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Why DL Compilers for NPUs
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Prior DL compilers [2, 10] do not support code generation for NPUs.

We present AKG in this paper to implement Automatic Kernel
Generation for NPUs using Polyhedral Transformations.
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Challenges faced by DL Compilers for NPUs

Google TPU [6] Huawei Ascend [8]

Effective scheduling for the conflicting demands of parallelism and
locality.

Software-controlled storage management between multi-level,
multi-directional memory hierarchy.

Automatic implementation of domain-specific transformations for
convolution.
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Overview of Our Approach
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AKG inherits the graph engine and DSL of TVM [2] for expressing tensor
computations.
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AKG branches from TVM by lowering HalideIR [9] generated by the DSL
to schedule trees.
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AKG leverages versatile polyhedral scheduling algorithms, exploiting paral-
lelism and locality of programs simultaneously.
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AKG models the interplay between loop fusion and tiling, achiveing auto-
matic decoupled data orchestration between memory hierarchy.
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AKG takes as input an external schedule tree to implement the img2col
transformations [5] for convolutions.
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AKG also implements vectorization, low-level synchronization, auto-tuning,
improving the performance of its generated code.
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Abstraction Lowering

The polyhedral model [1, 3, 12] is a mathematical abstraction use to analyze
and optimize program.
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Abstraction Lowering

The schedule tree is functional due to its rich set of node types:

a domain node, filter nodes

band nodes, sequence nodes and set nodes

extension nodes

mark nodes

and more ...
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Versatile Polyhedral Scheduling

We leverage the ILP-based isl scheduler [11, 13] to compute new
schedules that exploit parallelism and temporal locality simultaneously.

The polyhedral scheduler exposes a wider set of affine transformations
than TVM, enabling auxiliary loop transformations like skewing,
shifting, scaling.

The polyhedral model first computes a loop fusion configuration,
based on which loop tiling is performed automatically.
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Constructing Tile Shapes

{(o0, o1)→ A(h′,w′) : 0 ≤ o0 < d(H−KH + 1)/T2e∧ 0 ≤ o1 < d(W −KW + 1)/T3e∧T2 · o0 ≤
h′ < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w′ < T3 · o1 + KW + T3 − 1}

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

The classical polyhedral compilation workflow generates two kernels.

We use the reverse strategy proposed in our earlier work [15] to
enable the generation of a single kernel.

The reverse strategy first tiles a live-out iteration space,

and uses the
data tiles to construct tile shapes for intermediate iteration spaces.
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Specifying Tile Sizes

Prior tensor compilers use default tile sizes in compilers.

We propose a tile-size specification language.

stmt_id :: "S_" integer

tile_size :: integer

tile_spec :: tile_size @ buffer

tile_specs :: tile_spec | tile_specs , tile_spec

stmt_spec :: stmt_id : tile_specs

tiling_policy :: stmt_spec | tiling_policy stmt_spec

This language simplifies the tile size selection issue, which has been
automated by compiler.
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Fusion When Offloading Data

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

This relation implies the overlapped tile shape [14] of the intermediate
iteration space, but it has to be used together with loop fusion.

The post-tiling fusion strategy models a novel composition of loop
transformations.

The original subtree should be skipped.
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Fusion When Forking Data and Intra-Tile Rescheduling

This schedule tree does not manage the multi-directional memory
hierarchy of Ascend.

We use mark nodes to let some statements flow to different buffers,
and each “local UB” filter node can be flowed to Vector/Scalar Unit.

Intra-tile rescheduling is also performed, as a reverse process of loop
fusion. A filter flowed to Cube Unit is not distributed.
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Optimization of Convolution

The power of the Cube Unit can be fully exploited when executing
matrix multiplication.
We automate the img2col transformation [5] by grafting an external
schedule and relating it using a formula (§4.5).
We also implement a fractal tiling [16] within the Cube Unit.
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Other Optimizations in AKG

Optimizations, including function inlining, common subexpression
elimination, etc. are also automated as pre-processing steps (§3).

We facilitate the automatic storage management of the Ascend chips
using schedule trees (§4.4), like what PPCG [12] and TC [10] did.

We design a memory hierarchy specification language that can be
generated automatically, allowing for the manual scheduling to make
debugging easier (§4.6).

We exploit effective SIMD vectorization as a post-polyhedral step,
maximizing the utilization of the hardware intrinsics (§5.1).

We implement a DP-based low-level synchronization between emitted
instructions, enabling efficient instruction-level pipelining (§5.2).

We develop an auto tuning strategy to achieve better performance in
practice (§5.3).
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Experimental Setup

Code is executed on the Huawei Ascend 910 chip.

Performance is compared against (1) manually optimized CCE code
written by experts, and (2) the adapted TVM schedule templates
developed by the software R&D team of the chip.

Experiment is conducted on single operators, subgraphs and
end-to-end workloads.

Each code is compiled with the same set of compilation options.
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Results of Single Operators
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op1: conv; op2: matmul; op3: ReLU; op4: batch matmul; op5: cast; op6:
transpose; op7: one-hot; op8: add; op9: bnorm reduction; op10: bnorm update

CCE opt is 2.8× faster than CCE näıve.

AKG achieves the performance comparable to CCE opt, with a mean
loss within 4%.

AKG outperforms adapted TVM by 1.6× on average.
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Results of Single Operators
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Comparison of lines of code (lower is better).

AKG significantly reduces development efforts compared to the
optimized CCE code and adapted TVM schedule templates.
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Results of Single Operators
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Performance of GEMM product under different shape configurations (1 µs = 103

cycles; lower is better).

41 different shape configurations ranging from (64,64) to (4608,4608)
are used to evaluate the performance of matrix multiplication.

AKG outperforms the adapted TVM under 29 out of the 41 shape
configurations.
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Results of Subgraphs

Summary of the subgraphs.
no. # of ops precision batch size input shape output shape

1 6 FP16 16 (16,16,512,512) (16,16,512,512)
2 21 FP16 16 (256,512,16,16) (256,512,16,16)
3 15 FP32 16 (30522,1024) (30522,1024)
4 11 FP32 16 (1024,1024) (1024,1024)
5 9 FP16 16 (64,1,16,16) (64,1,16,16)
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Performance of subgraphs (higher is better).

AKG produces an average speedup of 1.3× and 5.6× over the
adapted TVM and CCE opt.
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Results of End-to-end Workloads
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Performance of end-to-end workloads (higher is better).

CCE opt only optimizes one end-to-end workload (ResNet-50).

AKG performs similarly to the adapted TVM for ResNet-50,
MobileNet and AlexNet, but outperforms the latter by 20.2% on Bert
and SSD.

The manual approaches take days to weeks to optimize a workload,
but AKG only requires minutes to hours.
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Conclusion

AKG carefully handles the interplay between tiling and fusion using a
reverse strategy [15], a patform-neutral transformation.

AKG adopts a hierarchical fusion approach that can be adapted to
other NPU architectures [6].

AKG automates the domain-specific transformations of convolution.
While the fractal tiling [16] is Ascend-specific, the img2col
transformation [5] can be used as a general method.

AKG also extends the expressiveness of the schedule tree
representation, sharing the same objective (i.e., delivering
domain-specific knowledge) with MLIR [7].
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Questions & Answers

The paper is avalaible at The code of AKG is avalaible at
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