |xi] 6 σ2 almost surely for some target function
f∗ ∈ L2(p), so that f∗(x) = E[y|x] is exactly the conditional expectation of y given x.

△! The target function f∗ may not be in H. All dot products will always be in H,
while we will specify the corresponding space for norms.

We thus consider the following optimization problem:

min
f∈H

1

n

n∑

i=1

(yi − f(xi))
2 + λ‖f‖2H, (7.17)

with the solution found with algorithms in section 7.4.

△! The theoretical analysis of kernel methods typically does not involve the pa-
rameters α ∈ Rn obtained from the representer theorem and commonly used
in algorithms in section 7.4.

We have, with Σ̂ = 1
n

∑n
i=1 ϕ(xi)⊗ϕ(xi),

18 a self-adjoint operator from H to H (the
empirical covariance operator), a quadratic cost function in equation (7.17) equal to

1

n

n∑

i=1

y2i + 〈f, Σ̂f〉 − 2
〈 1

n

n∑

i=1

yiϕ(xi), f
〉

+ λ〈f, f〉,

leading to the minimizer f̂λ of equation (7.17), equal to

f̂λ = (Σ̂ +λI)−1 1

n

n∑

i=1

yiϕ(xi) = (Σ̂ +λI)−1 1

n

n∑

i=1

f∗(xi)ϕ(xi) + (Σ̂ +λI)−1 1

n

n∑

i=1

εiϕ(xi).

We can now compute the expected excess risk equal to E
[
‖f̂λ − f∗‖2L2(p)

]
as (using that

E[εi|xi] = 0)

E
[
‖f̂λ − f∗‖2L2(p)

]

= E

[∥∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

εiϕ(xi)
∥∥∥
2

L2(p)

]
+ E

[∥∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

f∗(xi)ϕ(xi)− f∗
∥∥∥
2

L2(p)

]
.

The first term is the usual variance term (that depends on the noise on top of the optimal
predictions). In contrast, the second is the (squared) bias term (which depends on the
regularity of the target function). Before developing the probabilistic argument, we give
simplified upper bounds of the two terms.

On top of the noncentered empirical covariance operator Σ̂ = 1
n

∑n
i=1 ϕ(xi) ⊗ ϕ(xi),

we will need its expectation, the covariance operator (from H to H),

Σ = E
[
ϕ(x) ⊗ ϕ(x)

]
,

18For a, b ∈ H, a⊗ b is the operator from H to H defined through (a ⊗ b)f = 〈b, f〉Ha.



7.6. THEORETICAL ANALYSIS OF RIDGE REGRESSION (�) 211

for the corresponding distribution of the xi’s. A key property relates the L2(p)-norm
and the RKHS norm; that is, for g ∈ H,

‖g‖2L2(p)
=

∫

X

g(x)2dp(x) =

∫

X

〈g, ϕ(x)〉2dp(x) =

∫

X

〈g, ϕ(x) ⊗ ϕ(x)g〉dp(x)

= 〈g,Σg〉=‖Σ1/2g‖2H. (7.18)

More generally, we have
∫
X
f(x)g(x)dp(x) = 〈fΣg〉H for all f, g ∈ H.

Variance term. The variance term can be upper-bounded as follows (first using inde-
pendence and zero means of the variables εi), then using the property that for symmetric
matrices such that A < 0 and B 4 C, we have tr[AB] 6 tr[AC], and equation (7.18)):

variance = E

[∥∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

εiϕ(xi)
∥∥∥
2

L2(p)

]

=
1

n2

n∑

i=1

E

[
tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1ε2iϕ(xi)⊗ ϕ(xi)

)]

6
σ2

n
E
[

tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂

)]
using E[ε2i |xi] 6 σ2,

6
σ2

n
E

[
tr
[
(Σ̂ + λI)−1Σ

]]
using (Σ̂ + λI)−1Σ̂ 4 I. (7.19)

This will be the main expression that we will bound later in proposition 7.5.

Bias term. We first assume that f∗ ∈ H; that is, the model is well specified. Then,
writing f∗(xi) = 〈f∗, ϕ(xi)〉 (which is possible because f∗ ∈ H), the bias term is equal to

bias = E

[∥∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

f∗(xi)ϕ(xi)− f∗
∥∥∥
2

L2(p)

]
(7.20)

= E

[∥∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

〈f∗, ϕ(xi)〉ϕ(xi)− f∗
∥∥∥
2

L2(p)

]
(7.21)

= E
[∥∥(Σ̂ + λI)−1Σ̂f∗ − f∗

∥∥2
L2(p)

]
using the expression of Σ̂,

= E

[∥∥λΣ1/2(Σ̂ + λI)−1f∗
∥∥2
H

]
= λ2E

[
〈f∗, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1f∗〉

]
, (7.22)

where we have used equation (7.18) above to reintroduce the operator Σ. This will be
the main expression we will bound in proposition 7.5.

Upper bound on excess risk. Combining equations (7.19) and (7.22), we have thus
proved proposition 7.5.



212 CHAPTER 7. KERNEL METHODS

Proposition 7.5 (Upper bound on expected risk–well-specified problem) When
f∗ ∈ H, the excess risk of the ridge regression estimator is upper-bounded by

E
[
‖f̂λ − f∗‖2L2(p)

]
6
σ2

n
E

[
tr
(
(Σ̂ + λI)−1Σ

)]
+ λ2E

[
〈f∗, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1f∗〉

]
.

(7.23)

Given the expression of the expected variance in equation (7.19) and the expected bias
in equation (7.22), we notice that both the empirical and expected covariance operators
appear and that it would be important to replace the empirical one with the expected
one. This is possible with extra multiplicative factors, which we now show. Then, we
will bound the two terms separately and show how balancing them leads to interesting
learning bounds.

7.6.3 Relating Empirical and Population Covariance Operators

Following Mourtada and Rosasco (2022), we derive simple relationships between the

empirical covariance operator Σ̂ and the population operator Σ by showing lemma 7.1,
dealing with expectations; for high probability bounds, see, for example, Rudi et al.
(2015), Rudi and Rosasco (2017), and the end of section 7.6.4 of this book.

Lemma 7.1 (Mourtada and Rosasco, 2022) Assuming i.i.d. data x1, . . . , xn ∈ X,
and bounded features ‖ϕ(x)‖H 6 R for all x ∈ X; we have, for all g ∈ H,

E

[
tr
(
(Σ̂ + λI)−1Σ

)]
6

(
1 +

R2

λn

)
tr
(
(Σ + λI)−1Σ

)
(7.24)

E

[〈
g, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1g

〉]
4 λ−1

(
1 +

R2

λn

)2

〈g, (Σ + λI)−1Σg〉. (7.25)

Proof (�) The main idea is to introduce a (n+ 1)th independent observation from the
same distribution, write Σ = E

[
ϕ(xn+1) ⊗ ϕ(xn+1)

]
, and use the fact that the obser-

vations are “exchangeable”; that is, they can be permuted without changing their joint
distribution.

We denote C =
∑n+1
i=1 ϕ(xi)⊗ϕ(xi) = nΣ̂ +ϕ(xn+1)⊗ϕ(xn+1), and using the matrix

inversion lemma (section 1.1.3), we have

(C+nλI)−1ϕ(xn+1) =
(
nΣ̂ + nλI + ϕ(xn+1)⊗ ϕ(xn+1)

)−1
ϕ(xn+1)

=
(nΣ̂+nλI)−1ϕ(xn+1)

1 + 〈ϕ(xn+1), (nΣ̂ + nλI)−1ϕ(xn+1)〉
. (7.26)

We will use c =
〈
ϕ(xn+1),

(
nΣ̂ + nλI

)−1
ϕ(xn+1)

〉
6
R2

λn
. To prove equation (7.24), we



7.6. THEORETICAL ANALYSIS OF RIDGE REGRESSION (�) 213

use equation (7.26) to express (Σ̂+λI)−1ϕ(xn+1) as n(1 + c)(C+nλI)−1ϕ(xn+1):

E

[
tr
(
(Σ̂ + λI)−1Σ

)]
= E

[
tr
(
(Σ̂ + λI)−1ϕ(xn+1)⊗ ϕ(xn+1)

)]

= E

[〈
ϕ(xn+1), (Σ̂ + λI)−1ϕ(xn+1)

〉]

= nE
[
(1 + c)

〈
ϕ(xn+1), (C + nλI)−1ϕ(xn+1)

〉]
,

which leads to E
[

tr
(
(Σ̂+λI)−1Σ

)]
6n

(
1+R2

λn

)
E
[〈
ϕ(xn+1), (C+nλI)−1ϕ(xn+1)

〉]
. Thus,

using that the variables (x1, . . . , xn+1) are exchangeable, we get:

E

[
tr
(
(Σ̂ + λI)−1Σ

)]

6

(
1 +

R2

λn

)
n× 1

n+ 1

n+1∑

i=1

E
[〈
ϕ(xi),

(
C + nλI

)−1
ϕ(xi)

〉]

=
(

1 +
R2

λn

) n

n+ 1
E
[

tr
(
C(C + nλI)−1)

]
since C =

n+1∑

i=1

ϕ(xi)⊗ ϕ(xi).

Using Jensen’s inequality with the convex function C 7→ tr[C(C + nλI)−1], we get

E

[
tr
(
(Σ̂ + λI)−1Σ

)]

6

(
1 +

R2

λn

) n

n+ 1

[
tr
(
E[C](E[C] + nλI)−1)

]

=
(

1 +
R2

λn

) n

n+ 1
tr
(
(n+ 1)Σ((n+ 1)Σ + nλI)−1

)
by definition of Σ,

6

(
1 +

R2

λn

)
tr
(
Σ(Σ + λI)−1

)
, which is exactly as in equation (7.24).

To prove equation (7.25), we use the same technique; that is,

E
[
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1

]
= E

[
(Σ̂ + λI)−1ϕ(xn+1)⊗ ϕ(xn+1)(Σ̂ + λI)−1

]

= n2(1 + c)2E
[[

(C + nλI)−1ϕ(xn+1)
]
⊗
[
(C + nλI)−1ϕ(xn+1)

]]
.



214 CHAPTER 7. KERNEL METHODS

This leads to

E
[〈
g, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1g

〉]

= n2
E

[
(1 + c)2

〈
(C + nλI)−1ϕ(xn+1), g〉2

]

6 n2
(

1 +
R2

λn

)2

E

[〈
(C + nλI)−1ϕ(xn+1), g〉2

]

=
n2

n+ 1

(
1 +

R2

λn

)2

E

[〈
g, (C + nλI)−1C(C + nλI)−1g

〉]
by exchangeability,

6
1

λ

n

n+ 1

(
1+

R2

λn

)2

E

[〈
g, C(C+nλI)−1g

〉]
using (C+nλI)−2C 4

1

nλ
(C+nλI)−1C,

6
1

λ

n

n+ 1

(
1 +

R2

λn

)2〈
g,E[C](E[C] + nλI)−1g

〉
by Jensen’s inequality,

=
1

λ
n
(

1 +
R2

λn

)2〈
g,Σ((n+ 1)Σ + nλI)−1g

〉
6 λ−1

(
1 +

R2

λn

)2〈
g, (Σ + λI)−1Σg

〉
.

7.6.4 Analysis for Well-Specified Problems (�)

In this section, we assume that f∗ ∈ H. We have the following result for the excess risk,
whose proof consists in applying lemma 7.1 to equation (7.23).

Proposition 7.6 (Kernel ridge regression–well-specified model) Assume i.i.d.
data (xi, yi) ∈ X×R, for i = 1, . . . , n and yi = f∗(xi)+εi, with E[εi|xi] = 0, E[ε2i |xi] 6 σ2,
and f∗ ∈ H. Assume that ‖ϕ(x)‖H 6 R almost surely. We have

E
[
‖f̂λ − f∗‖2L2(p)

]
6
σ2

n

(
1+

R2

λn

)
tr
[
(Σ+λI)−1Σ

]
+ λ

(
1+

R2

λn

)2

〈f∗,Σ(Σ+λI)−1f∗〉.
(7.27)

This is to be contrasted with equation (7.16): we obtain a similar result with Σ̂ being
replaced by Σ, but with some extra multiplicative constants that are close to 1 if R2/(λn)

is small. We can further bound tr
[
(Σ+λI)−1Σ

]
6 R2

λ and 〈f∗,Σ(Σ+λI)−1f∗〉 6 〈f∗, f∗〉
to get the bound

E
[
‖f̂λ − f∗‖2L2(p)

]
6 σ2R

2

λn

(
1+

R2

λn

)
+ λ

(
1+

R2

λn

)2

‖f∗‖2H,

which is a random design version of the developments in the proof of proposition 3.8. In
such a situation, the choice λ = R2/

√
n (which does not impose any knowledge of ‖f∗‖H)

leads to a bound on the excess risk proportional to (σ2 +R2‖f∗‖2H)/
√
n, with a behavior

similar to Lipschitz-continuous losses in section 7.5.

In finite feature dimensions d, we can alternatively bound tr
[
(Σ + λI)−1Σ

)
] 6 R2

λ
by d, then leading to a natural choice λ of order R2/n and an upper bound of the
excess risk proportional to σ2d/n+R2‖f∗‖2H/n, with an improved behavior compared to



7.6. THEORETICAL ANALYSIS OF RIDGE REGRESSION (�) 215

Lipschitz-continuous losses. Going beyond finite dimension requires the notion of “degrees
of freedom” introduced in section 7.6.6.

These last two paragraphs lead to different choices of the regularization parameter,
proportional to R2/

√
n or R2/n, two classical rules of thumb within kernel methods.

Note, however, that this corresponds only to well-specified models, and that in practice,
in particular for kernels corresponding to very smooth functions (such as the Gaussian
kernel), smaller regularization parameters are required; see more details in section 7.6.6.

Bounds in high probability (��). Instead of obtaining bounds in expectation (with
respect to the training data), we can obtain high-probability bounds, as briefly shown
here for the simplest bound; see more refined bounds by Rudi et al. (2015) and Rudi
and Rosasco (2017). Note that they do not rely on Rademacher averages but on direct
probabilistic arguments that can be applied only to the square loss.

Proposition 7.7 (High-probability bound for kernel ridge regression) Assume
i.i.d. data (xi, yi) ∈ X × R, for i = 1, . . . , n and yi = f∗(xi) + εi, with E[εi|xi] = 0,
ε2i 6 σ2 almost surely, and f∗ ∈ H. Assume that ‖ϕ(x)‖H 6 R almost surely and

n >
(
4
3 + 8R2

λ

)
log 14R2

λδ . We have, with a probability greater than 1− δ,

‖f̂λ − f∗‖2L2(p)
6

8σ2R2

λn
+ 4λ‖f∗‖2H +

16σ2R2

λn
log

2

δ
. (7.28)

Proof We first apply proposition 1.8 with Mi = Σ(Σ + λI)−1 − (Σ + λI)−1/2ϕ(xi) ⊗
ϕ(xi)(Σ + λI)−1/2, for which we have V = R2

λ Σ(Σ + λI)−1, σ2 = R2

λ , c = 1, and t = 1
2 ,

leading to

λmax

[
(Σ + λI)−1/2(Σ− Σ̂)(Σ + λI)−1/2

]
6

1

2

with probability greater than 1− 7R
2

λ exp
[
− n

4/3+8R2/λ

]
, as soon as 1

2 > 1
3n + R√

λn
. This

probability is greater than 1− δ/2 as soon as n > (4/3 + 8R2/λ) log 14R2

λδ .

If this event is true, this implies Σ − Σ̂ 4 1
2 (Σ + λI), 1

2 (Σ + λI) 4 Σ̂ + λI, and

thus (Σ̂ + λI)−1 4 2(Σ + λI)−1. Using the  Lojasiewicz’s inequality (lemma 5.1) on the

regularized empirical risk R̂λ(f) = 1
2n 〈f − f∗, Σ̂(f − f∗)〉−

〈
1
n

∑m
i=1 εiϕ(xi), f

〉
+ λ

2 ‖f‖2H,
we get

R̂λ(f∗)− R̂λ(f̂λ) 6
1

2λ
‖R̂′

λ(f∗)‖2H.

Using R̂λ(f∗)− R̂λ(f̂λ) = 1
2 〈f∗− f̂λ, (Σ̂ +λI)(f∗− f̂λ)〉 > 1

4 〈f∗− f̂λ, (Σ +λI)(f∗− f̂λ)〉 >
1
4‖f̂λ − f∗‖2L2(p)

, we get

‖f̂λ − f∗‖2L2(p)
6

2

λ

∥∥∥ 1

n

m∑

i=1

εiϕ(xi)− λf∗
∥∥∥
2

H
6

4

λ

∥∥∥ 1

n

n∑

i=1

εiϕ(xi)
∥∥∥
2

H
+ 4λ‖f∗‖2H.

We thus need a high-probability bound for
∥∥ 1
n

∑n
i=1 εiϕ(xi)

∥∥
H

, which we can obtain,



216 CHAPTER 7. KERNEL METHODS

with probability greater than 1− δ/2, from McDiarmid’s inequality as follows (see exer-
cise 1.20):

∥∥∥∥
1

n

n∑

i=1

εiϕ(xi)

∥∥∥∥
H

6
Rσ√
n

(
1 +

√
2 log

2

δ

)
.

This leads to the desired result.

Before analyzing proposition 7.7 and balancing bias and variance, we show how this
can be applied beyond well-specified models.

7.6.5 Analysis beyond Well-Specified Problems (�)

In the bound in equation (7.27), the only term that requires potentially that f∗ ∈ H is
the bias term λ〈f∗, (Σ + λI)−1Σf∗〉. The simple lemma 7.2 is the key to extending to all
functions f∗ in the closure of H.

Lemma 7.2 Given the covariance operator Σ and any function f∗ ∈ H, then

λ〈f∗, (Σ + λI)−1Σf∗〉 = inf
f∈H

{
‖f − f∗‖2L2(p)

+ λ‖f‖2H
}
. (7.29)

Proof The optimization problem in equation (7.29) can be written using equation (7.18)
as inff∈H

{
‖Σ1/2(f − f∗)‖2H + λ‖f‖2H

}
, with solution f = (Σ + λI)−1Σf∗, and we can

simply put back the value in the objective function to get the desired result.

Target function in the closure of H. By using a limiting argument, we can extend
the formula of the bias term in proposition 7.6 to the general case of f∗ ∈ L2(p) in the
closure of H in L2(p) (because all functions in the closure can be approached by a function
in H), leading to a bias term less than

(
1+

R2

λn

)2

inf
f∈H

{
‖f − f∗‖2L2(p)

+ λ‖f‖2H
}
. (7.30)

For translation-invariant kernels in Rd (which are dense in L2(Rd)), this allows for esti-
mating any target function.

Final result. Using lemma 7.2 and equation (7.30) with proposition 7.6, we can now
show the upper bound for kernel ridge regression in the potentially misspecified case.

Proposition 7.8 (Kernel ridge regression–misspecified model) Assume i.i.d.
data (xi, yi) ∈ X × R, for i = 1, . . . , n and yi = f∗(xi) + εi, with E[εi|xi] = 0 and
E[ε2i |xi] 6 σ2. Assume that ‖ϕ(x)‖H 6 R almost surely and f∗ in the closure of H in



7.6. THEORETICAL ANALYSIS OF RIDGE REGRESSION (�) 217

L2(p). We have

E
[
‖f̂λ−f∗‖2L2(p)

]
6
σ2

n

(
1+

R2

λn

)
tr
(
(Σ+λI)−1Σ

)
+
(

1+
R2

λn

)2

inf
f∈H

{
‖f−f∗‖2L2(p)

+λ‖f‖2H
}
.

(7.31)

△! Be careful with the unit homogeneity of formulas; for example, R2

λn is indeed
a constant.

7.6.6 Balancing Bias and Variance (�)

We can now balance the bias and variance term in the following upper bound on the
expected excess risk obtained from proposition 7.8:

σ2

n

(
1+

R2

λn

)
tr
(
(Σ+λI)−1Σ

)
+
(

1+
R2

λn

)2

inf
f∈H

{
‖f − f∗‖2L2(p)

+ λ‖f‖2H
}
.

For this section, we will assume that X = Rd and the target function belongs to a
Sobolev kernel of order t > 0, while the RKHS is a Sobolev space of order s > d/2.

We have seen in section 7.5.2 that the bias term is of order
(
1+R2

λn

)2
λt/s when s > t

(which we now assume). For the variance term, we need to study the so-called “degrees
of freedom,” associated to the covariance operator Σ.

Eigendecomposition of the covariance operator. The covariance operator defined
as Σ = E

[
ϕ(x) ⊗ ϕ(x)

]
is a linear operator from H to H. When ‖ϕ(x)‖H 6 R al-

most surely, it is said to be “trace-class”19 as its trace can be defined and bounded by
E[‖ϕ(x))‖2H] 6 R2. There thus exists a sequence of eigenfunctions (fm)m>0 in H and a
summable nonincreasing sequence of nonnegative eigenvalues (λm)m>0 such that

Σ =
∑

m>0

λmfm ⊗ fm.

For kernels such as translation-invariant kernels on [0, 1] from section 7.3.2, where k(x, x′)
is of the form k(x, x′) =

∑
m>0 λmgm(x)gm(x′) for an orthonormal basis (gm)m>0 of

L2(p), the two sequences of eigenvalues coincide, and the eigenfunctions are equal up
to normalization constants (as normalized eigenvectors in different spaces). This is true
more generally and can be shown using the integral operator defined in exercise 7.7; see
more details in Cucker and Smale (2002) and Steinwart and Scovel (2012).

Degrees of freedom. This is the quantity tr
[
Σ(Σ + λI)−1

]
, which is decreasing in λ,

from +∞ for λ = 0 to 0 for λ = +∞. If we know that the eigenvalues (λm)m>0 of the
covariance operator satisfy

λm 6 C(m+ 1)−α,

19See https://en.wikipedia.org/wiki/Trace_class.

https://en.wikipedia.org/wiki/Trace_class


218 CHAPTER 7. KERNEL METHODS

for α > 1, then one has, with the change of variable u = λC−1tα,

tr
[
Σ(Σ + λI)−1

]
=

∑

m>0

λm
λm + λ

6
∑

m>0

1

1 + λC−1(m+ 1)α
6

∫ ∞

0

dt

1 + λC−1tα

6

∫ ∞

0

λ−1/αC1/α 1

α
u1/α−1 du

1 + u
= O(λ−1/α).

For periodic Sobolev spaces of order s defined in section 7.3.2, the eigenvalues are exactly
proportional to m−2s since the eigenvalue decomposition is explicit. It turns out that if
the distribution of inputs has a bounded density with respect to the Lebesgue measure,
then for our chosen Sobolev space, we have α = 2s/d (see, e.g., Harchaoui et al., 2008,
appendix D).

Balancing terms (Sobolev spaces). We thus need to balance bias λt/s with variance
1
nλ

−d/(2s), leading to an optimal λ proportional to n−(d/(2s)+t/s)−1

= n−2s/(2t+d), and a

rate proportional to n−2t/(2t+d). This rate is achievable only through our analysis when
R2

nλ remains bounded (i.e., essentially λ > R2/n), thus, 2s/(2t + d) 6 1. On top of the

constraint that d/2 < s 6 t that we assumed earlier, we get the rate n−2t/(2t+d) so long
as d

2 + t > s > t. We can make the following observations:

• Except for the constraint d
2 + t > s > t, the upper bound on the rate obtained after

optimizing over λ does not depend on the kernel.

• We obtain some form of adaptivity (i.e., the rate improves with the regularity
of the target function): we get the slow rate n−2/(2+d) when t = 1 (recovering
the same rate as for local averaging methods20 in chapter 6), and that can be
achieved only when s 6 d/2 + 1 (e.g., with the exponential kernel, and then with
a regularization parameter smaller than 1/

√
n). At the same time, we can get the

rate n−2s/(2s+d) = n−2t/(2t+d) when t = s (well-specified model); then, the rate is
always better than 1/

√
n, because of the constraint s > d/2, and can be as good as

1/n when t (and thus s) is large. The rate for the square loss is then significantly
better than the rate 1/

√
n we obtained for Lipschitz-continuous losses.

• To allow for regularization parameters λ that are less than 1/n (and then even more
adaptivity, as kernels with fast decay of eigenvalues, such as the Gaussian kernel,
lead to good estimation rates for most target functions), further assumptions are
needed. See, for instance, Pillaud-Vivien et al. (2018) and references therein.

7.7 Experiments

We consider one-dimensional problems to highlight the adaptivity of kernel methods to the
regularity of the target function, with one smooth target and one nonsmooth target, and
three kernels: an exponential kernel corresponding to the Sobolev space of order 1 (top of

20In chapter 6, we assumed the target function to be Lipschitz-continuous, which can be made an
element of the Sobolev space of order t = 1, with the construction shown at the end of section 7.5.2.



7.7. EXPERIMENTS 219

Figure 7.3. Comparison of three kernels; Sobolev space of order 1 (top), Matern kernel
corresponding to the Sobolev space of order 3 (middle), and Gaussian kernel (bottom).
We consider two different target functions and represent on the right plots the excess
risks in logarithmic scale.



220 CHAPTER 7. KERNEL METHODS

figure 7.3), a Matern kernel corresponding to the Sobolev space of order 3 (middle), and
a Gaussian kernel (bottom). In the right plots, dotted lines are affine fits to the log-log
learning curves. The regularization parameter for ridge regression is selected to minimize
expected risk, and learning curves are obtained by averaging over 20 replications. See
the results in figure 7.3.

We observe adaptivity for the three kernels: learning is possible even with irregular
functions, and the rates are better for smooth target functions. We also note that for
kernels with smaller feature spaces (Matern and Gaussian kernels), the performance on
the nonsmooth target function is worse than for the large feature space (exponential ker-
nel). As highlighted by Bach (2013), this drop in performance for the Gaussian kernel is
primarily due to a numerical issue (the eigenvalues of the kernel matrix decay exponen-
tially fast, and finite precision arithmetic prevents the use of regularization parameters
that are too small).

7.8 Conclusion

In this chapter, we have shown how models that are linear in their parameters can be
made infinite-dimensional. Algorithmically, this is made possible using the kernel trick
that uses only dot products between the feature maps. Statistically, this leads to models
that can adapt to complex prediction functions using the appropriate kernels.

Since the algorithms presented in section 7.4 rely on convex optimization, we obtain
precise generalization guarantees that can take into account estimation, approximation,
and optimization errors. A key benefit of positive-definite kernel methods compared to
local-averaging techniques is their adaptivity to the smoothness of the prediction function.
What is still missing is adaptivity to problems where the optimal prediction function
depends only on a subset of the original variables (when applying to inputs in R

d). This
will be achieved by neural networks in chapter 9 at the expense of being able to solve
nonconvex optimization problems.



Chapter 8

Sparse Methods

Chapter Summary
• Model selection through regularization: Model selection can be performed by

adding a specific sparsity-inducing penalty on top of the empirical risk.
• ℓ0-penalty: For fixed design linear regression, if the optimal predictor has k nonze-

ros, then we can replace the rate σ2d
n by σ2k log d

n with an ℓ0-penalty on the square
loss (which is computationally hard).

• ℓ1-penalty: With few assumptions, we can get a slow rate proportional to k
√

log d
n

with an ℓ1-penalty and efficient algorithms, while fast rates require strong assump-
tions on the design matrix in the fixed design setting. In the random design setting,
fast rates can be obtained with invertible population covariance matrices.

8.1 Introduction

In previous chapters, we have seen the strong effect of the dimensionality of the input
space X on the generalization performance of supervised learning methods in two settings:

• When the target function f∗ was only assumed to be Lipschitz-continuous on the set
X = Rd, we saw that the excess risk for k-nearest-neigbors, Nadaraya-Watson esti-
mation (chapter 6), or positive kernel methods (chapter 7) was scaling as n−2/(d+2).

• When the target function is linear in some features ϕ(x) ∈ Rd, then the excess risk
for unregularized least-squares was scaling as d/n.

In these two situations, efficient learning is generally impossible when d is too large (of
course, much larger in the linear case).

To improve upon these rates, we study two techniques in this book. The first one is

221



222 CHAPTER 8. SPARSE METHODS

regularization (e.g., by the ℓ2-norm) that allows obtaining dimension-independent bounds
that cannot improve over the bounds above in the worst case but are typically adaptive
to additional regularity (see chapters 3 and 7).

In this chapter, we consider another framework, namely variable selection, whose aim
is to build predictors that depend only on a small number of variables. The key difficulty
is that the identity of variables to be selected is not known in advance.

In practice, variable selection is mainly used in two ways:

• The original set of features is already large (e.g., in text or web data).

• Given some input x ∈ X, a large-dimensional feature vector ϕ(x) is built where
features are added that could potentially help predict the response, but from which
we expect only a small number to be relevant.

△! If no good predictor with a small number of active variables exists, these
methods are not supposed to work better (see experiments in section 8.4).

Linear variable selection. In this chapter, we focus on linear methods, where we
assume that we have a feature vector ϕ(x) ∈ Rd and we aim to minimize

E
[
ℓ(y, ϕ(x)⊤θ)

]

with respect to θ ∈ Rd for some loss function ℓ : Y×R→ R. We will consider two variable
selection techniques–namely, the penalization by ‖θ‖0, which is the number of nonzeros
in θ (often miscalled “ℓ0-norm”), and the ℓ1-norm. See extensions to more structured
situations in section 8.5.

Nonlinear variable selection corresponds to selecting a subset of variables from the d
available features ϕ(x)1, . . . , ϕ(x)d, but with a potentially nonlinear model on top of
them. This is considered in the context of neural networks in chapter 9.

Main focus on least-squares. These two types of penalties can be applied to all losses,
but in this chapter, for simplicity, we will primarily consider the square loss and, in most
cases, the fixed design setting (see a thorough description of this setting in section 3.5),
and assume that we have n observations (xi, yi) ∈ X × Y, such that there exists θ∗ ∈ Rd

for which, for i ∈ {1, . . . , n},
yi = ϕ(xi)

⊤θ∗ + εi,

where xi is assumed to be deterministic and εi has zero mean and variance σ2 (we also
assume independence from xi and sometimes stronger regularity, such as almost-sure
boundedness or Gaussian distributions). The goal is then to find θ ∈ Rd, such that

1

n
‖Φ(θ − θ∗)‖22 = (θ − θ∗)⊤Σ̂(θ − θ∗)

is as small as possible, where Φ ∈ Rn×d is the design matrix and Σ̂ = 1
nΦ⊤Φ the non-

centered empirical covariance matrix. We recall from chapter 3 that for the ordinary



8.1. INTRODUCTION 223

least-squares (OLS) estimator, the expectation of this excess risk is less than σ2d/n.
This is the best possible performance if we make no assumption on θ∗. In this chapter,
we assume that θ∗ is sparse; that is, only a few of its components are nonzero, or in other
words, ‖θ∗‖0 = k is small compared to d.

The results presented in this section extend beyond the square loss (e.g., to the logistic
loss) in a straightforward way for slow rates in 1/

√
n (see the end of section 8.3.3), with

significant additional work for fast rates in O(1/n) (see the end of section 8.3.4).

8.1.1 Dedicated Proof Technique for Constrained Least-Squares

In this chapter, we consider a more refined proof technique1 that can extend to constrained
versions of least-squares (while our technique in chapter 3 heavily relies on having a closed
form for the estimator, which is not possible in constrained or regularized cases except in
few instances, such as ridge regression).

We denote as θ̂ a minimizer of 1
n‖y − Φθ‖22 with the constraint that θ ∈ Θ, for some

subset Θ of Rd. If θ∗ ∈ Θ, then we have, by optimality of θ̂,

‖y − Φθ̂‖22 6 ‖y − Φθ∗‖22.

By expanding with y = Φθ∗ +ε, we get ‖ε−Φ(θ̂−θ∗)‖22 6 ‖ε‖22, leading to, by expanding
the norms,

‖ε‖22 − 2ε⊤Φ(θ̂ − θ∗) + ‖Φ(θ̂ − θ∗)‖22 6 ‖ε‖22,
and thus

‖Φ(θ̂ − θ∗)‖22 6 2ε⊤Φ(θ̂ − θ∗).

We can factor out ‖Φ(θ̂ − θ∗)‖2 and write it as

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · ε⊤
(

Φ(θ̂ − θ∗)

‖Φ(θ̂ − θ∗)‖2

)
.

This reformulation is difficult to deal with because θ̂ also appears on the right side of the
equation. As done for upper-bounding estimation errors in chapter 4, we can maximize
with respect to θ ∈ Θ to get rid of this randomness, which leads to

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · sup
θ∈Θ

ε⊤
(

Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)
, (8.1)

where θ̂ has disappeared from the right side. Finally, isolating ‖Φ(θ̂ − θ∗)‖22, we get

‖Φ(θ̂ − θ∗)‖22 6 4 sup
θ∈Θ

[
ε⊤

(
Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2
. (8.2)

This inequality is true almost surely, and we can take expectation (with respect to ε) to
obtain bounds. Therefore, in this chapter, we will compute expectations of maxima of

1This is taken from Philippe Rigollet’s lecture notes; see https://math.mit.edu/~rigollet/. See
also Rigollet and Tsybakov (2007) for an example of application.

https://math.mit.edu/~rigollet/


224 CHAPTER 8. SPARSE METHODS

quadratic forms in ε. Note that a key feature is that the set of Φ(θ−θ∗)
‖Φ(θ−θ∗)‖2

for θ ∈ Θ is

included in the unit ℓ2-sphere.

For example, when Θ = Rd (no constraints), we get, by taking z = Φ(θ−θ∗)
‖Φ(θ−θ∗)‖2

, with

ΠΦ = Πim(Φ), the orthogonal projector on the image space im(Φ) (which has dimension
rank(Φ)):

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 4E

[
sup

z∈im(Φ),‖z‖2=1

[
ε⊤z

]2]
.

By a simple geometric argument (shown here),

im(Φ)

ε

Πim(Φ)ε

we have
sup

z∈im(Φ),‖z‖2=1

[
ε⊤z

]2
= sup

z∈im(Φ),‖z‖2=1

[
(ΠΦε)

⊤z
]2

= ‖ΠΦε‖22,

leading to

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 4E

[
‖ΠΦε‖22

]
= 4 tr

(
Π2

ΦE[εε⊤]
)

= 4σ2
E tr(Π2

Φ) = 4σ2rank(Φ).

We thus get a bound on the excess risk equal to 4σ2d/n, which is (because of the con-
stant 4) slightly worse than the direct computation from chapter 3 (proposition 3.5) but
allows extensions to more complex situations.

This reasoning also allows getting high-probability bounds by adding assumptions to
the noise ε. Finally, this also extends to penalized problems (see section 8.2.2).

8.1.2 Probabilistic and Combinatorial Lemmas

In the proof technique described in section 8.1.1, we will need to bound expectations
of maxima of squared norms of Gaussians, which we now consider. We start with two
probabilistic lemmas.

Lemma 8.1 If z ∈ Rn has a Gaussian distribution with mean 0 and covariance ma-
trix σ2I, then if s < 1

2σ2 , E
[
es‖z‖

2
2

]
= (1− 2σ2s)−n/2.

Proof We have, for σ = 1 (from which we can derive the result for all σ), and s < 1/2
(using independence among the components of z),

E
[
es‖z‖

2
2
]

= E
[
es

∑n
i=1 z

2
i
]

=

n∏

i=1

E
[
esz

2
i
]

=
1

(2π)n/2

n∏

i=1

∫ ∞

−∞
e(s−

1
2 )z

2
i dzi

=
1

(2π)n/2

n∏

i=1

√
2π

(
1− 2s)−1/2 = (1− 2s)−n/2.



8.1. INTRODUCTION 225

Lemma 8.2 Let u1, . . . , um be m random variables that are potentially dependent, and
s > 0. Then E

[
max{u1, . . . , um}

]
6 1

s log
(∑m

i=1 E
[
esui

])
.

Proof Following the reasoning from section 1.2.4 in chapter 1, for any s > 0,

E
[

max{u1, . . . , um}
]
6

1

s
log

(
E
[
esmax{u1,...,um}]) =

1

s
log

(
E
[

max{esu1 , . . . , esum}
])
,

which is thus less than 1
s log

(∑m
i=1 E

[
esui

])
.

Lemmas 8.1 and 8.2 can be combined to upper-bound the expectated squared norms of
Gaussian random variables: if z1, . . . , zm ∈ Rn are centered (i.e., zero mean) Gaussian
random vectors that are potentially dependent, but for which the covariance matrix
of zi has eigenvalues less than σ2, we can first use the rotational invariance of Gaussian
densities to assume without loss of generality that the Gaussians have diagonal covariance
matrices with entries σ2

ij 6 σ2 (for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}). Then we have
from lemma 8.1,

E[es‖zi‖
2
2 ] =

n∏

j=1

E[esz
2
ij ] =

n∏

j=1

(1− 2σ2
ijs)

−1/2 6 (1− 2σ2s)−n/2.

Thus, for s = 1
4σ2 , E[es‖zi‖

2
2 ] 6 2n/2 for all i ∈ {1, . . . ,m}, and from lemma 8.2,

E
[

max{‖z1‖22, . . . , ‖zm‖22}
]
6 4σ2 log(m2n/2) = 2nσ2 log(2) + 4σ2 log(m),

which is to be compared to the expectation of each argument of the max, which is less
than σ2n. We pay an additive factor proportional to σ2 log(m). This will be applied to
m ∝ dk, leading to the additional term in σ2k log(d) for methods based on the ℓ0-penalty.
The term in dk comes from lemma 8.3.

Lemma 8.3 Let d > 0 and k ∈ {1, . . . , d}. Then log
(
d
k

)
6 k(1 + log d

k ).

Proof By recursion on k, the inequality is trivial for k = 1, and if
(
d

k−1

)
6

(
ed
k−1

)k−1
,

then
(
d
k

)
=

(
d

k−1

)
d−k+1
k 6

(
ed
k−1

)k−1 d
k 6

(
ed
k

)k−1(
1+ 1

k−1

)k−1 d
k 6

(
ed
k

)k−1
e dk =

(
ed
k

)k
,

where we used for α > 0, (1 + 1
α )α = exp(α log(1 + 1/α)) 6 exp(1) = e.

Exercise 8.1 (Concentration of chi-squared variables) Consider n independent
standard Gaussian variables z1, . . . , zn and the variables y = z21 + · · · + z2n. Using

lemma 8.1, show that for any ε > 0, P(y > n(1+ε)) 6
(

1+ε
exp(ε)

)n/2
, and for any ε ∈ (0, 1),

P(y 6 n(1− ε)) 6
(

1−ε
exp(−ε)

)n/2
.

We now consider two types of variable selection frameworks, one based on ℓ0-penalties
and one based on ℓ1-penalties.



226 CHAPTER 8. SPARSE METHODS

8.2 Variable Selection by the ℓ0-penalty

In this section, we assume that the target vector θ∗ has at most k nonzero components
(i.e., ‖θ∗‖0 6 k). We denote by A = supp(θ∗) the “support” of θ∗; that is, the subset of
{1, . . . , d} composed of j such that (θ∗)j 6= 0. We have |A| 6 k.

Price of adaptivity. If we knew set A, then we could simply perform least-squares
regression with the design matrix ΦA ∈ Rn×|A|, where ΦB denotes the submatrix of Φ
obtained by keeping only the columns from B, with an excess risk proportional to σ2k/n
(this is what we call the “oracle” in section 8.4). Thus, so long as k is small compared
to n, we can estimate θ∗ correctly, regardless of the potentially large value of d.

However, we do not know A in advance, and we would still like to have a convergence
rate of the order σ2k/n, which is a form of adaptivity to potentially sparse predictors.
We will see that this will lead to an extra factor of log

(
d
k

)
6 log d due to the potentially

large number of models with k variables.

Note that we could also apply the general model selection framework of structural risk
minimization from section 4.6.1, which would be adapted to Lipschitz-continuous losses.
As studied in exercise 8.3, model selection leads to an extra term in

√
k log(d)/n.

8.2.1 Assuming That k Is Known

We start by assuming that the maximal cardinality k is known in advance, and we consider
Gaussian noise for simplicity (this extends to sub-Gaussian noise as well; see the note
below the proof of proposition 8.1).

Proposition 8.1 (Model selection–known k) Assume that y = Φθ∗ + ε, with ε ∈ Rn

being a vector with independent Gaussian components of zero mean and variance σ2, with
‖θ∗‖0 6 k, for k < d/2. Let θ̂ be the minimizer of ‖y − Φθ‖22, with the constraint that
‖θ‖0 6 k. Then, the fixed design excess risk is upper-bounded as

E
[
(θ̂ − θ∗)⊤Σ̂(θ̂ − θ∗)

]
= E

[ 1

n
‖Φ(θ̂ − θ∗)‖22

]
6 32σ2 k

n

(
log

(d
k

)
+ 1

)
.

Proof For any θ such that ‖θ‖0 6 k, we have ‖θ− θ∗‖0 6 2k. Thus, we have, using the
bounding technique from section 8.1.1,

‖Φ(θ̂ − θ∗)‖22 6 4 sup
θ∈Rd,‖θ‖06k

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2
from equation (8.2),

6 4 sup
θ∈Rd,‖θ−θ∗‖062k

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2
from the discussion above,

= 4 sup
B⊂{1,...,d}, |B|62k

sup
supp(θ−θ∗)⊂B

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2



8.2. VARIABLE SELECTION BY THE ℓ0-PENALTY 227

by separating by the supports. Thus, using the same argument as in section 8.1.1,

‖Φ(θ̂ − θ∗)‖22 6 4 sup
B⊂{1,...,d}, |B|62k

sup
z∈im(ΦB),‖z‖2=1

[
ε⊤z

]2

6 4 sup
B⊂{1,...,d}, |B|62k

‖ΠΦBε‖22 6 4 sup
B⊂{1,...,d}, |B|=2k

‖ΠΦBε‖22

because ‖ΠΦBε‖22 is nondecreasing in B.

The random variable ‖ΠΦBε‖22 has expectation at most 2k. Given that there are(
d
2k

)
6

(
ed
2k

)2k
sets B of cardinality 2k (bound from lemma 8.3), we should expect, with

concentration inequalities from section 8.1.2, to pay a price of log
[(
ed
2k

)2k] ≈ k log d
k . We

will make this reasoning formal here.

Indeed, ΠΦBε has a Gaussian distribution with an isotropic covariance matrix of
dimension |B| 6 2k, and thus we have for sσ2 < 1/2, from lemma 8.1,

E
[
es‖ΠΦB

ε‖2
2
]
6 (1− 2σ2s)−k.

Therefore, with s = 1/(4σ2), for which (1 − 2σ2s)−k = 2k, we get, from lemma 8.2,

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 16σ2 log

((
d

2k

)
2k
)

6 16σ2 log
(( ed

2k

)2k

2k
)

= 16σ2
(

2k log
(d
k

)
+ (2− log 2)k

)
.

This leads to the desired result.

We can make the following observations:

• The term k log(d/k) comes from the logarithm of the number m of subsets of
{1, . . . , d} of size 2k, which is a result of the expectation of the maximum of m
squared norms of Gaussians.

• The assumption that k < d/2 is not a real issue, as when k > d/2, then the classical
bound σ2d/n is of the same order as σ2k log(d/k)/n.

• The result extends beyond Gaussian noise, in particular for all sub-Gaussian εi, for
which E[esεi ] 6 es

2τ2

for all s > 0 (for some τ > 0), or, equivalently P(|εi| > t) =

O(e−ct
2

) for some c > 0.

• The result extends if the constrained minimization of the empirical risk is done only
approximately. See exercise 8.2.

Exercise 8.2 Assume that θ̂ ∈ Θ is such that 1
n‖y−Φθ̂‖22 6 infθ∈Θ

1
n‖y−Φθ‖22+ρ.

Show that ‖Φ(θ̂ − θ∗)‖22 6 4 supθ∈Θ

[
ε⊤

(
Φ(θ−θ∗)

‖Φ(θ−θ∗)‖2

)]2
+ 2nρ (with notations from

section 8.1.1).

• This result is not improvable by any algorithm (polynomial time or not); see, for
example, theorem 2.3 from Giraud (2014) and chapter 15.



228 CHAPTER 8. SPARSE METHODS

Algorithms. In terms of algorithms, essentially all subsets of size k have to be looked
at for exact minimization, with a cost proportional to O(dk), which is a problem when k
gets large. There are, however, two simple algorithms that come with guarantees only
when such fast rates are available for ℓ1-regularization (see section 8.3.4 and Zhang, 2009).

• Greedy algorithm: Starting from the empty set, variables are added one by one,
maximizing the resulting cost reduction. This is often referred to as “orthogonal
matching pursuit” (Pati et al., 1993).

• Iterative sorting: Starting from θ0 = 0, the iterative algorithm goes as follows
at iteration t: the upper bound (based on the L-smoothness of the quadratic loss,
with L = λmax( 1

nΦ⊤Φ), see chapter 5)

1

n
‖y − Φθt−1‖22 −

2

n
(y − Φθt−1)⊤Φ(θ − θt−1) + L‖θ− θt−1‖22

on the cost function 1
n‖y−Φθ‖22 happens to be separable (i.e., a sum of functions of

each component of θ). It can then be easily minimized with respect to θ such that
‖θ‖0 6 k to obtain θt. This is done (with the proof left as an exercise) by computing
the unconstrained minimizer θt−1 − 1

L
1
nΦ⊤(Φθt−1 − y) and selecting the k largest

components.

Exercise 8.3 (�) Consider a linear model f(x) = θ⊤ϕ(x) with a G-Lipschitz-continuous
loss function and features almost surely bounded in ℓ∞-norm by R. Using section 4.6.1,
show that the minimizer of the empirical risk over all θ ∈ Rd, such that ‖θ‖0 6 k and
‖θ‖2 6 D, has an expected risk less than the minimum expected risk over this same set
with an additive term proportional to GRD

√
k log(d)/n.

8.2.2 Sparsity-Adaptive Estimation (Unknown k) (�)

In practice, regardless of the computational cost, one does not know k in advance. A
classical idea is to consider penalized least-squares regression and minimize

1

n
‖y − Φθ‖22 + λ‖θ‖0. (8.3)

This is a hard problem to solve, which essentially requires looking at all 2d subsets. For
a well-chosen λ, this almost leads to the same performance as if k were known.

Proposition 8.2 (Model selection–ℓ0-penalty) Assume that y = Φθ∗ + ε, with ε ∈
R
n being a vector with independent Gaussian components of zero mean and variance σ2,

with ‖θ∗‖0 6 k. Let θ̂ be a minimizer of equation (8.3). Then, for λ = 8σ2

n log(
√

2d), we
have

E

[ 1

n
‖Φ(θ̂ − θ∗)‖22

]
6

16kσ2

n

[
1 + log(d)

]
+

16σ2

n
.

Proof (��) We follow the same proof technique as in section 8.1.1, but now for regu-

larized problems. We have, by optimality of θ̂,

‖y − Φθ̂‖22 + nλ‖θ̂‖0 6 ‖y − Φθ∗‖22 + nλ‖θ∗‖0,



8.2. VARIABLE SELECTION BY THE ℓ0-PENALTY 229

which leads to, using the inequality 2ab 6 2a2 + 1
2b

2 and the same arguments that led to
equation (8.1),

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · ε⊤
( Φ(θ̂ − θ∗)

‖Φ(θ̂ − θ∗)‖2

)
+ nλ‖θ∗‖0 − nλ‖θ̂‖0

6 2

(
ε⊤

(
Φ(θ̂ − θ∗)

‖Φ(θ̂ − θ∗)‖2

))2

+
1

2
‖Φ(θ̂ − θ∗)‖22 + nλ‖θ∗‖0 − nλ‖θ̂‖0,

leading to, by taking the supremum over θ ∈ Rd,

‖Φ(θ̂ − θ∗)‖22 6 sup
θ∈Rd

{
4

(
ε⊤

(
Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

))2

+ 2nλ‖θ∗‖0 − 2nλ‖θ‖0
}
.

We then take the supremum by layers, as sup
θ∈Rd

= sup
k′∈{1,...,d}

sup
|B|=k′

sup
supp(θ)⊂B

; that is, using

the same derivations as for proposition 8.1 (with A the support of θ∗):

E
[
‖Φ(θ̂ − θ∗)‖22

]

6 E

[
sup

k′∈{1,...,d}
sup

|B|=k′
sup

supp(θ)⊂B

{
4

(
ε⊤

(
Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

))2

+ 2nλ‖θ∗‖0 − 2nλk′
}]

6 2nλ‖θ∗‖0 + 4E
[

sup
k′∈{1,...,d}

sup
|B|=k′

{
‖ΠΦA∪Bε‖22 −

nλ

2
k′
}]
.

We thus get, with the same reasoning as in section 8.2.1 (based on the probabilistic
lemmas from section 8.1.2), using s = 1

4σ2 within lemma 8.2,

E
[
‖Φ(θ̂ − θ∗)‖22

]

6 2nλ‖θ∗‖0 +
4

s
log

( ∑

k′∈{1,...,d}

∑

|B|=k′
E
[

exp(s‖ΠΦA∪Bε‖22)
]

exp
(
− nλk′s

2

))

6 2nλ‖θ∗‖0 + 16σ2 log

( d∑

k′=1

(
d

k′

)
2(k

′+‖θ∗‖0)/2 exp
(
− nλk′

8σ2

))
(8.4)

6 2nλ‖θ∗‖0 + 8σ2‖θ∗‖0 log(2) + 16σ2 log

( d∑

k′=1

(
d

k′

)
exp

(
k′
( log(2)

2
− nλ

8σ2

)))

6 (2nλ+ 8 log(2)σ2)‖θ∗‖0 + 16σ2d log
(

1 + exp
(

log(
√

2)− nλ

8σ2

))

using the binomial theorem,

6 (2nλ+ 8 log(2)σ2)‖θ∗‖0 + 16σ2d exp
(

log(
√

2)− nλ

8σ2

)
. (8.5)

To find a good regularization parameter, we can then approximately minimize the bound
in equation (8.5) with respect to λ. We obtain a good balance of the two terms by having

log(
√

2)− nλ
8σ2 = − log d (i.e., λ = 8σ2

n log(
√

2d)), for which we get

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 (2nλ+ 8 log(2)σ2)‖θ∗‖0 + 16σ2 6 16σ2

(
(log(d) + 1)‖θ∗‖0 + 1

)
,

and obtain the desired result.



230 CHAPTER 8. SPARSE METHODS

We can make the following observations:

• Penalties on the number of parameters on top of the empirical risk can be obtained
from various perspectives, for square loss depending on whether the noise variance
is known, or more generally for other losses. For example, the Bayesian information
criterion (BIC) gives a penalty proportional to ‖θ‖0 logn (which is often a smaller
penalty than proposed here).

• Note that we need to know σ2 in advance to compute λ, which can be a problem
in practice. See Giraud et al. (2012) for more details and alternative formulations.

• The three most important aspects are that the bound does not require any assump-
tion on the design matrix Φ, we observe a positive high-dimensional phenomenon,
where d only appears as log d

n , but only exponential-time algorithms are possible for
solving the problem with guarantees (see the algorithms that follow).

Exercise 8.4 (��) With a penalty proportional to ‖θ‖0 log d
‖θ‖0

, show the same bound

as for k known.

Algorithms. We can extend the two algorithms from the end of section 8.2.1 for the
penalized case:

• Forward-backward algorithm to minimize a function of set B: Starting
from the empty set B = ∅, at every step of the algorithm, one tries both a for-
ward algorithm (adding a node to B) and a backward algorithm (removing a node
from B), and perform a step only if it decreases the overall cost function. See an
analysis of this point by Zhang (2011).

• Iterative hard-thresholding: Compared to the constrained case, we minimize

1

n
‖y − Φθt−1‖22 −

2

n
(y − Φθt−1)⊤Φ(θ − θt−1) + L‖θ − θt−1‖22 + λ‖θ‖0,

with L = λmax( 1
nΦ⊤Φ), which can also be computed in closed form (by iterative

hard thresholding). That is, with θt = θt−1+ 1
nLΦ⊤(y−Φθt−1), all components (θt)j

such that |(θt)j |2 > λ
L are left unchanged, and all others are set to zero. Indeed, for

one-dimensional problems, the minimizer of |θ− y|2 +λ1θ 6=0 is θ∗λ(y) = 0 if |y|2 6 λ
and θ∗λ(y) = y otherwise, as shown in the following diagram:

y

θ
∗
λ
(y)

√
λ

−
√
λ

This is referred to as “iterative hard thresholding” (while for the ℓ1-norm, this
will be iterative soft thresholding) because a component is either kept intact or set



8.3. VARIABLE SELECTION BY ℓ1-REGULARIZATION 231

exactly to zero, leading to a discontinuous behavior. See an analysis by Blumensath
and Davies (2009).

8.3 Variable Selection by ℓ1-regularization

We now consider a computationally efficient alternative to ℓ0-penalties (namely, using
ℓ1-penalties), by minimizing, for the square loss,

1

2n
‖y − Φθ‖22 + λ‖θ‖1. (8.6)

This is a convex optimization problem to which algorithms from chapter 5 can be applied
(see instances in section 8.3.1). It is often called the “Lasso” problem, for “least absolute
shrinkage and selection operator” (Tibshirani, 1996).

We present algorithms dedicated to solving the optimization problem, and then present
“slow rate” analyses leading to excess risks in O(1/

√
n), first in the random design case

with Lipschitz-continuous losses, and then in the fixed design case with the square loss.
We then present “fast rate” analyses leading to excess risks in O(1/n).

8.3.1 Intuition and Algorithms

Sparsity-inducing effect. Unlike the squared ℓ2-norm used in ridge regression, the
ℓ1-norm is nondifferentiable, and its nondifferentiability is not limited to θ = 0. Rather,
it occurs in many other points. To see this, we can look at the ℓ1-ball and its varying ge-
ometry compared to the ℓ2-ball. This is directly relevant to situations where we constrain
the value of the norm instead of penalizing it:

θ1

θ2

θ1

θ2

As shown here, where we represent the level set of a potential loss function, the
solution of minimizing the loss subject to the ℓ1-constraint (in green) is obtained when
level sets are “tangent” to the constraint set. In the right part, this is obtained at a point
away from the axes, but in the left part, this is achieved at one of the corners of the
ℓ1-ball, which is a point where one of the components of θ is equal to zero. Such corners
are “attractive”; that is, minimizers tend to be precisely at these corners, which exactly
leads to sparse solutions.



232 CHAPTER 8. SPARSE METHODS

The ℓ1-norm is also often introduced as the convex relaxation of the ℓ0-penalty. In-
deed, the ℓ1-norm is the convex envelope (the largest convex function that is a lower
bound) of the ℓ0-penalty on the set [−1, 1]d (the proof is left as an exercise). While this
provides some intuition about the ℓ1-norm and its potential generalization to other sparse
situations, this does not directly justify its good behavior in sparse problems.

One-dimensional problem. Another classical way to understand the sparsity-inducing
effect is to consider the one-dimensional problem:

min
θ∈R

F (θ) =
1

2
(y − θ)2 + λ|θ|.

Since F is strongly convex, it has a unique minimizer θ∗λ(y). For λ = 0 (no regularization),
we have θ∗0(y) = y, while for λ > 0, by computing the left and right derivatives at
zero (the proof is left as an exercise), one can check that θ∗λ(y) = 0 if |y| 6 λ, and
θ∗λ(y) = y − λ for y > λ, and θ∗λ(y) = y + λ for y < −λ, which can be put together as
θ∗λ(y) = max{|y| − λ, 0} sign(y), which is depicted here. This is referred to as “iterative
soft thresholding” (this will be useful for the proximal methods discussed next).

y

θ
∗
λ
(y)

λ

−λ

Note that the minimizer is either set to zero or shrunk toward zero.

Optimization algorithms. We can adapt algorithms from chapter 5 to the problem
in equation (8.6).

• Iterative soft-thresholding: We can apply proximal methods (section 5.2.5) to
the objective function of the form F (θ) + λ‖θ‖1 for F (θ) = 1

2n‖y−Φθ‖22, for which
the gradient is F ′(θ) = 1

nΦ⊤(Φθ − y). The plain (i.e., nonaccelerated) proximal
method recursion is

θt = arg min
θ∈Rd

F (θt−1) + F ′(θt−1)⊤(θ − θt−1) +
L

2
‖θ − θt−1‖22 + λ‖θ‖1,

with L = λmax( 1
nΦ⊤Φ). This leads to (θt)j = max{|(ηt)j | − λ/L, 0} sign((ηt)j),

for ηt = θt−1 − 1
LF

′(θt−1). This simple algorithm can also be accelerated. The
convergence rate then depends on the invertibility of 1

nΦ⊤Φ (if invertible, we get
an exponential convergence rate in t, with only O(1/t) otherwise).

• Coordinate descent: Although the ℓ1-norm is a nondifferentiable function, coor-
dinate descent can be applied (because the ℓ1-norm is “separable,” i.e., a sum of
terms that depend on single variables). At each iteration, we select a coordinate
to update (at random or by cycling) and optimize with respect to this coordinate,



8.3. VARIABLE SELECTION BY ℓ1-REGULARIZATION 233

which is a one-dimensional problem that can be solved in closed form. The conver-
gence properties are similar to proximal methods (Fercoq and Richtárik, 2015).

Exercise 8.5 Provide a closed-form expression for the iteration of the coordinate
descent algorithm described just above.

• Stochastic gradient descent: To leverage the ℓ1-norm geometry, we will need
the mirror descent extension of gradient descent presented in section 11.1.3.

η-trick. The nondifferentiability of the ℓ1-norm may also be treated through the simple
identity

|θj | = inf
ηj>0

θ2j
2ηj

+
ηj
2
,

where the minimizer is attained at ηj = |θj |. An example in one dimension, with |θ| and
several quadratic upper bounds, is shown in the following illustration:

This leads to the reformulation of equation (8.6) as

inf
θ∈Rd

1

2n
‖y − Φθ‖22 + λ‖θ‖1 = inf

η∈R
d
+

inf
θ∈Rd

1

2n
‖y − Φθ‖22 +

λ

2

d∑

j=1

θ2j
ηj

+
λ

2

d∑

j=1

ηj ,

and alternating optimization algorithms can be used: minimizing with respect to η when θ
is fixed can be done in closed form as ηj = |θj |, while minimizing with respect to θ when η
is fixed is a quadratic optimization problem that can be solved by a linear system. This
leads to the class of “reweighted ℓ2-minimization” algorithms.2

Optimality conditions (�). To study the estimator defined by equation (8.6), it is
often necessary to characterize when a certain θ is optimal or not; that is, to derive
optimality conditions.

Since the objective function H(θ) = F (θ) + λ‖θ‖1 is not differentiable, we need other
tools than having the gradient equal zero. The gradient looks only at d directions (along

2See more details in https://www.di.ens.fr/~fbach/ltfp/etatrick.html and in section 5 of Bach
et al. (2012a).

https://www.di.ens.fr/~fbach/ltfp/etatrick.html


234 CHAPTER 8. SPARSE METHODS

the coordinate axes), while, in the nonsmooth context, we need to look at all directions;
that is, for all ∆ ∈ Rd, we require that the directional derivative,

∂H(θ,∆) = lim
ε→0

1

ε

[
H(θ + ε∆)−H(θ)

]
,

is nonnegative. That is, we need to go up in all directions. When H is differentiable at θ,
then ∂H(θ,∆) = H ′(θ)⊤∆, and the positivity for all ∆ is equivalent to H ′(θ) = 0.

For H(θ) = F (θ) + λ‖θ‖1, we have

∂H(θ,∆) = F ′(θ)⊤∆ + λ
∑

j, θj 6=0

sign(θj)∆j + λ
∑

j, θj=0

|∆j |.

It is separable in ∆j , j = 1, . . . , d, and it is nonnegative for all j, if and only if all
components that depend on ∆j are nonnegative.

When θj 6= 0, then this requires F ′(θ)j + λ sign(θj) = 0, while when θj = 0, we need
F ′(θ)j∆j + λ|∆j | > 0 for all ∆j , which is equivalent to |F ′(θ)j | 6 λ. This leads to the
following set of conditions:

{
F ′(θ)j + λ sign(θj) = 0, ∀j ∈ {1, . . . , d} such that θj 6= 0,
|F ′(θ)j | 6 λ, ∀j ∈ {1, . . . , d} such that θj = 0.

See Giraud (2014) for more details. Note that we could have also used subgradients to
derive these optimality conditions (the derivations are left as an exercise).

Homotopy method (��). We assume for simplicity that Φ⊤Φ is invertible such that
the minimizer θ(λ) is unique. Given a certain sign pattern for θ, optimality conditions
are all convex in λ and thus define an interval in λ where the sign is preserved. Given
the sign, then the solution θ(λ) is affine in λ,3 leading to a piecewise affine function in λ
(see an example of a regularization path in figure 8.1).

Exercise 8.6 Assume that λ >
∥∥ 1
nΦ⊤y

∥∥
∞. Show that θ = 0 is a minimizer of the Lasso

objective function in equation (8.6).

If we know the breakpoints in λ and the associated signs, we can compute all the
solutions for all λ. This is the source of the homotopy algorithm for equation (8.6), which
starts with large λ and builds the path of solutions by computing the breakpoints one by
one. See more details by Osborne et al. (2000) and Mairal and Yu (2012).

8.3.2 Slow Rates–Random Design

In this section, we consider Lipschitz-continuous loss functions and, thus, an empirical
risk of the form

R̂(θ) =
1

n

n∑

i=1

ℓ(yi, ϕ(xi)
⊤θ),

3If A ⊂ {1, . . . , k} is the support associated with the sign vector s, we have 0 = F ′(θ)A + λsA =
1
n
Φ⊤

A(ΦAθA − y) + λsA, which leads to θA = (Φ⊤
AΦA)−1Φ⊤

Ay − nλ(Φ⊤
AΦA)−1sA.



8.3. VARIABLE SELECTION BY ℓ1-REGULARIZATION 235

Figure 8.1. Regularization path for a Lasso problem in dimension d = 32 and n = 32 input
observations sampled from a standard Gaussian distribution with 4 nonzero weights equal
to −1 or +1, and outputs generated with additive Gaussian noise with unit variance. The
random seed was chosen so that at least one weight comes in and out of the regularization
path.

with ℓ having the Lipschitz constant G with respect to the second variable. We assume
that the expected risk R(θ) = E[ℓ(y, ϕ(x)⊤θ)] is minimized at a certain θ∗ ∈ Rd, and for

simplicity, we consider the estimator θ̂D obtained by minimizing R̂(θ) with the constraint
that ‖θ‖1 6 D, where we will use tools from section 4.5.4 (we could also consider the
penalized formulation using proposition 4.7 in section 4.5.5). We assume that ‖ϕ(x)‖∞ 6

R almost surely.

From section 4.5.4, we get that

E
[
R(θ̂D)

]
6 inf

‖θ‖16D
R(θ) + 4GRn(FD),

where Rn(FD) is the Rademacher complexity of the set of linear predictors with weight
vectors bounded by D in ℓ1-norm, which we can compute as

Rn(FD) = E

[
sup

‖θ‖16D

1

n

n∑

i=1

εRi ϕ(xi)
⊤θ

]
= DE

[∥∥∥∥
1

n

n∑

i=1

εRi ϕ(xi)

∥∥∥∥
∞

]
,

where εRi ∈ {−1, 1} are Rademacher random variables. We can now compute a bound on
the expectation, first conditioned on the data. Indeed, εRi ϕ(xi) has conditional zero mean
and is bounded in absolute value by R. It is thus sub-Gaussian with constant R2 (see sec-
tion 1.2.1, which implies that 1

n

∑n
i=1 ε

R
i ϕ(xi) is sub-Gaussian with constant R2/n). We

can then use proposition 1.5 to find that the maximum of the 2d sub-Gaussian variables

is less than
(
2R2 log(2d)/n

)1/2
. This leads to

E
[
R(θ̂D)

]
6 inf

‖θ‖16D
R(θ) +

4GRD
√

2 log(2d)√
n

.



236 CHAPTER 8. SPARSE METHODS

When D is large enough (e.g., D = ‖θ∗‖1), then we get an excess risk bounded by
4GRD

√
2 log(2d)/

√
n. If θ∗ has only k nonzeros, its ℓ1-norm will typically grow as O(k),

and we see a high-dimensional phenomenon with a bound proportional to k
√

log d/
√
n,

where d can be much larger than n, so long as k2 log(d)/n is small. This is a slow rate
because of the dependence in n, which is O(1/

√
n) rather than in O(1/n).

8.3.3 Slow Rates–Fixed Design (Square Loss)

We now look at the fixed design setting with the square loss. We first consider an analysis
based on simple tools, with no assumptions on the design matrix Φ. We see that we can
deal with high-dimensional inference problems where d can be large, but it will be with
rates in 1/

√
n (like in section 8.3.2) and not 1/n (hence the denomination “slow”).

As for proposition 4.7 in section 4.5.5, we study the penalization by a general norm
Ω : Rd → R with a dual norm Ω∗ defined as Ω∗(z) = supΩ(θ)61 z

⊤θ (see exercise 8.7 for

classical examples). We thus denote by θ̂ a minimizer of

1

2n
‖y − Φθ‖22 + λΩ(θ). (8.7)

We start with lemma 8.4, which characterizes the excess risk in two situations: (1)
where λ is large enough and (2) in the general case.

Lemma 8.4 Let θ̂ be a minimizer of equation (8.7).

(a) If Ω∗(Φ⊤ε) 6 nλ
2 , then we have Ω(θ̂) 6 3Ω(θ∗) and 1

n‖Φ(θ̂ − θ∗)‖22 6 3λΩ(θ∗).

(b) In all cases, 1
n‖Φ(θ̂ − θ∗)‖22 6 4

n‖ε‖22 + 4λΩ(θ∗).

Proof We have, following the same reasoning as in section 8.1.1, by optimality of θ̂ for
equation (8.7):

‖Φ(θ̂ − θ∗)‖22 6 2ε⊤Φ(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂).

Then, with the dual norm Ω∗(z) = supΩ(θ)61 z
⊤θ, assuming that Ω∗(Φ⊤ε) 6 nλ

2 and
using the triangle inequality,

‖Φ(θ̂ − θ∗)‖22 6 2Ω∗(Φ⊤ε)Ω(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂)

6 nλΩ(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂)

6 nλΩ(θ̂) + nλΩ(θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂) 6 3nλΩ(θ∗)− nλΩ(θ̂).

This implies that Ω(θ̂) 6 3Ω(θ∗) and 1
n‖Φ(θ̂ − θ∗)‖22 6 3λΩ(θ∗).

We also have a general bound through

‖Φ(θ̂ − θ∗)‖22 6 2‖ε‖2‖Φ(θ̂ − θ∗)‖2 + 2nλΩ(θ∗),

which leads to, using the identity 2ab 6 1
2a

2 + 2b2,

‖Φ(θ̂ − θ∗)‖22 6
1

2
‖Φ(θ̂ − θ∗)‖22 + 2‖ε‖22 + 2nλΩ(θ∗),

which leads to the desired bound.



8.3. VARIABLE SELECTION BY ℓ1-REGULARIZATION 237

Exercise 8.7 For p ∈ [1,∞], show that the dual of the ℓp-norm is the ℓq-norm for
1
p + 1

q = 1.

We can now use lemma 8.4 to compute the excess risk of the Lasso problem, for which
Ω = ‖·‖1 and Ω∗(Φ⊤ε) = ‖Φ⊤ε‖∞.4 The key is to note that since ‖Φ⊤ε‖∞ is a maximum
of 2d zero-mean terms that scale as

√
n according to section 1.2.4, its maximum scales

as
√
n log(d), and we will apply lemma 8.4 when λ is larger than

√
log(d)/n. We denote

by ‖Σ̂‖∞ the largest element of matrix Σ̂ in absolute value.

Proposition 8.3 (Lasso–slow rate) Assume that y = Φθ∗ + ε, with ε ∈ Rn being a

vector with independent Gaussian components of zero mean and variance σ2. Let θ̂ be

the minimizer of equation (8.6). Then, for λ = 2σ√
n

√
2‖Σ̂‖∞

√
log(d) + log 1

δ , we have,

with probability greater than 1− δ,

1

n
‖Φ(θ̂ − θ∗)‖22 6 3‖θ∗‖1 ·

2σ√
n

√
2‖Σ̂‖∞

√
log(d) + log

1

δ
.

Proof For each j, the random variable (Φ⊤ε)j is Gaussian with mean zero and variance

nσ2Σ̂jj . Thus, we get from the union bound and from the fact that for a standard
Gaussian variable z, P(|z| > t) 6 exp(−t2/2):5

P

(
‖Φ⊤ε‖∞ >

nλ

2

)
6

d∑

j=1

P

(
|Φ⊤ε|j >

nλ

2

)
6

d∑

j=1

exp
( −nλ2

8σ2Σ̂jj

)
6 d exp

( −nλ2

8σ2‖Σ̂‖∞

)
= δ,

because of our choice of λ. Thus, with a probability greater than 1 − δ, we can apply
the first part of lemma 8.4, and therefore the error is less than 3λ‖θ∗‖1. For a result in
expectation, see exercise 8.8.

We already observe a high-dimensional phenomenon with the term
√

log d
n , where n

can be much larger than d (if, of course, we assume that the optimal predictor θ∗ is
sparse such that ‖θ∗‖1 does not grow with d). Note that the proposed regularization
parameter depends on the unknown noise variance. A simple trick known as the “square
root Lasso” allows for avoiding that dependence on σ (see section 5.4 from Giraud, 2014)
by minimizing 1√

n
‖y − Φθ‖2 + λ‖θ‖1.

Proposition 8.3 suggests a regularization parameter λ proportional to 1/
√
n, which

does enable estimation in high-dimensional situations but can also add a significant bias
because all nonzero components of θ̂ are shrunk toward zero. See section 8.5 for methods
to alleviate this effect.

4Developments similar to proposition 4.7 in section 4.5.5 for general norms could also be carried out.
5We have for t > 0, et

2/2P(|z| > t) = 2√
2π

∫+∞
t et

2/2−s2/2ds 6 2√
2π

∫+∞
t e−(s−t)2/2ds = 1.



238 CHAPTER 8. SPARSE METHODS

Exercise 8.8 (�) With the same assumptions as proposition 8.3, and with the choice of

the regularization parameter λ = 4σ
√

log(dn)
n

√
‖Σ̂‖∞, use lemma 8.4 to provide an upper

bound of E
[
1
n‖Φ(θ̂ − θ∗)‖22

]
.

8.3.4 Fast Rates–Fixed Design (�)

We now consider conditions to obtain a fast rate with a leading term proportional to
σ2 k log d

n , which is the same as for the ℓ0-penalty but with tractable algorithms. This will
come with additional strong conditions on the design matrix Φ.

We start with a simple (but crucial) lemma, characterizing the solution of equa-
tion (8.6) in terms of the support A of θ∗.

Lemma 8.5 Let θ̂ be a minimizer of equation (8.6). Assume that ‖Φ⊤ε‖∞ 6 nλ
2 . If

∆ = θ̂ − θ∗, then ‖∆Ac‖1 6 3‖∆A‖1 and ‖Φ∆‖22 6 3nλ‖∆A‖1.
Proof We have, as in previous proofs (e.g., lemma 8.4), with ∆ = θ̂ − θ∗ and A being
the support of θ∗,

‖Φ∆‖22 6 2ε⊤Φ∆ + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1.
Then, assuming that ‖Φ⊤ε‖∞ 6 nλ

2 ,

‖Φ∆‖22 6 2‖Φ⊤ε‖∞‖∆‖1 + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1
‖Φ∆‖22 6 nλ‖∆‖1 + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1.

We then get, by using the decomposability of the ℓ1-norm and the triangle inequality,

‖θ∗‖1−‖θ̂‖1 = ‖(θ∗)A‖1−‖θ∗+∆‖1 = ‖(θ∗)A‖1−‖(θ∗+∆)A‖1−‖∆Ac‖1 6 ‖∆A‖1−‖∆Ac‖1,

leading to

‖Φ∆‖22 6 nλ‖∆‖1 + 2nλ(‖θ∗‖1 − ‖θ̂‖1) 6 nλ‖∆‖1 + 2nλ(‖∆A‖1 − ‖∆Ac‖1)

6 nλ(‖∆A‖1 + ‖∆Ac‖1) + 2nλ(‖∆A‖1 − ‖∆Ac‖1) = 3nλ‖∆A‖1 − nλ‖∆Ac‖1.

This leads to ‖∆Ac‖1 6 3‖∆A‖1 and the other desired inequality.

We can now add an extra assumption that will make the proof go through–namely,
that there is a constant κ > 0 such that

1

n
‖Φ∆‖22 > κ‖∆A‖22 (8.8)

for all ∆ that satisfies the condition ‖∆Ac‖1 6 3‖∆A‖1. This is called the “restricted
eigenvalue property” because if the smallest eigenvalue of 1

nΦ⊤Φ is greater than κ, the
condition is satisfied (but this is possible only if n > d). The relevance of this assumption
is discussed in section 8.3.5. This leads to the proposition 8.4.



8.3. VARIABLE SELECTION BY ℓ1-REGULARIZATION 239

Proposition 8.4 (Lasso–fast rate) Assume that y = Φθ∗ + ε, with ε ∈ Rn being a
vector with independent Gaussian components of zero mean and variance σ2. Denote
as A = supp(θ∗) the support of θ∗. Let θ̂ be the minimizer of equation (8.6). Then,

for λ = 2σ√
n

√
2‖Σ̂‖∞

√
log(2d) + log 1

δ , we have, if equation (8.8) is satisfied, and with

probability greater than 1− δ,

1

n
‖Φ(θ̂ − θ∗)‖22 6

72|A|σ2

n

‖Σ̂‖∞
κ

(
log(2d) + log

1

δ

)
.

Proof (�) We have, when λ is large enough, by application of lemma 8.5 and using
equation (8.8):

‖∆A‖1 6 |A|1/2‖∆A‖2 6
|A|1/2√
nκ
‖Φ∆‖2 6

|A|1/2√
nκ

√
3nλ‖∆A‖1,

which leads to ‖∆A‖1 6
3|A|λ
κ

. We then get 1
n‖Φ∆‖22 6

9|A|λ2

κ , which leads to the desired

result.

The dominant part of the rate is proportional to σ2k log d
n , which is a fast rate but depends

crucially on a very strong assumption (namely that the ratio ‖Σ̂‖∞/κ is finite and not
too large). Such results can be extended beyond the square loss using the notion of
self-concordance (see, e.g., Ostrovskii and Bach, 2021, and references therein).

Exercise 8.9 (��) With the same assumptions as proposition 8.4, with the choice of

the regularization parameter λ = 4σ
√

log(dn)
n

√
‖Σ̂‖∞, provide an upper bound on the

expectation of the excess risk E
[
1
n‖Φ(θ̂ − θ∗)‖22

]
.

8.3.5 Zoo of Conditions (��)

Conditions to obtain fast rates through equation (8.8) are plentiful: they all assume low
correlation among predictors, which is rarely the case in practice (in particular, if there
are two equal features, they are never satisfied).

Restricted eigenvalue property. The most direct condition is the so-called restricted
eigenvalue property (REP), which is exactly equation (8.8) with the supremum taken over
the unknown set A of a cardinality less than k,

inf
|A|6k

inf
‖∆Ac‖163‖∆A‖1

‖Φ∆‖22
n‖∆A‖22

> κ > 0. (8.9)

Mutual incoherence condition. A simpler one to check, but stronger, is the mutual
incoherence condition:

sup
i6=j
|Σ̂ij | 6

minj∈{1,...,d} Σ̂jj

14k
, (8.10)



240 CHAPTER 8. SPARSE METHODS

which states that all cross-correlation coefficients are small (pure decorrelation would set
them to zero).

This is weaker than the REP condition. Indeed, by expanding, we have

‖Φ∆‖22 = ‖ΦA∆A + ΦAc∆Ac‖22 = ‖ΦA∆A‖22 + 2∆⊤
AΦ⊤

AΦAc∆Ac + ‖ΦAc∆Ac‖22
> ‖ΦA∆A‖22 + 2∆⊤

AΦ⊤
AΦAc∆Ac .

Moreover, we have, with Diag(diag(Σ̂AA)) the diagonal matrix with diagonal the diagonal

of Σ̂AA,

∆⊤
AΣ̂AA∆A = ∆⊤

A Diag(diag(Σ̂AA))∆A + ∆⊤
A(Σ̂AA −Diag(diag(Σ̂AA))∆A

> min
j∈{1,...,d}

Σ̂jj

(
‖∆A‖22 −

1

14k
‖∆A‖21

)
,

and

∣∣∆⊤
AΦ⊤

AΦAc∆Ac

∣∣ 6 minj∈{1,...,d} Σ̂jj

14k
‖∆Ac‖1‖∆A‖1 6

3 minj∈{1,...,d} Σ̂jj

14k
‖∆A‖21.

This leads to 1
n‖Φ∆‖22 > minj∈{1,...,d} Σ̂jj

(
‖∆A‖22 − 7

14k‖∆A‖21
)
, which is greater than

minj∈{1,...,d} Σ̂jj
(
‖∆A‖22 − 7k

14k‖∆A‖22
)

= κ‖∆A‖22, with κ = minj∈{1,...,d} Σ̂jj/2, thus
leading to the REP condition in equation (8.9).

Restricted isometry property. One of the earlier conditions was the restricted isom-
etry property: all eigenvalues of submatrices of Σ̂ of a size less than 2k are between 1− δ
and 1+δ for values of δ that are small enough. See Giraud (2014) and Wainwright (2019)
for details.

Gaussian designs (��). It is not obvious that the conditions given here are nontrivial
(i.e., there may be no matrix with good sizes d and n for k large enough). For our
results to be nontrivial, we need k log d

n to be small (so the bound σ2k log(d)/n is small
compared to σ2) but not too small (so the guarantee is already satisfied for moderate n).
Here, we show, without proof, that when sampling from Gaussian distributions, the REP
assumption above is satisfied. This is a first step toward a random design assumption.

Proposition 8.5 (Theorem 7.16 from Wainwright, 2019) If sampling ϕ(x) from a
Gaussian with mean zero and covariance matrix Σ, then with probability greater than

1− e−n/32

1−e−n/32 , the REP is satisfied with κ = 1
16λmin(Σ) as soon as k log d

n 6 1
12800

λmin(Σ)
‖Σ‖∞

.

Proposition 8.5 is hard to prove; exercise 8.10 proposes to establish a weaker result,
showing that the guarantees for the maximal cardinality k of the support have to be
smaller.

Exercise 8.10 (���) If sampling ϕ(x) from a Gaussian with mean zero and covariance
matrix identity, then with large probability, for n greater than a constant times k2 log d

n ,
the mutual incoherence property in equation (8.10) is satisfied.



8.3. VARIABLE SELECTION BY ℓ1-REGULARIZATION 241

Model selection and irrepresentable condition (�). Given that the Lasso problem
aims at performing variable selection, it is natural to study its capacity to find the support
of θ∗; that is, the set of nonzero variables. It turns out that it also depends on some
conditions on the design matrix, which are stronger than the REP conditions and are
called the “irrepresentable conditions” and also are valid for Gaussian random matrices
with similar scalings between n, d, and k. See Giraud (2014) and Wainwright (2019) for
details.

△!
Algorithmic and theoretical tools are similar to “compressed sensing” (see,
e.g., Eldar and Kutyniok, 2012), where the design matrix represents a set of
measurements, which the user/theoretician can choose. In this context, sam-
pling from i.i.d. Gaussians makes sense. For machine learning and statistics,
the design matrix is the data and comes as it is, often with strong correlations.

8.3.6 Fast Rates–Random Design (�)

In this section, we study the Lasso problem in the random design setting instead of the
fixed design setting. For slow rates in 1/

√
n, we can directly use section 4.5.5 to get the

exact same slow rate as for fixed design. In this section, we will only consider fast rates.

We consider the well-specified Lasso case, where the expected risk is then equal to

R(θ) = σ2

2 + 1
2 (θ− θ∗)⊤Σ(θ− θ∗). We assume that λmin(Σ) > µ > 0; that is, the expected

risk is µ-strongly-convex (which cannot be the case for the empirical risk as soon as
d > n). We derive in proposition 8.6 a convergence rate for the excess risk that is of the
form σ2k log(d)/n multiplied by the quantity R2/µ, which we can identify as a condition
number for the problem (which is thus close to one when the features have low correlation
between them).

Proposition 8.6 (Lasso–fast rate for random design) Assume given i.i.d. observa-
tions (xi, yi), i = 1, . . . , n, from the model y = ϕ(x)⊤θ∗ +ε, with ε having a sub-Gaussian
distribution with parameter σ2 and ‖ϕ(x)‖∞ 6 R almost surely. Assume that δ ∈ (0, 1),

λmin(Σ)>µ> 0, and λ = 2σR√
n

√
2 log 4d2

δ . Then, if n > 2
[
32R2|A| log(4d2/δ)/µ

]2
, where

A is the support of θ∗, we have, with probability at least 1− δ,

R(θ̂λ)− R(θ∗) 6 2304 · R
2

µ

σ2|A|
n

log
4d2

δ
.

Proof (��) Denoting as Φ ∈ R
n×d the design matrix, and ε ∈ R

n the noise vector, we
have

R̂(θ) =
1

2n
‖Φ(θ−θ∗)− ε‖22 =

1

2
(θ−θ∗)⊤Σ̂(θ−θ∗)− (θ−θ∗)⊤

( 1

n
Φ⊤ε

)
+

1

2n
‖ε‖22, (8.11)

where Σ̂ = 1
n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤ = 1
nΦ⊤Φ ∈ Rd×d is the empirical noncentered covariance

matrix (i.e., the second-moment matrix).



242 CHAPTER 8. SPARSE METHODS

We will need
∥∥ 1
nΦ⊤ε

∥∥
∞ =

∥∥ 1
n

∑n
i=1 εiϕ(xi)

∥∥
∞ to be small enough, as well as a small

error in the covariance matrix
∥∥Σ̂−Σ

∥∥
∞. Since ε is sub-Gaussian with constant σ2, and

‖ϕ(x)‖∞ 6 R almost surely, we get that, using results from section 1.2.1 (Hoeffding’s
inequality and union bound), for any t > 0,

P

(∥∥∥ 1

n
Φ⊤ε

∥∥∥
∞

>
σRt√
n

)
6 2de−t

2/2 and P

(∥∥Σ̂− Σ
∥∥
∞ >

R2t√
n

)
6 2

d(d+ 1)

2
e−t

2/2.

Thus, the probability that at least one of these inequalities will be satisfied is less than

d(d+ 3) exp(−t2/2) 6 4d2 exp(−t2/2) = δ, leading to t =
√

2 log 4d2

δ .

We now assume that
∥∥ 1
nΦ⊤ε

∥∥
∞ 6 σRt√

n
and

∥∥Σ̂− Σ
∥∥
∞ 6 R2t√

n
, which happens with a

probability of at least 1− δ. From lemma 8.5, we know that if we have λ > 2
∥∥ 1
nΦ⊤ε

∥∥
∞

(which is satisfied with our choice λ = 2σRt√
n

), then we have, with ∆̂ = θ̂λ − θ∗,

‖∆̂Ac‖1 6 3‖∆̂A‖1 and ‖θ̂λ‖1 6 3‖θ∗‖1.

Let v = R(θ̂λ)−R(θ∗) be the excess risk. We have, denoting R̂ the empirical risk and R̂λ

its regularized version,

v 6 R(θ̂λ)− R(θ∗)− R̂λ(θ̂λ) + R̂λ(θ∗) since θ̂λ minimizes R̂λ,

= R(θ̂λ)− R(θ∗)− R̂(θ̂λ) + R̂(θ∗) + λ‖θ∗‖1 − λ‖θ̂λ‖1 by definition of R̂λ,

=
1

2
∆̂⊤(Σ− Σ̂)∆̂ + ∆̂⊤

( 1

n
Φ⊤ε

)
+ λ‖θ∗‖1 − λ‖θ̂λ‖1 using equation (8.11) ,

6
1

2

∥∥Σ̂− Σ
∥∥
∞ · ‖∆̂‖

2
1 +

∥∥∥ 1

n
Φ⊤ε

∥∥∥
∞
· ‖∆̂‖1 + λ‖∆̂‖1 using norm inequalities,

6
R2t

2
√
n
· ‖∆̂‖21 +

σRt√
n
· ‖∆̂‖1 + λ‖∆̂‖1 using our assumptions on Σ̂ and Φ⊤ε.

Moreover, since λmin(Σ) > µ, the function R is µ-strongly-convex; thus, we have

v = R(θ̂λ)− R(θ∗) >
µ

2
‖∆̂‖22 >

µ

2|A| ‖∆̂A‖21,

which leads to ‖∆̂‖1 6 4‖∆̂A‖1 6 4
√

2|A|v
µ . We also have ‖∆̂‖1 6 ‖θ∗‖1 + ‖θ̂λ‖1 6

‖θ∗‖1+3‖θ∗‖1 6 4‖θ∗‖1. We thus get the following two inequalities:

v 6
3σRt√
n
· ‖∆̂‖1 +

R2t

2
√
n
· ‖∆̂‖21 and ‖∆̂‖1 6 4

√
2|A|v
µ

. (8.12)

Since 1 > 32R2t√
n

|A|
µ (given our assumption on n), the last term in the first inequality in

equation (8.12) is less than v
2 , and we get v

2 6 3σRt√
n

4
√

2|A|v
µ ; that is,

√
v 6 24σRt√

n

√
2|A|
µ .

This leads to, v 6 482 · R2

µ
σ2|A|
n log 4d2

δ , which is the desired result.



8.4. EXPERIMENTS 243

Exercise 8.11 With the notations of section 8.3.6, show that if µ = 0, from equa-

tion (8.12), we can recover the slow rate R(θ̂λ)−R(θ∗) 6 4R‖θ∗‖1√
n

(3σ+2R‖θ∗‖1)
√

2 log 4d2

δ .

8.4 Experiments

In this section, we perform a simple experiment on Gaussian design matrices, where all
entries in Φ ∈ Rn×d are sampled independently from a standard Gaussian distribution,
with n = 64 and varying d. Then θ∗ is taken to be zero except on k = 4 components
where it is randomly equal to −1 or 1. We consider σ =

√
k to have a signal-to-noise

ratio equal to one. We perform 128 replications. For each method and each value of
its hyperparameter, we averaged the test risk over the 128 replications and reported the
minimum value (with respect to the hyperparameter). We compare the following three
methods in figure 8.2:

• Ridge regression: Penalty by λ‖θ‖22.

• Lasso regression: Penalty by λ‖θ‖1.

• Orthogonal matching pursuit (OMP), which is a greedy forward method, with hy-
perparameter k (the number of included variables).

We compare two situations: (1) nonrotated data (exactly the model of data described
above), and (2) rotated data, where we replace Φ with ΦS and θ∗ by S⊤θ∗, where S is a
random rotation matrix. For the nonrotated data (left plot), we can observe that sparse
methods (Lasso and OMP) are superior to ridge regression, with a sharp dependence in
log(d) for Lasso. For the rotated data (right plot), we do not expect sparse solutions;
hence, sparse methods are not expected to work better than ridge regression, with Lasso
not much worse than ridge regression (OMP performs significantly worse because once
the support is chosen, there is no regularization). Note that the two curves for ridge
regression are exactly the same (as expected from rotation invariance of the ℓ2-norm).
The oracle performance corresponds to the estimator where the true support is given.

△! Sparse methods make assumptions regarding the best predictor. Like all as-
sumptions, when this assumed prior knowledge is not correct, the method does
not perform better.

8.5 Extensions

Sparse methods are more general than the ℓ1-norm and can be extended in several ways:

• Group penalties: In many cases, {1, . . . , d} is partitioned into m subsets A1, . . . ,
Am, and the goal is to consider “group sparsity”; that is, if we select one variable
within group Aj , the entire group should be selected. Such behavior can be ob-
tained using the penalty

∑m
i=1 ‖θAi‖2 or

∑m
i=1 ‖θAi‖∞. This is especially used when

output y is multidimensional (such as in multivariate regression or multicategory
classification) to select variables that are relevant to all outputs. See, for example,
Giraud (2014) for details.



244 CHAPTER 8. SPARSE METHODS

Figure 8.2. Comparison of estimators on least-squares regression: problem with sparse
optimal predictor (left), and nonsparse optimal predictor (right).

Exercise 8.12 Assuming that the design matrix Φ is orthogonal, compute the min-
imizer of 1

2n‖y − Φθ‖22 + λ
∑m

i=1 ‖θAi‖2.

• Structured sparsity: It is also possible to favor other specific patterns for the
selected variables, such as blocks, trees, or graphs, when such prior knowledge is
needed. See Bach et al. (2012b) for details.

Exercise 8.13 Consider the d (overlapping) sets Ai = {1, . . . , i} and the norm∑d
i=1 ‖θAi‖2. Show that penalization with this norm will tend to select patterns of

nonzeros of the form {i+ 1, . . . , d}.

• Nuclear norm: When learning on matrices, a natural form of sparsity is for a
matrix to have a low rank. This can be achieved by penalizing the sum of singular
values of a matrix, a norm called the “nuclear norm” or the “trace norm”. See Bach
(2008) and references therein, as well as applications in chapter 13, in the context
of multicategory classification.

Exercise 8.14 Compute the minimizer of 1
2n‖Y − Θ‖2F + λ‖Θ‖∗, where ‖M‖F is

the Frobenius norm and ‖M‖∗ is the nuclear norm.

Exercise 8.15 Show that ‖M‖∗ is the minimum of 1
2‖U‖2F + 1

2‖V ‖2F over all de-
compositions of M = UV ⊤.

• Multiple kernel learning: The group penalty can be extended when the groups
have an infinite dimension and ℓ2-norms are replaced by reproducing kernel Hilbert
space (RKHS) norms defined in chapter 7. This becomes a tool for learning the
kernel matrix from data. See section 1.5 in Bach et al. (2012a), as well as Gönen
and Alpaydın (2011), for details.



8.6. CONCLUSION 245

Exercise 8.16 (�) Consider m feature vectors ϕj : X→ Hj, associated with ker-
nels kj : X× X→ R for j ∈ {1, . . . ,m}. Show that

inf
θ1,...,θm

1

n

n∑

i=1

ℓ
(
yi, 〈θ1, ϕ1(xi)〉+ · · ·+ 〈θm, ϕm(xi)〉

)
+
λ

2

(
‖θ1‖+ · · ·+ ‖θm‖

)2

is equivalent to inf
η∈∆m

inf
α∈Rn

1

n

n∑

i=1

ℓ(yi, (K(η)α)i) +
λ

2
α⊤K(η)α, where K(η) ∈ Rn×n

is the kernel matrix associated with the kernel η1k1 + · · · + ηmkm and ∆m is the
simplex in dimension m.

• Elastic net: Often, when both effects of the ℓ1-norm (sparsity) and the squared ℓ2-
norm (with strong convexity) are desired, we can sum the two, which is referred to
as the “elastic net” penalty. This leads to a strongly convex optimization problem,
which is numerically better behaved.

• Concave penalization and debiasing: To obtain a sparsity-inducing effect, the
penalty in the ℓ1-norm has to be quite large, such as in 1/

√
n, which often creates a

strong bias in the estimation once the support is selected. There are several ways of
debiasing the Lasso problem, an elegant one being to use a concave penalty. That
is, we use

∑d
i=1 a(|θi|), where a is a concave increasing function on R+, such as

a(u) = uα for α ∈ (0, 1). This leads to a nonconvex optimization problem, where
iterative weighted ℓ1-minimization provides natural algorithms (see Mairal et al.,
2014, and references therein).

Exercise 8.17 Show that for α ∈ (0, 1), 1
αu

α = infη>0
u
η +

(
1
α−1

)
ηα/(1−α), and de-

rive both a reweighted ℓ1-minimization and a reweighted ℓ2-minimization algorithm
for the penalty

∑d
i=1 |θi|α.

8.6 Conclusion

In this chapter, we have considered sparse methods based on the penalization by the ℓ0- or
ℓ1-penalties of the weight vector of a linear model. For the square loss, ℓ0-penalties led to
an excess risk proportional to σ2k log(d)/n, with a price of adaptivity of log(d), with few
conditions on the problem but no provably computationally efficient procedures. On the
contrary, ℓ1-norm penalization can be solved efficiently with appropriate convex optimiza-
tion algorithms (such as proximal methods), but it only obtained a slow rate proportional
to

√
log(d)/n, exhibiting a high-dimensional phenomenon, but a worse dependence in n.

Fast rates can be obtained only with stronger assumptions on the covariance matrix of
the features.

This chapter was limited to linear models. In chapter 9, on neural networks, we will
see how models that are nonlinear in their parameters can lead to nonlinear variable
selection, still exhibiting a high-dimensional phenomenon but at the expense of harder
optimization. This will be obtained by an ℓ1-norm on an infinite-dimensional space, and
studied further in the context of gradient boosting in section 10.3.





Chapter 9

Neural Networks

Chapter Summary
• Neural networks are flexible models for nonlinear predictions. They can be studied

in terms of the three errors usually related to empirical risk minimization: optimiza-
tion, estimation, and approximation errors. In this chapter, we focus primarily on
single hidden-layer neural networks, which are linear combinations of simple affine
functions with additional nonlinearities.

• Optimization error: As the prediction functions are nonlinearly dependent on their
parameters, we obtain nonconvex optimization problems with guaranteed conver-
gence only to stationary points.

• Estimation error: The number of parameters is not the driver of the estimation
error, as the norms of the various weights play an important role, with explicit
rates in O(1/

√
n) obtained from Rademacher complexity tools.

• Approximation error: For the rectified linear unit (ReLU) activation function, the
universal approximation properties can be characterized and are superior to those
of kernel methods because they are adaptive to linear latent variables. In particular,
neural networks can efficiently perform nonlinear variable selection.

9.1 Introduction

In supervised learning, the main focus has been put on methods to learn from n obser-
vations (xi, yi), i = 1, . . . , n, with xi ∈ X (input space) and yi ∈ Y (output/label space).
As presented in chapter 4, a large class of methods relies on minimizing a regularized
empirical risk with respect to a function f : X→ R, where the following cost function is

247



248 CHAPTER 9. NEURAL NETWORKS

minimized:

1

n

n∑

i=1

ℓ(yi, f(xi)) + Ω(f),

where ℓ : Y×R→ R is a loss function and Ω(f) is a regularization term. Typical examples
were

• Regression: Y = R and ℓ(yi, f(xi)) = 1
2 (yi − f(xi))

2.

• Classification: Y = {−1, 1} and ℓ(yi, f(xi)) = Φ(yif(xi))), where Φ is convex; for
example, Φ(u) = max{1− u, 0} (hinge loss leading to the support vector machine)
or Φ(u) = log(1 + exp(−u)) (leading to logistic regression). See more examples in
section 4.1.1.

The class of prediction functions that we have considered so far was as follows (with
their pros and cons):

• Linear functions in some explicit features: Given a feature map ϕ : X→ Rd,
we consider f(x) = θ⊤ϕ(x), with parameters θ ∈ Rd, as analyzed in chapter 3 (for
least-squares regression) and chapter 4 (for Lipschitz-continuous losses).

– Pros: They are simple to implement, as they lead to convex optimization with
gradient descent (GD) algorithms, with running time complexity in O(nd), as shown
in chapter 5. They come with theoretical guarantees that are not necessarily scaling
badly with dimension d if regularizers are used (ℓ2- or ℓ1-norm).
– Cons: They only apply to linear functions on explicit (and fixed feature spaces),
so they can underfit the data. Moreover, the feature vector ϕ is not learned from
data.

• Linear functions in some implicit features through kernel methods: The
feature map can have arbitrarily large dimension; that is, ϕ(x) ∈ H where H is
a Hilbert space, accessed through the kernel function k(x, x′) = 〈ϕ(x), ϕ(x′)〉H, as
presented in chapter 7.

– Pros: They are nonlinear, flexible predictions, simple to implement, and can be
used with convex optimization algorithms with strong guarantees. They provide
adaptivity to the regularity of the target function, allowing higher-dimensional ap-
plications than local averaging methods from chapter 6.
– Cons: The running-time complexity goes up to O(n2) with algorithms from sec-
tion 7.4 (but this scaling can be improved with appropriate techniques discussed in
the same section, such as column sampling or random features). The method may
still suffer from the curse of dimensionality for target functions that are not smooth
enough.

This chapter aims to explore another class of functions for nonlinear predictions–
namely, neural networks, which come with additional benefits, such as more adaptivity
to linear latent variables, but also have some potential drawbacks, such as a harder
optimization problem.



9.2. SINGLE HIDDEN-LAYER NEURAL NETWORK 249

9.2 Single Hidden-Layer Neural Network

We consider X = Rd and the set of prediction functions that can be written as

f(x) =

m∑

j=1

ηjσ(w⊤
j x+ bj), (9.1)

where wj ∈ Rd, bj ∈ R, j = 1, . . . ,m are the input weights, ηj ∈ R, j = 1, . . . ,m, are the
output weights, and σ is an activation function. This is often represented as the following
graph. The same architecture can also be considered with ηj ∈ R

k, for k > 1 to deal with
multicategory classification (see section 13.1).

f(x) =
m∑

j=1

ηjσ(w
⊤

j x+ bj)x

w, b

η

The activation function is typically chosen from one of the following examples (see
the following plot):

• Sigmoid σ(u) = 1
1+e−u .

• Step function σ(u) = 1u>0, which is not continuous and has zero derivatives every-
where (and thus is not amenable to gradient-based optimization).

• Rectified linear unit (ReLU) σ(u) = (u)+ = max{u, 0}, which will be the main
focus of this chapter.

• Hyperbolic tangent σ(u) = tanh(u) = eu−e−u

eu+e−u .



250 CHAPTER 9. NEURAL NETWORKS

Function f is defined as the linear combination of m functions x 7→ σ(w⊤
j x+ bj), which

are the hidden neurons.1 If the input weights are fixed, we obtain a linear model with
the m hidden neurons as features. A key benefit of neural networks is that they perform
feature learning by optimizing with respect to input weights.

△! The constant terms bj are sometimes referred to as “biases,” which is unfor-
tunate in a statistical context, as that word already has a precise meaning
within the bias/variance trade-off (see chapter 3 and section 7.3).

△! Do not be confused by the name “neural network” and its biological inspira-
tion. This inspiration is not a proper justification for its behavior on machine
learning problems.

Cross-entropy loss and sigmoid activation function for the last layer. Following
standard practice, we are not adding a nonlinearity to the last layer; note that if we were
to use an additional sigmoid activation and consider the cross-entropy loss for binary
classification, we would exactly be using the logistic loss on the output without an extra
activation function.

Indeed, if we consider g(x) = 1
1+exp(−f(x)) ∈ [0, 1], and given an output variable

y ∈ {−1, 1}, the so-called “cross-entropy loss,” an instance of maximum likelihood (see
more details in chapter 14), is equal to

−1y=1 log g(x) − 1y=−1 log(1− g(x)) = 1y=1 log
(
1 + e−f(x)

)
+ 1y=−1 log

(
1 + ef(x)

)

which is exactly the logistic loss log
(
1 + e−yf(x)

)
defined in section 4.1.1 applied to

prediction function f(x). Practitioners sometimes refer to the cross-entropy loss without
mentioning that a sigmoid is applied beforehand (they, in fact, mean the logistic loss).
Such a discussion applies as well to multicategory classification and the softmax loss (see
section 13.1.1).

Theoretical analysis of neural networks. As with any method based on empirical
risk minimization, we have to study the three classical aspects: (1) optimization error
(convergence properties of algorithms for minimizing the risk), (2) estimation error (the
effect of having a finite amount of data on the prediction performance), and (3) approxi-
mation error (effect of having a finite number of parameters or a constraint on the norm
of these parameters).

1See https://playground.tensorflow.org/ for a nice interactive illustration of this architecture.

https://playground.tensorflow.org/


9.2. SINGLE HIDDEN-LAYER NEURAL NETWORK 251

9.2.1 Optimization

To find parameters θ = {(ηj), (wj), (bj)} ∈ Rm(d+2), empirical risk minimization can be
applied and the following optimization problem has to be solved:

min
θ∈Rm(d+2)

1

n

n∑

i=1

ℓ

(
yi,

m∑

j=1

ηjσ(w⊤
j xi + bj)

)
, (9.2)

with potentially additional regularization (often the squared ℓ2-norm of all weights).

△! Note that (as discussed in chapter 5) the true objective is to perform well on unseen
data, and the optimization problem in equation (9.2) is just a means to an end.

This is a nonconvex optimization problem where the GD algorithms from chapter 5
can be applied without a strong guarantee beyond obtaining a vector with a small gradi-
ent norm (section 5.2.6). See the following discussion for recent results when providing
qualitative global convergence guarantees when m is large.

While stochastic gradient descent (SGD) remains an algorithm of choice (also with a
good generalization behavior, as discussed in section 5.4), several algorithmic improve-
ments have been observed to lead to better stability and performance: specific step-size
decay schedules, preconditioning as presented in section 5.4.2 (Duchi et al., 2011), mo-
mentum (Kingma and Ba, 2014), batch normalization (Ioffe and Szegedy, 2015), and
layer normalization (Ba et al., 2016) to make the optimization better behaved. However,
overall, the objective function is nonconvex, and it remains challenging to understand
precisely why gradient-based methods perform well in practice, particularly with deeper
networks (some elements are presented next and in chapter 12). See also boosting pro-
cedures in section 10.3 and chapter 12, which learn neuron weights incrementally.

Global convergence of GD for infinite widths (�). It turns out that global con-
vergence can be shown for this nonconvex optimization problem (Chizat and Bach, 2018;
Bach and Chizat, 2022), with tools that go beyond the scope of this book and are partially
described in chapter 12.2

We simply show some experimental evidence for a simple one-dimensional setup, where
we compare several runs of SGD when observations are seen only once (so no overfitting
is possible) and with random initializations, on a regression problem with deterministic
outputs, thus with the optimal testing error (the Bayes rate) equal to zero. We show in
figure 9.1 the estimated predictors and the corresponding testing errors with 20 different
initializations. We can observe that small errors are never achieved when m = 5 (which
is sufficient to have zero testing errors). With m = 20 neurons, SGD finds the optimal
predictor for most restarts. When m = 100, all restarts have the desired behaviors,
highlighting the benefits of overparameterization (see more details in section 12.3).

2See also https://francisbach.com/gradient-descent-neural-networks-global-convergence/ for
more details.

https://francisbach.com/gradient-descent-neural-networks-global-convergence/


252 CHAPTER 9. NEURAL NETWORKS

Figure 9.1. Comparison of optimization behavior for different numbers m of neurons for
ReLU activations (left: m = 5; middle: m = 20; right: m = 100). To generate the
data, we also used a neural network with ReLU activations and 3 hidden neurons. Top:
examples of final prediction functions at convergence; bottom: plot of test errors versus
the number of iterations.



9.2. SINGLE HIDDEN-LAYER NEURAL NETWORK 253

9.2.2 Rectified Linear Units and Homogeneity

From now on, we will mostly focus on the ReLU activation σ(u) = u+. The main property
that we will employ is its “positive homogeneity”; that is, for α > 0, (αu)+ = αu+. This
implies that in the definition of the prediction function as the sum of terms ηj(w

⊤
j x+bj)+,

we can freely multiply ηj ∈ R by a positive scalar αj and divide (wj , bj) ∈ Rd+1 by
the same αj without changing the prediction function, since then ηj(w

⊤
j x + bj)+ =

(αjηj)
((wj

αj

)⊤
x+

bj
αj

)
+

.

This has a particular effect when using a squared ℓ2-regularizer on all weights, which
is standard, either explicitly (by adding a penalty to the cost function) or implicitly (see
section 12.1). Indeed, we consider penalizing η2j + ‖wj‖22 + b2j/R

2 for each j ∈ {1, . . . ,m},
where we have added the factor R2 to the constant term for unit homogeneity reasons
between the slope wj and the constant term bj (R will be a bound on the ℓ2-norm of
input data). Dealing with unit homogeneity between ηj and (wj , bj/R) does not matter
because of the invariance by rescaling described next.

Optimizing with respect to a scaling factor αj (which affects only the regularizer), we
have to minimize α2

jη
2
j +

(
‖wj‖22 + b2j/R

2
)
/α2

j , with α2
j = (‖wj‖22 + b2j/R

2)1/2/|ηj | as a

minimizer and with the optimal value of the penalty equal to 2|ηj |(‖wj‖22+b2j/R
2)1/2 (note

that this leads to an ℓ1-norm penalty, thus with potentially sparsifying effects (setting
some of the output weights ηj to zero), and robustness to large number of neurons (as
shown in section 9.2.3); for other relationship between ℓ2-regularization in neural networks
and sparse estimation, see section 12.1.3.

Therefore, for the theoretical analysis (study of the approximation and estimation
errors), because of homogeneity, we can choose to normalize each (wj , bj) to have unit
norm ‖wj‖22 + b2j/R

2 = 1, and use the penalty |ηj | for each j ∈ {1, . . . ,m}, and thus use
an overall ℓ1-norm penalty on η; that is, ‖η‖1 (we will consider other normalizations for
the input weights, either to ease the exposition or to induce another behavior; e.g., by
using ℓ1-norms on the wj ’s). We focus on this choice of regularization in the following
sections.

△! In this chapter, R denotes an almost sure upper bound on x directly, not on
a feature map ϕ(x) (as done in earlier chapters).

9.2.3 Estimation Error

To study the estimation error, we will consider that the parameters of the network are
constrained; that is, ‖wj‖22 + b2j/R

2 = 1 for each j ∈ {1, . . . ,m} and ‖η‖1 6 D. This
defines a set Θ of allowed parameters θ = {(ηj), (wj), (bj)}.

Defining the class F of neural network models fθ with parameters θ ∈ Θ, we can
compute its Rademacher complexity using tools from chapter 4 (section 4.5). We assume
that almost surely, ‖x‖2 6 R; that is, the input data are bounded in the ℓ2-norm by R.

Following the developments of section 4.5 on Rademacher averages, we denote by



254 CHAPTER 9. NEURAL NETWORKS

G = {(x, y) 7→ ℓ(y, f(x)), f ∈ F} the set of loss functions for a prediction function
f ∈ F. Note that following section 4.5.3, we consider a constraint on ‖η‖1, but we could
also penalize, which is more common to practice and can be tackled with tools from
section 4.5.5.

We have, by definition of the Rademacher complexity Rn(G) of G, and taking expecta-
tions with respect to the data (xi, yi), i = 1, . . . , n, which are assumed to be independent
and identically distributed (i.i.d.), and the independent Rademacher random variables
εi ∈ {−1, 1}, i = 1, . . . , n:

Rn(G) = E

[
sup
θ∈Θ

1

n

n∑

i=1

εiℓ(yi, fθ(xi))

]
.

This quantity is known to provide an upper bound on the estimation error, as, using
symmetrization from proposition 4.2 and equation (4.10) from section 4.4, when f̂ is a
minimizer of the empirical risk over F, we have

E

[
R(f̂)− inf

f∈F
R(f)

]
6 4Rn(G).

We can now use the properties of Rademacher complexities presented in section 4.5,
particularly their nice handling of nonlinearities. Assuming that the loss is G-Lipschitz-
continuous with respect to the second variable, using proposition 4.3 from chapter 4,
which allows getting rid of the loss, we get the following bound:

Rn(G) 6 G · E
[

sup
θ∈Θ

1

n

n∑

i=1

εifθ(xi)

]
= G · E

[
sup
θ∈Θ

1

n

n∑

i=1

m∑

j=1

ηjεi(w
⊤
j xi + bj)+

]
.

Using the ℓ1-constraint on η and sup‖η‖16D z
⊤η = D‖z‖∞, we can directly maximize

with respect to η ∈ R
m, leading to (note that another ℓp-constraint on η, with p 6= 1,

would be harder to deal with):

Rn(G) 6 G · E
[

sup
j∈{1,...,m}

sup
‖wj‖2

2+b
2
j/R

2=1

D
∣∣∣ 1

n

n∑

i=1

εi(w
⊤
j xi + bj)+

∣∣∣
]
.

Notice now that all optimization problems for j ∈ {1, . . . ,m} are the same. Thus, we get

Rn(G) 6 G · E
[

sup
‖w‖2

2+b
2/R2=1

D
∣∣∣ 1

n

n∑

i=1

εi(w
⊤xi + b)+

∣∣∣
]
.

Since the ReLU activation function is 1-Lipschitz continuous and satisfies (0)+ = 0,
we get, this time using the extension of proposition 4.3 from chapter 4 to Rademacher
complexities defined with an absolute value (i.e., proposition 4.4), which adds an extra
factor of 2,

Rn(G) 6 2GD · E
[

sup
‖w‖2

2+b
2/R2=1

∣∣∣w⊤
( 1

n

n∑

i=1

εixi

)
+ b

( 1

n

n∑

i=1

εi

)∣∣∣
]
.



9.2. SINGLE HIDDEN-LAYER NEURAL NETWORK 255

We can now perform the optimization with respect to (w, b) in closed form,3 leading to

Rn(G) 6 2GD · E
[(∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

2
+R2

( 1

n

n∑

i=1

εi

)2)1/2
]
.

We thus get, using Jensen’s inequality (here of the form E[Z] 6
√
E[Z2]), as well as the

independence, zero mean, and unit variance of ε1, . . . , εn:

Rn(G) 6 2GD

(
E

[∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

2
+R2

( 1

n

n∑

i=1

εi

)2
])1/2

(9.3)

= 2GD

(
1

n
E[‖x‖22] +

R2

n

)1/2

6
2GDR

√
2√

n
6

4GDR√
n

.

Thus, we get proposition 9.1, with a bound proportional to 1/
√
n with no explicit depen-

dence in the number of parameters.

Proposition 9.1 (Estimation error) Let F be the class of neural networks defined
in equation (9.1), with the constraint that ‖η‖1 6 D and ‖wj‖22 + b2j/R

2 = 1 for all
j ∈ {1, . . . ,m}, with the ReLU activation function. If the loss function is G-Lipschitz-

continuous, then, for f̂ a minimizer of the empirical risk over F,

E

[
R(f̂)− inf

f∈F
R(f)

]
6

16GDR√
n

.

Proposition 9.1 will be combined with a study of the approximation properties in sec-
tion 9.3, with a summary provided in section 9.4. We will see in chapter 12 some recent
results showing how optimization algorithms add an implicit regularization that leads to
provable generalization in overparameterized neural networks (i.e., networks with many
hidden units).

△! For the estimation error, the number of parameters is irrelevant!
What counts is the overall norm of the weights.

Exercise 9.1 (�) Provide a bound similar to proposition 9.1 for the alternative con-
straint ‖wj‖1 + |bj |/R = 1, where R denotes the supremum of ‖x‖∞ over all x in the
support of its distribution.

Before moving on to approximation properties of neural networks, we note that the
reasoning given here for computing the Rademacher complexity can be extended by re-
cursion to deeper networks and other activation functions, as exercise 9.2 shows (see, e.g.,
Neyshabur et al., 2015, for further results).

3Using sup‖w‖22+b2/R2=1 z
⊤w + t⊤b = sup‖w‖22+c2=1 |z

⊤w + (Rt)⊤c| = (‖z‖22 + R2t2)1/2, from the

Cauchy-Schwarz inequality.



256 CHAPTER 9. NEURAL NETWORKS

Exercise 9.2 (�) We consider a 1-Lipschitz-continuous activation function σ such that
σ(0) = 0, and the classes of functions defined recursively as F0 = {x 7→ θ⊤x, ‖θ‖2 6 D0},
and, for i = 1, . . . ,M , Fi = {x 7→∑mi

j=1 θjσ(fj(x)), fj ∈ Fi−1, ‖θ‖1 6 Di}, corresponding
to a neural network with M layers. Assuming that ‖x‖2 6 R almost surely, show by

recursion that the Rademacher complexity satisfies Rn(FM ) 6 2M R√
n

∏M
i=0Di.

9.3 Approximation Properties

As seen in section 9.2.3, the estimation error for constrained output weights grows as
‖η‖1/

√
n, where η is the vector of output weights and is independent of the number m

of neurons. Several important questions will be tackled in the following sections:

• Universality: Can we approximate any prediction function with a sufficiently large
number of neurons?

• Bound on approximation error: What is the associated approximation error so
that we can derive generalization bounds? How can we use the control of the
ℓ1-norm ‖η‖1, particularly when the number of neurons m is allowed to tend to
infinity?

• Finite number of neurons: What is the number of neurons required to reach such a
behavior?

To do this, we need to understand the space of functions that neural networks span
and how they relate to the smoothness properties of the function (as we did for kernel
methods in chapter 7).

In this section, as in the previous section, we focus on the ReLU activation function,
noting that universal approximation results exist as soon as the activation function is not
a polynomial (Leshno et al., 1993). We start with a simple nonquantitative argument to
show universality in one dimension (and then in all dimensions) before formalizing the
function space obtained by letting the number of neurons go to infinity.

9.3.1 Universal Approximation Property in One Dimension

We start with a number of simple, nonquantitative arguments.

Approximation of continuous piecewise affine functions. Since each individual
function x 7→ ηj(wjx+bj)+ is continuous piecewise affine, the output of a neural network
has to be continuous piecewise affine as well. It turns out that all continuous piecewise
affine functions with m− 2 kinks in the open interval (−R,R) can be represented by m
neurons on [−R,R].

Indeed, as illustrated here with m = 8, if we assume that the function f is such that
f(−R) = 0, with kinks a1 < · · · < am−2 on (−R,R), we can approximate it on [−R, a1]
by the function v1(x + R)+ where v1 is the slope of f on [−R, a1]. The approximation
is tight on [−R, a1]. To have a tight approximation on [a1, a2] without perturbing the
approximation on [−R, a1], we can add to the approximation v2(x − a1)+, where v2 is



9.3. APPROXIMATION PROPERTIES 257

exactly what is needed to compensate for the change in slope of f . By pursuing this
reasoning, we can represent the function on [−R,R] exactly with m− 1 neurons:

−R Ra1 a2 a3 a4 a5 a6

x

x

f(x)

To remove the constraint that f(−R) = 0, we can simply notice that 1
2R (x + R)+ +

1
2R (−x + R)+ is equal to 1 on [−R,R ]. Thus, with one additional neuron (only one
since (x + R)+ has already been used), we can represent any piecewise-affine function
with m − 2 kinks using m neurons. This argument will be made more quantitative in
section 9.3.3 by looking at the slopes of the piecewise affine function.

Universal approximation properties. Now that we can represent precisely all con-
tinuous piecewise affine functions on [−R,R], we can use classical approximation theorems
for functions on [−R,R]. They come in different flavors depending on the norm used to
characterize the approximation. For example, continuous functions can be approximated
by piecewise affine functions with arbitrary precision in the L∞-norm (defined as the
maximal value of |f(x)| for x ∈ [−R,R]) by simply taking the piecewise interpolant from
a grid (see quantitative arguments in section 9.3.3). With a weaker criterion such as
the L2-norm (with respect to the Lebesgue measure), we can approximate any function
in L2 (see, e.g., Rudin, 1987). This can be extended to any dimension d by using the

Fourier transform representation as f(x) = 1
(2π)d

∫
Rd f̂(ω)eiω

⊤xdω and approximating the

one-dimensional functions sine and cosine as linear superpositions of ReLUs. See a more
formal quantitative argument in section 9.3.4.

To obtain precise bounds in all dimensions in terms of the number of kinks or the
ℓ1-norm of output weights, we first need to define the limit when the number of neurons
diverges.

9.3.2 Infinitely Many Neurons and the Variation Norm

In this section, we consider neural networks of the form f(x) =
∑m
j=1 ηj(w

⊤
j x + bj)+,

where the input weights are constrained; that is, (wj , bj/R) ∈ K, for K a compact subset
of Rd+1, such as the unit ℓ2-sphere (but we will consider a slightly different set at the end



258 CHAPTER 9. NEURAL NETWORKS

of this section). Our goal is to define the set of functions that can be approximated by
neural networks, while defining a norm on them that extends the ℓ1-norm of the output
weights. We consider X the d-dimensional ℓ2-ball of radius R and center 0 (but the
construction applies to any compact subset of Rd).

Formulation through measures. We can write a neural network with finitely many
neurons f(x) =

∑m
j=1 ηj(w

⊤
j x+ bj)+ as the integral

f(x) =

∫

K

(w⊤x+ b)+dν(w, b), (9.4)

for ν being the signed measure ν =
∑m

j=1 ηjδ(wj ,bj), where δ(wj ,bj) is the Dirac measure

at (wj , bj). Then the penalty can be written as ‖η‖1 =
∫
K |dν(w, b)|, which is the total

variation of ν.4

Since we want to have a norm ‖η‖1 which is as small as possible, among all repre-
sentations of f as in equation (9.4), we look for the one for which

∫
K |dν(w, b)| is the

smallest; that is, for f ∈ F̃1 the set of neural networks with arbitrary (finite) width, we
define

γ̃1(f) = inf
ν∈M̃(K)

∫

K

|dν(w, b)| such that ∀x ∈ X, f(x) =

∫

K

(w⊤x+ b)+dν(w, b),

where M̃(K) is the set of signed measures on K with finite support. This happens to

define a norm on F̃1. In order to extend beyond the set F̃1 (which is equal to the set of
continuous piecewise affine functions for d = 1), we simply relax the constraint of finite
support for the measure ν. That is, for f : X→ R, we define

γ1(f) = inf
ν∈M(K)

∫

K

|dν(w, b)| such that ∀x ∈ X, f(x) =

∫

K

(w⊤x+ b)+dν(w, b), (9.5)

where M(K) is the set of signed measures on K with finite total variation, with the con-
vention that if no measure can be found to represent f , then γ1(f) = +∞. Proposition 9.2
shows that γ1 defines a norm on the set F1 of functions such that γ1(f) is finite.

Proposition 9.2 Assume K ⊂ Rd+1 and X ⊂ Rd are compact sets. The set F1 of
functions such that γ1(f) defined in equation (9.5) is finite is a vector space, a subset of
the set of Lipschitz-continuous functions on X. Moreover, γ1 is a norm on F1.

Proof If γ1(f1) and γ1(f2) are finite, with f1 and f2 represented by measures ν1
and ν2, and λ1, λ2 ∈ R, then λ1f1 + λ2f2 is represented by λ1ν1 + λ2ν2, with total
variation

∫
K
|dν(w, b)| 6 |λ1|

∫
K
|dν1(w, b)| + |λ2|

∫
K
|dν2(w, b)|. Thus γ(λ1f1 + λ2f2) 6

|λ1|γ(f1) + |λ2|γ(f2). This implies that the set F1 is a vector space and that γ1 is con-
vex. Moreover, γ1 is absolutely homogeneous (i.e., γ1(λf) = |λ|γ1(f) for any λ ∈ R)

4When ν has density dν/dτ with respect to a base measure τ with full support in K, then the
total variation is defined as the integral

∫
K |dν/dτ(w, b)|dτ(w, b) and is independent of the choice of τ .

See https://en.wikipedia.org/wiki/Total_variation for more details.

https://en.wikipedia.org/wiki/Total_variation


9.3. APPROXIMATION PROPERTIES 259

and for any function f , supx∈X |f(x)| 6 γ1(f) supx∈X,(w,b)∈K |w⊤x + b|, which implies
that if γ1(f) = 0, then f = 0. Thus, γ1 is a norm on F1. Finally, for any x, y ∈ X,
|f(x)−f(y)| 6 γ1(f) sup(w,b)∈K ‖w‖2 ·‖x−y‖2; therefore, all functions in F1 are Lipschitz-
continuous.

We then obtain a Banach space F1 of functions (the proof of completeness is left
as a technical exercise), with a norm γ1 that is often referred to as the “variation
norm” (Kurková and Sanguineti, 2001). This characterizes the set of functions that
can be asymptotically reached by neural networks with a bounded ℓ1-norm of output
weights, regardless of the number of neurons. The index 1 in γ1 will become natural
when we compare with the positive-definite kernels in section 9.5. Note that although we
defined it for the ReLU activation, the same argument applies to all continuous activation
functions. Finally, in order to obtain upper bounds on γ1(f), it suffices to represent f
as an integral of neurons as in equation (9.5), and compute the corresponding total vari-
ation; for example, for a single neuron f(x) = (w⊤x + b)+ for (w, b) ∈ K, γ1(f) 6 1, a
property that will be used several times in section 9.3.3.

Note that due to the positive homogeneity of the ReLU activation function, the norm
γ1 does not change if we replace the compact set K with

⋃
c∈[0,1] cK (i.e., the union of

all segments [0, v] for v ∈ K), with a proof left as an exercise. Therefore, choosing the
unit ℓ2-sphere or the unit ℓ2-ball for K gives the same results. (We will make a slightly
different choice below.)

Studying the approximation properties of F1. Now that we have characterized the
function space F1 through equation (9.5), we need to describe the set of functions with
finite norm and relate this norm to classical smoothness properties (as done for kernel
methods in chapter 7). To do so, as illustrated below, we consider a smaller set K than the
unit ℓ2-ball; that is, the set K of (w, b/R) such that ‖w‖2 = 1/

√
2 and |b| 6 R/

√
2, which

is enough to obtain upper bounds on the approximation errors. For simplicity, and losing
a factor of

√
2, we consider the normalization K = {(w, b/R) ∈ Rd+1, ‖w‖2 = 1, |b| 6 R}

and the norm γ1 defined in equation (9.5) with this set K. Note that for d = 1, we have
K = {(w, b/R) ∈ R

2, w ∈ {−1, 1}, and |b| 6 R}, as illustrated below for d = 1 (with the
new set

⋃
c∈[0,1] cK in dark gray, and the old one in light gray). We could stick to the

ℓ2-sphere, but our particular choice of K leads to simpler formulas.

w

b/R



260 CHAPTER 9. NEURAL NETWORKS

9.3.3 Variation Norm in One Dimension

The ReLU activation function is specific and leads to simple approximation properties
in the interval [−R,R]. As already qualitatively described in section 9.3.1, we start with
continuous piecewise affine functions, which, given the shape of the ReLU activation,
should be easy to approximate (and immediately lead to universal approximation results
as all reasonable functions can be approximated by piecewise affine functions). See more
details by Breiman (1993) and Barron and Klusowski (2018).

Continuous piecewise affine functions. We can make the reasoning in section 9.3.1
quantitative. We consider a continuous piecewise affine function on [−R,R] with specific
knots at each −R = a0 < a1 < · · · < am−2 < am−1 = R, so on [aj , aj+1], f is affine with
slope vj , for j ∈ {0, . . . ,m− 2}.

−R=a0 am−1=Ra1 a2 a3 a4 a5 a6

x

x

f(x)− f(−R)

v0x+◦

v1x+◦

v2x+◦

v3x+◦

vm−2x+◦

v4x+◦

v5x+◦

We can first start to fit function x 7→ f(x) − f(−R) (which is equal to 0 at x = −R)
on [a0, a1] = [−R, a1], as g0(x) = v0(x − a0)+. For x > a0, this approximation has
slope v0. For the approximation to be exact on [a1, a2] (while not modifying the function
on [a0, a1]), we consider g1(x) = g0(x)+(v1−v0)(x−a1)+, which is now exact on [a0, a2];
we can pursue recursively by considering, for j ∈ {1, . . . ,m− 2},

gj(x) = gj−1(x) + (vj − vj−1)(x − aj)+,

which is equal to f(x) − f(−R) for x ∈ [a0, aj+1]. We can thus represent f(x) − f(−R)
on [a0, am−1] = [−R,R] exactly with gm−2(x). We have

gm−2(x) = v0(x − a0)+ +

m−2∑

j=1

(vj − vj−1)(x− aj)+.

In other words, we can represent any piecewise affine function as follows (using that on



9.3. APPROXIMATION PROPERTIES 261

the interval [−R,R], (x − a0)+ = (x+R)+ = x+R):

f(x) = f(−R) + v0(x+R) +

m−2∑

j=1

(vj − vj−1)(x − aj)+. (9.6)

To obtain a representation that is invariant under a sign change, we also consider the same
representation starting from the right (which can, for example, be obtained by applying
equation (9.6) to x 7→ f(−x)):

f(x) = f(R)− vm−2(R− x) +
m−2∑

j=1

(vj − vj−1)(aj − x)+. (9.7)

Note that this also shows that such representations are not unique. By averaging equa-
tions (9.6) and (9.7), and using that 1

2R (x+R)+ + 1
2R (−x+R)+ is equal to 1 on [−R,R],

we get

f(x) =
1

2

[
f(R) + f(−R)

][ 1

2R
(x+R)+ +

1

2R
(−x+R)+

]

+
1

2
v0(x+R)+ −

1

2
vm−2(−x+R)++

1

2

m−2∑

j=1

(vj − vj−1)
[
(x− aj)+ + (aj − x)+

]
,

and thus, by construction of norm γ1, we have

γ1(f) 6
1

2

∣∣∣ 1

2R
[f(−R) + f(R)] + v0

∣∣∣ +
1

2

∣∣∣ 1

2R
[f(−R) + f(R)]− vm−2

∣∣∣ +

m−2∑

j=1

|vj − vj−1|.

The norm is thus upper-bounded by the values of f and its derivatives at the boundaries
of the interval and the sums of changes in slope.

Twice continuously differentiable functions. Now we consider a twice continuously
differentiable function f on [−R,R ], and we would like to express it as a continuous
linear combination of functions x 7→ (±x + b)+. We will consider two arguments: one
through approximation by piecewise affine functions and one through Taylor’s formula
with integral remainder.

Piecewise-affine approximation. We consider equally spaced knots aj = −R + j
sR

for j ∈ {0, . . . , 2s}, and the piecewise affine interpolation f̂ from values aj , f(aj) (and
slopes vj on [aj , aj+1]), with j ∈ {0, . . . , 2s}, for s that will tend to infinity (see the
following illustration, where we have m− 1 = 2s):



262 CHAPTER 9. NEURAL NETWORKS

−R = a0 a2s = Ra
−m+1 aj aj+1 a2s−1

vjx+ ◦

vj−1x+ ◦

v0x+ ◦

v2s−1x+ ◦

f(x)

f̂(x)

For the piecewise affine approximant f̂ , the slope v0 on [a0, a1] is equal to v0 =
s
R [f(−R + R/s) − f(−R)] ∼ f ′(−R), and the slope v2s−1 on [a2s−1, a2s] is equal to
v2s−1 = s

R [f(R)− f(R−R/s)] ∼ f ′(R) when s tends to infinity, while the differences in
slopes |vj − vj−1| equal

∣∣ s
R

(
f(−R+ j+1

s R)− f(−R+ j
sR)

)
− s

R

(
f(−R+ j

sR)− f(−R+ j−1
s R)

)∣∣

= s
R

∣∣f(−R+ j+1
s R)− 2f(−R+ j

sR) + f(−R+ j−1
s R)

∣∣,

which is equivalent to R
s

∣∣f ′′(−R + j
sR)

∣∣ when s → +∞ (using a second-order Taylor
expansion, where zeroth and first order terms vanish). A fully rigorous proof that takes
into account the fact that the range of indices j depends on s is left as an exercise.

Thus, the approximant f̂ has a γ1-norm γ1(f̂) upper-bounded asymptotically by

1

2

∣∣∣ 1

2R
[f(−R)+f(R)]+f ′(−R)

∣∣∣+ 1

2

∣∣∣ 1

2R
[f(−R)+f(R)]−f ′(R)

∣∣∣+R
s

2s−1∑

j=1

∣∣f ′′(−R+
j

s
R)

∣∣.

The last term R
s

∑2s−1
j=1

∣∣f ′′( jsR)
∣∣ tends to

∫ R
−R |f ′′(x)|dx. Thus, letting s tend to infinity,

we get (informally, as the reasoning given next will make it more formal)

γ1(f) 6
1

2

∣∣∣ 1

2R
[f(−R)+f(R)]+f ′(−R)

∣∣∣+ 1

2

∣∣∣ 1

2R
[f(−R)+f(R)]−f ′(R)

∣∣∣+
∫ R

−R
|f ′′(x)|dx.

(9.8)
This notably shows that although the number of neurons is allowed to grow, the ℓ1-norm
of the weights remains bounded by the quantity in equation (9.8).

Direct proof through Taylor’s formula. Equation (9.8) can be extended to continu-
ously differentiable functions, which are only twice differentiable almost everywhere with
integrable second-order derivatives. In this section, we assume that function f is twice
continuously differentiable but we could extend to only integrable second derivatives by
a density argument (see, e.g., Rudin, 1987). For such a function, using Taylor’s formula
with integral remainder, we have, for x ∈ [−R,R ], using the fact that (x − b)+ = 0 as



9.3. APPROXIMATION PROPERTIES 263

soon as b > x,

f(x) = f(−R) + f ′(−R)(x+R) +

∫ x

−R
f ′′(b)(x − b)db

= f(−R) + f ′(−R)(x+R) +

∫ R

−R
f ′′(b)(x − b)+db. (9.9)

We also have the symmetric version (obtained by applying equation (9.9) to x 7→ f(−x),
replacing x by −x, and by making a change of variable b→ −b in the integral) as follows:

f(x) = f(R)− f ′(R)(R − x)−
∫ R

−R
f ′′(b)(−x+ b)+db.

By averaging the two equalities an using that 1
2R (x+R) + 1

2R (R− x) = 1, we get

f(x) =
1

2

[f(−R) + f(R)

2R
+ f ′(−R)

]
(x +R) +

1

2

[f(−R) + f(R)

2R
− f ′(R)

]
(R − x)

+
1

2

∫ R

−R
f ′′(b)(x− b)+db −

1

2

∫ R

−R
f ′′(b)(−x+ b)+db.

This leads to the exact same upper bound on γ1(f) as obtained from piecewise affine
interpolation:

γ1(f) 6
1

2

∣∣∣ 1

2R
[f(−R)+f(R)]+f ′(−R)

∣∣∣+ 1

2

∣∣∣ 1

2R
[f(−R)+f(R)]−f ′(R)

∣∣∣+
∫ R

−R
|f ′′(x)|dx.

(9.10)
One can check that the upper bound is indeed a norm (proof left as an exercise).

We will also use a simpler upper bound, obtained from the triangle inequality:

γ1(f) 6
1

2R

∣∣f(−R) + f(R)
∣∣ +

1

2
|f ′(R)|+ 1

2
|f ′(−R)|+

∫ R

−R
|f ′′(x)|dx. (9.11)

Exercise 9.3 (��) Assume −R = x1 < · · · < xn = R, y1, . . . , yn ∈ R, show that the
piecewise-affine interpolant on [−R,R] is a minimum norm interpolant.

9.3.4 Variation Norm in an Arbitrary Dimension

In order to extend to larger dimensions than d = 1, we will use Fourier transforms. This
requires to consider functions on X, the ball with center zero and radius R, as restrictions
of functions defined on Rd with compact support (so that they belong to L2(R

d), the
space of square-integrable functions for the Lebesgue measure, and L1(Rd) the space of
integrable functions); this can be done in a number of ways (see Rudin, 1987 and the end
of section 7.5.2).



264 CHAPTER 9. NEURAL NETWORKS

Since f ∈ L1(Rd), the Fourier transform f̂(ω) =
∫
Rd f(x)e−iω

⊤xdx is defined every-
where and continuous, and, assuming that Fourier transform is integrable, we can write f
as the inverse Fourier transform of f̂ ; that is, for all x ∈ Rd (and thus for x ∈ X),

f(x) =
1

(2π)d

∫

Rd

f̂(ω)eiω
⊤xdω. (9.12)

To compute an upper bound on γ1(f), it suffices to upper-bound for each ω ∈ Rd the

norm γ1(x 7→ eiω
⊤x) (using complex-valued functions, for which the developments of

the section 9.3.3 still apply, or using sines and cosines), which is possible because we
can represent the function g(ρ) : u 7→ eiuρ, for u ∈ [−R,R ] using section 9.3.3 and

equation (9.11); that is, we obtain two measures on [−R,R], ν
(ρ)
+ and ν

(ρ)
− , such that for

all u ∈ [−R,R],

eiuρ =

∫ R

−R
(u − b)+dν(ρ)+ (b) +

∫ R

−R
(−u− b)+dν(ρ)− (b),

with

∫ R

−R
|dν(ρ)+ (b)|+

∫ R

−R
|dν(ρ)− (b)|

6
1

2R

∣∣g(ρ)(−R) + g(ρ)(R)
∣∣ +

1

2
|(g(ρ))′(R)|+ 1

2
|(g(ρ))′(−R)|+

∫ R

−R
|(g(ρ))′′(x)|dx

6
1

R
+ ρ+ 2Rρ2 6

1

R
+ 2Rρ2 +

( 1

2R
+

1

2
Rρ2

)
6

2

R
(1 + 2R2ρ2), (9.13)

using ρ 6 1
2R + 1

2Rρ
2. We can, therefore, decompose the function defined on the ball

with center 0 and radius R:

eiω
⊤x = ei(x

⊤ω/‖ω‖2)‖ω‖2

=

∫ R

−R
(x⊤(ω/‖ω‖2)− b)+dη(‖ω‖2)

+ (b) +

∫ R

−R
(x⊤(−ω/‖ω‖2)− b)+dη(‖ω‖2)

− (b),

with weights being in the correct constraint set (unit norm for the slopes ω/‖ω‖2 and
constant terms |b| 6 R), leading to, using equation (9.13),

γ1(x 7→ eiω
⊤x) 6

∫ R

−R
|dν(‖ω‖2)

+ (b)|+
∫ R

−R
|dν(‖ω‖2)

+ (b)| 6 2

R
(1 + 2R2‖ω‖22).

Thus, we obtain, from equation (9.12) and the triangular inequality for norm γ1,

γ1(f) 6
1

(2π)d

∫

Rd

|f̂(ω)|γ1(x 7→ eiω
⊤x)dω 6

1

(2π)d
2

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)dω. (9.14)

Given function g : Rd → R,
∫
Rd |ĝ(ω)|dω is a measure of smoothness of g, so γ1(f) being

finite imposes that f and all second-order derivatives of f have this form of smoothness.



9.3. APPROXIMATION PROPERTIES 265

The right side of equation (9.14) is often referred to as the “Barron norm,” which is
named after Barron (1993, 1994). See Klusowski and Barron (2018) for more details.

To relate norm γ1 to other function spaces such as Sobolev spaces, we will consider
further upper bounds (and relate them to another norm γ2, described in section 9.5).

Exercise 9.4 (Step activation function (�)) Consider the step activation function
defined as σ(u) = 1u>0. Show that the corresponding variation norm can be upper-

bounded by a constant times
∫
Rd |f̂(ω)|(1 +R‖ω‖2)dω.

9.3.5 Precise Approximation Properties

Precise rates of approximation. In this section, we will relate the space F1 to
Sobolev spaces, bounding, using the Cauchy-Schwarz inequality, the norm γ1 as

γ1(f) 6
1

(2π)d
2

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)dω from equation (9.14),

=
1

(2π)d
2

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)d/4+5/4 dω

(1 + 2R2‖ω‖22)d/4+1/4

6
1

(2π)d
2

R

√∫

Rd

|f̂(ω)|2(1+2R2‖ω‖22)d/2+5/2dω

√∫

Rd

dω

(1+2R2‖ω‖22)d/2+1/2
, (9.15)

which is a constant times
√∫

Rd |f̂(ω)|2(1 + 2R2‖ω‖22)sdω, which is exactly the Sobolev

norm from chapter 7, with s = d
2 + 5

2 derivatives, which is a reproducing kernel Hilbert
space (RKHS) since s > d/2.

Thus, all approximation properties from chapter 7 apply (see there for precise rates,
as well as their application to generalization bounds in section 9.4). Note, however, that,
using this reasoning, if we start from a Lipschitz-continuous function, then to approxi-
mate it up to the L2(Rd)-norm ε requires a γ1-norm growing as ε−(s−1) > ε−(d/2+3/2) (as
obtained at the end of section 7.5.2 of chapter 7). Thus, in the generic situation where no
particular directions are preferred, using F1 (neural networks) is not really more advan-
tageous than using kernel methods (see also more details in section 9.4 and section 9.5).
This changes drastically when such linear structures are present, as shown next.

Linear latent variables. We consider a target function f∗ that depends only on a r-
dimensional projection of the data, with r < d; that is, f∗ is of the form f∗(x) = g(V ⊤x),
where V ∈ Rd×r has full rank and has all singular values less than 1, and g : Rr → R.
Without loss of generality, we can assume that V has orthonormal columns. Then if γ1(g)
is finite (for the function g defined on Rr), one can write

g(z) =

∫

Rr+1

(w⊤z + b)+dµ(w, b),



266 CHAPTER 9. NEURAL NETWORKS

with µ supported on {(w, b) ∈ Rr+1, ‖w‖2 = 1, |b| 6 R}, and γ1(g) =
∫
Rr+1 |dµ(w, b)|.

We can then use this representation of g to obtain a representation of f∗ as

f∗(x) = g(V ⊤x) =

∫

Rr+1

((V w)⊤x+ b)+dµ(w, b).

Since V has orthonormal columns, ‖V w‖2 = 1 as soon as ‖w‖2 = 1; therefore, the mea-
sure µ on (w, b) ∈ Rr+1 defines a measure for (V w, b) ∈ Rd+1 on {(w′, b) ∈ Rd+1, ‖w′‖2 =
1, |b| 6 R}, which is supported in the subspace spanned by the columns of V and has a to-
tal variation that is less than that of µ.5 Thus, we have γ1(f∗) 6

∫
Rr+1 |dµ(w, b)| = γ1(g).

In other words, the approximation properties of g translate to f∗, and thus, we pay only
the price of these r dimensions and not all d variables.

For example, (1) if g has more than r/2+5/2 square-integrable derivatives, then γ1(g)
and thus γ1(f∗) is finite, or (2) if g is Lipschitz-continuous, then both g and f can be
approached in L2(Rd) with error ε with a function with a γ1-norm of order ε−(r/2+5/2),
thus escaping the curse of dimensionality. See Bach (2017) for more details and precise
learning rates in section 9.4.

△!
Kernel methods cannot use the dependence on a linear latent variable to reduce
the approximation error. In other words, as shown in section 9.5, using the ℓ2-
norm instead of the ℓ1-norm on the output weights leads to worse performance
when such linear latent variables are present.

We will combine these approximation results with the estimation error results in
section 9.4.

9.3.6 From the Variation Norm to a Finite Number of Neurons
(�)

Given a probability measure p on X ⊂ Rd, and a function g : X → R such that γ1(g)
is finite, we would like to find a set of m neurons (wj , bj) ∈ K ⊂ Rd+1 (which is the
compact support of all measures that we consider), such that the associated function
defined through

f(x) =

m∑

j=1

ηj(w
⊤
j x+ bj)+

is close to g for the norm L2(p).

Since input weights are fixed in K, the bound on γ1(g) should translate into a bound
on the ℓ1-norm of η: ‖η‖1 6 γ1(g). The set of functions f such that γ1(f) 6 γ1(g) is the
convex hull of functions sγ1(g)(w⊤x+ b)+, for s ∈ {−1, 1}, as well as ‖w‖2 = 1, |b| 6 R.
Thus, we are faced with the problem of approximating elements of a convex hull as an
explicit linear combination of extreme points with as few extreme points as possible.

5We use here the property that the total variation of a measure is equal to the total variation of this
same measure restricted to its support.



9.3. APPROXIMATION PROPERTIES 267

In a finite dimension, Carathéodory’s theorem6 says that the number of such extreme
points can be taken as equal to the dimension to get an exact representation. In our case of
infinite dimensions, we need an approximate version of Carathéodory’s theorem. It turns
out that we can create a fake optimization problem of minimizing the squared L2-norm
(for the input data distribution p) ‖f −g‖2L2(p)

such that γ1(f) 6 γ1(g), whose solution is
f = g, with an algorithm that constructs an approximate solution from extreme points.
This will be achieved by the Frank-Wolfe algorithm (aka conditional gradient algorithm).
This algorithm is applicable more generally; for more details, see Jaggi (2013) and Bach
(2015).

Frank-Wolfe algorithm. We thus make a detour by considering an algorithm defined
in a Hilbert space H, such that K is a bounded, convex set and J a convex, smooth
function from H to R; that is, such that there is a gradient function J ′ : H → H

such that for all elements f, g of H (which is the traditional smoothness condition from
section 5.2.3):

J(g) + 〈J ′(g), f − g〉H 6 J(f) 6 J(g) + 〈J ′(g), f − g〉H +
L

2
‖f − g‖2H.

The goal is to minimize J on the bounded convex set K, with an algorithm that only re-
quires access to the set K through a “linear minimization” oracle (i.e., through minimizing
linear functions), as opposed to the projection oracle that was required in section 5.2.5.

We consider the following recursive algorithm, starting from any vector f0 ∈ K:

f̄t ∈ arg min
f∈K

〈J ′(ft−1), f − ft−1〉H, (9.16)

ft =
t− 1

t+ 1
ft−1 +

2

t+ 1
f̄t = ft−1 +

2

t+ 1
(f̄t − ft−1). (9.17)

K

−J ′(ft−1)

ft−1

f̄t = argmin
f∈K

〈J ′(ft−1), f − ft−1〉H

ft

Because f̄t is obtained by minimizing a linear function on a bounded convex set,
we can restrict the minimizer f̄t to be an extreme point of K so that ft is the convex
combination of t extreme points f̄1, . . . , f̄t (note that the first point f0 disappears from
the convex combination). We now show that

J(ft)− inf
f∈K

J(f) 6
2L

t+ 1
diamH(K)2.

6See https://en.wikipedia.org/wiki/Caratheodory’s_theorem_(convex_hull).

https://en.wikipedia.org/wiki/Caratheodory's_theorem_(convex_hull)


268 CHAPTER 9. NEURAL NETWORKS

Proof of convergence rate (�). This is obtained by using smoothness as follows:

J(ft) 6 J(ft−1) + 〈J ′(ft−1), ft − ft−1〉H +
L

2
‖ft − ft−1‖2H

= J(ft−1) +
2

t+ 1
〈J ′(ft−1), f̄t − ft−1〉H +

4

(t+ 1)2
L

2
‖f̄t − ft−1‖2H

6 J(ft−1) +
2

t+ 1
inf
f∈K

〈J ′(ft−1), f − ft−1〉H +
4

(t+ 1)2
L

2
diamH(K)2,

by definition of f̄t in equation (9.16). By convexity of J , we have for all element
f ∈ K, J(f) > J(ft−1) + 〈J ′(ft−1), f − ft−1〉H, leading to inff∈K J(f) > J(ft−1) +
inff∈K〈J ′(ft−1), f − ft−1〉H. Thus, we get

J(ft)− inf
f∈K

J(f) 6
[
J(ft−1)− inf

f∈K
J(f)

](
1− 2

t+ 1

)
+

4

(t+ 1)2
L

2
diamH(K)2,

leading to

t(t+ 1)
[
J(ft)− inf

f∈K
J(f)

]
6 (t− 1)t

[
J(ft−1)− inf

f∈K
J(f)

]
+ 2LdiamH(K)2

6 2Lt diamH(K)2 by using a telescoping sum,

and thus J(ft)− inf
f∈K

J(f) 6
2L

t+ 1
diamH(K)2, as claimed earlier.

Exercise 9.5 Show that if we replace equation (9.17) with ft = t−1
t ft−1 + 1

t f̄t, ft is
the uniform convex combination of f̄1, . . . , f̄t, and we have the convergence rate J(ft)−
inff∈K J(f) 6 L

t (1 + log t)diamH(K)2.

Exercise 9.6 (Frank-Wolfe with line search) The update in equation (9.17) is often
replaced by ft = (1 − ρt)ft−1 + ρtf̄t with ρt = arg minρ∈[0,1] ρ〈J ′(ft−1), f̄t − ft−1〉H +
L
2 ρ

2‖f̄t − ft−1‖2H. Show that we have J(ft)− inff∈K J(f) 6 4L
t+1diamH(K)2.

Application to approximate representations with a finite number of neurons.
We can apply this to H = L2(p) and J(f) = ‖f − g‖2L2(p)

, leading to L = 2, with

K = {f ∈ L2(p), γ1(f) 6 γ1(g)}, which is the convex hull of single neurons s(w⊤ ·+b)+
scaled by γ1(g) and with an extra sign s ∈ {−1, 1}.

We thus obtain after t steps a function ft that can be represented with t neurons for
which

‖ft − g‖2L2(p)
6

16γ1(g)2

t+ 1
sup

(w,b)∈K
‖(w⊤ ·+b)+‖2L2(p)

. (9.18)

Thus, it is sufficient to have t of orderO(γ1(g)2/ε2) to achieve ‖ft−g‖L2(p) 6 ε. Therefore,
the norm γ1(g) directly controls the approximability of the function g by a finite number
of neurons and tells us how many neurons should be used for a given target function. For

the ReLU activation, the bound in equation (9.18) becomes ‖ft−g‖2L2(p)
6

16γ1(g)
2

t+1 (2R)2;

note that the dependence of the number of neurons in ε as ε−2 is not optimal, as it can
be improved to ε−2d/(d+3) (see Bach, 2017, and references therein).



9.4. GENERALIZATION PERFORMANCE FOR NEURAL NETWORKS 269

Application to neural network fitting. The Frank-Wolfe algorithm can be used to
fit a neural network from data by minimizing the empirical risk of a function f , which
is constrained to have a norm γ1 bounded by a fixed constant D. After t iterations, the
general convergence result given here leads to an approximate minimizer with an explicit
provable convergence guarantee in O(1/t).

However, as discussed previously, the linear minimization oracle requires optimizing
with respect to single neurons of the form s(w⊤ · +b)+ scaled by D and with an extra
sign s ∈ {−1, 1}. Therefore, to implement the linear minimization oracle, given the
derivative αi of the loss function associated with the ith observation, for i = 1, . . . , n,
we need to minimize with respect to s, w, and b the quantity

∑n
i=1 sαi(w

⊤xi + b)+, for
input observations xi ∈ Rd, i = 1, . . . , n, for which there is no known polynomial-time
algorithms. Thus, we do not obtain through the Frank-Wolfe algorithm a polynomial-time
algorithm (see more details in Bach, 2017).

This incremental approach to estimating a neural network is related to the boosting
procedures that we present in section 10.3.

Exercise 9.7 Extend the bound in equation (9.18) to all activation functions.

9.4 Generalization Performance for Neural Networks

We can now consider putting both estimation and approximation errors together using
tools from section 7.5.1, which give a rate for constrained optimization (this is done for
simplicity, as using tools from section 4.5.5, we could get similar results for penalized
problems).

We thus minimize the empirical risk for a G-Lipschitz-continuous loss subject to
γ1(f) 6 D. Proposition 9.1 leads to an estimation error less than 16GDR√

n
, on which

we need to add G infγ1(f)6D ‖f − f∗‖L2(p), where f∗ is the target function, minimizer of
the expected risk. Following the same reasoning as in section 7.5.1, optimizing over D
leads to an upper bound of the form (where the constant is 256 rather than 16 in equa-
tion (7.13) because the extra factor of 4, i.e., 16 instead of 4, in the estimation error):

εn = G

√
2 inf
f∈F1

{
‖f − f∗‖2L2(p)

+
256R2

n
γ1(f)2

}
. (9.19)

As shown in section 7.5.1, given this bound, we can recover the bound D as
√
n

16RG
√
2
εn,

and thus, using section 9.3.6 (which shows how to approximate a function in F1 by finitely
many neurons), we will lose an additional factor εn with a number of neurons m greater
than a constant times D2R2G2/ε2n (see equation (9.18)), which is exactly equal to a
constant times n; that is, with this analysis, there is no need to have a number of neurons
that greatly exceeds the number of observations.

We can now look at a series of structural assumptions on the target function f∗, for
which we will see that neural networks provide adaptivity if the regularization parameter



270 CHAPTER 9. NEURAL NETWORKS

is well chosen:

• No assumption: If we assume that f∗ is Lipschitz-continuous on the ball with
center 0 and radius R, then, as shown at the end of section 7.5.2, f∗ can be extended
to a function in the Sobolev space of order 1. Using the comparison of γ1 with the
Sobolev norm of order s = d

2 + 5
2 in equation (9.15), we can reuse the results from

kernel methods in section 7.5.2 and obtain a rate of O(1/n1/(2s)) = 1/n1/(d+5),
which exhibits the curse of dimensionality; it cannot be much improved anyway, as
the optimal performance has to be larger than 1/n1/(d+2) (see chapter 15).

• Linear latent variable: If we now assume that f∗ depends on an r-dimensional
unknown subspace, then we can reuse the same reasoning on the projected subspace,
compare the norm γ1 projected to the subspace (as done in section 9.3.5) to the
Sobolev norm on the same projected subspace, thus of order s = r/2 + 5/2 (instead
of d/2 + 5/2). This leads to an estimation rate for the excess risk proportional to
1/n1/(r+5) (with constants independent of d). This is where neural networks have
a strong advantage over kernel methods and sparse methods: they are adaptive
to linear latent variables and can thus perform variable selection with nonlinear
predictions (as detailed next).

• “Teacher network”: If we assume that f∗ is the linear combination of k hidden
neurons, then we obtain a convergence rate proportional to k/

√
n, as the norm

γ1(f∗) is less than a constant times to k.

Exercise 9.8 Consider target functions of the form f∗(x) =
∑k

j=1 fj(w
⊤
j x) for one-

dimensional Lipschitz-continuous functions f1, . . . , fk. Provide an upper bound on excess
risk proportional to k/n1/6.

Note that these rates are not as good as Bach (2017) since the exponent s = d
2 + 5

2
is not optimal, and in fact, a more careful analysis, as outlined in section 9.5, would lead
s = d

2 + 3
2 , with a similar dependence on dimension.

Nonlinear variable selection (�). In this chapter, we focused primarily on ℓ2-norm
constraints or penalties on the weight vectors w1, . . . , wm ∈ Rd of a neural network, but
all developments can be carried out with the ℓ1-norm, leading to the high-dimensional
behavior detailed in section 8.3.3, but this time selecting variables with a nonlinear pre-
diction on top of them. In terms of algorithms, we would need to replace (stochastic)
gradient descent on w1, . . . , wm by proximal extension (as detailed in section 5.2.5). For
the rest of this section, we assume that ‖x‖∞ 6 R almost surely.

The analysis has to be adapted for both the estimation error and the approximation
error. For the estimation error, in the derivations of section 9.2.3, we simply need to
replace the constraints ‖wj‖22 + b2j/R

2 = 1 by ‖wj‖21 + b2j/R
2 = 1, and thus replace



9.5. RELATIONSHIP WITH KERNEL METHODS (�) 271

equation (9.3) with

Rn(G) 6 2GD

(
E

[∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

∞
+R2

( 1

n

n∑

i=1

εi

)2])1/2

(9.20)

6 2GD

(
E

[∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

∞

])1/2

+ 2GDR

(
E

[( 1

n

n∑

i=1

εi

)2])1/2

6 2GDR

√
2 log(2d)√

n
+

2GDR√
n

6 4GRD

√
log(4d)

n
,

using expectations of maxima from section 1.2.4.

Thus, in estimation rates, we need to consider, instead of equation (9.19),

εn = 2G

√
inf
f∈F1

{
‖f − f∗‖2L2(p)

+
256R2log(4d)

n
γ1(f)2

}

(Note the extra factor log(4d) and the definition of R as an ℓ∞-bound.) Regarding
approximation error, we simply use the bound ‖w‖1 6

√
k‖w‖2 if w has only k nonzero

elements. Thus, if the target function f∗ is a Lipschitz-continuous function of only k
unknown variables, we can use the approximation result for ℓ2-norm constraints, with an
extra dependence on k (which we already had). Thus, overall, the estimation rate of the

excess risk is proportional to a constant depending on k times
( log(4d)

n

)1/(k+3)
, and thus

with a high-dimensional estimation rate, where d only appears logarithmically.

9.5 Relationship with Kernel Methods (�)

In this section, we relate our function space F1 to a simpler function space F2 that will,
in the overparameterized regime when m tends to +∞, correspond only to optimizing
the output layer.

9.5.1 From a Banach Space F1 to a Hilbert Space F2 (�)

Following the notations of section 9.3.2, given a fixed probability measure τ with full
support on K ⊂ Rd+1, we can define another norm as

γ22(f)= inf
ν∈M(K)

∫

K

∣∣∣dν(w, b)

dτ(w, b)

∣∣∣
2

dτ(w, b) such that ∀x ∈ X, f(x)=

∫

K

(w⊤x+ b)+dν(w, b).

(9.21)
By construction (and by Jensen’s inequality), γ1(f) 6 γ2(f), so the space F2 of functions f
such that γ2(f) < +∞ is included in F1 (in addition, γ2 depends on the choice of the
base measure τ , while γ1 does not).

Moreover, as shown in proposition 9.3, the space F2 is an RKHS on the set X = {x ∈
Rd, ‖x‖2 6 R}, as defined in chapter 7.



272 CHAPTER 9. NEURAL NETWORKS

Proposition 9.3 The space F2 is the RKHS associated with the positive-definite kernel
function

k(x, x′) =

∫

K

(w⊤x+ b)+(w⊤x′ + b)+dτ(w, b). (9.22)

Proof For a formal proof for all compact sets K, see Bach (2017, appendix A). We only
provide a proof for finite K and τ the uniform probability measure on K, we then have
γ22(f) = infν∈RK

1
|K|

∑
(w,b)∈K ν

2
(w,b), such that f(x) = 1

|K|
∑

(w,b)∈K ν(w,b)(w
⊤x + b)+,

which corresponds to penalizing the ℓ2-norm of θ = 1√
|K|

ν ∈ RK for f(x) = θ⊤ϕ(x)

and ϕ(x)(w,b) = 1
|K|1/2 (w⊤x + b)+. We thus exactly get the desired kernel k(x, x′) =

1
|K|

∑
(w,b)∈K(w⊤x+ b)+(w⊤x′ + b)+.

Interpretation in terms of random features. As already mentioned in section 7.4,
the kernel defined in equation (9.22) can be approximated by sampling from τ , m points
(wj , bj), j = 1, . . . ,m, and approximating k(x, x′) by

k̂(x, x′) =
1

m

m∑

j=1

(w⊤
j x+ bj)+(w⊤

j x
′ + bj)+.

This corresponds to using f(x) =
∑m

j=1 ηj(w
⊤
j x + bj)+, with a penalty proportional

to m‖η‖22. Thus, random features correspond to only optimizing with respect to the
output weights while keeping the input weights fixed (while for γ1, we optimize over all
weights). Therefore, infinite-width networks where input weights are random and only
output weights are learned are, in fact, kernel methods in disguise (Neal, 1995; Rahimi
and Recht, 2008).

This kernel can be computed in closed form for simple distributions of weights; see
section 9.5.2, Cho and Saul (2009), and Bach (2017). Thus, the same regularization
properties may be achieved with algorithms from chapter 7 (which are based on convex
optimization and therefore come with guarantees). Note that, as shown in section 7.4,
a common strategy for kernels defined as expectations is to use the random feature ap-
proximation k̂(x, x′); that is, use the neural network representation explicitly.

△! The kernel approximation corresponds to input weights wj , bj sampled ran-
domly and held fixed. Only the output weights ηj are optimized. Full opti-
mization of all weights can thus be seen as learning the kernel function.

△!
Because Dirac measures are not square-integrable with respect to the Lebesgue
measure, the prediction function x 7→ (w⊤x + b)+ (i.e., a single neuron that
belongs to F1) is typically not in the RKHS F2, which is typically composed
of smooth functions.



9.5. RELATIONSHIP WITH KERNEL METHODS (�) 273

Table 9.1. Summary of properties of th norms γ1 and γ2.

F2 F1

Hilbert Space Banach Space∣∣∣∣∣γ2(f)2 = inf

∫

Rd+1

|η(w, b)|2dτ(w, b)

∣∣∣∣γ1(f) = inf

∫

Rd+1

|η(w, b)|dτ(w, b)

s. t.

∣∣∣∣∣f(x)=

∫

Rd+1

η(w, b)(w⊤x+b)+dτ(w, b) s. t.

∣∣∣∣f(x)=

∫

Rd+1

η(w, b)(w⊤x+b)+dτ(w, b)

Smooth functions Potentially nonsmooth functions

Single neurons
∣∣∣ /∈ F2 Single neurons ∈ F1

Link between the two norms. To relate the two norms more precisely, we rewrite γ1
using the fixed probability measure τ (assuming it has full support in K) as

γ1(f) = inf
η:K→R

∫

K

|η(w, b)|dτ(w, b) such that ∀x ∈ X, f(x) =

∫

K

(w⊤x+b)+η(w, b)dτ(w, b).

The only difference with the squared RKHS norm is that we consider the L1-norm instead
of the squared L2-norm of η (with respect to the probability measure τ). The minimum
achievable norm is exactly γ1(f).

Note that typically, the infimum over all η is not achieved, as the optimal measure
in equation (9.5) may not have a density with respect to τ . Because we use an L1-norm
penalty, the measures µ(w, b) = η(w, b)τ(w, b) can span in the limit all measures µ(w, b)
with finite total variation

∫
Rd+1 |dµ(η, b)| =

∫
Rd+1 |η(w, b)|dτ(w, b).

Overall, we have the following properties (see table 9.1 for a summary):

• Because of Jensen’s inequality, we have γ1(f) 6 γ2(f), and thus F2 ⊂ F1; that is
the space F1 contains many more functions.

• △! A single neuron is in F1 with γ1-norm less than 1, as the mass of a Dirac measure
is equal to 1.

Another link between the two norms can be established by seeing the norm γ1 as the
optimization of the norm γ2 with respect to the base measure τ , which can be seen as a
form of kernel learning (see Gönen and Alpaydın, 2011, and exercise 9.9).

Exercise 9.9 (Link with kernel learning (�)) With the setup presented in this sec-

tion, show that the infimum of
∫
K

∣∣dν(w,b)
dτ(w,b)

∣∣2dτ(w, b) over probability distributions τ on K is

equal to
( ∫

K |dν(w, b)|
)2
. Using exercise 8.16, show how the penalty γ1 can be interpreted

as kernel learning.

9.5.2 Kernel Function (��)

For the ReLU activation function, we can compute in closed form the kernel function,
which is useful computationally only if the number of random features m is larger than



274 CHAPTER 9. NEURAL NETWORKS

the number of observations (when using the kernel trick is advantageous, as outlined in
section 7.4).

Dimension d = 1. In one dimension, with w uniform on the unit sphere (i.e., w ∈
{−1, 1}), and with b uniform on [−R,R], we have the following kernel:

k(x, x′) =
1

4R

∫ R

−R

(
(x− b)+(x′ − b)+ + (−x− b)+(−x′ − b)+

)
db.

We can compute it in closed form as (assuming x 6 x′)

k(x, x′) =
1

4R

∫ x

−R
(x − b)(x′ − b)db+

1

4R

∫ −x′

−R
(−x− b)(−x′ − b)db

=
1

4R

[
xx′(x +R)− (x+ x′)

(x2
2
− R2

2

)
+
x3

3
− R3

3

+xx′(−x′ +R) + (x+ x′)
( (x′)2

2
− R2

2

)
− (x′)3

3
− R3

3

]

=
R2

6
+
xx′

2
+

1

24R
(x′ − x′)3.

This leads to

k(x, x′) =
R2

6
+
xx′

2
+

1

24R
|x− x′|3. (9.23)

Generalization to all dimensions. In higher dimension, we can use the one-dimensional
expression in equation (9.23), with τ the uniform distribution on the sphere:

k(x, x′) =

∫

‖w‖2=1

1

2R

(∫ R

−R
(w⊤x+ b)+(w⊤x′ + b)+db

)
dτ(w)

= Eτ(w)

[
k(w⊤x,w⊤x′)

]
= Eτ(w)

[R2

6
+
w⊤x(w⊤x′)

2
+

1

24R
|w⊤x− w⊤x′|3

]

=
R2

6
+
x⊤x′

2
· Eτ(w)

[
|w1|2

]
+

1

24R
‖x− x′‖32 · Eτ(w)

[
|w1|3

]
,

by invariance by rotation. The variable |w1|2 ∈ [0, 1] is distributed as a Beta7 random
variable with parameters (1/2, (d − 1)/2). Thus Eτ(w)

[
|w1|2

]
= 1/d and Eτ(w)

[
|w1|3

]
=

Γ(2)Γ( d
2 )

Γ( 1
2 )Γ(

d
2+

3
2 )

, leading to (see Bach, 2023, for more details and extensions):

k(x, x′) =
R2

6
+

1

2d
x⊤x′ +

1

24R

Γ(2)Γ(d2 )

Γ(12 )Γ(d2 + 3
2 )
‖x− x′‖32. (9.24)

Note that the expression differs from what was obtained in section 7.4.3 because we
consider here a constant term. See figure 9.2 for examples of comparing the RKHS

7See https://en.wikipedia.org/wiki/Beta_distribution.

https://en.wikipedia.org/wiki/Beta_distribution


9.5. RELATIONSHIP WITH KERNEL METHODS (�) 275

(corresponding to m = +∞ neurons) and the approximation with finite m. We see
that for large m (right plot), the linear combination of single neurons provides a good
approximation of the associated kernel, but not for small m (left plot).

Exercise 9.10 (Step activation function) Consider, instead of equation (9.22), the
kernel k(x, x′) =

∫
K

1w⊤x+b>01w⊤x′+b>0dτ(w, b). Show that it can be expressed in closed

form as k(x, x′) = 1
2 − 1

4R

Γ(1)Γ( d
2 )

Γ( 1
2 )Γ(

d
2+

1
2 )
‖x− y‖2.

Figure 9.2. Examples of functions in the RKHS F2 and its approximation based on ran-
dom features, with m = 20, 100, and 200; that is, functions that are linear combinations
of (w⊤

j x+bj)+, j = 1, . . . ,m, where (wj , bj) are independently sampled. All the functions
are the minimum norm interpolators of the green points. This is to be contrasted with
the Banach space F1, where the minimum norm interpolator is achieved by the piecewise
affine interpolator (see exercise 9.3), and can be achieved with m = n (well selected and
thus nonrandom) neurons, where n is the number of observed points.

9.5.3 Upper Bound on RKHS Norm (��)

We can now find upper bounds on norm γ2. We can either use the kernel function from
equation (9.24) or the random feature interpretation from equation (9.21). We first use
the random feature interpretation in one dimension.

Upper bound on RKHS norm γ2 in one dimension. Using the same reasoning as
in section 9.3.3, we can get an upper bound on γ2(f) by decomposing f as

f(x) =

∫ R

−R
η+(b)(x− b)+

db

4R
+

∫ R

−R
η−(b)(−x− b)+

db

4R
,

with γ2(f)2 6

∫ R

−R
η+(b)2

db

4R
+

∫ R

−R
η−(b)2

db

4R
.

By using Taylor’s formula with an integral remainder as in section 9.3.3, we get, for



276 CHAPTER 9. NEURAL NETWORKS

any twice differentiable function f on [−R,R],

f(x) =
1

2
f(−R) +

1

2
f(R) +

1

2
f ′(−R)(x+R)− 1

2
f ′(R)(−x+R)

+
1

2

∫ R

−R
f ′′(b)(x− b)+db −

1

2

∫ R

−R
f ′′(b)(−x+ b)+db

=
1

2

[
f(R) + f(−R)

]
+
R

2

[
f ′(−R)− f ′(R)

]
+
x

2

[
f ′(−R) + f ′(R)

]

+
1

2

∫ R

−R
f ′′(b)(x− b)+db −

1

2

∫ R

−R
f ′′(b)(−x+ b)+db.

We can now use explicit representations of constants and linear functions, without Dirac
measures as we need finite L2-norms, as follows:

x

2
=

∫ R

−R

(x− b)+ − (b − x)+
4R

db =

∫ R

−R

x− b
4R

db

−R
2

6
=

∫ R

−R
b(x− b)+

db

4R
+

∫ R

−R
b(−x− b)+

db

4R
.

After a short calculation left as an exercise, this leads to a norm γ2 upper-bounded by a
constant times

2R

∫ R

−R
f ′′(x)2dx+

[
f ′(R) + f ′(−R)

]2
+
[
R(f ′(R)− f ′(−R))− f(−R)− f(R)

]2
.

The main difference with γ1 is that the second derivative is penalized by an L2-norm and
not by an L1-norm, and this L2-norm can be infinite when the L1-norm is finite (the
classic example is the hidden neuron functions (x − b)+).

△! The RKHS is combining infinitely many hidden neuron functions (x − b)+, none of
which are inside the RKHS.

△! This smoothness penalty does not allow the ReLU to be part of the RKHS. However,
this is still a universal penalty (as the set of functions with a square-integrable second
derivative is dense in L2).

Upper bound on RKHS norm γ2 in all dimensions. We can first find a bound
directly from the one on γ1 in equation (9.14), which is exactly equation (9.15), ending
up with the restriction on the ball with center 0 and radius R of the Sobolev space
corresponding to the square-integrable s = d

2 + 5
2 derivatives on Rd. It turns out that this

provides a bound on γ2 (as can be shown by reproducing the reasoning from section 9.3.4).

However, this bound is not optimal, which can already be seen in dimension d = 1,
where we obtain s = 3 instead of s = 2. It turns out that in general, it is possible to show
that γ2 is less than a Sobolev norm with index s = d

2 + 3
2 . This can be done by drawing

links with multivariate splines as done in equation (9.24) (Wahba, 1990; Bach, 2023).



9.6. EXPERIMENTS 277

Figure 9.3. Fitting one-dimensional functions with various numbers of neurons m and no
additional regularization (top: m = 5; middle: m = 32; bottom: m = 100), with four
prediction problems (one per column).

9.6 Experiments

We consider the same experimental setup as section 7.7; that is, one-dimensional problems
to highlight the adaptivity of neural network methods to the regularity of the target
function, with smooth targets and nonsmooth targets. We consider several values for the
number m of hidden neurons and a neural network with ReLU activation functions and
an additional global constant term. Training is done by SGD with a small constant step
size and random initialization.

Note that for smallm, while a neural network with the same number of hidden neurons
could fit the data better, optimization is unsuccessful (SGD gets trapped in a bad local
minimum). Moreover, between m = 32 and m = 100, we do not see any overfitting,



278 CHAPTER 9. NEURAL NETWORKS

highlighting the potential underfitting behavior of neural networks. See also Stewart
et al. (2023) for a formulation of regression through classification that alleviates some of
these issues, as well as https://francisbach.com/quest-for-adaptivity/.

9.7 Extensions

Fully connected, single-hidden-layer neural networks are far from what is used in practice,
particularly in computer vision and natural language processing. Indeed, state-of-the-art
performance is typically achieved with the following extensions:

• Going deep with multiple layers: The most simple form of deep neural network
is a multilayer, fully connected neural network. Ignoring the constant terms for
simplicity, it is of the form f(x(0)) = y(L), with input x(0) and output y(L) given by

y(k) = (W (k))⊤x(k−1)

x(k) = σ(y(k)),

where W (ℓ) is the matrix of weights for layer ℓ. For these models, obtaining simple
and powerful theoretical results is still an active area of research in terms of approx-
imation, estimation, and optimization errors. See, for instance, Lu et al. (2021), Ma
et al. (2020), and Yang and Hu (2021). Among these results, the so-called “neural
tangent kernel” provides another link between neural networks and kernel meth-
ods beyond the one described in section 9.5, and that applies more generally (see
section 12.4 and, e.g., Jacot et al., 2018; Chizat et al., 2019).

• Residual networks: An alternative to stacking layers one after the other as before
is to introduce a different architecture of the following form:

y(k) = (W (k))⊤x(k−1)

x(k) = x(k−1) + σ(y(k)).

The direct modeling of x(k) − x(k−1) instead of x(k) through an extra nonlinearity,
originating from He et al. (2016), can be seen as a discretization of an ordinary
differential equation (see Chen et al., 2018).

• Convolutional neural networks: To tackle large data and improve performances,
it is important to use prior knowledge about the typical data structure to process.
For instance, for signals, images, and videos, it is important to take into account
the translation invariance (up to boundary issues) of the domain. This is done by
constraining the linear operators involved in the linear part of the neural networks
to respect some form of translation invariance, and thus to use convolutions. See
Goodfellow et al. (2016) for details. This can be extended beyond grids to topologies
expressed in terms of graphs, leading to graph neural networks (see, e.g., Bronstein
et al., 2021).

• Transformers: One approach to capture long-range dependencies in sequential
data X = (x1, . . . , xL) ∈ RL×d, is to learn query Q = W (Q)X , key K = W (K)X ,

https://francisbach.com/quest-for-adaptivity/


9.8. CONCLUSION 279

and value V = W (V )X matrices obtained by linear operators on X of compatible
sizes, which are combined together to form an attention mapping (Bahdanau et al.,
2014):

attention(Q,K, V ) = softmax
(QKT

√
d

)
V.

Such a mapping is capable of capturing a variety of semantic relationships over
sequences of data (e.g., grammatical relationships between query and key tokens
within a corpus of text). The transformer (Vaswani et al., 2017) is an architecture
that consists of stacked blocks made up of attention mappings, fully-connected
layers and residual connections. The transformer architecture and its variants have
a multitude of applications in fields such as natural language processing, audio, and
computer vision.

9.8 Conclusion

In this chapter, we have focused primarily on neural networks with one hidden layer and
provided guarantees on the approximation and estimation errors, which show that this
class of models, if empirical risk minimization can be performed, leads to a predictive
performance that improves on kernel methods from chapter 7 by being adaptive to linear
latent variables (e.g., dependence on an unknown linear projection of the data). In
particular, we highlight that having a number of neurons in the order of the number of
observations is not detrimental to good generalization performance, so long as the norm
of the weights is controlled.

We pursue the study of overparameterized models in chapter 12, where we show how
optimization algorithms both globally converge and lead to implicit biases.





Part III

Special Topics

281





Chapter 10

Ensemble Learning

Chapter Summary
• Combining several predictors learned on modified versions of the original dataset

can have computational or statistical benefits.
• Averaging/bagging: Averaging predictors on several reshuffled, resampled, or uni-

formly projected datasets will typically lower the estimator’s variance with a po-
tentially limited increase in bias.

• Boosting: Iteratively refining the prediction function by retraining on a reweighted
dataset in a greedy fashion is an efficient way of building task-dependent features.

Given a supervised learning algorithm A that goes from datasets D to prediction
rules A(D) : X → Y, can we run it several times, on different datasets constructed
from the same original one, and combine the results to get a better overall predictor?
The combination is typically a linear combination: as for local averaging methods in
chapter 6, which combine labels from nearby inputs, we combine the predicted labels
from the estimators learned on different datasets. For regression (Y = R), this is done by
simply linearly combining predictions; for classification, this is done by having a weighted
majority vote or by linearly combining real-valued predictions when convex surrogates
are used (such as the logistic loss). For linear models (in their parameters) that are
stable by linear combinations, such linear combinations do not lead to new functions that
could not be accessed initially. However, for nonlinear models, this leads to new functions
with typically better approximation properties. For example, a one-hidden-layer neural
network, as presented in section 9.2, is the combination of simple functions that lead to
arbitrarily complex prediction functions if sufficiently many of them are added.

The construction of a new dataset given an old one D = {(x1, y1), . . . , (xn, yn)} is
typically done by giving a different weight vi ∈ R+ to each (xi, yi). When the weights are

283



284 CHAPTER 10. ENSEMBLE LEARNING

integer-valued, this can be implemented by duplicating the corresponding observations
several times (i.e., as many times as the weight) and then using an existing algorithm
for regularized empirical risk minimization on the enlarged dataset. In particular, for
stochastic gradient descent (SGD) on the empirical risk, this can be implemented by
sampling each observation (xi, yi) according to its weight vi (which then does not need
to be an integer). Note, however, that most learning techniques, particularly those based
on empirical risk minimization, can directly accommodate arbitrary weights.

In this chapter, we consider two classes of techniques:

• Bagging/averaging techniques : Datasets are constructed in parallel, and the weights
are typically random and uniform (e.g., uniformly distributed or constant). A sim-
ilar effect can be obtained by modifying the original dataset using random projec-
tions. This is studied in sections 10.1 and 10.2.

• Boosting techniques : Datasets are constructed sequentially, and these weights are
adapted from previous datasets and thus not uniformly distributed. This is studied
in section 10.3.

The computational and statistical benefits of each combination technique will depend
strongly on the original predictor, with three classes that we have considered in earlier
chapters:

• Local averaging methods: They will be well adapted to all ensemble learning tech-
niques, in particular for predictors with high variance such as 1-nearest-neighbor
estimation.

• Empirical risk minimization with nonlinear models: From a set of functions ϕ(·, w),
with w ∈ W, linear combinations increase the set of models to

∫
W
ϕ(x,w)dν(w),

for ν a signed measure on W. These will be adapted to boosting techniques (we
already saw some of these in chapter 9, in the context of neural networks).

• Empirical risk minimization with linear models (linearity in the model’s param-
eters): The overall model class remains the same by taking linear combinations.
Thus, in terms of prediction performance, these are typically not adapted to en-
semble learning techniques unless some variable/feature selection is added (as we
do in section 10.2). However, there may be some computational benefits, such as
the possibility of parallel processing.

10.1 Averaging/Bagging

In this section, for simplicity, we consider the regression with square loss where we have an
explicit bias/variance decomposition, noting that most results extend to other situations
using convex surrogates (see exercise 10.1) or using majority votes (see exercise 10.3).

10.1.1 Independent Datasets

The idea of bagging, and more generally of averaging methods, is to average predictions
from estimators learned from datasets that are as independent as possible. In an ideal-



10.1. AVERAGING/BAGGING 285

ized situation, we have m independent datasets of size n, composed of independent and
identically distributed (i.i.d.) observations from the same distribution p(x, y) on X × Y.

We obtain for each of them an estimator f̂
(j)
λ , where j ∈ {1, . . . ,m} and λ is an associ-

ated hyperparameter specific to the learning procedure. Since we consider least-squares

regression, the new predictor, f̂bag
λ , is simply the average of all f̂

(j)
λ , j = 1, . . . ,m.

If we denote bias(j)(x) = E[f̂
(j)
λ (x)] − f∗(x), and var(j)(x) = var

[
f̂
(j)
λ (x)

]
(assuming

that x is fixed and only taking expectations with respect to the data), then they are the

same for all j ∈ {1, . . . ,m} and the bias of f̂bag
λ is the same as the base bias for a single

dataset (and thus so is the squared bias). At the same time, the variance is divided by m
because the datasets are assumed to be independent.

Thus, in the bias/variance trade-off, the selected hyperparameter will typically select
a higher variance (or equivalently lower bias) estimator than for m = 1. In the context of
independent datasets, it is relevant to concatenate all m datasets into one large dataset
with N = nm observations and learn a single predictor with these: the generalization
performance of the average of m predictors will often be the same as the one of the single
predictor on the large dataset, but with potential computational benefits. We now give a
few examples for regression (we consider binary classification in exercises 10.1 and 10.3).

The k-nearest neighbor regression. We consider the analysis from section 6.3.2 on
prediction problems over X ⊂ Rd, where we showed in proposition 6.2 that the (squared)

bias was upper-bounded by 8B2diam(X)2
(
2k
n

)2/d
(for d > 2). At the same time, the

variance was bounded by σ2

k , where σ2 is a bound on the noise variance on top of the
target function f∗, while B is the Lipschitz constant of the target function. Thus, with m
replications, we get an excess risk upper-bounded by

σ2

km
+ 8B2diam(X)2

(2k

n

)2/d

.

When optimizing this bound with respect to k, we get that k1+2/d ∝ n2/d

m , leading to

k ∝ 1
md/(2+d)n

2/(2+d). Compared to section 6.3.2, we obtain a smaller number of neighbors
(which is consistent with favoring higher variance estimators). The overall excess risk ends
up being proportional to 1/(mn)2/(d+2), which is exactly the rate for a dataset of N = mn
observations.

Thus, dividing a dataset of N observations in m chunks of n = N/m observations,
estimating independently, and combining linearly does not lead to an overall improved
statistical behavior compared to learning all at once. Still, it can have significant com-
putational advantages when the m estimators can be computed in parallel (and totally
independently). We thus obtain a distributed algorithm with the same worst-case pre-
dictive performance as for a single machine.

Note here that there is an upper bound on the number of replications (and thus the
ability for parallelization) to get the same (optimal) rate, as we need k to be larger than 1,
and thus, m cannot grow larger than n2/d.



286 CHAPTER 10. ENSEMBLE LEARNING

Exercise 10.1 (�) Consider k-nearest neighbor multicategory classification with a ma-
jority vote rule. Using the relationship between the quadratic loss and the 0–1 loss from
section 4.1.4 to derive an upper bound on the expected risk, what is the corresponding
optimal choice of m when using independent datasets?

Ridge regression. Following the analysis from section 7.6.6, the variance of the ridge

regression estimator was proportional to σ2

n λ
−1/α and the bias proportional to λt/s (see

precise definitions in section 7.6.6). With m replications, we thus get an excess risk

proportional to σ2

nmλ
−1/α+λt/s, and the averaged estimator behaves like having N = nm

observations (and the same regularization parameter). Again, with the proper choice
of regularization parameter (lower λ than for the full dataset), there is no statistical
advantage. Still, there may be a computational one, not only for parallel processing but
also with a single machine (see exercise 10.2), since, as shown in section 7.4, the training
time for ridge regression is superlinear in the number of observations with running-time
complexities between O(n2) and O(n3) if no low-rank approximations are used.

Exercise 10.2 Assuming that obtaining an estimator for ridge regression has running-
time complexity O(nβ) for β > 1 for n observations, what is the complexity of using a
split of the data into m chunks? What is the optimal value of m?

Exercise 10.3 (�) In the setup of this section with m independent datasets, consider

an estimator f̂ (j) : X → {−1, 1} learned on the jth dataset for a binary classification

problem, for j ∈ {1, . . . ,m}, with f̂bag(x) = sign
(∑m

j=1 f̂
(j)(x)

)
the majority vote clas-

sifier. Denoting f∗(x) ∈ {−1, 1} the optimal prediction at x ∈ X, as defined in sec-

tion 2.2.3, and ε(x) = E[f̂ (j)(x)f∗(x)] (which is the same for all j), show that we have
E[1f̂bag(x) 6=f∗(x)] 6 exp

(
− m

2 (ε(x))2+
)
. If ∀x ∈ X, ε(x) > η > 0, show that the expected

excess risk is less than exp
(
− m

2 η
2
)
.

Beyond independent datasets. Having independent datasets may not be possible,
and one typically needs to artificially create such replicated datasets from a single one,
which is precisely what bagging methods will do in section 10.1.2, with a reduced variance
still, but this time with a potentially higher bias.

10.1.2 Bagging

We consider datasets D(b), obtained with random weights v
(b)
i ∈ R+, i = 1, . . . , n. For

the bootstrap,1 we consider n samples from the original n data points with replacement,

which correspond to integer weights v
(b)
i ∈ N, i = 1, . . . , n, that sum to n. Such sets of

weights are sampled independently m times. We study m = ∞ for simplicity; that is,
infinitely many replications (in practice, the infinite m behavior can be achieved with
moderate m’s). Infinitely many bootstrap replications lead to a form of stabilization,

1See https://en.wikipedia.org/wiki/Bootstrapping_(statistics) and Efron and Tibshirani
(1994) for an introduction to bootstrapping methods in statistics.

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)


10.1. AVERAGING/BAGGING 287

which is important for highly variable predictors (which usually imply a large estimation
variance).

For linear estimators (in the definition of section 6.2.1; see also section 7.6.1) with the
square loss, such as kernel ridge regression or local averaging, this leads to another linear
estimator. Therefore, this provides alternative ways of regularizing, which typically may
not provide a strong statistical gain over existing methods but provide a computational
gain, in particular when each estimator is very efficient to compute (see related examples
in section 10.2). Overall, as will be shown for 1-nearest-neighbor, bagging will reduce
variance while increasing the bias, thus leading to trade-offs that are common in regu-
larizing methods. See also the end of section 10.2 for a short description of “random
forests,” which is also partially based on bagging.

For simplicity, we will consider averaging estimators obtained by randomly selecting s
observations from the n available ones, doing this many times (infinitely many for the
analysis), and averaging the predictions.

Exercise 10.4 Show that when sampling n elements with replacement from n items, the
expected fraction of distinct items is 1− (1− 1/n)n and it tends to 1− 1/e when n tends
to infinity.

One-nearest neighbor regression. We focus on the 1-nearest neighbor estimator
where the strong effect of bagging is striking. The analysis in this subsection follows
from Biau et al. (2010). The key observation is that if we denote as (x(i)(x), y(i)(x))
the pair of observations that is the ith-nearest neighbor of x from the dataset x1, . . . , xn
(ignoring ties), then we can write the bagged estimate as

f̂(x) =
n∑

i=1

Viy(i)(x),

where the nonnegative weights Vi sum to 1 and do not depend on x. The weight Vi is the
probability that the ith-nearest neighbor of x is the 1-nearest-neighbor of x in a uniform
subsample of size s. We consider sampling without replacement and leave sampling with
replacement as an exercise (see Biau et al., 2010, for more details). We assume that s > 2.

To select the ith-nearest neighbor as the 1-nearest-neighbor in a subsample, we need
that the ith-nearest neighbor is selected but none of the closer neighbors, which leaves
s− 1 elements to choose among n− i possibilities. This shows, that if i > n− s+ 1, then

Vi = 0, while otherwise Vi =
(
n
s

)−1(n−i
s−1

)
, as the total number of subsets of size s is

(
n
s

)
,

and there are
(
n−i
s−1

)
relevant ones.

We can now use the reasoning from section 6.3.2. Since for any x, the weights given
to each observation (once they are ordered in terms of distance to x) are V1, . . . , Vn, the
variance term is equal to

∑n
i=1 V

2
i . To obtain a bound, we note that for i 6 n− s+ 1,

Vi =
s

n− s+ 1

∏s−2
j=0(n− i− j)
∏s−2
j=0(n− j)

=
s

n− s+ 1

s−2∏

j=0

(
1− i

n− j
)
6

s

n− s+ 1

s−2∏

j=0

(
1− i

n

)
,



288 CHAPTER 10. ENSEMBLE LEARNING

leading to, upper-bounding the sum by an integral,

n∑

i=1

V 2
i 6

s2

(n− s+ 1)2

n∑

i=1

(
1− i

n

)2(s−1)
6

ns2

(n− s+ 1)2

∫ 1

0

(1 − t)2(s−1)dt

6
ns2

(n− s+ 1)2
1

2s− 1
6

ns

(n− s+ 1)2
=
s

n

1

(1 + 1/n− s/n)2
.

For the bias term, we need to bound
∑n
i=1 Vi ·E

[
‖x−x(i)(x)‖2

]
, where the expectation

is with respect to the data and the test point x. We note here that by definition of Vi, and
conditioning on the data and x, this is B2 multiplied by the expectation of the distance
to the first nearest neighbor from a random sample of size s, and thus, for the ℓ∞-norm
on a subset X of Rd, from lemma 6.1, less than 4B2diam(X)2 1

s2/d
if d > 2 (which we now

assume).

Thus, the overall excess risk is less than

4B2diam(X)2
1

s2/d
+
s

n

1

(1 + 1/n− s/n)2
,

which we can balance by choosing s1+2/d ∝ n, leading to the same performance as the
k-nearest neighbor for a well-chosen k, but now with a bagged esimate.

In figure 10.1, simulations in one dimension are plotted, showing the regularizing
effects of bagging; we see that when s = n (no subsampling), we recover the 1-nearest
neighbor estimate, and when s decreases, the variance indeed decreases while the bias
increases.

10.2 Random Projections and Averaging

In section 10.1, we reweighted observations to be able to rerun the original algorithm. This
can also be done through random projections of all observations. Such random projections
can be performed in several ways: (1) for data in Rd by selecting s of the d variables;
(2) still for data in Rd, by projecting the data in a more general s-dimensional subspace;
and (3) for kernel methods, using random features such as presented in section 7.4. Such
random projections can also reduce the number of samples while keeping the dimension
fixed (this will depend if the design matrix is left- or right-multiplied by a matrix of
reduced size).

In this section, we consider random projections for ordinary least-squares (OLS), with
the same notation as in chapter 3, with y ∈ Rn the response vector and Φ ∈ Rn×d the
design matrix, in two settings:

• Sketching: Replacing minθ∈Rd ‖y−Φθ‖22 by minθ∈Rd ‖Sy−SΦθ‖22, where S ∈ Rs×n

is an i.i.d. Gaussian matrix (with independent zero mean and unit variance ele-
ments). This is an idealization of subsampling done in the previous section. Here,
we typically have n > s > d (more observations than the feature dimension), and



10.2. RANDOM PROJECTIONS AND AVERAGING 289

Figure 10.1. Subsampling estimates with m = 20 subsampled datasets, for varying sub-
sampling ratios n/s, with an estimation of the testing error. When n/s = 1, we recover
the 1-nearest neighbor classifier (which overfits), and when n/s grows, we get better fits
until underfitting kicks in. Optimal testing error is obtained for n/s = 8.

one of the benefits of sketching is to be able to store a reduced representation of
the data (Rs×d instead of Rn×d).

• Random projection: Replacing minθ∈Rd ‖y − Φθ‖22 by minη∈Rs ‖y − ΦSη‖22, where
S ∈ Rd×s is a more general sketching matrix. Here, we typically have d > n >
s (high-dimensional situation). The benefits of random projection are twofold:
reduction in computation time and regularization. This corresponds to replacing
the corresponding feature vectors ϕ(x) ∈ Rd by S⊤ϕ(x) ∈ Rs. We will consider
Gaussian matrices, but also subsampling matrices, and draw connections with kernel
methods.

In the following sections, we study these precisely for the OLS framework (it could
also be done for ridge regression). We first briefly mention a commonly used and related
approach.

Random forests. A popular algorithm called “random forests” (Breiman, 2001) mixes
both dimension reduction by projection and bagging: decision trees are learned on a
bootstrapped sample of the data, while selecting a random subset of features at every
splitting decision. This algorithm has nice properties (invariance to rescaling of the
variables and robustness in high dimension due to the random feature selection) and can
be extended in many ways. See Biau and Scornet (2016) for details.



290 CHAPTER 10. ENSEMBLE LEARNING

10.2.1 Gaussian Sketching

Following section 3.3 on OLS, we consider a design matrix Φ ∈ R
n×d with rank d (i.e.,

Φ⊤Φ ∈ Rd×d invertible), which implies n > d. We consider s > d Gaussian random
projections, with typically s 6 n, but this is not necessary in the analysis that follows.

The estimator θ̂(j) is obtained by using S(j) ∈ Rs×n, with j = 1, . . . ,m, where m
denotes the number of replications. We then consider θ̂ = 1

m

∑m
j=1 θ̂

(j). When m = 1,
this is a single sketch.

We will consider the same fixed design assumptions as in section 3.5; that is, y =
Φθ∗ + ε, where ε ∈ Rn has independent zero-mean components with variance σ2, and
θ∗ ∈ Rd. Our goal is to compute the fixed design error 1

nEε,S‖Φθ̂−Φθ∗‖22, where we take
expectations with respect to both the learning problem (in the fixed design setting, the
noise vector ε) and the added randomization (the sketching matrices S(j), j = 1, . . . ,m).

To compute this error, we first need to compute expectations and variances with
respect to the random projections, assuming that ε is fixed.

We first introduce a representation tool that will allow simple expressions of all pre-
diction vectors S(j)Φ. Since the Gaussian matrices S(j) are invariant under left and right
multiplication by an orthogonal matrix, we can assume that the singular value decom-
position (SVD) of Φ = UDV ⊤, where V ∈ Rd×d is orthogonal (i.e., V ⊤V = V V ⊤ = I),
D ∈ Rd×d is an invertible diagonal matrix, and U ∈ Rn×d has orthonormal columns
(i.e., U⊤U = I; remember than n > d), is such that U =

(
I
0

)
, and we can write

S(j) =
(
S
(j)
1 S

(j)
2

)
, with S

(j)
1 ∈ R

s×d and S
(j)
2 ∈ R

s×(n−d). We can also split y as

y =
(
y1
y2

)
for y1 ∈ R

d and y2 ∈ R
n−d.

We can write the normal equation that defines θ̂(j) ∈ Rd, for each j ∈ {1, . . . ,m} (i.e.,

(Φ⊤(S(j))⊤S(j)Φ)θ̂(j) = Φ⊤(S(j))⊤S(j)y), leading to the following closed-form estimators

θ̂(j) = (Φ⊤(S(j))⊤S(j)Φ)−1Φ⊤(S(j))⊤S(j)y.2 Using the assumptions given previously

regarding the SVD of Φ, we have S(j)Φ = S
(j)
1 DV ⊤. We can then expand the prediction

vector in Rn as

Φθ̂(j) = Φ(Φ⊤(S(j))⊤S(j)Φ)−1Φ⊤(S(j))⊤S(j)y

=

(
I

0

)
DV ⊤(V D(S

(j)
1 )⊤S(j)

1 DV ⊤)−1V D(S
(j)
1 )⊤S(j)y

=

(
I

0

)
((S

(j)
1 )⊤S(j)

1 )−1(S
(j)
1 )⊤S(j)y =

(
I

0

)
((S

(j)
1 )⊤S(j)

1 )−1(S
(j)
1 )⊤(S

(j)
1 y1+S

(j)
2 y2)

=

(
y1 + ((S

(j)
1 )⊤S(j)

1 )−1(S
(j)
1 )⊤S(j)

2 y2
0

)
.

Thus, since E[S
(j)
2 ] = 0 and S

(j)
2 is independent of S

(j)
1 , we get ES(j)

[
Φθ̂(j)

]
=

(
y1
0

)
, which

happens to be exactly the OLS estimator Φθ̂OLS = Φ(Φ⊤Φ)−1Φ⊤y =
(
I 0
0 0

)
y. Moreover,

2If s > d, then S(j)Φ has rank d almost surely, and thus θ̂(j) is uniquely defined.



10.2. RANDOM PROJECTIONS AND AVERAGING 291

we have the model y = Φθ∗ + ε and, if we split ε as ε =
(
ε1
ε2

)
, we have y =

(
I
0

)
DV ⊤θ∗ + ε,

and thus y2 = ε2. We therefore get

ES(j)

[∥∥Φθ̂(j) − ES(j)Φθ̂(j)
∥∥2
2

]
= ES(j)

[
‖((S(j)

1 )⊤S(j)
1 )−1(S

(j)
1 )⊤S(j)

2 ε2‖22
]
.

Taking the expectation with respect to ε (through E[ε2ε
⊤
2 ] = σ2I), using the trace trick,

and using expectations for the Wishart and inverse Wishart distributions,3 this leads to

Eε,S(j)

[∥∥Φθ̂(j)−ES(j)Φθ̂(j)
∥∥2

2

]
= σ2

ES(j)

[
tr
(
(S

(j)
2 )⊤S(j)

1 ((S
(j)
1 )⊤S(j)

1 )−2(S
(j)
1 )⊤S(j)

2

)]

= σ2
ES(j)

[
tr
(
S
(j)
2 (S

(j)
2 )⊤S(j)

1 ((S
(j)
1 )⊤S(j)

1 )−2(S
(j)
1 )⊤

)]

= (n−d)σ2
E
S

(j)
1

[
tr
(
((S

(j)
1 )⊤S(j)

1 )−1
)]

=
d

s−d−1
(n−d)σ2.

We can now compute the overall expected generalization error:

1

n
Eε,S(j)

[∥∥∥ 1

m

m∑

j=1

Φθ̂(j) − Φθ∗
∥∥∥
2

2

]
=

1

n
Eε

[∥∥ES(1)

[
Φθ̂(1)

]
− Φθ∗

∥∥2
2

]

+
1

nm
Eε,S(1)

[∥∥Φθ̂(1) − ES(1)Φθ̂(1)
∥∥2
]

=
1

n
Eε

[∥∥Φθ̂OLS − Φθ∗
∥∥2
2

]
+ σ2 d

nm

n− d
s− d− 1

= σ2 d

n
+ σ2 d

nm

n− d
s− d− 1

.

Thus, when m or s tends to infinity, we recover the traditional OLS behavior, while for m
and s finite, the performance degrades gracefully. Moreover, when s = n, even for m = 1,
we get essentially twice the performance of the OLS estimator. We note that to get the
same performance as OLS (up to a factor of 2), we need m = n−d

s−d−1 ∼ n
s replications.

As in section 10.1, there is no statistical gain (here, compared to OLS), but only
potentially a computational one (because some computations may be done in parallel
and of reduced storage). See, for example, Dobriban and Liu (2019) for other criteria
and sketching matrices.

Beyond Gaussian sketching. In this section, we have chosen a Gaussian sketching
matrix S. This made the analysis simple because of the properties of the Gaussian
distribution (invariance by rotation and availability of exact expectations for inverse
Wishart distributions). The analysis can be extended with more complex tools to other
random sketching matrices with more attractive computational properties, such as with
many zeros, leading to subsampling observations or dimensions. See Wang et al. (2018),
Dobriban and Liu (2019), and the references therein. For the random projections that
follow, our analysis will apply to more general sketches.

3If S ∈ Ra×b has independent standard Gaussian components, then E[(S⊤S)−1] = 1
a−b−1

I if a > b+1,

and E[SS⊤] = bI; see https://en.wikipedia.org/wiki/Inverse-Wishart_distribution.

https://en.wikipedia.org/wiki/Inverse-Wishart_distribution


292 CHAPTER 10. ENSEMBLE LEARNING

10.2.2 Random Projections

We also consider the fixed design setup, with a design matrix Φ ∈ Rn×d and a response
vector of the form y = Φθ∗ + ε. We now assume that d > n (high-dimensional setup) and
the rank of Φ is n. In this high-dimensional setup, we need some form of regularization,
which will come here from random projections.

For each j ∈ {1, . . . , n}, we consider a sketching matrix S(j) ∈ Rd×s, for s 6 n sampled
independently from a distribution to be determined (we only assume that almost surely,
its rank is equal to s). We then consider η̂(j) as a minimizer of minη∈Rs ‖y − ΦS(j)η‖22.
For simplicity, we assume that matrix ΦS(j) has rank s, which is the case almost surely
for Gaussian projections; this implies that η̂(j) is unique, but our result applies in all
situations, as we are only interested in the denoised response vector. We now consider
the average θ̂ = 1

m

∑m
j=1 S

(j)η̂(j).

We thus consider the estimator η̂(j) =
(
(S(j))⊤Φ⊤ΦS(j)

)−1
(S(j))⊤Φ⊤y ∈ Rs, ob-

tained from the normal equation (S(j))⊤Φ⊤ΦS(j)η̂(j) = (S(j))⊤Φ⊤y with the denoised
response vector

ŷ(j) = ΦS(j)η̂(j) = ΦS(j)
(
(S(j))⊤Φ⊤ΦS(j)

)−1
(S(j))⊤Φ⊤y ∈ R

n.

Denoting Π(j) = ΦS(j)
(
(S(j))⊤Φ⊤ΦS(j)

)−1
(S(j))⊤Φ⊤, it takes the form ŷ(j) = Π(j)y.

Matrix Π(j) is almost surely an orthogonal projection matrix into an s-dimensional vector
space, and its expectation is denoted as ∆ ∈ Rn×n, which satisfies tr(∆) = s. We have,
moreover, 0 4 ∆ 4 I; that is, all eigenvalues of ∆ are between 0 and 1.

We can then compute expectations and variances as follows:

ES(j)

[
ŷ(j)

]
= ES(j)

[
Π(j)y

]
= ∆y = ∆

[
Φθ∗ + ε] = ∆ε+ ∆Φθ∗

ES(j)

[
ŷ(j)

]
− Φθ∗ = ∆ε + [∆− I]Φθ∗ (10.1)

ES(j)

[∥∥ŷ(j)−ES(j)

[
ŷ(j)

]∥∥2
2

]
= ES(j)

[∥∥(Π(j) −∆)y
∥∥2

2

]
= y⊤ES(j)

[(
Π(j) −∆

)2]
y

= y⊤ES(j)

[
Π(j)−∆Π(j)−Π(j)∆+∆2

]
y since Π(j)Π(j) =Π(j),

= y⊤
(
∆−∆2

)
y, since E[Π(j) = ∆. (10.2)

Thus, the overall (fixed design) expected generalization error is equal to, using that
S(1), . . . , S(m) are i.i.d. matrices,

1

n
Eε,S

[∥∥ 1
m

∑m
j=1 ŷ

(j) − Φθ∗
∥∥2
2

]

=
1

n
Eε

[∥∥ES(1)

[
ŷ(1)

]
− Φθ∗

∥∥2
2

+
1

m
ES(1)

[∥∥ŷ(1) − ES(1)

[
ŷ(1)

]∥∥2
2

]]

by taking expectations with respect to all S(j),

=
1

n
Eε

[∥∥∆ε+ [∆− I]Φθ∗
∥∥2
2

+
1

m
y⊤

(
∆−∆2

)
y
]

using equations (10.1) and (10.2).



10.2. RANDOM PROJECTIONS AND AVERAGING 293

Using the model y = Φθ∗ + ε and the fact that E[ε] = 0 and E[εε⊤] = σ2I, we get

1

n
Eε,S

[∥∥ 1
m

∑m
j=1 ŷ

(j) − Φθ∗
∥∥2
2

]

=
σ2

n
tr(∆2) +

1

n
θ⊤∗ Φ⊤[I −∆]2Φθ∗ +

1

nm

[
σ2(tr(∆)− tr(∆2)) + θ⊤∗ Φ⊤(∆−∆2

)
Φθ∗

]

using the model y = Φθ∗ + ε and the fact that E[ε] = 0 and E[εε⊤] = σ2I,

=
σ2

n

(
1− 1

m

)
tr(∆2) +

σ2s

nm
+

1

n
θ⊤∗ Φ⊤[∆− I]2Φθ∗ +

1

nm
θ⊤∗ Φ⊤(∆−∆2

)
Φθ∗

=
σ2

n

(
1− 1

m

)
tr(∆2) +

σ2s

nm
+

1

n
θ⊤∗ Φ⊤[I −∆ +

( 1

m
− 1

)
(∆−∆2)

]
Φθ∗

6
σ2s

n
+

1

n
θ⊤∗ Φ⊤[I −∆

]
Φθ∗, since ∆2 4 ∆, (10.3)

which is the value for m = 1 (single replication). Note that the expectation (before taking

the bound) decreases in m, with a limit σ2 tr(∆2)
n + 1

nθ
⊤
∗ Φ⊤[I −∆]2Φθ∗ when m → +∞

(with improved bias and variance terms). We now follow Kabán (2014) and Thanei et al.
(2017) to bound the matrix I −∆.

Since ∆ is the expectation of a projection matrix, we already know that 0 4 ∆ 4 I.

We omit the superscript0(j) for clarity, and we consider Π = ΦS
(
S⊤Φ⊤ΦS

)−1
S⊤Φ. For

any vector z ∈ Rn, we consider

z⊤(I −∆)z = ES

[
z⊤(I −Π)z

]
= ES

[
z⊤z − z⊤ΦS

(
S⊤Φ⊤ΦS

)−1
S⊤Φ⊤z

]

= ES

[
min
u∈Rs

‖z − ΦSu‖22
]

by definition of projections,

6 ES

[
min
v∈Rd

‖z − ΦSS⊤v‖22
]

by minimizing over a smaller subspace,

6 min
v∈Rd

ES

[
‖z − ΦSS⊤v‖22

]
by properties of the expectation.

We can expand this to get

ES

[
‖z − ΦSS⊤v‖22

]
= ‖z‖22 − 2z⊤ΦES

[
SS⊤]v + v⊤ES

[
SS⊤Φ⊤ΦSS⊤]v,

leading to, after selecting the optimal v as v =
(
ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤z,

z⊤(I −∆)z 6 z⊤
(
I − ΦES

[
SS⊤](

ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤

)
z.

We then need to apply to z = Φθ∗ and get

θ⊤∗ Φ⊤[I −∆
]
Φθ∗ 6 θ⊤∗ Φ⊤

(
I − ΦES

[
SS⊤](

ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤

)
Φθ∗.

Thus, we get an overall upper bound of

σ2s

n
+

1

n
θ⊤∗ Φ⊤

(
I − ΦES

[
SS⊤](

ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤

)
Φθ∗,



294 CHAPTER 10. ENSEMBLE LEARNING

composed of expectations that can be readily computed. As shown next for special
cases, we obtain a bias-variance trade-off similar to equation (3.6) for ridge regression
in section 3.6, but now with random projections. Note that in the fixed design setting,
there is no explosion of the testing error when s = n, as opposed to the random design
setting studied in section 12.2 in the context of “double descent” (where generalization
to unseen inputs is required).

Gaussian projections. If we assume Gaussian random projections, with S ∈ Rd×s

with independent standard Gaussian components, we get, from properties of the Wishart
distribution,4

ES [SS⊤] = sI and ES

[
SS⊤Φ⊤ΦSS⊤] = s(s+ 1)Φ⊤Φ + s tr(Φ⊤Φ)I.

We then get

θ⊤∗ Φ⊤[I −∆
]
Φθ∗ 6 θ⊤∗ Φ⊤

(
I − ΦES

[
SS⊤](

ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤

)
Φθ∗

= θ⊤∗ Φ⊤
(
I − s2Φ

(
s(s+ 1)Φ⊤Φ + s tr(Φ⊤Φ)I

)−1
Φ⊤

)
Φθ∗

= θ⊤∗ Φ⊤Φθ∗ − sθ∗(Φ⊤Φ)2
(
(s+ 1)Φ⊤Φ + tr(Φ⊤Φ)I

)−1
θ∗

= θ⊤∗ Φ⊤Φ
(
Φ⊤Φ + tr(Φ⊤Φ)I

)(
(s+ 1)Φ⊤Φ + tr(Φ⊤Φ)I

)−1
θ∗

6 2 tr(Φ⊤Φ) · θ⊤∗ Φ⊤Φ
(
(s+ 1)Φ⊤Φ + tr(Φ⊤Φ)I

)−1
θ∗

using that Φ⊤Φ + tr(Φ⊤Φ)I has eigenvalues less than 2 tr(Φ⊤Φ),

6 2 tr(Φ⊤Φ)
‖θ∗‖22
s+ 1

,

since Φ⊤Φ
(
(s + 1)Φ⊤Φ + tr(Φ⊤Φ)I

)−1
has eigenvalues less than 1/(s+ 1). The overall

excess risk is then less than

σ2s

n
+

2

n
tr(Φ⊤Φ)

‖θ∗‖22
s+ 1

, (10.4)

which is exactly of the form obtained for ridge regression in equation (3.6) with the

identification s ∼ tr(Φ⊤Φ)
λ . We can consider other sketching matrices with additional

properties, such as sparsity (see exercise 10.5).

Exercise 10.5 We consider a sketching matrix S ∈ Rd×s, where each column is equal
to one of the d canonical basis vectors of Rd, selected uniformly at random and indepen-
dently. Compute E[SS⊤], as well as ES

[
SS⊤Φ⊤ΦSS⊤], as well as a bound similar to

equation (10.4).

4If W = S1S⊤
1 for S1 ∈ Rn×s with independent standard Gaussian components, then E[W ] = sI and

for an n× n diagonal matrix D, we have E[WD2W ] = s(s+ 1)D2 + s tr(D2)I.



10.2. RANDOM PROJECTIONS AND AVERAGING 295

Kernel methods. (�) The random projection idea can be extended to kernel meth-
ods discussed in chapter 7. We consider the kernel matrix K = ΦΦ⊤ ∈ Rn×n, and the
assumption y = Φθ∗ + ε with ‖θ∗‖2 bounded is turned into y = y∗ + ε with y⊤∗ K

−1y∗
bounded. This corresponds to y∗ = Kα, with a reproducing kernel Hilbert space (RKHS)
norm α⊤Kα. We then consider a random sketch Φ̂ ∈ Rn×s and an approximate ker-
nel matrix K̂. We then obtain an estimate ŷ = Φ̂(Φ̂⊤Φ̂)−1Φ̂⊤y. Matrix Π is then
Π = Φ̂(Φ̂⊤Φ̂)−1Φ̂⊤, and for the analysis, we need to compute its expectation, ∆ (this
corresponds to replacing ΦS in earlier developments starting at the beginning of sec-
tion 10.2.2 with Φ̂). We have, following the same reasoning as before, for an arbitrary
deterministic z ∈ Rn,

z⊤(I −∆)z = EΦ̂

[
z⊤(I −Π)z

]
= EΦ̂

[
z⊤z − z⊤Φ̂

(
Φ̂⊤Φ̂

)−1
Φ̂⊤z

]

= EΦ̂

[
min
u∈Rs

‖z − Φ̂u‖22
]

by definition of projections,

6 EΦ̂

[
min
v∈Rn

‖z − Φ̂Φ̂⊤v‖22
]

by minimizing over a smaller subspace,

6 min
v∈Rn

EΦ̂

[
‖z − Φ̂Φ̂⊤v‖22

]
by properties of the expectation.

We can expand this to get

EΦ̂

[
‖z − Φ̂Φ̂⊤v‖22

]
= ‖z‖22 − 2z⊤EΦ̂

[
Φ̂Φ̂⊤]v + v⊤EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤]v,

leading to, after selecting the optimal v as v =
(
EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤])−1

EΦ̂

[
Φ̂Φ̂⊤]z,

z⊤(I −∆)z 6 z⊤
(
I − EΦ̂

[
Φ̂Φ̂⊤](

EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤])−1

EΦ̂

[
Φ̂Φ̂⊤])z. (10.5)

We then need to apply equation (10.5) to z = y∗ to get

θ⊤∗ Φ⊤[I −∆
]
Φθ∗ 6 y⊤∗

(
I − EΦ̂

[
Φ̂Φ̂⊤](

EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤])−1

EΦ̂

[
Φ̂Φ̂⊤])y∗.

We can, for example, consider each column of Φ̂ to be sampled from a Gaussian distri-
bution with mean zero and covariance matrix K, for which we have

EΦ̂

[
Φ̂Φ̂⊤] = sK and EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤] = s(s+ 1)K2 + s tr(K) ·K.

Using equation (10.3), with the same derivations that led to equation (10.4), this leads

to a bound on the expected excess risk equal to σ2s
n + 2

n tr(K)
y⊤∗ K

−1y∗
s+1 , which is exactly

the bound in equation (10.4) in the kernel context. However, it is not interesting in
practice, as it requires the computation of the kernel matrix K and typically a square
root to sample from the multivariate Gaussian distribution, which has a running-time
complexity of O(n3).

In practice, many kernels come with a random feature expansion of the form k(x, x′) =
Ev

[
ϕ(x, v)ϕ(x′, v)

]
, such that |ϕ(x, v)| 6 R almost surely (as presented in section 7.4).



296 CHAPTER 10. ENSEMBLE LEARNING

We can take for each column of Φ̂ the vector (ϕ(x1, v), . . . , ϕ(xn, v))⊤ ∈ Rn for a random
independent v. Then we have E

[
Φ̂Φ̂⊤] = sK by construction, while a short calculation

(left as an exercise) shows that the second-order moment can be bounded as

EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤] 4 s(s− 1)K2 + sR2K.

This leads to the bound σ2s
n + 1

nR
2 y

⊤
∗ K

−1y∗
s−1 , which is almost the same as before, but with

an efficient practical algorithm (since we now have to solve a least-squares regression
problem in dimension s, which is more efficient than using the kernel trick if s < n).

Experiments. In figure 10.2, we consider a polynomial regression problem in dimen-
sion dX = 20, with polynomials of a maximum degree of 2, and thus a feature space
of dimension d = 1 + dX + dX(dX + 1)/2 = 231. We also compare ridge regression with
Gaussian random projections. We see better performance as m grows, consistent with our
bounds (underfitting for small s, overfitting with large s). Moreover, when the number
m of times the dataset is randomly projected goes from 10 to 100, we obtain almost the
same plot, with better performance than m = 1, highlighting the fact that m = 1 is not
optimal but taking m too large is not useful.

Johnson-Lindenstrauss lemma (�). A related classical result in Gaussian random
projections shows that n feature vectors ϕ1, . . . , ϕn ∈ Rd can be well represented in di-
mension s by Gaussian random projections, with s growing only logarithmically in n, and
independent of the underlying dimension. Lemma 10.1 shows that all pairwise distances
are preserved (a small modification would lead to the preservation of all dot products).

Lemma 10.1 (Johnson and Lindenstrauss, 1984) Given ϕ1, . . . , ϕn ∈ Rd, let S ∈
Rd×s be a random matrix with independent standard Gaussian random variables. Then,

for any ε ∈ (0, 1/2) and δ ∈ (0, 1), if s > 6
ε2 log n2

δ , with probability greater than 1 − δ,
we have

∀i, j ∈ {1, . . . , n}, (1−ε)‖ϕi − ϕj‖22 6
∥∥s−1/2S⊤ϕi − s−1/2S⊤ϕj‖22 6 (1+ε)‖ϕi − ϕj‖22.

(10.6)

Proof (�) Let ψ ∈ Rd with the ℓ2-norm equal to 1. The random variable y = ψ⊤SS⊤ψ
is the sum of s random variables ψ⊤S·jS⊤

·jψ, for S·j the jth column of S, j ∈ {1, . . . , s}.
Each of these is the square of S⊤

·jψ, which is Gaussian with mean zero and variance equal

to ‖ψ‖22 = 1. Thus, y is a chi-squared random variable.5 We can thus apply concentration
results from exercise 8.1, leading to

P
(
|y − s| > sε

)
6

( 1− ε
exp(−ε)

)s/2
+

( 1 + ε

exp(ε)

)s/2
.

We can then use the inequality log(1 + u) 6 u − u2

3 for any |u| 6 1
2 , applied to ε and

−ε, leading to the probability bound P
(
|y − s| > sε

)
6 2 exp

(
− s

2
ε2

3

)
. We then apply

5See https://en.wikipedia.org/wiki/Chi-squared_distribution.

https://en.wikipedia.org/wiki/Chi-squared_distribution


10.2. RANDOM PROJECTIONS AND AVERAGING 297

Figure 10.2. Polynomial regression in dimension 20, with polynomials of a maximum
degree of 2, with n = 100. Top left: training and testing errors for ridge regression in the
fixed design setting (the input data are fixed, and only the noise variables are resampled
for computing the test error). All other plots: training and testing errors for Gaussian
random projections, with different numbers of random projections: m = 1 (top right),
m = 10 (bottom left), and m = 100 (bottom right). All the curves are averaged over 100
replications of the noise variables and the random projections.

this bound for ψ being the n(n − 1)/2 vectors ϕi − ϕj , for i 6= j, leading to, using a
union bound, a probability that equation (10.6) is not satisfied with a probability less
than n2 exp(−sε2/6), leading to the desired result.

In our context of least-squares regression, the Johnson-Lindenstrauss lemma shows that
the kernel matrix is preserved by random projections so that predictions with the pro-
jected data should be close to predictions with the original data. The results in this
section provide a direct proof that aims to characterize directly the predictive perfor-
mance of such random projections (using the Johnson-Lindenstrauss lemma to obtain
similar bounds is not straightforward as we consider unregularized regression, where per-
turbations of matrix inverses are harder to control).



298 CHAPTER 10. ENSEMBLE LEARNING

10.3 Boosting

In sections 10.1 and 10.2, we focused on uniformly combining the outputs (e.g., plain av-
eraging) of estimators obtained by randomly reweighted versions of the original datasets.
Reweighting was performed independent of the performance of the resulting prediction
functions, and the training procedures for all predictors could be done in parallel. In this
section, we explore sequential reweightings of the training datasets that depend on the
mistakes made by the current prediction functions. While the natural parallelizability is
lost, we will see that we get additional statistical benefits.

In the early boosting procedures adapted to binary classification, the original learn-
ing algorithms (going from datasets to prediction functions with binary values) were used
directly on a reweighted version, such as Adaboost (see, e.g., Freund et al., 1999). Our
analysis will be carried out for boosting procedures, often referred to as “gradient boost-
ing,” which are adapted to real-valued outputs, as done in the rest of this book (noting
that for classification, we can use convex surrogates).

The theory of boosting is rich, with many connections, and in this section, we only
provide a consistency proof in the simplest setting. See Schapire and Freund (2012) for
more details.

10.3.1 Problem Setup

Given an input space X and n observations (xi, yi) ∈ X× R, i = 1, . . . , n, we are given a
set of predictors ϕ(·, w) : X→ R, for w ∈W, with W typically being a compact subset of
a finite-dimensional vector space.

The main assumption is that given weights α ∈ Rn, one can reasonably easily find
the function ϕ(·, w) that minimizes with respect to w ∈W:

n∑

i=1

αiϕ(xi, w); (10.7)

that is, the dot product between α and the n outputs of ϕ(·, w) on the n observations. In
this section, for simplicity, we assume that this minimization can be done exactly. This
is often referred to as the “weak learner” assumption. Many examples are available, such
as the following:

• Linear stumps for X = Rd: ϕ(x,w) = ±(w⊤
0 x+w1)+, where w = (w0, w1) ∈ Rd×R,

with sometimes the restriction that w has a single nonzero component (where the
weak learning tractability assumption is indeed verified; see exercise 10.6). This
will lead to a predictor, which is a one-hidden-layer neural network as presented
in chapter 9, but learned sequentially rather than by GD on the empirical risk. In
the context of binary classification, the weak learners are sometimes thresholded to
values in {−1, 1} by taking their signs.

Exercise 10.6 For linear stumps with only one nonzero coordinate for the slope,
show how to minimize equation (10.7) efficiently.



10.3. BOOSTING 299

• Decision trees for X = Rd: We consider here the space of piecewise constant func-
tions of x, where the pieces with constant values are obtained by recursively parti-
tioning the input space into half-spaces with normals along one of the coordinate
axes. In this situation, the set of functions is more easily characterized through the
estimation algorithm. See Chen and Guestrin (2016) for an efficient implementation
of a boosting algorithm based on decision trees (referred to as “XGBoost”).

In this section, we assume bounded features; that is, for all w ∈W, and inputs x ∈ X,
|ϕ(x,w)| 6 R. Moreover, for simplicity, we assume that the set of feature functions
{ϕ(·, w), w ∈ W} is centrally symmetric with respect to 0 (i.e., for any w ∈ W, there is
w′ ∈W such that ϕ(·, w) = −ϕ(·, w′)), which is the case for the two examples above.

Boosting procedures will make sequential calls to the weak learner oracle that out-
puts w1, . . . , wt ∈ W with t the number of iterations, and linearly combine the function
ϕ(·, w1), . . . , ϕ(·, wt). Therefore, the set of predictors that are explored are not only the
functions ϕ(·, w), but all linear combinations; that is, functions of the form

f(x) =

∫

W

ϕ(x,w)dν(w), (10.8)

for ν a signed measure on W, which we assume to have finite mass.

To avoid overfitting, some norm that will be explicitly or implicitly controlled needs
to be defined. As done in section 9.3.2 with neural networks, we will consider an L1-
norm–namely, the total variation of ν; that is:

∫

W

|dν(w)|.

Note that since we have assumed that the features are centrally symmetric, assuming
that ν is a positive measure does not change anything.6 Moreover, for a finite measure
ν =

∑t
i=1 biδwi , we have f =

∑t
i=1 biϕi(·, w) and the penalty is ‖b‖1.

For functions f : X → R that can be represented as integrals in equation (10.8),
the minimal value of

∫
W
|dν(w)| is referred to as the “variation norm” (Kurková and

Sanguineti, 2001), or the “atomic norm” (Chandrasekaran et al., 2012), of f , and the set of
functions with finite norm will be denoted as F1, with a norm γ1. Like in section 9.3.2, this

is to distinguish it from the squared norm
∫
W

∣∣dν(w)
dτ(w)

∣∣2dτ(w) for a fixed positive measure τ ,

which corresponds to a reproducing kernel Hilbert space (RKHS; see chapter 7).

The choice of this norm is motivated by the possibility of obtaining a generalization
bound for gradient boosting. For linear stumps, the approximation properties have been
characterized in section 9.3 for neural networks. For decision trees, this is more difficult as

6If f =
∫
W

ϕ(·, w)dν(w) for ν = ν+ − ν− a signed measure with ν+ and ν− positive measures
with disjoint supports, because of the central symmetry, there is a positive measure ν̃− such that∫
W

ϕ(·, w)dν−(w) = −
∫
W

ϕ(·, w)dν̃−(w), leading to the representation f(x) =
∫
W

ϕ(·, w)d(ν+ + ν̃−)(w)
with

∫
W

d(ν+ + ν̃−)(w) =
∫
W

|dν(w)|.



300 CHAPTER 10. ENSEMBLE LEARNING

the weak learner is defined as a greedy algorithm rather than through a space of functions
used with empirical risk minimization (see an analysis by Scornet et al., 2015).

Note that by definition, for any w ∈ W, γ1(ϕ(·, w)) 6 1, since we can represent this
function by the measure ν = δw. Since we will optimize over the realizations of the
features on the data, we denote by ψ(w) ∈ Rn the vector so that ψ(w)i = ϕ(xi, w). Since
|ϕ(x,w)| 6 R for all w and x, ‖ψ(w)‖2 6 R

√
n for all w. By restricting to values on

x1, . . . , xn, we obtain a penalty γ defined on Rn with a definition similar to γ1 defined
on functions from X to R, with more properties that we will need for our proofs.

Gauge function. We define the function γ : Rn → R as the infimum of
∫
W
|dν(w)| over

all positive measures such that u =
∫
W
ψ(w)dν(w). This function is usually referred to

as the “gauge” function associated with the convex hull of all ψ(w), w ∈W (Rockafellar,
1997). The gauge function γ is always convex and positively homogeneous. Since we fur-
ther assumed central symmetry of the features, the set {ψ(w), w ∈W} ⊂ R

n is centrally
symmetric, leading to γ(−u) = γ(u), for all u ∈ Rn. Given our bounded norm assump-
tion ‖ψ(w)‖2 6 R

√
n, we have, for any u such that γ(u) is finite (and with associated

measure ν), ‖u‖2 =
∥∥ ∫

W
ψ(w)dν(w)

∥∥
2
6

∫
W
‖ψ(w)‖2|dν(w)| 6 R

√
nγ(u).

The gauge function may not be a norm since it may not be finite everywhere; that
is, there may be u ∈ Rn which cannot be expressed as a linear combination of feature
vectors ψ(w), w ∈ W. We may, however, define a notion of dual gauge function, called
a “polar” gauge γ∗ : Rn → R, as γ∗(v) = supw∈W ψ(w)⊤v, which leads to a form of
Cauchy-Schwarz inequality, as u⊤v 6 γ(u)γ∗(v) (see chapter 15 in Rockafellar, 1997, for
more details).

Assumptions. Following our traditional empirical risk minimization framework pre-
sented in chapter 4, we consider a loss function ℓ : Y × R → R, for both regression
and classification. Since we will need differentiable loss functions, our developments are
restricted to the logistic loss, the exponential loss, and the square loss. We denote by
ℓi : R → R the loss for observation (xi, yi); that is, ℓi(ui) = ℓ(yi, ui). We thus consider
the logistic loss ℓi(ui) = log(1+exp(−yiui)) and the exponential loss ℓi(ui) = exp(−yiui)
when yi ∈ {−1, 1}, or the square loss ℓi(ui) = 1

2 (yi − ui)2 when yi ∈ R.

In our optimization convergence proofs in section 10.3.5, we will need that each loss ℓi
is smooth, with smoothness constant G2 (e.g., 1/4 for the logistic loss, 1 for the square
loss, and +∞ for the exponential loss). This leads to a loss function F : Rn → R, defined
as F (u) = 1

n

∑n
i=1 ℓi(ui), which is (G2/n)-smooth. For the statistical consistency proof,

we will also need that the loss functions are G1-Lipschitz continuous, which only applies
to logistic regression, and that ℓi(0) has a uniform bound G0 (for logistic regression,
G0 = log 2). However, these statistical results could also be extended to the square loss.

Finite W. While boosting methods can be applied for any compact set W (so long as
the minimization oracle is available), an interesting special case corresponds to finite sets
W = {w1, . . . , wd}. The optimization problem that we aim to solve is the minimization



10.3. BOOSTING 301

of F (u), for u in the span of all ψ(w1), . . . , ψ(wd), which we can rewrite as

min
u∈Rn

F (u) such that ∃α ∈ R
d, u =

d∑

j=1

αjψ(wj),

and thus

min
α∈Rd

F

( d∑

j=1

αjψ(wj)

)
. (10.9)

We can thus see this as an optimization problem either in u ∈ Rn or in α ∈ Rd, and, given
our assumptions regarding central symmetry, the gauge function γ(u) is upper-bounded
by the ℓ1-norm ‖α‖1 of the corresponding α. Seeing equation (10.9) as a problem in u
may be advantageous because of strong-convexity properties that could be lost for the
problem in α (in particular when n 6 d): for example, for the square loss, where F
is strongly convex, the optimization problem in u is strongly-convex, and thus exhibits
linear convergence, while the problem in α is not strongly convex (but it may still exhibit
linear convergence for other reasons; see section 12.1.1).

Note that for finite sets, we could simply use gradient descent to find an approximate
solution of equation (10.9), with a running-time complexity proportional to d at each
iteration. However, this is not feasible when the set W is infinite, which is the standard
setup of boosting algorithms, hence the need for incremental learning procedures that we
present next.

10.3.2 Incremental Learning

The simplest version of boosting-like algorithms aims to construct linear combinations of
functions of the form x 7→ ϕ(x,wt) by selecting incrementally wt ∈W. Starting from the
function g0 = 0, we thus consider the simplest update

gt = gt−1 + btϕ(·, wt), (10.10)

where the linear combination coefficients b1, . . . , bt−1 for ϕ(·, w1), . . . , ϕ(·, wt−1) are not

changed once they are computed. Given the empirical risk R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)), a

natural criterion for the choice of bt ∈ R and wt ∈W is to solve the optimization problem

min
bt∈R+, wt∈W

R̂
(
gt−1 + btϕ(·, wt)

)
. (10.11)

With our notations, and since only values at x1, . . . , xn are used for the functions gt, we
can represent them with their values on these points; that is, by a vector ut ∈ R

n such
that (ut)i = gt(xi) for all i ∈ {1, . . . , n}. The update in equation (10.10) then becomes

ut = ut−1 + btψ(wt)

and the optimization problem in equation (10.11) becomes

min
bt∈R+, wt∈W

F
(
ut−1 + btψ(wt)

)
. (10.12)



302 CHAPTER 10. ENSEMBLE LEARNING

This minimization is easily done in two situations: for the square loss, leading to
matching pursuit (Mallat and Zhang, 1993), and for the exponential loss, leading to
Adaboost (Freund and Schapire, 1996). We now present these two classical algorithms
and some elements of analysis of their convergence rates for optimizing the empirical
risk. We then consider the more widely applicable gradient boosting algorithm in sec-
tion 10.3.5, which only needs to minimize an upper bound on equation (10.12), and
analyze its expected risk in section 10.3.6, which is more involved when the goal is to
obtain a convergence rate with early-stopping.

10.3.3 Matching Pursuit

Matching pursuit corresponds to the iteration in equation (10.12) for the square loss,
with applications beyond machine learning, in particular in signal processing (Mallat and
Zhang, 1993). For simplicity, only in this section, we assume that each x 7→ ϕ(x,w), for
w ∈ W, is normalized on the data; that is

∑n
i=1 ϕ(xi, w)2 = ‖ψ(w)‖22 = n. This implies

that for all u ∈ Rn, ‖u‖2 6
√
nγ(u).

In our context of empirical risk minimization, the square loss corresponds to F (u) =
1
2n‖y − u‖22, and, because of the normalization ‖ψ(w)‖22 = n, we have

F (ut) = F (ut−1) + F ′(ut−1)⊤(ut − ut−1) +
1

2n
‖ut − ut−1‖22

= F (ut−1) + F ′(ut−1)⊤btψ(wt) +
b2t
2
.

Optimizing with respect to bt ∈ R leads to bt = −F ′(ut−1)⊤ψ(wt), leading to the optimal
value

F (ut−1)− 1

2
|F ′(ut−1)⊤ψ(wt)|2. (10.13)

Since F ′(ut−1) = 1
n (ut−1−y), the iteration can then be written as, initialized with u0 = 0,

for t > 1,
{
wt = arg max

w∈W

∣∣(ut−1 − y)⊤ψ(w)
∣∣

ut = ut−1 − 1
n

∣∣(ut−1 − y)⊤ψ(wt)
∣∣ψ(wt) = ut−1 − 1

nγ
∗(ut−1 − y)ψ(wt),

by definition of the polar gauge function γ∗.

Slow convergence. The minimizer of F (u) = 1
2n‖u−y‖22 is u∗ = y. It may or may not

be such that γ(y) is finite. In this section on matching pursuit, we assume that it is, but
we consider the general case in section 10.3.5. It turns out that the penalty γ(y) provides
an explicit control of the convergence rate of ut toward y. Indeed, it can be shown that
the matching pursuit algorithm converges with a rate proportional to γ(y); that is,

1

n
‖y − ut‖22 6 γ(y)2t−1/3.

See DeVore and Temlyakov (1996) for a detailed result (proved in exercise 10.8), sec-
tion 10.3.5 for a related result for all smooth loss functions (and with a detailed proof),



10.3. BOOSTING 303

Sil’nichenko (2004) for improved dependence on t, and Klusowski and Siegel (2023) for
lower bounds.

Fast convergence of the empirical risk. As already obtained by Mallat and Zhang
(1993), exponential rates can be obtained with the stronger assumption that γ is a norm
on Rn, and then we have by equivalence of norms:

√
nκγ(u) 6 ‖u‖2, and γ∗(v) >

κ
√
n‖v‖2, for a constant κ > 0 that has to be less than 1 since ‖u‖2 6

√
nγ(u). For finite

sets W = {w1, . . . , wd}, this corresponds to the kernel matrix
∑d
i=1 ψ(wi)ψ(wi)

⊤ ∈ R
n×n

being invertible. As shown next, this ensures constant multiplicative progress across
matching pursuit iterations. Indeed, we then have, from equation (10.13),

1

2n
‖y − ut‖22 =

1

2n
‖y − ut−1‖22 −

1

2n2
γ∗(ut−1 − y)2 6 (1− κ2) · 1

2n
‖y − ut−1‖22,

leading to exponential convergence.

Exercise 10.7 (�) Orthogonal matching pursuit is a modification of matching pursuit
which, once wt ∈W has been selected, defines ut as the minimizer of F over the span of
all previously selected feature vectors ψ(w1), . . . , ψ(wt). Show that 1

n‖y−ut‖22 6 γ(y)2t−1.

10.3.4 Adaboost

Adaboost (Freund and Schapire, 1996) corresponds to the binary classification case, where
we assume that ϕ(x,w) ∈ {−1, 1} (i.e., all weak learners are already classification func-
tions, or, equivalently, ψ(w) ∈ {−1, 1}n), and we use the exponential loss; that is,

F (u) =
1

n

n∑

i=1

exp(−yiui).

We can then implement equation (10.12) by solving

min
bt∈R,wt∈W

F (ut−1 + btψ(wt)) = min
bt∈R,wt∈W

1

n

n∑

i=1

exp(−yi(ut−1)i) exp(−btyiψ(wt)i).

Using the fact that yiψ(wt)i ∈ {−1, 1} for all i ∈ {1, . . . , n}, this is equivalent to

min
bt∈R,wt∈W

n∑

i=1

{e−bt
n

1yiψ(wt)i=1 +
ebt

n
1yiψ(wt)i=−1

}
e−yi(ut−1)i

= min
bt∈R,wt∈W

n∑

i=1

{e−bt
n

1 + yiψ(wt)i
2

+
ebt

n

1− yiψ(wt)i
2

}
e−yi(ut−1)i

= min
bt∈R,wt∈W

nF (ut−1) ·
n∑

i=1

{e−bt
n

1 + yiψ(wt)i
2

+
ebt

n

1− yiψ(wt)i
2

}
πi,

where π is a vector in the simplex, defined as πi = e−yi(ut−1)i
∑n

j=1 e
−yj (ut−1)j

= e−yi(ut−1)i

nF (ut−1)
.



304 CHAPTER 10. ENSEMBLE LEARNING

Given wt ∈ W, the optimal bt is obtained by minimizing a function of the form
e−bta− + ebta+ for some constants a+ and a− (equal to 1 ∓∑n

i=1 yiψ(wt)iπi), which is
attained as bt = 1

2 log a−
a+

, with an optimal value equal to 2
√
a−a+. Thus, the optimal bt

is equal to

bt =
1

2
log

1 +
∑n
i=1 yiψ(wt)iπi

1−
∑n
i=1 yiψ(wt)iπi

,

and the resulting objective function (that depends on wt) is equal to

F (ut−1)
[
1−

( n∑

i=1

yiψ(wt)iπi

)2]1/2
.

We can thus obtain wt by maximizing
∣∣∑n

i=1 yiψ(wt)iπi
∣∣. Since we have assumed central

symmetry of the weights, we can equivalently maximize
∑n

i=1 yiψ(wt)iπi, which corre-
sponds to finding the weak learner with minimal 0–1 classification error weighted by π.
We thus get the following iteration:





πi =
e−yi(ut−1)i

∑n
j=1 e

−yj(ut−1)j
for i ∈ {1, . . . , n}

wt ∈ arg max
w∈W

n∑

i=1

yiψ(wt)iπi

ut = ut−1 +
1

2
log

1 +
∑n

i=1 yiψ(wt)iπi
1−

∑n
i=1 yiψ(wt)iπi

ψ(wt).

After this iteration, we have F (ut) = F (ut−1)
[
1 −

(∑n
i=1 yiψ(wt)iπi

)2]1/2
. Therefore,

the empirical risk (with the exponential loss) strictly decreases if the weak learner gets
an empirical weighted 0–1 loss that is strictly less than 1/2 (corresponding to the dot
product with y being strictly positive). If the error rate is always less than a constant, an
assumption referred to as “weak learnability,” we obtain linear convergence. Note that if
we make the same assumption as for matching pursuit at the end of section 10.3.3 (i.e., γ
is a norm), then

∑n
i=1 yiψ(wt)iπi = γ∗(π ◦ y) > κ

√
n‖π ◦ y‖2 = κ

√
n‖π‖2 > κ‖π‖1 > κ,

and we have a similar exponential convergence rate.

10.3.5 Greedy Algorithm Based on Gradient Boosting

In sections 10.3.3 and 10.3.4, the incremental update was performed in closed form, which
was possible because the of the special structures of the square and exponential losses.
It turns out that exact minimization is not needed for good predictive performance.

In this section, we describe a boosting algorithm which, at each iteration, performs a
first-order Taylor expansion at the current point (which requires computing derivatives
of the loss functions) and finds the weak learner x 7→ ϕ(x,w) that reduces the most this
approximation of the risk. We thus consider the following greedy algorithm, starting
from the zero function g0 = 0, and iterating over t > 1 this procedure that makes locally
optimal progress:



10.3. BOOSTING 305

• Loss gradient computations: Compute αi = ℓ′i(gt−1(xi)) for i ∈ {1, . . . , n}.
• Weak learner: Compute wt ∈ W that minimizes

∑n
i=1 αiϕ(xi, w) with respect to

w ∈W. Equivalently, using our notations in Rn, we minimize F ′(ut−1)⊤ψ(w) with
respect to w ∈W.

• Function update: Take gt = gt−1+btϕ(·, wt) for a coefficient bt ∈ R+ that optimizes
an upper bound on the empirical risk. This corresponds to ut = ut−1 + btψ(wt).

After time t, the prediction function gt will be a linear combination of the functions
ϕ(·, wu), for u ∈ {1, . . . , t}, with only t atoms, thus leading to sparse combinations (in
other words, the estimated measure ν is a sum of Dirac measures). For the square loss,
this will be the exact matching pursuit algorithm presented in section 10.3.3. In general,
these algorithms are often referred to as “gradient boosting” procedures (Friedman, 2001).

We provide a generic convergence result for the empirical risk (which goes beyond
machine learning problems) before proving a convergence rate for the expected risk in
section 10.3.6. We focus on smooth loss functions for the optimization result, while we
require a smooth and Lipschitz-continuous loss function for the statistical analysis (such
as the logistic loss). For consistency results for the exponential loss, see Bartlett and
Traskin (2007).

With our smoothness assumption, we can define the upper bound on F (ut) as follows
(using the definition of smoothness in equation (5.10)):

F (ut) 6 F (ut−1) + F ′(ut−1)⊤(ut − ut−1) +
L

2
‖ut − ut−1‖22

6 F (ut−1) + btF
′(ut−1)⊤ψ(wt) +

L

2
b2t‖ψ(wt)‖22

using the expression ut = ut−1 + btψ(wt),

6 F (ut−1) + btF
′(ut−1)⊤ψ(wt) +

L

2
b2tC

2, (10.14)

with L the smoothness constant of F and C an uniform upper bound on all ‖ψ(w)‖2,
w ∈W. This naturally leads to the iteration, with the optimal bt = −1

LC2F
′(ut−1)⊤ψ(wt),

{
wt ∈ arg max

w∈W

F ′(ut−1)⊤ψ(w)

ut = ut−1 − 1
LC2F

′(ut−1)⊤ψ(wt) · ψ(wt),
(10.15)

which we can now analyze to obtain upper bounds on both function values and the gauge
functions of the iterates.

Proposition 10.1 (Convergence of the gradient boosting algorithm) Consider
an L-smooth convex function F : Rn → R; we assume that ψ : W → Rn is such that
‖ψ(w)‖2 6 C for all w ∈W, and the associated gauge function γ is centrally symmetric.
Consider the iteration in equation (10.15). Then for any v ∈ Rn and t > 0, we have

(
F (ut)− F (v)

)
+
6

(2LC2γ(u0 − v)2(F (u0)− F (v))4+
t

)1/5



306 CHAPTER 10. ENSEMBLE LEARNING

and

γ(ut) 6 γ(u0) +

√
t

LC2

(
2LC2[F (u0)− F (ut)]

)1/2

. (10.16)

Proof (�) We have by construction of the iteration and from equation (10.14):

F (ut)− F (v) 6 F (ut−1)− F (v)− 1

2LC2

[
F ′(ut−1)⊤ψ(wt)

]2

= F (ut−1)− F (v)− 1

2LC2
γ∗(F ′(ut−1))2, (10.17)

by definition of the polar gauge γ∗. Moreover, using the convexity of F and properties of
gauge functions, we have

F (ut)− F (v) 6 F ′(ut)
⊤(ut − v) 6 γ∗(F ′(ut))γ(ut − v). (10.18)

Finally, using the triangular inequality for γ, we obtain, from equation (10.15),

γ(ut − v) 6 γ(ut−1 − v) +
1

LC2
γ∗(F ′(ut−1)),

leading to, by recursion, γ(ut − v) 6 Γt, where

Γt = γ(u0 − v) +
1

LC2
γ∗(F ′(ut−1)) + · · ·+ 1

LC2
γ∗(F ′(u0)).

We define ∆t = (F (ut)− F (v))+. From equation (10.17), we get

∆t ≤
(
∆t−1 − 1

2LC2 γ
∗(F ′(ut−1))2

)
+
, (10.19)

and from equation (10.18), we get ∆t 6 Γtγ
∗(F ′(ut)). Thus, using the monotonicity of

the sequence (Γt),

∆tΓ
−2
t 6 ∆tΓ

−2
t−1 6

(
∆t−1Γ−2

t−1 − 1
2LC2 Γ−2

t−1γ
∗(F ′(ut−1))2

)
+

from equation (10.19),

6
(
∆t−1Γ−2

t−1 − 1
2LC2 Γ−2

t−1(∆t−1Γ−1
t−1)2

)
+

=
(
∆t−1Γ−2

t−1 − 1
2LC2 (∆t−1Γ−2

t−1)2
)
+
.

This leads to7

∆tΓ
−2
t 6

1
t

2LC2 + Γ2
0∆−1

0

6
2LC2

t
. (10.20)

Moreover, by definition of Γt and using equation (10.18) that leads to the identity ∆t−1 6

Γt−1γ
∗(F ′(ut−1)), we have

Γt = Γt−1 +
1

LC2
γ∗(F ′(ut−1)) 6 Γt−1

(
1 +

1

LC2

γ∗(F ′(ut−1)2

∆t−1

)
.

7We can use the following lemma, whose proof is left as an exercise: if (at) is a nonincreasing,
nonnegative sequence such that at 6 (at−1 − a2t−1/c)+ for all t > 1, then at 6 1

t/c+1/a0
for all t > 0.



10.3. BOOSTING 307

Thus, by taking the product of the square of equation (10.19) and the previous inequality,
we get

Γt∆
2
t 6 Γt−1∆2

t−1

(
1 +

1

LC2

γ∗(F ′(ut−1))2

∆t−1

)(
1− 1

2

1

LC2

γ∗(F ′(ut−1))2

∆t−1

)2

+
. (10.21)

Since (1−ε/2)2+(1+ε) 6 1 for all ε > 0, this leads to Γt∆
2
t 6 Γt−1∆2

t−1, and thus Γt∆
2
t 6

Γ0∆2
0. This leads to, using equation (10.20), ∆5

t = (Γt∆
2
t )

2 · ∆tΓ
−2
t 6 (Γ0∆2

0)2
2LC2

t
,

and thus to the first result. We can also bound the norm γ(ut) as follows:

γ(ut) 6 γ(u0) +
1

LC2

t∑

i=1

γ∗(F ′(ui−1)). (10.22)

Using equation (10.17) and a telescoping sum, we then get

t∑

i=1

γ∗(F ′(ui−1))2 6 2LC2
[
F (u0)− F (ut)

]
,

which, with equation (10.22) leads to equation (10.16).

We will need the flexibility of having an arbitrary v ∈ Rn in the statistical consistency
proof, but when v is chosen as the minimizer u∗ of F (then assumed to exist), we get a
more traditional optimization bound:

F (ut)− F (u∗) 6
(2LC2γ(u0 − u∗)2(F (u0)− F (u∗))4

t

)1/5

6
LC2γ(u0 − u∗)2

t1/5
,

which can be compared to the bound for regular GD applied directly to F (proposi-

tion 5.5), which is L
2t‖u0−u∗‖22 6 LC2

2t γ(u0−u∗), with a better dependence on t. However,
as mentioned earlier, it cannot be run when the set W is infinite (moreover, even when it
can be run, e.g., with finite sets, iterates of GD are not expressed as linear combinations
of a maximum of t iterates).

As done in section 10.3.6, assuming that u0 = 0 and F is nonnegative everywhere,
proposition 10.1 leads to

(
F (ut)− F (v)

)
+
6

(2LC2γ(v)2F (0)4

t

)1/5

and γ(ut) 6

√
2t√
LC2

F (0)1/2. (10.23)

This expression shows that the gauge function γ controls the convergence of the
gradient-boosting algorithm in the same way that the Euclidean norm controls the con-
vergence of GD (hence the introduction of γ1 and γ). For finite sets W, where the gauge
function is essentially an ℓ1-norm in a reparameterization, the link with an ℓ1-norm pe-
nalization can be made explicit (see, e.g., Rosset et al., 2004, for details).

Exercise 10.8 (�) Show that when function F is quadratic, then we have the following

guarantee: F (ut)−F (u∗) 6 LC2

2t1/3
γ(u0−u∗)2. Hint: replace equation (10.18) with F (ut)−

F (u∗) = 1
2F

′(ut)⊤(ut − u∗).



308 CHAPTER 10. ENSEMBLE LEARNING

10.3.6 Convergence of Expected Risk

To bound the expected risk, we need to relate empirical risk R̂ and expected risk R for
a function f with bounded penalty γ1(f). To study the generalization performance of
constraining or penalizing by the variation norm defined earlier in this chapter, we can
naturally use the general framework of Rademacher complexities presented in section 4.5.

Statistical performance through Rademacher complexities. The uniform devi-
ations for the set of predictors g : X → R such that γ1(g) 6 D on i.i.d. data x1, . . . , xn
are controlled by the quantity

E

[
sup

γ1(g)6D

1

n

n∑

i=1

εig(xi)
]

= D · E
[

sup
w∈W

1

n

n∑

i=1

εiϕ(xi, w)
]
, (10.24)

where the expectation is taken with respect to both the data x1, . . . , xn and the indepen-
dent Rademacher random variables ε1, . . . , εn ∈ {−1, 1}.

In section 9.2.3, we computed an upper bound proportional to DR/
√
n for ϕ(x,w) of

the form σ(x⊤w) (which corresponds to learning a one-hidden-layer neural network), with
an extra factor of

√
log d for an ℓ1-norm constraint on neural network weights, showing

that although set W is infinite, we can bound the uniform deviations. See another example
in exercise 10.9. In the following, we will assume that, for a universal constant ρϕ > 0,

E

[
sup

γ1(g)6D

1

n

n∑

i=1

εig(xi)
]
6
DR√
n
ρϕ. (10.25)

Exercise 10.9 Given a metric space X with distance d and finite diameter, consider
ϕ(w) = σ(d(x,w)) for w ∈ W = X. Compute an upper bound on the Rademacher
complexity in equation (10.24).

Generalization bound. We can now state our main statistical result about gradient
boosting. To obtain such bounds, an additional norm (see, e.g., Lugosi and Vayatis, 2004)
or cardinality (Barron et al., 2008) constraint is often added. In this section, we show
how early-stopping is enough to obtain rates of convergences for the gradient-boosting
procedures defined in section 10.3.5.

Proposition 10.2 Assume that the feature maps ϕ form a centrally symmetric set and
they are uniformly bounded by R and satisfy equation (10.25). Assume that the loss
function ℓ is nonnegative, G2-smooth, and G1-Lipschitz-continuous with respect to the
second variable, and that ℓ(y, 0) 6 G0 almost surely. If gt denotes the tth iterate of the
gradient boosting procedure, then, for any function f : X→ R,

E
[
R(gt)

]
6 R(f) +

[√
2t
G

1/2
0

G
1/2
2

+Rγ1(f)
]
·2G1 ·

ρϕ√
n

+
(Rγ1(f))2/5

t1/5
(2G2G

4
0)1/5. (10.26)



10.3. BOOSTING 309

Proof (�) For any function f such that γ1(f) is finite, we have

R(gt)−R(f) = R(gt)−R̂(gt) + R̂(gt)−R̂(f) + R̂(f)−R(f)

6 sup
γ1(g)6γ1(gt)

{
R(g)−R̂(g)

}
+ sup
γ1(g)6γ1(f)

{
R̂(g)−R(g)

}
+ R̂(gt)−R̂(f).

We then apply proposition 10.1 with C = R
√
n and L = G2/n, with F (0) 6 G0: equa-

tion (10.23) leads to γ1(gt) 6
√
2t√

G2R2G
1/2
0 , and R̂(gt)−R̂(f) 6

( 2G2R
2γ1(f)

2G4
0

t

)1/5
. Thus,

using properties of Rademacher averages from section 4.5, in particular, the contraction
principle applied to Lipschitz-continuous loss functions,

E
[
R(gt)− R(f)

]
6

[ √
2t√

G2R2
G

1/2
0 + γ1(f)

]
· 2G1 ·

ρϕR√
n

+
(2G2R

2γ1(f)2G4
0

t

)1/5

,

which leads to the desired result.

Up to constants that do not depend on t or n, the bound in equation (10.26) takes the

form R(f) +
√
t√
n

+ Rγ1(f)√
n
· ρϕ + (Rγ1(f))

2/5

t1/5
. We can optimize with respect to the number t

of iterations, and if we take it to be of order t ∼ n5/7(Rγ1(f))4/7, then this leads to

R(f) + Rγ1(f)√
n
· ρϕ + 2

(Rγ1(f)√
n

)2/7
.

Assuming for simplicity that ρϕ is a constant (as for neural networks), the dominant

term is R(f) + (Rγ1(f)/
√
n
)2/7

. If the Bayes predictor f∗ is such that γ1(f∗) is finite, we

immediately get an excess risk that goes to zero as (Rγ1(f∗)/
√
n)2/7. If the model that

we consider is misspecified, then, as in section 7.5.1 for kernel methods and section 9.4 for
neural networks, we could compute the resulting approximation error to obtain precise
rates depending on properties of the Bayes predictor f∗.

Comparison with explicit constraint on γ1. The bound discussed here is obtained
by early-stopping the boosting algorithms before they overfit. An alternative method is
to minimize the empirical risk subject to the constraint γ1(f) 6 D, which can be done
with the Frank-Wolfe algorithm described in section 9.3.6, with the same access to the
weak-learner oracle and an optimization error proportional to R2D2/t after t iterations.
Together with the estimation error in ρϕRD/

√
n, we can take t = RDn1/2 steps of

the Frank-Wolfe algorithms to get an excess risk less than R(f∗), plus a constant times
ρϕRD/

√
n for any f∗ such that γ1(f∗) 6 D (this assumes that γ1(f∗) is finite). With

the optimal choice of D, this leads to R(f∗) plus a constant times ρϕRγ1(f∗)/
√
n, which

is significantly better than for boosting. This, however, requires setting the constant D,
which involves running the algorithm several times to tune it by cross-validation.

Comparison with early-stopping for gradient descent. Compared to the end of
section 5.2.4, where we analyzed GD on the empirical risk with early-stopping and rates in
O(1/n1/4), our analysis of boosting also leads to consistent estimation, but with slightly
worse rates. However, it can be applied to infinite sets W when an efficient algorithm for
obtaining weak learners is available (and the analysis can probably be tightened).



310 CHAPTER 10. ENSEMBLE LEARNING

Figure 10.3. Matching pursuit on a problem with a sparse solution (top) and a nonsparse
solution (bottom). Left: plots of training and testing errors; right: plots of weights.

10.3.7 Experiments

In this section, we compare the gradient boosting algorithm on a simple linear regression
task with feature selection, noting that gradient boosting provides optimization algo-
rithms with similar properties and iteration complexities as the ones derived for explicit
ℓ1-regularization in section 8.3.1. This corresponds to F (u) = 1

2n‖y−u‖22, which is (1/n)-
smooth and strongly convex, and γ(u) = infα∈Rd ‖α‖1 with constraint that u = Φα.

We consider n = 100 observations in dimension d = 1, 000, sampled from a standard
Gaussian random vector. A predictor β∗ with k = 5 nonzero values in {−1, 1} and data
are generated from a linear model with Gaussian noise. We then compare the iterates of
the boosting algorithm in terms of prediction errors (left plots) and variations of weights
across iterations (right plots).

As in section 8.4, we also consider a rotation of the data, so this is no longer a sparse
problem (bottom plot). We observe linear convergence of the training errors, as proved
in section 10.3.3, but with overfitting at convergence, which is strong for the nonsparse
case (bottom row) and weak for the sparse case (top row).



10.4. CONCLUSION 311

10.4 Conclusion

In this chapter, we have presented a brief overview of ensemble learning procedures, which
rely on using the same base learning procedures on several datasets. Bagging procedures
consider several often parallel and independent runs on randomly modified datasets, while
boosting changes the weight on each observation sequentially. Moreover, boosting is an
instance of computational regularization, where overfitting is avoided by early-stopping
an optimization algorithm that would converge to a minimizer of the empirical risks if not
stopped. The implicit bias in boosting is that of an ℓ1-norm; in section 12.1, we analyze
the implicit bias of GD, when run to convergence, with a link to ℓ2-penalties.





Chapter 11

From Online Learning to
Bandits

Chapter Summary
• Beyond empirical and expected risk minimization with independent and identically

distributed data, more complex settings can be considered.
• Online convex optimization with gradients: Stochastic gradient descent (SGD) still

works, with the regret criterion and potentially adversarial functions, with essen-
tially the same rates. The mirror descent framework is adapted to non-Euclidean
geometries.

• Zeroth-order optimization: Randomization can be used to obtain a stochastic gra-
dient from function values with an additional dependence on dimension.

• Multiarmed bandits: In the regret minimization framework, to tackle explo-
ration/exploitation trade-offs, several algorithms can be used, from simple algo-
rithms based on alternating exploration and exploitation to more refined ones uti-
lizing the principle of “optimism in the face of uncertainty.”

In traditional stochastic optimization as presented in chapter 5 (e.g., section 5.4), we
observe a sequence of gradients of loss functions obtained from a pair of observations
(xt, yt) ∈ X× Y:

F ′
t (θt−1) =

∂ℓ(yt, fθ(xt))

∂θ

∣∣∣
θ=θt−1

,

and our performance measure was

E
[
F (θt)

]
− F∗,

where the expectation is taken with respect to the training data, and F (θ)=E[ℓ(ys, fθ(xs))]
is the expected test error, assuming that all (xs, ys) and thus the individual loss functions

313



314 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

Fs(θ) = ℓ(ys, fθ(xs)), s = 1, . . . , t, are independent and identically distributed (i.i.d.),
and F∗ is the minimal value of F ; that is, F∗ = infθ∈C F (θ), where C is the optimization
domain.

There are several important extensions corresponding to specific applications:

• Regret instead of final performance: The performance criterion can take into
account performance along iterations such as 1

t

∑t
s=1 F (θs−1), and not only at

the last iteration (i.e., F (θt)). This is important when the loss functions can be
interpreted as actual financial losses incurred while learning parameter θ (such as
in advertising or finance applications).

Performance measures such as the regret can then be considered, here equal to

1

t

t∑

s=1

F (θs−1)− inf
θ∈C

F (θ),

often after taking an expectation (since θs is random because it depends on past
data).

△! In this book, we choose to study what is often called the normalized regret
since we divide

∑t
s=1

[
F (θs) − infθ∈C F (θ)

]
by t. This is done to make

comparisons with the usual stochastic framework easier.

• Adversarial instead of stochastic: The consideration of the regret criterion
opens up the possibility for functions Fs to be different or sampled from different
distributions, with a potentially adversarial choice that depends on the past. The
regret is then 1

t

∑t
s=1 Fs(θs−1) − infθ∈C

1
t

∑t
s=1 Fs(θ), which is the comparison to

the optimal constant prediction. This allows it to be robust to adversarial functions
and adapted to potentially nonstationary environments where very few assumptions
can be made. Note here that the regret can be negative. This is presented in
section 11.1.

• Partial feedback (zeroth-order): Independent of the regret framework, the
feedback given to the algorithm may be less precise than the full gradient (e.g.,
only the function value). This is crucial in applications where function values are
expensive to obtain without access to gradients.

This is the domain of zeroth-order optimization, which can be treated through
gradient-based algorithms (section 11.2) or the framework of multiarmed bandits
(section 11.3).

In this chapter, we briefly cover three topics from this large body of literature. For
more details, see Shalev-Shwartz (2011), Bubeck and Cesa-Bianchi (2012), Hazan (2022),
Slivkins (2019), Lattimore and Szepesvári (2020), and Orabona (2019). This chapter
aims to give the main ideas involved here, explore how they differ from classical learning
theory (using the unified notations that we provide in this book), and encourage readers
to study these references. Along the way, we will describe the mirror descent framework,
which has many applications beyond online learning.



11.1. FIRST-ORDER ONLINE CONVEX OPTIMIZATION 315

11.1 First-Order Online Convex Optimization

In this section, we consider a sequence of arbitrary deterministic real-valued convex func-
tions Fs : Rd → R, s > 1, and a compact convex set C. The goal of online convex
optimization is, starting from a certain θ0 ∈ C, to obtain a sequence (θs)s>1 so the regret
at time t, defined as

1

t

t∑

s=1

Fs(θs−1)− inf
θ∈C

1

t

t∑

s=1

Fs(θ), (11.1)

is as small as possible.

We assume that at time s, we can access a subgradient of Fs at any point θs−1 ∈ C

that depends on past information. We also consider the possibility that we only observe a
random, unbiased version gs; that is, if Fs denotes the information up to (and including)
time s,

E
[
gs|Fs−1

]
= F ′

s(θs−1). (11.2)

Given the added randomness, we consider the expected regret as a criterion.

Oblivious versus adaptive adversaries. Online learning is often cast in a game-
theoretic framework, where the parameter θ that we try to estimate is the “player,” while
the “adversary” provides potentially hard functions to minimize (data in the machine
learning context). Two types of adversaries are typically considered:

• Oblivious adversary: For each t > 0, function Ft is generated beforehand, without
adaptation to the choice of θs for s < t, with the noise at time t that can depend on
past information, but so that the observed gradient is an unbiased estimate of Ft
at the (random) parameter θt−1.

• Adaptive adversary: For each t > 0, function Ft may depend on θ1, . . . , θt−1, and
more generally, on all the information up to time t− 1.

In this section, for simplicity, we focus primarily on oblivious adversaries but briefly show
how to extend our results to adaptive adversaries.

Regularity assumptions. For simplicity, beyond convexity, we assume that almost
surely, ‖gs‖22 6 B2 (which in the context of machine learning corresponds to Lipschitz-
continuous loss functions, which include the logistic loss, the hinge loss, and the square
loss since we have assumed that we optimize on a bounded set).1 In this section, we only
present the nonsmooth case. The smooth case will be proposed as exercises but leads to
similar results compared to the regular stochastic case.

Applications. The online convex optimization framework applies beyond the indepen-
dent and identically distributed (i.i.d.) framework that has been the main focus of this
book. In the machine learning context, Ft(θ) is of the form Ft(θ) = ℓ(yt, fθ(xt)), for a

1The square loss is not Lipschitz-continuous on an unbounded domain, but it is once it has been
constrained to a bounded domain.



316 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

pair or random observations (xt, yt) ∈ X× Y, a loss function ℓ, and a prediction function
fθ : X → R. The distribution of the pair (xt, yt) may thus depend on past observations,
without statistical independence. This is thus adapted to a nonstationary environment,
where the data distribution varies over time, either stochastically or even adversarially
(based on earlier predictions). As opposed to the rest of this book, where the performance
of our estimates θt was measured according to the data distribution that generated the
i.i.d. data, we consider here the regret framework, which compares the incurred losses
to the ones obtained from a constant predictor (it is also possible to consider regrets
computed by comparing to potentially slowly varying estimates, but this is out of scope
of this chapter).

11.1.1 Convex Case

We consider the projected SGD recursion:

θs = ΠC(θs−1 − γsgs), (11.3)

for a certain positive step size γs (which we assume to be deterministic for simplicity),
where ΠC is the orthogonal projection onto set C. Proposition 11.1 provides a bound on
the expected regret.

Proposition 11.1 (Online convex optimization–convex functions) Consider a se-
quence of deterministic convex functions (Ft)t>1, and gradients (gt)t>0 satisfying equa-
tion (11.2) and ‖gt‖22 6 B2 for each t > 1. For the SGD recursion in equation (11.3)

with step size sequence γt = diam(C)

B
√
t

, we have:

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− inf
θ∈C

1

t

t∑

s=1

Fs(θ) 6
3Bdiam(C)

2
√
t

. (11.4)

Proof The proof follows the same steps as the one of proposition 5.7 with key differences:
(1) the functions (Ft)t>1 are not all equal, and (2) we compare the objective functions to
their values for any θ ∈ C (as opposed to a fixed θ = η∗ being the global optimum of the
unique function F ).

We thus have, for any θ ∈ C,

‖θs − θ‖22 6 ‖θs−1−θ‖22−2γsg
⊤
s (θs−1−θ)+γ2sB

2 by contractivity of projections,

E
[
‖θs−θ‖22

∣∣Fs−1

]
6 ‖θs−1−θ‖22 − 2γsF

′
s(θs−1)⊤(θs−1 − θ) + γ2sB

2,

using the unbiasedness of the gradient,

6 ‖θs−1−θ‖22 − 2γs
[
Fs(θs−1)− Fs(θ)

]
+ γ2sB

2, using convexity.

Taking full expectations and isolating Fs(θs−1)− Fs(θ), we get

E
[
Fs(θs−1)− Fs(θ)

]
6

1

2γs

(
E
[
‖θs−1 − θ‖22

]
− E

[
‖θs − θ‖22

])
+
γs
2
B2.



11.1. FIRST-ORDER ONLINE CONVEX OPTIMIZATION 317

We can then sum between s = 1 to s = t to obtain

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− 1

t

t∑

s=1

Fs(θ) 6
1

t

t∑

s=1

1

2γs

(
E
[
‖θs−1−θ‖22

]
−E

[
‖θs−θ‖22

])
+

1

t

t∑

s=1

γs
2
B2.

At this point, the proof technique is exactly the same as the one of proposition 5.7, with
only the appearances of functions Fs that depend on s.

In chapter 5 (i.e., the proof of proposition 5.7), we considered nonuniform averaging,
which is not adapted to the online setting (because the regret is based on a uniform
average). We could also use a constant step size that depends on the horizon t (which
then needs to be known in advance). By using Abel’s summation formula (discrete
integration by part), we can use a time-dependent step-size sequence (γs), as, using the
notation δs = E

[
‖θs − θ‖22

]
and for decreasing step sizes,

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− 1

t

t∑

s=1

Fs(θ) 6
1

t

t∑

s=1

1

2γs

(
δs−1−δs

)
+

1

t

t∑

s=1

γs
2
B2

from the last equation,

=
1

t

t−1∑

s=1

δs
( 1

2γs+1
− 1

2γs

)
+

δ0
2tγ1

− δt
2tγt

+
1

t

t∑

s=1

γs
2
B2

using Abel’s summation formula,

6
1

t

t−1∑

s=1

diam(C)2
( 1

2γs+1
− 1

2γs

)
+

diam(C)2

2tγ1
+

1

t

t∑

s=1

γs
2
B2

using that δs 6 diam(C)2 for all s,

=
diam(C)2

2tγt
+

1

t

t∑

s=1

γs
2
B2.

By choosing γs = diam(C)
B
√
s

, we get using the same inequalities as for the proof of proposi-

tion 5.7,

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− 1

t

t∑

s=1

Fs(θ) 6
3Bdiam(C)

2
√
t

, (11.5)

leading to equation (11.4) after optimizing over θ ∈ C.

We show in section 11.1.4 that the rate in equation (11.4) is, up to constants, the best
possible over all Lipschitz-continuous functions over a compact set. Moreover, the bound
on the expected regret in equation (11.4) is essentially the same as for stochastic op-
timization (discussed in section 5.4). This is no surprise, as the proof ended up being
almost the same. In fact, one can get proofs for the regular stochastic case (functions Ft
all equal) from online learning bounds, with an “online-to-batch” conversion that we now
present.



318 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

Online-to-batch conversion. All results on the expected regret for online convex
optimization provide upper bounds on 1

t

∑t
s=1 E

[
Fs(θs−1)

]
− infθ∈C

1
t

∑t
s=1 Fs(θ). If all

functions Ft, t > 1, are equal to a convex function F : Rd → R. We can use Jensen’s
inequality to get

E

[
F
(1

t

t∑

s=1

θs−1

)]
− inf
θ∈C

F (θ) 6
1

t

t∑

s=1

E
[
F (θs−1)

]
− inf
θ∈C

F (θ).

Therefore, online learning bounds lead to a bound for the averaged iterate of SGD with
the classical sampling assumptions from section 5.4 (either empirical risk minimization
when sampling data with replacement from a finite pool, or expected risk minimization
for a single pass over the data).

Adaptive adversaries. In the proof of proposition 11.1, we considered only oblivious
adversaries by assuming that the functions Ft were deterministic. For adaptive adver-
saries where Ft may depend on information up to time t − 1, we need to replace in
equation (11.5) Fs(θ) by E[Fs(θ)], and the final result in equation (11.4) becomes

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− inf
θ∈C

1

t

t∑

s=1

E
[
Fs(θ)

]
6

3Bdiam(C)

2
√
t

,

which is a bound on a quantity called the “pseudo-regret” and that is only a lower bound
on the expected regret E

[
1
t

∑t
s=1 Fs(θs−1) − infθ∈C

1
t

∑t
s=1 Fs(θ)

]
. Note that (1) the

extension to adaptive adversaries will hold in sections 11.1.2 and 11.1.3, and (2) when
gradients are non-noisy, then there is no need for expectations (and thus proposition 11.1
applies to adaptive adversaries).

Exercise 11.1 (�) In the unconstrained online optimization with smooth convex func-
tions (i.e., assuming that each Ft is L-smooth and C = Rd), provide a regret bound for
online gradient descent.

11.1.2 Strongly Convex Case (�)

Assuming strong convexity (e.g., by adding µ
2 ‖θ‖22 to the objective function), we will get

a rate proportional to B2 log(t)/(µt), as proposition 11.2 shows.

Proposition 11.2 (Online convex optimization–strongly convex functions) .
Consider a sequence of deterministic µ-strongly-convex functions (Ft)t>1 on a compact
convex set C, and gradients (gt)t>0 satisfying equation (11.2) and ‖gt‖22 6 B2 for each
t > 1. For the SGD recursion in equation (11.3) with step size sequence γt = 1

µt , we
have:

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− inf
θ∈C

1

t

t∑

s=1

Fs(θ) 6
1

2µt
(1 + log t). (11.6)

Proof We can modify the proof of proposition 11.1 with the step size γs = 1/(µs), in
the same way as the proof of proposition 5.8 modified the one of proposition 5.7, to get



11.1. FIRST-ORDER ONLINE CONVEX OPTIMIZATION 319

(with modifications in red)

‖θs − θ‖22 6 ‖θs−1 − θ‖22 − 2γsg
⊤
s (θs−1 − θ) + γ2sB

2

E
[
‖θs − θ‖22

∣∣Fs−1

)
6 ‖θs−1 − θ‖22 − 2γsF

′
s(θs−1)⊤(θs−1 − θ) + γ2sB

2

6 ‖θs−1 − θ‖22 − 2γs
[
Fs(θs−1)− Fs(θ)+

µ

2
‖θs−1 − θ‖22

]
+ γ2sB

2.

Taking full expectations and isolating function values, we get:

E
[
Fs(θs−1)− Fs(θ)

]
6

( 1

2γs
−µ

2

)
E
[
‖θs−1 − θ‖22

]
− 1

2γs
E
[
‖θs − θ‖22

])
+
γs
2
B2.

We can then use the specific form of step size to get

E
[
Fs(θs−1)− Fs(θ)

]
6
µ

2
(s− 1)E

[
‖θs−1 − θ‖22

]
− µ

2
sE

[
‖θs − θ‖22

]
+

1

2µs
B2.

Then, summing between s = 1 to s = t, we obtain, with a telescoping sum,

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− 1

t

t∑

s=1

Fs(θ) 6
1

t

t∑

s=1

1

2µs
B2 6

1

2µt
(1 + log t),

using the classical log(t) upper bound on the harmonic series, thus leading to equa-
tion (11.6).

After online-to-batch conversion, the bound in equation (11.6) exactly leads to proposi-
tion 5.8 for the uniformly averaged iterate. In section 5.4, exercise 5.32 showed a bound
without the logarithmic term when using the step size γt = 2

(t+1)µ (which is essentially

twice larger than the one used to obtain the logarithmic term), but for a different av-
eraging scheme with weights proportional to s (and thus not adapted to online learning
that focuses on uniform averaging). For online learning, it turns out that the logarithmic
term is unavoidable (Hazan and Kale, 2014).

11.1.3 Online Mirror Descent (�)

In this section, we extend the online SGD recursion analysis from section 11.1.1 to the
online mirror descent framework, which will apply as well to the regular stochastic case
where all functions are equal (it is then referred to as stochastic mirror descent).

Mirror map. We assume that we are given a “mirror map” Φ : CΦ → R, which is
differentiable and µ-strongly convex (on the set C ⊂ CΦ) with respect to a norm ‖ · ‖;
that is, for all η, θ in the relative interior2 of C:

Φ(η) > Φ(θ) + Φ′(θ)⊤(η − θ) +
µ

2
‖η − θ‖2.

We also assume that the gradient Φ′ is a bijection from CΦ to R
d. Classical examples are

the following:

2See https://en.wikipedia.org/wiki/Relative_interior for a precise definition of relative interior.

https://en.wikipedia.org/wiki/Relative_interior


320 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

• Squared Euclidean norm: Φ(θ) = 1
2‖θ‖22 with full domain, and norm ‖ · ‖ = ‖ · ‖2,

with µ = 1.

• Entropy: Φ(θ) =
∑d
i=1 θi log θi with domain CΦ = (R∗

+)d, and norm ‖ · ‖ = ‖ · ‖1,

with µ = 1 when C is the simplex {θ ∈ (R∗
+)d,

∑d
i=1 θi = 1} (a result which is

equivalent to Pinsker’s inequality3).

• Squared ℓp-norms: Φ(θ) = 1
2‖θ‖2p with full domain, for p ∈ (1, 2], and norm ‖ · ‖ =

‖ · ‖p, with µ = p− 1 (see the proof of strong convexity by Ball et al., 2002).

See also exercise 13.4 in chapter 13 for an example of a mirror map for matrices.

Online mirror descent. We consider the same setup as the beginning of section 11.1.1
(i.e., we have convex Lipschitz-continuous functions Fs, for s > 1), and we access an
unbiased subgradient gs; that is, if Fs denotes the information up to (and including)
time s,

E
[
gs|Fs−1

]
= F ′

s(θs−1).

The online mirror descent iteration is defined by

θt = arg min
θ∈C

g⊤t (θ − θt−1) +
1

γ
DΦ(θ, θt−1), (11.7)

where C is a compact convex set, DΦ(θ, η) = Φ(θ)−Φ(η)−Φ′(η)⊤(θ− η) is the Bregman
divergence associated with the mirror map Φ, and γ is a step size. If C = CΦ, then the
update is simply defined by Φ′(θt) = Φ′(θt−1)− γgt.
Proposition 11.3 (Online mirror descent) Given the mirror descent recursion in equa-
tion (11.7), assume that each stochastic gradient has bounded expected squared norm
E[‖gs‖2∗|Fs−1] 6 B, for all s > 1. Then, for every θ ∈ C, we have

1

t

t∑

s=1

E
[
Fs(θs−1)− Fs(θ)

]
6

1

γt
DΦ(θ, θ0) +

B2γ

2µ
.

Proof This proof follows the same structure as for online SGD in section 11.1.1. From
the optimality conditions of the update in equation (11.7), we have (θ−θt)⊤

(
γgt+Φ′(θt)−

Φ′(θt−1)) > 0 for all θ ∈ C. Given θ ∈ C, we have

DΦ(θ, θt)−DΦ(θ, θt−1)

= Φ(θt−1) + Φ′(θt−1)⊤(θ − θt−1)− Φ(θt)− Φ′(θt)
⊤(θ − θt)

= Φ(θt−1)− Φ(θt) + Φ′(θt−1)⊤(θt − θt−1) + (Φ′(θt−1)− Φ′(θt))
⊤(θ − θt)

6 Φ(θt−1)− Φ(θt) + Φ′(θt−1)⊤(θt − θt−1) + γg⊤t (θ − θt) using optimality conditions,

= −DΦ(θt, θt−1)− γg⊤t (θt−1 − θ)− γg⊤t (θt − θt−1) by rearranging terms,

6 −µ
2
‖θt − θt−1‖2 − γg⊤t (θt−1 − θ) + γ‖gt‖∗ ·‖θt − θt−1‖ 6

‖gt‖2∗γ2
2µ

− γg⊤t (θt−1 − θ),

3See https://en.wikipedia.org/wiki/Pinsker’s_inequality.

https://en.wikipedia.org/wiki/Pinsker's_inequality


11.1. FIRST-ORDER ONLINE CONVEX OPTIMIZATION 321

using the strong convexity of Φ and the bound on gradients (as well as the identity
a⊤b 6 ‖a‖ · ‖b‖∗). By taking conditional expectations, we get

E
[
DΦ(θ, θt)−DΦ(θ, θt−1)

∣∣Ft−1

]
6
B2γ2

2µ
− γF ′

t(θt−1)⊤(θt−1 − θ). (11.8)

This leads to the desired result by using a telescoping sum and the convexity property
Ft(θt−1)− Ft(θ) 6 F ′

t (θt−1)⊤(θt−1 − θ).
We can make the following observations:

• We can optimize for the step size when the optimization horizon t is known. Indeed,
for D2 = 2 supθ,θ′∈CDΦ(θ, θ′) and the choice γ = D

√
µ/(B

√
t), this leads to the

regret bound DB/
√
µt. Alternatively, decaying step sizes can be used as in regular

SGD (which corresponds precisely to the feature map Φ = 1
2‖ · ‖22).

• With online-to-batch conversion, we also get the same bound when all Ft’s are equal
for the averaged iterate, leading to stochastic mirror descent.

• A classical application is for the simplex C = {θ ∈ R
d
+,

∑d
j=1 θj = 1} and the

entropy feature map. The update becomes θt ∝ θt−1 ◦ exp(−γgt) (where ◦ denotes
the componentwise product), with then a normalization step to sum to 1, which is
a multiplicative update, and the regret bound equals B

√
2 log(d)/

√
t. This regret

bound would be of order
√
d (instead of

√
log d) if the Euclidean feature map was

used.

• Online mirror descent is similar to the “follow-the-regularized-leader” algorithm,
which is an online version of “dual averaging” optimization algorithm; see Xiao
(2010), chapter 7 in Orabona (2019), and references therein.

Exercise 11.2 (Stochastic mirror descent for ℓ1-regularization) In the context of
proposition 11.3, consider equal functions Ft = F and assume that E[‖gs‖2∞|Fs−1] 6 B2

for all s > 1, and that θ0 = 0. Show that using mirror descent with the mirror map
Φ(θ) = 1

2‖θ‖2p for p ∈ (1, 2], we get, for the average iterate θ̄t = 1
t

∑t−1
s=1 θs, the bound

E
[
F (θ̄t)

]
6 F (θ) + 1

2γt‖θ‖21 + B2d2−2/pγ
2(p−1) . For d > 2, show that with p = 1 + 1

log d , the last

term is less than 2B2γ log d, and, if θ∗ is the minimizer of F , with an appropriate choice

of γ, E
[
F (θ̄t)

]
− F (θ∗) 6 2B‖θ∗‖1

√
log d√

t
.

11.1.4 Lower Bounds (��)

To prove a lower bound in the noiseless case, following Abernethy et al. (2008), we consider

the set C = {θ ∈ Rd, ‖θ‖∞ 6 1} and the linear (hence convex) functions F
(ε)
s : Rd → R

defined as F
(ε)
s (θ) = ε⊤s θ, for εs ∈ {−1, 1}d for all s ∈ {1, . . . , t}; we denote as ε the

concatenation of all εs for s ∈ {1, . . . , t}. The gradient vectors gs are then simply equal
to εs. We here have deterministic gradients, with constants B =

√
d and diam(C) = 2

√
d.



322 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

To obtain a lower bound of performance, it suffices to show that for any sequence (θs),

sup
ε∈E

{
1

t

t∑

s=1

F (ε)
s (θs−1)− inf

θ∈C

1

t

t∑

s=1

F (ε)
s (θ)

}

is lower-bounded for E a well-chosen set. As already used in proving lower bounds in
section 3.7 and as done in chapter 15, this is lower-bounded by the expectation for any
distribution on E, which we take to be all independent Rademacher random variables
(note that the algorithm is deterministic, with no noise in the gradients, but the problem
itself is random).

The regret of any algorithm is 1
t

∑t
s=1 ε

⊤
s θs−1, which has zero expectation because θs−1

does not use the information about εs. Moreover, using that the ℓ1-norm is dual to the
ℓ∞-norm,

E

[
inf
θ∈C

1

t

t∑

s=1

ε⊤s θ

]
= E

[
−
∥∥∥1

t

t∑

s=1

εs

∥∥∥
1

]
= −dE

[∣∣∣1
t

t∑

s=1

(εs)1

∣∣∣
]
.

Therefore, from equation (11.10) in lemma 11.1 with p = 1, η = ((εs)1)s∈{1,...,t}, and

x = (1, . . . , 1) ∈ Rt, the regret is greater than E
[
d
∣∣ 1
t

∑t
s=1(εs)1

∣∣] > d/(144
√
t), which is

equal to a constant times Bdiam(C)/
√
t, a lower bound that matches the upper bound

from SGD from equation (11.4), up to a constant factor.

Lemma 11.1 (Khintchine’s inequality) Let η ∈ {−1, 1}t be a vector of independent
Rademacher random variables (with equal probabilities for −1 and +1) and x ∈ Rt. Let
p ∈ [1,∞). Then (

E
[
|x⊤η|p

])1/p
6 3
√
p · ‖x‖2, (11.9)

and (
E
[
|x⊤η|p

])1/p
>

{
1

144‖x‖2 if p ∈ [1, 2],
‖x‖2 if p > 2.

(11.10)

Proof (�) Without loss of generality, we assume ‖x‖2 = 1. We have, for s = x⊤η, and
p > 0, using the change of variable u = λp,

E[|s|p] =

∫ +∞

0

uP(|s|p > u)du = p

∫ +∞

0

λp−1
P(|s| > λ)dλ.

We then compute directly, using the independence of η1, . . . , ηt,

E[ets] =

d∏

i=1

(1

2
etxi +

1

2
e−txi

)
=

d∏

i=1

cosh(txi) 6 exp(t2‖x‖22/2) = exp(t2/2),

using coshα 6 exp(α2/2) for any α ∈ R. Thus, for λ > 0,

P(|s| > λ) = 2P(s > λ) = 2 inf
t>0

P(ets > etλ) 6 2 inf
t>0

e−λtE[ets] using Markov’s inequality,

6 2 inf
t>0

e−λt exp(t2/2) = 2 exp(−λ2/2), with t = λ.



11.2. ZEROTH-ORDER CONVEX OPTIMIZATION 323

Thus, through the change of variable u = λ2/2,

E[|s|p] 6 2p

∫ +∞

0

λp−1 exp(−λ2/2)dλ = 2p/2p

∫ +∞

0

up/2−1e−udu = p2p/2Γ(p/2),

where Γ is the Gamma function.4 Through the Stirling formula Γ(p/2)1/p ∼
√
p/(2e);

thus we have
(
E
[
|x⊤η|p

])1/p
6 Bp with Bp ∼

√
p/e; one can then check the bound

Bp 6 3
√
p for p > 1, leading to equation (11.9).

Moreover, we have, by independence and zero means of the components for η, E[|x⊤η|2] =∑t
i=1 x

2
iE[η2i ] = ‖x‖22 = 1, and, by the Cauchy-Schwarz inequality, for p ∈ [1, 2]:

1 = E[|x⊤η|2] = E[|x⊤η|p/2|x⊤η|2−p/2] 6
(
E[|x⊤η|p]

)1/2(
E[|x⊤η|4−p]

)1/2

6
(
E[|x⊤η|p]

)1/2
B

2−p/2
4−p ,

leading to, for p ∈ [1, 2],

(
E[|x⊤η|p]

)1/p
> B

1−4/p
4−p > (3

√
4− p)1−4/p > (3

√
3)1−4/p > (3

√
3)−3 > 1/144.

Moreover, for p > 2, we have by Jensen’s inequality (which applies since u 7→ up is then

convex on R+) ‖x‖2 6
(
E
[
|x⊤η|p

])1/p
proving equation (11.10) for p > 2.

The optimal constant in for the inequality
(
E
[
|x⊤η|p

])1/p
6 Bp‖x‖2 is Bp = 1 for p ∈

(0, 2] and Bp =
√

2(Γ(p/2 + 1/2)/
√
π)1/p if p > 2, while the optimal constant for the

inequality
(
E
[
|x⊤η|p

])1/p
> Ap‖x‖2 is Ap = 1 if p > 2 and Ap = 21/2−1/p if p < 1.847.5

Exercise 11.3 (�) What would upper and lower bounds be if the regret criterion were
replaced by E

[∑t
s=1 αsFs(θs−1)

]
− infθ∈C

1
t

∑t
s=1 αsFs(θ) for an arbitrary sequence (αs)

of positive numbers?

11.2 Zeroth-Order Convex Optimization

In this section, we consider the task of unconstrained minimization of a convex function F
given only access to function values, which is typically referred to as zeroth-order opti-
mization (since the function value is the zeroth-order derivative of F , while the gradient is
the vector of first-order derivatives). As presented in section 11.2.3, extensions to online
learning naturally follow.

If the function values are accessible with no noise and the function is smooth, then
one can get a gradient by finite differences by defining the following estimate:

F̂ ′(θ) =

d∑

i=1

1

δ

[
F (θ + δei)− F (θ)

]
ei ∈ R

d, (11.11)

4See https://en.wikipedia.org/wiki/Gamma_function.
5See more details in https://en.wikipedia.org/wiki/Khintchine_inequality.

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Khintchine_inequality


324 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

where (ei)i∈{1,...,d} is the canonical orthonormal basis of Rd, with arbitrary precision
when δ tends to zero. Indeed, using the smoothness inequality from equation (5.10),

‖F̂ ′(θ) − F ′(θ)‖22 =
1

δ2

d∑

i=1

[
F (θ + δei)− F (θ)− F ′(θ)⊤δei

]2
6

d

δ2
(
Lδ2/2)2 =

dL2δ2

4
.

Therefore, assuming for simplicity that algorithms have infinite numerical precision,
at the expense of d+ 1 noiseless function evaluations (one at θ and one at each θ + δei,
for i ∈ {1, . . . , d}), we can compute the exact gradient and use gradient descent (GD).
Note also that for many functions, the gradient can be computed easily with automatic
differentiation techniques (see, e.g., Baydin et al., 2018, and references therein). The
problem is more interesting with noisy evaluations.

In this section, we first consider for simplicity the case where f is convex and smooth
(i.e., essentially with bounded second-order derivatives) but only accessible with a stochas-
tic first-order oracle (unbiased, with variance σ2), for which, in equation (11.11), the noise
in the function values will explode when δ goes to zero.

That is, we consider the iteration

θt = θt−1 − γ
[1

δ

(
F (θt−1 + δzt) + ζt − F (θt−1)− ζ′t

)
zt

]
,

where ζt and ζ′t are zero-mean random variables with variance σ2, corresponding to the
additive noise on the two function evaluations, and zt is sampled from a distribution with
mean E[zt] = 0 and covariance matrix E[ztz

⊤
t ] = I. By writing εt = ζt − ζ′t, we get

θt = θt−1 − γ
[1

δ

(
F (θt−1 + δzt)− F (θt−1) + εt

)
zt

]
, (11.12)

where εt corresponds to the noise with the two function evaluations at θt−1 and θt−1+δzt,
thus of variance 2σ2.

There are two natural candidates for the distribution of z: (1) z, a signed canonical
basis vector selected uniformly at random (i.e., ±

√
dei, with i selected uniformly at

random in {1, . . . , d}, and a factor
√
d to obtain an identity covariance matrix), which

corresponds to a single coordinate change as in equation (11.11); or (2) z, a standard
Gaussian vector (with mean zero and identity covariance matrix). We consider the second
option here, as this will lead to an interesting property relating the stochastic gradient
estimate to the gradient of a modified function.

Note that if F is defined as an expectation F (θ) = Eξ

[
f(θ, ξ)

]
, the stochasticity at

time t comes from a sample ξt. We can then compute the function values f(θ, ξt) at two
different points with the same ξt, and we can get an improved bound (see the end of
section 11.2.1).

The key to analyzing the iteration in equation (11.12) is to study the gradient estimate
g = 1

δ

(
F (θ + δz)− F (θ)

)
z for a certain vector θ and for a standard Gaussian vectorz z.



11.2. ZEROTH-ORDER CONVEX OPTIMIZATION 325

For δ being small, a simple Taylor expansion around θ leads to

g =
1

δ

(
F (θ + δz)− F (θ)

)
z =

1

δ

(
δz⊤F ′(θ) +O(δ2)

)
z = zz⊤F ′(θ) +O(δ).

Thus, by taking an expectation with respect to z, we get E[g] = F ′(θ) + O(δ); that is,
we have an almost unbiased gradient (for δ being small), and we can thus expect to use
stochastic gradient techniques. It turns out that the analysis will be made even simpler
through integration by parts and the property of the Gaussian distribution.

In terms of variance linked to noisy evaluations, the term 1
δ εtzt has zero mean, but

its squared norm has expectation E
[∥∥ 1

δ εtzt
∥∥2

2

]
= 1

δ2 2σ2d. Thus, it explodes when δ goes
to zero, thus leading to some trade-offs that we now look at.

11.2.1 Smooth Stochastic Gradient Descent

For simplicity, we consider an L-smooth function F defined on Rd (see section 11.2.2 for
the nonsmooth version). An important tool will be to define the function Fδ : Rd → R as

Fδ(θ) = Ez∼N(0,I)[F (θ + δz)], (11.13)

which is the expectation of F taken at a point distributed as a Gaussian with mean θ and
covariance matrix δ2I. This function is useful because it turns out that the expectation
of the gradient estimate in equation (11.12) is exactly the gradient of Fδ as shown in
lemma 11.2.

Lemma 11.2 Assume F is a smooth function. For θ ∈ Rd and δ > 0, we have:

Ez∼N(0,I)

[1

δ

(
F (θ + δz)− F (θ)

)
z
]

= Ez∼N(0,I)

[1

δ
F (θ + δz)z

]
= F ′

δ(θ).

Proof The first equality is a consequence of z having zero mean. For the second equality,
we use the expression of the multivariate standard Gaussian density to get

Fδ(θ) =
1

(2π)d/2

∫

Rd

F (θ + δη) exp
(
− 1

2
‖η‖22

)
dη.

Then, assuming for simplicity that we can differentiate through the expectation, we get,
by integration by parts,

F ′
δ(θ) =

1

(2π)d/2

∫

Rd

F ′(θ + δη) exp
(
− 1

2
‖η‖22

)
dη

=
1

(2π)d/2
1

δ

∫

Rd

∂F (θ + δη)

∂η
exp

(
− 1

2
‖η‖22

)
dη

= − 1

(2π)d/2
1

δ

∫

Rd

F (θ + δη)
∂ exp

(
− 1

2‖η‖22
)

∂η
dη by integration by parts,

= − 1

(2π)d/2
1

δ

∫

Rd

F (θ + δη) exp
(
− 1

2
‖η‖22

)
(−η)dη = E

[1

δ
F (θ + δz)z

]
,

leading to the desired result.



326 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

Approximation properties. We can analyze the difference between F and Fδ when F
is L-smooth as follows (using that z has zero mean):

∀θ ∈ R
d, Fδ(θ) − F (θ) = Ez∼N(0,I)

[
F (θ + δz)− F (θ)− δF ′(θ)⊤z

]
.

Since F is convex, it is above its tangent at θ; thus, we get Fδ(θ) > F (θ) and, using the
smoothness bound from equation (5.10), we get

∀θ ∈ R
d, 0 6 Fδ(θ) − F (θ) 6

Lδ2

2
Ez∼N(0,I)[‖z‖22] =

L

2
δ2d. (11.14)

Moreover, we can compute the expectation of the squared norm of the gradient estimate:

E

[∥∥1

δ

(
F (θ + δz)− F (θ)

)
z
∥∥2
2

]

6 2E
[∥∥1

δ

(
F (θ + δz)− F (θ)− δF ′(θ)⊤z

)
z
∥∥2
2

]
+ 2E

[
‖zz⊤F ′(θ)‖22

]

6 2E
[L2δ2

4
‖z‖62

]
+ 2F ′(θ)⊤E

[
‖z‖22zz⊤

]
F ′(θ), using smoothness,

=
L2δ2

2
d(d+ 2)(d+ 4) + 2‖F ′(θ)‖22 · 3d 6

15

2
L2δ2d3 + 6d‖F ′(θ)‖22, (11.15)

where we have used that ‖z‖22 is a chi-squared random variable, and we get in closed form
E[‖z‖62] = d(d+ 2)(d+ 4) and E

[
‖z‖22zz⊤

]
= 3dI (see exercise 11.4).

Exercise 11.4 Show that for a standard Gaussian vector z ∈ Rd (with zero mean and
covariance matrix identity), we have E[‖z‖62] = d(d+ 2)(d+ 4) and E

[
‖z‖22zz⊤

]
= 3dI.

Exercise 11.5 (Improved variance bound, Akhavan et al., 2023 (�)) Using the
Poincaré inequality for standard Gaussian vectors z (i.e., for any differentiable function
f : Rd → R, E

[
(f(z) − E[f(z)])2

]
6 E

[
‖f ′(z)‖22

]
), show that the term 15

2 L
2δ2d3 in

equation (11.15) can be improved to a constant times L2δ2d2.

We can now analyze GD and prove proposition 11.4 that gives a convergence rate that
will be analyzed below its proof.

Proposition 11.4 (zeroth-order optimization–smooth case) Let F be an L-smooth
convex function with minimizer θ∗, and (θt)t>0 defined by the recursion in equation (11.12),

with γ, δ > 0. Then for the averaged iterate θ̄t = 1
t

∑t
s=1 θs−1, we have:

E
[
F (θ̄t)

]
− F (θ∗) 6

1

γt
‖θ0 − θ∗‖22 + 2Lδ2d2 + 4d

γ

δ2
σ2. (11.16)

Proof Following previous SGD proofs, we take conditional expectations given the in-
formation Fs−1 up to time s − 1, and use the standard manipulations from chapter 5,
starting from

θs − θ∗ = θs−1 − θ∗ − γ
1

δ

(
F (θs−1 + δzs)− F (θs−1)

)
zs −

γ

δ
εszs,



11.2. ZEROTH-ORDER CONVEX OPTIMIZATION 327

to get, by expanding the squared norm and using lemma 11.2,

E
[
‖θs − θ∗‖22|Fs−1

]

6 ‖θs−1 − θ∗‖22 − 2γF ′
δ(θs−1)⊤(θs−1 − θ∗)

+2γ2E
[∥∥1

δ

(
F (θs−1 + δzs)− F (θs−1)

)
zs
∥∥2
2

∣∣∣Fs−1

]
+ 2

γ2

δ2
E[ε2s‖zs‖22]

6 ‖θs−1 − θ∗‖22 − 2γF ′
δ(θs−1)⊤(θs−1 − θ∗)

+2γ2 ·
[L2δ2

2
15d3 + 6d‖F ′(θs−1)‖22

]
+ 2

γ2

δ2
· 2dσ2, using equation (11.15).

Moreover, using co-coercivity (proposition 5.4) and F ′(θ∗) = 0, we get

E
[
‖θs − θ∗‖22|Fs−1

]
6 ‖θs−1 − θ∗‖22 − 2γ

[
Fδ(θs−1)− Fδ(θ∗)

]

+15γ2L2δ2d3 + 24Lγ2d
[
F (θs−1)− F (θ∗)

]
+ 4d

γ2

δ2
σ2

6 ‖θs−1 − θ∗‖22 − 2γ
[
F (θs−1)− F (θ∗)

]
+ 2γ · L

2
δ2d

+15γ2L2δ2d3 + 24Lγ2d
[
F (θs−1)− F (θ∗)

]
+ 4d

γ2

δ2
σ2,

using equation (11.14) and Fδ(θ∗) > F (θ∗). Thus, if γ 6 1
24dL , we have 24Lγ2d 6 γ and

we get

E
[
‖θs − θ∗‖22|Fs−1

]
6 ‖θs−1 − θ∗‖22 − γ

[
F (θs−1)−F (θ∗)

]
+ γLδ2d

+
15

24
γLδ2d2 + 4d

γ2

δ2
σ2

6 ‖θs−1 − θ∗‖22 − γ
[
F (θs−1)−F (θ∗)

]
+ 2γLδ2d2 + 4d

γ2

δ2
σ2,

leading to, taking full expectations,

E
[
F (θs−1)

]
− F (θ∗) 6

1

γ

(
E
[
‖θs−1 − θ∗‖22

]
− E

[
‖θs − θ∗‖22

])
+ 2Lδ2d2 + 4d

γ

δ2
σ2.

Summing from s = 1 to s = t, we get

1

t

t∑

s=1

E
[
F (θs−1)

]
− F (θ∗) 6

1

γt
‖θ0 − θ∗‖22 + 2Lδ2d2 + 4d

γ

δ2
σ2,

leading to equation (11.16) using Jensen’s inequality.

We can now analyze various situations depending on the presence or absence of noise (see
the empirical illustration in figure 11.1):

• If σ = 0, then we can take δ as close to zero as possible and get the rate, with
γ = 1

24dL :

E
[
F (θ̄t)

]
− F (θ∗) 6

24Ld

t
‖θ0 − θ∗‖22. (11.17)

As suggested at the beginning of section 11.2, we only lose a factor of d compared
to regular GD in section 5.2.4.



328 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

• If σ > 0, we can optimize over δ to get (assuming that σ is known), with the choice
δ4 = 2γσ2L−1d−1, E

[
F (θ̄t)

]
− F (θ∗) 6 1

γt‖θ0 − θ∗‖22 + 2
√

2 · γ1/2L1/2σd3/2. With

the maximal allowed step size γ = 1
24dL , this leads to

E
[
F (θ̄t)

]
− F (θ∗) 6

24Ld

t
‖θ0 − θ∗‖22 + σd.

There is convergence in O(1/t) only up to the noise level with a limiting bound σd.
We can also use a step size γ that depends on the horizon t, by taking γ = 1

24Ld t
−2/3,

leading to the following bound that goes to 0 when t tends to infinity:

E
[
F (θ̄t)

]
− F (θ∗) 6

d

t1/3
[
24L‖θ0 − θ∗‖22 + σ

]
.

We not only lose a factor of d in the bound, but the dependence in t is worsened
from 1/t to 1/t1/3. Note that the dependence in σ could be improved if the noise
level were known.

Extensions. We can also consider the case where we can do two function evaluations,
where one can check that we can essentially remove the variance term proportional to
δ−2 due to two noisy evaluations, removing in equation (11.16) the last term, and thus
achieving an improved behavior. For related lower bounds, see Duchi et al. (2015).

Exercise 11.6 When two function evaluations are available, compute optimal values of δ
and γ and provide an improved convergence rate.

11.2.2 Stochastic Smoothing (�)

In this section, we consider the case where F may not be smooth, which leads to consid-
ering the nice effect of randomized smoothing. This randomized smoothing can simply
be explained by seeing Fδ as the convolution of function F by the density of the Gaussian
distribution with mean zero and covariance matrix δ2I. Since this density is infinitely dif-
ferentiable, a continuous function will be turned into an infinitely differentiable function.
One particular instance of this phenomenon is shown here:

Lemma 11.2 already showed that the function Fδ : Rd → R, defined in equation (11.13)
has gradient equal to F ′

δ(θ) = 1
δEz∼N(0,I)

[
F (θ+δz)z

]
= 1

δEz∼N(0,I)

[
(F (θ+δz)−F (θ))z

]
.



11.2. ZEROTH-ORDER CONVEX OPTIMIZATION 329

Figure 11.1. Zeroth-order optimization with Gaussian smoothing on a quadratic func-
tion F in dimension d = 10, with step size γ = 1/(4Ld): two levels of noise added to the
function values, σ = 0.01 (top), and σ = 0.1 (bottom), with three smoothing constants,
δ = 0.01 (left), δ = 0.1 (middle), and δ = 10 (right). Performance improves with smaller
noise variance σ2, while δ should be chosen to be not too large (then too much bias) and
not too small (then too much variance).



330 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

Lemma 11.3 shows that it transforms a Lipschitz-continuous function into a smooth
function.

Lemma 11.3 (Randomized smoothing) Assume that F is B-Lipschitz-continuous.
Then function Fδ : Rd → R, defined in equation (11.13) is B-Lipschitz-continuous and(√

d
δ B)-smooth. Moreover, ∀θ ∈ Rd, |Fδ(θ)− F (θ)| 6 Bδ

√
d.

Proof Function Fδ is
(√

d
δ B)-smooth since for θ, θ′ ∈ Rd,

‖F ′
δ(θ)−F ′

δ(θ
′)‖2 6

1

δ
Ez∼N(0,I)

[
|F (θ+δz)−F (θ′+δz)|‖z‖

]
6
B

δ
‖θ−θ′‖2Ez∼N(0,I)[‖z‖2],

which is less than B
√
d/δ. Moreover, |Fδ(θ) − F (θ)| 6 Ez∼N(0,I)[|F (θ + δz) − F (θ)|] 6

BEz∼N(0,I)[δ‖z‖2], leading to the desired bound.

In other words, the expectation of the gradient estimate happens to be exactly the gra-
dient of a smoothed version Fδ of F . This will be used in the proof that follows. More-
over, the expression of F ′

δ as an expectation leads naturally to the stochastic gradient

F̂ ′
δ(θ) = 1

δF (θ + δz)z − 1
δF (θ)z, for which we have E[F̂ ′

δ(θ)] = F ′
δ(θ) and

E
[
‖F̂ ′

δ(θ)‖22
]
6 E

[
B2‖z‖42

]
6 4B2d2.

We can now analyze GD and prove proposition 11.5 that gives a convergence rate that
will be analyzed below its proof.

Proposition 11.5 (zeroth-order optimization–nonsmooth case) Consider a func-
tion F that is a B-Lipschitz-continuous convex function with minimizer θ∗, and (θt) de-
fined by the recursion in equation (11.12), with γ, δ > 0. Then for the averaged iterate
θ̄t = 1

t

∑t
s=1 θs−1, we have:

E
[
F (θ̄t)

]
− F (θ∗) 6

1

2γt
‖θ0 − θ∗‖22 + 4γB2d2 +

γ

δ2
σ2d+ 2Bδ

√
d. (11.18)

Proof We have, for θ∗ a minimizer of F on Rd, by expanding the square,

‖θs − θ∗‖22 = ‖θs−1 − θ∗‖22 − 2
γ

δ

([
F (θs−1 + δzs)− F (θs−1) + εs

]
zs
)⊤

(θs−1 − θ∗)

+
γ2

δ2

∥∥[F (θs−1 + δzs)− F (θs−1) + εs
]
zs
∥∥2
2
.

We have, using the previous inequalities,

E
[
‖θs − θ∗‖22|Fs−1

]
= ‖θs−1 − θ∗‖22 − 2γF ′

δ(θs−1)⊤(θs−1 − θ∗) + 2γ2 · 4B2d2 + 2
γ2

δ2
· σ2d,

leading to

Fδ(θs−1)− Fδ(θ∗) 6
1

2γ

(
E
[
‖θs−1 − θ∗‖22

]
− E

[
‖θs − θ∗‖22

])
+ 4γB2d2 +

γ

δ2
σ2d

F (θs−1)− F (θ∗) 6
1

2γ

(
E
[
‖θs−1 − θ∗‖22

]
− E

[
‖θs − θ∗‖22

])
+ 4γB2d2 +

γ

δ2
σ2d+ 2Bδ

√
d.



11.3. MULTIARMED BANDITS 331

We thus get

1

t

t∑

s=1

F (θs−1)− F (θ∗) 6
1

2γt
‖θ0 − θ∗‖22 + 4γB2d2 +

γ

δ2
σ2d+ 2Bδ

√
d.

Jensen’s inequality then leads to equation (11.18).

This leads to a similar discussion as for the smooth case in section 11.2.1 for the choice
of step sizes:

• When σ = 0 (no noise in function evaluations), we can take δ to be as small as
possible so rounding errors do not perturb the finite differences; we then obtain the
rate 1

2γt‖θ0 − θ∗‖22 + 4γB2d2, losing a factor of d (after γ is optimized) compared
to the standard subgradient method studied in section 5.3.

• When σ > 0, then we can optimize over δ, with δ3 = γσ2B−1
√
d. We then get

E
[
F (θ̄t)

]
− F (θ) 6

1

2γt
‖θ0 − θ‖22 + 4γB2d2 + 3d2/3γ1/3σ2/3B2/3.

To optimize the rate for large values of t, we can take γ = 1
B2d1/2t3/4

for a final rate

d1/2

2t1/4

(
B2‖θ0 − θ‖22 + 6σ2/3

)
+ 4

d3/2

t3/4
.

Note that the dependence in t is not optimal; see Agarwal et al. (2013) for an
improved rate proportional to t−1/2 (but a worse dependence in d).

11.2.3 Extensions

In this section on zeroth-order algorithms, we have focused on optimization algorithms
with potentially stochastic noise, with a criterion that is the function values at the final
time. This can be extended to online learning formulations with a different function Ft
at time t, and then to using the regret criterion in equation (11.1). Online zeroth-order
optimization is significantly more complicated, and in section 11.3, we will focus only on
multiarmed bandits, which are optimization problems over finite sets and already lead
to significant theoretical and practical developments. For more general cases, see Hazan
(2022).

11.3 Multiarmed Bandits

This section aims to provide the simplest results for multiarmed stochastic bandits. There
is an extensive and rich body of literature; for instance, see Bubeck and Cesa-Bianchi
(2012), Lattimore and Szepesvári (2020), and Slivkins (2019) for more detailed accounts.

Multiarmed bandits are the simplest model of sequential decision problems where
information is gathered as decisions are made and losses incurred, where the “exploration-
exploitation” dilemma occurs. Beyond being a stepping stone for many more complex



332 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

models, it applies to clinical trials, prediction of clicks on web pages, and routing in
networks.

We consider k > 2 potential arms, each associated with a mean µ(i) ∈ R, i ∈
{1, . . . , k}. Every time we select arm i, we receive a reward sampled independent of
all other rewards and the previous arm choices from a sub-Gaussian distribution with
mean µ(i), and sub-Gaussian parameter σ. At time s, we select arm is based on the
information Fs−1 up to time s−1 (i.e., the rewards received at time s−1 and before) and
receive reward rs. In this chapter, we focus on plain bandits, noting that many variations
also exist where limited feedback is given to the algorithm, in particular contextual ban-
dits, where a feature vector is observed before each arm is selected and where rewards
are unknown functions of the feature vectors.

Criterion for reward maximization. Our criterion is the expected regret (adapted
to the maximization of rewards), equal to

Rt = t · max
i∈{1,...,k}

µ(i) −
t∑

s=1

E[rs].

△! As opposed to online learning in section 11.1, here we are not dividing the
regret by t.

Denoting ∆(j) = maxi∈{1,...,k} µ
(i) − µ(j) > 0 as the difference between the mean of

the best arm and the mean of arm j, and n
(j)
t as the number of times that arm j was

selected in the first t iterations, we can express the regret as

Rt =

k∑

j=1

∆(j)
E
[
n
(j)
t

]
. (11.19)

Thus, the regret is a direct function of the number of times each arm is selected. For all
algorithms, we consider the natural unbiased estimate of the arm mean at time s; that
is,

µ̂
(j)
t =

1

n
(j)
t

t∑

s=1

rs1is=j =
1

n
(j)
t

n
(j)
t∑

a=1

x(j)a ,

where we imagine that we select rewards from a sequence of independent and identically

distributed (i.i.d.) samples x
(j)
a with mean µ(j) from each arm. This implies that as

we select some arms multiple times, we get a more accurate estimate of µ(j), as the

expected squared distance between µ̂
(j)
t and µ(j) is proportional to 1/n

(j)
t . To simplify

the exposition, we ignore the equality cases among the various estimated values of µ̂
(j)
t ,

which is safe so long as the distributions of the arm values are absolutely continuous with
respect to the Lebesgue measure.



11.3. MULTIARMED BANDITS 333

11.3.1 Need for an Exploration-Exploitation Trade-off

We can now consider two extreme algorithms, highlighting the need to both “explore”
and “exploit.”

Pure exploration. If we select a random arm at each step, then, from equation (11.19)

and E[n
(j)
t ] = t

k , the expected regret is t · 1k
∑k

j=1 ∆(j) and depends linearly in t; that is,
we have a “linear regret.” At time step t, we get a reasonable estimate of the best arm,
but this incurs a strong loss along the iterations.

Pure exploitation. The pure exploration strategy involved ignoring the online esti-

mates µ̂
(j)
t . The pure exploitation strategy does the opposite, only selecting the arm with

the current largest estimate, assuming that the first k steps are dedicated to selecting
each arm only once. This has linear regret because there is a nonzero probability that
the best arm will never be selected again.

Exercise 11.7 Provide a lower bound on the regret of the pure exploitation strategy.

11.3.2 “Explore-Then-Commit”

If we consider mk steps where we select exactly each arm m times, we can build m esti-
mates µ̂(1), . . . , µ̂(k), which are all independent random variables with means µ(1), . . . , µ(k)

and sub-Gaussian parameters σ2/m. Let i∗ be the optimal arm.

We then select the arm with maximal µ̂
(j)
mk for all remaining t− km steps. The regret

for this algorithm is then equal to, using equation (11.19), for t > mk,

Rt = m

k∑

j=1

∆(j) + (t−mk)

k∑

j=1

∆(j)
P(µ̂

(j)
mk > µ̂

(i)
mk, ∀i 6= j),

where the first term corresponds to the first mk steps, for which this is the exact contri-
bution of the regret; the second term corresponds to the other (t−mk) steps, where the

arm j is selected if µ̂
(i)
mk is maximized for i = j.

We can now upper-bound the second term by only imposing that an arm j is selected

if µ̂
(j)
mk > µ̂

(i∗)
mk (noting that ∆(i∗) = 0):

Rt 6 m

k∑

j=1

∆(j) + (t−mk)

k∑

j=1

∆(j)
P(µ̂

(j)
mk > µ̂

(i∗)
mk )

6 m
∑

j 6=i∗
∆(j) + t

∑

j 6=i∗
∆(j) exp

(
− (∆(j))2m

4σ2

)
, (11.20)

by using sub-Gaussian tail bounds (see section 1.2.1) on the difference of the m arm

values between j and i∗ (i.e., µ̂
(i∗)
mk − µ̂

(j)
mk is a sub-Gaussian random variable with mean

∆(j) and sub-Gaussianity parameter 2σ2/m).



334 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

Two arms (k = 2). For k = 2 arms, the upper bound is, with ∆ = ∆(i) for i 6= i∗:

Rt 6 m∆ + t∆ exp
(
− ∆2m

4σ2

)
. (11.21)

We can minimize it approximately with respect to m by taking the gradient with respect
to m (assuming for a moment that it is not restricted to being an integer), leading to ∆ =

t ∆3

4σ2 exp
(
− ∆2m

4σ2

)
. We thus consider the following candidate m = max

{
1,
⌈
4σ2

∆2 log ∆2t
4σ2

⌉}
,

for which we can further bound equation (11.21) as follows:

Rt 6 m∆ + t∆ exp
(
− ∆2

4σ2

4σ2

∆2
log

∆2t

4σ2

)
= m∆ + t∆

4σ2

∆2t

6
(
1 +

4σ2

∆2
log

∆2t

4σ2
)∆ +

4σ2

∆
= ∆ +

4σ2

∆

(
1 + log

∆2t

4σ2

)
. (11.22)

We can now obtain two different results, depending on the desired asymptotic dependence
on the gap. The best dependence in t, is obtained by starting from equation (11.22), and

using logα 6 α− 1 for α = ∆2

4σ2 , to get

Rt 6 ∆+
4σ2

∆

(
1+log

∆2

4σ2
+log(t)

)
6 ∆+

4σ2

∆

( ∆2

4σ2
+log(t)

)
= 2∆+

4σ2

∆
log(t), (11.23)

with a dominant term in 4σ2

∆ log(t). Another way of bounding with a worse dependence
in t, but a better one in ∆, leads to, still starting from equation (11.22) and using
logα 6 α− 1, this time for α = ∆

√
t/(2σ):

Rt 6 ∆ +
4σ2

∆

(
1 + 2 log

∆
√
t

2σ

)
6 ∆ +

4σ2

∆

(
1 + 2

∆
√
t

2σ
− 2

)
6 ∆ + 4σ

√
t.

Combining the two upper bounds, we get the following regret bound for the explore-then-
commit algorithm:

Rt 6 2∆ + 4 min
{
σ
√
t,
σ2

∆
log(t)

}
. (11.24)

We thus obtain in equation (11.24) a bound with two behaviors that are reminiscent of
convex optimization in section 5.4, where we obtain rates in O(1/(tµ)) for µ-strongly-
convex functions and inO(1/

√
t) for convex functions: a gap-dependent asymptotic bound

σ2

∆ log(t) with logarithmic dependence in log(t) but a dependence in ∆ that explodes when

the gap ∆ is small. Then, the bound in σ
√
t takes over, with a worse dependence in t

but no dependence in ∆.

As shown in section 11.3.3, this simple algorithm will achieve the lower bound (up
to constant factors) for all possible algorithms. However, this requires knowing ∆ and t
in advance to select m appropriately. As shown in exercise 11.8, without knowing ∆, a
regret in t2/3 can be achieved.

Exercise 11.8 Show that with m = t2/3 the bound in equation (11.21) is smaller than
(∆ + σ)t2/3.



11.3. MULTIARMED BANDITS 335

More than two arms (k > 2). We use a different argument from the one leading to
equation (11.20). We consider the event A = {∀i 6= i∗, µ̂(i) − µ(i) 6 r√

m
, µ̂(i∗) − µ(i∗) >

− r√
m
}, where r is a constant to be determined later. This event is true if suboptimal

arms are not too overestimated while the optimal arm is not too underestimated. Using

sub-Gaussian tail bounds and the union bound, we have P(Ac) 6 k exp(− r2

2σ2 ).

If event A is true, then the loss in rewards for the last t − mk steps is less than
2 r√

m
(since only arms with means that are less than 2 r√

m
away from the optimal one

can be selected); moreover, if 2r√
m
< ∆min = mini6=i∗ ∆(i) and A is true, the optimal

arm has to be selected (thus with zero regret). If A is not true, we pay a cost less than
∆max = maxi6=i∗ ∆(i).

We can thus distinguish two cases (as with two arms), with or without a term ex-
ploding in ∆min (note that for k = 2, ∆min = ∆max = ∆). If ∆min > 2r√

m
, we can select

m = 4r2/(∆min)2 (we assume for simplicity that m > 1, dealing with the other case is
left as an exercise), and get the bound

Rt = mk∆max + tk∆max exp
(
− r2

2σ2

)
= k∆max

( 4r2

(∆min)2
+ t exp

(
− r2

2σ2

))
,

where the first term corresponds to the explore phase and the last term to the commit
phase. We then get, taking r2 = 2σ2 log(t),

Rt 6 k∆max
(8σ2 log(t)

(∆min)2
+ 1

)
. (11.25)

We recover, up to constants, the same gap-dependent bound as for k = 2 arms in equa-
tion (11.23), with a logarithmic dependence in t, but a potentially exploding dependence
in ∆max/(∆min)2.

Alternatively, in all cases (i.e., without the constraint ∆min > 2r√
m

), the regret is less

than

Rt 6 mk∆max + 2
r√
m
t+ t∆maxk exp

(
− r2

2σ2

)
,

where the first term corresponds to the explore phase and the last two terms to the
commit phase. With m3/2 ≈ rt/(k∆max), we can minimize the first two terms and get

Rt 6 3(rt)2/3(k∆max)1/3 + ∆maxkt exp
(
− r2

2σ2

)
.

With r = σ
√

2 log(kt), we then get Rt 6 ∆max + 3t2/3k1/3(∆max)1/3σ2/3
(
2 log(kt))1/3,

which grows as t2/3 and does not achieve the lower bound (see a better algorithm in
section 11.3.3).

ε-greedy. We can mix exploration and exploitation with the so-called “ε-greedy” strat-
egy, which will update estimates µ̂(i) but spread the exploration phase over iterations
by selecting with some positive probability a random arm. The final regret is similar to
explore-and-commit (Auer, Cesa-Bianchi, and Fischer, 2002).



336 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

11.3.3 Optimism in the Face of Uncertainty (�)

We consider the classical “upper confidence bound (UCB)” algorithm (Auer, Cesa-Bianchi,
and Fischer, 2002), whose principle is simple. As arms are being selected, confidence in-

tervals for the values of each arm are maintained as [µ̂
(i)
t − ν

(i)
t , µ̂

(i)
t + ν

(i)
t ]. The arm

that is selected is the one with maximal upper confidence bound µ̂
(i)
t + ν

(i)
t . This is one

instance of the general principle of optimism in the face of uncertainty (Munos, 2014).

The precise algorithm is as follows (assuming that σ is known):

• For the first k rounds, select each arm exactly once and form µ̂
(i)
k as the reward

received for arm i, with ν
(i)
k =

√
2ρσ2 log(k + 1)/n

(i)
k =

√
2ρσ2 log(k + 1), with

ρ > 0 to be determined later.

• For all other t > k, select the arm it that maximizes µ̂
(i)
t−1+ν

(i)
t−1, receive the reward,

and update, for all i, µ̂
(i)
t as the average reward received for all arms i ∈ {1, . . . , k},

with the interval width ν
(i)
t =

√
2ρσ2 log(t+ 1)/n

(i)
t .

The confidence interval length for arm i is naturally proportional to σ/

√
n
(i)
t with an

extra factor that will ensure sublinear regret.

Thus, as illustrated for k = 4, we have k confidence intervals, and we select the arm
with the largest upper confidence bound (here, i = 4):

µ̂
(1)
t

µ̂
(1)
t + ν

(1)
t

µ̂
(1)
t − ν

(1)
t

µ̂
(2)
t

µ̂
(2)
t + ν

(2)
t

µ̂
(2)
t − ν

(2)
t

µ̂
(3)
t

µ̂
(3)
t + ν

(3)
t

µ̂
(3)
t − ν

(3)
t

µ̂
(4)
t

µ̂
(4)
t + ν

(4)
t

µ̂
(4)
t − ν

(4)
t

The analysis consists in upper-bounding E
[
n
(i)
t

]
for i 6= i∗ and using equation (11.19)

(i.e., Rt =
∑
i6=i∗ ∆(i)E

[
n
(i)
t

]
), to obtain the regret bound. We follow the proof technique

from Garivier and Cappé (2011). For simplicity, we assume that there is a single arm i∗
with maximal mean.

The main idea of the proof is to compare the upper-confidence bounds to the optimal
arm mean µ(i∗). That is, for i 6= i∗, we have

E
[
n
(i)
t

]
=

t∑

u=1

P(iu = i)

=

t∑

u=1

P(iu = i, µ̂
(i)
u−1 + ν

(i)
u−1 > µ(i∗)) +

t∑

u=1

P(iu = i, µ̂
(i)
u−1 + ν

(i)
u−1 6 µ(i∗))

6

t∑

u=1

P
(
iu = i, µ̂

(i)
u−1 + ν

(i)
u−1 > µ(i∗)

)
+

t∑

u=1

P
(
µ̂
(i∗)
u−1 + ν

(i∗)
u−1 6 µ(i∗)

)
, (11.26)



11.3. MULTIARMED BANDITS 337

since if we select arm i at time u (i.e., iu = i), then, by design of the upper confidence

bounds, µ̂
(i∗)
u−1 + ν

(i∗)
u−1 6 µ̂

(i)
u−1 + ν

(i)
u−1.

To bound P
(
µ̂
(i∗)
u−1 + ν

(i∗)
u−1 6 µ(i∗)

)
, it is tempting to apply a concentration inequality

for the average of n
(i∗)
u−1 independent random variables distributed from the optimal arm

distribution. However, n
(i∗)
u−1 is a random variable which is not independent from the

rewards (because arm choice depends on past rewards). As done several times in this
book to remove some unwanted randomness, we consider a uniform result based on a

union bound. We thus use our sequence of i.i.d. samples x
(i∗)
a , a > 1, with mean µ(i∗),

and bound the probability that at least one of these u − 1 averages of i.i.d. random
variables is less than the desired bound. Thus, we have, from sub-Gaussian tail bounds,
for u ∈ {1, . . . , t},

P
(
µ̂
(i∗)
u−1 + ν

(i∗)
u−1 6 µ(i∗)

)
6

u−1∑

s=1

exp(−ρ log(u)) 6
1

uρ−1
.

Assuming ρ > 2, we can then use a comparison with an integral to get

t−1∑

u=1

P
(
µ̂
(i∗)
u−1 + ν

(i∗)
u−1 6 µ(i∗)

)
6

∫ t

1

1

uρ−1
du =

1

ρ− 2
(1 − t2−ρ) 6 1

ρ− 2
.

Thus, the rightmost term in equation (11.26) is less than 1
ρ−2 . We now bound the left

term in equation (11.26) as follows, for t > k:

t∑

u=1

P
(
iu = i, µ̂

(i)
u−1 + ν

(i)
u−1 > µ(i∗)

)

=

t∑

u=1

P

(
iu = i, µ̂

(i)
u−1 +

√
2ρσ2log(u)/n

(i)
u−1 > µ(i∗)

)
by definition of ν

(i)
u−1,

6

t∑

u=1

P

(
iu = i, µ̂

(i)
u−1 +

√
2ρσ2log(t)/n

(i)
u−1 > µ(i∗)

)
since u 6 t,

=

t∑

u=1

u−1∑

s=1

P

(
iu = i, n

(i)
u−1 = s,

1

s

s∑

a=1

x(i)a +
√

2ρσ2log(t)/s > µ(i∗)
)
.

We can now swap the two summations to get the bound:

t−1∑

s=1

t∑

u=s+1

P

(
iu = i, n

(i)
u−1 = s,

1

s

s∑

a=1

x(i)a +
√

2ρσ2log(t)/s > µ(i∗)
)

6

t−1∑

s=1

P

(1

s

s∑

a=1

x(i)a +
√

2ρσ2log(t)/s > µ(i∗)
)
, (11.27)

because the events {iu = i, n
(i)
u−1 = s}, for u ∈ {s+ 1, . . . , t} are mutually exclusive. We

can then use sub-Gaussian tail bounds, which are nontrivial (i.e., less than 1) as soon as



338 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

∆(i) >
√

2ρσ2log(t)/s, leading to the following bound for the term in equation (11.27):

+∞∑

s=1

exp
[
−
(
∆(i) −

√
2ρσ2log(t)/s

)2
+
s/(2σ2)

]
.

When s >
8ρσ2 log(t)
(∆(i))2

, then the summand is less than exp
[
− s

4 (∆(i))2/(2σ2)
]
, and that

part of the sum is less than the following, with κ = 1
4 (∆(i))2/(2σ2),

∞∑

s=1

exp(−sκ) =
e−κ

1− e−κ =
1

eκ − 1
6

1

κ
=

8σ2

(∆(i))2
.

Otherwise, we bound the probability by 1, and get a term equal to 8ρσ2 log(t)
(∆(i))2

. Thus,

overall, we get that

E
[
n
(i)
t

]
6

1

ρ− 2
+

8ρσ2 log(t)

(∆(i))2
+

8σ2

(∆(i))2
.

For ρ = 3, this leads to a regret bound for the UCB algorithm:

Rt 6
∑

i6=i∗
∆(i)

(
1 +

σ2

(∆(i))2
(24 log t+ 8)

)
. (11.28)

For k = 2, it is the same (up to constants) as the explore-then-commit algorithm in
equation (11.23), but without the need to know the gap between means in advance (this
applies as well to k > 2). For k > 2, it has the same logarithmic dependence in t

as equation (11.25), but an asymptotic constant proportional to
∑
i6=i∗

σ2

∆(i) rather than

k σ2

mini6=i∗ ∆(i) , which is a substantial gain when only few arms have means close to the

maximal one. Moreover, it happens to achieve the lower bound (up to constants; see the
following discussion on lower bounds).

As for explore-then-commit, we can obtain a regret that does not blow up when ∆(i)

goes to zero. Indeed, we always have
∑k

i=1 n
(i)
t 6 t, leading to, for ρ = 3,

Rt =
∑

i, ∆(i)<∆

∆(i)
E[n

(i)
t ] +

∑

i, ∆(i)>∆

∆(i)
E[n

(i)
t ] for a certain ∆,

6 t∆ +
∑

i, ∆(i)>∆

∆(i)
(

1 +
σ2

(∆(i))2
(24 log t+ 8)

)
as in equation (11.28),

6 t∆ +
∑

i

∆(i) + k
σ2

∆
(24 log t+ 8) 6

∑

i

∆(i) + 4σ
√

2kt(3 log t+ 1), (11.29)

by optimizing over ∆, leading to a bound which is an improvement over explore-then-
commit and also optimal up to logarithmic terms (as discussed next), Note that if ρ > 2,
then we only pay an increase in the bound proportional to ρ, while if ρ 6 1, the upper
bound on regret can start to be superlinear (and thus vacuous).



11.3. MULTIARMED BANDITS 339

Figure 11.2. Upper-confidence bounds for k = 10 Bernoulli arms with random means:
plot of upper and lower bounds as a function of time t (left), and regret (right).

Lower bounds. It turns out that with k arms, the best that can be achieved is
a regret of order σ

√
kt, and, for the instance-dependent problem, an improved order

log(t)
∑

i6=i∗
σ2

∆(i) (see, e.g., Bubeck and Cesa-Bianchi, 2012). From the regret bounds in
equation (11.28) and equation (11.29), we can see that UCB is optimal up to logarithmic
terms.

Illustration. In figure 11.2, we plot the performance of the UCB algorithm with k = 10
arms. We can observe in the left plot that upper confidence bounds tend to converge to
each other, while the right plot highlights the logarithmic dependence of the regret.

Thomson sampling. Another common strategy for stochastic multiarmed bandits is
based on Bayesian inference. Assuming a common prior distribution for each mean

µ(j), and, at time t, given the sequence S
(j)
t ∈ R

n
(j)
t of n

(j)
t received rewards for arm

j ∈ {1, . . . , k}, we consider the posterior distribution p(µ(j)|S(j)
t ). Thomson sampling

corresponds to sampling at time t each νj independently from this posterior distribu-
tion and selecting the arm j with the largest νj . This algorithm comes with guarantees
similar to UCB, but can be applied more generally as it implicitly relies on Bayesian
confidence intervals; however, it is only implementable if posterior distributions can be
easily accessed. See Russo et al. (2018) for details.

11.3.4 Adversarial Bandits (�)

We finish this section on multiarmed bandits by studying a nonstochastic setup referred
to as the “adversarial setup.” We now have arbitrary reward vectors µt ∈ [0, 1]k, t > 1,
which may vary with time and are assumed to be deterministic, and at each time step,

we choose an arm it and receive reward µ
(it)
t . As for online convex optimization in

section 11.1, this context where the reward vectors are selected in advance (but arbitrary



340 CHAPTER 11. FROM ONLINE LEARNING TO BANDITS

and unknown) is referred to as an “oblivious” adversary, as opposed to an “adaptive”
adversary, where the functions can depend on past information.

The regret is then

max
i∈{1,...,k}

t∑

s=1

µ(i)
s −

t∑

s=1

µ(is)
s .

Note that in this setup, there is no randomness in the environment and we receive rewards
that are elements of [0, 1]. The stochastic setting can be seen as a particular subcase (but
for which other algorithms, such as UCB, can be applied; see a comparison at the end of
this section).

Impossibility of deterministic policies. If the choice of it ∈ {1, . . . , k} is determin-
istic (and a function of the past information), then there is a reward sequence (µt) so

that µ
(it)
t = 0 and µ

(i)
t = 1 for i 6= it. After t steps, at least one arm has been chosen

fewer than t/k times. For that arm,
∑t
s=1 µ

(i)
s > t − t/k, and thus the regret is greater

than t(1− 1/k), which is linear in t.

We, therefore, consider expectations from a randomized algorithm.

Hedge algorithm (�). We start with the situation where a full reward vector µt ∈
[0, 1]k is observed at every iteration. We thus minimize a sequence of linear functions on
the simplex in k dimensions, Ft : π → µ⊤

t π, with observation of the gradient µt (which
does not depend on π). The Hedge algorithm (Freund and Schapire, 1997) consists in
starting with π0 uniform and updating πt as follows:

∀i ∈ {1, . . . , n}, π(i)
t =

π
(i)
t−1 exp(γµ

(i)
t )

∑k
j=1 π

(j)
t−1 exp(γµ

(j)
t )

,

where γ > 0 is a free parameter. This happens to be exactly the online mirror descent
algorithm from section 11.1.3, applied with no randomness to the linear functions Ft, with
the entropy mirror map. We thus immediately get from proposition 11.3 a normalized
regret which is less than

√
2 log(k)/

√
t for the choice γ =

√
2 log(k)/

√
t. We therefore

get an unnormalized regret proportional to
√
t log(k).

Exp3 algorithm (��). To tackle the bandit case with limited feedback, we follow
the same strategy as the Hedge algorithm but with an unbiased estimator of the vec-

tor µt ∈ [0, 1]k, from which we only observe component µ
(it)
t , where it is sampled

from πt−1. The estimator suggested by Auer, Cesa-Bianchi, Freund, and Schapire (2002)
is an importance sampling estimator and leads to the “Exp3” algorithm. It is defined as

µ̂
(i)
t = µ

(it)
t 1i=it/π

(i)
t−1; it thus has expectation µt, and variance E

[
‖µ̂t‖2∞

]
6 E

[
‖µ̂t‖22

]
6∑k

i=1 1/π
(i)
t−1, which is not enough to get a nonexplosive bound. However, an improvement

on proposition 11.3 may be obtained for the simplex.



11.4. CONCLUSION 341

Proposition 11.6 The mirror descent recursion in equation (11.7), for C the simplex

and Φ the entropy mirror map, is equal to θ
(i)
t =θ

(i)
t−1 exp(−γg(i)t )/

∑d
j=1θ

(j)
t−1 exp(−γg(j)t )

for all i ∈ {1, . . . , d}. Then, assuming that gt has almost surely nonnegative components

and E
[∑d

i=1 θ
(i)
s−1(g

(i)
s )2|Fs−1

]
6 B2 almost surely for all s > 1, for every θ ∈ C, we have

1

t

t∑

s=1

E
[
Fs(θs−1)− Fs(θ)

]
6

1

γt
DΦ(θ, θ0) +

γB2

2
.

Proof Following the proof of proposition 11.3, we have DΦ(θt, θt−1) + γg⊤t (θt − θt−1) =

−γ∑d
i=1 θ

(i)
t−1g

(i)
t − log

(∑d
i=1 θ

(i)
t−1 exp(−γg(i)t )

)
, which, using exercise 1.19, is greater

than the quantity − γ2

2

∑d
i=1 θ

(i)
t−1(g

(i)
t )2. This leads to the desired result.

We can now provide a regret bound for the Exp3 algorithm by using proposition 11.6

and noticing that we need to bound E[
∑k

i=1 π
(i)
s−1(µ̂

(i)
s )2|Fs−1

]
=

∑k
i=1(µ

(i)
t )2 6 k. This

leads to, after optimizing with respect to the step size, a nonnormalized regret bound
proportional to

√
kt log k.

From adversarial to stochastic. In the stochastic setup, the UCB algorithm provided
an unnormalized regret of order

√
kt log t, which is the same (up to the logarithmic term)

as the regret of the Exp3 algorithm, which is aimed at the adversarial setting. For an
analysis of Exp3 in the stochastic case, see Seldin et al. (2013) for a gap-dependent
logarithmic regret bound. Note that the optimal convergence rate is proportional to√
kt (Audibert and Bubeck, 2009).

11.4 Conclusion

In this chapter, we have provided extensions to the classical i.i.d. setting that is the book’s
main focus. In the convex case, algorithms and analyses were similar to the classical case
and seamlessly allowed arbitrary sequences of functions to be optimized. In the bandit
setting, where only partial information was provided, a dedicated algorithmic framework
was presented (optimism in front of uncertainty). There are multiple extensions, as
described by Shalev-Shwartz (2011), Bubeck and Cesa-Bianchi (2012), Hazan (2022),
Slivkins (2019), and Lattimore and Szepesvári (2020).





Chapter 12

Overparameterized Models

Chapter Summary
• A model is said to be overparameterized when it has sufficiently many parame-

ters to fit the training data perfectly. While many overparameterized models can
significantly overfit the data, the ones learned by gradient descent (GD) typically
do not.

• Implicit regularization of GD: For linear models, when there are several minimizers
(typically for overparameterized models), GD techniques tend to converge to the
one with a minimum Euclidean norm.

• Double descent: For unregularized models learned with gradient descent techniques,
as the number of parameters grows, the performance can exhibit a second descent
after the testing error blows up, when the number of parameters goes beyond the
number of observations.

• Global convergence of GD for two-layer neural networks: In the infinite width
(and thus strongly overparameterized) limit, GD exhibits some globally convergent
behavior despite the lack of convexity of such problems, which can be analyzed for
simple architectures.

In this chapter, we will cover three recent topics within learning theory, all related
to prediction models (such as neural networks or positive definite kernel methods) in the
overparameterized regime, where the number of parameters is larger than the number
of observations. When regularization is added to the estimation procedures, we have
seen in chapters 7, 8, and 9, that estimation can be made numerically and statistically
efficient by adding penalties to the empirical risk. In this section, we consider primarily
nonpenalized problems and prove that some regularization will come from the choice of
optimization algorithm, here gradient descent (GD), and possibly all its hyperparameters
(e.g., initialization, step size).

343



344 CHAPTER 12. OVERPARAMETERIZED MODELS

△! The number of parameters is not what generally characterizes the generaliza-
tion capabilities of regularized learning methods. See sections 3.6 and 9.2.3.

12.1 Implicit Bias of Gradient Descent

Given an optimization problem that corresponds to minimizing a function θ 7→ F (θ) over
a parameter θ ∈ Rd, if there is a unique global minimizer θ∗, then the goal of optimization
algorithms is to find this minimizer; that is, we want the tth iterate θt to be reliably in
the vicinity of θ∗. When there are multiple minimizers (thus for a function that cannot be
strongly convex), we could only show in chapter 5 that F (θt)− infθ∈Rd F (θ) is converging
to zero if F is convex (and only if a minimizer exists; see section 5.2.4).

With some extra assumptions, it can be shown that the algorithm converges to one
of the multiple minimizers of F (Bolte et al., 2010): note that when F is convex, this
set is also convex. The main question is: which one? The selection principle behind
the convergence toward one specific minimizer is referred to as the implicit regularization
properties of optimization algorithms, here, GD and its variants.

This is especially interesting in machine learning because when F (θ) is the empirical
risk on n observations, d is much larger than n, and no regularization is used, there are
multiple minimizers. An arbitrary empirical risk minimizer is not expected to work well
on unseen data, and a classical solution is to use explicit regularization (e.g., ℓ2-norms as
in chapters 3 and 7, or ℓ1-norms as in chapters 8 and 9). In this section, we show that
optimization algorithms may have similar regularizing effects. In a nutshell, GD usually
leads to minimum ℓ2-norm solutions, in a similar way that boosting algorithms were
related to ℓ1-norm regularization in section 10.3. This shows that the chosen empirical
risk minimizer is not arbitrary.

This will be explicitly shown for the quadratic loss and partially only for the logistic
loss. These results will be used in subsequent sections of this chapter.

12.1.1 Least-Squares Regression

Now we consider the least-squares objective function1 F (θ) = 1
2n‖y−Xθ‖22 from chapter 3,

with y ∈ Rn, X ∈ Rn×d such that d > n and (for simplicity) XX⊤ ∈ Rn×n invertible
(this is the kernel matrix). There are thus infinitely many (i.e., a whole affine subspace of)
solutions such that y = Xθ since the column space of X is the entire space R

n and θ has
dimension d > n. We apply GD with step size γ < 1

L = λmax( 1
nX

⊤X)−1, which is equal
to λmax( 1

nXX
⊤)−1, starting from θ0 = 0 and leading to θt = θt−1 − γ

nX
⊤(Xθt−1 − y).

Therefore, we have

Xθt − y = Xθt−1 − y −
γ

n
XX⊤(Xθt−1 − y) =

(
I − γ

n
XX⊤

)
(Xθt−1 − y),

1We use X as a notation for the design matrix in order to highlight that in this section, we will
consider predictions that are also linear in x.



12.1. IMPLICIT BIAS OF GRADIENT DESCENT 345

leading to, by recursion,

Xθt − y =
(
I − γ

n
XX⊤

)t
(Xθ0 − y) =

(
I − γ

n
XX⊤

)t
(−y). (12.1)

We thus get ‖Xθt − y‖22 6
(
1 − γ

nλmin(XX⊤)
)2t‖y‖22, and hence linear convergence

of Xθt toward y, with a convergence rate depending on the condition number of the
kernel matrix XX⊤.

Moreover, when started at θ0 = 0, GD techniques (whether stochastic or not) will
always have iterates θt that are linear combinations of rows of X ; that is, of the form
θt = X⊤αt for some αt ∈ Rn. (This is an alternative algorithmic version of the representer
theorem from chapter 7.)

Since Xθt converges to y, Xθt = XX⊤αt converges to y. Since K = XX⊤ is invert-
ible, this means that αt converges to K−1y, and thus θt = X⊤αt converges to X⊤K−1y.
One may have recognized in X⊤K−1 = X⊤(XX⊤)−1 the pseudo-inverse2 of X , and
hence X⊤K−1y is the minimum ℓ2-norm solution of {Xθ = y}, as shown next with
standard Lagrangian duality (Boyd and Vandenberghe, 2004):

inf
θ∈Rd

1

2
‖θ‖22 such that y = Xθ = inf

θ∈Rd
sup
α∈Rn

1

2
‖θ‖22 + α⊤(y −Xθ)

= sup
α∈Rn

α⊤y − 1

2
‖X⊤α‖22 with θ = X⊤α at optimum,

= sup
α∈Rn

α⊤y − 1

2
α⊤Kα. (12.2)

The problem in equation (12.2) is exactly solved for α = K−1y, with θ = X⊤α at
optimum. Note that in chapter 7, we used this formula for function interpolation to
compare different reproducing kernel Hilbert spaces (RKHSs) (see proposition 7.2).

 Lojasiewicz’s inequality (�). It turns out that the linear convergence obtained from
equation (12.1) can be obtained directly for any L-smooth function, for which we have
the so-called  Lojasiewicz’s inequality:

∀θ ∈ R
d, F (θ) − F (θ∗) 6

1

2µ
‖F ′(θ)‖22 (12.3)

for some µ > 0 and any minimizer θ∗.

In chapter 5, we have seen that this is a consequence of µ-strong-convexity (lemma 5.1),
but this can be satisfied without strong convexity. For example, for the least-squares ex-
ample, we have, for any minimizer θ∗,

‖F ′(θ)‖22 =
∥∥∥ 1

n
X⊤X(θ − θ∗)

∥∥∥
2

2
=

1

n2
(θ − θ∗)⊤X⊤XX⊤X(θ − θ∗)

>
λ+min(XX⊤)

n2
(θ − θ∗)⊤X⊤X(θ − θ∗),

2See https://en.wikipedia.org/wiki/Moore-Penrose_inverse.

https://en.wikipedia.org/wiki/Moore-Penrose_inverse


346 CHAPTER 12. OVERPARAMETERIZED MODELS

where λ+min(XX⊤) = λ+min(X⊤X) is the smallest nonzero eigenvalue of XX⊤ (which is
also the one of X⊤X). Thus, we have

‖F ′(θ)‖22 >
λ+min(K)

n2
‖X(θ − θ∗)‖22 =

2λ+min(K)

n
[F (θ)− F (θ∗)].

Thus, equation (12.3) is satisfied with µ = 1
nλ

+
min(K). Note that this also includes the

strongly convex case since λ+min(X⊤X) > λmin(X⊤X).

When equation (12.3) is satisfied, we have for the tth iterate of GD with step size
γ = 1/L, following the analysis of chapter 5 (proposition 5.3),

F (θt)− F (θ∗) 6 F (θt−1)− F (θ∗)− 1

2L
‖F ′(θt−1)‖22 6

(
1− µ

L

)[
F (θt−1)− F (θ∗)

]
.

Moreover, we can then show that the iterates xt are also converging to a minimizer of F ;
see Bolte et al. (2010) and Karimi et al. (2016) for more details.

12.1.2 Separable Classification

We now consider binary classification with the smooth convex surrogate introduced in
section 4.1.1 leading to logistic regression; that is, for yi ∈ {−1, 1}, i = 1, . . . , n,

F (θ) =
1

n

n∑

i=1

log(1 + exp(−yix⊤i θ)), (12.4)

with X ∈ Rn×d the design matrix (with rows equal to the input vectors x1, . . . , xn) such
that d > n and the kernel matrix XX⊤ ∈ Rn×n is invertible. In the regression setting,
interpolation corresponds to Xθ = y. In the classification setting, we predict perfectly if
and only if sign(Xθ) = y, which happens when y ◦ (Xθ) (where ◦ is the componentwise
product) has strictly positive components. For d > n, if XX⊤ is invertible, such an
interpolator always exists (e.g., the one for regression on y).

Maximum margin classifier. As in the case of regression, there are infinitely many
perfect linear classifiers. Among them, it is tempting to define the one that maximizes
the “margin,” as described in section 4.1.2. Since XX⊤ is invertible, there is at least one
η ∈ Rd of a unit norm such that ∀i ∈ {1, . . . , n}, yix⊤i η > 0 (e.g., the unit norm vector
associated to X⊤(XX⊤)−1y). We denote by η∗ the one in which the so-called “margin”

min
i∈{1,...,n}

yix
⊤
i η



12.1. IMPLICIT BIAS OF GRADIENT DESCENT 347

is maximal (and thus strictly positive). We denote as 1
ρ > 0 the value of this maximization

problem. Then, using Lagrange duality, we write

1

ρ
= sup

‖η‖261

min
i∈{1,...,n}

yix
⊤
i η = sup

‖η‖261,t∈R

t such that ∀i ∈ {1, . . . , n}, yix⊤i η > t

= inf
α∈R

n
+

sup
‖η‖261,t∈R

t+

n∑

i=1

αi(yix
⊤
i η − t)

= inf
α∈R

n
+

∥∥∥
n∑

i=1

αiyixi

∥∥∥
2

such that

n∑

i=1

αi = 1, (12.5)

with η ∝∑n
i=1 αiyixi at optimum. Moreover, by complementary slackness, at optimality,

a nonnegative αi is nonzero only for i attaining the minimum in mini∈{1,...,n} yix
⊤
i η.

Reformulation as a support vector machine (SVM). Because we only consider
the sign of the linear function, there are two equivalent ways to write the max-margin
problem. Indeed, instead of maximizing the quantity mini∈{1,...,n} yix

⊤
i η and constrain-

ing ‖η‖2, we can decide to constrain the first and minimize over the second. In other
words, we can see η∗ as the unit-norm direction of the solution θ∗ of the following opti-
mization problem (with nonnegative Lagrange multipliers α1, . . . , αn):

inf
θ∈Rd

1

2
‖θ‖22 such that y ◦ (Xθ) > 1n = inf

θ∈Rd
sup
α∈R

n
+

1

2
‖θ‖22 + α⊤(1n − y ◦ (Xθ))

= sup
α∈R

n
+

α⊤1n −
1

2
‖X⊤(y ◦ α)‖22, (12.6)

with θ = X⊤(y ◦ α) at optimum (the optimal dual vectors α ∈ Rn from equations (12.5)
and (12.6) are proportional to each other). Note that here, y ◦ (Xθ) > 1n is the compact
formulation of the inequality constraints ∀i ∈ {1, . . . , n}, yix⊤i θ > 1. Given η, θ is equal
to η/mini∈{1,...,n} yix

⊤
i η, so the optimal value of the previous optimization problem is

1
2ρ

2.

The optimal vector θ∗ is the solution of the separable SVM from section 4.1.2 with
vanishing regularization parameter; that is, the minimizer of 1

2‖θ‖22+C
∑n

i=1(1−yix⊤i θ)+
for C that is large enough. See section 4.1.2 for an illustration.

Divergence and convergence of directions. Because the logistic loss plotted below
is strictly positive and tends to zero at infinity, the function F in equation (12.4) has an
infimum equal to zero, which is not attained. However, for any sequence θt such that all
yix

⊤
i θt, i = 1, . . . , n tend to +∞, we have F (θt)→ infθ∈Rd F (θ) = 0.



348 CHAPTER 12. OVERPARAMETERIZED MODELS

yϕ(x)⊤θ

Loss

In such a situation, as GD reaches optimality by convexity of F , it cannot converge
to a point and has to diverge. It turns out that it diverges along a direction; that is,
‖θt‖2 → +∞, with θt

‖θt‖2
→ η for some η ∈ Rd of unit ℓ2-norm. This direction η has to

lead to perfect classification (i.e., yix
⊤
i η > 0 for all i ∈ {1, . . . , n}). Among all of them,

it is exactly the one with maximum margin as defined in the previous paragraphs (i.e.,
which maximizes mini∈{1,...,n} yix

⊤
i η > 0). See Gunasekar et al. (2018) for a detailed

proof. For brevity, we give a simple argument for a slightly modified problem.

Gradient flow on the exponential loss (�). We consider instead the logarithm of
the empirical risk associated with the exponential loss G(θ) = log

[
1
n

∑n
i=1 exp(−yix⊤i θ)

]
,

which is asymptotically equivalent to the logistic loss for yix
⊤
i θ tending to infinity for

all i ∈ {1, . . . , n} (which is asymptotically the case in an overparameterized regime).
Moreover, we replace the GD recursion θt = θt−1 − γG′(θt−1) by the gradient flow

ξ′(τ) = −G′(ξ(τ)). (12.7)

This ordinary differential equation (ODE) approximates GD for vanishing step sizes, as
ξ(γt) ≈ θt for γ tending to zero. The use of gradient flows instead of GD is a standard
theoretical simplification that allows the use of differential calculus (see, e.g., Scieur et al.,
2017, and references therein).

We have, for all θ ∈ R
d,

G′(θ) =
−
∑n
i=1 yixi exp(−yix⊤i θ)∑n
i=1 exp(−yix⊤i θ)

= −
n∑

i=1

αiyixi

for αi =
exp(−yix⊤

i θ)∑n
j=1 exp(−yjx⊤

j θ)
and i ∈ {1, . . . , n}, leading to α in the simplex (with nonnega-

tive components and summing to 1). Thus, from equation (12.5) defining the maximum
margin hyperplane, we get

‖G′(θ)‖2 >
1

ρ
. (12.8)

Moreover, comparing maxima and soft maxima,3 we get:

− log(n)− min
i∈{1,...,n}

yix
⊤
i θ 6 G(θ) 6 − min

i∈{1,...,n}
yix

⊤
i θ. (12.9)

3We use 0 > log
(
1
n

∑n
i=1 e

zi
)
−maxi∈{1,...,n} zi = log

(
1
n

∑n
i=1 e

zi−maxj∈{1,...,n} zj
)
> log(1/n).



12.1. IMPLICIT BIAS OF GRADIENT DESCENT 349

We thus have a flow τ 7→ ξ(τ) that cannot converge as by equations (12.7) and (12.8),
‖ξ′(τ)‖2 > 1/ρ. Moreover, by equation (12.9), it maximizes a function that is a constant
away from the margin. Therefore, it has to diverge along a direction that maximizes this
margin. We now make this reasoning precise.

Using d
dτG(ξ(τ)) = G′(ξ(τ))⊤ξ′(τ) = −‖G′(ξ(τ))‖22, we get:

min
i∈{1,...,n}

yix
⊤
i ξ(τ) > −G(ξ(τ)) − log(n) from equation (12.9),

= −G(ξ(0)) +

∫ τ

0

‖G′(ξ(u))‖22du− log(n).

Then, using equation (12.8) twice, we get:

min
i∈{1,...,n}

yix
⊤
i ξ(τ) > −G(ξ(0)) +

1

ρ

∫ τ

0

‖G′(ξ(u))‖2du− log(n) (12.10)

> −G(ξ(0)) +
1

ρ2
τ − log(n). (12.11)

Note that equation (12.10) is not needed to derive equation (12.11), but will be used
later. Thus, from equation (12.11), for τ > ρ2

[
log(n) + G(ξ(0))

]
, we have a nonneg-

ative lower bound on the margin. Moreover, the derivative of τ 7→ ‖ξ(τ)‖2 is τ 7→
−G′(ξ(τ))

⊤( ξ(τ)
‖ξ(τ)‖2

)
, and its magnitude is less than ‖G′(ξ(τ))‖2. This implies by inte-

gration that

‖ξ(τ)‖2 6 ‖ξ(0)‖2 +

∫ τ

0

‖G′(ξ(u))‖2du. (12.12)

We thus get, from equations (12.10) and (12.12),

min
i∈{1,...,n}

yix
⊤
i

( ξ(τ)
‖ξ(τ)‖2

)
>
−G(ξ(0)) + 1

ρ

∫ τ
0 ‖G′(ξ(u))‖2du− log(n)

‖ξ(0)‖2 +
∫ τ
0
‖G′(ξ(u))‖2du

=
−G(ξ(0))+ 1

ρ

(
‖ξ(0)‖2+

∫ τ
0 ‖G′(ξ(u))‖2du

)
− 1
ρ‖ξ(0)‖2−log(n)

‖ξ(0)‖2 +
∫ τ
0
‖G′(ξ(u))‖2du

=
1

ρ
+
−G(ξ(0))− 1

ρ‖ξ(0)‖2 − log(n)

‖ξ(0)‖2 +
∫ τ
0 ‖G′(ξ(u))‖2du

>
1

ρ
−
G(ξ(0))+ 1

ρ‖ξ(0)‖2+log(n)

‖ξ(0)‖2 + τ/ρ
, since

∫ τ

0

‖G′(ξ(u))‖2du>
τ

ρ
.

The lower bound that appears here tends to 1
ρ when τ tends to infinity, which is the

maximal value. We thus get convergence to the maximum margin hyperplane.

Alternative (informal) proof (�). We provide another informal derivation based on
gradients. The gradient F ′(θ) of the original objective function based on the logistic loss

is equal to F ′(θ) = − 1
n

∑n
i=1

exp(−yix⊤
i θ)

1+exp(−yix⊤
i θ)

yixi.



350 CHAPTER 12. OVERPARAMETERIZED MODELS

Figure 12.1. Logistic regression on separable data estimated with GD on the unregularized
empirical risk, at various numbers of iterations t. This is implemented by minimizing the
logistic loss function with data

(
xi

1

)
∈ R3. The dotted line represents the maximum

margin hyperplane, while the solid line represents the current classification hyperplane.

We assume that we know a priori that ‖θt‖ → +∞ and θt/‖θt‖2 → η. Thus, because
we have a sum of exponentials with arguments that go to infinity, the dominant term
in F ′(θt) corresponds to the indices i, of which −yix⊤i η is the largest. Moreover, all these
values must be negative (indeed, we can only attain zero loss for well-classified training
data). We denote this set as I. Thus, asymptotically,

F ′(θt) ∼ −
1

n

∑

i∈I
yi exp(−‖θt‖2yix⊤i η)xi.

Moreover, if we admit for simplicity that F ′(θt) diverges in the direction −η, η has to be
proportional to a vector

∑
i∈I αiyixi, where α > 0, and αi = 0 so long as i is not among

the minimizers of yix
⊤
i η. This is exactly the optimality condition for η∗ in equation (12.5).

Thus, η = η∗.

Summary. Overall, we obtain a classifier corresponding to a minimum ℓ2-norm sepa-
rating hyperplane. See examples in two dimensions shown in figure 12.1, where, after a
few iterations, the linear classifier makes no error on the training data and then slowly
converges to the maximum margin one. Note that GD on the logistic regression problem
may not be the most efficient way to obtain a maximum margin hyperplane. See the slow
convergence rates in 1/ log(t) derived by Soudry et al. (2018), Ji and Telgarsky (2018),
and a simpler subgradient algorithm presented next.



12.1. IMPLICIT BIAS OF GRADIENT DESCENT 351

Subgradient method for the hinge loss and perceptron (�). For linearly sepa-
rable data, dedicated algorithms to find the max-margin classifier can be obtained from
optimization algorithms described in chapter 5. They are explicitly or implicitly based
on the hinge loss. We consider the “margin” ρ > 0, defined earlier as in the SVM
reformulation

ρ2 = inf
θ∈Rd

‖θ‖22 such that y ◦ (Xθ) > 1n. (12.13)

To obtain a linear separator θ, one can use the subgradient method from section 5.3
applied to the cost function

F (θ) = max
i∈{1,...,n}

(1− yix⊤i θ)+.

The iteration is
θt = θt−1 + γ1yitx⊤

it
θt−1<1yitxit , (12.14)

where it ∈ arg mini∈{1,...,n} yix
⊤
i θt−1, and γ is the step size. With θ∗ being the minimizer

in equation (12.13), we have F (θ∗) = 0 = minθ∈Rd F (θ), and after t steps, following the
analysis of proposition 5.6, we get

min
u6t

F (θu) 6
γR2

2
+

ρ2

2γt
.

The quantity shown here is less than ε so long as γR2

2 + ρ2

2γt 6 ε, which can be achieved

by γ = ε
R2 and t = ρ2

γε = ρ2R2

ε2 , leading to an objective function less than ε = ρR√
t
. If

F (θt) < 1, then, following section 4.1, we have linearly separated the data, which happens
as soon as we have t > (ρR)2. The iteration in equation (12.14) is a variation on the
perceptron algorithm (Rosenblatt, 1958; Novikoff, 1962), as presented in exercise 12.1.

Exercise 12.1 Extend this analysis to the stochastic gradient algorithm for the objective
function F (θ) = 1

n

∑n
i=1(1−yix⊤i θ)+. What can be concluded when the data are i.i.d. and

a single pass over the data is made?

Exercise 12.2 (Perceptron) In the same setup as exercise 12.1, consider the iteration,
started at θ0, that at time t looks for an it ∈ {1, . . . , n} such that yitx

⊤
itθt−1 6 0 and,

if found, implements the update θt = θt−1 + yitxit . Show that all the points are well
classified if the number of iterations is greater than (ρR)2.

12.1.3 Beyond Convex Problems (�)

The implicit bias of GD can be observed and analyzed in various models other than
linear ones. In this section, we focus on diagonal linear networks, where the analysis
of gradient flows is reasonably simple. We highlight the potential difference in implicit
biases depending on the chosen learning algorithm.

We consider our traditional least-squares model with design matrix X ∈ Rn×d and
response vector y ∈ Rn, with the least-squares objective function: F (θ) = 1

2n‖y −Xθ‖22,



352 CHAPTER 12. OVERPARAMETERIZED MODELS

where d > n, and with an invertible kernel matrix XX⊤ ∈ Rn×n, leading to infinitely
many minimizers. We consider a number of learning dynamics, which we study in con-
tinuous time for simplicity.

From gradient flow to mirror flow. The gradient flow dynamics on θ is the ODE:

d

dt
θ(t) = −F ′(θ(t)) = − 1

n
X⊤(Xθ(t)− y).

With the same proof as for GD in section 12.1.1, θ(t) converges exponentially fast
to the minimum ℓ2-norm interpolator. This can be extended to the continuous-time
limit of mirror descent presented in section 11.1.3. If we consider a µ-strongly convex
twice-differentiable mirror map Φ : Rd → R, the mirror descent recursion is defined
as Φ′(θ̃k+1) = Φ′(θ̃k) − γF ′(θ̃k), and we obtain the continuous-time limit by setting
θ(γk) = θ̃k (and interpolating between these values), leading to the ODE:

d

dt

[
Φ′(θ(t))

]
= −F ′(θ(t)), (12.15)

which is equivalent to Φ′′(θ(t)) ddtθ(t) = −F ′(θ(t)) = − 1
nX

⊤(Xθ(t)− y). This leads to

d

dt

[
Xθ(t)− y

]
= X

d

dt
θ(t) = − 1

n
XΦ′′(θ(t))−1X⊤[Xθ(t)− y

]
,

which in turn leads to

d

dt

[
‖Xθ(t)− y‖22

]
= − 2

n

[
Xθ(t)− y

]⊤XΦ′′(θ(t))−1X⊤[Xθ(t)− y
]

6 −2λmin(XX⊤)

nµ
‖Xθ(t)− y‖22, using Φ′′(θ(t)) < µI.

Thus, like for the gradient flow dynamics, Xθ(t) converges exponentially fast to y. Since
from equation (12.15), Φ′(θ) takes the form Φ′(θ0) + X⊤α for some α ∈ Rn, the corre-
sponding limit α∞ (with the corresponding θ∞ such that Φ′(θ∞) = Φ′(θ0) + X⊤α∞) of
α(t) when t tends to infinity (the existence of such limits is left as an exercise) is such that
Xθ∞ = y and Φ′(θ∞) = Φ′(θ0)+X⊤α∞, which is exactly the interpolator of the data with
minimum value of the Bregman divergence DΦ(θ, θ0) = Φ(θ)−Φ(θ0)−Φ′(θ0)⊤(θ− θ0).4

Note that for Φ(θ) = 1
2‖θ‖22, we recover back the result for GD. Hence, choosing a mirror

map corresponds to selecting a solution to the interpolation problem by projecting the
initialization through the Bregman divergence (see exercise 12.3).

Exercise 12.3 Show that for all θ∗ ∈ {θ ∈ Rd, Xθ = y}, we have DΦ(θ∗, θ∞) +
DΦ(θ∞, θ0) = DΦ(θ∗, θ0). Conclude on the resulting implicit bias for θ∞.

4By duality, we have infXθ=y Φ(θ) − Φ′(θ0)⊤θ = supα∈Rn infθ∈Rd Φ(θ) − Φ′(θ0)⊤θ + α⊤(y − Xθ),

which is equal to supα∈Rn α⊤y−Φ∗(Ψ′(θ0) +X⊤α), with optimality conditions Φ′(θ) = Φ′(θ0) +X⊤α
and Xθ = y.



12.1. IMPLICIT BIAS OF GRADIENT DESCENT 353

Exercise 12.4 (Implicit bias of mirror descent) Consider the sequence (θ̃k)k>0 fol-
lowing the discrete version of equation (12.15); that is, mirror descent for all integer k,
Φ′(θ̃k+1) − Φ′(θ̃k) = −γF ′(θ̃k), for γ > 0. Show that, for γ sufficiently small, the same
conclusion holds:

• θ̃k converges toward an interpolator θ̃∞,

• θ̃∞ is the interpolator with minimum Bregman divergence DΦ(θ, θ0).

Diagonal linear networks. Following Woodworth et al. (2020), we consider “diagonal
linear networks,” which are simple one-hidden-layer neural networks defining a predic-
tion function of the following form (with a diagonal input weight matrix, no activation
function, and no constant terms):

f(x) = (u ◦ v)⊤x =

d∑

j=1

ujvjxj ,

for u, v ∈ Rd, and with u ◦ v denoting the pointwise product. It corresponds to a special
case of the network we defined in section 9.2:

f(x) = (u ◦ v)⊤x =
d∑

j=1

ujvjxjx

v

u

This is thus an alternative nonlinear way of defining a linear model through θ = u◦v ∈
Rd. We study the gradient flow dynamics for the objective function G(u, v) = F (u ◦ v);
that is,

d

dt
u(t) = −∂G

∂u
(u(t), v(t)) = −F ′(u(t) ◦ v(t)) ◦ v(t)

d

dt
v(t) = −∂G

∂v
(u(t), v(t)) = −F ′(u(t) ◦ v(t)) ◦ u(t).

We thus have d
dt [u◦u(t)−v ◦v(t)] = 0, and therefore u◦u−v ◦v is a constant function. If

we initialize v = 0 and u as the constant vector equal to α ∈ R, we have u◦u(t)−v◦v(t) =
α21d for all t > 0. Thus, for θ(t) = u ◦ v(t), we have

d

dt
θ(t) = u(t) ◦ d

dt
v(t) + v(t) ◦ d

dt
u(t) = −F ′(θ(t)) ◦ (u ◦ u(t) + v ◦ v(t)).

Moreover, we have θ◦θ(t) = (u◦u)◦(v◦v)(t) = 1
4 [u◦u(t)+v◦v(t)]2− 1

4 [u◦u(t)−v◦v(t)]2.
Thus, we obtain the following ODE for each component θj of θ:

d

dt
θj(t) = −F ′(θ(t))j

√
4θj(t)2 + α4.



354 CHAPTER 12. OVERPARAMETERIZED MODELS

It can be exactly cast as a mirror flow, defined in equation (12.15), with mirror map

Φ(θ) =
∑d

j=1 q(θj) for q : R → R a convex function such that q′′(η) = (4η2 + α4)−1/2.
By integrating twice, one obtains, by imposing q′(0) = 0,

q′(η) =
1

2
arg sinh(2η/α2) = − logα+

1

2
log

[
2η +

√
4η2 + α4

]
,

and then, imposing q(0) = 0, we get an even function of η defined as

q(η) =
η

2
arg sinh(2η/α2) +

α2

4

[
1−

√
4η2/α4 + 1

]

=
η

2
log

[
2η +

√
4η2 + α4

]
− 1

4

√
4η2 + α4 +

α2

4
− η

2
logα2.

The point of computing the mirror potential q is to understand the implicit bias of
the gradient flow. Indeed, being a mirror initialized at the origin, we know from the
previous analysis that the limiting point is the Bregman projection of the origin, and
hence controlled by the function q. It depends on the parameter α, which corresponds

to the initialization. When α tends to +∞, we get the asymptotic expansion q(η) ∼ η2

2α2

(proof left as an exercise), and thus the mirror map is asymptotically Φ(θ) ∼ 1
2α2 ‖θ‖22: the

implicit bias is governed by the Euclidean norm, and we recover the traditional geometry
of GD directly on θ.

However, when α tends to zero, we get the equivalent q(η) ∼ |η| log 1
α (proof left as

an exercise), and thus the mirror map is asymptotically Φ(θ) ∼ log 1
α · ‖θ‖1: the implicit

bias corresponds to the ℓ1-norm, showing how nonconvex optimization can lead to an a
priori quite unexpected implicit bias. See more details by Woodworth et al. (2020), as
well as an analysis of the extra regularizing effect of stochastic gradient descent by Pesme
et al. (2021).5 Note that the analysis previously given for diagonal networks explicitly
shows quantitative global convergence of the gradient flow for a nonconvex objective; in
section 12.3, we consider qualitative results that apply more generally.

Beyond linear networks. Characterizing the implicit bias of GD can be done in more
complex situations. For example, Chizat and Bach (2020) show that with a neural net-
work with rectified linear unit (ReLu) activations and infinitely many neurons estimated
by GD on the empirical logistic loss, then in the infinite width limit, we get a predictor
that interpolates the data, with a minimum specific norm, for norms that are exactly the
ones obtained in section 9.3.6

12.1.4 Remarks on Implicit Bias

Is the implicit bias always beneficial? In this subsection, we have seen that the
parameterization of the predictor encodes a large part of the implicit bias of gradient-type
methods. Linear predictors (and similarly kernel methods) benefit from ℓ2-type of implicit

5See https://francisbach.com/implicit-bias-sgd/.
6See https://www.di.ens.fr/~fbach/ltfp/wide_implicit_bias.html for more details.

https://francisbach.com/implicit-bias-sgd/
https://www.di.ens.fr/~fbach/ltfp/wide_implicit_bias.html


12.2. DOUBLE DESCENT 355

regularization, while, for example, multiplicative parameterizations, such as diagonal
linear networks (with small initialization), lead to ℓ1-type of implicit regularization. In
each case, the combination of the initialization and the “architecture” of the predictor
family constrain the capacity of the model implicitly, but an important question remains:
Is this effect always beneficial for good generalization?

Relevance of prior knowledge. In this subsection, we have avoided any statistical
questions on purpose (and we refer to chapters 7, 8 and 9 for a treatment of these) as
the answers are a priori specific to the precise class of problem one considers. To be
concrete, if the ground truth to a statistical model is expected to be sparse, then there
is no reason that the low ℓ2-norm implicit bias of linear methods should result in any
substantial benefit: on the contrary explicit regularization by the ℓ1-norm, as presented in
section 8.3, or implicit regularization, as presented here, should still be used to constrain
the estimator.

What does the implicit bias depend on? To a large extent, we can define the im-
plicit bias as anything that happens to constrain the estimator which has not been encoded
a priori in the model. Hence, any algorithmic hyperparameter or even any computation-
oriented manipulation enters into this category: this is why the name algorithmic regu-
larization has also been adopted to specify this phenomenon. To be concrete, we have
seen that the parameterization of the predictor family and the initialization of a gradient
method are of great importance. But, we can go beyond: for example the type of gradient
method and any related parameter; the step size in general, the stochasticity of SGD,
the momentum or renormalization in Adam, any manipulation like batch normalization
or dropout, are all known to influence the prediction; see Smith et al. (2021), Lyu et al.
(2022), and Andriushchenko et al. (2023) for more precise references, as well as Vardi
(2023) for a recent review.

12.2 Double Descent

In this section, we consider an interesting phenomenon described in several works (Opper
et al., 1990; Belkin et al., 2019; Mei and Montanari, 2022; Geiger et al., 2020; Hastie
et al., 2022), which shows a particular behavior for overparameterized models learned by
gradient descent (GD).

12.2.1 The Double Descent Phenomenon

As seen in chapters 2 and 4, typical learning curves look like this one:



356 CHAPTER 12. OVERPARAMETERIZED MODELS

“Size” of function space

Errors

Test

Train

OverfittingUnderfitting

Typically, the “capacity” or “size” of the space of functions used to estimate the predic-
tion function is controlled either by the number of parameters or by some norms of its
parameters. In particular, when there is zero training error at the extreme right of the
curve, the testing error may be arbitrarily bad. The bound that we used in chapter 4,
using Rademacher averages for the space of functions, is controlled by a uniform ℓ2-norm
of the parameters (say a positive number D) and grows as D/

√
n, which can typically be

quite large. These bounds were true for all empirical risk minimizers. In this section, we
will focus on a particular one–namely, the one obtained by unconstrained GD.

When the model is overparameterized (or in other words, the capacity gets large), a
new phenomenon can occur: after the testing error explodes as the capacity grows, it
goes down again, as illustrated below:

“Size” of function space

Errors

Test

Train

OverfittingUnderfitting Overparameterized regime

Interpolation threshold

This section aims to understand this so-called “double descent” phenomenon, starting
with empirical evidence.

12.2.2 Empirical Evidence

△! There may be no double descent phenomenon if other empirical risk minimizers
are used instead of the one obtained by (stochastic) GD.

Toy example with random features. Here, we consider a random feature model as
in chapters 7 and 9, with features (v⊤x)+, for neurons v ∈ Rd sampled uniformly on the
unit sphere. We consider n = 200, d = 5 with input data distributed uniformly on the

unit sphere, and outputs y =
(
1
4 +(v⊤∗ x)2

)−1
+N(0, σ2), with σ = 2, for some random v∗.



12.2. DOUBLE DESCENT 357

Figure 12.2. Classical learning curves: (left) training and testing errors as functions of the
number of random features, always less than the number of observations; (right) training
and testing errors for ridge regression with the same features (i.e., using ℓ2-regularization).

Figure 12.3. Double descent curve: training and testing errors as functions of the number
of random features. For m 6 n = 200, this is exactly the same as the curves from
figure 12.2 (left).

We sample m random features v1, . . . , vm ∈ Rd uniformly at random on the sphere,
and we learn parameters θ ∈ Rm by minimizing the regularized empirical risk

1

n

n∑

i=1

(
yi −

m∑

j=1

θj(v
⊤
j xi)+

)2

+ λ‖θ‖22. (12.16)

We report in figure 12.2 training and testing errors after learning with GD until
convergence: (left) varying m with λ = 0, (right) varying λ with m = +∞ (we can
perform estimation for m = +∞ efficiently because we can compute the corresponding
positive-definite kernel k(x, x′) = Ev[(v⊤x)+(v⊤x′)+]; see section 9.5).

In the left plot of figure 12.2, the number of random features m is less than n as the
testing error diverges (and there is no difference in testing performance compared to ridge



358 CHAPTER 12. OVERPARAMETERIZED MODELS

regression in the right plot). However, when this number m is allowed to grow past n, we
see the double descent phenomenon shown in figure 12.3. Similar experiments are shown
by Belkin et al. (2019), Geiger et al. (2020), and Mei and Montanari (2022), in particular
for neural networks.

No phenomenon when using regularization. When an extra regularizer is used
(i.e., λ 6= 0 in equation (12.16)), then the double descent phenomenon is reduced. In
particular, if the regularization parameter λ is adapted for each m, then the phenomenon
totally disappears (see Mei and Montanari, 2022, for more details).

12.2.3 Linear Regression with Gaussian Inputs

In this book, we will study two setups for the analysis of double descent. In this sub-
section, we consider Gaussian models with varying input dimensions, where we can show
an explosion of the expected risk when dimension d is equal to the number n of obser-
vations, but the model is too simple to see a U-shaped curve for underparameterized
models; moreover, the prediction problem changes as dimension grows, which is not stan-
dard. In section 12.2.4, we consider a model with fewer symmetries that lead to a proper
full double descent behavior.

We now consider a d-dimensional Gaussian random vector with mean 0 and covariance
matrix identity, with n observations x1, . . . , xn ∈ Rd, and responses yi = x⊤i θ∗ + εi, with
εi normal with mean zero and variance σ2I, for i = 1, . . . , n. We will compute an exact
expectation of the risk of the minimum norm empirical risk minimizer (as detailed in
section 12.1.1), which is the one gradient descent converges to. We denote by X ∈
Rn×d the design matrix, and Σ̂ = 1

nX
⊤X the non-centered covariance matrix, and by

K = XX⊤ ∈ Rn×n the kernel matrix. As shown in section 3.8, the excess risk is
R(θ̂) = (θ̂ − θ∗)Σ(θ̂ − θ∗) = ‖θ̂ − θ∗‖22 since Σ = I.

Underparameterized regime. In the underparameterized regime, the minimum norm
empirical risk minimizer is simply the ordinary least-squares estimator, which is unbiased;
that is, E

[
θ̂
]

= θ∗. We then have an expected excess risk equal to (see the random design
analysis in proposition 3.10):

E
[
R(θ̂)

]
=
σ2

n
E
[

tr(ΣΣ̂−1)
]

= σ2
E
[

tr
(
(X⊤X)−1

)]
.

The matrix X⊤X ∈ Rd×d has a Wishart distribution with n degrees of freedom.7 It is
almost surely invertible if n > d, and is such that E

[
tr
(
(X⊤X)−1

)]
= d

n−d−1 if n > d+2.
The expectation is infinite for n = d and n = d+1 (see, e.g., Haff, 1979, for computations
of moments of the Wishart distribution).

Therefore, we have for n > d+ 2 an expected excess risk equal to

E
[
R(θ̂)

]
= σ2 d

n− d− 1
. (12.17)

7See https://en.wikipedia.org/wiki/Wishart_distribution for details.

https://en.wikipedia.org/wiki/Wishart_distribution


12.2. DOUBLE DESCENT 359

Overparameterized regime. In the overparameterized regime, when n 6 d, the
kernel matrix is almost surely invertible, and the minimum ℓ2-norm interpolator θ̂ is
equal to (using the formulas in section 12.1.1) θ̂ = X⊤(XX⊤)−1y = X⊤(XX⊤)−1Xθ∗ +
X⊤(XX⊤)−1ε. The expected excess risk decomposes into a bias and a variance term.

The variance term is equal to, since Σ = I,

E
[
ε⊤(XX⊤)−1XΣX⊤(XX⊤)−1ε

]
= σ2

E
[

tr
(
(XX⊤)−1XX⊤(XX⊤)−1

)]

= σ2
E
[

tr
(
(XX⊤)−1

)]
,

which is the same expectation of the trace of an inverse Wishart matrix, but with the
order of n and d reversed; that is, σ2 n

d−n−1 for d > n+ 2.

The bias term is equal to

E
[
R(X⊤(XX⊤)−1Xθ∗)

]
= E

[∥∥Σ1/2
(
X⊤(XX⊤)−1Xθ∗ − θ∗

)∥∥2
2

]
.

Since Σ = I, we get a bias term equal to

E

[
θ⊤∗

(
I −X⊤(XX⊤)−1X

)
θ∗
]
.

The matrix X⊤(XX⊤)−1X ∈ Rd×d is the projection matrix on a random subspace of
size n 6 d. By rotational invariance of the Gaussian distribution, this random subspace is
uniformly distributed among all subspaces, and therefore we can replace θ∗ by ‖θ∗‖2 · ej ,
that is,

E
[
θ⊤∗ X

⊤(XX⊤)−1Xθ∗
]

= ‖θ∗‖22 · E
[
e⊤j X

⊤(XX⊤)−1Xej
]

for any of the d canonical basis vectors ej, j = 1, . . . , d, and thus

E
[
θ⊤∗ X

⊤(XX⊤)−1Xθ∗
]

=
‖θ∗‖22
d

d∑

j=1

E
[
e⊤j X

⊤(XX⊤)−1Xej
]

=
‖θ∗‖22
d

E
[

tr
(
X⊤(XX⊤)−1X

)]
=
‖θ∗‖22
d
· n.

The bias term is thus equal to d−n
d ‖θ∗‖22.

Therefore, the overall expected risk in the overparameterized regime is
∣∣∣∣

σ2n

d− n− 1
+ ‖θ∗‖22

d− n
d

.

∣∣∣∣ (12.18)

Summary. We can now combine equation (12.17) and equation (12.18) to get:

if d 6 n− 2, E
[
R(θ̂)

]
= σ2 d

n− d− 1

if d > n+ 2, E
[
R(θ̂)

]
=

σ2n

d− n− 1
+ ‖θ∗‖22

d− n
d

.

This leads to the following picture, where (1) there is indeed an explosion around d = n,
but (2) there is no U-shaped curve for d < n while there is one for d > n (see exercise 12.5):



360 CHAPTER 12. OVERPARAMETERIZED MODELS

d

Excess risks

n

Bias

Variance

This extends to more general sampling models, see Hastie et al. (2022), and to random
non-linear features (Mei and Montanari, 2022).

Exercise 12.5 Show that for d > n, the generalization risk has a U-shaped curve and
find its minimizer.

12.2.4 Linear Regression with Gaussian Projections (��)

To provide a more precise theoretical justification for the double descent phenomenon, we
consider a linear regression model in the random design setting, with Gaussian inputs and
Gaussian noise. We assume d > n as in section 10.2.2 (so that a perfect fit is possible).

That is, we consider a Gaussian random variable with mean 0 and general covariance
matrix Σ, with n observations x1, . . . , xn, and responses yi = x⊤i θ∗ +εi, with εi Gaussian
with mean zero and covariance matrix σ2I, for i = 1, . . . , n.

To have a unique prediction problem with a varying number of features, we consider
additional random projections; that is, as in section 10.2.2, we consider a random matrix
S ∈ Rd×m with independent components all sampled from a standard Gaussian distri-
bution (mean 0 and variance 1). The main differences are that (1) we will perform an
analysis in the random design setting, and (2) we will also need to tackle the overparam-
eterized regime m > n.

We will compute the expectation of the expected risk of the minimum norm empirical
risk minimizer (as detailed in section 12.1.1), which is the one GD converges to. See Bach
(2024) for further more precise asymptotic results using random matrix theory.

We denote byX ∈ Rn×d the design matrix, by Σ̂ = 1
nX

⊤X the noncentered covariance
matrix, and by K = XX⊤ ∈ Rn×n the invertible kernel matrix. We will need to compute
expectations with respect to the data (X, ε) and the random projection matrix S (we

thus make explicit which variables are considered in expectations). The estimator θ̂ is
equal to Sη̂, with η̂ ∈ Rm as a minimizer of ‖y −XSη‖22.

The excess risk is denoted as R(θ̂) = (θ̂ − θ∗)Σ(θ̂ − θ∗), and we now consider the two
regimes m < n (underparameterized) and m > n (overparameterized). In both cases, as
already seen in chapter 3 and in section 12.2.3, the expectation of the excess risk will be
composed of two terms: a (squared) “bias term” R(bias)(θ̂), corresponding to σ = 0, and

a “variance term” R(var)(θ̂), corresponding to θ∗ = 0.



12.2. DOUBLE DESCENT 361

Underparameterized regime. In the underparameterized regime where n > m, the
minimum norm empirical risk minimizer is simply the ordinary least-squares (OLS) esti-
mator. We denote by η∗ = (S⊤ΣS)−1S⊤Σθ∗ ∈ Rm the minimizer of (θ∗−Sη)⊤Σ(θ∗−Sη).
We have Sη∗ = ΠSθ∗ with ΠS = S(S⊤ΣS)−1S⊤Σ ∈ Rd×d, which is a projection matrix
such that ΠSS = S, Π2

S = ΠS , and Π⊤
SΣΠS = ΣΠS .

If m 6 n, the estimator is obtained from the normal equations S⊤X⊤XSη̂ = S⊤X⊤y,
and it can be expanded using θ∗ as follows:

θ̂ = Sη̂ = S(S⊤X⊤XS)−1S⊤X⊤y

= S(S⊤X⊤XS)−1S⊤X⊤Xθ∗ + S(S⊤X⊤XS)−1S⊤X⊤ε using y = Xθ∗ + ε,

= Nθ∗ + S(S⊤X⊤XS)−1S⊤X⊤ε,

with N = S(S⊤X⊤XS)−1S⊤X⊤X . Conditioned on S and X , the expected excess risk
is equal to

Eε

[
R(θ̂)

]
= σ2 tr

(
XS(S⊤X⊤XS)−1S⊤ΣS(S⊤X⊤XS)−1S⊤X⊤) +

∥∥Σ1/2
(
Nθ∗ − θ∗

)∥∥2

2

= σ2 tr
(
S⊤ΣS(S⊤X⊤XS)−1

)
+ tr

((
Nθ∗ − θ∗

)⊤
Σ
(
Nθ∗ − θ∗

))
.

For the variance term, equal to σ2 tr
(
S⊤ΣS(S⊤X⊤XS)−1

)
, and for S fixed, since X has

a Gaussian distribution, the matrix S⊤X⊤XS is distributed as a Wishart distribution
with parameter S⊤ΣS and n degrees of freedom (see, e.g., Haff, 1979, for computations
of moments of the Wishart distribution). Thus, if n > m+ 1, we have

EX

[
(S⊤X⊤XS)−1

]
=

1

n−m− 1
(S⊤ΣS)−1,

which in turn implies ES,X,ε

[
R(var)(θ̂)

]
= EX,ε

[
R(var)(θ̂)

]
=

σ2m

n−m− 1
, independent of

the choice of the sketching matrix S.

For the bias term, the computation is more involved. We expand

Eε

[
R(bias)(θ̂)

]
= tr

((
Nθ∗ − θ∗

)⊤
Σ
(
Nθ∗ − θ∗

))

= θ⊤∗ Σθ∗ + 2θ⊤∗ ΣS(S⊤X⊤XS)−1S⊤X⊤Xθ∗

+θ⊤∗ X
⊤XS(S⊤X⊤XS)−1S⊤ΣS(S⊤X⊤XS)−1S⊤X⊤Xθ∗.

To compute the expectation, we will first condition on (XS, S) and use the Gaussian
conditioning formulas from section 1.1.3, which leads to, for any matrices A and B of
appropriate sizes (proof left as an exercise):

E
[
X
∣∣XS, S

]
= XS(S⊤ΣS)−1S⊤Σ = XΠS

E
[

tr(AX⊤BX)
∣∣XS, S

]
= tr

(
AΠ⊤

SX
⊤BXΠS

)
+ tr(B) tr(AΣ(I −ΠS)).

This leads to, with S assumed to be fixed, using the two identities just above:

EX,ε

[
R(bias)(θ̂)

]
= θ⊤∗ Σθ∗ + EX

[
2θ⊤∗ ΣS(S⊤X⊤XS)−1S⊤X⊤XΠSθ∗

]

+EX

[
θ⊤∗ Π⊤

SX
⊤XS(S⊤X⊤XS)−1S⊤ΣS(S⊤X⊤XS)−1S⊤X⊤XΠSθ∗

]

+EX

[
tr
(
XS(S⊤X⊤XS)−1S⊤ΣS(S⊤X⊤XS)−1S⊤X⊤) · tr

(
θ∗θ

⊤
∗ Σ(I −ΠS)

)]
.



362 CHAPTER 12. OVERPARAMETERIZED MODELS

Now, using properties of ΠS , we get

EX,ε

[
R(bias)(θ̂)

]
= θ⊤∗ Σθ∗ + EX

[
2θ⊤∗ ΣS(S⊤ΣS)−1S⊤Σθ∗

]

+EX

[
θ⊤∗ ΣS(S⊤ΣS)−1S⊤ΣS(S⊤ΣS)−1S⊤Σθ∗

]

+EX

[
tr
(
S⊤ΣS(S⊤X⊤XS)−1

)
· tr

(
θ∗θ

⊤
∗ Σ(I − S(S⊤ΣS)−1S⊤Σ)

)]
.

We can now group some terms and use Π⊤
SΣΠS = ΣΠS to get

EX,ε

[
R(bias)(θ̂)

]
= θ⊤∗ Σ(I −ΠS)θ∗ ·

[
1 + EX

[
tr
(
S⊤ΣS(S⊤X⊤XS)−1

)]]

= θ⊤∗ Σ(I −ΠS)θ∗ ·
(

1 + tr
( 1

n−m− 1
(S⊤ΣS)−1S⊤ΣS

))
,

using expectations of Wishart random variables. Overall, we get

EX,ε

[
R(bias)(θ̂)

]
= θ⊤∗ Σ(I −ΠS)θ∗ ·

n− 1

n−m− 1

= θ⊤∗
(
Σ− ΣS(S⊤ΣS)−1S⊤Σ

)
θ∗ ·

n− 1

n−m− 1
.

We can further bound the bias term; we have, for S Gaussian, following the same rea-
soning as in section 10.2.2,

ES

[
θ⊤∗ (I−ΠS)⊤Σ(I−ΠS)θ∗

]

= ES

[
min
η∈Rm

(θ∗ − Sη)⊤Σ(θ∗ − Sη)
]

by definition of ΠS ,

6 ES

[
min
ξ∈Rd

(θ∗−SS⊤ξ)⊤Σ(θ∗−SS⊤ξ)
]
, with η constrained in the column space of S⊤,

6 min
ξ∈Rd

ES

[
(θ∗ − SS⊤ξ)⊤Σ(θ∗ − SS⊤ξ)

]
by swapping the minimum and expectation,

= min
ξ∈Rd

(
θ⊤∗ Σθ∗ − 2ξ⊤E

[
SS⊤]Σθ∗ + ξ⊤E

[
SS⊤ΣSS⊤]ξ

)
by developing,

= θ⊤∗

(
Σ− ΣE

[
SS⊤]

(
E
[
SS⊤ΣSS⊤])−1

E
[
SS⊤]Σ

)
θ∗ by minimizing in closed form.

Using Wishart expectations, we then get:

ES

[
θ⊤∗ (I−ΠS)⊤Σ(I−ΠS)θ∗

]
6 θ⊤∗

(
Σ−mΣ

(
(m+ 1)Σ + tr(Σ)I

)−1
Σ
)
θ∗

= θ⊤∗ (Σ + tr(Σ)I)
(
(m+ 1)Σ + tr(Σ)I

)−1
Σθ∗

6
2 tr(Σ)

m+ 1
· θ⊤∗

(
Σ +

tr(Σ)

m+ 1
I
)−1

Σθ∗

6
2 tr(Σ)

m+ 1
· ‖θ∗‖22, using Σ 4 tr[Σ] · I.

Overall, for the underparameterized regime, we obtain an upper bound equal to 1
1−m/n

times
σ2m

n
+

2 tr(Σ)

m+ 1
· ‖θ∗‖22,



12.2. DOUBLE DESCENT 363

which has a similar excess risk bound as for ridge regression from section 3.6 and 7.6.4,
with tr(Σ)/m playing the role of the regularization parameter, but with the extra term
1/(1 − m/n) due to the random design setting and the lack of regularization. This
leads to a classical bias-variance trade-off with a U-shaped curve that explodes when m
approaches n. See Bach (2024) for sharper results where expectations with respect to S
are taken using random matrix theory.

Overparameterized regime. In the overparameterized regime, when m > n, then
the kernel matrix XSS⊤X⊤ is almost surely invertible, and the minimum ℓ2-norm inter-
polator θ̂ is equal to (using the expression of this interpolator based on the kernel matrix
from section 12.1.1)

θ̂ = Sη̂ = SS⊤X⊤(XSS⊤X⊤)−1(Xθ∗ + ε).

We can decompose the expectation with respect to ε of the excess risk R(θ̂) as follows:

Eε

[
R(θ̂)

]
= σ2 tr

(
(XSS⊤X⊤)−1XSS⊤ΣSS⊤X⊤(XSS⊤X⊤)−1

)

+
∥∥Σ1/2

(
SS⊤X⊤(XSS⊤X⊤)−1X − I

)
θ∗‖22.

We can now use the same reasoning as in the underparameterized regime, but now taking
expectations with respect to S (with X fixed). We have, for any symmetric matrices A
and B of compatible sizes (proof left as an exercise),

E
[

tr(ASBS⊤)
∣∣XS,X

]
= tr

(
S⊤X⊤(XX⊤)−1XAX⊤(XX⊤)−1XSB

)

+ tr(B) tr
[
A(I −X⊤(XX⊤)−1X)

]

E
[
S
∣∣XS,X

]
= X⊤(XX⊤)−1XS.

Therefore, for the variance term proportional to σ2, for which we take A = Σ and
B = S⊤X⊤(XSS⊤X⊤)−2XS, we obtain two parts from the two identities just above.
The second part of the variance term becomes

tr
[
S⊤X⊤(XSS⊤X⊤)−2XS

]
· tr

[
Σ(I −X⊤(XX⊤)−1X)

]

= tr
[
(XSS⊤X⊤)−1

]
· tr

[
Σ(I −X⊤(XX⊤)−1X)

]
.

The first part of the variance term is

tr
(
X⊤(XX⊤)−1XΣX⊤(XX⊤)−1XSS⊤X⊤(XSS⊤X⊤)−2XSS⊤)

= tr
(
(XX⊤)−1XΣX⊤(XX⊤)−1

)
.

Thus, marginalizing with respect to S and using the expectation of the inverse Wishart
distribution, the variance term is

Eε,S [R(var)(θ̂)] = σ2 tr
(
(XX⊤)−1XΣX⊤(XX⊤)−1

)

+σ2 tr
(
(XX⊤)−1

)

m− n− 1
· tr

[
Σ(I −X⊤(XX⊤)−1X)

]
.



364 CHAPTER 12. OVERPARAMETERIZED MODELS

For the bias term, we have

∥∥Σ1/2
(
SS⊤X⊤(XSS⊤X⊤)−1X − I

)
θ∗‖22

= θ⊤∗ Σθ∗ + θ⊤∗ X
⊤(XSS⊤X⊤)−1XSS⊤ΣSS⊤X⊤(XSS⊤X⊤)−1Xθ∗

−2θ⊤∗ ΣSS⊤X⊤(XSS⊤X⊤)−1Xθ∗

= θ⊤∗ Σθ∗ + tr(ASBS⊤)−2θ⊤∗ ΣSS⊤X⊤(XSS⊤X⊤)−1Xθ∗,

with A = Σ and B = S⊤X⊤(XSS⊤X⊤)−1Xθ∗θ⊤∗ X
⊤(XSS⊤X⊤)−1XS. Taking condi-

tional expectations given (XS,X), simplifying the product XSS⊤X⊤(XSS⊤X⊤)−1 =I,
and using XSBS⊤X⊤ = Xθ∗θ⊤∗ X

⊤, we obtain the following expression of the expected
bias given (XS,X):

θ⊤∗ Σθ∗

+tr
(
X⊤(XX⊤)−1XΣX⊤(XX⊤)−1Xθ∗θ

⊤
∗ X

⊤(XSS⊤X⊤)−1XSS⊤)

+tr(S⊤X⊤(XSS⊤X⊤)−1Xθ∗θ
⊤
∗ X

⊤(XSS⊤X⊤)−1XS) · tr
[
Σ(I −X⊤(XX⊤)−1X)

]

−2θ⊤∗ ΣX⊤(XX⊤)−1XSS⊤X⊤(XSS⊤X⊤)−1Xθ∗

= θ⊤∗ Σθ∗

+θ⊤∗ X
⊤(XX⊤)−1XΣX⊤(XX⊤)−1Xθ∗

+tr((XSS⊤X⊤)−1Xθ∗θ
⊤
∗ X

⊤) · tr
[
Σ(I −X⊤(XX⊤)−1X)

]

−2θ⊤∗ ΣX⊤(XX⊤)−1Xθ∗ by simplifying,

= θ⊤∗ (I −X⊤(XX⊤)−1X)Σ(I −X⊤(XX⊤)−1X)θ∗

+ tr((XSS⊤X⊤)−1Xθ∗θ
⊤
∗ X

⊤) · tr
[
Σ(I −X⊤(XX⊤)−1X)

]
,

by grouping terms. Marginalizing the variable S, this leads to, by rearranging terms,

Eε,S [R(bias)(θ̂)] = θ⊤∗ (I −X⊤(XX⊤)−1X)Σ(I −X⊤(XX⊤)−1X)θ∗

+
1

m− n− 1
θ⊤∗ X

⊤(XX⊤)−1Xθ∗ · tr
[
Σ(I −X⊤(XX⊤)−1X)

]
.

Pulling together bias and variance, when m tends to infinity, we get the following perfor-
mance:

Eε,S [R∞(θ̂)] = θ⊤∗ (I −X⊤(XX⊤)−1X)Σ(I −X⊤(XX⊤)−1X)θ∗

+σ2 tr
(
(XX⊤)−1XΣX⊤(XX⊤)−1

)
.

Overall, we get

Eε,S [R(θ̂)] = Eε,S [R∞(θ̂)] +
1

m−n−1
tr
[
Σ(I−X⊤(XX⊤)−1X)

]

·
(
θ⊤∗ X

⊤(XX⊤)−1Xθ∗ + σ2 tr((XX⊤)−1)
)
.

Thus, as a function of m, we get a descent curve on the right side of m = n. See Bach
(2024) for a detailed expression obtained after taking the expectation with respect to X



12.3. GLOBAL CONVERGENCE OF GRADIENT DESCENT 365

using random matrix theory. While the limiting bias term typically has a better value
than for the underparameterized regime, for the variance term, the limit when m tends
to +∞ does not always go to zero when n tends to infinity. See Bartlett et al. (2020) for
conditions under which the end of the double descent curve can lead to good performance
when σ2 > 0. See the illustration in figure 12.4.

Figure 12.4. Example of a double descent curve, for linear regression with random pro-
jections with n = 200 observations, in dimension d = 400 and a nonisotropic covariance
matrix. The data are normalized so that predicting zero leads to an excess risk of 1 and
the noise so that the optimal expected risk is 1/4. The empirical estimate is obtained by
sampling 20 datasets and 20 random projections from the same distribution and averaging
the corresponding excess risks

12.3 Global Convergence of Gradient Descent

In section 9.2.1, we alluded to the property of GD for overparameterized neural networks,
which converges to a global minimum of the objective function despite being nonconvex.
We present more formal arguments in this section, with a general result without proof,
as well as a detailed proof for linear neural networks.

12.3.1 Mean Field Limits

In this section, we present results from Chizat and Bach (2018), closely following the
exposition from Bach and Chizat (2022).8 More precisely, we consider neural networks
with a hidden layer of size m with m tending to infinity, and we first rescale the predic-
tion function by 1/m (which can be obtained by rescaling all output weights by 1/m),
expressing it explicitly as an empirical average as

h(x) =
1

m

m∑

j=1

ηjσ(w⊤
j x+ bj),

where ηj ∈ R is the output weight associated to the jth neuron, and (wj , bj) ∈ Rd × R

the corresponding vector of input weights. The key observation is that the prediction

8See also https://www.di.ens.fr/~fbach/ltfp/wide_convergence.html.

https://www.di.ens.fr/~fbach/ltfp/wide_convergence.html


366 CHAPTER 12. OVERPARAMETERIZED MODELS

function h is the average of m prediction functions x 7→ ηjσ(w⊤
j x+ bj), for j = 1, . . . ,m,

with no sharing of parameters (which is not true if extra layers of hidden neurons are
added).

To highlight this parameter separability, we define vj =
[
ηj , w

⊤
j , bj

]⊤ ∈ Rd+2 as the set
of weights associated with the hidden neuron j ∈ {1, . . . ,m}, and we define the function
Ψ(v) = Ψ(η, w⊤, b) : x 7→ ησ(x⊤w+ b) so that the prediction function h is parameterized
by v1, . . . , vm ∈ Rd+2, which is now

h =
1

m

m∑

j=1

Ψ(vj). (12.19)

The expected risk takes the form

R(h) = E
[
ℓ(y, h(x))

]
,

which is convex in h for convex loss functions (which is the case throughout this book,
even for neural networks, such as the logistic or square loss), but typically nonconvex
in V = (v1, . . . , vm). Note that the resulting problem of minimizing a convex function
R(h) for h = 1

m

∑m
j=1 Ψ(vj) applies beyond neural networks, such as for sparse deconvo-

lution (Chizat, 2022).

Reformulation with probability measures. We now define by P(V) the set of prob-
ability measures on V = Rd+2. We can rewrite equation (12.19) as

h = h(·, v1, . . . , vm) =

∫

V

Ψ(v)dµ(v),

where µ = 1
m

∑m
j=1 δvj is the empirical measure associated with (v1, . . . , vm) (i.e., an

average of Dirac measures at each v1, . . . , vm ∈ V). Following a physics analogy, we
will refer to each vj as a particle. When the number m of particles grows, by the law
of large number (see exercise 12.6), the empirical measure 1

m

∑m
j=1 δvj may converge

in distribution to a probability measure with a density, often referred to as a mean field
limit. Our main reformulation will thus consider an optimization problem over probability
measures.

Exercise 12.6 Consider n i.i.d. random variables x1, . . . , xn in Rd with distribution µ
and µn = 1

n

∑n
i=1 δxi , the associated random empirical measure. Show that the strong

law of large number for (xi)i>1 implies the weak convergence of µn toward µ.9

The optimization problem that we are facing is equivalent to

inf
µ∈P(V)

R

( ∫

V

Ψ(v)dµ(v)
)
, (12.20)

9We say that µn weakly converges toward µ if for all f continuous and bounded,
∫
fdµn →

∫
fdµ.



12.3. GLOBAL CONVERGENCE OF GRADIENT DESCENT 367

with the constraint that µ is an average of m Dirac measures. We now follow a long line
of work in statistics and signal processing (see Barron, 1993; Kurková and Sanguineti,
2001), consider the optimization problem relaxing this constraint, and relate optimization
algorithms for finite but large m (thus acting on V = (v1, . . . , vm) in Vm) to a well-defined
algorithm in P(V), as we already did in section 9.3.2.

Note that we now have a convex optimization problem with a convex objective in µ
over a convex set (all probability measures). However, it is still an infinite-dimensional
space that requires dedicated finite-dimensional algorithms. In this section, we focus
on GD on (v1, dots, vm), corresponding to standard practice in neural networks (e.g.,
backpropagation). For algorithms based on classical convex optimization algorithms such
as the Frank-Wolfe algorithm, see section 9.3.6.

From gradient descent to gradient flow. Our general goal is to study the GD
recursion on V = (v1, . . . , vm) ∈ Vm, defined as

Vk = Vk−1 − γmG′(Vk−1), (12.21)

with

G(V ) = R
(
h(·, v1, . . . , vm)

)
= R

( 1

m

m∑

j=1

Ψ(vj)
)
.

In the context of neural networks, this is exactly the backpropagation algorithm. We
include factor m in the step size to obtain a well-defined limit when m tends to infinity
(as discussed next).

For convenience in the analysis, we look at the limit when the step size γ goes to
zero. If we consider function W : R → Vm, with values W (kγ) = Vk at t = kγ, and
we interpolate linearly between these points, then we obtain exactly the standard Euler
discretization of the ODE (Suli and Mayers, 2003):

Ẇ = −mG′(W ). (12.22)

This gradient flow will be our main focus in this discussion. As already highlighted,
and with extra regularity assumptions, it is the limit of the gradient recursion in equa-
tion (12.21) for vanishing step sizes γ. Moreover, under appropriate conditions, stochastic
gradient descent (SGD) where we only observe an unbiased noisy version of the gradient,
also leads in the limit γ → 0 to the same ODE (Kushner and Yin, 2003). This allows us
to apply our results on risks that are expectations over whole probability distributions
over data (x, y), for which single-pass SGD corresponds, in this limit, to the gradient flow
on the testing error.

Wasserstein gradient flow. Previously, we have described a general framework where
we want to minimize a function F defined on probability measures:

F (µ) = R

(∫

V

Ψ(v)dµ(v)
)
, (12.23)



368 CHAPTER 12. OVERPARAMETERIZED MODELS

with an algorithm minimizing G(v1, . . . , vm) = R
(

1
m

∑m
j=1 Ψ(vj)

)
through the gradient

flow V̇ = −mG′(V ), with V = (v1, . . . , vm).

As shown in a series of works concerned with the infinite width limit of two-layer neural
networks (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei et al., 2018; Sirignano
and Spiliopoulos, 2020; Rotskoff and Vanden-Eijnden, 2018), this converges (when the
step size goes to zero) to a well-defined mathematical object called a “Wasserstein gradient
flow” (Ambrosio et al., 2008). This is a gradient flow derived from the Wasserstein metric
on the set of probability measures, which is defined as follows (Santambrogio, 2015):

W2(µ, ν)2 = inf
γ∈Π(µ,ν)

∫
‖v − w‖22dγ(v, w),

where Π(µ, ν) is the set of probability measures on V × V with marginals µ and ν. In a
nutshell, the gradient flow is formally defined as the limit when γ tends to zero of the
extension of the following discrete-time dynamics:

µ(t+ γ) = arg min
ν∈P(V)

F (ν) +
1

2γ
W2(µ(t), ν)2.

When applying such a definition in a Euclidean space with the Euclidean metric, we re-
cover the usual gradient flow µ̇ = −F ′(µ), but with the Wasserstein metric, this defines a
specific flow on the set of measures. When the initial measure is a weighted sum of Dirac
measures, this is precisely asymptotically (i.e., when γ → 0) equivalent to backpropa-
gation (in other words, the Wasserstein gradient flow limit also applies to finitely many
neurons, and we will need the extension to measures with densities only for the global
convergence result in proposition 12.2). When initialized with an arbitrary probability
measure, (µt)t>0 is the solution of a partial differential equation (PDE) in the weak sense
(i.e., in the sense of distributions). Moreover, when the sum of Dirac measures converges
in distribution to some measure, the flow converges to the solution of the PDE. More
precisely, assuming that Ψ : Rd+2 → H, where H is a Hilbert space (in our neural net-
work example, H is the space of square-integrable functions on Rd), and R′(h) ∈ H is
the gradient of R, we consider the mean potential

J(v|µ) =
〈

Ψ(v),R′
( ∫

V

Ψ(w)dµ(w)
)〉
. (12.24)

With these notations, note that the gradient flow equation (12.22) written on each neuron,
also called here “particle,” becomes

v̇j = −J ′(vj |µ),

where µ is the time-dependent aggregation of all particles, and the derivative J ′ stands
for the gradient of the function v 7→ J(v|µ).

At the level of the measure µ that describes the aggregated movement of all parti-
cles, this equation becomes a PDE, also called “continuity equation” in physics, which
writes (see, e.g., Evans, 2022):

∂tµt(v) = div(µt(v)J ′(v|µt)), (12.25)



12.3. GLOBAL CONVERGENCE OF GRADIENT DESCENT 369

which is understood in the sense of distributions. The following result formalizes this
behavior (see Chizat and Bach (2018) for details and a more general statement).

Proposition 12.1 Assume that R : H → [0,+∞) and Ψ : V = Rd+2 → H are Fréchet
differentiable with Lipschitz differentials, and R is Lipschitz-continuous on its sublevel
sets. Consider a sequence of initial weights (vj(0))j≥1 contained in a compact subset
of V, and let µt,m = 1

m

∑m
j=1 δvj(t), where (v1(t), . . . , vm(t)) solves the ODE (12.22). If

µ0,m weakly converges to some µ0 ∈ P(V), then µt,m weakly converges to µt, where (µt)t≥0

is the unique weakly continuous solution to equation (12.25) initialized with µ0.

Next, we will study the solution of this PDE (i.e., the Wasserstein gradient flow),
interpreting it as the limit of the gradient flow in equation (12.22) when the number of
particles m tends to infinity.

Global convergence. We consider the Wasserstein gradient flow defined here, which
leads to the PDE in equation (12.25). We aim to understand under what circumstances
we can expect that when t→∞, µt converges to a global minimum of F defined in equa-
tion (12.23). Obtaining a global convergence result is not out of the question because F
is a convex functional defined on the convex set of probability measures. However, it
is nontrivial because, with our choice of the Wasserstein geometry on measures, which
allows an approximation through particles, the flow has some stationary points that are
not the global optimum.

We only consider an informal general result without technical assumptions before
referring to Bach and Chizat (2022) for a formal simplified result and Chizat and Bach
(2018) for the general result.

Proposition 12.2 (Informal) If the support of the initial distribution includes all di-
rections in Rd+2, and if function Ψ is positively 2-homogeneous, then if the Wasserstein
gradient flow weakly converges to a distribution, it can only be to a global optimum of F .

Proposition 12.2 applies when initializing the gradient flow with a distribution with
full support, for example, a distribution with strictly positive density everywhere. Chizat
and Bach (2018) present another version of this result that allows partial homogeneity
(e.g., with respect to a subset of variables) of degree 1, at the cost of a more technical
assumption on the initialization. For neural networks, we have Ψ(η, w, b)(x) = ησ(w⊤x+
b), and this more general version applies. For the classical ReLU activation function
u 7→ max{0, u}, we get a positively 2-homogeneous function, as required in the previous
statement. A simple way to spread all directions is to initialize neural network weights
from Gaussian distributions, which is standard in applications (Goodfellow et al., 2016).

From qualitative to quantitative results? Our result states that for infinitely many
particles, we can only converge to a global optimum (note that we cannot show that the
flow always converges). However, it is only a qualitative result in comparison with what
is known about convex optimization problems in chapter 5:



370 CHAPTER 12. OVERPARAMETERIZED MODELS

• This is only for m = +∞, and we cannot provide an estimation of the number of
particles needed to approximate the mean-field regime that is not exponential in t
(see such results, e.g., in Mei et al., 2019).

• We cannot provide an estimation of the performance as a function of time that
would give an upper bound on the running time complexity.

Moreover, our result does not apply beyond a single hidden layer, and understand-
ing the nonlinear infinite width limits for deeper networks is an important research
area (Nguyen and Pham, 2023; Araújo et al., 2019; Fang et al., 2021; Hanin and Nica,
2019; Sirignano and Spiliopoulos, 2022; E and Wojtowytsch, 2020; Yang and Hu, 2020).

In the remainder of this section, to present a simpler analysis, we focus on linear
neural networks and first reformulate them as optimizing over positive-definite matrices.

12.3.2 From Linear Networks to Positive-Definite Matrices

We now consider linear neural networks; that is, neural networks with no activation
function. For example, for x ∈ Rd, we consider f(x) = UV ⊤x ∈ Rk, where U ∈ Rk×m

and V ∈ Rd×m. This is a linear function f(x) = Θx, with Θ taking the form Θ = UV ⊤ ∈
Rk×d. We aim to minimize G(UV ⊤), where G : Rk×d → R is a smooth convex risk
function.

It can be rewritten as function G applied to a linear projection of matrix
(
U
V

)(
U
V

)⊤
=

(
UU⊤ UV ⊤

V U⊤ V V ⊤

)
, which takes the form WW⊤ with W =

(
U
V

)
∈ R(k+d)×m. Thus, we can

analyze instead the minimization of functions of the form G(WW⊤) for W ∈ Rd×m,
where G is a smooth convex function defined on positive semidefinite matrices of size d.

The goal of this section is thus now to minimize a convex function G over positive-
semidefinite (PSD) matrices, using plain GD techniques on a nonlinear parameterization
of such matrices. This is done to illustrate optimization for neural networks, noting that
faster algorithms based on projected GD presented in chapter 5 could also be used. We
already studied a special case in section 12.1.3, where the ODE could be integrated in
closed form, while, here, we rely on more qualitative arguments.

12.3.3 Global Convergence for Positive-Definite Matrices

We consider a twice continuously differentiable convex functionG : Rd×d → R (which only
needs to be defined on symmetric matrices), with gradients that are symmetric matrices.
We consider m vectors w1, . . . , wm ∈ Rd put into a matrix W = (w1, . . . , wm) ∈ Rd×m,
and the cost function F (W ) = G

(
WW⊤), where we have WW⊤ =

∑m
j=1 wjw

⊤
j . This

is thus an instance of the framework developed in section 12.3.1, but, since the space of
symmetric matrices is finite-dimensional, there is no need to let m tend to infinity, and
we can keep m 6 d.

We consider the gradient flow Ẇ = − 1
2F

′(W ); that is, W ′(t) = − 1
2F

′(W (t)), where
the factor 1

2 was added to simplify later formulas. Since F is twice differentiable, this



12.3. GLOBAL CONVERGENCE OF GRADIENT DESCENT 371

ODE is defined for all t > 0. To compute the gradient of F , we perform an asymptotic
expansion as follows:

F (W + ∆) = G
(
WW⊤ + ∆W⊤ +W∆⊤ + o(‖∆‖2)

)

= F (W ) + tr
[
G′(WW⊤)(∆W⊤ +W∆⊤)] + o(‖∆‖2)

= F (W ) + 2 tr
[
∆⊤G′(WW⊤)W

]
+ o(‖∆‖2), using symmetry of G′,

so that F ′(W ) = 2G′(WW⊤)W , and the flow becomes Ẇ = −G′(WW⊤)W . By pro-
jecting onto each of the m columns of W , this leads to the following flow for each column
wj ∈ Rd of W , called a “particle”:

ẇj = −G′(WW⊤)wj ,

which is a linear ODE, but with a time-dependent matrix G′(WW⊤) which depends on
the aggregation of all particles since WW⊤ =

∑m
j=1 wjw

⊤
j .

We denote M = WW⊤ and A = G′(M), which are functions of time defined for all
time t > 0. We then have

Ṁ = ẆW⊤ +WẆ⊤ = −G′(M)M −MG′(M) = −AM −MA.

Preservation of rank. If at time zero, M = WW⊤ has full rank (which implies
m > d), then the rank is preserved throughout the flow. This is a simple consequence of
the ODE for r(M) = log det(M), equal to

ṙ = tr
[
M−1Ṁ

]
= tr

[
M−1(−AM −MA)

]
= −2 tr(A).

Thus, since A is continuous for all positive times, the log determinant is finite for all
times as soon as it exists at initialization, and we thus obtain a full-rank matrix. If
m > d, which corresponds to an overparameterized situation, and the columns of W are
initialized randomly (e.g., from a standard Gaussian random vector), then WW⊤ indeed
has full rank.

Exercise 12.7 (�) Show that if at initialization, M = WW⊤ has rank r 6 min{d,m},
then M has rank r at all times.

Global optimality conditions. The problem of minimizing G(M) over PSD matrices
has the following optimality conditions: (1) tr[MG′(M)] = 0 and (2) G′(M) < 0, as we
now show. Note that once (2) is satisfied, (1) is equivalent to MG′(M) = 0.10

• Necessary conditions (no need for convexity). If M is optimal, then for all ∆
such that M + ∆ < 0, G(M + ∆) − G(M) > 0. When ∆ is small, this leads to
tr[∆G′(M)] > 0.

Taking ∆ small along −M or M , we get tr[MG′(M)] = 0 as a necessary condition.

Taking ∆ = uu⊤ for all u ∈ Rd, we get G′(M) < 0 as a necessary condition.

10For two PSD matrices A and B of the same sizes, AB = 0 ⇔ tr(AB) = 0.



372 CHAPTER 12. OVERPARAMETERIZED MODELS

• Sufficient conditions (convexity is needed). If the conditions are met, then for any
matrix N < 0, we get from the subgradient inequality for the convex function G:

G(N) > G(M) + tr
[
G′(M)(N −M)

]
.

Using condition (1), we get tr
[
G′(M)M

]
= 0, while condition (2) ensures that

tr
[
G′(M)N

]
> 0. Thus, G(N) > G(M), and therefore M is a global optimum.

If M is invertible, the optimality conditions simplify to G′(M) = 0.

Global convergence. (��) If the flow in M is initialized with a full-rank matrix (note
that this implies m > d) and converges to some M∞,11 we now show that it satisfies the
two optimality conditions described above (and thus, it has to be a global optimum).
Note that while we know that M is invertible for all time t > 0, it is often not the case
for M∞ (see the following examples).

Condition (1) is a direct consequence of −G′(M∞)M∞ −M∞G′(M∞) = 0 (and then
taking the trace), which is satisfied at convergence (this is the stationary condition,
stating that all particles stop). The difficult part is to show condition (2), which can
be interpreted as ensuring that no other potential particles could enter and increase the
rank of M while reducing the cost function.

We now assume that A∞ = G′(M∞) is not PSD; that is, λmin(A∞) < 0. We choose
η > 0 such that λmin(A∞) < −η, and −η is not an eigenvalue of A∞ (which is possible
because there are at most d distinct eigenvalues). This implies that for u such that
‖u‖2 = 1 and u⊤A∞u = −η,

η = −u⊤A∞u < ‖u‖2‖A∞u‖2 = ‖A∞u‖2

by the Cauchy-Schwarz inequality and the impossibility of having A∞u = −ηu (which
is the equality condition for the Cauchy-Schwarz inequality). We denote by β > η the
minimal value of such ‖A∞u‖2 (for all u that satisfy ‖u‖2 = 1 and u⊤A∞u = −η).

The idea is to show that sufficiently close to convergence, once a particle has a direction
in the set

K =
{
u ∈ R

d, ‖u‖2 = 1, u⊤A∞u < −η
}
,

its direction never gets out of K, and it leads to a contradiction (set K is not empty
because λmin(A∞) < −η).

Next, we introduce the time dependence explicitly.

Choice of particle close to convergence (��). We have M(t)→M∞. Thus there
is t0 such that ‖A(t)−A∞‖op 6 ε, for all t > t0, with ε well chosen (small enough).

Let y0 ∈ R+K, y0 6= 0 (it exists since K is not empty). Since W (t0) ∈ Rd×m has a
full rank equal to d, then there is α0 ∈ Rm such that y0 = W (t0)α0.

11It does under basic assumptions on G, such as piecewise analyticity, see Bolte et al. (2006).



12.3. GLOBAL CONVERGENCE OF GRADIENT DESCENT 373

We then consider particle z(t) = W (t)α0 ∈ Rd. By construction, z′(t) = Ẇ (t)α0 =
−A(t)W (t)α0 = −A(t)z(t) and z(t0) = y0 ∈ R+K. We now show by contradiction that
we must have z(t) ∈ R+K for all t > t0. If t1 is the smallest t > t0 such that z(t) /∈ R+K
(which is assumed to exist by contradiction), then by continuity, z(t1) ∈ R+∂K; that
is, z(t1)⊤A∞z(t1) = −ηz(t1)

⊤z(t1). We then have, with z1 = z(t1), and using that
z′(t1) = −A(t1)z(t1),

d

dt

z(t)⊤A∞z(t)

z(t)⊤z(t)

∣∣∣
t=t1

= 2
z(t1)

⊤A∞z′(t1)

z(t1)⊤z(t1)
− 2

z(t1)
⊤A∞z(t1)

z(t1)⊤z(t1)

z′(t1)⊤z(t1)

z(t1)⊤z(t1)

= −2
z⊤1 A∞A(t1)z1

z⊤1 z1
+ 2

z⊤1 A∞z1
z⊤1 z1

z⊤1 A(t1)z1

z⊤1 z1

= −2
z⊤1 A

2
∞z1

z⊤1 z1
+ 2

z⊤1 A∞(A∞ −A(t1))z1

z⊤1 z1
+ 2

z⊤1 A∞z1
z⊤1 z1

z⊤1 A(t1)z1

z⊤1 z1
.

Using ‖A(t1)−A∞‖op 6 ε and z(t1)⊤A∞z(t1) = −ηz(t1)
⊤z(t1), then leads to

d

dt

z(t)⊤A∞z(t)

z(t)⊤z(t)

∣∣∣
t=t1

6 −2
z⊤1 A

2
∞z1

z⊤1 z1
+ 2
‖A∞z1‖2ε
‖z1‖2

+ 2η2 + 2ηε

6 −2β2 + 2η2 + 2‖A∞‖opε+ 2ηε,

which is strictly negative for ε small enough, which is a contradiction because that would

imply that for t just above t1, z(t)⊤A∞z(t)
z(t)⊤z(t)

< z(t1)
⊤A∞z(t1)

z(t1)⊤z(t1)
= −η, and thus, z(t) ∈ R+K.

We can now obtain our final contradiction. We now have that particule z(t) is in
R+K for all t > t0. We then have, for all t > t0,

d

dt
z(t)⊤z(t) = −2z(t)⊤A(t)z(t) > 2

(
− z(t)⊤A∞z(t)− ‖z(t)‖22ε

)
> 2(η − ε)‖z‖22,

leading to, after integration, ‖z(t)‖22 > ‖z(t0)‖22 exp(2(η−ε)(t−t0)), and thus a divergence.
This contradicts the convergence of z(t) = W (t)α0.

Alternative global convergence proof. (�) Under mild regularity conditions on
the objective, we know from Lee et al. (2016) that gradient flow can only converge to
local minimizers (and never saddle points). Exercise 12.8 shows that in our case (where F
is a multiplicative reparameterization of a convex function G), then local minimizers of F
are, in fact, global. This implies that the flow can only converge to global minimizers
of G.

Exercise 12.8 (�) With the notations of this section, show that any local minimizer
of F is global.

Link with Burer-Monteiro methods. The reparameterization of a convex problem
M 7→ G(M) over the set of PSD matrices into a non-convex problem W 7→ G(WW⊤) has
not been solely motivated by the will to explain the behavior of (linear) neural networks.



374 CHAPTER 12. OVERPARAMETERIZED MODELS

It has also been considered in the low-rank matrix recovery literature as an efficient tool
to solve low-rank semidefinite-programming problems. This reparameterization that de-
convexifies the problem for the sake of numerical computations enters into the class of
“Burer-Monteiro” methods (Burer and Monteiro, 2003). Yet, as in the neural network
case, its success is not yet totally explained (see Waldspurger, 2021, Section 6).

12.3.4 Special Cases

Oja Flow. As an illustration of the convergence results discussed in section 12.3.3, we
consider the function

G(M) =
1

2
‖M − C‖2F

for a symmetric matrix C ∈ Rd×d, for which the flow can be integrated in closed form.
We have G′(M) = M − C, and thus the following gradient flow:

Ẇ = −G′(WW⊤)W = CW −WW⊤W and Ṁ = CM +MC − 2M2.

If we initialize W (0) = V ∈ Rd×m, we obtain a solution in closed form (as can be checked
by taking derivatives and showing that Ṁ = CM +MC − 2M2) as

M = WW⊤ = exp(Ct)V
(
I + V ⊤C−1(exp(2Ct)− 1)V

)−1
V ⊤ exp(Ct).

This is the “Oja flow,” up to a change of variable (Yan et al., 1994). It is interesting
to note that if we use m 6 d particles, the rank of WW⊤ is always less than m 6 d,
and in fact, the same as the rank of the initialization. The global minimizer of R on
PSD matrices is the positive part of C,12 whose rank can be strictly less than m. Hence,
the flow eventually converges to the global minimum of R over PSD matrices only if the
number of particles is larger than the number of positive eigenvalues of C.

Vanishing initialization. For m = d, if V =
√
αI ∈ Rd×d, we get

M = α exp(2Ct)
(
I + αC−1(exp(2Ct)− 1)

)−1
.

Then, M is a spectral variant of C, with the same eigenvectors and eigenvalues equal to

λ = αe2ct

1+αc−1(e2ct−1) = c
1+e−2ct(c/α−1) ≈ c

1+e−2ctc/α for small α, where c is the corresponding

eigenvalue of C.

Thus, when α is infinitesimally small (and therefore an initialization close to a station-
ary point), the eigenvalues λ stay near zero until they increase almost instantaneously to
the final positive values c, and this increase happens at tc = 1

2c log 1
α . We thus observe in-

cremental learning for each eigenvector, with each eigenvector corresponding to a positive
eigenvalue c, which is a very different optimization dynamic from the one obtained from
projected GD, which corresponds to λ = c(1 − e−t) and where all eigenvectors come in

12For a symmetric matrix C, with eigenvalue decomposition C =
∑m

i=1 λiuiu
⊤
i , the positive part is

C =
∑m

i=1(λi)+uiu
⊤
i .



12.4. LAZY REGIME AND NEURAL TANGENT KERNELS (�) 375

together. This incremental learning at different time scales is common in nonconvex op-
timization; see Saxe et al. (2019) and Gidel et al. (2019) for linear networks, and Berthier
(2023) and Pesme and Flammarion (2023) for diagonal linear networks, where precise
statements can be made.

Matrix sensing. Another illustration of this problem is a simple instance of matrix
sensing (Candes and Recht, 2012), where one has some observation matrices (X1, . . . , Xn)
in (Rd×d)n that we are assumed to be PSD, and observations (y1, . . . , yn) ∈ Rn. We
minimize the empirical loss

F (W ) =
1

n

n∑

i=1

(〈WW⊤, Xi〉 − yi)2 = G(WW⊤),

where 〈A,B〉 = tr(AB⊤) is the usual dot product for matrices. Note that this fits into our
framework because G is a convex function; hence, if the initialization has full rank, global
convergence is guaranteed by our previous study. The question of which interpolator is
selected by gradient methods has first been addressed by Gunasekar et al. (2017), but
remains, in all its generality open. We address a simple instance of this problem in
exercise 12.9.

Exercise 12.9 (��) Assume that for all i, j ∈ {1, . . . , n}, XiXj = XjXi, and consider

the gradient flow Ẇ = −F ′(W ), initialized at W0 =
√
αI.

• Show that the dynamics of M = WW⊤ can be rewritten as a mirror flow.

• Give a variational characterization of the asymptotic implicit bias, i.e., the resulting
M∞ = limt→∞WtW

⊤
t . In particular, show that when α→ 0, M∞ is the minimum

nuclear norm interpolator.

12.4 Lazy Regime and Neural Tangent Kernels (�)

For overparameterized one-hidden-layer neural networks, with prediction functions of the
following form (note the rescaling by 1/m):

h(x; v1, . . . , vn) =
1

m

m∑

j=1

ηjσ(w⊤
j x+ bj) =

1

m

m∑

j=1

Ψ(vj), (12.26)

with Ψ and v1, . . . , vm defined in section 12.3.1, we have seen two types of learning
procedures in chapter 9 when the number of neurons grows unbounded:

• Optimizing over both layers, leading to the mean-field limit thoroughly discussed
in section 12.3.1 and associated with the non-Hilbertian norm γ1. This corresponds
to all parameters being initialized with a scaling that does not depend on m.

• Optimizing over the last layer only, leading to the kernel regime, associated with
the Hilbertian norm γ2 defined in section 9.5. The input weights (wj , bj) are all



376 CHAPTER 12. OVERPARAMETERIZED MODELS

sampled without an extra scaling that depends on m. For the output weights, ηj
can be O(1) or O(

√
m) if initialized with zero mean (so the overall norm of the

prediction function remains bounded in high probability). Since this is a convex
optimization problem, scaling does not matter as much.

Lazy training. We now consider a third training regime, which we refer to as the
“lazy” regime, following Chizat et al. (2019). It corresponds to initializing each ηj with
a scaling proportional to

√
m. This is made possible by having zero mean initializations

so that a mean of m terms is of order O(1/
√
m) and not O(1) (leading to an overall

predictor that remains O(1)). We will formalize this training regime by seeing this model
as a diverging constant α (here

√
m) multiplied by a classical model with a mean-field

limit.

In the lazy regime, we end up minimizing G(V ) = R(αh(V )) with respect to V =
(v1, . . . , vm), with a scaling factor α > 0 that tends to infinity, using a gradient flow on V ,
started at V (0) such that αh(V (0)) remains bounded. In our neural network example,
α =

√
m and h is the regular neural network in equation (12.26) (where we consider

only the dependence in V ). Note that in this example αh(V ) = 1√
m

∑m
j=1 Ψ(vj), and the

overall rescaling constant is now 1/
√
m.

We consider the gradient flow to minimize G(V ), with a step size 1/α2 (scaling adapted
to have a nontrivial dynamic); that is,

d

dt
V (t) = − 1

α2
G′(V ) = − 1

α
Dh(V )⊤R′(αh(V (t))), (12.27)

where Dh(V ) is the differential of h at V (i.e., a linear function from R(d+2)×m to H).
For the predictor αh(V ), we get

d

dt
[αh(V (t))] = −Dh(V (t))Dh(V (t))⊤R′(αh(V (t))). (12.28)

We now describe informally the dynamics in the limit α → +∞. At initialization t = 0,
αh(V (t)) is bounded by construction, and since the optimization will tend to make the
predictor better and better, we can expect it to remain bounded. Thus, we can expect
R(αh(V (t))) and R′(αh(V (t))) to be O(1). From equation (12.27), we obtain that the
parameters V change at rate O(1/α), while from equation (12.28), the predictor changes
at a rate that is independent of α. Thus, in the limit of large α, the parameters move
only infinitesimally, while the predictor still makes significant progress, hence the name
“lazy training” (see more formal arguments by Chizat et al., 2019).

Equivalent linear model. Since parameters move infinitesimally, the model αh(V )
behaves like an affine model, αh(V (0)) + αDh(αV (0))(V − V (0)), and thus the corre-
sponding cost function R(αh(V )) behaves like a convex function of V , leading to attractive
global convergence results for neural network training (see, e.g., Du et al., 2018). More-
over, since we have an explicit linear model, the lazy regime is well represented by a
positive definite kernel, which we now define (with the same properties and guarantees
as traditional kernel methods in chapter 7).



12.5. CONCLUSION 377

Neural tangent kernel (�). If we assume that h(V (0)) = 0 (e.g., for neural networks,
assuming that all initial neurons come in pairs, with the same input weights and opposite
output weights), then the affine model has only a linear part proportional to Dh(αV (0))V .
We can thus associate to it a kernel, referred to as the “neural tangent kernel” (Jacot
et al., 2018).

To make things concrete, for neural networks with one hidden layer, h(x, v1, . . . , vm) =
1√
m

∑m
j=1 ηjσ(w⊤

j x+ bj), the corresponding features for each j ∈ {1, . . . ,m} are

derivative with respect to ηj :
1√
m
σ(wj(0)⊤x+ bj(0))

derivative with respect to wj :
1√
m
ηj(0)σ′(wj(0)⊤x+ bj(0))x

derivative with respect to bj :
1√
m
ηj(0)σ′(wj(0)⊤x+ bj(0)).

When the initialization of neuron weights is random, we get the equivalent kernel by the
law of large numbers:

k(x, x′) = E
[
σ(w⊤x+ b)σ(w⊤x′ + b)

]
+ E

[
σ′(w⊤x+ b)σ′(w⊤x′ + b)(x⊤x′ + 1)

]
, (12.29)

where the expectations are taken with respect to parameters (w, b) with distributions
given by the chosen initialization (e.g., Gaussians). The first part in the right side of
equation (12.29) is the traditional random feature kernel discussed in section 9.5, but it
also has an additional part, which creates a richer model but cannot correct entirely the
intrinsic limitations of kernel methods (see, e.g., Bietti and Bach, 2021, and references
therein).

12.5 Conclusion

In this chapter, we have presented a series of results related to overparameterized models,
confirming that some form of regularization is needed: as opposed to previous chapters,
where (except for boosting procedures in section 10.3) an explicit penalty was put on
the model parameters, overfitting is avoided by “computational regularization”; that is,
through the implicit bias of GD techniques. This was formally shown for linear models,
but this extends more generally (see, e.g., Lyu and Li, 2019; Chizat and Bach, 2020).

We also described how overparameterization, while not detrimental to generalization
performance, can be a blessing in terms of optimization, with qualitative results showing
global convergence for infinitely overparameterized problems. Obtaining nonasymptotic
results (in terms of convergence times and number of neurons) remains an active area of
research.





Chapter 13

Structured Prediction

Chapter Summary
• With appropriate modifications, we can design convex surrogates for output spaces

that are arbitrarily complex and support generic loss functions, starting with mul-
ticategory classification.

• As in binary classification, these convex surrogates lead to efficient algorithms that
predict optimally given infinite amounts of data (Fisher consistency).

• Quadratic surrogates that extend the square loss lead to simple, intuitive, and con-
sistent estimation procedures with well-defined decoding steps once a score function
has been learned. They can be extended to smooth surrogates.

• Nonsmooth surrogates can be defined in the general structured prediction frame-
work, then extending support vector machines (SVMs).

In most of this book on supervised learning, we have focused on regression or bi-
nary classification, which led to estimating real-valued prediction functions directly when
predicting a real-valued output (least-squares regression) or indirectly through convex
surrogates (SVM or logistic regression) where the binary output in {−1, 1} was obtained
by taking the sign function. As shown in section 4.1, the use of convex surrogates comes
with strong theoretical guarantees in terms of achieving the Bayes error (i.e., the optimal
performance on unseen data).

In this chapter, we tackle arbitrary output spaces Y, with arbitrary loss functions,
which are ubiquitous in practice (see the examples in section 13.2). Most of the develop-
ments from section 4.1 will extend with appropriate modifications.

We start in section 13.1 with the natural extension to multicategory classification with
the 0–1 loss, which directly extends binary classification, before describing in section 13.2
a more general class of problems, referred to as “structured prediction.” We then present

379



380 CHAPTER 13. STRUCTURED PREDICTION

surrogate methods in section 13.3 and their desirable properties before describing the
two main classes; that is, smooth surrogates in section 13.4 and nonsmooth surrogates in
section 13.5. We then present generalization bounds in section 13.6 and experiments in
section 13.7.

13.1 Multicategory Classification

We dealt with binary classification with Y = {−1, 1} in section 4.1.1 by estimating real-
valued prediction functions and taking their signs. Going from 2 to k > 2 classes requires
multidimensional vector-space valued functions. To preserve symmetry among classes,
we will consider k-dimensional outputs (rather (k − 1)-dimensional). That is, for Y =
{1, . . . , k}, we will estimate a function g : X→ Rk and predict the label through f(x) ∈
arg maxj∈{1,...,k} gj(x) ⊂ Y.1

When k = 2, we recover our traditional framework by mapping {1, 2} to {−1, 1}
and taking the sign of g2(x) − g1(x), highlighting the general fact (valid for all k) that
predictions are invariant under the addition of a constant vector to g(x) ∈ Rk.

In the binary case, the convex surrogates that we considered were all of the form
Φ(yg(x)) for a convex function Φ. In the multicategory case, there is significantly more
diversity. In section 13.1.1, we describe the most commonly used convex surrogates
and, when possible, the corresponding optimal predictors and their relationship with the
Bayes predictor for the 0–1 loss, equal to arg maxz∈{1,...,k} P(y = z|x). Generalization
bounds will then be derived, first for stochastic gradient descent (SGD) used on linear
models in section 13.1.2 because it does not require any new developments, and then
using Rademacher complexities in section 13.1.3. In later sections, we show how this can
be applied to general output spaces.

Throughout this section on multicategory classification, we will identify elements y of
{1, . . . , k} with the corresponding canonical basis vector in Rk; that is, the vector ȳ ∈ Rk

with all zero components except a 1 at index y.

13.1.1 Extension of Classical Convex Surrogates

All binary convex surrogates presented in section 4.1.1 have natural extensions that we
now present. We consider a label y ∈ {1, . . . , k} (also identified as a canonical basis
vector ȳ), and a vector-valued function g : X → Rk. Our goal is to build a convex
surrogate S(y, g(x)) (which is convex with respect to its second variable).

Softmax loss. We can extend the logistic loss and its relationship with maximum
likelihood by considering the conditional model:

P(y = j|x) =
exp(gj(x))

∑k
i=1 exp(gi(x))

= softmax(g(x))j

1Like for binary classification in section 4.1, equality cases do not really matter, and precise statements
based on randomized predictions are left as exercises.



13.1. MULTICATEGORY CLASSIFICATION 381

by definition of the softmax function from Rk to the simplex in Rk, defined as softmax(u)j =

exp(uj)/
∑k
i=1 exp(ui).

2

The negative log-likelihood (often referred to as the “cross-entropy loss”) for this
model is then equal to

S(y, g(x)) = − log
exp(gy(x))

∑k
i=1 exp(gi(x))

= −gy(x) + log

( k∑

i=1

exp(gi(x))

)

= −ȳ⊤g(x) + log

( k∑

i=1

exp(gi(x))

)
.

The minimizer of the surrogate expected risk E[S(y, g(x))] is then equal to g∗(x)j =
logP(y = j|x) + c(x), for any function c : X → R; thus, arg maxj∈{1,...,k} g∗(x)j is the
Bayes predictor, which will lead to Fisher consistent estimation, as in the binary case in
section 4.1.3. A calibration function relating the excess surrogate risk and the 0–1 excess
risk will be derived in section 13.4 in the more general structured prediction case (with
the same square root behavior as for logistic regression); see exercise 13.6.

△! Practitioners sometimes refer to the cross-entropy loss without the precision that the
softmax function is taken beforehand (they, in fact, mean the softmax loss).

Square loss. The square loss has a natural extension S(y, g(x)) = ‖ȳ − g(x)‖22, with
a minimizer of the surrogate expected risk equal to g∗(x) = E[ȳ|x] ∈ R

k. Again, the
predictor arg maxj∈{1,...,k} g∗(x)j is the Bayes predictor (note that this is an instance of
the “one versus all” framework presented later in this section), with a calibration function
derived in section 13.4, also with a square root behavior typical of smooth surrogates.

Hinge loss. The maximum-margin framework presented in section 4.1.2 can be ex-
tended in several ways. Here, we present the one that has natural extensions in structured
prediction. The goal is to make gy(x) strictly larger than all others gj(x), for j 6= y, with
potential slack; that is, we aim at finding the lowest ξ > 0, such that

∀j 6= y, gy(x) > gj(x) + 1− ξ.

The lowest such ξ can obtained in closed form, leading to the surrogate:

S(y, g(x)) = sup
j∈{1,...,k}

{
1y 6=j + gj(x)− gy(x)

}
. (13.1)

Finding the minimizer of the expected surrogate risk is not as easy. We have for a given
x ∈ X,

E[S(y, g(x))|x] =

k∑

i=1

P(y = i|x) sup
j∈{1,...,k}

{
1i6=j + gj(x)− gi(x)

}
.

2Note that in order to avoid numerical instabilities, it is preferable to subtract the maximal value
U = max{u1, . . . , uk} before computing the softmax function, as softmax(u) = softmax(u−U1k), where
1k ∈ Rk is the vector of all 1s.



382 CHAPTER 13. STRUCTURED PREDICTION

Assuming without loss of generality that posterior probabilities given x are nonincreasing
(i.e., P(y = 1|x) > · · · > P(y = k|x)), the global minimizer of this quantity can be shown
(proof left as an exercise) to be achieved for g1(x) > g2(x) = · · · = gk(x), and we thus
need to minimize

P(y = 1|x)(1 + g2(x) − g1(x))+ + (1 − P(y = 1|x))(1 + g1(x)− g2(x))+.

If P(y = 1|x) > 1/2, then the optimal g1(x) − g2(x) can be shown to equal 1, and the
prediction is optimal. Otherwise, it is not; hence, we lose Fisher consistency in general,
since, for k > 2, it is not always the case that the conditional probability of the most
likely class exceeds 1/2 (see a precise statement in exercise 13.1). A consistent version of
the nonsmooth hinge loss will be discussed in section 13.5.

Exercise 13.1 (�) For multicategory classification with the 0–1 loss, show that the loss
defined in equation (13.1) is Fisher consistent if ∀x ∈ X, maxj∈{1,...,k} P(y = j|x) > 1

2 .

One versus all (�). This class of techniques essentially solve k binary optimization
problems by solving independently for each gj(x) predicting yj ∈ {0, 1}. Using convex
surrogates for these binary classification problems and taking into account the mapping
from {0, 1} to {−1, 1}, the overall cost function is

S(y, g(x)) =

k∑

j=1

Φ((2yj − 1)gj(x)),

with Φ being one of the convex surrogates from section 4.1.1. For the square loss, we
recover the multivariate square loss, but other losses can be used as well. The expected
surrogate risk given x ∈ X is then equal to

E[S(y, g(x))|x] =

k∑

j=1

{
P(y = j|x)Φ(gj(x)) + (1− P(y = j|x))Φ(−gj(x))

}
.

For a differentiable strictly convex function such that Φ(z) < Φ(−z) for z > 0 (which
excludes the hinge loss), minimizing it is done by setting P(y = j|x)Φ′(gj(x)) = (1 −
P(y = j|x))Φ′(−gj(x)). One can then show that gj(x) is a strictly increasing function
of P(y = j|x), and thus we get consistent predictions (in the population case), with also
calibration functions (see Zhang, 2004a, theorem 11).

Beyond. As reviewed by Zhang (2004a), there are many examples of convex surrogates
to estimate the k functions g1, . . . , gk : X → R based on several principles. Reductions
to binary classification problems go beyond one versus all approaches, for example, by
considering several subsets A of {1, . . . , k} and solving the binary classification problems
of deciding y ∈ A versus y /∈ A. This approach based on error-correcting codes (Dietterich
and Bakiri, 1994) will also be considered within the general surrogate framework.



13.1. MULTICATEGORY CLASSIFICATION 383

Exercise 13.2 Consider the following surrogate S(y, g(x)) =
∑
i6=y Φ(−gi(x)), with the

additional constraint that
∑k
i=1 gi(x) = 0, and a strictly convex decreasing function Φ.

Show that if g∗ is the minimizer of E[S(y, g(x))], then for all i, j ∈ {1, . . . , k}, we have
P(y = i|x) > P(y = j|x)⇒ g∗(x)i > g∗(x)j .

Exercise 13.3 Consider the surrogate S(y, g(x)) =
∑k

i=1 Φ(gy(x) − gi(x)), with a non-
increasing function Φ such that that Φ(z) < Φ(−z) for z > 0. Show that if g∗ is the
minimizer of E[S(y, g(x))], then for all i, j ∈ {1, . . . , k}, P(y = i|x) > P(y = j|x) ⇒
g∗(x)i > g∗(x)j .

13.1.2 Generalization Bound I: Stochastic Gradient Descent

In sections 13.1.2 and 13.1.3, we will consider generalization bounds for losses that are
Lipschitz-continuous (all losses in section 13.1.1 are Lipschitz-continuous, potentially once
restricted to a bounded set), as done in chapter 4 with estimation errors controlled by
Rademacher complexities, and in chapter 5 using single-pass SGD. We start with SGD
because the analysis can be done without the need for new tools.

Linear models. Since we will use convergence results for convex optimization algo-
rithms, we need to consider linear models (which are linear in their parameters). We
thus assume that we have a feature vector ϕ : X → Rd almost surely bounded by R
in the ℓ2-norm, and the vector-valued function g : X → Rk is parameterized linearly as
g(θ)(x) = θ⊤ϕ(x), with θ = (θ1, . . . , θk) ∈ Rd×k. We aim to estimate θ, restricted to a
ball of radius D for a certain norm Ω.

Several candidates are natural for the norm Ω: the simplest is the Frobenius norm
defined through its square ‖θ‖2F =

∑k
i=1 ‖θi‖22 =

∑k
i=1

∑d
j=1 θ

2
ji, which corresponds to the

Euclidean norm for matrix θ seen as a vector, and for which all results related to SGD will
apply. Another classical norm is the nuclear norm (aka trace norm) defined as the sum
of singular values of θ, which will push for low-rank θ with similar properties as the ℓ1-
norm in section 8.3. Other norms, such as the ℓ1-norm or “grouped” norms (discussed in
section 8.5), could also be considered for variable selection. For these norms, optimization
tools such as stochastic mirror descent from section 11.1.3 are needed (see exercise 13.4
for the nuclear norm).

Note finally that we could use (positive-definite) kernel methods with the kernel trick
from section 7.4.5 to deal with infinite-dimensional feature vectors.

Sampling assumptions. Following the rest of this book, we assume that we have n
independent and identically distributed (i.i.d.) pairs of observations (xi, yi) ∈ X ×
{1, . . . , k}, i = 1, . . . , n. Given the function g(θ) : X → Rk defined through the linear
model given previously, we consider the expected risk R(f) for the predictor f : X →
{1, . . . , k}, defined as f(x) ∈ arg maxi∈{1,...,k} g

(θ)(x)i and the 0–1 loss. As already men-
tioned and shown in section 13.1.3, the excess risk R(f)−R∗ (where R∗ is the minimum
risk overall measurable functions, not only the ones obtained from the model) will be



384 CHAPTER 13. STRUCTURED PREDICTION

bounded by an increasing function of the excess surrogate risk RS(g) − R∗
S (again, R∗

S

is the minimal value across all measurable functions). Thus, we focus on the excess
surrogate risk in this section.

Using the same decomposition as in section 4.5.4, we consider an estimator θ̂ ∈ Rd×k

that depends on the observations and is subject to the constraint ‖θ‖F 6 D (other
norms could also be considered) for some real value D. A bound on the expected excess
risk is obtained by the sum of the approximation error inf‖θ‖F6D RS(g(θ))− R∗

S and the

estimation error RS(g(θ̂))−inf‖θ‖F6D RS(g(θ)). We focus on the latter quantity, a random
quantity that we bound through its expectation.

We assume that the convex surrogate S : Y × Rk → R is Lipschitz-continuous with
respect to its second variable; that is, its subgradients (with respect to the second variable)
S′(y, u) ∈ Rk are bounded by G in the ℓ2-norm (for example, for softmax regression, we
have G = 1).

Single-pass SGD. We consider the following SGD iteration for t ∈ {1, . . . , n}, with an
arbitrary subgradient of surrogate S, started from θ0 = 0:

θt = ΠD

(
θt−1 − γtϕ(xt)S

′(yt, θ
⊤
t−1ϕ(xt))

⊤),

where ΠD is the orthogonal projection on the set of matrices with Frobenius norm less
than D. The analysis of section 5.4 exactly applies, and with the choice of constant step
size γt = D

RG
√
n

, we obtain the following generalization bound for the averaged iterate θ̄n:

E

[
RS(g(θ̄n))− inf

‖θ‖F6D
RS(g(θ))

]
6
DRG√

n
, (13.2)

which is exactly the same as for real-valued predictions. Note that in terms of dependence
in the number k of categories, since θ has k columns, we can expect D to grow as

√
k,

while typically R does not (for G, it depends on the convex surrogate, with G = 1 for
the softmax loss).

Exercise 13.4 (Mirror descent for trace-norm penalty (�)) Consider the follow-
ing mirror map on Rd×k, Ψ(θ) = 1

2‖σ(θ)‖2p, where σ(θ) is the vector of singular values
of θ. Show that for p ∈ (1, 2), it is (p − 1)-strongly-convex with respect to the norm
‖σ(·)‖p. Show how to apply stochastic mirror descent on a nuclear norm ball and provide
a convergence rate.

13.1.3 Generalization Bound II: Rademacher Complexities (�)

Another approach that we followed in this book is to assume that we can compute a
minimizer of the empirical risk beyond linear models (in particular for neural networks).
We thus assume a generic space G of functions from X to Rk, and define ĝ ∈ G as
the minimizer of the empirical surrogate risk R̂(g) = 1

n

∑n
i=1 S(yi, g(xi)) over g ∈ G.

Following sections 4.2 and 4.5, the expected estimation error RS(ĝ) − infg∈G RS(g) is



13.1. MULTICATEGORY CLASSIFICATION 385

then less than four times the Rademacher complexity:

Rn(S,G) = E

[
sup
g∈G

1

n

n∑

i=1

εiS(yi, g(xi))

]
,

where the expectation is taken with respect to the data and the Rademacher random
variables ε1, . . . , εn ∈ {−1, 1}. In the real-valued case, we used a contraction princi-
ple (proposition 4.3) that allows us to get rid of the surrogate cost S so long as it is
Lipschitz-continuous. Such a contraction principle also exists for vector-valued predic-
tion functions (Maurer, 2016) and is presented in proposition 13.1. Its application leads
to

Rn(S,G) 6
√

2G · E
[

sup
g∈G

1

n

n∑

i=1

(ε′i)
⊤g(xi)

]
, (13.3)

where each ε′i ∈ {−1, 1}k, i = 1, . . . , n, is a vector of independent Rademacher random
variables. This bound allows us to obtain a bound for all the function spaces that we
considered in this book. We consider linear models next (and compare them to the SGD
bound from earlier) and neural networks in exercise 13.5.

Linear models. In the setup of section 13.1.2 (linear models with Frobenius bound),
we can further upper-bound equation (13.3) as

Rn(S,G) 6
√

2G · E
[

sup
g∈G

1

n

n∑

i=1

(ε′i)
⊤g(xi)

]
=
√

2G · E
[

sup
‖θ‖F6D

1

n

n∑

i=1

(ε′i)
⊤θ⊤ϕ(xi)

]

=
D

n

√
2G · E

[∥∥∥
n∑

i=1

ϕ(xi)(ε
′
i)

⊤
∥∥∥
F

]
6
DG

n

√
2·
(
E

[∥∥∥
n∑

i=1

ϕ(xi)(ε
′
i)

⊤
∥∥∥
2

F

])1/2

6
DG

n

√
2·
(
E

[ n∑

i=1

‖ϕ(xi)‖22 ‖ε′i‖22
])1/2

6
DGR

√
2k√

n
.

We thus obtain the same bound as in equation (13.2), but with an extra factor of
√
k,

showing that the Rademacher average technique, as opposed to the real-valued case, does
not lead to the same result as SGD. However, it applies more generally to nonconvex loss
functions (so long as they are Lipschitz-continuous) and predictors that are nonlinear in
their parameters (such as neural networks).

Contraction principle (�). We now provide a proof for the vector-valued contraction
principle, taken from Maurer (2016). The proof follows the same structure as the proof
of proposition 4.3 for k = 1, and we start with a key lemma.

Lemma 13.1 Given any functions b : Θ→ R, a : Θ→ Rk (no assumption) and c : Rk →
R any 1-Lipschitz-function (with respect to the ℓ2-norm), we have, for ε ∈ {−1, 1}, a
Rademacher random variable, and for ε′ ∈ {−1, 1}n, a vector of independent Rademacher



386 CHAPTER 13. STRUCTURED PREDICTION

random variables:

E

[
sup
θ∈Θ

{
b(θ) + εc(a(θ))

}]
6 E

[
sup
θ∈Θ

{
b(θ) +

√
2

k∑

j=1

ε′jaj(θ)
}]
.

Proof (��) Writing explicitly the expectation with respect to ε, we get

Eε

[
sup
θ∈Θ

{
b(θ) + εc(a(θ))

}]
=

1

2
sup
θ∈Θ

{
b(θ) + c(a(θ))

}
+

1

2
sup
θ∈Θ

{
b(θ)− c(a(θ))

}

= sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+
c(a(θ)) − c(a(θ′))

2
.

By taking the supremum over (θ, θ′) and (θ′, θ) and using Lipschitz-continuity of c, we
further get the bound

sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+
|c(a(θ)) − c(a(θ′))|

2
6 sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+
‖a(θ)− a(θ′)‖2

2
.

In the proof of proposition 4.3 (for k = 1), we then applied the same set of equalities to
obtain the desired result without the constant

√
2. Here, we use Khintchine’s inequality

from lemma 11.1 (with optimal constants); that is, for any vector v ∈ Rk, ‖v‖2 6√
2·E

[∣∣∑k
j=1 ε

′
jvj

∣∣] for any vector v ∈ Rk and independent Rademacher random variables
ε′1, . . . , ε

′
n. This leads to the following bound:

sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+

√
2

2
E

[∣∣∣
k∑

j=1

ε′j(aj(θ)− aj(θ′))
∣∣∣
]

6 E

[
sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+

√
2

2

∣∣∣
k∑

j=1

ε′j(aj(θ)− aj(θ′))
∣∣∣
]

using properties of expectations and suprema,

= E

[
sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+

√
2

2

k∑

j=1

ε′j(aj(θ) − aj(θ′))
]

by symmetry,

6 E

[
sup
θ∈Θ

{
b(θ) +

√
2

k∑

j=1

ε′jaj(θ)
}]
, which is the desired result.

Proposition 13.1 (Vector-valued contraction principle) Given any functions b :
Θ → R, ai : Θ → Rk (no assumption) and ci : Rk → R any 1-Lipschitz-functions
(with respect to the ℓ2-norm), for i = 1, . . . , n, we have, for ε ∈ {−1, 1}n, a vector
of independent Rademacher random variables, and for ε′ ∈ {−1, 1}n×k, a matrix of
independent Rademacher random variables:

E

[
sup
θ∈Θ

{
b(θ) +

n∑

i=1

εici(ai(θ))
}]

6 E

[
sup
θ∈Θ

{
b(θ) +

√
2

n∑

i=1

k∑

j=1

ε′ijaij(θ)
}]
.



13.2. GENERAL SETUP AND EXAMPLES 387

Proof (��) We consider a proof by induction on n. The case n = 0 is trivial, and we show

how to go from n > 0 to n+1. We thus consider Eε1,...,εn+1

[
sup
θ∈Θ

{
b(θ)+

n+1∑

i=1

εici(ai(θ))
}]

and apply lemma 13.1 with fixed ε1, . . . , εn, leading to the bound

Eε1,...,εn,ε′n+1

[
sup
θ∈Θ

{
b(θ) +

√
2

k∑

j=1

ε′n+1,jan+1,j(θ) +

n∑

i=1

εici(ai(θ))
}]
,

and apply the induction hypothesis with ε′n+1 fixed to obtain the desired result.

Exercise 13.5 (Multicategory classification with neural networks (�)) Consi-
der neural networks with outputs in Rk; that is, using the notations from section 9.2,
f(x) =

∑m
j=1 σ(w⊤

j x + bj)ηj , with ηj ∈ Rk. Extend the estimation error analysis from

section 9.2.3 by imposing a constraint on
∑m

j=1 ‖ηj‖2.

13.2 General Setup and Examples

Now that the multicategory classification has been presented, we consider the same gen-
eral setup discussed earlier in section 2.2; that is, we want to predict a variable y ∈ Y

from some x ∈ X, and given a prediction z ∈ Y, we incur the loss ℓ(y, z), with the loss
function ℓ : Y× Y→ R.

As in section 2.2, given a test distribution p on X×Y, we can define the Bayes predictor

f∗(x) ∈ arg min
z∈Y

∫

Y

ℓ(y, z)dp(y|x) (13.4)

in the usual way. While it led to simple closed-form formulas for the 0–1 loss and binary
classification, this will not always be the case. Nevertheless, our goal will still be to
achieve its optimal performance at a reasonable computational cost.

13.2.1 Examples

We now consider classic examples with their applicative motivations in natural language
processing, biology, or computer vision—see more examples by Nowak et al. (2019) and
Ciliberto et al. (2020):

• Multicategory classification: Y = {1, . . . , k} and a loss matrix L ∈ Rk×k, with
ℓ(i, j) = Lij . The usual 0–1 loss from section 13.1 corresponds to Lij = 1i6=j , but
in most applications, errors do not have the same cost (e.g., in spam prediction,
classifying a legitimate email as spam costs much more than the opposite).

• Robust regression: Y = R, with ℓ(y, z) = ρ(y − z) and typically ρ nonconvex.
When ρ is convex, such as ρ(δ) = |δ| or ρ(δ) = δ2, there is no need for a surrogate
framework, but then regression may be nonrobust to strong outlier perturbations.



388 CHAPTER 13. STRUCTURED PREDICTION

Having a nonconvex ρ, such as ρ(δ) = 1− exp(−δ2), leads to robust regression (see
more developments in Huber and Ronchetti, 2009).

• Ordinal regression: This is a particular case of multicategory classification, where
the loss matrix has a specific structure in which loss Lij is increasing in |i− j|. This
is common when using a rating system with a few discrete levels. One possibility is
to ignore the discrete structure of the loss and use least-squares regression together
with rounding, but this does not lead to optimal predictions. See Pedregosa et al.
(2017) and references therein.

• Multiple labels: Y = {−1, 1}k, with cardinality 2k, with the traditional Hamming
loss ℓ(y, z) = 1

2‖y − z‖1 = 1
4‖y − z‖22, which counts the number of mistakes and

will be a running example in this chapter. Other performance metrics, such as
precision/recall3 or F -scores,4 are typically used (and may not be symmetric) and
can be treated as well with the frameworks presented in this chapter. These are
detailed in Nowak et al. (2019).

Multiple-label prediction is common in multimedia applications, where there are
potentially k objects in a document, and one wants to predict which ones are
present. Note here that choosing the 0–1 loss is not advocated, as it corresponds to
a multicategory classification problem with 2k classes and the 0–1 loss, for which
we outlined in section 13.1 the statistical dependence of generalization bounds on
the (here exponential) number of classes.

• Permutations: Y is the set of permutations among m elements; that is, y is a bijec-
tion from {1, . . . ,m} to {1, . . . ,m}. We have then |Y| = m!. A common loss function
is the “pairwise disagreement,” which counts the number of pairs where y and z
provide different rankings; it is thus equal to ℓ(y, z) =

∑m
i,j=1 1y(i)>y(j)1z(i)<z(j),

but other losses such as the discounted cumulative gain5 can be used, or losses of
the form

∑m
i=1 ℓi(ay(i) − az(i)) for a fixed vector a ∈ Rm (e.g., aj = j) and func-

tions ℓi : R → R (e.g., the square function). Predicting permutations occurs in
information retrieval and ranking problems where the permutation encodes a user’s
preferences over a set of m items. See Nowak et al. (2019) and references therein
for a review of classical losses used in practice.

• Sequences: Y is the set of sequences of potentially arbitrary lengths over an alpha-
bet; this has applications in natural language processing (e.g., translation from one
language to another), computational biology (DNA basis or amino-acid sequences),
or econometrics/finance (prediction of time series, where the alphabet is usually
not finite). The cardinality of Y is thus large (or infinite), and the Hamming loss is
commonly used.

• Trees and graphs: Y is the set of potentially labeled graphs over some vertices.
Classic examples include the prediction of molecules (which can be represented as
graphs) or the grammatical analysis of sentences in natural language processing.

3See https://en.wikipedia.org/wiki/Precision_and_recall.
4See https://en.wikipedia.org/wiki/F-score.
5See https://en.wikipedia.org/wiki/Discounted_cumulative_gain.

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F-score
https://en.wikipedia.org/wiki/Discounted_cumulative_gain


13.2. GENERAL SETUP AND EXAMPLES 389

Why is it difficult? Structured prediction is challenging for two reasons:

• Computationally: We need to predict large structured (often discrete) objects from
real-valued outputs.

• Statistically: There is a potential curse of dimensionality in both k (the underlying
dimension of the problem, to be defined precisely later in this chapter) and input
dimension d, in addition to having a complicated combinatorial structure.

Our goal is to obtain polynomial-time algorithms in k, n, and d to attain the optimal
prediction; that is, we aim to obtain the following:

• Computational tractability by introducing convex surrogates (to use convex opti-
mization) and efficient decoding steps (often dedicated algorithms). These convex
surrogates lead to explicit guarantees: quantitative for linear models (as in sec-
tions 13.1.2 and 13.6) and qualitative for overparameterized models (as shown in
section 12.3). Note here that in this chapter, we aim to design convex surrogates,
which can then be applied to potentially nonlinear models (in their parameters,
such as neural networks).

• Fisher consistency (excess risk equal to zero in the population case) and calibration
functions (suboptimality for the convex surrogate leads to suboptimality for the
true risk with an explicit dependence).

Following the rest of the book, we will always go through vector-space valued predic-
tion functions. Thus, there will always be two components:

• Learning some vector-valued score functions from data, implicitly or explicitly, in a
Hilbert space H or Rk, where k is the potentially implicit “affine dimension” of Y.

• Decoding procedure to go from scores to predictions (obvious and somewhat over-
looked in the binary classification case, as this was simply the sign).

From one learning framework per situation to a general framework. The de-
velopment of structured prediction methods has seen two streams of work: first, methods
dedicated to specific instances (in particular, cost-sensitive multicategory classification,
ranking, or learning with multiple labels), then generic frameworks that encompass all
the particular cases. In this book, we focus on the latter set of techniques.

Beyond risks defined as expectations. In this book, in all situations, binary or
multicategory classification, regression, or more generally structured prediction, we con-
sider criteria based on (potentially empirical) expectations of ℓ(y, f(x)), where f(x) is the
prediction, y is the label, and ℓ is a loss function. Some commonly used performance cri-
teria do not fit this framework, such as the area under the ROC curve (referred to as the
AUC 6) and can rather be expressed as a “U-statistic,”7 for which specific developments
can be carried out (see, e.g., Gao and Zhou, 2015, and references therein).

6See https://en.wikipedia.org/wiki/Receiver_operating_characteristic for details.
7See https://en.wikipedia.org/wiki/U-statistic.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/U-statistic


390 CHAPTER 13. STRUCTURED PREDICTION

13.2.2 Structure Encoding Loss Functions

To achieve guaranteed predictive performance, we will need to impose some low-dimension
vectorial structure, which in turn imposes some specific structure within Y, hence the
name “structured prediction.” More precisely, we will assume that we have two embed-
dings of the label space Y into the same Hilbert space H; that is, two maps χ, ψ : Y→ H

and a constant c ∈ R, such that

∀(y, z) ∈ Y× Y, ℓ(y, z) = c+ 〈χ(z), ψ(y)〉. (13.5)

This assumption is called “structure encoding loss function (SELF)” (Ciliberto et al.,
2016, 2020). This can be an implicit or explicit embedding (see the examples that follow).
Note that the representation is not unique, as given a pair (χ, ψ), any pair (V −1χ, V ∗ψ)
is valid for any invertible operator.

△! There are two embeddings of outputs in Y, while typically there is only one for the
inputs in X.

Bayes predictor. With the assumption in equation (13.5), we can now express the
optimal predictor in equation (13.4) as

f∗(x) ∈ arg min
z∈Y

〈
χ(z),

∫

Y

ψ(y)dp(y|x)
〉
. (13.6)

Thus, to obtain Fisher consistency, it is sufficient to estimate well the conditional ex-
pectation

∫
Y
ψ(y)dp(y|x) ∈ H; this is what smooth surrogates will do in section 13.4.

However, what is only needed is, in fact, sufficient knowledge of this conditional expec-
tation to perform the computation of f∗(x). This will lead to nonsmooth surrogates in
section 13.5.

Examples. We can now revisit the list of losses described in section 13.2.1 to check if
a SELF decomposition exists. In the theoretical analysis in section 13.6, we will need a
bound on Rℓ = supz∈Y ‖χ(z)‖, which we also provide here (all proofs left as exercises).
Note that implicit SELF decompositions exist under general conditions (Ciliberto et al.,
2020).

• Binary classification, with Y ∈ {−1, 1} and the 0–1 loss: H = R, χ(z) = −z/2
and ψ(y) = y, since ℓ(y, z) = 1y 6=z = 1

2 −
yz
2 , with Rℓ = 1/2.

• Multicategory classification: Y = {1, . . . , k} and a loss matrix L ∈ Rk×k, with
ℓ(i, j) = Lij . The decomposition corresponds to the usual “one-hot” encoding of
discrete distributions, where ψ(i) ∈ R

k is the ith element of the canonical basis
(with values in {0, 1}). We then have ℓ(i, j) = Lij = ψ(i)⊤Lψ(j); that is, χ(j) =
Lψ(j) = L(:, j) ∈ Rk (the jth-column of matrix L). For this case, we have Rℓ =
supj∈{1,...,k} ‖L(:, j)‖2. In particular, for the 0–1 loss, we have Lij = 1i6=j , we

can write ℓ(i, j) = 1 − ψ(i)⊤ψ(j), and we can consider the simpler embedding
χ(j) = −ψ(j), with Rℓ = 1 (note here that since the components of ψ(i) sum to 1



13.3. SURROGATE METHODS 391

for all i, we can add the same constant to the vectors χ(j), in a way that can
reduce Rℓ from

√
k − 1 to 1).

We can also choose to have a feature map ψ with values in {−1, 1} instead of {0, 1},
in particular for the general reduction to binary classification problems.

• Robust regression: Y = R, with the loss ℓ(y, z) = 1 − exp
[
− (y − z)2

]
, which

can be written as, using the Fourier transform of the function u 7→ e−u
2

, ℓ(y, z) =
1− 1

2
√
π

∫∞
−∞ exp(−ω2/4) cosω(y− z)dω, which in turn leads to the existence of an

infinite-dimensional H.

Indeed, we can select H to be the set of square-integrable functions from R to R2,

with ψ(y)(ω) = e−ω
2/8

(
cosωy
sinωy

)
, and χ(z)(ω) = − 1

2
√
π
e−ω

2/8
(
cosωz
sinωz

)
, leading to

R2
ℓ = 1

4π

∫∞
−∞ exp(−ω2/4) = 1

2
√
π

.

• Multiple labels: For Y = {−1, 1}k, the traditional Hamming loss can be rewritten
as ℓ(y, z) = k

2 − 1
2y

⊤z. We then have ψ(y) = y and χ(z) = −z/2, and Rℓ =
√
k/2.

• Permutations on {1, . . . ,m}: For the pairwise disagreement, we have directly
H = Rk with k = m(m − 1), with ψ(y)ij = 1y(i)>y(j) and χ(z)ij = 1z(i)<z(j) for
i 6= j and Rℓ 6 m. For the loss ℓ(y, z) =

∑m
i=1(y(i)− z(i))2, we have ψ(y) = y and

χ(z) = −2z, with Rℓ 6
√

2(m+ 1).

• Sequences: We consider binary sequences for simplicity (i.e., Y = {−1, 1}m), but
it extends more generally to all factor graphs (Wainwright and Jordan, 2008) and
types of labels. Using the Hamming loss (as for multiple labels) ignores the sequen-
tial structure and does not enforce any notion of consistency between two successive
elements of the sequence. On top of features y1, . . . , ym ∈ {−1, 1}, we can add the
features y1y2, y2y3, . . . , ym−1ym ∈ {−1, 1}, which allow for considering losses that
encourage perfectly predicted sequences of size 2, for example, by considering the
loss ℓ(y, z) =

∑m−1
j=1 1(yj,yj+1) 6=(zj ,zj+1) =

∑m−1
j=1

{
1− 1

4 (1− yjzj)(1 − yj+1zj+1)
}

.

△! As for binary classification or regression, the loss choice is independent of the
function space considered (local averaging, kernels, neural networks).

Reduction to binary problems. We have encountered several examples in this dis-
cussion where the feature map Ψ has binary values in {−1, 1}m or {0, 1}m. We will
see next that natural convex surrogates end up simply considering each of the m la-
bels independently (ignoring their potential dependency; i.e., in the ranking case, where
components of Ψ(y) are 1y(i)<y(j), not all values are possible). This can be useful in
structured cases like sequence models or ranking, but also in multicategory classification
with the 0–1 loss.

13.3 Surrogate Methods

In this section, our main concern will be to obtain Fisher consistent, convex surrogates:
convex so that we can run efficient algorithms from chapter 5, and consistent so that we are



392 CHAPTER 13. STRUCTURED PREDICTION

sure that, given sufficient amounts of data and sufficiently flexible models, predictions are
optimal. In particular, this will allow us to derive generalization bounds in section 13.6.

13.3.1 Score Functions and Decoding Step

Binary classification. In this book, we have performed binary classification by learn-
ing a real-valued function g : X → R and then predicting with function f defined as
f(x) = sign(g(x)) ∈ {−1, 1}. In the language of this chapter, we have learned a real-
valued score function and applied a specific decoding step from R to {−1, 1} (the sign
function). We present the general surrogate framework next.

General surrogate framework. In this chapter, we will consider functions f : X→ Y

that can be written as
f(x) = dec ◦ g(x),

where

• g : X → H is a function with values in the vector space H, referred to as a “score
function.”8

• dec : H → Y is the “decoding function,” which can be randomized (in particular
when taking maxima of functions that may have equal values).

We then need a surrogate loss S : Y×H → R, which will be used to form empirical and
expected surrogate risks:

R̂S(g) =
1

n

n∑

i=1

S(yi, g(xi)) and RS(g) = E
[
S(y, g(x))

]
.

For example, for binary classification where Y = {−1, 1}, we had S(y, g(x)) = Φ(yg(x))
for Φ a convex function.

13.3.2 Fisher Consistency and Calibration Functions

Following the same definition as in section 4.1, we denote R∗
S as the minimim S-risk,

which is the infimum over all functions from X to H of RS(g) = E
[
S(y, g(x))

]
. It is equal

to
R∗
S = E

[
inf
h∈H

E
[
S(y, h)|x

]]
.

As for binary classification in section 4.1.3 (where we also used the term classification-
calibrated), the loss is said to be “Fisher consistent” if the optimal predictor in the
population case (i.e., when minimizing the surrogated expected risk) is the Bayes predictor
defined in equation (13.6).

As in binary classification in section 4.1.4, a stronger property that enables the transfer
of convergence rates for the excess S-risk to the excess risk is the existence of a calibration

8In statistics, the score function often refers to the gradient of the log density with respect to param-
eters (and sometimes with respect to inputs). There is no link between these two definitions.



13.4. SMOOTH/QUADRATIC SURROGATES 393

function (i.e., an increasing function H : R+ → R+) such that R(dec◦g)−R∗ ≤ H
[
RS(g)−

R∗
S

]
. Note that, as in the binary classification case in section 4.1.3, a more refined notion

of consistency can be defined and studied (see, e.g., Long and Servedio, 2013).

13.3.3 Main Surrogate Frameworks

As described in section 4.1, for binary classification, we saw two main classes of convex
surrogates:

• Smooth surrogates, where the predictor minimizing the expected surrogate risk led
to a complete description of the conditional distribution of y given x; that is, since
we had only two outcomes, knowledge of E[y|x]. Classic examples include the square
loss and the logistic loss. Then, when going from the excess surrogate risk to the
true excess risk, the calibration function was the square root.

• Nonsmooth surrogates, where the predictor minimizing the expected surrogate risk
already provided a thresholded version; that is, sign(E[y|x]). The calibration func-
tion, however, did not exhibit a square root behavior but rather a better linear
behavior.

In this chapter, we will present extensions of these two sets of surrogates: (1) quadratic
(or, more generally, smooth surrogates), (2) max-margin (nonsmooth functions that esti-
mate the discrete estimator directly), as they come with efficient algorithms and guaran-
tees. But there are other related frameworks that we will not study (Osokin et al., 2017;
Lee et al., 2004; Blondel et al., 2020). In particular, probabilistic graphical models in the
form of conditional random fields are commonly used (Sutton and McCallum, 2012).

13.4 Smooth/Quadratic Surrogates

We first look at a class of techniques that extends the square and logistic losses beyond
binary classification for the whole class of structure encoding loss functions defined in
section 13.2.2. We start with quadratic surrogates, following Ciliberto et al. (2020),
where the analysis is the simplest and most elegant.

13.4.1 Quadratic Surrogate

Given the SELF decomposition in equation (13.5), we consider estimating a score function
g : X→ H with the following surrogate function:

S(y, g(x)) = ‖ψ(y)− g(x)‖2,



394 CHAPTER 13. STRUCTURED PREDICTION

for the Hilbert norm ‖ · ‖ of the space H. In other words, we aim to estimate E
[
ψ(y)|x

]

directly for every x ∈ X. The decoding function is then naturally9

dec(s) ∈ arg min
z∈Y

〈χ(z), s〉, (13.7)

since, when g(x) = E
[
ψ(y)|x

]
, it leads to arg min

z∈Y

E
[
〈χ(z), ψ(y)〉|x

]
= arg min

z∈Y

E
[
ℓ(y, z)|x

]
,

which is the optimal predictor.

For the binary classification case, it leads to the square loss framework from sec-
tion 4.1.1, but in the general case, it extends to the many situations alluded to earlier.
The decoding steps will be described in section 13.4.3.

When the loss function is induced by a positive-definite kernel (i.e., ℓ(y, z) = k(y, y)+
k(z, z) − 2k(y, z)), then this framework is also referred to as “output kernel regres-
sion” (see, e.g., Brouard et al., 2016), or “kernel dependency estimation” (Weston et al.,
2002).

13.4.2 Theoretical Guarantees

For the framework proposed here, we can prove a precise calibration result by using the
properties of the square loss, as obtained in equation (4.8) (section 4.1.4). We first notice
that

RS(g)− R∗
S = E

[∥∥g(x)− E[ψ(y)|x]
∥∥2

]
. (13.8)

Moreover, by construction, the function defined by g∗(x) = E[ψ(y)|x] is the minimizer of
the expected S-risk, and the Bayes predictor is indeed f∗ = dec ◦ g∗.

We can then express the excess risk using the decomposition of the loss as

R(dec ◦ g)− R∗

= R(dec ◦ g)− R(dec ◦ g∗)

= E

[
E
[
ℓ(y, dec ◦ g(x))− ℓ(y, dec ◦ g∗(x))

∣∣x
]]

= E

[
E
[〈
ψ(y), χ(dec ◦ g(x)) − χ(dec ◦ g∗(x))

〉∣∣x
]]

by the SELF decomposition,

= E

[〈
E
[
ψ(y)|x

]
, χ(dec ◦ g(x)) − χ(dec ◦ g∗(x))

〉]
by moving expectations,

= E

[〈
E
[
ψ(y)|x

]
−g(x), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉]

+E

[〈
g(x), χ(dec ◦ g(x)) − χ(dec ◦ g∗(x))

〉]

by adding and subtracting g(x). The definition of the decoding function in equation (13.7)
implies the negativity of the second term. Thus, we get, using the Cauchy-Schwarz

9As in binary classification in section 4.1, when the minimizer is not unique, we predict uniformly
at random among the minimizers. Moreover, in bounds, expectations are taken with respect to this
additional (independent) randomization.



13.4. SMOOTH/QUADRATIC SURROGATES 395

inequality:

R(dec ◦ g)−R∗6 E

[〈
E
[
ψ(y)|x

]
− g(x), χ(dec ◦ g(x)) − χ(dec ◦ g∗(x))

〉]

6 2 sup
z∈Y

‖χ(z)‖·E
[∥∥E

[
ψ(y)|x

]
−g(x)

∥∥
]

6 2 sup
z∈Y

‖χ(z)‖ ·
√
·E
[∥∥〈E

[
ψ(y)|x

]
− g(x)

∥∥2
]

using Jensen’s inequality,

= 2Rℓ ·
√
RS(g)− R∗

S because of equation (13.8), (13.9)

which is precisely a calibration function result. A key feature of this result is that the
constant Rℓ typically does not explode, even for sets Y with large cardinality (see the
examples in section 13.2.2). To get a learning bound for the structured prediction prob-
lem, we then need to use learning bounds for multivariate least-squares regression, which
behave similarly to univariate least-squares regression (see section 13.6). For example,
if we assume that the target function g∗(x) = E[ψ(y)|x] from X → H is in the space of
functions that we are using for learning, then penalized least-squares regression with the
proper choice of regularization parameter will lead to explicit convergence rates. Oth-
erwise, we need to let the parameter go to zero to obtain universal consistency. See
Ciliberto et al. (2020) for more details.

13.4.3 Linear Estimators and Decoding Steps

When function g is linear in the observations ψ(yi), i = 1, . . . , n (e.g., local averaging
methods from section 6.2.1 or kernel methods from section 7.6.1)–that is,

g(x) =

n∑

i=1

wi(x)ψ(yi)

for well-defined functions wi : X→ R, we see that the decoding step is

dec ◦ g(x) ∈ arg min
z∈Y

〈
χ(z),

n∑

i=1

wi(x)ψ(yi)
〉

= arg min
z∈Y

n∑

i=1

wi(x)ℓ(yi, z). (13.10)

This corresponds to approximating the conditional distribution of y given x by the discrete
distribution

∑n
i=1 wi(x)δyi (note that for local averaging methods, this approximation is a

probability distribution, but for kernel methods, the weights wi may not be nonnegative).

Only the loss function is needed for equation (13.10); thus, there is no need to know
the explicit loss decomposition to run the testing algorithm. This makes the decoding
step even easier in the following examples:

• Robust regression: Y = R, with the loss ℓ(y, z) = 1 − exp
[
− (y − z)2

]
. equa-

tion (13.10) then leads to

arg max
z∈R

n∑

i=1

wi(x) exp
[
− (yi − z)2

]
,



396 CHAPTER 13. STRUCTURED PREDICTION

which is a one-dimensional optimization problem that can be solved by grid search.

• Multicategory classification: Y = {1, . . . , k} and a loss matrix L ∈ Rk×k, with
ℓ(i, j) = Lij . Equation (13.10) then leads to arg maxz∈{1,...,k}

∑n
i=1 wi(x)Liz .

• Multiple labels: Y = {−1, 1}k with ℓ(y, z) = k
2 − 1

2y
⊤z. Equation (13.10) then

leads to arg maxz∈{−1,1}k z⊤
∑n

i=1 wi(x)yi, which leads to a closed-form formula
for z.

• Permutations: For the pairwise disagreement, the optimization problem no longer
has a closed form and is an instance of a hard combinatorial problem (“minimum
weighted feedback arc set”), which can be solved for small m, and with simple
approximation algorithms otherwise (see Ciliberto et al., 2020).

• Sequences: When using separable loss functions, we return to the classical multiple-
label setups. However, when using losses over consecutive pairs, we need to minimize
with respect to z ∈ {−1, 1}m a function of the form

∑m
j=1 ujzj +

∑m−1
j=1 vjzjzj+1

for some vectors u and v, which can be done in time O(m) by message-passing
algorithms (see, e.g., Murphy, 2012).

13.4.4 Smooth Surrogates (�)

Following Nowak-Vila et al. (2019), and as done in section 4.1, we can also consider smooth
surrogate functions of the following form, also considered by Blondel et al. (2020):

S(y, g(x)) = c(y)− 2〈ψ(y), g(x)〉+ 2a(g(x)),

where c : Y → R is an arbitrary function, a : H → R is convex and β-smooth; that is,
for any h, h′ ∈ H, a(h′) 6 a(h) + 〈a′(h), h′ − h〉 + β

2 ‖h− h′‖2. We also assume that the
domain of its Fenchel conjugate includes all ψ(y) for y ∈ Y. The square loss corresponds
to a(h) = 1

2‖h‖2 and c(y) = ‖ψ(y)‖2.
We consider the decoding function dec : H→ Y equal to

dec(h) ∈ arg min
z∈Y

χ(z)⊤a′(h), (13.11)

with randomized predictions when several z ∈ Y minimize χ(z)⊤a′(h). For the square
loss, we recover exactly the quadratic surrogate.

Examples. Three examples are particularly interesting:

• Softmax regression: For multicategory classification, we can always take ψ(y) =
ȳ ∈ Rk the “one-hot” encoding of y ∈ {1, . . . , k}. The convex hull of all ψ(y)
for y ∈ Y is then the simplex in R

k. Softmax regression corresponds to a(y) =

log
(∑k

j=1 exp(yj)
)
.

• Reduction to binary logistic regression: When ψ(y) ∈ {−1, 1}m, we can
consider a(h) =

∑m
i=1 log(exp(hi/2) + exp(−hi/2)), leading to independent logistic

regressions. This is a specific instance of error-correcting codes (Dietterich and
Bakiri, 1994).



13.4. SMOOTH/QUADRATIC SURROGATES 397

• Graphical models (�): These last two examples can be made more general using
the graphical model framework. We consider sequences in {−1, 1}m for simplicity,
but this extends to more general situations; that is, more complex graphical mod-
els (see, e.g., Murphy, 2012). To build function a, we consider the convex hull of
all ψ(y), for y ∈ Y, and for any elements of this convex hull (which corresponds to
a probability distribution on Y), we consider its negative entropy, which is a convex
function b. We then take a to be the Fenchel conjugate of b.

For ψ(y) = y, we recover independent logistic regressions, while for the sequence
models, for ψ(y) composed of all yj and yjyj+1, we recover conditional random
fields (Sutton and McCallum, 2012).

• “Perturb-and-MAP”: In situations where one can efficiently maximize linear
functions of ψ(y) with respect to y ∈ Y; in other words, when we can compute
the convex function a0(z) = maxy∈Y ψ(y)⊤z, then we can make it smooth using
stochastic smoothing, as presented in section 11.2; that is, define the function aσ
through aσ(z) = E

[
a0(z+σu)

]
for a random variable u ∈ Rk (typically a Gaussian).

When we use Gumbel distributions for u and Y = {1, . . . , k} with ψ(y) = ȳ, we
recover the softmax function,10 but the framework is more generally applicable (see
Papandreou and Yuille, 2011; Berthet et al., 2020).

Calibration function. The computations in section 13.4.2 for quadratic surrogates can
be extended to smooth surrogates, leading to an extension of the binary case discussed
in section 4.1.4.

We have, by definition of the Fenchel conjugate a∗(u) = suph∈H〈u, h〉 − a(h),

RS(g) = E

[
E[c(y)|x] − 2〈E[ψ(y)|y], g(x)〉 + 2a(g(x))

]

R∗
S = E

[
E[c(y)|x] + inf

h∈H

{
− 2〈E[ψ(y)|x], h〉+ 2a(h)

}]

= E
[
E[c(y)|x]− 2a∗(E[ψ(y)|x])

]
, by definition of a∗,

leading to a compact expression of the excess S-risk and a lower bound:

RS(g)− R∗
S = E

[
− 2〈E[ψ(y)|x], g(x)〉 + 2a(g(x)) + 2a∗(E[ψ(y)|x])

]

>
1

β
E

[
‖a′(g(x))− E[ψ(y)|x]‖2

]
,

where we have used the (1/β)-strong-convexity of a∗, with the same reasoning as in
section 4.1.4.

10See https://francisbach.com/the-gumbel-trick/ for details.

https://francisbach.com/the-gumbel-trick/


398 CHAPTER 13. STRUCTURED PREDICTION

Moreover, as in section 13.4.2, we can express the excess risk as

R(dec ◦ g)− R∗ = R(dec ◦ g)− R(dec ◦ g∗)

= E

[
E
[
ℓ(y, dec ◦ g(x))− ℓ(y, dec ◦ g∗(x))

∣∣x
]]

= E

[
E
[〈
ψ(y), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉∣∣x
]]

= E

[〈
E
[
ψ(y)|x

]
, χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉]

= E

[〈
E
[
ψ(y)|x

]
− a′(g(x)), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉]

+E

[〈
a′(g(x)), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉]
.

By definition of the decoding step in equation (13.11), we get

R(dec ◦ g)− R∗ 6 E

[〈
E
[
ψ(y)|x

]
− a′(g(x)), χ(dec ◦ g(x)) − χ(dec ◦ g∗(x))

〉]

6 2 sup
z∈Y

‖χ(z)‖E
[∥∥E

[
ψ(y)|x

]
− a′(g(x))

∥∥
]

6 2 sup
z∈Y

‖χ(z)‖ ·
√
E

[∥∥E
[
ψ(y)|x

]
−a′(g(x))

∥∥2
]
6 2

√
βRℓ

√
RS(g)− R∗

S .

We thus have the same calibration function as for the quadratic surrogate, but with an
extra factor of

√
β. For example, this applies to softmax regression (see exercise 13.6)

and conditional random fields.

Exercise 13.6 (Softmax calibration function) Derive a calibration function for the
softmax regression loss function described at the beginning of section 13.1.1.

Exercise 13.7 (Reduction to binary problems) Derive a calibration function when
ψ(y) ∈ {−1, 1}m for all y ∈ Y, and we use the logistic surrogate independently on each of
the m components.

Comparison with quadratic surrogates. The comparison between quadratic and
smooth surrogates for structured prediction mimics the one for binary classification from
section 4.1. While both lead to consistent predictions and similar calibration functions,
they differ in their Bayes predictors, with typically smooth surrogates leading to more
natural assumptions (see, e.g., section 13.7.2 for a ranking example).

13.5 Max-Margin Formulations

Rather than extending the square or logistic loss from binary classification to structured
prediction, we can also extend the hinge loss, leading to “max-margin” formulations, with
reference to the geometric interpretation from section 4.1.2. In this section, we assume
that for any z ∈ Y, y 7→ ℓ(y, z) is minimized at z; that is, the loss ℓ(·, z) provides a
measure of dissimilarity with z.



13.5. MAX-MARGIN FORMULATIONS 399

13.5.1 Structured Support Vector Machines

Following Taskar et al. (2005) and Tsochantaridis et al. (2005), we consider a traditional
extension of the support vector machine (SVM) with a simple interpretation.

To introduce the convex surrogate in its full generality, we consider a score function h
that is a function of x ∈ X and y ∈ Y, with the decoder

arg max
z∈Y

h(x, z).

The surrogate function S(y, h(x, ·)) is defined as the minimal ξ ∈ R+ such that, for all
z ∈ Y,

h(x, y) > h(x, z) + ℓ(z, y)− ℓ(y, y)− ξ.
The intuition behind this definition is that we aim to make h(x, y) larger for the observed y
than for the other h(x, z), with a difference that is stronger when y and z are further apart,
as measured by the loss. For multicategory classification with the 0–1 loss, we recover
exactly the hinge loss from section 13.1.1, while for binary classification, we recover the
SVM from section 4.1.2. Taking the smallest possigle ξ leads to the following convex
surrogate: maxz∈Y h(x, z)− h(x, y) + ℓ(z, y)− ℓ(y, y).

If we take the particular form h(x, z) = 〈ψ(z), g(x)〉 for ψ defined in section 13.2.2
and g : X→ H, then the constraint becomes

〈ψ(y), g(x)〉 > 〈ψ(z), g(x)〉+ 〈χ(y), ψ(z)〉 − 〈χ(y), ψ(y)〉 − ξ,

which is equivalent to

ξ > 〈ψ(z)− ψ(y), χ(y) + g(x)〉.
Thus, the surrogate function is

S(y, g(x)) = max
z∈Y
〈ψ(z)− ψ(y), χ(y) + g(x)〉. (13.12)

This convex loss is computable as soon as we can maximize linear functions of ψ(z); thus,
this applies to many combinatorial problems, in particular those described earlier.

However, this approach is not consistent; that is, even in the population case where the
test distribution is known, it does not lead to the optimal predictor in general; note that
there are subcases, such as multicategory classification with the 0–1 loss and a “majority
class,” where the approach is consistent (Liu, 2007) (see also exercise 13.1).

13.5.2 Max-Min Formulations (��)

Following Fathony et al. (2016) and Nowak-Vila et al. (2020), we can provide a nonsmooth
surrogate, which is both Fisher-consistent and comes with a calibration function that does
not have a square root. In the binary case, the SVM led to a target surrogate function,
which was exactly the Bayes predictor, with values in {−1, 1}. We will see that it is
possible to reproduce this behavior in the general case. We still assume that for any



400 CHAPTER 13. STRUCTURED PREDICTION

z ∈ Y, y 7→ ℓ(y, z) is minimized at z (and only at z); that is, the loss provides a measure
of dissimilarity with y.

Given the expression of the Bayes predictor in equation (13.6)–that is,

f∗(x) ∈ arg min
z∈Y

〈
χ(z),E[ψ(y)|x]

〉
,

we consider the function g∗(x) = −χ(f∗(x)) ∈ H, which is defined as

g∗(x) ∈ − arg min
h∈χ(Y)

〈
h,E[ψ(y)|x]

〉
= arg max

h∈−χ(Y)

〈
h,E[ψ(y)|x]

〉
. (13.13)

(For simplicity, we only analyze the case where the minimizer is unique, leaving the
general case as an exercise.) The value g∗(x) happens to be a subgradient at E[ψ(y)|x]
of the convex function

b : µ 7→ − min
h∈χ(Y)

〈h, µ〉 = −min
y′∈Y
〈χ(y′), µ〉. (13.14)

Thus, if we can design a surrogate function S in such as way that E[S(y, g(x))|x] has
minimizer g∗(x) as defined in equation (13.13), we can consider the following decoding
function with our desired consistent behavior:

dec ◦ g(x) ∈ arg max
y′∈Y

ψ(y′)⊤g(x),

since we have

dec ◦ g∗(x) ∈ arg max
y′∈Y

ψ(y′)⊤g∗(x) = arg min
y′∈Y

ψ(y′)⊤χ(f∗(x))

= arg min
y′∈Y

ℓ(y′, f∗(x)) = f∗(x),

because we assumed that the loss ℓ(y, z) is minimized with respect to y at z. Note
the difference with the decoding function of the quadratic surrogate in equation (13.7)
(minimization instead of maximization, and ψ instead of χ).

To enforce that a subgradient g∗(x) of b at E[ψ(y)|x] is a minimizer of E[S(y, g(x))|x],
it is sufficient to consider the following (but note that this is not the only choice):

S(y, g(x)) = b∗(g(x)) − 〈g(x), ψ(y)〉, (13.15)

where b∗ is the Fenchel conjugate of b restricted to M(ψ) ⊂ H defined as the closure of
the convex hull of all ψ(z), z ∈ Y; that is,

b∗(h) = max
µ∈M(ψ)

〈µ, h〉 − b(µ) = max
µ∈M(ψ)

〈µ, h〉+ min
y′∈Y
〈χ(y′), µ〉.

Indeed, with the definition of S(y, ·) in equation (13.15), 0 is a subgradient of the function
h 7→ E[S(y, h)|x] = b∗(h) − 〈h,E[ψ(y)|x]〉 if and only if E[ψ(y)|x] is a subgradient of b∗



13.5. MAX-MARGIN FORMULATIONS 401

at h, which is equivalent to h being a subgradient of b at E[ψ(y)|x] (and by construction,
g∗(x) is such a subgradient).

We then have

S(y, g(x)) = max
µ∈M(ψ)

{
〈g(x), µ〉+ min

y′∈Y
〈χ(y′), µ〉

}
− 〈g(x), ψ(y)〉 (13.16)

= max
µ∈M(ψ)

min
y′∈Y

{
〈g(x) + χ(y′), µ− ψ(y)〉+ ℓ(y, y′)

}
.

Note the similarity with the max-margin SVM loss in equation (13.12), which considers
y′ = y instead of the minimization with respect to y′ ∈ Y. This extra minimization makes
the surrogate loss function more complicated to minimize (though it is still convex), but
it leads to a Fisher consistent estimator.

Fisher consistency. We now confirm that any minimizer g∗ of E
[
S(y, g(x))

]
over all

measurable functions from X to H leads to the optimal prediction; that is,

dec ◦ g∗(x) = arg max
y′∈Y

ψ(y′)⊤g∗(x) = f∗(x).

As in section 13.4.4, for a fixed x ∈ X, any minimizer g∗ has a value g∗(x) that minimizes

E
[
S(y, g(x))|x

]
= b∗(g(x)) −

〈
g(x),E[ψ(y)|x]

〉
,

with respect to g(x). By the definition of b∗, −g∗(x) is a minimizer of h 7→ 〈h,E[ψ(y)|x]
〉

over h ∈M(χ). Thus, given the expression of the Bayes predictor in equation (13.6), we
get g∗(x) = −χ(f∗(x)) ∈ H. This leads to dec ◦ g∗(x) = f∗(x) because of the assumption
that y 7→ ℓ(y, z) is minimized at z. We can also get a linear calibration function in
generic situations; see Nowak-Vila et al. (2020) for details and exercise 13.8 for binary
classification.

Optimization algorithms. In this book, we have focused on optimization methods
based on subgradients. For the loss defined in equation (13.16), this requires an optimizer
µ ∈ M(ψ), which in turn requires solving a min-max problem in general. Next, we con-
sider the multicategory classification problem with 0–1 loss, where this can be achieved,
and refer to Nowak-Vila et al. (2020) for algorithms based on primal-dual formulations.

Binary classification with the 0–1 loss. In this situation, ψ(y) = y and χ(z) =
−z/2. We can first compute the structured SVM cost function from equation (13.12) as
(1 − 2yg(x))+ and recover (up to the factor two) the regular SVM from section 4.1.2.
We can also compute b(µ) = 1

2 |µ| from equation (13.14) with domain [−1, 1], leading
to b∗(f) = (|f | − 1/2)+, and, from equation (13.15), the convex surrogate S(y, g(x)) =
(|g(x)|−1/2)+−yg(x), a formulation that is close to the binary SVM (but nonidentical),
as shown in the following plot, where u = 2yg(x), and we plot the hinge loss (1 − u)+
and the new max-min loss 1

2 (|u| − 1)+ − u
2 + 1

2 (where we added the constant 1
2 so that

it remains nonnegative).



402 CHAPTER 13. STRUCTURED PREDICTION

(1− u)+
1
2(|u|− 1)+ − u

2 +
1
2

u0 1

1

u0 1−1

Hinge loss Max-min loss

Exercise 13.8 For the binary classification problem with 0–1 loss, show that the max-
min formulation leads to a linear calibration function between excess and excess surrogate
risks.

Exercise 13.9 (Multicategory classification, Fathony et al., 2016 (�)) For Y =
{1, . . . , k} and the 0–1 loss, with ψ(y) = ȳ and χ(z) = −z̄ (one-hot encodings), show that

the min-max convex surrogate is S(y, g(x)) = maxA⊂{1,...,k},A 6=∅

∑
j∈A gj(x)−1

|A| − gy(x),

where the maximizers in A can be obtained in closed form by sorting the vector g(x)
(together with a subgradient).

13.6 Generalization Bounds (�)

In this section, we provide generalization bounds for the structured prediction problem
with quadratic surrogates S(y, g(x)) = ‖ψ(y) − g(x)‖2 as defined in section 13.4.1. For
simplicity, we will assume that (1) the SELF decomposition in section 13.2.2 is finite-
dimensional (i.e., ψ : Y → R

k); (2) we consider linear models of the form g(θ)(x) =
θ⊤ϕ(x) ∈ Rk with feature vector ϕ : X→ Rd and θ ∈ Rd×k; and (3) the feature vector is
flexible enough so the minimizer of the expected surrogate risk is indeed a linear function
of ϕ; that is, E[ψ(y)|x] = θ⊤∗ ϕ(x) for some θ∗ ∈ Rd×k. Taking care of an approximation
error would lead to developments similar to section 7.5.1.

For real-valued prediction functions and linear models, we looked at two frameworks
to obtain generalization bounds: one based on Rademacher complexities and one based
on SGD. For multicategory classification in section 13.1, we considered both, and we only
consider SGD in this section because it leads to better bounds. Moreover, we could use
kernel methods when ϕ is known only through the associated kernel function (using in
particular section 7.4.5), but we stick to explicit feature maps for simplicity. Finally,
for least-squares surrogates, we could directly extend the ridge regression analysis from
section 7.6, which does not use Rademacher complexities. Instead, we focus on bounds
obtained by single-pass SGD. We only cover the quadratic surrogate from section 13.4.1
(see exercise 13.10 for Lipschitz-continuous smooth losses); thus, we will use results from
section 5.4.3, in particular the bound in equation (5.28).

We assume i.i.d. observations (x1, y1), . . . , (xn, yn) ∈ X× Y, as well as the single-pass
SGD recursion, initialized at 0 and defined for t ∈ {1, . . . , n}, as

θt = θt−1 − γtϕ(xt)S
′(yt, θ

⊤
t−1ϕ(xt))

⊤ = θt−1 − 2γtϕ(xt)(θ
⊤
t−1ϕ(xt)− ψ(yt))

⊤.



13.6. GENERALIZATION BOUNDS (�) 403

The bound in equation (5.28) exactly applies (with the improvement of exercise 5.35), and
with the choice γt = γ, we obtain the following generalization bound for the surrogate risk
of the averaged iterate θ̄n (note a difference of a factor of 2 compared to equation (5.28)
due to different normalization):

E
[
RS(g(θ̄n))

]
− RS(g(θ∗)) 6

1

γn
‖θ∗‖2F + γ sup

x∈X

‖ϕ(x)‖22 ·RS(g(θ∗)).

With the optimal choice of γ, we get

E
[
RS(g(θ̄n))

]
− RS(g(θ∗)) 6

2√
n
‖θ∗‖F · sup

x∈X

‖ϕ(x)‖2 ·RS(g(θ∗))1/2.

Without any information on RS(g(θ∗)), we can bound it using θ∗ = 0 (then with a bound
supy∈Y ‖Ψ(y)‖22), leading to

E
[
RS(g(θ̄n))

]
− RS(g(θ∗)) 6

2√
n
‖θ∗‖F · sup

x∈X

‖ϕ(x)‖2 · sup
y∈Y

‖Ψ(y)‖2.

We can then use the calibration result in equation (13.9) to obtain consistency for the
structured prediction problem with the following bound:

E
[
R(dec(g(θ̄n)))

]
−R∗6

23/2

n1/4
‖θ∗‖1/2F · sup

z∈Y

‖χ(z)‖2 · sup
x∈X

‖ϕ(x)‖1/22 · sup
y∈Y

‖Ψ(y)‖1/22 . (13.17)

Thus, if all embeddings have bounded norms, we obtain a convergence rate proportional
to n−1/4 for the excess risk (after decoding). Note that the lack of explicit dependence in
the dimension k of the output embeddings ψ and χ; however, such dependence is implicit
in the norms of ψ and χ, as well as in the norm of θ∗.

Structured regularization. The prediction function is characterized by a matrix θ ∈
Rd×k, and without further knowledge, it is natural to use the Frobenius norm (as we did
in this section) or the nuclear norm (which requires using stochastic mirror descent, as
presented in exercise 13.4) as a regularization or constraint. However, there are setups
where the k columns of θ have a specific structure, and thus, some particular squared
norm tr[θ⊤θM−1] can be natural. This can then be obtained by preconditioning the
gradient in the SGD recursion as done in section 5.4.2.

For example, in the ranking problem with the pairwise disagreement loss, where ψ(y)
is indexed by two indices i, j ∈ {1, . . . ,m}, it is natural to consider θij = ηi − ηj for a
matrix η ∈ Rd×m (see section 13.7.2 for more details).

Exercise 13.10 (�) Instead of the quadratic surrogate from section 13.4.1, consider a
smooth surrogate from section 13.4.4 with the additional assumption that function a has
bounded gradients. Extend the bounds presented in this section.



404 CHAPTER 13. STRUCTURED PREDICTION

Figure 13.1. Robust regression in one dimension, with heavy-tail noise (fifth power of
Gaussian noise): regular square loss (left) versus robust loss (right).

13.7 Experiments

In this section, we present two experiments highlighting the benefits of structured pre-
diction and illustrating the results from this chapter.

13.7.1 Robust Regression

Here, we consider a toy robust regression problem to illustrate the use of quadratic surro-
gates presented in section 13.4.1. We look at a simple one-dimensional robust regression
problem, where we compare the square loss and the loss ℓ(y, z) = 1− exp(−(y− z)2). We
generate data with heavy-tail additive noise and plot in figure 13.1 the best performance
for kernel ridge regression with the Gaussian kernel, with the optimal regularization pa-
rameter (selected for best test performance).

Since we use a kernel method, we can use section 13.4.3; that is, once the n data-
dependent weight functions w1(x), . . . , wn(x) are estimated using ridge regression, we
compute arg minz∈R

∑n
i=1 wi(x)ℓ(yi, z) = arg minz∈R

∑n
i=1 wi(x)(1 − exp(−(yi − z)2))

at test time, which can be done by grid searching. See the results shown in figure 13.1,
where we see that the robust loss is indeed more robust to outliers.

13.7.2 Ranking

We illustrate structured prediction on a ranking problem, where Y is the set of permuta-
tions from {1, . . . ,m} to {1, . . . ,m}. We consider two loss functions:

• Square loss: ℓ(y, x) =
∑m

i=1(y(i) − z(i))2, with output embedding simply equal
to ψ(sq)(y) = y ∈ {1, . . . ,m}m. For this loss, we only consider the (natural) square
surrogate. We thus need to fit a function h : X→ Rm using least-squares regression
directly on y. The decoding step for test point x is then simply to sort the m
components of h(x).



13.7. EXPERIMENTS 405

• Pairwise disagreement: ℓ(y, z) =
∑m

i,j=1

(
1y(i)<y(j) − 1z(i)<z(j)

)2
, with the fea-

ture ψ(pw)(y) ∈ {−1, 1}m(m−1)/2, defined as ψ
(pw)
ij (y) = 2 · 1y(i)<y(j) − 1 for i < j

(up to constants, this is the same formulation as in section 13.2.1). We thus need to
learn function g : X→ Rm(m−1)/2; we consider the square loss, where we minimize
expectations of ‖ψ(pw)(y) − g(x)‖22, as well as the logistic loss, where we minimize

the expectation of
∑
i<j log

(
1 + exp(−ψ(y)

(pw)
ij (x)gij(x))

)
(then, the estimate of

E[ψ
(pw)
ij (y)|x] is equal to tanh(gij(x)/2)).

In terms of decoding, given function g, at test point x, we need to maximize∑
i<j gij(x)1z(i)<z(j) with respect to permutation z when using the square loss,

while we need to maximize
∑

i<j tanh(gij(x)/2)1z(i)<z(j) when using the logis-
tic loss. This is an instance of the “minimum feedback arc set problem”, which
is an NP-hard problem (Cormen et al., 2022) with known approximation algo-
rithms (Ailon et al., 2008).11 When the weights gij(x) take the form u(hj(x)−hi(x))
for a nondecreasing function u and a function g : X → R

m, then it can be solved
by sorting h. Thus, when either the square loss or the logistic loss is used, using
a specific model gij = hi − hj leads to simpler decoding. For the square loss, it
turns out that using this specific model leads exactly to performing least-squares
regression on y ∈ Rm (proof left as an exercise).

Plackett-Luce model. We generate data from the Plackett-Luce model (Marden,
1996): from m functions h1(x), . . . , hm(x) ∈ R, we obtain a random permutation by
sorting the m real values h1(x) + η1, . . . , hm(x) + ηm in ascending order, where each ηi,
i = 1, . . . ,m, is a Gumbel random variable.12 Our convention is that y(i) is the position
of item i; that is, y(i) = 1 if hi(x) + ηi is the smallest, and y(i) = m if hi(x) + ηi is the
largest.

If π(x) = softmax(h(x)), this happens to be equivalent to the model where y(m)
is selected with probability vector π(x), and then y(m − 1), with probability vector
proportional to π(x) (but without the possibility of taking y(1)). In other words, the
probability of selecting a permutation z is equal to

π(x)z(m)

π(x)z(m−1)

1− π(x)z(m)

π(x)z(m−2)

1− π(x)z(m) − π(x)z(m−1)
· · · π(x)z(2)

π(x)z(1) + π(x)z(2)
.

Moreover, we also have E[1y(i)<y(j)|x] =
πj(x)

πj(x)+πi(x)
=

exp(hj(x))
exp(hi(x))+exp(hj(x))

, so a logistic

regression model for predicting 1y(i)<y(j) has a target function equal to hj−hi. However,
the target function for the square loss, stated as E[y|x], can be expressed as a product of
softmax functions of subsets of h1, . . . , hm, and thus it is not linear in these functions.

We consider X = [0, 1] and functions h1, . . . , hm, which are linear combinations of
cosine functions cos(2πkx) and sine functions sin(2πkx) for k ∈ {0, 1} for the generating
functions. See figure 13.2 for an illustration.

11In our experiments, since m is small, we use exhaustive search.
12See https://en.wikipedia.org/wiki/Gumbel_distribution.

https://en.wikipedia.org/wiki/Gumbel_distribution


406 CHAPTER 13. STRUCTURED PREDICTION

Figure 13.2. Top: utilities h1, . . . , hm (left) and empirical utilities h1 + η1, . . . , hm + ηm
(right). Bottom: population permutations y∗(x) ∈ {1, . . . ,m} (left) and conditional
expectation E[ψ(sq)(y)|x] = E[y|x] ∈ [1,m] (right).

We consider situations where the prediction model used for the functions g and h
includes the ones generating the data, hence a well-specified model for the logistic loss
but not for the square loss. In figure 13.3, we provide learning curves where we vary
the number n of observations, for three classes of prediction functions based on sines
and cosines: for the small model, we use exactly the same model class as for h1, . . . , hm
(i.e., k ∈ {0, 1}), while for the middle model, k ∈ {0, . . . , 3}, and for the large model,
k ∈ {0, . . . , 15}. We use a fixed regularization parameter proportional to 1/n.

In the top-left plot of figure 13.3, the quadratic surrogate with ψ(sq)(y) = y is con-
sidered and the small model is misspecified. Thus, when n grows, the testing error does
not go down to zero (regardless of the way it is measured, as the three top plots exhibit
a similar behavior), and it is similar for the bottom-left plot, where the square surrogate
is used with the pairwise disagreement loss function. For the logistic surrogate, however,
where even the small model is well specified, we obtain a learning curve that goes closer
to zero, as shown in the middle and right bottom plots in figure 13.3; in the rightmost
plot, when considering predictors that follow Plackett-Luce model (i.e., gij = hi − hj),
since fewer functions are learned, we obtain as expected a slightly better behavior.



13.8. CONCLUSION 407

Figure 13.3. Top: using the square loss ℓ(y, z) = ‖y − z‖22 with the square surrogate;
left: testing error (expected risk) for the quadratic surrogate (before sorting); middle:
testing error (expected risk) for the square loss (after sorting); right: testing pairwise
disagreement (after sorting). Bottom: expected risks using the pairwise disagreement loss
ℓ(y, z) = ‖ψ(pw)(y) − ψ(pw)(z)‖22 with the square surrogate (left) and logistic surrogates
(middle: with m(m− 1)/2 functions, right: using the Plackett-Luce model, i.e., pairwise
differences of m functions).

13.8 Conclusion

In this chapter, we explored surrogate frameworks beyond binary classification, focusing
on convex surrogates. These convex formulations can be used with any prediction func-
tions (linear in the parameter, such as kernel methods, or not, such as neural networks)
and come with guarantees for linear models. We presented several principles, such as
quadratic surrogates, margin-based techniques, and frameworks with probabilistic inter-
pretations through maximum likelihood.





Chapter 14

Probabilistic Methods

Chapter Summary
• Probabilistic models can lead to intuitive algorithmic formulations but sometimes

misleading interpretations. In particular, maximum a posteriori (MAP) estimation
does not work best when the parameters are generated from the prior distribution.
Minimum mean square error (MMSE) estimation is preferable (for the square loss).

• Generative models, such as linear discriminant analysis (LDA), which explicitly
try to model the input data with simple models, can lead to biased but efficient
estimators in large dimensions compared to their discriminative counterparts (such
as logistic regression).

• Bayesian inference can be used naturally for model selection using the marginal
likelihood, for model selection among a finite number of choices or with Gaussian
processes.

• PAC-Bayesian analysis: Aggregating estimators provide natural statistically effi-
cient estimators with an elegant link with Bayesian inference.

In this chapter, we first consider probabilistic modeling interpretations of several
learning methods, focusing primarily on identifying losses and priors with log densities
but drawing clear distinctions between what this analogy brings and what it does not.
We then show how Bayesian inference naturally leads to model selection criteria and end
the chapter with a description of PAC-Bayesian analysis.

14.1 From Empirical Risks to Log-Likelihoods

Many methods in machine learning may be given a probabilistic interpretation through
maximum likelihood or “maximum a posteriori” (MAP ) estimation. For example, con-

409



410 CHAPTER 14. PROBABILISTIC METHODS

sider the regularized empirical risk as

R̂(θ) =
1

n

n∑

i=1

ℓ(yi, fθ(xi)) +
λ

n
Ω(θ),

multiply by −n, and take the exponential to get

exp(−nR̂(θ)) = exp
(
−

n∑

i=1

ℓ(yi, fθ(xi))− λΩ(θ)
)

=

n∏

i=1

exp
[
− ℓ(yi, fθ(xi))

]
· exp

[
− λΩ(θ)

]
. (14.1)

We can give a probabilistic interpretation by considering a likelihood ; that is, a density
(with respect to a well-defined base measure):

p(yi|xi, θ) ∝ exp
[
− ℓ(yi, fθ(xi))

]
,

and a prior density

p(θ) ∝ exp
[
− λΩ(θ)

]
,

so that we have

exp(−nR̂(θ)) ∝
n∏

i=1

p(yi|xi, θ) · p(θ),

which is precisely the conditional likelihood for the model where θ is a parameter and
where, given θ, all pairs (xi, yi) are independent and identically distributed (i.i.d.).

△! Be careful with the overloading of notations for probability densities, where the sym-
bol p is used for all random variables.

△! Note the difference between conditional likelihood and likelihood.

△!
There is more to probabilistic interpretation than simply taking the exponen-
tial, such as, among others, generative models, Bayesian inference for hyper-
parameter learning (as done in later sections), and dealing with missing data
through the expectation-maximization algorithm.

△! We only scratch the surface here, from a learning theory point of view. See
Murphy (2012) and Bishop (2006) for many more details.

In this section, we primarily focus on the formulation in equation (14.1) and now look
at specific examples for data likelihoods and priors.



14.1. FROM EMPIRICAL RISKS TO LOG-LIKELIHOODS 411

14.1.1 Conditional Likelihoods

For logistic regression where Y ∈ {−1, 1}, we can interpret the loss as the conditional
log-likelihood of the model, where

P(yi = 1|xi) =
1

1 + exp(−fθ(xi))
,

which can be put in a compact way as p(yi|xi) = sigmoid(yifθ(xi)), where sigmoid : α 7→
(1 + e−α)−1 is the sigmoid function

△!
To apply logistic regression, there is no need to assume that the model is well
specified; that is, there exists a θ∗ so that the data are actually generated from
the conditional model above. For the nonparametric analysis (with flexible
models such as kernel methods or neural networks), this is often assumed.

For least-squares regression, we can interpret the loss 1
2 (yi − fθ(xi))2 as a Gaussian

model with mean fθ(xi) and variance 1. We can also estimate a more general variance
parameter that is uniform across all x (homoscedastic regression) or depends on x (het-
eroscedastic regression).

△! There is no need to have Gaussian noise! Having zero mean and bounded
variance is enough for the analysis.

Exercise 14.1 Show that the negative log density of the Gaussian distribution with mean µ
and variance σ2 (i.e., − log p(y|µ, σ) = 1

2σ2 (x− µ)2 + 1
2 log(2π) + 1

2 log σ2) is not convex
in (µ, σ2) but is jointly convex in (µ/σ2, σ−2).

14.1.2 Classical Priors

We can interpret classical regularizers that we have already encountered in previous
chapters. For the squared ℓ2-norm with Ω(θ) = λ

2 ‖θ‖22, this corresponds to a Gaussian
distribution with mean zero and covariance matrix λ−1I.

For the ℓ1-norm with Ω(θ) = λ‖θ‖1, this is the so-called Laplace (or double exponen-
tial) prior:

p(θ) =

d∏

j=1

λ

2
exp(−λ|θj |).

Exercise 14.2 Show that the variance of a Laplace-distributed random variable is equal
to 2

λ2 .

The interactions between regularization terms and priors can go both ways, and we
can consider other classical priors as well. One that is common in the Bayesian setting is
the multivariate Student distribution (often used marginally for independent components,



412 CHAPTER 14. PROBABILISTIC METHODS

Figure 14.1. Classical priors in one dimension, all normalized to zero mean and unit
variance: (left) densities, (right) negative log densities.

such as in section 14.1.3):

p(θ) ∝
(
β + 1

2‖θ‖22
)−α−d/2

,

for some α, β > 0, leading to the regularizer (α+d/2) log(β+ 1
2‖θ‖22), which is not convex

in θ. This will be used within sparse priors in section 14.1.3.

Exercise 14.3 (�) Consider a random vector θ that is Gaussian with mean zero and
covariance matrix ηI, with 1/η being distributed as a Gamma random variable with pa-

rameters α and β; that is, η with density p(η) = βα

Γ(α) (1/η)α+1 exp(−β/η). Show that the

marginal density of θ is the Student distribution with density p(θ) = c(β + 1
2‖θ‖22)−α−d/2,

with c = 1
(2π)d/2

βαΓ(α+d/2)
Γ(α) , and that E

[
θθ⊤

]
= β

α−1I if α > 1.

△!
The expression of regularizers as log densities may lead to the impression that
MAP estimation is particularly well suited when (1) the conditional model is
well specified (i.e., there exists θ∗ such that p(y|x) is indeed proportional to
exp(−ℓ(y, fθ∗))); and (2) the optimal θ∗ is sampled from the prior distribution
proportional to exp(−λΩ(θ)). As we explain in section 14.1.4, this is not the
case at all.

14.1.3 Sparse Priors

As shown in section 14.1.4, the Laplace prior is not adapted to sparse data (which may
seem counterintuitive since the MAP estimate leads to ℓ1-penalization). We consider the
following ones instead. For each one-dimensional component, we consider the following
(see illustrations in figures 14.1 and 14.2):

• Generalized Gaussians: p(θ) =
α

2

λ1/α

Γ(1/α)
exp(−λ|θ|α), with variance λ−2/α Γ(3/α)

Γ(1/α) .

• Student: p(θ) = 1
(2π)1/2

βαΓ(α+1/2)
Γ(α) (β + 1

2θ
2)−α−1/2, with variance β

α−1 if α > 1.



14.1. FROM EMPIRICAL RISKS TO LOG-LIKELIHOODS 413

Figure 14.2. Sparse priors in two dimensions. Left: Laplace distribution, middle: Student
distribution, right: generalized Gaussian distribution.

• Mixture of two Gaussians: p(θ) = αN(θ|0, σ2
0) + (1 − α)N(θ|0, τ2), with variance

ασ2
0 + (1− α)τ2.

It turns out that all these examples happen to be “scale mixtures of Gaussians”; that is,
they can be seen as the (potentially continuous) mixtures of Gaussian distributions with
zero means but different variances:

p(θ) =

∫ +∞

0

1√
2πη

e−
1
2

θ2

η dq(η),

where q is a probability measure on R+. For the third example, this is straightforward,
with q being a weighted sum of two Dirac measures at σ2

0 and τ2. For the Laplace
distribution (generalized Gaussians with α = 1), one can check by direct integration that

we can take q to be an exponential distribution (i.e., with density q(η) = λ2

2 exp(−ηλ2/2)),
while for the Student distribution, q has an inverse Gamma distribution, with density
q(η) = βα

Γ(α)η
−α−1e−β/η (see exercise 14.3).

As we show in section 14.3.2, this hierarchical model can be used with marginal
likelihood maximization, leading to reweighted least-squares algorithms that are close to
the “η-trick” from section 8.3.1, and thus can provide a Bayesian interpretation.

Exercise 14.4 A density p(θ) on R is said to be “super-Gaussian” if log p(θ) is convex
in θ2 and nonincreasing. Show that scale mixtures of Gaussians are super-Gaussian.1

14.1.4 On the Relationship between MAP and MMSE (�)

In this section, following Gribonval (2011), we consider a very simple conditional model
of the form

y = θ + ε, (14.2)

where ε is Gaussian with zero mean and covariance matrix σ2I, assuming that σ2 is
known. We have prior knowledge about θ in the form of a prior density q(θ).2 Given

1The converse is not true; see Palmer et al. (2005).
2We favor the notation q(θ) over p(θ) to avoid confusion with p(y) later in this subsection.



414 CHAPTER 14. PROBABILISTIC METHODS

the observation of y, our goal is to obtain an estimator of θ with the most favorable
properties, which we define here as the minimum squared error (this estimator will be
generalized in section 14.3).

That is, given an estimator θ̂(y), we consider the criterion

J(θ̂) =

∫

Rd

‖θ − θ̂(y)‖22q(θ)dθ.

As shown in section 2.2.3, the optimal estimator (i.e., function) θ̂ : Rd → Rd is equal
to the a posteriori mean; that is,

θ̂MMSE(y) = E
[
θ|y

]
,

assuming that θ is sampled according to q(θ) and y follows the model in equation (14.2).
Here, MMSE stands for “minimum mean square error.” We now want to compare it with
the maximum a posteriori (MAP) parameter:

θ̂MAP(y) ∈ arg max
θ∈Rd

p(θ|y) = arg max
θ∈Rd

q(θ)p(y|θ).

Gaussian prior. When q is a Gaussian distribution with mean zero and covariance
matrix τ2I, then (θ, y) is a Gaussian vector; and from conditioning results presented in
section 1.1.3, we have

θ̂MMSE(y) = E
[
θ|y

]
=

τ2

τ2 + σ2
y,

while the MAP estimate is also equal to τ2

τ2+σ2 y because, for Gaussians, the mean and
the mode are the same, but, as we will show later in this chapter, Gaussian priors are
the only ones for which these two are equal.

Simple expression of the MMSE. We denote by p(y) the density of y; that is,

p(y) =

∫

Rd

p(y, θ)dθ =

∫

Rd

q(θ)p(y|θ)dθ

=

∫

Rd

q(θ)
1

(2πσ2)d/2
exp

(
− 1

2σ2
‖θ − y‖22

)
dθ,

using the expression of the Gaussian density. We can now express the a posteriori mean
as follows, introducing the gradient of the Gaussian density:

θ̂MMSE(y) = E
[
θ|y

]
=

∫

Rd

p(θ|y)θdθ =

∫

Rd

p(θ, y)

p(y)
θdθ

= y + σ2

∫

Rd

p(y|θ)q(θ)
p(y)

1

σ2
(θ − y)dθ

= y +
σ2

p(y)

∫

Rd

q(θ)
1

(2πσ2)d/2
exp

(
− 1

2σ2
‖θ − y‖22

) 1

σ2
(θ − y)dθ

= y − 1

(2πσ2)d/2
σ2

p(y)

∫

Rd

q(θ)
∂

∂θ

[
exp

(
− 1

2σ2
‖θ − y‖22

)]
dθ.



14.1. FROM EMPIRICAL RISKS TO LOG-LIKELIHOODS 415

Thus, using integration by parts,3 we get

θ̂MMSE(y) = y +
1

(2πσ2)d/2
σ2

p(y)

∫

Rd

q′(θ) exp
(
− 1

2σ2
‖θ − y‖22

)
dθ

= y +
1

(2πσ2)d/2
σ2

p(y)

∫

Rd

q′(y − η) exp
(
− 1

2σ2
‖η‖22

)
dη, with θ = y − η,

= y +
σ2

p(y)
p′(y) = y + σ2 d

dy
(log p(y)). (14.3)

We thus get an explicit expression of the MMSE estimate. Note that for a Gaussian
prior, y is marginally distributed as a Gaussian; hence, the gradient of log p(y) is a linear
function, and the MMSE is affine in y if and only if the prior is Gaussian.

Exercise 14.5 Show that the posterior covariance matrix can be expressed as follows:

var(θ|y) = σ2I + σ4 d2

dydy⊤
(log p(y)).

Link with empirical Bayes. We have shown that for any arbitrary prior distribu-
tion q(θ), with the conditional model y|θ being Gaussian with mean 0 and covariance
matrix σ2I, the conditional expectation E[θ|y] = y + σ2 d

dy (log p(y)) can be expressed
through the density of y. This density depends only implicitly on the prior distribution
of θ. This generalizes to other noise models (see exercise 14.6) and can be used within
“empirical Bayes” procedures described in section 14.3.2.

Exercise 14.6 Assume that θ has an arbitrary prior distribution supported on R+, and,
given θ, y has a Poisson distribution with mean θ; that is, P(y = k|θ) = 1

k!e
−θθk, for k a

nonnegative integer. Show that E[θ|y] = (y+1)p(y+1)
p(y) . Extend this result to the geometric

distribution P(y = k|θ) = (1− θ)θk, for θ supported on [0, 1].

Expression of the MAP estimate. If q(θ) = exp(−h(θ)), then the MAP estimate is

θ̂MAP(y) ∈ arg min
θ∈Rd

1

2σ2
‖θ − y‖22 + h(θ),

with optimality condition, for differentiable h, θ − y − σ2 d
dθ (log q(θ)) = 0; thus we have

θ̂MAP(y) = y + σ2 d

dy
(log q)

[
θ̂MAP(y)

]
. (14.4)

Exercise 14.7 (Gribonval, 2011 (��)) We denote f(y) = − log p(y). Show that the

MMSE estimator θ̂MMSE(y) = y−σ2f ′(y) defined in equation (14.3) is the MAP estimator

for the negative log-prior g that satisfies g(θ̂MMSE(y)) = f(y)− σ2

2 ‖f ′(y)‖22 for all y ∈ Rd.

3Integration by parts applies more generally to any Gaussian random vector z with mean µ and
covariance matrix Σ, leading to Stein’s lemma, stating that for any real-valued differentiable function g
on Rd, E[g(z)(z − µ)] = Σ · E[g′(z)]; see https://en.wikipedia.org/wiki/Stein’s_lemma.

https://en.wikipedia.org/wiki/Stein's_lemma


416 CHAPTER 14. PROBABILISTIC METHODS

Figure 14.3. Comparison of MMSE and MAP for the spike-and-slab and Laplace priors
for σ = 1, and varying standard deviations for the prior distribution (1/8, 1/2, 1, and 2):
MMSE for the spike-and-slab prior (left), MMSE for the Laplace prior (middle), MAP
for the Laplace prior (right).

Differences between MMSE and MAP. Given the expressions in equations (14.3)
and (14.4), we can now study how the two estimators differ for the various sparse priors
that we have described here, where we consider the one-dimensional case for simplicity
(which extends to independent marginal priors in the multidimensional case); see the
plots in figure 14.3:

• Spike-and-slab: This is the model essentially used in the analysis of the Lasso
problem in chapter 8 (i.e., weight vectors with exact zeros), for which MAP with
the Laplace prior (i.e., the Lasso problem) is shown to have favorable properties.
We consider the prior, which is the mixture of a Dirac measure at zero (with weight
α) and a Gaussian distribution with mean zero and variance τ2. The variance is
then equal to (1 − α)τ2, and p(y) is the mixture of two Gaussian distributions,
centered on zero, with variances σ2 and σ2 + τ2.

Exercise 14.8 Show that the marginal density p(y) for the spike-and-slab prior is

equal to p(y) = α 1
(2πσ2)1/2

exp
(−y2
2σ2

)
+ (1−α) 1

(2π(σ2+τ2))1/2
exp

( −y2
2(σ2+τ2)

)
. Provide

an expression of θ̂MMSE(y) and of θ̂MAP(y).

• Laplace: This is the model for which the MAP estimation leads to the Lasso method.
For q(θ) = 2

λ exp(−λ|θ|), the variance equals 2/λ2. We can compute the MMSE
by explicitly computing p(y) by integrating separately over positive and negative
numbers (see exercise 14.9). We see in figure 14.3 that the MMSE is very far from
the soft-thresholding operator from section 8.3.1 (right plot). In other words, the
Lasso is not adapted to signals that are sampled from the Laplace distribution, but
rather to signals sampled from the spike-and-slab prior; see a more quantitative
analysis in Gribonval et al. (2012).

Exercise 14.9 Show that the marginal density p(y) for the Laplace prior can be



14.2. DISCRIMINATIVE VERSUS GENERATIVE MODELS 417

expressed using the Gauss error function erf(α) = 2√
π

∫ α
0

exp(−t2)dt, as p(y) =

1
λ exp

(
λ2σ2

2 −λy
)[

1− erf
(λσ− y

σ√
2

)]
+ 1

λ exp
(
λ2σ2

2 +λy
)[

1− erf
(λσ+ y

σ√
2

)]
. Provide an

expression of θ̂MMSE(y) and of θ̂MAP(y).

Exercise 14.10 When q is a Gaussian distribution with mean zero and covariance ma-
trix C, provide an expression of the MMSE and MAP estimates.

Exercise 14.11 (�) Provide a closed-form expression for the marginal density p(y) for
the Student prior.

14.2 Discriminative versus Generative Models

We now consider a traditional supervised learning setup, with (x, y) ∈ X × Y. The goal
of supervised learning can be cast as follows: for any x ∈ X, obtaining a good conditional
predictive model of y given x; that is, getting a good model for p(y|x).

We can first directly model p(y|x) with a parameterized conditional model (as done
for least-squares or logistic regression). This will be called the discriminative approach.

We can also consider a joint density p(x, y), and obtain p(y|x) = p(x,y)
p(x) ∝ p(x, y)

using Bayes’s rule. Most often (in particular for classification problems), the joint model
is obtained by modeling y and x|y; that is, the conditional model of the inputs given the
outputs, with a particularly simple model, leading to p(y|x) ∝ p(x|y)p(y). This will be
called the generative approach.

14.2.1 Linear Discriminant Analysis and Softmax Regression

We consider a generative model with Gaussian class-conditional densities with a common
covariance matrix, with x ∈ R

d and y ∈ {1, . . . , k}:

y ∼ multinomial(π)

x|y = i ∼ Gaussian(µi,Σ).

We can then compute the distribution of y given x as follows (removing all parts that are
independent of i):

P(y = i|x) ∝ P(y = i, x) = πi exp
[
− 1

2 (x− µi)⊤Σ−1(x− µi)
]

∝ πi exp
[
− 1

2µ
⊤
i Σ−1µi

]
exp(µ⊤

i Σ−1x).

This implies that, defining the softmax function softmax : Rk → Rk through softmax(v)j =
evj

ev1+···+evk ,

P(y = i|x) = softmax
[
(µ⊤
i Σ−1x+ log πi − 1

2µ
⊤
i Σ−1µi)i

]
= softmax

[
(w⊤

i x+ bi)i
]
i
;



418 CHAPTER 14. PROBABILISTIC METHODS

that is, the conditional model is the softmax function of a linear model, which is precisely
the definition of softmax regression from section 13.1.1, with wi = Σ−1µi and bi =
log πi − 1

2µ
⊤
i Σ−1µi. This model is referred to as linear discriminant analysis (LDA).4

The availability of a generative model will lead to alternative parameter estimation
algorithms (as discussed next). Note that (1) for k = 2, we recover logistic regression,
and (2) we can apply the softmax regression model for any set of k prediction functions
f1, . . . , fk beyond affine functions.

Note, finally, that the common covariance matrix is often restricted to be diagonal.

Maximum likelihood estimation. Given observations (x1, y1), . . . , (xn, yn), the pa-
rameters of the model discussed here can be estimated naturally by maximum likelihood.
It turns out that for the particular case of multinomial and Gaussian random variables,
this is equivalent to computing empirical moments (proof left as an exercise); that is,
the estimator or π is the vector of empirical proportions of each class. Similarly, the
estimator of each mean µi is the empirical mean of observations with class i, and the
joint covariance is a weighted combination of the empirical covariances of each class (see
exercise 14.12).

Exercise 14.12 For the LDA model, show that the maximum likelihood estimates of
the parameters are π̂i = 1

n

∑n
j=1 1yj=i, µ̂i = 1

nπ̂i

∑n
j=1 1yj=ixj , for i ∈ {1, . . . , k}, and

Σ̂ = 1
n

∑n
j=1

∑k
i=1 1yj=i(xj − µ̂i)(xj − µ̂i)⊤.

Exercise 14.13 (Quadratic discriminant analysis) Assume that the class-conditional
covariance matrices are different for each class. Show that the conditional model is still
a softmax function, but now of “affine + quadratic” functions of x.

14.2.2 Naive Bayes

We consider discrete data (i.e., x ∈ {1, . . . ,m}d and y ∈ {1, . . . , k}) and the following
generative model:

y ∼ multinomial(π)

x|y = i ∼
d∏

j=1

multinomial(xj |θji),

where π ∈ Rk (in the simplex), and each θji is in the simplex in Rm. In other words,
given y, the d components x1, . . . , xd are independent. This is called the “naive Bayes”
model, often used for text documents.5

Using the usual one-hot encoding of discrete distributions, we see each xj in Rm as
one of the canonical basis vectors so that the probability of xj |y = i is equal to

∏m
a=1 θ

xja

jia .

4LDA is not to be confused with latent Dirichlet allocation (Blei et al., 2003), which is a generative
model for collections of text documents.

5See https://en.wikipedia.org/wiki/Naive_Bayes_classifier.

https://en.wikipedia.org/wiki/Naive_Bayes_classifier


14.2. DISCRIMINATIVE VERSUS GENERATIVE MODELS 419

We can then compute

P(y = i|x) ∝ P(y = i, x) =
k∏

i=1

πyii

d∏

j=1

m∏

a=1

θ
xjayi
jia

logP(y = i|x) ∝
k∑

i=1

yi

(
log πi +

d∑

j=1

m∑

a=1

(log θjia)xja

)
.

As for LDA in section 14.2.1, we thus also get a softmax model softmax
[
(w⊤

i x + bi)i
]
,

with bi = log πi, and wi with components log θjia. Also, as for LDA, we can obtain
maximum likelihood estimates for each parameter of multinomial variables using empirical
proportions (proof left as an exercise).

14.2.3 Maximum Likelihood Estimations

As shown in sections 14.2.1 and 14.2.2, for LDA and naive Bayes, we obtain conditional
models corresponding to softmax regression, for which we can use optimization algorithms
to get the relevant parameters (this is the discriminative approach followed in this book).

However, we can also use the generative models to estimate parameters in closed form.
For example, for LDA, as shown in exercise 14.12, the maximum likelihood estimates for
the class proportions are the empirical class proportions π̂i, the means are the empirical
means, and Σ̂ =

∑k
i=1 π̂iΣ̂i, which allows us to compute ŵi and b̂i, through the formula

from section 14.2.1, instead of having to solve a convex problem. The key question is:
Which one is better?

Discriminative versus generative learning. When making an even simpler assump-
tion of Σ diagonal, we can study the potential benefits of the discriminative and the gen-
erative setup, following Ng and Jordan (2001): the generative approach has a stronger
bias, but potentially a lower variance.

For both LDA in section 14.2.1 and naive Bayes in section 14.2.2, if we use the condi-
tional log-likelihood as a criterion, the discriminative approaches in the population case
optimize the correct criterion directly, and thus must lead to better or equal performance.
However, in the unregularized case, to approach the population case for logistic regres-
sion, we need a number of samples proportional to d (e.g., by considering our bounds on
Rademacher complexities in section 4.5 with data with equal variance in all directions).
For LDA or naive Bayes, we need to estimate d separate quantities simultaneously, and
when using concentration inequalities and the union bound, we should expect to have n
larger than a constant multiplied by log d to attain the population performance. We thus
get a larger bias with generative approaches but significantly less variability. See the
experiments in figure 14.4, more details by Ng and Jordan (2001), and a similar approach
to variable selection in regression (Fan and Lv, 2008).



420 CHAPTER 14. PROBABILISTIC METHODS

Figure 14.4. Comparison of LDA with a full covariance matrix, LDA with a diagonal
covariance matrix, and logistic regression, on a well-specified binary classification problem
(Gaussian class-conditional densities with same covariance matrix), with independent
components and nonindependent components (with a smooth transition, which is linear
in the matrix logarithm). As expected, for independent components (left parts of the
plots), LDA with the independence assumptions leads to better performance; for larger
n (right plot), LDA with independent components underfits when components are not
independent (right part of the plot).

14.3 Bayesian Inference

For simplicity, in this section, we consider random observations z ∈ Z, which could be the
traditional pair (x, y) ∈ X×Y in supervised learning, but we note that Bayesian inference
applies much more generally. See more details by Robert (2007).

We assume that we have a set of probability distributions over z, with densities with
respect to some base measure, which are parameterized by some vector θ ∈ Θ (a subset of
a vector space) and which we denote as p(z|θ) and refer to as the likelihood function. We
assume some prior distribution with density q(θ) with respect to the Lebesgue measure. In
the Bayesian methodology, we assume that θ is sampled once from the prior distribution
and we obtain i.i.d. observations z1, . . . , zn ∈ Z sampled from p(z|θ).

Since observations are i.i.d., the overall joint distribution of the data and θ is

p(z1, . . . , zn, θ) = q(θ)

n∏

i=1

p(zi|θ).

We can then obtain the posterior distribution of θ given the data (z1, . . . , zn), which is
proportional to p(z1, . . . , zn, θ), and with the density

p(θ|z1, . . . , zn) =
q(θ)

∏n
i=1 p(zi|θ)∫

Θ q(η)
∏n
i=1 p(zi|η)dη

.



14.3. BAYESIAN INFERENCE 421

As already noted, the mode of the posterior distribution is the MAP estimate, which
is rarely used within Bayesian inference (some reasons are discussed in section 14.1.4).
Other estimates or estimation procedures are preferred, all using the posterior distribution
as the main source. Thus, being able to characterize this posterior distribution is the key
computational task (described next).

Posterior mean. A good summary of the posterior distribution is the posterior mean∫
Θ
θp(θ|z1, . . . , zn)dθ, which is traditionally associated with parameter estimation with

the square loss. This was called the MMSE in section 14.1.4.

Bayesian model averaging. Given the multiple models characterized by the posterior
distribution, we can consider performing inference on unseen data through the mixture
distribution on z: ∫

Θ

p(z|θ)p(θ|z1, . . . , zn)dθ.

Thus, overall, Bayesian inference naturally leads to parameter estimation procedures
that can be studied both from a computational perspective (see section 14.3.1) and a sta-
tistical perspective, as part of the “PAC-Bayesian” framework described in section 14.4.
But it can also be used for model selection, as described in section 14.3.2.

14.3.1 Computational Handling of Posterior Distributions

This section gives only a brief account of algorithms used to characterize posterior dis-
tributions. See many more details in Gelman et al. (1995) and Robert (2007).

Conjugate priors. In rare instances, the posterior distribution takes a simple form.
Two classic examples are the Gaussian prior on the mean parameter of a Gaussian variable
and the Dirichlet prior on the parameters of a multinomial distribution.6

Gaussian approximation (Laplace method). When the number of observations
gets large, then the integral defining the normalizing factor of the posterior distribution
can be written as

∫

Θ

q(η)
n∏

i=1

p(zi|η)dη =

∫

Θ

exp
[
n×

( 1

n
log q(η) +

1

n

n∑

i=1

log p(zi|η)
)]
dη,

and thus as
∫
Θ exp(nh(η))dη for a certain function h. The Laplace method is a traditional

approximation technique for approximating integrals of that form when the function h
has a global maximum within the interior of Θ.7 This maximizer is exactly the MAP
estimate θ̂MAP, and the approximation is exactly equivalent to modeling the posterior
density as a Gaussian with mean θ̂MAP and covariance matrix 1

nh
′′(θ̂MAP)−1.

6See https://en.wikipedia.org/wiki/Conjugate_prior for more details.
7See https://francisbach.com/laplace-method/ for details.

https://en.wikipedia.org/wiki/Conjugate_prior
https://francisbach.com/laplace-method/


422 CHAPTER 14. PROBABILISTIC METHODS

Sampling. Obtaining independent samples from the posterior distribution is often
enough for inference purposes, and many algorithms exist, such as Markov chain Monte
Carlo methods (Robert and Casella, 2005), with interesting links with randomized gradi-
ent descent through Langevin diffusions (Dalalyan, 2017; Durmus and Moulines, 2017).

Variational inference. An alternative to sampling is to approximate the posterior
distribution by a family of simple tractable distributions that are made to fit the posterior
as closely as possible. See Wainwright and Jordan (2008), Blei et al. (2017) and references
therein.

14.3.2 Model Selection through Marginal Likelihood

Probabilistic models are often naturally defined hierarchically, with prior distributions
that have themselves parameters (which we can call “hyperparameters”), which them-
selves have their own prior distributions (often called “hyperprior distribution”). For
example, using these notations, the prior distribution is q(θ|λ) with a hyperprior r(λ),
with often a data distribution that depends on both θ and λ.

While we could still treat λ as a random variable on which Bayesian inference is per-
formed, it is common to perform maximum-likelihood estimation on λ, or more generally,
maximum a posteriori estimation. This is sometimes called “type II maximum likelihood”
or parametric8 “empirical Bayes.” This leads to a form of hyperparameter selection for λ.
More precisely, we maximize

p(λ|z1, . . . , zn) ∝ p(λ, z1, . . . , zn) =

∫

Θ

p(λ, θ, z1, . . . , zn)dθ

∝ r(λ)

∫

Θ

n∏

i=1

p(zi|θ, λ)q(θ|λ)dθ.

The quantity
∫
Θ

∏n
i=1 p(zi|θ)q(θ|λ)dθ is referred to as the marginal likelihood, and its

maximization is a generic tool for hyperparameter selection, with many applications. We
present briefly two of them next.

Selection among finitely many models. A classical application of marginal likeli-
hood maximization is to consider m different models; that is, m distributions pj(z|θj),
with potentially parameters θj ∈ Θj living in different spaces, with prior distribu-
tions qj(θj). With a uniform distribution on the models, model selection is performed by
maximizing with respect to j ∈ {1, . . . ,m}:

∫

Θj

n∏

i=1

pj(zi|θj)qj(θj)dθj .

Consider the Gaussian approximation obtained from the Laplace approximation. One can
show that we obtain penalized maximum log-likelihood with a penalty equal to

dj
2 logn,

8Nonparametric variants can be considered, in particular using the expression of posterior means from
section 14.1.4. See https://en.wikipedia.org/wiki/Empirical_Bayes_method for more details.

https://en.wikipedia.org/wiki/Empirical_Bayes_method


14.4. PAC-BAYESIAN ANALYSIS 423

where dj is the dimension of Θj , leading to the Bayesian information criterion (BIC) (see
chapter 7 in Robert, 2007). See also the discussion in section 8.2.2.

Sparsity with automatic relevance determination. As mentioned in section 14.1.3,
we can consider a prior distribution q(θ|η), which is Gaussian with mean zero and covari-
ance matrix ηI. Maximizing the penalized marginal likelihood ends up being similar to
the “η-trick” from section 8.3.1. Indeed, when we consider regression with Gaussian noise
(i.e., when y given θ is normal with mean Φθ and covariance matrix σ2I), then y given η
is Gaussian with mean Φ Diag(η)Φ⊤ + σ2I, and thus we can compute the log-likelihood
in closed form, which leads to a natural nonconvex cost function to estimate η. See more
details in Tipping (2001).

Gaussian processes. The linear regression example above may be extended to kernel
methods presented in chapter 7. Indeed, it is possible to define a probabilistic model of
random function from set X to R such that the marginal distribution of f(x1), . . . , f(xn) is
Gaussian with mean zero and covariance matrix K ∈ Rn×n, with Kij = k(xi, xj), where k
is a positive-definite kernel function (with no need to have an explicit representation as
the dot product between feature vectors). This allows us to combine Bayesian inference
with nonparametric kernel learning. See more details in Rasmussen and Williams (2006)
and explicit connections with theoretical developments from chapter 7 in Kanagawa et al.
(2018).

14.4 PAC-Bayesian Analysis

In this section, we briefly review a generic framework to obtain generalization guarantees
for randomized or averaged predictors like those from Bayesian inference. For more
details, see Alquier (2024) and the many references therein.

14.4.1 Setup

Here, we consider the classical supervised learning framework that we have been following
throughout this book–namely, with n pairs of i.i.d. observations (xi, yi) from a distribu-
tion p on X × Y, a loss function ℓ : Y × R → R. We assume that we have a family of
prediction functions fθ : X → R, parameterized by θ ∈ Θ (which is a subset of a vector
space equipped with the Lebesgue measure).

We consider predictors that are not based on selecting a single θ ∈ Θ, but a probability
distribution ρ over θ. Given this probability distribution, we can consider the following:

• A randomized predictor fθ, where θ is sampled from ρ. Then, the generalization
performance will be considered with this extra randomness (on top of the random-
ness of the training data).

• The posterior mean x 7→
∫
Θ
fθ(x)dρ(θ), which is a function from X to R, and then

only the randomness of the training data needs to be considered. Note that in this



424 CHAPTER 14. PROBABILISTIC METHODS

situation, the final prediction function is not in the set of all fθ, θ ∈ Θ and is often
called an “aggregated predictor.”

The generalization bounds that will be presented will be valid for all potential probability
distributions ρ, including ones that depend on the data, which implies that we can then
optimize the bounds over the distribution, leading to a candidate that is very close to the
Bayesian posterior distribution (but with an added temperature; see section 14.4.2). As
in Bayesian inference, we consider a fixed probability distribution q on Θ, which we will
refer to as the “prior.”

We use the notation R(θ) = E
[
ℓ(y, fθ(x)

]
for the expected risk (a deterministic func-

tion of θ), and R̂(θ) = 1
n

∑n
i=1 ℓ(yi, fθ(xi)) for the empirical risk (which is a random

functional with expectation R).

14.4.2 Uniformly Bounded Loss Functions

We assume that almost surely, for all θ ∈ Θ, we have ℓ(y, fθ(x)) ∈ [0, ℓ∞] (e.g., with the
0–1 loss for binary classification or with bounded predictors for regression). Following
the exposition of Alquier (2024) and Catoni (2003), in the proof of Hoeffding’s inequality
in section 1.2.1, we saw that for all θ ∈ Θ and s ∈ R+, we have

E
[

exp
(
s(R(θ) − R̂(θ))

)]
6 exp

(s2ℓ2∞
8n

)
.

Integrating over θ, we get
∫

Θ

E
[

exp
(
s(R(θ) − R̂(θ))

)]
dq(θ) 6 exp

(s2ℓ2∞
8n

)
.

We now use the variational formulation of the log-partition function (also known as the

“Donsker-Varadhan formula”), with h(θ) = s(R(θ) − R̂(θ)):

log

∫

Θ

exp(h(θ))dq(θ) = sup
ρ∈P(θ)

∫

Θ

h(θ)dρ(θ) −D(ρ‖q),

with P(θ) the set of probability distribution on Θ and D(ρ‖q) the Kullback-Leibler (KL)
divergence between ρ and q, defined as follows (see also section 15.1.3):

D(ρ‖q) =

∫

Θ

log
(dρ
dq

(θ)
)
dρ(θ).

This leads to

E

[
exp

(
sup
ρ∈P(θ)

∫

Θ

s(R(θ)− R̂(θ))dρ(θ) −D(ρ‖q)
)]

6 exp
(s2ℓ2∞

8n

)
. (14.5)

Thus, using the Chernoff bound, 9 we obtain that with a probability greater than 1− δ,

sup
ρ∈P(θ)

∫

Θ

s(R(θ)− R̂(θ))dρ(θ) −D(ρ‖q) 6 s2ℓ2∞
8n

+ log
1

δ
,

9See exercise 1.10 and https://en.wikipedia.org/wiki/Chernoff_bound.

https://en.wikipedia.org/wiki/Chernoff_bound


14.4. PAC-BAYESIAN ANALYSIS 425

or, in other words, with probability at least 1− δ, for all ρ ∈ P(θ),

∫

Θ

R(θ)dρ(θ) 6

∫

Θ

R̂(θ)dρ(θ) +
1

s
D(ρ‖q) +

1

s
log

1

δ
+
sℓ2∞
8n

.

We thus get a bound on the average generalization error based on the average empirical
error. The scaling of the bound between empirical and population quantities is of form
C
s + s

nC
′ for constants C,C′, thus leading to a natural choice of s ∝ √n, to obtain the

traditional scaling in O(1/
√
n).

The bound can be empirically computed for any ρ and minimized, with the optimal
distribution being proportional to exp(−sR̂(θ))dq(θ), which is often called the “Gibbs
posterior distribution.” With s = n, this is exactly the Bayesian posterior distribution,
while for s 6= n, a different scaling is used (often referred to as the “temperature,”
because of the statistical physics analogy). Denoting ρ̂s as this distribution, we get with
a probability greater than 1− δ that

∫

Θ

R(θ)dρ̂s(θ) 6 inf
ρ∈P(Θ)

{∫

Θ

R̂(θ)dρ(θ) +
1

s
D(ρ‖q)

}
+

1

s
log

1

δ
+
sℓ2∞
8n

.

Beyond integrated risks. For convex loss functions, by Jensen’s inequality, the risk
of the posterior mean x 7→

∫
Θ
fθ(x)dρ(θ) is less than the integrated risk, so the bound

applies.

Moreover, by applying Jensen’s inequality to equation (14.5), we can get a bound in
expectation as for all ρ ∈ P(θ) (again, ρ may depend on the data):

E

[ ∫

Θ

R(θ)dρ(θ)
]
6 E

[ ∫

Θ

R̂(θ)dρ(θ) +
1

s
D(ρ‖q) +

sℓ2∞
8n

]
.

Moreover, for the Gibbs posterior distribution, by applying Jensen’s inequality, we get

E

[ ∫

Θ

R(θ)dρ̂s(θ)
]
6 inf

ρ∈P(Θ)

{∫

Θ

R(θ)dρ(θ) +
1

s
D(ρ‖q)

}
+
sℓ2∞
8n

. (14.6)

Finite set of models. We consider m prediction functions f̂1, . . . , f̂n. By considering
all Dirac measures in equation (14.6), we get that

E

[ ∫

Θ

R(θ)dρ̂s(θ)
]

6 inf
θ∈Θ

R(θ) +
1

s
log

1

q(θ)
+
sℓ2∞
8n

.

With q(θ) = 1/m and optimizing over s, we get the usual ℓ∞

√
logm
n , as we obtained for

empirical risk minimization in section 4.4.3.

Lipschitz-continuous losses, linear predictions, and Gaussian priors. See the
tutorial from Alquier (2024) to recover rates similar to ones that can be obtained with
Rademacher complexities in chapter 4.



426 CHAPTER 14. PROBABILISTIC METHODS

Application to sparse regression. PAC-Bayesian analysis can be considered in many
settings, including the sparse linear regression problems as dealt with in chapter 8. For
example, Alquier and Lounici (2011) and Rigollet and Tsybakov (2011) consider the com-
bination of all least-squares predictors with supports restricted to a set A ⊂ {1, . . . , d} for
all such sets A. The combination is performed with exponential weights, and the estima-
tor is shown to exhibit the same performance as the ℓ0-penalty from section 8.2.2, but it
now requires sampling as an estimation algorithm instead of combinatorial optimization.

14.5 Conclusion

Probabilistic modeling is an important part of machine learning. In this chapter, we
simply highlighted some topics related to learning theory, namely (1) the link between
prior models and predictive performance, where we showed that maximum a posteriori
(MAP) estimation may not correctly employ the knowledge of the prior distribution; (2)
the use of generative models to obtain alternatives to discriminative estimators; and (3)
the link with Bayesian inference.



Chapter 15

Lower Bounds

Chapter Summary
• Statistical lower bounds on the expected risk: For least-squares regression, the

optimal performance of supervised learning with target functions that are linear
in some feature vector or in Sobolev spaces on Rd happens to be achieved by
several algorithms presented earlier in this book. The lower bounds can be obtained
through information theory or Bayesian analysis.

• Optimization lower bounds on the optimization error: For the classical problem
classes from chapter 5, hard functions can be designed so that gradient-descent-
based algorithms that linearly combine gradients are shown to be optimal.

• Lower bounds for stochastic gradient descent (SGD): After t iterations, the rates
proportional to O(1/

√
t) for convex functions and O(1/(µt)) for µ-strongly convex

problems are optimal.

In this textbook, we have shown various convergence rates for statistical procedures
when the number of observations n goes to infinity, and optimization methods, as the
number of iterations t goes to infinity. Most were nonasymptotic upper bounds on the
error measures, with a precise dependence on the problem parameters (e.g., smoothness
of the target function or the objective function).

In this chapter, we look at lower bounds on generalization and optimization errors;
that is, we aim to show that for a particular problem class and a specific class of al-
gorithms, the error measures cannot go to zero too quickly. Lower bounds are useful,
in particular when they match upper bounds up to constants (we can then claim that
we have an “optimal” method). Obtaining such lower bounds sometimes explicitly con-
structs hard problems (as for optimization), and sometimes not (when they are based on
information theory, such as for prediction performance).

427



428 CHAPTER 15. LOWER BOUNDS

△!
Lower bounds will be obtained in a “minimax” setting, in which we look
at the worst-case performance over the entire problem class of the best al-
gorithm in the algorithm class. As for upper bounds, looking at worst-case
performance is, in essence, pessimistic, and algorithms often behave better
than their bounds. The key is to identify classes of problems that are not too
large (or the bounds will be very bad) but still contain interesting problems.

The chapter is divided into three sections: section 15.1 considers statistical lower
bounds, section 15.2 considers optimization lower bounds, and section 15.3 considers
lower bounds for stochastic gradient methods. All of these provide bounds related to the
setups encountered in earlier chapters.

15.1 Statistical Lower Bounds

In this section, our goal is to obtain lower bounds for regression problems in Rd with
the square loss when assuming the target function f∗ : Rd → R (here the conditional
expectation of y given x) is in a particular set, such as

• Linear functions of some d-dimensional features (i.e., f∗(x) = 〈θ∗, ϕ(x)〉) for some
θ∗ ∈ Rd, potentially in an ℓ2-ball, and/or with fewer than k nonzero elements.

• Functions with all partial derivatives up to order s bounded in the L2-norm (e.g.,
Sobolev spaces).

Since we are looking for lower bounds, we are free to make extra assumptions (which
can only make the problem simpler) and reduce the lower bounds. For example, we will
focus on Gaussian noise with constant variance σ2 that is independent of x.

We will either consider fixed design assumptions, as studied for ordinary least-squares
in chapter 3, or random designs with the simplest input distributions (which can only
make the problem simpler), as studied in most of this book.

Classification. Lower bounds for classification problems are more delicate and out of
scope (see, e.g., Yang, 1999). However, we can get lower bounds for the convex surrogates
that are typically used (but note that this does not translate to lower bounds for the 0–1
loss); for example, see section 15.3 for Lipschitz-continuous loss functions.

15.1.1 Minimax Lower Bounds

We consider a set of probability distributions pθ indexed by a parameter θ ∈ Θ (that can
characterize input distributions and the smoothness of the target function). We consider
some data D, generated from this distribution, most often independent and identically
distributed (i.i.d.), and we denote Eθ expectations with respect to data coming from
the distribution indexed by θ, and Pθ the associated probability measure. Note that
throughout this section, the distribution of the data D depends on θ.

We consider an estimator A(D) of θ ∈ Θ, with some squared distance δ2 between two
elements of Θ, so δ(θ, θ′)2 measures the performance of θ′ when the true estimator is θ.



15.1. STATISTICAL LOWER BOUNDS 429

The testing error of A when the data D come from θ∗ is defined as

Eθ∗

[
δ(θ∗,A(D))2

]
.

The goal is to find an algorithm so sup
θ∗∈Θ

Eθ∗

[
δ(θ∗,A(D))2

]
is as small as possible, and

the lower bound on testing error is thus

inf
A

sup
θ∗∈Θ

Eθ∗

[
δ(θ∗,A(D))2

]
. (15.1)

This is often referred to as “minimax” lower bounds.

Since by Markov’s inequality, Eθ∗

[
δ(θ∗,A(D))2

]
> APθ∗

(
δ(θ∗,A(D))2 > A

)
, up to

multiplicative constants, it is sufficient to lower-bound

inf
A

sup
θ∗∈Θ

Pθ∗

(
δ(θ∗,A(D))2 > A

)
(15.2)

for some arbitrary A > 0. This will be useful for techniques based on information theory.

We will see two principles for obtaining statistical minimax lower bounds:

• Reduction to a hypothesis test: By selecting a finite subset {θ1, . . . , θM} of
distribution parameters from Θ that is maximally spread, a good estimator leads
to a good hypothesis test that can identify which θj (among the M possibilities)
was used to generate the data. We can then use information theory to lower-bound
the probability of error of such a test. This versatile technique can handle most
situations, ranging from fixed to random design.

• Bayesian analysis: We can lower-bound the supremum for all Θ by any expec-
tation over a distribution supported on Θ. Once we have an expectation, we can
use the same decision-theoretic argument as the ones used to compute the Bayes
risk in section 3.7; for instance, for Hilbertian or Euclidean performance measures,
the optimal estimator is the conditional expectation E[θ∗|D]. The key is choosing
distributions so they can be computed in closed form. This approach is less flexible,
but it is simplest in situations where it can be applied (fixed design regression on
balls, with potentially sparse assumptions).

15.1.2 Reduction to a Hypothesis Test

The principle is simple: pack the set Θ with balls of some radius
√
A; that is, find

θ1, . . . , θM ∈ Θ such that

∀i 6= j, δ(θi, θj)
2 > 4A, (15.3)

and transform the estimation problem into a hypothesis test; that is, an algorithm go-
ing from data D to one of M potential outcomes (see the following illustration in two
dimensions with the Euclidean geometry).



430 CHAPTER 15. LOWER BOUNDS

Θ

θ1

θ2

θ3

θ4

θ5

θ6

θ8

θ16

θ17

θ9

θ15

θ14

θ13

θ10

θ11

θ12

√

A

Then, because we take the supremum over a smaller set,

sup
θ∗∈Θ

Pθ∗

(
δ(θ∗,A(D))2 > A

)
> max

j∈{1,...,M}
Pθj

(
δ(θj ,A(D))2 > A

)
. (15.4)

Any algorithm A(D) ∈ Θ gives a “test”; that is, a function g ◦ A : D → {1, . . . ,M}
defined as

g(A(D)) = arg min
j∈{1,...,M}

δ(θj ,A(D)) ∈ {1, . . . ,M},

where ties are broken arbitrarily (e.g., by selecting the minimal index). Because of the
packing condition in equation (15.3), the testing error of A can be lower-bounded by the
error rate of g ◦A (with the 0–1 loss).

Indeed, if, for some j ∈ {1, . . . ,M}, g(A(D)) 6= j, there is k 6= j such that δ(θk,A(D)) <
δ(θj ,A(D)). Moreover, using the triangle inequality for δ, we get

δ(θj , θk)2 6 2
[
δ(θj ,A(D))2 + δ(θk,A(D))2

]
.

Then,

δ(θj ,A(D))2 >
1

2
δ(θj , θk)2 − δ(θk,A(D))2

>
1

2
δ(θj , θk)2 − δ(θj ,A(D))2 by the choice of k,

which implies δ(θj ,A(D))2 > 1
4δ(θj , θk)2 > A. Thus, we have the following inequality for

the probabilities of these two events:

Pθj

(
δ(θj ,A(D))2 > A

)
> Pθj

(
g(A(D)) 6= j

)
,

which leads to, using equations (15.2) and (15.4),

inf
A

sup
θ∗∈Θ

Eθ∗

[
δ(θ∗,A(D))2

]
> A · inf

h
max

j∈{1,...,M}
Pθj

(
h(D) 6= j

)

> A · inf
h

1

M

M∑

j=1

Pθj

(
h(D) 6= j

)
, (15.5)



15.1. STATISTICAL LOWER BOUNDS 431

where h is any (measurable) function from the data D to {1, . . . ,M}. We have thus
lower-bounded the minimax statistical error by the minimax error of a hypothesis test h,
which is a function that takes the data D to a value in {1, . . . ,M}. Information theory
can then be used to lower-bound this minimax error. We first provide a quick review of
information theory (see Cover and Thomas, 1999, for more details).

15.1.3 Review of Information Theory

Entropy. Given a random variable y taking finitely many values in Y, its entropy is
equal to

H(y) = −
∑

y′∈Y

P(y = y′) logP(y = y′).

Since P(y = y′) ∈ [0, 1], the entropy is always nonnegative. Moreover, using Jensen’s
inequality for the logarithm (which is a concave function), we have

H(y) =
∑

y′∈Y

P(y = y′) log
1

P(y = y′)
6 log

( ∑

y′∈Y

P(y = y′)
1

P(y = y′)

)
= log |Y|.

The entropyH(y) represents the uncertainty associated with the random variable y, going
from H(y) = 0 if y is deterministic (i.e., P(y = y′) = 1 for some y′ ∈ Y) to log |Y| when y
has a uniform distribution.

△! Some authors use the binary logarithm, while the natural logarithm is used in this
book.

Joint and conditional entropies. Given two random variables x, y with finitely many
values in X and Y, we can define the joint entropy as

H(x, y) = −
∑

x′∈X

∑

y′∈Y

P(x = x′, y = y′) logP(x = x′, y = y′).

Using conditional distributions, it can be decomposed as

H(x, y) = −
∑

x′∈X

∑

y′∈Y

P(y = y′, x = x′) log
[
P(y = y′|x = x′)P(x = x′)

]

= −
∑

x′∈X

∑

y′∈Y

P(y = y′, x = x′) logP(y = y′|x = x′)

−
∑

x′∈X

∑

y′∈Y

P(y = y′, x = x′) logP(x = x′)

= −
∑

x′∈X

P(x = x′)

{ ∑

y′∈Y

P(y = y′|x = x′) log P(y = y′|x = x′)

}

−
∑

x′∈X

P(y = y′) logP(x = x′)

=
∑

x′∈X

P(x = x′)H(y|x = x′) +H(x),



432 CHAPTER 15. LOWER BOUNDS

where H(y|x = x′) is the entropy of the conditional distribution of y, given x = x′. By
defining the conditional entropy H(y|x) as H(y|x) =

∑
x′∈X

P(x = x′)H(y|x = x′), we
exactly have

H(x, y) = H(y|x) +H(x).

This leads to a first version of Fano’s inequality, which lower-bounds the probability that
y 6= ŷ from the conditional entropy H(y|ŷ); the main idea is that if y remains very
uncertain given ŷ (i.e., H(y|ŷ) is large), then the probability that they are equal cannot
be too large.

Proposition 15.1 (Fano’s inequality) If the random variables y and ŷ have values in
the same finite set Y, then

P(ŷ 6= y) >
H(y|ŷ)− log 2

log |Y| .

Proof Let e = 1y 6=ŷ ∈ {0, 1} be the indicator function of errors; by decomposing the
joint entropy given ŷ through conditional and marginal entropies in two different ways,
we get

H(e|ŷ) +H(y|e, ŷ) = H(e, y|ŷ) = H(y|ŷ) +H(e|y, ŷ).

We then have H(e|y, ŷ) = 0 (since e is deterministic given y and ŷ). Moreover, we have
H(e|ŷ) 6 H(e) 6 log 2 (because e ∈ {0, 1}), and

H(y|e, ŷ) = P(e = 1)H(y|ŷ, e = 1) + P(e = 0)H(y|ŷ, e = 0)

= P(e = 1)H(y|ŷ, e = 1) + 0 6 P(ŷ 6= y) log |Y|

(because e = 0⇔ y = ŷ). Thus,

P(ŷ 6= y) >
1

log |Y|H(y|e, ŷ) =
1

log |Y| (H(y|ŷ)−H(e|ŷ)) >
1

log |Y| (H(y|ŷ)− log 2).

Data-processing inequality. A fundamental result in information theory allows us
to lower-bound conditional entropies in the presence of conditional independencies. That
is, if we have three random variables x, y, and z, such that x and z are conditionally
independent given y, then H(x|z) > H(x|y): stated in words, the uncertainty of x given z
has to be larger than the uncertainty of x given y, which is natural because the statistical
dependence between x and z is occurring through y. In other words, the sequence x →
y → z forms a Markov chain.

The data-processing inequality is a simple application of the concavity of the entropy
as a function of the probability mass function; indeed, given conditional independence
P(x = x′|z = z′) =

∑
y′∈Y

P(x=x′, y= y′|z= z′) =
∑
y′∈Y

P(x=x′|y= y′)P(y= y′|z= z′),



15.1. STATISTICAL LOWER BOUNDS 433

and using Jensen’s inequality for the concave function a : t 7→ −t log t, we get

H(x|z) =
∑

z′∈Z

P(z = z′)H(x|z = z′) =
∑

z′∈Z

P(z = z′)
∑

x′∈X

a
(
P(x=x′|z=z′)

)

>
∑

z′∈Z

P(z = z′)
∑

x′∈X

∑

y′∈Y

P(y=y′|z=z′)a
(
P(x=x′|y=y′)

)

=
∑

z′∈Z

P(z = z′)
∑

y′∈Y

P(y = y′|z = z′)H(x|y = y′)

=
∑

y′∈Y

P(y = y′)H(x|y = y′) = H(x|y).

This leads immediately to the full version of Fano’s inequality given in proposition 15.2.

Proposition 15.2 (Fano’s inequality–full version) If the random variable y and ŷ
have values in the same finite set Y, and if we have a Markov chain y → z → ŷ for an
arbitrary random variable z, then

P(ŷ 6= y) >
H(y|ŷ)− log 2

log |Y| >
H(y|z)− log 2

log |Y| .

Now, we need to look at two last concepts from information theory–namely, Kullback-
Leibler (KL) divergence and mutual information, both for discrete and continuous-valued
random variables.

KL divergence. Given two distributions on Z, p and q (which are nonnegative func-
tions on Z that sum to 1), then the KL divergence is defined as

DKL(p||q) =
∑

z∈Z

p(z) log
p(z)

q(z)
.

The KL divergence is always nonnegative by convexity of the function t 7→ t log t, and
equal to zero if and only if p = q. It is a classical dissimilarity measure for probability
distributions that is jointly convex in (p, q).1 Note that it can also be seen as a Bregman
divergence (see section 11.1.3).

Mutual information. Given two random variables x and y, then we can define their
mutual information as

I(x, y) = H(x) −H(x|y) = H(x) +H(y)−H(x, y) = H(y)−H(y|x). (15.6)

This can be seen as the uncertainty reduction in x when observing y. It is symmetric,
always less than log |X| and log |Y|. Moreover, it can be written as

I(x, y) = H(x) +H(y)−H(x, y)

=
∑

x′∈X

∑

y′∈Y

P(x = x′, y = y′) log
P(x = x′, y = y′)

P(x = x′)P(y = y′)
, (15.7)

1See more properties in https://en.wikipedia.org/wiki/Kullback-Leibler_divergence.

https://en.wikipedia.org/wiki/Kullback-Leibler_divergence


434 CHAPTER 15. LOWER BOUNDS

which can be seen as the KL divergence between the joint distribution of (x, y) and the
corresponding product of marginals (it is thus nonnegative).

From discrete to continuous distributions. Many of the information theory con-
cepts can be extended to continuous random variables on Rd by replacing the probability
mass function with the probability density with respect to a base measure. Then, many
properties (which were obtained through convex arguments) extend when z is continuous-
valued, especially the data-processing inequality and Fano’s inequality (see more details
in Cover and Thomas, 1999).

For example, the KL divergence between two distributions can be defined as

DKL(p||q) = Ep

[
log

dp

dq
(x)

]
,

where dp
dq is the density of p with respect to q. A short calculation (left as an exercise)

shows that for two Gaussian distributions of mean vectors µ1, µ2 and equal covariance
matrices (with value Σ), the KL divergence is equal to 1

2 (µ1 − µ2)⊤Σ−1(µ1 − µ2).

15.1.4 Lower Bound on Hypothesis Testing Based on Information
Theory

We consider a joint random variable (y,D) distributed as y uniform in {1, . . . ,M}, and,
given y = j, D, distributed as the distribution pθj associated with the parameter θj ∈ Θ.
We consider ŷ = h(D), where h is a function with values in {1, . . . ,M}. This defines
a Markov chain: y → D → h(D); that is, even for a randomized test h (with extra
randomization), h(D) is independent of y, given D. By construction, the last term in
equation (15.5), which provides a lower bound on error, is exactly the probability that
ŷ 6= y. This is exactly what Fano’s inequality from proposition 15.2 gives us, leading to
corollary 15.1.

Corollary 15.1 (Fano’s inequality for multiple hypothesis testing) Given M
probability distributions pθj , j = 1, . . . ,m, on D, then

inf
h

1

M

M∑

j=1

Pθj

(
h(D) 6= j

)
> 1− 1

M2 logM

M∑

j,j′=1

DKL(pθj ||pθj′ )−
log 2

logM
. (15.8)

Proof We consider a joint random variable (y,D) distributed as y uniform in {1, . . . ,M},
and, given y = j, D distributed from the distribution pθj . We have, using the definition
of the mutual information in equation (15.6) and the property in equation (15.7),

H(y|D) = H(y)− I(y,D) = logM − 1

M

M∑

j=1

DKL

(
pθj

∥∥∥ 1

M

M∑

j′=1

pθj′

)

> logM − 1

M2

M∑

j,j′=1

DKL(pθj‖pθj′ )



15.1. STATISTICAL LOWER BOUNDS 435

by the convexity of the KL divergence. We can then apply proposition 15.2 and get
equation (15.8).

Using Gaussian noise to compute KL divergences. For regression with Gaussian
errors such as yi = fθ(xi) + εi, with ε ∼ N(0, σ2I), then, for fixed designs (with all xi’s
deterministic), we get exactly the following:

DKL(pθj ||pθj′ ) =
1

2σ2

n∑

i=1

[
fθj(xi)− fθj′ (xi)

]2
=

n

2σ2
δ(θj , θj′)

2, (15.9)

where δ(θ, θ′)2 = 1
n

∑n
i=1

[
fθ(xi) − fθ′(xi)

]2
is the empirical mean squared difference

between two models.

For random designs, we consider distributions on (xi, yi)i=1,...,n. If we have a common
distribution p for x, then

DKL

(
pθj (D)||pθj′ (D)

)
=

n∑

i=1

DKL

(
p(xi)pθj (yi|xi)||p(xi)pθj′ (yi|xi)

)

=
n

2σ2

∫

X

[
fθj(x) − fθj′ (x)

]2
dp(x) =

n

2σ2
‖fθj − fθj′ ‖2L2(p)

,

which we define as n
2σ2 δ(θj , θj′)

2.

Overall, to obtain a lower bound with Gaussian noise, we need to find θ1, . . . , θM in Θ
such that (for fixed designs)

•

1

M2

M∑

j,j′=1

n

2σ2
δ(θj , θj′)

2 6
1

4
log(M) and

log 2

logM
6

1

4
(i.e., M > 16), so equa-

tions (15.8) and (15.9) lead to a lower bound on testing error, when equation (15.5)
is applied, that is equal to A

(
1− 1

logM · 14 log(M)− 1
4

)
= A

2 .

• minj 6=k δ(θj , θk)2 > 4A, so we can apply equation (15.5).

Then, the minimax lower bound is A/2. Thus, the lower bound is essentially the largest
possible A for a given M such that we can find M points in Θ, which are all 2

√
A apart.

There are two main tools to find such packings: (1) a direct volume argument and (2)
Varshamov-Gilbert’s lemma. Next, we present them before going over some examples.

Volume argument. Lemma 15.1 provides the simplest argument.

Lemma 15.1 (Packing ℓ2-balls) Let M be the maximal number of elements of the Eu-
clidean ball of radius 1 in dimension d, which are at least 2ε-apart in the ℓ2-norm. Then
(2ε)−d 6M 6 (1 + ε−1)d.

Proof Let θ1, . . . , θM be the corresponding M points. All balls of center θj and radius ε
are disjoint and included in the ball of radius 1 + ε. Thus, the sum of the volumes of the
small balls is smaller than the volume of the large ball; that is, Mεd 6 (1 + ε)d.



436 CHAPTER 15. LOWER BOUNDS

Since M is maximal, for any θ such that ‖θ‖2 6 1, there is j ∈ {1, . . . ,M} such
that ‖θj − θ‖2 6 2ε (otherwise, we can add a new point to {θ1, . . . , θM} and M is not
maximal). Thus, the ball of radius 1 is covered by M balls of radius θj and radius 2ε.
Thus, by using volumes, we get 1 6M(2ε)d.

Packing with the Varshamov-Gilbert’s lemma. The maximal number of points
in the hypercube {0, 1}d that are at least d/4-apart in the Hamming loss (i.e., the ℓ1-
distance) is greater than exp(d/8), with a nice probabilistic argument obtained from
lemma 15.2 with α = 1/2.

Lemma 15.2 (Varshamov-Gilbert’s lemma) For any α ∈ (0, 1), there is a subset B
of the hypercube {0, 1}d such that

(a) for all x, x′ ∈ B such that x 6= x′, ‖x− x′‖1 > (1− α)d2 .

(b) |B| > exp(dα2/2).

Proof We consider the largest family satisfying (a). By maximality, the union of ℓ1-balls
of radius (1 − α)d2 includes all of {0, 1}d . Therefore, by comparing cardinalities,

2d 6
∑

x∈B

∣∣∣
{
y ∈ {0, 1}d, ‖y − x‖1 6 (1 − α)

d

2

}∣∣∣.

By symmetry, the value of each
∣∣{y ∈ {0, 1}d, ‖y− x‖1 6 (1−α)d2

}∣∣ is independent of x,
and thus equal to the value for x = 0. Therefore, we get

2d 6 |B| ·
∣∣∣
{
y ∈ {0, 1}d, ‖y‖1 6 (1 − α)

d

2

}∣∣∣ = |B| ·
∣∣∣
{
y ∈ {0, 1}d,

d∑

i=1

yi 6 (1− α)
d

2

}∣∣∣.

We can now estimate this cardinality by considering a random variable z, which is bino-
mial with parameters d and 1/2 (i.e., the sum of d independent uniform Bernoulli random
variables). Then,

2−d
∣∣∣
{
y ∈ {0, 1}d,

d∑

i=1

yi 6 (1− α)
d

2

}∣∣∣ = P

(
z 6 (1− α)

d

2

)
= P

(
z > (1 + α)

d

2

)
.

The probability P(z > (1 + α)d2 ) equals P( zd − 1
dE[z] > α

2 ). Thus, using Hoeffding’s
inequality (proposition 1.2), it is less than exp(−2d(α/2)2) = exp(−dα2/2). This leads
to the desired result.

15.1.5 Examples

Fixed-design linear regression. We consider linear regression with Φ ∈ Rn×d being a
design matrix with isotropic noncentered empirical covariance matrix 1

nΦ⊤Φ = I (which



15.1. STATISTICAL LOWER BOUNDS 437

imposes n > d). We consider the ball Θ = {θ ∈ Rd, ‖θ‖2 6 D}, with D to be set

later. Moreover, we are in the situation where δ(θ, θ′)2 = 1
n

∑n
i=1

[
fθ(xi) − fθ′(xi)

]2
=

1
n‖Φθ − Φθ′‖22 = ‖θ − θ′‖22.

To find M points in Θ = {θ ∈ Rd, ‖θ‖2 6 D}, we consider the M > exp(d/8)
elements x1, . . . , xM of {0, 1}d from lemma 15.2 with α = 1/2, and we also define θi =
β(2xi − 1d) ∈ {−β, β} for each i ∈ {1, . . . ,M}. Thus, ‖θi‖22 = β2d, and, for i 6= j,

‖θi − θj‖22 6 4β2d 6 32β2 log(M) and ‖θi − θj‖22 > (2β)2
d

4
= β2d.

We thus need β2d 6 D2 (so each θi ∈ Θ) and 32β2 log(M) n
2σ2 6

logM
4 (i.e., 64β2 n

σ2 6

1), so 1
M2

∑M
j,j′=1

n
2σ2 δ(θj , θj′)

2 6 1
4 log(M). Thus, we can use A = β2d/4 (packing

constraint), and the optimal rate is greater than A/2 = β2d/8. By choosing the largest
possible β, the lower bound on (excess) testing error is then greater than

1

8
min

{
D2,

σ2d

64n

}
. (15.10)

Therefore, when D2 > σ2d
64n , we get a lower bound of σ2d

512n , which is, up to a multiplicative
constant, the upper bound obtained in chapter 3 (note that in section 3.7, we provided a
sharper lower bound using similar tools as in section 15.1.6).

The sparse regression setting could also be considered with the same tool, but the
proof is simpler using the Bayesian arguments from section 15.1.6. We now turn to the
random design setting.

Exercise 15.1 Use lemma 15.1 instead of lemma 15.2 to obtain the same result for
fixed-design linear regression.

Random design linear regression. We consider the same model as before, but
with xi, i = 1, . . . , n, sampled i.i.d. from a fixed distribution such that E[ϕ(x)ϕ(x)⊤ ] = I,
so δ(θ, θ′)2 = ‖fθ − fθ′‖2L2(p)

= ‖θ − θ′‖22, which is the same distance as for fixed design.

Thus, the result for fixed design regression also applies to the random design setting (i.e.,
a constant times σ2d/n).

Nonparametric estimation with Hilbert spaces (�). We consider random design
regression with a fixed distribution for the inputs, with Gaussian independent noise and
target functions in a certain ellipsoid of L2(p). That is, we assume that there is a compact
positive semidefinite self-adjoint operator T on L2(p) such that 〈θ, T−1θ〉L2(p) 6 D2

(which implies that θ is in the range of T 1/2). We denote by (λm)m>1 the nonincreasing
sequence of positive eigenvalues of T , with the associated orthonormal eigenvectors ψm
in L2(p).

We consider a certain integer K and M > exp(K/8) elements x1, . . . , xM of {0, 1}K
obtained from lemma 15.2. We define θi = β

∑K
m=1(2(xi)m − 1)ψm. We then have



438 CHAPTER 15. LOWER BOUNDS

〈θ, T−1θ〉L2(p) = β2
∑K
m=1 λ

−1
m 6 Kβ2λ−1

K , and, for i 6= j,

‖θi − θj‖2L2(p)
6 4β2K 6 32β2 log(M) and ‖θi − θj‖2L2(p)

> (2β)2(K/4) = β2K.

We thus need β2K 6 D2λK (to be in the desired ellipsoid) and 32β2 log(M) n
2σ2 6

logM
4 ;

that is, 64β2 n
σ2 6 1. Thus, choosing A = β2K/4, the minimax lower bound is greater

than

1

8
β2K >

1

8
min

{
D2λK ,

σ2K

64n

}
.

We can now specialize to Sobolev spaces on compact subsets of Rd with piecewise smooth
boundaries. The corresponding norm is the sum of squared norms of all derivatives of
order s or less (Adams and Fournier, 2003). As described in section 7.6.6, it can then be
shown that it corresponds to an operator T for which λK > C ·K−α, with α = 2s/d, for
a constant C. The lower bound then becomes

max
K>1

1

8
min

{
D2CK−α,

σ2K

64n

}
,

which can be balanced to obtainK ∝
(
nD2

σ2

)1/(1+α)
, leading to a lower bound proportional

to

D2/(1+α)
(σ2

n

)α/(1+α)
.

For α = 2s/d, we get α/(1 + α) = 2s
2s+d , and the lower bound matches the upper bound

obtained via kernel ridge regression in chapter 7. It turns out that the lower bound on
the minimax rate for the estimation of Lipschitz-continuous functions is the same as for
s = 1 (see section 2.6 in Tsybakov, 2008).

15.1.6 Minimax Lower Bounds through Bayesian Analysis

We can use a Bayesian analysis as outlined for least-squares regression in section 3.7. We
consider a particular probability distribution q(θ∗) on parameters θ∗, whose support is
included in Θ. Then we have, since the supremum is greater than the expectation,

inf
A

sup
θ∗∈Θ

Eθ∗

[
δ(θ∗,A(D))2

]
> inf

A
Eq(θ∗) Eθ∗

[
δ(θ∗,A(D))2

]
.

This reasoning is particularly simple when the optimal algorithm A is easy to estimate
(with no need for a packing argument). In particular, this is the case when d is a Euclidean
norm, as then A∗(D) = E

[
θ∗|D

]
. If the prior q(θ∗) and the likelihood pθ∗(D) are simple

enough, then the conditional expectation can be computed in closed form. In section 3.7,
these were all Gaussians, which was possible for the prior distribution on Θ because Θ
was unbounded. When dealing with bounded balls, we need to use different distributions,
as used originally by Donoho and Johnstone (1994).



15.1. STATISTICAL LOWER BOUNDS 439

Least-squares regression on a Euclidean ball. As in section 15.1.5, we consider
linear regression with a fixed design (with a bound ‖θ∗‖2 6 D) and 1

nΦ⊤Φ = I (which
impose n > d). By rotational invariance of the Gaussian distribution of the noise vari-
able ε, we can assume that the first d rows of Φ equal

√
nI and the rest of the rows equal

zero. Thus, we can assume that the model is y = θ∗ + 1√
n
ε, where ε ∈ Rd with Gaussian

distribution with mean zero and covariance σ2I, and y ∈ R
d (the n−d extra observations

do not bring any information on θ∗).

We then consider a prior distribution on θ∗ as θ∗ = βx, where x ∈ {−1, 1}d are
independent Rademacher random variables (thus θ∗ is unifom on its support). We need
β2d 6 D2 to be in the correct set Θ = {θ ∈ R

d, ‖θ‖2 6 D}. We then need to compute
E[θ∗|y]. The posterior probability of θ∗ is supported on {−β, β}n. Moreover, given the
independence by component, we can treat each one separately. Then, by keeping only
terms that depend on the posterior value, we get, using that yi|(θ∗)i is Gaussian with
mean (θ∗)i and variance σ2/n (and θ∗ uniform on its support),

P((θ∗)i = ±β|yi) ∝ exp
(
− n

2σ2
(yi −±β)2

)
∝ exp

(
± n

σ2
yiβ

)
.

Thus,

E
[
(θ∗)i|yi

]
=β

exp( nσ2 yiβ)−exp(−nσ2 yiβ)

exp( nσ2 yiβ)+exp(−nσ2 yiβ)
=β

1− exp(−2n
σ2 yiβ)

1 + exp(−2n
σ2 yiβ)

=β
[
2 sigmoid

(2n

σ2
yiβ

)
−1

]
,

where sigmoid(α) = 1/(1 + exp(−α)).

The posterior variance for the ith component is equal to, using that P((θ∗)i = β) =
P((θ∗)i = −β) = 1/2,

E
[(

(θ∗)i − E
[
(θ∗)i|yi

])2]
=

1

2
Eεi

(
β − β

[
2 sigmoid

(
2
n

σ2
β(β + εi/

√
n)
)
− 1

])2

+
1

2
Eεi

(
− β − β

[
2 sigmoid

(
2
n

σ2
β(−β + εi/

√
n)
)
− 1

])2

.

Using that −εi and εi have the same distribution, and sigmoid(−α) = 1 − sigmoid(α),
we get

E
[(

(θ∗)i − E
[
(θ∗)i|yi

])2]
= 4β2

Eεi∼N(0,σ2)

[(
sigmoid

(
− 2

n

σ2
β2 + 2

√
n

σ2
βεi)

)2]

= 4β2
Eε̃i∼N(0,1)

[(
sigmoid(−2

n

σ2
β2 + 2

β
√
n

σ
ε̃i)

)2]
.

Now we consider the even function ψ : α 7→ Eε∼N(0,1)

[(
sigmoid(−2α2+2αε)

)2]
. We have

ψ(0) = sigmoid(0)2 = 1/4 and ψ(α) → 0 when α → +∞. Moreover, for α > 0, since
the sigmoid function is greater than 1/2 for positive numbers, ψ(α) > 1

4Pε∼N(0,1)(ε > α).

We can then use a simple lower bound on Gaussian tails Pε∼N(0,1)(ε > α) > 1
4 exp(−α2)

(see exercise 1.12) to obtain ψ(α) > 1
16 exp(−α2).



440 CHAPTER 15. LOWER BOUNDS

Thus, the total posterior variance E
[∥∥θ∗ − E

[
θ∗|y

]∥∥2
2

]
is greater than

d · 4β2ψ
(β√n

σ

)
>
β2d

4
exp(−nβ2/σ2).

By choosing β2 = min
{
σ2

n ,
D2

d

}
6 σ2

n , the lower bound becomes

β2d

4
exp(−nβ2/σ2) >

β2d

4
exp(−1) >

1

12
min

{σ2d

n
,D2

}
,

which leads to the same bound as in section 15.1.5, but with a more direct argument.

Sparse case (�). To deal with the sparse case, we could consider a prior on θ∗ that
only selects k nonzero elements out of d, and perform an analysis based on the posterior
probability of θ∗. Following Donoho and Johnstone (1994), it is easier to divide the set
of d variables into k blocks of size d/k (for simplicity, we assume that d/k is an integer).
We then consider a prior probability defined independently for each of the k blocks by
selecting one of the d/k variables uniformly at random and setting its value to β. In
contrast, all others are set to zero.

To compute the posterior probability of θ∗, we can treat each block independently and
sum the posterior variances; we thus consider the first block, composed of d/k variables,
and compute the probability that the selected variable is the ith one, which is proportional
to (keeping only the terms that depend on i),

exp
(
− n

2σ2
(yi − β)2

)∏

j 6=i
exp

(
− n

2σ2
(yj)

2
)
∝ exp(nβyi/σ

2).

The conditional expectation of θ∗ then equals

E[(θ∗)i|y] = β
exp(nβyi/σ

2)
∑d/k

j=1 exp(nβyj/σ2)
.

To compute the posterior variance, we need to sample from the prior θ∗. By symmetry,
we may consider that (θ∗)1 = β. If y1 6 maxj 6=1 yj, then

E[(θ∗)1|y] = β
exp(nβy1/σ

2)
∑d/k
j=1 exp(nβyj/σ2)

6 β
exp(nβy1/σ

2)

exp(nβy1/σ2) + exp(nβmaxj 6=1 yj/σ2)
6 β/2,

and then the risk is at least (β − E[(θ∗)1|y])2 > β2/4.

To lower-bound the probability that y1 6 maxj 6=1 yj , we can consider the events
{y1 6 β} and {β 6 maxj 6=1 yj}. The probability that y1 = β+ ε1 is less than β is greater
than 1/2. Moreover, by independence of all yj, j 6= 1,

P
(
{β 6 max

j 6=1
yj}

)
> 1−

(
1− Pt∼N(0,1)(t > β

√
n/σ)

) d
k−1

.



15.2. OPTIMIZATION LOWER BOUNDS 441

Thus, combining the contributions of all k blocks, the lower bound is greater than

k · β
2

4
· 1

2

[
1−

(
1− Pt∼N(0,1)(t > β

√
n/σ)

) d
k−1

]
> k

β2

16

[
1−

(
1− 1

2
exp(−β2n/σ2)

) d
k−1]

,

using the Gaussian tail bound Pt∼N(0,1)(t > z) > 1
4 exp(−z2). We can then consider

β2 = σ2

n log(d/k), leading to the lower bound

σ2k

16n
log(d/k)

[
(1− (1 − 1

2 (k/d))
d
k−1

]
.

Assuming that d > 2k, and using that for any u ∈ [0, 1/2], 1− (1−u/2)−1+1/u > 1/4, we

obtain the lower bound σ2k
64n log(d/k), which is the same, up to a multiplicative constant,

as the upper bound for ℓ0-penalty-based methods in chapter 8.

15.2 Optimization Lower Bounds

In this section, we consider ways of obtaining lower bounds for optimization algorithms
corresponding to upper bounds derived in chapter 5 for gradient-based algorithms. While
the statistical lower bounds from section 15.1 were not obtained by explicitly building
hard problems, the algorithmic lower bounds of this section will explicitly build such hard
problems.

15.2.1 Convex Optimization

To obtain computational lower bounds for convex optimization, which is notoriously hard
to do in general in computer science, we will rely on a simple model of computation; that
is, we will restrict ourselves to methods that access gradients of the objective function
and combine them linearly to select a new query point.

We follow the results from section 2.1.2 in Nesterov (2018) and section 3.5 in Bubeck
(2015), and assume that we want to minimize a convex function F defined on Rd. The
algorithm starts from θ0 = 0 and can only query points in the span of the observed
gradients or some subgradients of F at the previously observed points.

The key is finding functions with the proper regularity properties, for which we know
that a few iterations provably lead to suboptimal performance. These functions will only
reveal one new variable at each iteration and, after k iterations, can achieve only the
minimum on the first k variables.

Nonsmooth functions. We consider the following function, which will be designed for
a given number of iterations k:

F (θ) = η max
i∈{1,...,k+1}

θi +
µ

2
‖θ‖22

for k < d, and η, µ positive parameters that will be set later in this discussion.



442 CHAPTER 15. LOWER BOUNDS

The subdifferential of F (θ) is equal to

µθ + η · hull
({
ei, θi = max

i′∈{1,...,k+1}
θi′

})
,

which is bounded in the ℓ2-norm on the ball of radius D, by µD+ η (here, ei denotes the
ith basis vector). We consider the oracle where the output gradient is µθ + ηei, where i
is the smallest index within the maximizers of θi′ .

Starting from θ0 = 0, θ1 is supported on the first variable, and by recursion, after
k 6 d steps of subgradient descent, θk is supported on the first k variables. Since k < d,
then (θk)k+1 = 0, so F (θk) > 0. Minimizing over the span of the first k + 1 variables

leads to, by symmetry, θ∗ = κ
∑k+1
i=1 ei for a certain κ that minimizes ηκ + (k+1)µ

2 κ2, so

κ = − η
µ(k+1) , and thus θ∗ = − η

µ(k+1)

∑k+1
i=1 ei, with value F (θ∗) = − η2

2µ(k+1) . Therefore,

F (θk)− F (θ∗) > 0− F (θ∗) =
η2

2µ(k + 1)
,

with ‖θ∗‖22 = η2

µ2(k+1) .

To obtain a B-Lipschitz-continuous function on a ball with center 0 and radius D, we

can take η = B/2 and µ = B/(2D), and we get a lower bound of B2

8µ(k+1) , which is valid

so long as k < d and matches the upper bound in proposition 5.8.

With µ = B
D

1
1+

√
k+1

and η = B
√
k+1

1+
√
k+1

, we also get a B-Lipschitz continuous function,

and we get the lower bound DB
2(1+

√
k+1)

, which is valid so long as k < d and matches the

upper bound in proposition 5.6.

△! The lower bounds are valid for k < d only because there are algorithms that are
linearly convergent in this setting with a constant that depends on d, such as the ellipsoid
method or the center of mass method (see Bubeck, 2015, for details).

Smooth functions (�). We consider a sequence of quadratic functions on Rd. We
require that the gradient for iterates supported on the first i components be supported
on the first i + 1 components, so the kth iterate starting from 0 only has its first k
coordinates that can be nonzero. We consider the example from section 2.1.2 in Nesterov
(2018) and highlight the main arguments without proof:

Fk(θ) =
L

4

{
1

2

[
θ21 + θ2k +

k−1∑

i=1

(θi − θi+1)2
]
− θ1

}
.

The function Fk is convex and smooth, with a smoothness constant that is less than

L. Moreover, its global minimizer is attained at θ
(k)
∗ such that (θ

(k)
∗ )i = 1 − i

k+1 for

i ∈ {1, . . . , k} and 0 otherwise, with an optimal value of Fk(θ
(k)
∗ ) = L

8
−k
k+1 and with

‖θ(k)∗ ‖22 =

k∑

i=1

(
1− i

k + 1

)2
6
k + 1

3
.



15.2. OPTIMIZATION LOWER BOUNDS 443

By construction, if θ is supported on the first i components for i < k, then F ′
k(θ) is

supported on the first i+ 1 components. Thus, the ith iterate is supported on the first i

components, and therefore the lowest attainable value is Fi(θ
(i)
∗ ).

Given this set of functions, for a given k such that k 6 d−1
2 , we consider F2k+1, for

which θ
(2k+1)
∗ is the global minimizer with value L

8
−2k−1
2k+2 , while after k iterations, we can

only achieve Fk(θ
(k)
∗ ) = L

8
−k
k+1 . Thus, we have

F2k+1(θk)− F ∗
2k+1

‖θ0 − θ∗‖22
>
L

8

−k
k+1 − −2k−1

2k+2
2k+2

3

>
3L

32

1

(k + 1)2
.

We thus obtain the lower bounds corresponding to the upper bounds obtained from
Nesterov acceleration.

△! The number of iterations has to be less than half the dimension for the lower bound
to hold.

Smooth, strongly convex functions (�). Following section 2.1.4 in Nesterov (2018),
we consider a function defined on the space ℓ2 of square-summable sequences as

F (θ) =
L− µ

4

{
1

2

[
θ21 +

∞∑

i=1

(θi − θi+1)2
]
− θ1

}
+
µ

2
‖θ‖22.

This function is L-smooth and µ-strongly convex. Its global minimizer is θ∗ such that

(θ∗)k =
(1−

√
µ/L

1 +
√
µ/L

)k
= qk,

with ‖θ∗‖22 =
∑∞

k=1 q
2k = q2

1−q2 . Moreover, it can be shown that ‖θk−θ∗‖22 >
∑∞
i=k+1 q

2i =

q2k‖θ∗‖22. This leads to F (θk)− F∗ >
µ
2 ‖θk − θ∗‖22 > q2k‖θ0 − θ∗‖22, which shows a lower

bound which is exponentially convergent with the same rate as accelerated gradient de-
scent presented in section 5.2.5.

15.2.2 Nonconvex Optimization (�)

While upper and lower bounds can behave well with respect to dimension in the convex
case, this is not the case when the convexity assumption is removed. In this section, we
show that when optimizing a Lipschitz-continuous function on a compact subset of Rd,
we cannot hope to have guarantees that are not exponential in dimension.

△! This does not mean that all problem instances will require exponential time,
but that in the worst case, there will always be a bad function for any algo-
rithm.

We consider minimizing a function F on a bounded subset Θ of Rd based only on func-
tion evaluations, a problem often referred to as “zeroth-order optimization” or “derivative-



444 CHAPTER 15. LOWER BOUNDS

free optimization” (see the algorithms for convex functions in section 11.2). No convexity
is assumed in this section, so we should not expect fast rates and, again, no efficient al-
gorithms that can provably find a global minimizer, the main reason being that without
convexity, local information does not lead to global properties. While we focus on access
to function values in this section, no further access to higher-order derivatives (if they
exist) can improve the exponential dependence on dimension (see exercise 15.2).

Clearly, algorithms for nonconvex zeroth-order optimization are not made to be used
to find millions of parameters for logistic regression or neural networks. Still, they are
often used for hyperparameter tuning (regularization parameters, size of neural network
layers, and other elements). See, for instance, Snoek et al. (2012) for applications in this
area.

We will assume some regularity for the functions that we want to minimize, typically
bounded derivatives. We will thus assume that f ∈ F for a space F of functions from Θ
to R. We will take a worst-case approach, in which we characterize convergence over all
members of F. That is, we want our guarantees to hold for all functions in F. Note that
this worst-case analysis may not predict well what is happening for a particular function;
in particular, it is (by design) pessimistic.

Algorithm A will be characterized by (1) the choice of points θ1, . . . , θn ∈ Θ to query

the function, and (2) the algorithm to output a candidate θ̂ ∈ Θ such that F (θ̂) −
infθ∈Θ F (θ) is small. The estimate θ̂ can only depend on (θi, F (θi)) for i ∈ {1, . . . , n}.
In this section, the choice of points θ1, . . . , θn is made once (without seeing any function
values).2

Given a selection of points and algorithm A, the rate of convergence is the supremum
over all functions F ∈ F of the error F (θ̂) − infθ∈Θ F (θ). This is a function εn(A) of
the number n of sampled points (and of the class of functions F). The optimal algo-
rithm (minimizing εn(A)) will lead to a rate that we denote as εoptn and that we aim to
characterize.

Direct lower/upper bounds for Lipschitz-continuous functions. The argument
is particularly simple for a bounded metric space Θ with distance δ, and F being the class
of L-Lipschitz-continuous functions; that is, for all θ, θ′ ∈ Θ, |F (θ) − F (θ′)| 6 Lδ(θ, θ′).
This is a very large set of functions, so we expect weak convergence rates.

As in section 4.4.4, we will need to cover set Θ with balls of a given radius. The
minimal radius r of a cover of Θ by n balls of radius r is denoted as rn(Θ, δ). This
corresponds to n ball centers θ1, . . . , θn. See the following example for the unit cube Θ =
[0, 1]2 and the metric obtained from the ℓ∞-norm, with n = 16, and rn([0, 1]2, ℓ∞) = 1/8:

2It turns out that going adaptive, where the point θi+1 is selected after seeing (θj , F (θj)) for all j 6 i,
does not bring much (at least in the worst case) (Novak, 2006).



15.2. OPTIMIZATION LOWER BOUNDS 445

θ1 θ2 θ3 θ4

θ5

θ9

θ13 θ14

θ10

θ6 θ7

θ11

θ15 θ16

θ12

θ8

r

More generally, for the unit cube Θ = [0, 1]d, we have rn([0, 1]d, ℓ∞) ≈ 1
2n

−1/d (which
is not an approximation when n is the dth power of an integer). For other normed metrics
(since all norms are equivalent), the scaling as rn ∼ diam(Θ)n−1/d is the same on any
bounded set in Rd (with an extra constant that depends on d).

Naive algorithm. Given the ball centers θ1, . . . , θn, outputting the minimum of func-
tion values F (θi) for i = 1, . . . , n leads to an error that is less than Lrn(Θ, δ), as the
optimal θ∗ ∈ Θ is at most at distance rn(Θ, δ) from one of the cluster centers (let’s
say θk), and thus F (θk)−F (θ∗) 6 Lδ(θk, θ∗) 6 Lrn(Θ, δ). This provides an upper bound
on εoptn . The algorithm that we just described seems naive, but it turns out to be optimal
for this class of problems.

Lower bound. Consider any optimization algorithm, with its first n point queries and
its estimate θ̂. By considering the functions that are zero in these n + 1 points, the
algorithm can only output an arbitrary fixed real number for the optimal value (let’s say
zero). We now simply need to construct a function F ∈ F such that F is zero at these
points but smaller than zero as much as possible at a different point.

Given the n + 1 points defined above, there is at least a point η ∈ Θ that is at a
distance of at most rn+1(Θ, δ) from all of them (otherwise, we obtain a cover of Θ with
n+ 1 points). We can then construct the function

F (θ) = −L
(
rn+1(Θ, δ)− δ(θ, η)

)
+

= −Lmax
{
rn+1(Θ, δ)− δ(θ, η), 0

}
,

which is L-Lipschitz-continuous, equal to zero on all points of the algorithm and the
output point θ̂, and with the minimum value −Lrn+1(Θ, δ) attained at η. Thus, we must
have εoptn > 0− (−Lrn+1(Θ, δ)) = Lrn+1(Θ, δ). This difficult function is plotted here in
one dimension:

0 1

η

θ

Thus, the optimization error of any algorithm from n function values has to be worse
than Lrn+1(Θ, δ). Thus, so far, we have shown that

Lrn+1(Θ, δ) 6 εoptn 6 Lrn(Θ, δ).



446 CHAPTER 15. LOWER BOUNDS

For Θ ⊂ Rd, rn(Θ, δ) is typically of order diam(Θ)n−1/d, and thus the difference be-
tween n and n+1 is negligible. Note that the rate in n−1/d is very slow and symptomatic
of the classical curse of dimensionality. The appearance of a covering number is not
totally random here; it comes from the equivalence in terms of worst-case guarantees
between optimization and uniform approximation (Novak, 2006).

Exercise 15.2 Consider the space of differentiable L-Lipschitz-continuous functions on
Θ ⊂ Rd and a first-order oracle that outputs both function values and gradients at the
query points. Modify the argument proposed in this section to show that the lower bound
of optimization error is still of order n−1/d.

Random search. We can have a similar bound up to logarithmic terms for random
search; that is, after selecting independently n points θ1, . . . , θn, uniformly at random
in Θ, and selecting the points with the smallest function value F (θi). The optimization
error can be shown to be proportional to Ldiam(Θ)(log n)1/dn−1/d in high probability,
leading to an additional logarithmic term (the proof can be obtained with a simple cover-
ing argument; see exercise 15.3). Therefore, random search is optimal up to logarithmic
terms for optimizing this very large class of functions.

To go beyond Lipschitz-continuous functions, we can use the boundedness of higher-
order derivatives (as for target functions in supervised learning) and hopefully avoid
the dependence in n−1/d. This can be done by a somewhat surprising equivalence be-
tween worst-case guarantees from optimization and worst-case guarantees for uniform
approximation, leading to a dependence in n−s/d when sth-order derivatives are assumed
bounded.3 See also exercise 15.4 for functions with Lipschitz-continuous gradients.

Exercise 15.3 (�) Consider sampling independently and uniformly n points θ1, . . . , θn
in Θ ⊂ Rd.

(a) For a given L-Lipschitz-continuous function F , show that the worst-case optimiza-
tion error of outputting the lower function value is less than Lmaxθ∈Θ mini∈{1,...,n} δ(θ, θi).

(b) Considering an optimal cover with m points and radius r = rm(Θ, d), show that

P

(
max
θ∈Θ

min
i∈{1,...,n}

δ(θ, θi) > 2r
)
6 m(1− 1/m)n.

(c) By the appropriate choice of m, show that when r ∼ m−1/ddiam(X), we get an

overall optimization error proportional to L
(
log n
n

)1/d
with probability greater than 1− logn

n .

Exercise 15.4 (�) Consider the space of differentiable functions with gradients that are
L-Lipschitz-continuous on Θ ⊂ R

d and a zeroth-order query oracle. Modify the argument
proposed in this section to show that the lower bound of optimization error is of order
n−2/d.

3See https://francisbach.com/optimization-is-as-hard-as-approximation/ for more
details, as well as Novak (2006).

https://francisbach.com/optimization-is-as-hard-as-approximation/


15.3. LOWER BOUNDS FOR STOCHASTIC GRADIENT DESCENT (�) 447

15.3 Lower Bounds for Stochastic Gradient Descent

(�)

In this section, our goal is to show that the convergence rates for SGD shown in section 5.4
are “optimal,” in a sense that will be made precise. We consider a class F of functions, here
the convex B-Lipschitz-continuous functions on the ball with center zero and radius D
(for the Euclidean norm). We consider a class A of algorithms that can sequentially access
independent random, unbiased estimates of the gradients of a function F in F, with a
squared norm bounded by B2. We denote At(F ) ∈ Rd as the output of algorithm A
after t iterations on function F . Our goal is to find upper and lower bounds of

εt(A,F) = inf
A∈A

sup
F∈F

E

[
F (At(F ))− inf

‖θ‖26D
F (θ)

]
.

SGD is an algorithm in A achieving a bound proportional to BD/
√
t; thus, up to a

constant, εt(A,F) 6 BD/
√
t. We now prove a matching lower bound by exhibiting a

set of functions that will make any algorithm have at most this desired performance.
Note that, as opposed to section 15.2.1 on deterministic convex optimization, we make
no assumption on the running-time complexity of algorithms in A.

We follow the exposition from Agarwal et al. (2012) and consider a function

Fα(θ) =
B

2d

d∑

i=1

{(1

2
+ αiδ

)
·
∣∣∣θi +

1

2

∣∣∣ +
(1

2
− αiδ

)
·
∣∣∣θi −

1

2

∣∣∣
}
, (15.11)

with α ∈ {−1, 1}d as a well-chosen vector, δ ∈ (0, 1/4], and B > 0. One element of the
sum is plotted here:

1/2−1/2 θi

(1
2
+ δ)|θi +

1

2
|+ (1

2
− δ)|θi −

1

2
|

Function Fα is convex and Lipschitz-continuous with gradients bounded in the L2-
norm byB/(2

√
d). Moreover, the global minimizer of Fα is θ = −α2 , with an optimal value

equal to F ∗
α = B

4 (1 − 2δ). That is, minimizing Fα on [−1/2, 1/2]d exactly corresponds
to finding an element of the hypercube α. Moreover, it turns out that minimizing it
approximately also leads to identifying α among a set of α’s which are sufficiently different,
as shown in the following lemma.

Lemma 15.3 If α, β ∈ {−1, 1}d and Fα(θ)−F ∗
α 6 ε, then Fβ(θ)−F ∗

β > Bδ
2d ‖α−β‖1−ε.

Proof (�) We have Fβ(θ) − F ∗
β = Fβ(θ) + Fα(θ) − F ∗

β − F ∗
α + [F ∗

α − Fα(θ)]. We then



448 CHAPTER 15. LOWER BOUNDS

notice that for all θ ∈ Rd,

Fβ(θ) + Fα(θ)− F ∗
β − F ∗

α >
B

2d

∑

i, αi 6=βi

{∣∣∣θi +
1

2

∣∣∣ +
∣∣∣θi −

1

2

∣∣∣ + 2δ − 1
}

>
B

2d

∑

i, αi 6=βi

{2δ} =
Bδ

2d
‖α− β‖1.

Thus, if we consider M points α(1), . . . , α(M) ∈ {−1, 1}d such that ‖α(i) − α(j)‖1 > d
2

(with potentially M > exp(d/8) such points from lemma 15.2), then, if ε < Bδ
8 , because

of lemma 15.3, minimizing up to ε exactly identifies which of the functions Fα(i) is being
minimized.

Moreover, if θ̂ is random, then denoting A = {α(1), . . . , α(M)}, following the same
reasoning as in section 15.1.2 (each α will lead to a distribution of stochastic gradients;
we denote as Eα and Pα the associated expectation and measure),

sup
α∈A

Eα

[
Fα(θ̂)− F ∗

α

]
> ε · sup

α∈A

Pα

(
Fα(θ̂)− F ∗

α > ε
)
> ε · 1

|A|
∑

α∈A

Pα

(
Fα(θ̂)− F ∗

α > ε
)
.

From an estimate θ̂, we can build a test g(θ̂) ∈ A by selecting the α ∈ A (which is

unique if ε < Bδ
8 ) such that Fα(θ̂) − F ∗

α 6 ε if it exists, and uniformly at random in A

otherwise. Therefore, the minimax generalization error is greater than ε multiplied by
the probability of a mistake in the best possible test.

We consider the following stochastic oracle:

(1) Pick some coordinate i ∈ {1, . . . , d} uniformly at random.

(2) Draw a Bernoulli random variable b ∈ {0, 1} with parameter 1
2 + αiδ.

(3) Consider F̂ (θ) = b
∣∣θi + 1

2

∣∣ + (1−b)
∣∣θi − 1

2

∣∣, with zero gradient components except

F̂ ′
α(θ)i =

B

2

[
b sign(θi + 1/2) + (1− b) sign(θi − 1/2)

]
.

The stochastic gradients have an ℓ2-norm bounded by B and are unbiased. Moreover,
observation of the gradient for θ ∈ [−1/2, 1/2]d reveals the outcome of the Bernoulli
random variable b.

Therefore, after t steps, we can apply Fano’s inequality (corollary 15.1) to the following
setup: the random variable α ∈ A is uniform, and given α, we sample independently t
times, one variable i in {1, . . . , d}, and observe a potentially noisy version of a Bernoulli
random variable b with parameter αi.

We then need to upper-bound the mutual information between α and (i, b) and mul-
tiply the result t times because each of the t gradients is sampled independently.

The mutual information can be decomposed as

I(α, (i, b)) = I(α, i) + I(α, b|i) = 0 + EiEα

[
DKL(p(b|i, α)||p(b|i))

]
,



15.4. CONCLUSION 449

where p(b|i, α) and p(b|i) denote the probability distributions of b given i, α and given i.
Thus, by convexity of the KL divergence,

I(α, (i, b)) = EiEα

[
DKL

(
p(b|i, α)

∥∥∥∥
1

|A|
∑

α′∈A

p(b|i, α′)

)]

6
1

|A|
∑

α′∈A

EiEα

[
DKL(p(b|i, α)||p(b|i, α′))

]
.

Since b|i, α is a Bernoulli random variable with parameter 1
2 + δ or 1

2 − δ, these KL
divergences are bounded by the KL divergence between two Bernoulli random variables
with the two different parameters; that is,

I(α, (i, b)) 6

(1

2
+ δ

)
log

1
2 + δ
1
2 − δ

+
(1

2
− δ

)
log

1
2 − δ
1
2 + δ

= 2δ log
1 + 2δ

1− 2δ

= 2δ log
(

1 +
4δ

1− 2δ

)
6

8δ2

1− 2δ
6 16δ2 if δ ∈ [0, 1/4].

Therefore, applying corollary 15.1, the minimax lower bound is greater than

ε
(

1− 16tδ2 + log 2

logM

)
> ε

(
1− 16tδ2 + log 2

d/8

)
.

We assume d > 32 log 2, and t > d/16, and take δ = 1
16

√
d/t ∈ [0, 1/4], with ε = Bδ

16 (so
that ε-optimality leads to identification of α ∈ A from lemma 15.3). Then εt(A,F) has
the following lower bound:

εt(A,F) > ε
(

1− 16tδ2 + log 2

d/8

)
> ε

(
1− 1

2
− 1

4

)
>
Bδ

64
=

1

1024

B
√
d√
t

=
1

1024

BD√
t
,

where D is the diameter of the set of θ. The lower bound is thus, up to a multiplicative
constant, the same as the upper bound achieved by SGD in section 5.4. This result can
be extended to strongly convex problems (See theorem 2 in Agarwal et al., 2012).

Exercise 15.5 (��) Modify the argument from this section to show a lower bound for the
generalization error of stochastic gradient methods for quadratic functions on a bounded
convex set.

15.4 Conclusion

This chapter was entirely dedicated to lower bounds of generalization error associated
with the upper bounds presented in the rest of the book. Statistical lower bounds are
obtained by reducing the learning problem to a hypothesis test in which information
theory is brought to bear. In comparison, optimization lower bounds are obtained by
designing functions that are explicitly hard to optimize for the proposed computational
model of combining gradients linearly.





Conclusion

The aim of this book was to provide a fundamental understanding of machine learning
with the simplest possible arguments, but still an analysis that is fine enough to charac-
terize when particular algorithms may or may not provide good predictions. Doing so,
a few general important concepts were presented, which are summarized and discussed
below.

Need for regularization. Generalization to unseen data cannot occur without some
form of control of the “size” of the function space that a learning algorithm is exploring.
This can be done explicitly, by constraining the number of parameters or penalizing a
norm on these parameters, but also implicitly by computational regularization through
(stochastic) gradient descent and its natural resistance to overfitting (see section 5.4) and
potentially its implicit bias (see section 12.1).

Need for prior knowledge. Universal learning techniques that can learn on any su-
pervised learning problem exist, such as local averaging techniques, neural networks, or
kernel methods. However, without any assumption, there are prediction problems on
which they will be arbitrarily slow (in terms of the required number of observations), as
shown by our “no free lunch” theorems (see section 2.5) and lower bounds (see chap-
ter 15). In order to obtain learning algorithms with good practical performance, prior
knowledge is needed, such as: construction of relevant features by domain experts, ex-
plicit learning of representations with linear latent structure (such as neural networks),
dependence on a small number of variables, or smoothness of the prediction function.
Like all prior knowledge, however, it will only be useful if adapted to the learning task.

Need for adaptivity. Prior knowledge is typically imprecise; that is, we expect the
predictions to depend on a small number of variables, but which ones? The prediction
function should be a smooth function, but how smooth? Adaptive techniques will learn
efficiently in these circumstances, typically by estimating by cross-validation a hyperpa-
rameter that controls the capacity of the learning problem (e.g., regularization parameter,
or number of iterations in stochastic gradient descent or boosting techniques). In this
book, we considered adaptivity to the smoothness of prediction functions (kernel meth-
ods and neural networks were adaptive, as opposed to local averaging techniques) and to

451



452 CONCLUSION

linear latent variables, as needed for nonlinear variable selection (only neural networks
were then adaptive).

Interplay between estimation, approximation, and estimation errors. The the-
oretical analysis of learning methods requires the study of typically three types of errors:
the estimation error characterizes the effect of having a finite number of observations,
the approximation error characterizes the effect of a reduced set of prediction functions;
for methods based on empirical risk minimization (all in this book except local averaging
techniques), the optimization error characterizes how well gradient-descent algorithms
achieve a global minimum of the cost function they aim at minimizing.

Overfitting versus underfitting. One of the difficult and most interesting aspects
of machine learning for high-dimensional problems is the constant dilemma between po-
tential overfitting and potential underfitting. The interplay between the three types of
errors can then be delicate, in particular for nonconvex objective functions, where the
optimization error can often remain difficult to control.

Probabilistic analysis. The entire book considers a probabilistic analysis of super-
vised learning, which allows for making precise nonasymptotic statements. However, it
relies on the common but rarely satisfied assumption of identically and independently
distributed (i.i.d.) training data coming from the same distribution as the testing data.
Dealing with extensions to the simplest framework is a key practical and theoretical
challenge.

Role of convexity. Convexity plays a major role in the analysis of machine learning, in
particular, because optimization errors can be controlled for convex objective functions,
and precise guarantees and convergence rates can then be obtained. Since most of the
loss functions that are used in practice are convex (at least after classical surrogates
are used, even for complex output spaces; see chapter 13), the use of linear models
(in their parameters) makes the problem convex. Still, even for nonlinear models such
as neural networks, the use of convexity is crucial to obtain qualitative guarantees for
overparameterized models (such as in section 12.3). Within the broader differentiable
programming paradigm (see, e.g., Blondel and Roulet, 2024, and references therein),
understanding when convexity is needed and when it is not remains an active area of
research.

Going beyond supervised learning. This textbook focused primarily on the tradi-
tional supervised learning paradigm. Many applications require extensions to this basic
framework, such as presented in section 2.7, which also lead to many interesting theoreti-
cal developments, such as unsupervised learning, semisupervised learning, active learning,
reinforcement learning, and generative modeling. The goal of this book was to lay out
the foundations for studying such further topics.



References

Abernethy, J., P. L. Bartlett, A. Rakhlin, and A. Tewari (2008). Optimal strategies and
minimax lower bounds for online convex games. In Proceedings of the Conference on
Learning Theory. (cited on page 321)

Adams, R. A. and J. J. F. Fournier (2003). Sobolev Spaces. Elsevier. (cited on page 438)

Agarwal, A., P. L. Bartlett, P. Ravikumar, and M. J. Wainwright (2012). Information-
theoretic lower bounds on the oracle complexity of stochastic convex optimization.
IEEE Transactions on Information Theory 58 (5), 3235–3249. (cited on pages 137, 141,

447, and 449)

Agarwal, A., D. P. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin (2013). Stochastic
convex optimization with bandit feedback. SIAM Journal on Optimization 23 (1),
213–240. (cited on page 331)

Ailon, N., M. Charikar, and A. Newman (2008). Aggregating inconsistent information:
Ranking and clustering. Journal of the ACM 55 (5), 1–27. (cited on page 405)

Akhavan, A., E. Chzhen, M. Pontil, and A. B. Tsybakov (2023). Gradient-free op-
timization of highly smooth functions: Improved analysis and a new algorithm.
arXiv 2306.02159. (cited on page 326)

Alpaydin, E. (2020). Introduction to Machine Learning. MIT Press. (cited on page xii)

Alpaydin, E. (2022). Maschinelles Lernen. de Gruyter. (cited on page xii)

Alquier, P. (2024). User-friendly introduction to PAC-Bayes bounds. Foundations and
Trends in Machine Learning 17 (2), 174–303. (cited on pages 423, 424, and 425)

Alquier, P. and K. Lounici (2011). PAC-Bayesian bounds for sparse regression estimation
with exponential weights. Electronic Journal of Statistics 5, 127–145. (cited on page 426)

Ambrosio, L., N. Gigli, and G. Savaré (2008). Gradient Flows: In Metric Spaces and in
the Space of Probability Measures. Springer Science+Business Media. (cited on page 368)

Ambrosio, L., N. Gigli, and G. Savaré (2013). Density of Lipschitz functions and equiv-
alence of weak gradients in metric measure spaces. Revista Matemática Iberoameri-
cana 29 (3), 969–996. (cited on page 175)

Andriushchenko, M., A. V. Varre, L. Pillaud-Vivien, and N. Flammarion (2023). SGD
with large step sizes learns sparse features. In Proceedings of the International Confer-
ence on Machine Learning. (cited on page 355)

Araújo, D., R. I. Oliveira, and D. Yukimura (2019). A mean-field limit for certain deep
neural networks. arXiv 1906.00193. (cited on page 370)

453



454 REFERENCES

Arlot, S. and A. Celisse (2010). A survey of cross-validation procedures for model selec-
tion. Statistics Surveys 4, 40–79. (cited on page 24)

Armijo, L. (1966). Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of Mathematics 16 (1), 1–3. (cited on page 112)

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
Mathematical Society 68, 337–404. (cited on pages 183 and 184)

Audibert, J.-Y. and S. Bubeck (2009). Minimax policies for adversarial and stochastic
bandits. In Proceedings of the Conference on Learning Theory. (cited on page 341)

Audibert, J.-Y. and A. B. Tsybakov (2007). Fast learning rates for plug-in classifiers.
Annals of Statistics 35 (2), 608–633. (cited on pages 102 and 163)

Auer, P., N. Cesa-Bianchi, and P. Fischer (2002). Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47 (2), 235–256. (cited on pages 335 and 336)

Auer, P., N. Cesa-Bianchi, Y. Freund, and R. E. Schapire (2002). The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing 32 (1), 48–77. (cited on

page 340)

Azencott, C.-A. (2019). Introduction au Machine Learning. Dunod. (cited on page xii)

Ba, J. L., J. R. Kiros, and G. E. Hinton (2016). Layer normalization. arXiv 1607.06450.
(cited on page 251)

Bach, F. (2008). Consistency of trace norm minimization. Journal of Machine Learning
Research 9 (June), 1019–1048. (cited on page 244)

Bach, F. (2013). Sharp analysis of low-rank kernel matrix approximations. In Proceedings
of the Conference on Learning Theory. (cited on page 220)

Bach, F. (2014). Adaptivity of averaged stochastic gradient descent to local strong con-
vexity for logistic regression. Journal of Machine Learning Research 15 (1), 595–627.
(cited on page 146)

Bach, F. (2015). Duality between subgradient and conditional gradient methods. SIAM
Journal on Optimization 25 (1), 115–129. (cited on page 267)

Bach, F. (2017). Breaking the curse of dimensionality with convex neural networks.
Journal of Machine Learning Research 18 (1), 629–681. (cited on pages 266, 268, 269, 270,

and 272)

Bach, F. (2023). On the relationship between multivariate splines and infinitely-wide
neural networks. arXiv 2302.03459. (cited on pages 274 and 276)

Bach, F. (2024). High-dimensional analysis of double descent for linear regression with
random projections. SIAM Journal on Mathematics of Data Science 6 (1), 26–50. (cited

on pages 360, 363, and 364)

Bach, F. and L. Chizat (2022). Gradient descent on infinitely wide neural networks:
Global convergence and generalization. In Proceedings of the International Congress
of Mathematicians. (cited on pages 251, 365, and 369)

Bach, F. and Z. Harchaoui (2007). Diffrac: A discriminative and flexible framework for
clustering. In Advances in Neural Information Processing Systems. (cited on page 103)

Bach, F., D. Heckerman, and E. Horvitz (2006). Considering cost asymmetry in learning
classifiers. Journal of Machine Learning Research 7, 1713–1741. (cited on page 26)

Bach, F., R. Jenatton, J. Mairal, and G. Obozinski (2012a). Optimization with sparsity-



REFERENCES 455

inducing penalties. Foundations and Trends in Machine Learning 4 (1), 1–106. (cited

on pages 233 and 244)

Bach, F., R. Jenatton, J. Mairal, and G. Obozinski (2012b). Structured sparsity through
convex optimization. Statistical Science 27 (4), 450–468. (cited on page 244)

Bach, F. and E. Moulines (2013). Non-strongly-convex smooth stochastic approximation
with convergence rate O(1/n). In Advances in Neural Information Processing Systems.
(cited on pages 140 and 146)

Bahdanau, D., K. Cho, and Y. Bengio (2014). Neural machine translation by jointly
learning to align and translate. arXiv 1409.0473. (cited on page 279)

Ball, K., E. A. Carlen, and E. H. Lieb (2002). Sharp uniform convexity and smoothness
inequalities for trace norms. In Inequalities: Selecta of Elliott H. Lieb, pp. 171–190.
(cited on page 320)

Bansal, N. and A. Gupta (2019). Potential-function proofs for gradient methods. Theory
of Computing 15 (1), 1–32. (cited on page 125)

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory 39 (3), 930–945. (cited on pages 265

and 367)

Barron, A. R. (1994). Approximation and estimation bounds for artificial neural networks.
Machine Learning 14, 115–133. (cited on page 265)

Barron, A. R., A. Cohen, W. Dahmen, and R. A. DeVore (2008). Approximation and
learning by greedy algorithms. Annals of Statistics 36 (1), 64–94. (cited on page 308)

Barron, A. R. and J. M. Klusowski (2018). Approximation and estimation for high-
dimensional deep learning networks. arXiv 1809.03090. (cited on page 260)

Bartlett, P. L., O. Bousquet, and S. Mendelson (2005). Local Rademacher complexities.
Annals of Statistics 33 (4), 1497–1537. (cited on page 98)

Bartlett, P. L., M. I. Jordan, and J. D. McAuliffe (2006). Convexity, classification, and
risk bounds. Journal of the American Statistical Association 101 (473), 138–156. (cited

on pages 78, 79, and 82)

Bartlett, P. L., P. M. Long, G. Lugosi, and A. Tsigler (2020). Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences 117 (48), 30063–30070.
(cited on page 365)

Bartlett, P. L. and S. Mendelson (2002). Rademacher and Gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research 3 (Nov.), 463–
482. (cited on page 91)

Bartlett, P. L. and M. Traskin (2007). Adaboost is consistent. Journal of Machine
Learning Research 8 (78), 2347–2368. (cited on page 305)

Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind (2018). Auto-
matic differentiation in machine learning: A survey. Journal of Machine Learning
Research 18 (153), 1–43. (cited on page 324)

Beck, A. and M. Teboulle (2009). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences 2 (1), 183–202. (cited on

page 128)

Belkin, M., D. Hsu, S. Ma, and S. Mandal (2019). Reconciling modern machine-learning



456 REFERENCES

practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences 116 (32), 15849–15854. (cited on pages 355 and 358)

Berlinet, A. and C. Thomas-Agnan (2004). Reproducing Kernel Hilbert Spaces in Proba-
bility and Statistics. Springer. (cited on page 184)

Berthet, Q., M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach (2020). Learning
with differentiable perturbed optimizers. In Advances in Neural Information Processing
Systems. (cited on page 397)

Berthier, R. (2023). Incremental learning in diagonal linear networks. Journal of Machine
Learning Research 24 (171), 1–26. (cited on page 375)

Bhatia, R. (2009). Positive Definite Matrices. Princeton University Press. (cited on

page 117)

Bhatia, R. (2013). Matrix Analysis. Springer Science+Business Media. (cited on page 7)

Biau, G., F. Cérou, and A. Guyader (2010). On the rate of convergence of the bagged
nearest neighbor estimate. Journal of Machine Learning Research 11 (22), 687–712.
(cited on page 287)

Biau, G. and L. Devroye (2015). Lectures on the Nearest Neighbor Method. Springer.
(cited on pages 168, 170, and 176)

Biau, G. and E. Scornet (2016). A random forest guided tour. Test 25 (2), 197–227. (cited

on page 289)

Bietti, A. and F. Bach (2021). Deep equals shallow for ReLU networks in kernel regimes.
In International Conference on Learning Representations. (cited on page 377)

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. (cited on

pages 40 and 410)

Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017). Variational inference: A review
for statisticians. Journal of the American Statistical Association 112 (518), 859–877.
(cited on page 422)

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent Dirichlet allocation. Journal of
Machine Learning Research 3 (Jan.), 993–1022. (cited on page 418)

Blondel, M., A. F. T. Martins, and V. Niculae (2020). Learning with Fenchel-Young
losses. Journal of Machine Learning Research 21 (35), 1–69. (cited on pages 393 and 396)

Blondel, M. and V. Roulet (2024). The elements of differentiable programming.
arXiv 2403.14606. (cited on page 452)

Blumensath, T. and M. E. Davies (2009). Iterative hard thresholding for compressed
sensing. Applied and Computational Harmonic Analysis 27 (3), 265–274. (cited on

page 231)

Bolte, J., A. Daniilidis, and A. Lewis (2006). A nonsmooth Morse–Sard theorem for
subanalytic functions. Journal of Mathematical Analysis and Applications 321 (2),
729–740. (cited on page 372)

Bolte, J., A. Daniilidis, O. Ley, and L. Mazet (2010). Characterizations of Lojasiewicz in-
equalities and applications. Transactions of the American Mathematical Society 362 (6),
3319–3363. (cited on pages 344 and 346)

Bolte, J. and E. Pauwels (2022). Curiosities and counterexamples in smooth convex
optimization. Mathematical Programming 195 (1), 553–603. (cited on page 112)



REFERENCES 457

Boucheron, S., O. Bousquet, and G. Lugosi (2005). Theory of classification: A survey of
some recent advances. ESAIM: Probability and Statistics 9, 323–375. (cited on page 91)

Boucheron, S., G. Lugosi, and P. Massart (2013). Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press. (cited on page 9)

Bousquet, O. and A. Elisseeff (2002). Stability and generalization. Journal of Machine
Learning Research 2, 499–526. (cited on page 102)

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge University Press.
(cited on pages 76, 81, 96, 117, 118, 123, 128, 199, and 345)

Brass, H. and K. Petras (2011). Quadrature Theory: The Theory of Numerical Integra-
tion on a Compact Interval. Number 178 in Mathematical Surveys and Monographs.
American Mathematical Society. (cited on page 18)

Breiman, L. (1993). Hinging hyperplanes for regression, classification, and function ap-
proximation. IEEE Transactions on Information Theory 39 (3), 999–1013. (cited on

page 260)

Breiman, L. (2001). Random forests. Machine Learning 45 (1), 5–32. (cited on page 289)

Breiman, L. and D. Freedman (1983). How many variables should be entered in a re-
gression equation? Journal of the American Statistical Association 78 (381), 131–136.
(cited on page 65)

Bronstein, M. M., J. Bruna, T. Cohen, and P. Veličković (2021). Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv 2104.13478. (cited on page 278)

Brouard, C., M. Szafranski, and F. d’Alché Buc (2016). Input output kernel regression:
Supervised and semi-supervised structured output prediction with operator-valued ker-
nels. Journal of Machine Learning Research 17 (176), 1–48. (cited on page 394)

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and
Trends in Machine Learning 8 (3–4), 231–357. (cited on pages 109, 133, 152, 441, and 442)

Bubeck, S. and N. Cesa-Bianchi (2012). Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning 5 (1),
1–122. (cited on pages 314, 331, 339, and 341)

Burer, S. and R. D. C. Monteiro (2003). A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming 95 (2),
329–357. (cited on page 374)

Cabannes, V., L. Pillaud-Vivien, F. Bach, and A. Rudi (2021). Overcoming the curse of
dimensionality with Laplacian regularization in semi-supervised learning. In Advances
in Neural Information Processing Systems. (cited on page 103)

Candes, E. and B. Recht (2012). Exact matrix completion via convex optimization.
Communications of the ACM 55 (6), 111–119. (cited on page 375)

Catoni, O. (2003). A PAC-Bayesian approach to adaptive classification. Technical Report
840, Laboratoire de Probabilités et Modèles Aléatoires, Université Paris 6. (cited on

page 424)

Catoni, O. (2007). PAC-Bayesian Supervised Classification: The Thermodynamics of
Statistical Learning. Institute of Mathematical Statistics. (cited on page 102)

Cesa-Bianchi, N. and G. Lugosi (2006). Prediction, Learning, and Games. Cambridge
University Press. (cited on page 41)



458 REFERENCES

Chan, S. H. (2024). Tutorial on diffusion models for imaging and vision.
arXiv 2403.18103. (cited on page 41)

Chandrasekaran, V., B. Recht, P. A. Parrilo, and A. S. Willsky (2012). The convex
geometry of linear inverse problems. Foundations of Computational Mathematics 12,
805–849. (cited on page 299)

Chapelle, O., B. Scholkopf, and A. Zien (Eds.) (2010). Semi-supervised Learning. MIT
Press. (cited on page 40)

Chaudhuri, K. and S. Dasgupta (2014). Rates of convergence for nearest neighbor clas-
sification. In Advances in Neural Information Processing Systems. (cited on page 163)

Chen, G. H. and D. Shah (2018). Explaining the success of nearest neighbor methods in
prediction. Foundations and Trends in Machine Learning 10 (5-6), 337–588. (cited on

page 170)

Chen, R. T. Q., Y. Rubanova, J. Bettencourt, and D. K. Duvenaud (2018). Neural
ordinary differential equations. In Advances in Neural Information Processing Systems.
(cited on page 278)

Chen, T. and C. Guestrin (2016). XGBoost: A scalable tree boosting system. In Proceed-
ings of the International Conference on Knowledge Discovery and Data Mining. (cited

on page 299)

Chizat, L. (2022). Sparse optimization on measures with overparameterized gradient
descent. Mathematical Programming 194 (1), 487–532. (cited on page 366)

Chizat, L. and F. Bach (2018). On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in Neural Information
Processing Systems. (cited on pages 251, 365, 368, and 369)

Chizat, L. and F. Bach (2020). Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Proceedings of the Conference on Learning
Theory. (cited on pages 354 and 377)

Chizat, L., E. Oyallon, and F. Bach (2019). On lazy training in differentiable program-
ming. In Advances in Neural Information Processing Systems. (cited on pages 278 and 376)

Cho, Y. and L. K. Saul (2009). Kernel methods for deep learning. In Advances in Neural
Information Processing Systems. (cited on page 272)

Christmann, A. and I. Steinwart (2008). Support Vector Machines. Springer. (cited on

pages xiii, 25, 107, and 179)

Ciliberto, C., L. Rosasco, and A. Rudi (2016). A consistent regularization approach for
structured prediction. In Advances in Neural Information Processing Systems. (cited on

page 390)

Ciliberto, C., L. Rosasco, and A. Rudi (2020). A general framework for consistent struc-
tured prediction with implicit loss embeddings. Journal of Machine Learning Re-
search 21 (98), 1–67. (cited on pages 387, 390, 393, 395, and 396)

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2022). Introduction to
Algorithms. MIT Press. (cited on page 405)

Cortes, C. and V. Vapnik (1995). Support-vector networks. Machine Learning 20, 273–
297. (cited on page 75)

Cover, T. M. and J. A. Thomas (1999). Elements of Information Theory. John Wiley &



REFERENCES 459

Sons. (cited on pages 431 and 434)

Cucker, F. and S. Smale (2002). On the mathematical foundations of learning. Bulletin
of the American Mathematical Society 39 (1), 1–49. (cited on page 217)

Cuturi, M., K. Fukumizu, and J.-P. Vert (2005). Semigroup kernels on measures. Journal
of Machine Learning Research 6, 1169–1198. (cited on page 195)

Dalalyan, A. S. (2017). Theoretical guarantees for approximate sampling from smooth
and log-concave densities. Journal of the Royal Statistical Society Series B: Statistical
Methodology 79 (3), 651–676. (cited on page 422)

d’Aspremont, A. (2008). Smooth optimization with approximate gradient. SIAM Journal
on Optimization 19 (3), 1171–1183. (cited on page 135)

d’Aspremont, A., D. Scieur, and A. Taylor (2021). Acceleration methods. Foundations
and Trends in Optimization 5 (1-2), 1–245. (cited on page 127)

Davis, P. J. and P. Rabinowitz (1984). Methods of Numerical Integration. Academic
Press. (cited on page 18)

Defazio, A., F. Bach, and S. Lacoste-Julien (2014). SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in
Neural Information Processing Systems. (cited on page 147)

Défossez, A. and F. Bach (2015). Averaged least-mean-squares: Bias-variance trade-offs
and optimal sampling distributions. In Proceedings of the International Conference on
Artificial Intelligence and Statistics. (cited on page 146)

Défossez, A., L. Bottou, F. Bach, and N. Usunier (2022). A simple convergence proof of
Adam and Adagrad. Transactions on Machine Learning Research. (cited on page 143)

DeVore, R. A. and V. N. Temlyakov (1996). Some remarks on greedy algorithms. Advances
in Computational Mathematics 5, 173–187. (cited on page 302)

Devroye, L., L. Györfi, and G. Lugosi (1996). A Probabilistic Theory of Pattern Recog-
nition. Springer Science+Business Media. (cited on pages xiii, 38, and 39)

Dietterich, T. G. and G. Bakiri (1994). Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2, 263–286. (cited

on pages 382 and 396)

Dieuleveut, A. and F. Bach (2016). Nonparametric stochastic approximation with large
step sizes. Annals of Statistics 44 (4), 1363–1399. (cited on page 146)

Dieuleveut, A., N. Flammarion, and F. Bach (2017). Harder, better, faster, stronger
convergence rates for least-squares regression. Journal of Machine Learning Re-
search 18 (1), 3520–3570. (cited on page 146)

Dobriban, E. and S. Liu (2019). Asymptotics for sketching in least squares regression. In
Advances in Neural Information Processing Systems. (cited on page 291)

Donoho, D. L. and I. M. Johnstone (1994). Minimax risk over ℓp-balls for ℓq-error.
Probability Theory and Related Fields 99 (2), 277–303. (cited on pages 438 and 440)

Du, S. S., X. Zhai, B. Poczos, and A. Singh (2018). Gradient descent provably opti-
mizes overparameterized neural networks. In International Conference on Learning
Representations. (cited on page 376)

Duchi, J., E. Hazan, and Y. Singer (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research 12 (61),



460 REFERENCES

2121–2159. (cited on pages 143 and 251)

Duchi, J. C., M. I. Jordan, M. J. Wainwright, and A. Wibisono (2015). Optimal rates
for zero-order convex optimization: The power of two function evaluations. IEEE
Transactions on Information Theory 61 (5), 2788–2806. (cited on page 328)

Durmus, A. and E. Moulines (2017). Nonasymptotic convergence analysis for the unad-
justed Langevin algorithm. Annals of Applied Probability 27 (3), 1551–1587. (cited on

page 422)

E, W. and S. Wojtowytsch (2020). On the Banach spaces associated with multilayer
ReLU networks: Function representation, approximation theory and gradient descent
dynamics. arXiv 2007.15623. (cited on page 370)

Efron, B. and R. J. Tibshirani (1994). An Introduction to the Bootstrap. Chapman and
Hall. (cited on page 286)

Eldar, Y. C. and G. Kutyniok (Eds.) (2012). Compressed Sensing: Theory and Applica-
tions. Cambridge University Press. (cited on page 241)

Evans, L. C. (2022). Partial Differential Equations. American Mathematical Society.
(cited on page 368)

Fan, J., T. Gasser, I. Gijbels, M. Brockmann, and J. Engel (1997). Local polynomial
regression: Optimal kernels and asymptotic minimax efficiency. Annals of the Institute
of Statistical Mathematics 49, 79–99. (cited on page 177)

Fan, J. and J. Lv (2008). Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society, Series B 70 (5), 849–911. (cited on

page 419)

Fang, C., J. Lee, P. Yang, and T. Zhang (2021). Modeling from features: A mean-
field framework for overparameterized deep neural networks. In Proceedings of the
Conference on Learning Theory. (cited on page 370)

Fathony, R., A. Liu, K. Asif, and B. Ziebart (2016). Adversarial multiclass classifica-
tion: A risk minimization perspective. In Advances in Neural Information Processing
Systems. (cited on pages 399 and 402)

Fercoq, O. and P. Richtárik (2015). Accelerated, parallel, and proximal coordinate de-
scent. SIAM Journal on Optimization 25 (4), 1997–2023. (cited on page 233)

Freund, Y., R. Schapire, and N. Abe (1999). A short introduction to boosting. Japanese
Society for Artificial Intelligence 14 (771–780), 1612. (cited on page 298)

Freund, Y. and R. E. Schapire (1996). Experiments with a new boosting algorithm. In
Proceedings of the International Conference on Machine Learning. (cited on pages 302

and 303)

Freund, Y. and R. E. Schapire (1997). A decision-theoretic generalization of online learn-
ing and an application to boosting. Journal of Computer and System Sciences 55 (1),
119–139. (cited on page 340)

Friedman, J., T. Hastie, and R. Tibshirani (2009). The Elements of Statistical Learning.
Springer. (cited on page 160)

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
Annals of Statistics 29 (5), 1189–1232. (cited on page 305)

Ganin, Y., E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-



REFERENCES 461

hand, and V. Lempitsky (2016). Domain-adversarial training of neural networks. Jour-
nal of Machine Learning Research 17 (1), 2096–2030. (cited on page 103)

Gao, W. and Z.-H. Zhou (2015). On the consistency of AUC pairwise optimization. In
Proceedings of the International Conference on Artificial Intelligence. (cited on page 389)

Garivier, A. and O. Cappé (2011). The KL-UCB algorithm for bounded stochastic bandits
and beyond. In Proceedings of the Conference on Learning Theory. (cited on page 336)

Gauss, C. F. (1809). Theoria Motus Corporum Coelestium. Perthes & Besser. (cited on

page 45)

Geiger, M., A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d’Ascoli, G. Biroli, C. Hongler,
and M. Wyart (2020). Scaling description of generalization with number of parameters
in deep learning. Journal of Statistical Mechanics: Theory and Experiment 2020 (2),
023401. (cited on pages 355 and 358)

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (1995). Bayesian Data Analysis.
Chapman and Hall/CRC. (cited on page 421)

Gidel, G., F. Bach, and S. Lacoste-Julien (2019). Implicit regularization of discrete gradi-
ent dynamics in linear neural networks. In Advances in Neural Information Processing
Systems. (cited on page 375)

Giraud, C. (2014). Introduction to High-Dimensional Statistics. Chapman and Hall/CRC.
(cited on pages 227, 234, 237, 240, 241, and 243)

Giraud, C., S. Huet, and N. Verzelen (2012). High-dimensional regression with unknown
variance. Statistical Science 27 (4), 500–518. (cited on page 230)

Goldstein, A. A. (1962). Cauchy’s method of minimization. Numerische Mathematik 4 (1),
146–150. (cited on page 112)

Golub, G. H. and C. F. V. Loan (1996). Matrix Computations. Johns Hopkins University
Press. (cited on pages 7, 49, 67, 115, 129, and 197)

Gönen, M. and E. Alpaydın (2011). Multiple kernel learning algorithms. Journal of
Machine Learning Research 12, 2211–2268. (cited on pages 244 and 273)

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press. (cited on

pages 40, 278, and 369)

Gower, R. M., M. Schmidt, F. Bach, and P. Richtárik (2020). Variance-reduced methods
for machine learning. Proceedings of the IEEE 108 (11), 1968–1983. (cited on page 150)

Gribonval, R. (2011). Should penalized least squares regression be interpreted as maxi-
mum a posteriori estimation? IEEE Transactions on Signal Processing 59 (5), 2405–
2410. (cited on pages 413 and 415)

Gribonval, R., V. Cevher, and M. E. Davies (2012). Compressible distributions for high-
dimensional statistics. IEEE Transactions on Information Theory 58 (8), 5016–5034.
(cited on page 416)

Gunasekar, S., J. Lee, D. Soudry, and N. Srebro (2018). Characterizing implicit bias
in terms of optimization geometry. In Proceedings of the International Conference on
Machine Learning. (cited on page 348)

Gunasekar, S., B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro (2017).
Implicit regularization in matrix factorization. In Advances in Neural Information
Processing Systems. (cited on page 375)



462 REFERENCES

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press. (cited on page 195)

Györfi, L., M. Kohler, A. Krzyzak, and H. Walk (2006). A Distribution-Free Theory of
Nonparametric Regression. Springer Science+Business Media. (cited on page 166)

Haff, L. R. (1979). An identity for the Wishart distribution with applications. Journal
of Multivariate Analysis 9 (4), 531–544. (cited on pages 358 and 361)

Hamm, T. and I. Steinwart (2021). Adaptive learning rates for support vector machines
working on data with low intrinsic dimension. Annals of Statistics 49 (6), 3153–3180.
(cited on page 40)

Hanin, B. and M. Nica (2019). Finite depth and width corrections to the neural tangent
kernel. In International Conference on Learning Representations. (cited on page 370)

Harchaoui, Z., F. Bach, and E. Moulines (2008). Testing for homogeneity with kernel
Fisher discriminant analysis. arXiv 0804.1026. (cited on page 218)

Hastie, T., A. Montanari, S. Rosset, and R. J. Tibshirani (2022). Surprises in high-
dimensional ridgeless least squares interpolation. Annals of statistics 50 (2), 949–986.
(cited on pages 355 and 360)

Hazan, E. (2022). Introduction to Online Convex Optimization. MIT Press. (cited on

pages 41, 314, 331, and 341)

Hazan, E. and S. Kale (2014). Beyond the regret minimization barrier: Optimal al-
gorithms for stochastic strongly convex optimization. Journal of Machine Learning
Research 15 (1), 2489–2512. (cited on page 319)

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep residual learning for image recognition.
In Proceedings of the Conference on Computer Vision and Pattern Recognition. (cited

on page 278)

Holtz, M. (2010). Sparse Grid Quadrature in High Dimensions with Applications in
Finance and Insurance. Springer Science+Business Media. (cited on page 18)

Hsu, D., S. M. Kakade, and T. Zhang (2012). Random design analysis of ridge regression.
In Proceedings of the Conference on Learning Theory. (cited on page 65)

Huber, P. J. and E. M. Ronchetti (2009). Robust Statistics. John Wiley & Sons. (cited on

page 388)

Hyvärinen, A., J. Karhunen, and E. Oja (2001). Independent Component Analysis. John
Willey and Sons. (cited on page 40)

Ioffe, S. and C. Szegedy (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the International Conference on
Machine Learning. (cited on page 251)

Jacot, A., F. Gabriel, and C. Hongler (2018). Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Sys-
tems. (cited on pages 278 and 377)

Jaggi, M. (2013). Revisiting Frank-Wolfe: Projection-free sparse convex optimization.
In Proceedings of the International Conference on Machine Learning. (cited on page 267)

Ji, Z. and M. Telgarsky (2018). Risk and parameter convergence of logistic regression.
arXiv 1803.07300. (cited on page 350)

Johnson, R. and T. Zhang (2013). Accelerating stochastic gradient descent using predic-



REFERENCES 463

tive variance reduction. In Advances in Neural Information Processing Systems. (cited

on page 147)

Johnson, W. B. and J. Lindenstrauss (1984). Extensions of Lipschitz mappings into a
Hilbert space. In Conference on Modern Analysis and Probability. (cited on page 296)

Joulin, A., É. Grave, P. Bojanowski, and T. Mikolov (2017). Bag of tricks for efficient
text classification. In Proceedings of the Conference of the European Chapter of the
Association for Computational Linguistics. (cited on page 195)

Juditsky, A. and A. Nemirovski (2011a). First order methods for nonsmooth convex
large-scale optimization, I: General purpose methods. In Optimization for Machine
Learning, pp. 121–148. MIT Press. (cited on page 133)

Juditsky, A. and A. Nemirovski (2011b). First order methods for nonsmooth convex
large-scale optimization, II: Utilizing problems structure. In Optimization for Machine
Learning, pp. 149–183. MIT Press. (cited on page 133)

Kabán, A. (2014). New bounds on compressive linear least squares regression. In Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics. (cited

on page 293)

Kanagawa, M., P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur (2018). Gaus-
sian processes and kernel methods: A review on connections and equivalences.
arXiv 1807.02582. (cited on pages 185 and 423)

Karimi, H., J. Nutini, and M. Schmidt (2016). Linear convergence of gradient and
proximal-gradient methods under the Polyak-Lojasiewicz condition. In Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases. (cited

on page 346)

Kimeldorf, G. and G. Wahba (1971). Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications 33, 82–95. (cited on page 181)

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization.
arXiv 1412.6980. (cited on pages 143 and 251)

Klusowski, J. M. and A. R. Barron (2018). Approximation by combinations of ReLU
and squared ReLU ridge functions with ℓ1 and ℓ0 controls. IEEE Transactions on
Information Theory 64 (12), 7649–7656. (cited on page 265)

Klusowski, J. M. and J. W. Siegel (2023). Sharp convergence rates for matching pursuit.
arXiv 2307.07679. (cited on page 303)

Koltchinskii, V. (2011). Oracle Inequalities in Empirical Risk Minimization and Sparse
Recovery Problems: École d’Été de Probabilités de Saint-Flour (2008). Springer Sci-
ence+Business Media. (cited on page xiii)

Koltchinskii, V. and O. Beznosova (2005). Exponential convergence rates in classification.
In International Conference on Computational Learning Theory. (cited on page 102)

Kpotufe, S. (2011). k-NN regression adapts to local intrinsic dimension. In Advances in
Neural Information Processing Systems. (cited on page 40)

Kurková, V. and M. Sanguineti (2001). Bounds on rates of variable-basis and neural-
network approximation. IEEE Transactions on Information Theory 47 (6), 2659–2665.
(cited on pages 259, 299, and 367)

Kushner, H. J. and G. G. Yin (2003). Stochastic Approximation and Recursive Algorithms



464 REFERENCES

and Applications. Springer-Verlag. (cited on page 367)

Lattimore, T. and C. Szepesvári (2020). Bandit Algorithms. Cambridge University Press.
(cited on pages 314, 331, and 341)

Le Roux, N. and Y. Bengio (2007). Continuous neural networks. In Proceedings of the
International Conference on Artificial Intelligence and Statistics. (cited on page 198)

Lecué, G. and S. Mendelson (2016). Performance of empirical risk minimization in linear
aggregation. Bernoulli 22 (3), 1520–1534. (cited on page 65)

Ledoux, M. and M. Talagrand (1991). Probability in Banach Spaces: Isoperimetry and
Processes. Springer Science+Business Media. (cited on pages 94 and 95)

Lee, J. D., M. Simchowitz, M. I. Jordan, and B. Recht (2016). Gradient descent only
converges to minimizers. In Proceedings of the Conference on Learning Theory. (cited

on page 373)

Lee, Y., Y. Lin, and G. Wahba (2004). Multicategory support vector machines: Theory
and application to the classification of microarray data and satellite radiance data.
Journal of the American Statistical Association 99 (465), 67–81. (cited on page 393)

Legendre, A.-M. (1805). Nouvelles Méthodes pour la Détermination des Orbites des
Comètes. Firmin Didot. (cited on page 45)

Leshno, M., V. Y. Lin, A. Pinkus, and S. Schocken (1993). Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function. Neural
Networks 6 (6), 861–867. (cited on page 256)

Liberzon, D. (2011). Calculus of Variations and Optimal Control Theory: A Concise
Introduction. Princeton University Press. (cited on page 41)

Lindholm, A., N. Wahlström, F. Lindsten, and T. B. Schön (2022). Machine Learning:
A First Course for Engineers and Scientists. Cambridge University Press. (cited on

page xii)

Liu, Y. (2007). Fisher consistency of multicategory support vector machines. In Proceed-
ings of the International Conference on Artificial Intelligence and Statistics. (cited on

page 399)

Long, P. and R. Servedio (2013). Consistency versus realizable H-consistency for multi-
class classification. In Proceedings of the International Conference on Machine Learn-
ing. (cited on pages 83 and 393)

Lu, J., Z. Shen, H. Yang, and S. Zhang (2021). Deep network approximation for smooth
functions. SIAM Journal on Mathematical Analysis 53 (5), 5465–5506. (cited on page 278)

Lugosi, G. and N. Vayatis (2004). On the Bayes-risk consistency of regularized boosting
methods. Annals of Statistics 32 (1), 30–55. (cited on page 308)

Lyu, K. and J. Li (2019). Gradient descent maximizes the margin of homogeneous neural
networks. In International Conference on Learning Representations. (cited on page 377)

Lyu, K., Z. Li, and S. Arora (2022). Understanding the generalization benefit of nor-
malization layers: Sharpness reduction. In Advances in Neural Information Processing
Systems. (cited on page 355)

Ma, C., S. Wojtowytsch, and L. Wu (2020). Towards a mathematical understand-
ing of neural network-based machine learning: What we know and what we don’t.
arXiv 2009.10713. (cited on page 278)



REFERENCES 465

Mahoney, M. W. and P. Drineas (2009). CUR matrix decompositions for improved data
analysis. Proceedings of the National Academy of Sciences 106 (3), 697–702. (cited on

page 197)

Mairal, J., F. Bach, and J. Ponce (2014). Sparse modeling for image and vision processing.
Foundations and Trends in Computer Graphics and Vision 8 (2–3), 85–283. (cited on

pages 40 and 245)

Mairal, J. and B. Yu (2012). Complexity analysis of the Lasso regularization path. In
Proceedings of the International Conference on International Conference on Machine
Learning. (cited on page 234)

Mallat, S. G. and Z. Zhang (1993). Matching pursuits with time-frequency dictionaries.
IEEE Transactions on Signal Processing 41 (12), 3397–3415. (cited on pages 302 and 303)

Marden, J. I. (1996). Analyzing and Modeling Rank Data. CRC Press. (cited on page 405)

Martinsson, P.-G. and J. A. Tropp (2020). Randomized numerical linear algebra: Foun-
dations and algorithms. Acta Numerica 29, 403–572. (cited on pages 129 and 197)

Maurer, A. (2016). A vector-contraction inequality for Rademacher complexities. In
International Conference on Algorithmic Learning Theory. (cited on page 385)

Mei, S., T. Misiakiewicz, and A. Montanari (2019). Mean-field theory of two-layer neural
networks: Dimension-free bounds and kernel limit. In Proceedings of the Conference
on Learning Theory. (cited on page 370)

Mei, S. and A. Montanari (2022). The generalization error of random features regres-
sion: Precise asymptotics and the double descent curve. Communications on Pure and
Applied Mathematics 75 (4), 667–766. (cited on pages 355, 358, and 360)

Mei, S., A. Montanari, and P.-M. Nguyen (2018). A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences 115 (33),
E7665–E7671. (cited on page 368)

Meir, R. and T. Zhang (2003). Generalization error bounds for Bayesian mixture al-
gorithms. Journal of Machine Learning Research 4 (Oct.), 839–860. (cited on pages 86

and 94)

Minsker, S. (2017). On some extensions of Bernstein’s inequality for self-adjoint operators.
Statistics & Probability Letters 127, 111–119. (cited on page 20)

Mohri, M. and A. Rostamizadeh (2010). Stability bounds for stationary ϕ-mixing and
β-mixing processes. Journal of Machine Learning Research 11 (26), 789–814. (cited on

page 103)

Mohri, M., A. Rostamizadeh, and A. Talwalkar (2018). Foundations of Machine Learning.
MIT Press. (cited on page xiii)

Mourtada, J. (2022). Exact minimax risk for linear least squares, and the lower tail of
sample covariance matrices. Annals of Statistics 50 (4), 2157–2178. (cited on pages 61,

64, and 65)

Mourtada, J. and L. Rosasco (2022). An elementary analysis of ridge regression with
random design. Comptes Rendus. Mathématique 360, 1055–1063. (cited on page 212)

Munos, R. (2014). From bandits to Monte-Carlo tree search: The optimistic principle ap-
plied to optimization and planning. Foundations and Trends in Machine Learning 7 (1),
1–129. (cited on page 336)



466 REFERENCES

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. (cited

on pages 40, 396, 397, and 410)

Nagaraj, D., P. Jain, and P. Netrapalli (2019). SGD without replacement: Sharper rates
for general smooth convex functions. In Proceedings of the International Conference
on Machine Learning. (cited on page 135)

Neal, R. M. (1995). Bayesian Learning for Neural Networks. PhD thesis, University of
Toronto. (cited on page 272)

Nekvinda, A. and L. Zaj́ıček (1988). A simple proof of the Rademacher theorem. Časopis
pro pěstováńı matematiky 113 (4), 337–341. (cited on page 130)

Nesterov, Y. (1983). A method of solving a convex programming problem with conver-
gence rate o(1/k2). Doklady Akademii Nauk SSSR 269 (3), 543. (cited on page 127)

Nesterov, Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer. (cited on page 126)

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical
Programming 140 (1), 125–161. (cited on pages 127 and 128)

Nesterov, Y. (2018). Lectures on Convex Optimization. Springer. (cited on pages 109, 119,

120, 126, 152, 441, 442, and 443)

Nesterov, Y. and V. Spokoiny (2017). Random gradient-free minimization of convex func-
tions. Foundations of Computational Mathematics 17 (2), 527–566. (cited on page 112)

Neyshabur, B., R. Tomioka, and N. Srebro (2015). Norm-based capacity control in neural
networks. In Proceedings of the Conference on Learning Theory. (cited on page 255)

Ng, A. Y. and M. I. Jordan (2001). On discriminative vs. generative classifiers: A com-
parison of logistic regression and naive Bayes. In Advances in Neural Information
Processing Systems. (cited on page 419)

Nguyen, P.-M. and H. T. Pham (2023). A rigorous framework for the mean field limit of
multilayer neural networks. Mathematical Statistics and Learning 6 (3), 201–357. (cited

on page 370)

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods.
SIAM. (cited on page 18)

Nitanda, A. and T. Suzuki (2017). Stochastic particle gradient descent for infinite en-
sembles. arXiv 1712.05438. (cited on page 368)

Nocedal, J. and S. J. Wright (1999). Numerical Optimization. Springer. (cited on page 123)

Novak, E. (2006). Deterministic and Stochastic Error Bounds in Numerical Analysis.
Springer. (cited on pages 444 and 446)

Novikoff, A. B. J. (1962). On convergence proofs on perceptrons. In Proceedings of the
Symposium on the Mathematical Theory of Automata. (cited on page 351)

Nowak, A., F. Bach, and A. Rudi (2019). Sharp analysis of learning with discrete losses.
In Proceedings of the International Conference on Artificial Intelligence and Statistics.
(cited on pages 387 and 388)

Nowak-Vila, A., F. Bach, and A. Rudi (2019). A general theory for structured prediction
with smooth convex surrogates. arXiv 1902.01958. (cited on page 396)

Nowak-Vila, A., F. Bach, and A. Rudi (2020). Consistent structured prediction with
max-min margin Markov networks. In Proceedings of the International Conference on



REFERENCES 467

Machine Learning. (cited on pages 399 and 401)

Oliveira, R. I. (2016). The lower tail of random quadratic forms with applications to
ordinary least squares. Probability Theory and Related Fields 166, 1175–1194. (cited on

page 65)

Opper, M., W. Kinzel, J. Kleinz, and R. Nehl (1990). On the ability of the optimal
perceptron to generalise. Journal of Physics A: Mathematical and General 23 (11),
L581. (cited on page 355)

Orabona, F. (2019). A modern introduction to online learning. arXiv 1912.13213. (cited

on pages 314 and 321)

Osborne, M. R., B. Presnell, and B. A. Turlach (2000). On the Lasso and its dual. Journal
of Computational and Graphical Statistics 9 (2), 319–337. (cited on page 234)

Osokin, A., F. Bach, and S. Lacoste-Julien (2017). On structured prediction theory
with calibrated convex surrogate losses. In Advances in Neural Information Processing
Systems. (cited on page 393)

Ostrovskii, D. and F. Bach (2021). Finite-sample analysis of M-estimators using self-
concordance. Electronic Journal of Statistics 15 (1), 326–391. (cited on pages 107 and 239)

Palmer, J., K. Kreutz-Delgado, B. Rao, and D. Wipf (2005). Variational EM algorithms
for non-Gaussian latent variable models. In Advances in Neural Information Processing
Systems. (cited on page 413)

Papandreou, G. and A. L. Yuille (2011). Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models. In International Conference on
Computer Vision. (cited on page 397)

Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad (1993). Orthogonal matching pur-
suit: Recursive function approximation with applications to wavelet decomposition. In
Proceedings of the Asilomar Conference on Signals, Systems and Computers. (cited on

page 228)

Pedregosa, F., F. Bach, and A. Gramfort (2017). On the consistency of ordinal regression
methods. Journal of Machine Learning Research 18, 1–35. (cited on page 388)

Pesme, S. and N. Flammarion (2023). Saddle-to-saddle dynamics in diagonal linear
networks. In Advances in Neural Information Processing Systems. (cited on page 375)

Pesme, S., L. Pillaud-Vivien, and N. Flammarion (2021). Implicit bias of SGD for diagonal
linear networks: A provable benefit of stochasticity. In Advances in Neural Information
Processing Systems. (cited on page 354)

Pillaud-Vivien, L., A. Rudi, and F. Bach (2018). Statistical optimality of stochastic
gradient descent on hard learning problems through multiple passes. In Advances in
Neural Information Processing Systems. (cited on page 218)

Pimentel, M. A. F., D. A. Clifton, L. Clifton, and L. Tarassenko (2014). A review of
novelty detection. Signal Processing 99, 215–249. (cited on page 40)

Platt, J. (1998). Using analytic QP and sparseness to speed training of support vector
machines. In Advances in Neural Information Processing Systems. (cited on page 76)

Potters, M. and J.-P. Bouchaud (2020). A First Course in Random Matrix Theory: For
Physicists, Engineers and Data Scientists. Cambridge University Press. (cited on pages 37

and 107)



468 REFERENCES

Rahimi, A. and B. Recht (2008). Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems. (cited on pages 198 and 272)

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian Processes for Machine Learning.
MIT Press. (cited on pages 185, 192, 193, and 423)

Reed, M. and B. Simon (1978). Methods of Modern Mathematical Physics, Volume 2.
Academic Press. (cited on page 192)

Rigollet, P. and A. Tsybakov (2011). Exponential screening and optimal rates of sparse
estimation. Annals of Statistics 39 (2), 731–771. (cited on page 426)

Rigollet, P. and A. B. Tsybakov (2007). Linear and convex aggregation of density esti-
mators. Mathematical Methods of Statistics 16 (3), 260–280. (cited on page 223)

Robert, C. P. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to
Computational Implementation, Volume 2. Springer. (cited on pages 420, 421, and 423)

Robert, C. P. and G. Casella (2005). Monte Carlo Statistical Methods, Volume 2. Springer.
(cited on page 422)

Rockafellar, R. T. (1997). Convex Analysis. Princeton University Press. (cited on pages 131

and 300)

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review 65 (6), 386–408. (cited on page 351)

Rosset, S., J. Zhu, and T. Hastie (2004). Boosting as a regularized path to a maximum
margin classifier. Journal of Machine Learning Research 5, 941–973. (cited on page 307)

Rotskoff, G. M. and E. Vanden-Eijnden (2018). Parameters as interacting particles:
Long time convergence and asymptotic error scaling of neural networks. In Advances
in Neural Information Processing Systems. (cited on page 368)

Rudi, A., R. Camoriano, and L. Rosasco (2015). Less is more: Nyström computa-
tional regularization. In Advances in Neural Information Processing Systems. (cited

on pages 197, 212, and 215)

Rudi, A. and L. Rosasco (2017). Generalization properties of learning with random
features. In Advances in Neural Information Processing Systems. (cited on pages 198, 212,

and 215)

Rudin, W. (1987). Real and Complex Analysis. McGraw-Hill. (cited on pages 257, 262,

and 263)

Russo, D. J., B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen (2018). A tutorial on
Thompson sampling. Foundations and Trends in Machine Learning 11 (1), 1–96. (cited

on page 339)

Santambrogio, F. (2015). Optimal Transport for Applied Mathematicians. Springer. (cited

on page 368)

Saxe, A. M., J. L. McClelland, and S. Ganguli (2019). A mathematical theory of se-
mantic development in deep neural networks. Proceedings of the National Academy of
Sciences 116 (23), 11537–11546. (cited on page 375)

Schaback, R. and H. Wendland (2006). Kernel techniques: From machine learning to
meshless methods. Acta Numerica 15, 543–639. (cited on page 180)

Schapire, R. E. and Y. Freund (2012). Boosting: Foundations and Algorithms. MIT
Press. (cited on page 298)



REFERENCES 469

Schmidt, M., N. Le Roux, and F. Bach (2011). Convergence rates of inexact proximal-
gradient methods for convex optimization. In Advances in Neural Information Pro-
cessing Systems. (cited on page 135)

Schmidt, M., N. Le Roux, and F. Bach (2017). Minimizing finite sums with the stochastic
average gradient. Mathematical Programming 162 (1–2), 83–112. (cited on page 147)

Schölkopf, B., R. Herbrich, and A. J. Smola (2001). A generalized representer theorem.
In International Conference on Computational Learning Theory. (cited on page 181)

Schölkopf, B. and A. J. Smola (2001). Learning with Kernels. MIT Press. (cited on pages 179

and 201)

Schölkopf, B., K. Tsuda, and J.-P. Vert (Eds.) (2004). Kernel Methods in Computational
Biology. MIT Press. (cited on page 195)

Scieur, D., V. Roulet, F. Bach, and A. d’Aspremont (2017). Integration methods and
optimization algorithms. In Advances in Neural Information Processing Systems. (cited

on pages 123 and 348)

Scornet, E., G. Biau, and J.-P. Vert (2015). Consistency of random forests. Annals of
Statistics 43 (4), 1716–1741. (cited on page 300)

Seldin, Y., C. Szepesvári, P. Auer, and Y. Abbasi-Yadkori (2013). Evaluation and analysis
of the performance of the EXP3 algorithm in stochastic environments. In European
Workshop on Reinforcement Learning. (cited on page 341)

Settles, B. (2009). Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences. (cited on page 41)

Shakhnarovich, G., T. Darrell, and P. Indyk (Eds.) (2005). Nearest-Neighbor Methods in
Learning and Vision: Theory and Practice. MIT Press. (cited on page 161)

Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Foundations
and Trends in Machine Learning 4 (2), 107–194. (cited on pages 314 and 341)

Shalev-Shwartz, S. and S. Ben-David (2014). Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press. (cited on page xiii)

Shawe-Taylor, J. and N. Cristianini (2004). Kernel Methods for Pattern Analysis. Cam-
bridge University Press. (cited on pages 179, 194, 195, and 201)

Sil’nichenko, A. V. (2004). Rate of convergence of greedy algorithms. Mathematical
Notes 76, 582–586. (cited on page 303)

Silva Filho, T., H. Song, M. Perello-Nieto, R. Santos-Rodriguez, M. Kull, and P. Flach
(2023). Classifier calibration: A survey on how to assess and improve predicted class
probabilities. Machine Learning 112 (9), 3211–3260. (cited on page 79)

Silverman, B. W. (1982). Algorithm AS 176: Kernel density estimation using the fast
Fourier transform. Journal of the Royal Statistical Society. Series C (Applied Statis-
tics) 31 (1), 93–99. (cited on page 163)

Sirignano, J. and K. Spiliopoulos (2020). Mean field analysis of neural networks: A law
of large numbers. SIAM Journal on Applied Mathematics 80 (2), 725–752. (cited on

page 368)

Sirignano, J. and K. Spiliopoulos (2022). Mean field analysis of deep neural networks.
Mathematics of Operations Research 47 (1), 120–152. (cited on page 370)

Slivkins, A. (2019). Introduction to multi-armed bandits. Foundations and Trends in



470 REFERENCES

Machine Learning 12 (1-2), 1–286. (cited on pages 314, 331, and 341)

Smith, S. L., B. Dherin, D. G. T. Barrett, and S. De (2021). On the origin of implicit
regularization in stochastic gradient descent. In International Conference on Learning
Representations. (cited on page 355)

Snoek, J., H. Larochelle, and R. P. Adams (2012). Practical Bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems.
(cited on page 444)

Soudry, D., E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro (2018). The implicit bias
of gradient descent on separable data. Journal of Machine Learning Research 19 (1),
2822–2878. (cited on page 350)

Sridharan, K., S. Shalev-Shwartz, and N. Srebro (2009). Fast rates for regularized objec-
tives. In Advances in Neural Information Processing Systems. (cited on page 98)

Stein, M. L. (2012). Interpolation of Spatial Data: Some Theory for Kriging. Springer
Science+Business Media. (cited on page 193)

Steinwart, I. (2003). Sparseness of support vector machines. Journal of Machine Learning
Research 4 (Nov.), 1071–1105. (cited on page 76)

Steinwart, I. and C. Scovel (2012). Mercer’s theorem on general domains: On the interac-
tion between measures, kernels, and RKHSs. Constructive Approximation 35, 363–417.
(cited on pages 190 and 217)

Stewart, G. W. and J.-G. Sun (1990). Matrix Perturbation Theory. Academic Press.
(cited on pages 7 and 20)

Stewart, L., F. Bach, Q. Berthet, and J.-P. Vert (2023). Regression as classification: Influ-
ence of task formulation on neural network features. In Proceedings of the International
Conference on Artificial Intelligence and Statistics. (cited on page 278)

Stone, C. J. (1977). Consistent nonparametric regression. Annals of Statistics 5 (4),
595–620. (cited on page 174)

Sugiyama, M., M. Krauledat, and K.-R. Müller (2007). Covariate shift adaptation by
importance weighted cross validation. Journal of Machine Learning Research 8 (5).
(cited on page 103)

Suli, E. and D. F. Mayers (2003). An Introduction to Numerical Analysis. Cambridge
University Press. (cited on page 367)

Sutton, C. and A. McCallum (2012). An introduction to conditional random fields.
Foundations and Trends in Machine Learning 4 (4), 267–373. (cited on pages 393 and 397)

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction. MIT
Press. (cited on page 41)

Taskar, B., V. Chatalbashev, D. Koller, and C. Guestrin (2005). Learning structured
prediction models: A large margin approach. In Proceedings of the International Con-
ference on Machine learning. (cited on page 399)

Thanei, G.-A., C. Heinze, and N. Meinshausen (2017). Random projections for large-scale
regression. In Big and Complex Data Analysis, pp. 51–68. Springer. (cited on page 293)

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society: Series B (Methodological) 58 (1), 267–288. (cited on page 231)

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine.



REFERENCES 471

Journal of Machine Learning Research 1, 211–244. (cited on page 423)

Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Foundations
of Computational Mathematics 12 (4), 389–434. (cited on pages 19, 20, and 65)

Tsochantaridis, I., T. Joachims, T. Hofmann, Y. Altun, and Y. Singer (2005). Large mar-
gin methods for structured and interdependent output variables. Journal of Machine
Learning Research 6 (50), 1453–1484. (cited on page 399)

Tsybakov, A. B. (2008). Introduction to Nonparametric Estimation. Springer Sci-
ence+Business Media. (cited on pages 177 and 438)

van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press. (cited

on pages 105 and 106)

van Engelen, J. E. and H. H. Hoos (2020). A survey on semi-supervised learning. Machine
Learning 109 (2), 373–440. (cited on page 40)

Vapnik, V. N. and A. Y. Chervonenkis (1964). On a perceptron class. Automation and
Remote Control 25, 112–120. (cited on page 74)

Vapnik, V. N. and A. Y. Chervonenkis (2015). On the uniform convergence of relative
frequencies of events to their probabilities. In Measures of Complexity, pp. 11–30.
Springer. (cited on pages xiii and 72)

Varadhan, S. R. S. (2001). Probability Theory. American Mathematical Society. (cited on

page 192)

Vardi, G. (2023). On the implicit bias in deep-learning algorithms. Communications of
the ACM 66 (6), 86–93. (cited on page 355)

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser, and
I. Polosukhin (2017). Attention is all you need. In Advances in Neural Information
Processing Systems. (cited on page 279)

Vershynin, R. (2018). High-Dimensional Probability: An Introduction with Applications
in Data Science. Cambridge University Press. (cited on page 9)

Wahba, G. (1990). Spline Models for Observational Data. SIAM. (cited on page 276)

Wainwright, M. J. (2019). High-Dimensional Statistics: A Nonasymptotic Viewpoint.
Cambridge University Press. (cited on pages 90, 91, 240, and 241)

Wainwright, M. J. and M. I. Jordan (2008). Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning 1 (1–2), 1–305.
(cited on pages 391 and 422)

Waldspurger, I. (2021). Lecture notes on non-convex algorithms for low-rank matrix
recovery. arXiv 2105.10318. (cited on page 374)

Wang, S., A. Gittens, and M. W. Mahoney (2018). Sketched ridge regression: Opti-
mization perspective, statistical perspective, and model averaging. Journal of Machine
Learning Research 18, 1–50. (cited on page 291)

Wasserman, L. (2006). All of Nonparametric Statistics. Springer Science+Business Media.
(cited on page 177)

Weston, J., O. Chapelle, V. Vapnik, A. Elisseeff, and B. Schölkopf (2002). Kernel de-
pendency estimation. In Advances in Neural Information Processing Systems. (cited on

page 394)

Williams, C. and M. Seeger (2000). Using the Nyström method to speed up kernel



472 REFERENCES

machines. In Advances in Neural Information Processing Systems. (cited on page 197)

Woodworth, B., S. Gunasekar, J. D. Lee, E. Moroshko, P. Savarese, I. Golan, D. Soudry,
and N. Srebro (2020). Kernel and rich regimes in overparametrized models. In Pro-
ceedings of the Conference on Learning Theory. (cited on pages 353 and 354)

Xiao, L. (2010). Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research 11, 2543–2596. (cited on page 321)

Xu, L., J. Neufeld, B. Larson, and D. Schuurmans (2004). Maximum margin clustering.
In Advances in Neural Information Processing Systems. (cited on page 103)

Yan, W.-Y., U. Helmke, and J. B. Moore (1994). Global analysis of Oja’s flow for neural
networks. IEEE Transactions on Neural Networks 5 (5), 674–683. (cited on page 374)

Yang, G. and E. J. Hu (2020). Feature learning in infinite-width neural networks.
arXiv 2011.14522. (cited on page 370)

Yang, G. and E. J. Hu (2021). Tensor programs IV: Feature learning in infinite-width
neural networks. In Proceedings of the International Conference on Machine Learning.
(cited on page 278)

Yang, Y. (1999). Minimax nonparametric classification. i. rates of convergence. IEEE
Transactions on Information Theory 45 (7), 2271–2284. (cited on page 428)

Zhang, J., M. Marsza lek, S. Lazebnik, and C. Schmid (2007). Local features and kernels
for classification of texture and object categories: A comprehensive study. International
Journal of Computer Vision 73 (2), 213–238. (cited on page 195)

Zhang, L., M. Mahdavi, and R. Jin (2013). Linear convergence with condition number
independent access of full gradients. In Advances in Neural Information Processing
Systems. (cited on page 147)

Zhang, T. (2004a). Statistical analysis of some multi-category large margin classification
methods. Journal of Machine Learning Research 5 (Oct.), 1225–1251. (cited on page 382)

Zhang, T. (2004b). Statistical behavior and consistency of classification methods based
on convex risk minimization. Annals of Statistics 32 (1), 56–85. (cited on page 79)

Zhang, T. (2006). Information-theoretic upper and lower bounds for statistical estimation.
IEEE Transactions on Information Theory 52 (4), 1307–1321. (cited on page 102)

Zhang, T. (2009). On the consistency of feature selection using greedy least squares
regression. Journal of Machine Learning Research 10 (19), 555–568. (cited on page 228)

Zhang, T. (2011). Adaptive forward-backward greedy algorithm for learning sparse rep-
resentations. IEEE Transactions on Information Theory 57 (7), 4689–4708. (cited on

page 230)


	Preface
	I Preliminaries
	Mathematical Preliminaries
	Linear Algebra and Differentiable Calculus
	Minimization of Quadratic Forms
	Inverting a  2 2 Matrix
	Inverting Matrices Defined by Blocks, Matrix Inversion Lemma
	Eigenvalue and Singular Value Decomposition
	Differential Calculus

	Concentration Inequalities
	Hoeffding's Inequality
	McDiarmid's Inequality
	Bernstein's Inequality () 
	Expectation of the Maximum
	Estimation of Expectations through Quadrature ()
	Concentration Inequalities for Random Matrices ()


	Introduction to Supervised Learning
	From Training Data to Predictions
	Decision Theory
	Supervised Learning Problems and Loss Functions
	Risks
	Bayes Risk and Bayes Predictor

	Learning from Data
	Local Averaging
	Empirical Risk Minimization

	Statistical Learning Theory
	Measures of Performance
	Notions of Consistency over Classes of Problems

	``No Free Lunch'' Theorems ()
	Quest for Adaptivity
	Beyond Supervised Learning
	Summary–Book Outline

	Linear Least-Squares Regression
	Introduction
	Least-Squares Framework
	Ordinary Least-Squares Estimator
	Closed-Form Solution
	Geometric Interpretation
	Numerical Resolution

	Statistical Analysis of Ordinary Least-Squares
	Fixed Design Setting
	Statistical Properties of the OLS Estimator
	Experiments

	Ridge Least-Squares Regression
	Lower Bound ()
	Random Design Analysis
	Gaussian Designs
	General Designs () 

	Principal Component Analysis ()
	Conclusion


	II Generalization Bounds for Learning Algorithms
	Empirical Risk Minimization
	Convexification of the Risk
	Convex Surrogates
	Geometric Interpretation of the Support Vector Machine ()
	Conditional -risk and Classification Calibration ()
	Relation between Risk and -risk ()

	Risk Minimization Decomposition
	Approximation Error
	Estimation Error
	Application of McDiarmid's Inequality
	Easy Case I: Quadratic Functions
	Easy Case II: Finite Number of Models
	Beyond Finitely Many Models through Covering Numbers () 

	Rademacher Complexity
	Symmetrization
	Lipschitz-Continuous Losses
	Ball-Constrained Linear Predictions
	Putting Things Together (Linear Predictions)
	From Constrained to Regularized Estimation () 
	Extensions and Improvements

	Model Selection ()
	Structural Risk Minimization ()
	Selection Based on Validation Set ()

	Relation with Asymptotic Statistics ()
	Summary

	Optimization for Machine Learning
	Optimization in Machine Learning
	Gradient Descent
	Simplest Analysis: Ordinary Least-Squares
	Convex Functions and Their Properties
	Analysis of Gradient Descent for Strongly Convex and Smooth Functions
	Analysis of Gradient Descent for Convex and Smooth Functions () 
	Beyond Gradient Descent () 
	Nonconvex Objective Functions () 

	Gradient Methods on Nonsmooth Problems
	Stochastic Gradient Descent
	Strongly Convex Problems () 
	Adaptive Methods ()
	Bias-Variance Trade-offs for Least-Squares ()
	Variance Reduction () 

	Conclusion

	Local Averaging Methods
	Introduction
	Local Averaging Methods
	Linear Estimators
	Partition Estimators
	Nearest-Neighbors
	Nadaraya-Watson Estimator (aka Kernel Regression) () 

	Generic Simplest Consistency Analysis
	Fixed Partition
	k-nearest Neighbor
	Kernel Regression (Nadaraya-Watson) () 

	Universal Consistency ()
	Adaptivity () 
	Conclusion

	Kernel Methods
	Introduction
	Representer Theorem
	Kernels
	Linear and Polynomial Kernels
	Translation-Invariant Kernels on [0,1]
	Translation-Invariant Kernels on Rd
	Beyond Vectorial Input Spaces ()

	Algorithms
	Representer Theorem
	Column Sampling
	Random Features
	Dual Algorithms ()
	Stochastic Gradient Descent ()
	Kernelization of Linear Algorithms

	Generalization Guarantees–Lipschitz-continuous Losses
	Risk Decomposition
	Approximation Error for Translation-Invariant Kernels on Rd

	Theoretical Analysis of Ridge Regression ()
	Kernel Ridge Regression as a Linear Estimator
	Bias and Variance Decomposition () 
	Relating Empirical and Population Covariance Operators
	Analysis for Well-Specified Problems ()
	Analysis beyond Well-Specified Problems ()
	Balancing Bias and Variance ()

	Experiments
	Conclusion

	Sparse Methods
	Introduction
	Dedicated Proof Technique for Constrained Least-Squares
	Probabilistic and Combinatorial Lemmas

	Variable Selection by the 0-penalty
	Assuming That k Is Known
	Sparsity-Adaptive Estimation (Unknown k) ()

	Variable Selection by 1-regularization
	Intuition and Algorithms
	Slow Rates–Random Design
	Slow Rates–Fixed Design (Square Loss)
	Fast Rates–Fixed Design ()
	Zoo of Conditions ()
	Fast Rates–Random Design ()

	Experiments
	Extensions
	Conclusion

	Neural Networks
	Introduction
	Single Hidden-Layer Neural Network
	Optimization
	Rectified Linear Units and Homogeneity
	Estimation Error

	Approximation Properties
	Universal Approximation Property in One Dimension
	Infinitely Many Neurons and the Variation Norm
	Variation Norm in One Dimension
	Variation Norm in an Arbitrary Dimension
	Precise Approximation Properties
	From the Variation Norm to a Finite Number of Neurons ()

	Generalization Performance for Neural Networks
	Relationship with Kernel Methods ()
	From a Banach Space F1 to a Hilbert Space F2 ()
	Kernel Function ()
	Upper Bound on RKHS Norm ()

	Experiments
	Extensions
	Conclusion


	III Special Topics
	Ensemble Learning
	Averaging/Bagging
	Independent Datasets
	Bagging

	Random Projections and Averaging
	Gaussian Sketching
	Random Projections

	Boosting
	Problem Setup
	Incremental Learning
	Matching Pursuit
	Adaboost
	Greedy Algorithm Based on Gradient Boosting
	Convergence of Expected Risk
	Experiments

	Conclusion

	From Online Learning to Bandits
	First-Order Online Convex Optimization
	Convex Case
	Strongly Convex Case () 
	Online Mirror Descent ()
	Lower Bounds ()

	Zeroth-Order Convex Optimization
	Smooth Stochastic Gradient Descent
	Stochastic Smoothing ()
	Extensions

	Multiarmed Bandits
	Need for an Exploration-Exploitation Trade-off
	``Explore-Then-Commit''
	Optimism in the Face of Uncertainty ()
	Adversarial Bandits ()

	Conclusion

	Overparameterized Models
	Implicit Bias of Gradient Descent
	Least-Squares Regression
	Separable Classification
	Beyond Convex Problems ()
	Remarks on Implicit Bias

	Double Descent
	The Double Descent Phenomenon
	Empirical Evidence
	Linear Regression with Gaussian Inputs
	Linear Regression with Gaussian Projections ()

	Global Convergence of Gradient Descent
	Mean Field Limits
	From Linear Networks to Positive-Definite Matrices
	Global Convergence for Positive-Definite Matrices
	Special Cases

	Lazy Regime and Neural Tangent Kernels ()
	Conclusion

	Structured Prediction
	Multicategory Classification
	Extension of Classical Convex Surrogates
	Generalization Bound I: Stochastic Gradient Descent
	Generalization Bound II: Rademacher Complexities ()

	General Setup and Examples
	Examples
	Structure Encoding Loss Functions

	Surrogate Methods
	Score Functions and Decoding Step
	Fisher Consistency and Calibration Functions
	Main Surrogate Frameworks

	Smooth/Quadratic Surrogates
	Quadratic Surrogate
	Theoretical Guarantees
	Linear Estimators and Decoding Steps
	Smooth Surrogates ()

	Max-Margin Formulations
	Structured Support Vector Machines
	Max-Min Formulations ()

	Generalization Bounds ()
	Experiments
	Robust Regression
	Ranking

	Conclusion

	Probabilistic Methods
	From Empirical Risks to Log-Likelihoods
	Conditional Likelihoods
	Classical Priors
	Sparse Priors
	On the Relationship between MAP and MMSE ()

	Discriminative versus Generative Models
	Linear Discriminant Analysis and Softmax Regression
	Naive Bayes
	Maximum Likelihood Estimations

	Bayesian Inference
	Computational Handling of Posterior Distributions
	Model Selection through Marginal Likelihood

	PAC-Bayesian Analysis
	Setup
	Uniformly Bounded Loss Functions

	Conclusion

	Lower Bounds
	Statistical Lower Bounds
	Minimax Lower Bounds
	Reduction to a Hypothesis Test
	Review of Information Theory
	Lower Bound on Hypothesis Testing Based on Information Theory
	Examples
	Minimax Lower Bounds through Bayesian Analysis

	Optimization Lower Bounds
	Convex Optimization
	Nonconvex Optimization ()

	Lower Bounds for Stochastic Gradient Descent ()
	Conclusion

	Conclusion
	References


