
AKG: Automatic Kernel Generation for Neural
Processing Units using Polyhedral Transformations

Jie Zhao1 Bojie Li2 Wang Nie2 Zhen Geng2

Renwei Zhang2 Xiong Gao2 Bin Cheng2 Chen Wu2

Yun Cheng2 Zheng Li2 Peng Di2† Kun Zhang2‡ Xuefeng Jin2

1State Key Laboratory of Mathematical Engineering and Advanced Computing, China
2Huawei Technologies Co. Ltd., China

†Now with Ant Group, China ‡Now with Tencent Penglai Lab, China

42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI’21)

2021.06.23, Virtual, Canada

2021.06.23, Virtual, Canada 1 / 22

Outline

1 Introduction

2 Polyhedral Transformations

3 Other Optimizations

4 Results

5 Conclusion

2021.06.23, Virtual, Canada 2 / 22

Why DL Compilers for NPUs

deep learning frameworks

users

ease of use

h
id

d
en

hardware targets

deep learning compilers

flexbility efficiency
polyhedral model

Prior DL compilers [2, 10] do not support code generation for NPUs.

We present AKG in this paper to implement Automatic Kernel
Generation for NPUs using Polyhedral Transformations.

Introduction Motivation 2021.06.23, Virtual, Canada 3 / 22

Why DL Compilers for NPUs

deep learning frameworksusers

ease of use

h
id

d
en

hardware targets

deep learning compilers

flexbility efficiency
polyhedral model

Prior DL compilers [2, 10] do not support code generation for NPUs.

We present AKG in this paper to implement Automatic Kernel
Generation for NPUs using Polyhedral Transformations.

Introduction Motivation 2021.06.23, Virtual, Canada 3 / 22

Why DL Compilers for NPUs

deep learning frameworksusers

ease of use

h
id

d
en

hardware targets

deep learning compilers

flexbility efficiency
polyhedral model

Prior DL compilers [2, 10] do not support code generation for NPUs.

We present AKG in this paper to implement Automatic Kernel
Generation for NPUs using Polyhedral Transformations.

Introduction Motivation 2021.06.23, Virtual, Canada 3 / 22

Why DL Compilers for NPUs

deep learning frameworksusers

ease of use

h
id

d
en

hardware targets

deep learning compilers

flexbility efficiency

polyhedral model

Prior DL compilers [2, 10] do not support code generation for NPUs.

We present AKG in this paper to implement Automatic Kernel
Generation for NPUs using Polyhedral Transformations.

Introduction Motivation 2021.06.23, Virtual, Canada 3 / 22

Why DL Compilers for NPUs

deep learning frameworksusers

ease of use

h
id

d
en

hardware targets

deep learning compilers

flexbility efficiency

polyhedral model

Prior DL compilers [2, 10] do not support code generation for NPUs.

We present AKG in this paper to implement Automatic Kernel
Generation for NPUs using Polyhedral Transformations.

Introduction Motivation 2021.06.23, Virtual, Canada 3 / 22

Why DL Compilers for NPUs

deep learning frameworksusers

ease of use

h
id

d
en

hardware targets

deep learning compilers

flexbility efficiency
polyhedral model

Prior DL compilers [2, 10] do not support code generation for NPUs.

We present AKG in this paper to implement Automatic Kernel
Generation for NPUs using Polyhedral Transformations.

Introduction Motivation 2021.06.23, Virtual, Canada 3 / 22

Challenges faced by DL Compilers for NPUs

Google TPU [6] Huawei Ascend [8]

Effective scheduling for the conflicting demands of parallelism and
locality.

Software-controlled storage management between multi-level,
multi-directional memory hierarchy.

Automatic implementation of domain-specific transformations for
convolution.

Introduction Challenges 2021.06.23, Virtual, Canada 4 / 22

Challenges faced by DL Compilers for NPUs

Google TPU [6] Huawei Ascend [8]

Effective scheduling for the conflicting demands of parallelism and
locality.

Software-controlled storage management between multi-level,
multi-directional memory hierarchy.

Automatic implementation of domain-specific transformations for
convolution.

Introduction Challenges 2021.06.23, Virtual, Canada 4 / 22

Challenges faced by DL Compilers for NPUs

Google TPU [6] Huawei Ascend [8]

Effective scheduling for the conflicting demands of parallelism and
locality.

Software-controlled storage management between multi-level,
multi-directional memory hierarchy.

Automatic implementation of domain-specific transformations for
convolution.

Introduction Challenges 2021.06.23, Virtual, Canada 4 / 22

Challenges faced by DL Compilers for NPUs

Google TPU [6] Huawei Ascend [8]

Effective scheduling for the conflicting demands of parallelism and
locality.

Software-controlled storage management between multi-level,
multi-directional memory hierarchy.

Automatic implementation of domain-specific transformations for
convolution.

Introduction Challenges 2021.06.23, Virtual, Canada 4 / 22

Overview of Our Approach

Tensor Expression

Polyhedral Schedule Tree

Loop Fusion for Locality

Loop Tiling

Loop Fission for Parallelism

Storage Management

Backend Optimizations

Instruction Emitter

Synchronization

Low-level Assembly

Auto TuningAuto Tiling

Hardware Spec

Codegen

Polyhedral

MindSpore TensorFlow PyTorch MxNet Caffe ...

Introduction Our Solution 2021.06.23, Virtual, Canada 5 / 22

Overview of Our Approach

Tensor Expression

Polyhedral Schedule Tree

Loop Fusion for Locality

Loop Tiling

Loop Fission for Parallelism

Storage Management

Backend Optimizations

Instruction Emitter

Synchronization

Low-level Assembly

Auto TuningAuto Tiling

Hardware Spec

Codegen

Polyhedral

MindSpore TensorFlow PyTorch MxNet Caffe ...

AKG inherits the graph engine and DSL of TVM [2] for expressing tensor
computations.

Introduction Our Solution 2021.06.23, Virtual, Canada 5 / 22

Overview of Our Approach

Tensor Expression

Polyhedral Schedule Tree

Loop Fusion for Locality

Loop Tiling

Loop Fission for Parallelism

Storage Management

Backend Optimizations

Instruction Emitter

Synchronization

Low-level Assembly

Auto TuningAuto Tiling

Hardware Spec

Codegen

Polyhedral

MindSpore TensorFlow PyTorch MxNet Caffe ...

AKG branches from TVM by lowering HalideIR [9] generated by the DSL
to schedule trees.

Introduction Our Solution 2021.06.23, Virtual, Canada 5 / 22

Overview of Our Approach

Tensor Expression

Polyhedral Schedule Tree

Loop Fusion for Locality

Loop Tiling

Loop Fission for Parallelism

Storage Management

Backend Optimizations

Instruction Emitter

Synchronization

Low-level Assembly

Auto TuningAuto Tiling

Hardware Spec

Codegen

Polyhedral

MindSpore TensorFlow PyTorch MxNet Caffe ...

AKG leverages versatile polyhedral scheduling algorithms, exploiting paral-
lelism and locality of programs simultaneously.

Introduction Our Solution 2021.06.23, Virtual, Canada 5 / 22

Overview of Our Approach

Tensor Expression

Polyhedral Schedule Tree

Loop Fusion for Locality

Loop Tiling

Loop Fission for Parallelism

Storage Management

Backend Optimizations

Instruction Emitter

Synchronization

Low-level Assembly

Auto TuningAuto Tiling

Hardware Spec

Codegen

Polyhedral

MindSpore TensorFlow PyTorch MxNet Caffe ...

AKG models the interplay between loop fusion and tiling, achiveing auto-
matic decoupled data orchestration between memory hierarchy.

Introduction Our Solution 2021.06.23, Virtual, Canada 5 / 22

Overview of Our Approach

Tensor Expression

Polyhedral Schedule Tree

Loop Fusion for Locality

Loop Tiling

Loop Fission for Parallelism

Storage Management

Backend Optimizations

Instruction Emitter

Synchronization

Low-level Assembly

Auto TuningAuto Tiling

Hardware Spec

Codegen

Polyhedral

MindSpore TensorFlow PyTorch MxNet Caffe ...

AKG takes as input an external schedule tree to implement the img2col
transformations [5] for convolutions.

Introduction Our Solution 2021.06.23, Virtual, Canada 5 / 22

Overview of Our Approach

Tensor Expression

Polyhedral Schedule Tree

Loop Fusion for Locality

Loop Tiling

Loop Fission for Parallelism

Storage Management

Backend Optimizations

Instruction Emitter

Synchronization

Low-level Assembly

Auto TuningAuto Tiling

Hardware Spec

Codegen

Polyhedral

MindSpore TensorFlow PyTorch MxNet Caffe ...

AKG also implements vectorization, low-level synchronization, auto-tuning,
improving the performance of its generated code.

Introduction Our Solution 2021.06.23, Virtual, Canada 5 / 22

Abstraction Lowering

The polyhedral model [1, 3, 12] is a mathematical abstraction use to analyze
and optimize program.

Polyhedral Transformations Abstraction Lowering 2021.06.23, Virtual, Canada 6 / 22

Abstraction Lowering

One can lower a tensor program written by TVM’s DSL to a so-called
schedule tree representation [4] of the polyhedral model.

Polyhedral Transformations Abstraction Lowering 2021.06.23, Virtual, Canada 6 / 22

Abstraction Lowering

One can lower a tensor program written by TVM’s DSL to a so-called
schedule tree representation [4] of the polyhedral model.

Polyhedral Transformations Abstraction Lowering 2021.06.23, Virtual, Canada 6 / 22

Abstraction Lowering

One can lower a tensor program written by TVM’s DSL to a so-called
schedule tree representation [4] of the polyhedral model.

Polyhedral Transformations Abstraction Lowering 2021.06.23, Virtual, Canada 6 / 22

Abstraction Lowering

The schedule tree is functional due to its rich set of node types:

a domain node, filter nodes

band nodes, sequence nodes and set nodes

extension nodes

mark nodes

and more ...

Polyhedral Transformations Abstraction Lowering 2021.06.23, Virtual, Canada 6 / 22

Versatile Polyhedral Scheduling

We leverage the ILP-based isl scheduler [11, 13] to compute new
schedules that exploit parallelism and temporal locality simultaneously.

The polyhedral scheduler exposes a wider set of affine transformations
than TVM, enabling auxiliary loop transformations like skewing,
shifting, scaling.

The polyhedral model first computes a loop fusion configuration,
based on which loop tiling is performed automatically.

Polyhedral Transformations Scheduling 2021.06.23, Virtual, Canada 7 / 22

Versatile Polyhedral Scheduling

We leverage the ILP-based isl scheduler [11, 13] to compute new
schedules that exploit parallelism and temporal locality simultaneously.

The polyhedral scheduler exposes a wider set of affine transformations
than TVM, enabling auxiliary loop transformations like skewing,
shifting, scaling.

The polyhedral model first computes a loop fusion configuration,
based on which loop tiling is performed automatically.

Polyhedral Transformations Scheduling 2021.06.23, Virtual, Canada 7 / 22

Versatile Polyhedral Scheduling

We leverage the ILP-based isl scheduler [11, 13] to compute new
schedules that exploit parallelism and temporal locality simultaneously.

The polyhedral scheduler exposes a wider set of affine transformations
than TVM, enabling auxiliary loop transformations like skewing,
shifting, scaling.

The polyhedral model first computes a loop fusion configuration,
based on which loop tiling is performed automatically.

Polyhedral Transformations Scheduling 2021.06.23, Virtual, Canada 7 / 22

Versatile Polyhedral Scheduling

We leverage the ILP-based isl scheduler [11, 13] to compute new
schedules that exploit parallelism and temporal locality simultaneously.

The polyhedral scheduler exposes a wider set of affine transformations
than TVM, enabling auxiliary loop transformations like skewing,
shifting, scaling.

The polyhedral model first computes a loop fusion configuration,
based on which loop tiling is performed automatically.

Polyhedral Transformations Scheduling 2021.06.23, Virtual, Canada 7 / 22

Versatile Polyhedral Scheduling

We leverage the ILP-based isl scheduler [11, 13] to compute new
schedules that exploit parallelism and temporal locality simultaneously.

The polyhedral scheduler exposes a wider set of affine transformations
than TVM, enabling auxiliary loop transformations like skewing,
shifting, scaling.

The polyhedral model first computes a loop fusion configuration,
based on which loop tiling is performed automatically.

Polyhedral Transformations Scheduling 2021.06.23, Virtual, Canada 7 / 22

Constructing Tile Shapes

{(o0, o1)→ A(h′,w′) : 0 ≤ o0 < d(H−KH + 1)/T2e∧ 0 ≤ o1 < d(W −KW + 1)/T3e∧T2 · o0 ≤
h′ < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w′ < T3 · o1 + KW + T3 − 1}

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

The classical polyhedral compilation workflow generates two kernels.

We use the reverse strategy proposed in our earlier work [15] to
enable the generation of a single kernel.

The reverse strategy first tiles a live-out iteration space,

and uses the
data tiles to construct tile shapes for intermediate iteration spaces.

Polyhedral Transformations Tiling 2021.06.23, Virtual, Canada 8 / 22

Constructing Tile Shapes

{(o0, o1)→ A(h′,w′) : 0 ≤ o0 < d(H−KH + 1)/T2e∧ 0 ≤ o1 < d(W −KW + 1)/T3e∧T2 · o0 ≤
h′ < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w′ < T3 · o1 + KW + T3 − 1}

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

The classical polyhedral compilation workflow generates two kernels.

We use the reverse strategy proposed in our earlier work [15] to
enable the generation of a single kernel.

The reverse strategy first tiles a live-out iteration space,

and uses the
data tiles to construct tile shapes for intermediate iteration spaces.

Polyhedral Transformations Tiling 2021.06.23, Virtual, Canada 8 / 22

Constructing Tile Shapes

{(o0, o1)→ A(h′,w′) : 0 ≤ o0 < d(H−KH + 1)/T2e∧ 0 ≤ o1 < d(W −KW + 1)/T3e∧T2 · o0 ≤
h′ < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w′ < T3 · o1 + KW + T3 − 1}

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

The classical polyhedral compilation workflow generates two kernels.

We use the reverse strategy proposed in our earlier work [15] to
enable the generation of a single kernel.

The reverse strategy first tiles a live-out iteration space,

and uses the
data tiles to construct tile shapes for intermediate iteration spaces.

Polyhedral Transformations Tiling 2021.06.23, Virtual, Canada 8 / 22

Constructing Tile Shapes

{(o0, o1)→ A(h′,w′) : 0 ≤ o0 < d(H−KH + 1)/T2e∧ 0 ≤ o1 < d(W −KW + 1)/T3e∧T2 · o0 ≤
h′ < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w′ < T3 · o1 + KW + T3 − 1}

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

The classical polyhedral compilation workflow generates two kernels.

We use the reverse strategy proposed in our earlier work [15] to
enable the generation of a single kernel.

The reverse strategy first tiles a live-out iteration space,

and uses the
data tiles to construct tile shapes for intermediate iteration spaces.

Polyhedral Transformations Tiling 2021.06.23, Virtual, Canada 8 / 22

Constructing Tile Shapes

{(o0, o1)→ A(h′,w′) : 0 ≤ o0 < d(H−KH + 1)/T2e∧ 0 ≤ o1 < d(W −KW + 1)/T3e∧T2 · o0 ≤
h′ < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w′ < T3 · o1 + KW + T3 − 1}

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

The classical polyhedral compilation workflow generates two kernels.

We use the reverse strategy proposed in our earlier work [15] to
enable the generation of a single kernel.

The reverse strategy first tiles a live-out iteration space,

and uses the
data tiles to construct tile shapes for intermediate iteration spaces.

Polyhedral Transformations Tiling 2021.06.23, Virtual, Canada 8 / 22

Constructing Tile Shapes

{(o0, o1)→ A(h′,w′) : 0 ≤ o0 < d(H−KH + 1)/T2e∧ 0 ≤ o1 < d(W −KW + 1)/T3e∧T2 · o0 ≤
h′ < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w′ < T3 · o1 + KW + T3 − 1}

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

The classical polyhedral compilation workflow generates two kernels.

We use the reverse strategy proposed in our earlier work [15] to
enable the generation of a single kernel.

The reverse strategy first tiles a live-out iteration space, and uses the
data tiles to construct tile shapes for intermediate iteration spaces.

Polyhedral Transformations Tiling 2021.06.23, Virtual, Canada 8 / 22

Specifying Tile Sizes

Prior tensor compilers use default tile sizes in compilers.

We propose a tile-size specification language.

stmt_id :: "S_" integer

tile_size :: integer

tile_spec :: tile_size @ buffer

tile_specs :: tile_spec | tile_specs , tile_spec

stmt_spec :: stmt_id : tile_specs

tiling_policy :: stmt_spec | tiling_policy stmt_spec

This language simplifies the tile size selection issue, which has been
automated by compiler.

Polyhedral Transformations Tiling 2021.06.23, Virtual, Canada 9 / 22

Specifying Tile Sizes

Prior tensor compilers use default tile sizes in compilers.

We propose a tile-size specification language.

stmt_id :: "S_" integer

tile_size :: integer

tile_spec :: tile_size @ buffer

tile_specs :: tile_spec | tile_specs , tile_spec

stmt_spec :: stmt_id : tile_specs

tiling_policy :: stmt_spec | tiling_policy stmt_spec

This language simplifies the tile size selection issue, which has been
automated by compiler.

Polyhedral Transformations Tiling 2021.06.23, Virtual, Canada 9 / 22

Fusion When Offloading Data

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

This relation implies the overlapped tile shape [14] of the intermediate
iteration space, but it has to be used together with loop fusion.

The post-tiling fusion strategy models a novel composition of loop
transformations.

The original subtree should be skipped.

Polyhedral Transformations Fusion 2021.06.23, Virtual, Canada 10 / 22

Fusion When Offloading Data

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

This relation implies the overlapped tile shape [14] of the intermediate
iteration space, but it has to be used together with loop fusion.

The post-tiling fusion strategy models a novel composition of loop
transformations.

The original subtree should be skipped.

Polyhedral Transformations Fusion 2021.06.23, Virtual, Canada 10 / 22

Fusion When Offloading Data

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

This relation implies the overlapped tile shape [14] of the intermediate
iteration space, but it has to be used together with loop fusion.

The post-tiling fusion strategy models a novel composition of loop
transformations.

The original subtree should be skipped.

Polyhedral Transformations Fusion 2021.06.23, Virtual, Canada 10 / 22

Fusion When Offloading Data

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

This relation implies the overlapped tile shape [14] of the intermediate
iteration space, but it has to be used together with loop fusion.

The post-tiling fusion strategy models a novel composition of loop
transformations.

The original subtree should be skipped.

Polyhedral Transformations Fusion 2021.06.23, Virtual, Canada 10 / 22

Fusion When Offloading Data

{(o0, o1)→ S0(h,w) : 0 ≤ o0 < d(H −KH + 1)/T2e ∧ 0 ≤ o1 < d(W −KW + 1)/T3e ∧T2 · o0 ≤
h < T2 · o0 + KH + T2 − 1 ∧ T3 · o1 ≤ w < T3 · o1 + KW + T3 − 1}

This relation implies the overlapped tile shape [14] of the intermediate
iteration space, but it has to be used together with loop fusion.

The post-tiling fusion strategy models a novel composition of loop
transformations.

The original subtree should be skipped.

Polyhedral Transformations Fusion 2021.06.23, Virtual, Canada 10 / 22

Fusion When Forking Data and Intra-Tile Rescheduling

This schedule tree does not manage the multi-directional memory
hierarchy of Ascend.

We use mark nodes to let some statements flow to different buffers,
and each “local UB” filter node can be flowed to Vector/Scalar Unit.

Intra-tile rescheduling is also performed, as a reverse process of loop
fusion. A filter flowed to Cube Unit is not distributed.

Polyhedral Transformations Fusion 2021.06.23, Virtual, Canada 11 / 22

Fusion When Forking Data and Intra-Tile Rescheduling

This schedule tree does not manage the multi-directional memory
hierarchy of Ascend.

We use mark nodes to let some statements flow to different buffers,
and each “local UB” filter node can be flowed to Vector/Scalar Unit.

Intra-tile rescheduling is also performed, as a reverse process of loop
fusion. A filter flowed to Cube Unit is not distributed.

Polyhedral Transformations Fusion 2021.06.23, Virtual, Canada 11 / 22

Fusion When Forking Data and Intra-Tile Rescheduling

This schedule tree does not manage the multi-directional memory
hierarchy of Ascend.

We use mark nodes to let some statements flow to different buffers,
and each “local UB” filter node can be flowed to Vector/Scalar Unit.

Intra-tile rescheduling is also performed, as a reverse process of loop
fusion. A filter flowed to Cube Unit is not distributed.

Polyhedral Transformations Fusion 2021.06.23, Virtual, Canada 11 / 22

Fusion When Forking Data and Intra-Tile Rescheduling

This schedule tree does not manage the multi-directional memory
hierarchy of Ascend.

We use mark nodes to let some statements flow to different buffers,
and each “local UB” filter node can be flowed to Vector/Scalar Unit.

Intra-tile rescheduling is also performed, as a reverse process of loop
fusion. A filter flowed to Cube Unit is not distributed.

Polyhedral Transformations Fusion 2021.06.23, Virtual, Canada 11 / 22

Optimization of Convolution

The power of the Cube Unit can be fully exploited when executing
matrix multiplication.
We automate the img2col transformation [5] by grafting an external
schedule and relating it using a formula (§4.5).
We also implement a fractal tiling [16] within the Cube Unit.

Polyhedral Transformations Domain-specific Transformations 2021.06.23, Virtual, Canada 12 / 22

Optimization of Convolution

The power of the Cube Unit can be fully exploited when executing
matrix multiplication.

We automate the img2col transformation [5] by grafting an external
schedule and relating it using a formula (§4.5).
We also implement a fractal tiling [16] within the Cube Unit.

Polyhedral Transformations Domain-specific Transformations 2021.06.23, Virtual, Canada 12 / 22

Optimization of Convolution

The power of the Cube Unit can be fully exploited when executing
matrix multiplication.
We automate the img2col transformation [5] by grafting an external
schedule and relating it using a formula (§4.5).

We also implement a fractal tiling [16] within the Cube Unit.

Polyhedral Transformations Domain-specific Transformations 2021.06.23, Virtual, Canada 12 / 22

Optimization of Convolution

The power of the Cube Unit can be fully exploited when executing
matrix multiplication.
We automate the img2col transformation [5] by grafting an external
schedule and relating it using a formula (§4.5).
We also implement a fractal tiling [16] within the Cube Unit.

Polyhedral Transformations Domain-specific Transformations 2021.06.23, Virtual, Canada 12 / 22

Other Optimizations in AKG

Optimizations, including function inlining, common subexpression
elimination, etc. are also automated as pre-processing steps (§3).

We facilitate the automatic storage management of the Ascend chips
using schedule trees (§4.4), like what PPCG [12] and TC [10] did.

We design a memory hierarchy specification language that can be
generated automatically, allowing for the manual scheduling to make
debugging easier (§4.6).

We exploit effective SIMD vectorization as a post-polyhedral step,
maximizing the utilization of the hardware intrinsics (§5.1).

We implement a DP-based low-level synchronization between emitted
instructions, enabling efficient instruction-level pipelining (§5.2).

We develop an auto tuning strategy to achieve better performance in
practice (§5.3).

Other Optimizations Other Optimizations 2021.06.23, Virtual, Canada 13 / 22

Other Optimizations in AKG

Optimizations, including function inlining, common subexpression
elimination, etc. are also automated as pre-processing steps (§3).

We facilitate the automatic storage management of the Ascend chips
using schedule trees (§4.4), like what PPCG [12] and TC [10] did.

We design a memory hierarchy specification language that can be
generated automatically, allowing for the manual scheduling to make
debugging easier (§4.6).

We exploit effective SIMD vectorization as a post-polyhedral step,
maximizing the utilization of the hardware intrinsics (§5.1).

We implement a DP-based low-level synchronization between emitted
instructions, enabling efficient instruction-level pipelining (§5.2).

We develop an auto tuning strategy to achieve better performance in
practice (§5.3).

Other Optimizations Other Optimizations 2021.06.23, Virtual, Canada 13 / 22

Other Optimizations in AKG

Optimizations, including function inlining, common subexpression
elimination, etc. are also automated as pre-processing steps (§3).

We facilitate the automatic storage management of the Ascend chips
using schedule trees (§4.4), like what PPCG [12] and TC [10] did.

We design a memory hierarchy specification language that can be
generated automatically, allowing for the manual scheduling to make
debugging easier (§4.6).

We exploit effective SIMD vectorization as a post-polyhedral step,
maximizing the utilization of the hardware intrinsics (§5.1).

We implement a DP-based low-level synchronization between emitted
instructions, enabling efficient instruction-level pipelining (§5.2).

We develop an auto tuning strategy to achieve better performance in
practice (§5.3).

Other Optimizations Other Optimizations 2021.06.23, Virtual, Canada 13 / 22

Other Optimizations in AKG

Optimizations, including function inlining, common subexpression
elimination, etc. are also automated as pre-processing steps (§3).

We facilitate the automatic storage management of the Ascend chips
using schedule trees (§4.4), like what PPCG [12] and TC [10] did.

We design a memory hierarchy specification language that can be
generated automatically, allowing for the manual scheduling to make
debugging easier (§4.6).

We exploit effective SIMD vectorization as a post-polyhedral step,
maximizing the utilization of the hardware intrinsics (§5.1).

We implement a DP-based low-level synchronization between emitted
instructions, enabling efficient instruction-level pipelining (§5.2).

We develop an auto tuning strategy to achieve better performance in
practice (§5.3).

Other Optimizations Other Optimizations 2021.06.23, Virtual, Canada 13 / 22

Experimental Setup

Code is executed on the Huawei Ascend 910 chip.

Performance is compared against (1) manually optimized CCE code
written by experts, and (2) the adapted TVM schedule templates
developed by the software R&D team of the chip.

Experiment is conducted on single operators, subgraphs and
end-to-end workloads.

Each code is compiled with the same set of compilation options.

Results Experimental Setup 2021.06.23, Virtual, Canada 14 / 22

Results of Single Operators

op1 op2 op3 op4 op5 op6 op7 op8 op9 op10
0

0.5

1
N

o
m

a
l.

sp
ee

d
u

p CCE näıve CCE opt TVM AKG

op1: conv; op2: matmul; op3: ReLU; op4: batch matmul; op5: cast; op6:
transpose; op7: one-hot; op8: add; op9: bnorm reduction; op10: bnorm update

CCE opt is 2.8× faster than CCE näıve.

AKG achieves the performance comparable to CCE opt, with a mean
loss within 4%.

AKG outperforms adapted TVM by 1.6× on average.

Results Single Operators 2021.06.23, Virtual, Canada 15 / 22

Results of Single Operators

op1 op2 op3 op4 op5 op6 op7 op8 op9 op10
0

0.5

1
N

o
m

a
l.

sp
ee

d
u

p CCE näıve CCE opt TVM AKG

op1: conv; op2: matmul; op3: ReLU; op4: batch matmul; op5: cast; op6:
transpose; op7: one-hot; op8: add; op9: bnorm reduction; op10: bnorm update

CCE opt is 2.8× faster than CCE näıve.

AKG achieves the performance comparable to CCE opt, with a mean
loss within 4%.

AKG outperforms adapted TVM by 1.6× on average.

Results Single Operators 2021.06.23, Virtual, Canada 15 / 22

Results of Single Operators

convolution GEMM ReLU

102

103

104
#

o
f

li
n

es
(l

o
g

sc
a

le
)

CCE näıve CCE opt TVM AKG

Comparison of lines of code (lower is better).

AKG significantly reduces development efforts compared to the
optimized CCE code and adapted TVM schedule templates.

Results Single Operators 2021.06.23, Virtual, Canada 15 / 22

Results of Single Operators

5 10 15 20 25 30 35 40
0

5,000

10,000

15,000

#
o

f
cy

cl
es TVM AKG

Performance of GEMM product under different shape configurations (1 µs = 103

cycles; lower is better).

41 different shape configurations ranging from (64,64) to (4608,4608)
are used to evaluate the performance of matrix multiplication.

AKG outperforms the adapted TVM under 29 out of the 41 shape
configurations.

Results Single Operators 2021.06.23, Virtual, Canada 15 / 22

Results of Single Operators

5 10 15 20 25 30 35 40
0

5,000

10,000

15,000

#
o

f
cy

cl
es TVM AKG

Performance of GEMM product under different shape configurations (1 µs = 103

cycles; lower is better).

41 different shape configurations ranging from (64,64) to (4608,4608)
are used to evaluate the performance of matrix multiplication.

AKG outperforms the adapted TVM under 29 out of the 41 shape
configurations.

Results Single Operators 2021.06.23, Virtual, Canada 15 / 22

Results of Subgraphs

Summary of the subgraphs.
no. # of ops precision batch size input shape output shape

1 6 FP16 16 (16,16,512,512) (16,16,512,512)
2 21 FP16 16 (256,512,16,16) (256,512,16,16)
3 15 FP32 16 (30522,1024) (30522,1024)
4 11 FP32 16 (1024,1024) (1024,1024)
5 9 FP16 16 (64,1,16,16) (64,1,16,16)

subgraph1

subgraph2

subgraph3

subgraph4

subgraph5
0

0.5

1

N
o

m
a

l.
sp

ee
d

u
p CCE opt TVM AKG

Performance of subgraphs (higher is better).

AKG produces an average speedup of 1.3× and 5.6× over the
adapted TVM and CCE opt.

Results Subgraphs 2021.06.23, Virtual, Canada 16 / 22

Results of Subgraphs

Summary of the subgraphs.
no. # of ops precision batch size input shape output shape

1 6 FP16 16 (16,16,512,512) (16,16,512,512)
2 21 FP16 16 (256,512,16,16) (256,512,16,16)
3 15 FP32 16 (30522,1024) (30522,1024)
4 11 FP32 16 (1024,1024) (1024,1024)
5 9 FP16 16 (64,1,16,16) (64,1,16,16)

subgraph1

subgraph2

subgraph3

subgraph4

subgraph5
0

0.5

1

N
o

m
a

l.
sp

ee
d

u
p CCE opt TVM AKG

Performance of subgraphs (higher is better).

AKG produces an average speedup of 1.3× and 5.6× over the
adapted TVM and CCE opt.

Results Subgraphs 2021.06.23, Virtual, Canada 16 / 22

Results of Subgraphs

Summary of the subgraphs.
no. # of ops precision batch size input shape output shape

1 6 FP16 16 (16,16,512,512) (16,16,512,512)
2 21 FP16 16 (256,512,16,16) (256,512,16,16)
3 15 FP32 16 (30522,1024) (30522,1024)
4 11 FP32 16 (1024,1024) (1024,1024)
5 9 FP16 16 (64,1,16,16) (64,1,16,16)

subgraph1

subgraph2

subgraph3

subgraph4

subgraph5
0

0.5

1

N
o

m
a

l.
sp

ee
d

u
p CCE opt TVM AKG

Performance of subgraphs (higher is better).

AKG produces an average speedup of 1.3× and 5.6× over the
adapted TVM and CCE opt.

Results Subgraphs 2021.06.23, Virtual, Canada 16 / 22

Results of End-to-end Workloads

ResNet-5
0

MobileNet-v
2

AlexNet

Bert-v
1

Bert-v
2

SSD

0

0.5

1

N
o

m
a

l.
sp

ee
d

u
p CCE opt TVM AKG

Performance of end-to-end workloads (higher is better).

CCE opt only optimizes one end-to-end workload (ResNet-50).

AKG performs similarly to the adapted TVM for ResNet-50,
MobileNet and AlexNet, but outperforms the latter by 20.2% on Bert
and SSD.

The manual approaches take days to weeks to optimize a workload,
but AKG only requires minutes to hours.

Results End-to-end Workloads 2021.06.23, Virtual, Canada 17 / 22

Results of End-to-end Workloads

ResNet-5
0

MobileNet-v
2

AlexNet

Bert-v
1

Bert-v
2

SSD

0

0.5

1

N
o

m
a

l.
sp

ee
d

u
p CCE opt TVM AKG

Performance of end-to-end workloads (higher is better).

CCE opt only optimizes one end-to-end workload (ResNet-50).

AKG performs similarly to the adapted TVM for ResNet-50,
MobileNet and AlexNet, but outperforms the latter by 20.2% on Bert
and SSD.

The manual approaches take days to weeks to optimize a workload,
but AKG only requires minutes to hours.

Results End-to-end Workloads 2021.06.23, Virtual, Canada 17 / 22

Conclusion

AKG carefully handles the interplay between tiling and fusion using a
reverse strategy [15], a patform-neutral transformation.

AKG adopts a hierarchical fusion approach that can be adapted to
other NPU architectures [6].

AKG automates the domain-specific transformations of convolution.
While the fractal tiling [16] is Ascend-specific, the img2col
transformation [5] can be used as a general method.

AKG also extends the expressiveness of the schedule tree
representation, sharing the same objective (i.e., delivering
domain-specific knowledge) with MLIR [7].

Conclusion Summary 2021.06.23, Virtual, Canada 18 / 22

Questions & Answers

The paper is avalaible at The code of AKG is avalaible at

Conclusion Q&A 2021.06.23, Virtual, Canada 19 / 22

References

[1] Bondhugula, U., Hartono, A., Ramanujam, J., and Sadayappan, P.
A practical automatic polyhedral parallelizer and locality optimizer.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (New York,
NY, USA, 2008), PLDI’08, ACM, pp. 101–113.

[2] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M., Shen, H., Wang, L., Hu, Y., Ceze, L.,
Guestrin, C., and Krishnamurthy, A.
Tvm: An automated end-to-end optimizing compiler for deep learning.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (Berkeley, CA, USA,
2018), OSDI’18, USENIX Association, pp. 579–594.

[3] Grosser, T., Groesslinger, A., and Lengauer, C.
Polly–performing polyhedral optimizations on a low-level intermediate representation.
Parallel Processing Letters 22, 04 (2012), 1250010.

[4] Grosser, T., Verdoolaege, S., and Cohen, A.
Polyhedral ast generation is more than scanning polyhedra.
ACM Trans. Program. Lang. Syst. 37, 4 (July 2015), 12:1–12:50.

[5] Gu, J., Liu, Y., Gao, Y., and Zhu, M.
Opencl caffe: Accelerating and enabling a cross platform machine learning framework.
In Proceedings of the 4th International Workshop on OpenCL (New York, NY, USA, 2016), IWOCL’16, ACM.

Conclusion References 2021.06.23, Virtual, Canada 20 / 22

References

[6] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden,
N., Borchers, A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J.,
Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J.,
Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch, A.,
Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G.,
Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T.,
Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov,
G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle,
E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H.
In-datacenter performance analysis of a tensor processing unit.
In Proceedings of the 44th Annual International Symposium on Computer Architecture (New York, NY, USA, 2017),
ISCA’17, ACM, pp. 1–12.

[7] Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., Riddle, R., Shpeisman, T.,
Vasilache, N., and Zinenko, O.
Mlir: Scaling compiler infrastructure for domain specific computation.
In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) (2021), pp. 2–14.

[8] Liao, H., Tu, J., Xia, J., and Zhou, X.
Davinci: A scalable architecture for neural network computing.
In 2019 IEEE Hot Chips 31 Symposium (HCS) (2019), IEEE, pp. 1–44.

[9] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe, S.
Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (New York,
NY, USA, 2013), PLDI’13, ACM, pp. 519–530.

Conclusion References 2021.06.23, Virtual, Canada 21 / 22

References

[10] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., Devito, Z., Moses, W. S., Verdoolaege, S., Adams,
A., and Cohen, A.
The next 700 accelerated layers: From mathematical expressions of network computation graphs to accelerated gpu
kernels, automatically.
ACM Trans. Archit. Code Optim. 16, 4 (Oct. 2019).

[11] Verdoolaege, S.
Isl: An integer set library for the polyhedral model.
In Proceedings of the Third International Congress Conference on Mathematical Software (Berlin, Heidelberg, 2010),
ICMS’10, Springer-Verlag, pp. 299–302.

[12] Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Tenllado, C., and Catthoor, F.
Polyhedral parallel code generation for cuda.
ACM Trans. Archit. Code Optim. 9, 4 (Jan. 2013), 54:1–54:23.

[13] Verdoolaege, S., and Janssens, G.
Scheduling for ppcg.
Report CW 706 (2017).

[14] Zhao, J., and Cohen, A.
Flextended tiles: A flexible extension of overlapped tiles for polyhedral compilation.
ACM Trans. Archit. Code Optim. 16, 4 (Dec. 2019).

[15] Zhao, J., and Di, P.
Optimizing the memory hierarchy by compositing automatic transformations on computations and data.
In Proceedings of the 53rd IEEE/ACM International Symposium on Microarchitecture (Piscataway, NJ, USA, 2020),
MICRO-53, IEEE Press, pp. 427–441.

[16] Zhao, Y., Du, Z., Guo, Q., Liu, S., Li, L., Xu, Z., Chen, T., and Chen, Y.
Cambricon-f: Machine learning computers with fractal von neumann architecture.
In Proceedings of the 46th International Symposium on Computer Architecture (New York, NY, USA, 2019), ISCA’19,
ACM, pp. 788–801.

Conclusion References 2021.06.23, Virtual, Canada 22 / 22

	Introduction
	Motivation
	Challenges
	Our Solution

	Polyhedral Transformations
	Abstraction Lowering
	Scheduling
	Tiling
	Fusion
	Domain-specific Transformations

	Other Optimizations
	Other Optimizations

	Results
	Experimental Setup
	Single Operators
	Subgraphs
	End-to-end Workloads

	Conclusion
	Summary
	Q&A
	References

