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Memory Hierarchy on Modern Architectures
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@ While providing the programmer the illusion of unlimited, fastest
memories, it also complicates the programming issue.

@ Optimizing compilers use the compositions of loop tiling and fusion to
maximize the usage of the memory hierarchy.
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@ While providing the programmer the illusion of unlimited, fastest
memories, it also complicates the programming issue.

@ Optimizing compilers use the compositions of loop tiling and fusion to
maximize the usage of the memory hierarchy.

@ Loop tiling and fusion interfere with each other due to the oversight
of transformations on data in memories.

@ Polyhedral compilation is recognized for its powerful ability to
composite loop transformations.
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The polyhedral model

The polyhedral model [3, 5, 19] represents a program and its semantics
using iteration domains, access relations, dependences and schedules.
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The polyhedral model

The polyhedral model [3, 5, 19] represents a program and its semantics
using iteration domains, access relations, dependences and schedules.

for (h=0;h<H;h++)
for (w=0;w<W;w++)
A[h][w]l=Quant (A[h][w]l); /* So */
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++) {
C[h]l[wl=0; /% S1 */
for (kh=0; kh<KH;Kkh++)
for (kw=0; kw<KW;kw++)
C[h] [wl+=A[h+kh] [w+kw]*B[kh] [kw];
}
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++)
C[h] [wl=ReLU(C[h][wl); /x S3 =/
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The polyhedral model

The polyhedral model [3, 5, 19] represents a program and its semantics
using iteration domains, access relations, dependences and schedules.

for (h=0;h<H;h++)
for (w=0;w<W;w++)
Alh] [wl=Quant (A[h] [w]l); /* Sgo */
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++) {
C[hl[wl=0; /* Sy */
for (kh=0; kh<KH;Kkh++)
for (kw=0; kw<KW;kw++)
C[h] [wl+=A[h+kh] [w+kw]*B[kh] [kw];
}
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++)

C[h][wl=ReLU(C[h][wl); /* S3 */

iteration domain (integer sets):

{So(h,w) : 0 < h< HAO< w < W;Si(hyw):0< h<H—KHAO<w < W — KW, Sy(h, w, kh, kw) :

/* S */

0<h<

H—KHAO<Sw<W—KWAO< kh< KHAO < kw < KW;S3(h,w):0<h<H—KHAO<w< W — KW}

Introduction The polyhedral model

October 20, 2020 4 /18



The polyhedral model

The polyhedral model [3, 5, 19] represents a program and its semantics
using iteration domains, access relations, dependences and schedules.

for (h=0;h<H;h++)
for (w=0;w<W;w++)
Alh] [wl=Quant (A[h] [w]l); /* Sgo */
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++) {
C[hl[wl=0; /* Sy */
for (kh=0; kh<KH;Kkh++)
for (kw=0; kw<KW;kw++)

C[h][w]l+=A[h+kh] [w+kw]*B[kh] [kwl; /* Sp */
}

for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++)
C[h] [wl=ReLU(C[h][wl); /x S3 =/

write access relations (affine maps):

{So(h,w) — Ah,w) : 0 < h < HAO0O < w < W;S(hw) — Chyw) : 0 < h < H-—KHAO < w <

W — KW; Sy(h, w, kh, kw) — C(h,w) : 0 < h < H—KHAO < w < W-—-KWAO0<L kh < KHAO < kw <
KW; S3(h,w) = C(h,w) :0 < h<H—-—KHAO<w<W— KW}
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The polyhedral model

The polyhedral model [3, 5, 19] represents a program and its semantics
using iteration domains, access relations, dependences and schedules.

for (h=0;h<H;h++)
for (w=0;w<W;w++)
Alh] [wl=Quant (A[h] [w]l); /* Sgo */
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++) {
C[hl[wl=0; /* Sy */
for (kh=0; kh<KH;Kkh++)
for (kw=0; kw<KW;kw++)
C[h][w]l+=A[h+kh] [w+kw]*B[kh] [kwl; /* Sp */
}
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++)
C[hl[wl=ReLU(C[h]I[w]); /* S3 */

read access relations (affine maps):

{So(h,w) = A(h,w) : 0 < h< HAO < w < W;Sy(h,w, kh, kw) — A(h+ kh,w + kw) : 0 < h < H— KHAO

w<W=—KWAO< kh < KHAO < kw < KW; Sy(h, w, kh, kw) — B(kh,kw) : 0 < h < H— KHAO < w

IN

IA

W—KWAO< kh<KHAO< kw < KW;S3(h,w) = C(hyw) :0 < h<H—KHAO<w< W — KW}
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The polyhedral model

The polyhedral model [3, 5, 19] represents a program and its semantics
using iteration domains, access relations, dependences and schedules.

for (h=0;h<H;h++)
for (w=0;w<W;w++)
Alh] [wl=Quant (A[h] [w]l); /* Sgo */
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++) {
C[hl[wl=0; /* Sy */
for (kh=0; kh<KH;Kkh++)
for (kw=0; kw<KW;kw++)
C[h][w]l+=A[h+kh] [w+kw]*B[kh] [kwl; /* Sp */
}
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++)
C[hl[wl=ReLU(C[h]I[w]); /* S3 */

dependence relations (affine maps):
{So(h,w) — So(h',w/ , kh=h—h kw=w—w'):h >0ANh—KH < h <hAh <H-KHAW >0Aw—KW <
w <wAw < W — KW;Sy(hyw,kh=KH —1,kw =KW —1) = S3(h’ = h,w’ =w): KH>0AKW >0A0<

h<H-—KHAO<w< W — KW}
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The polyhedral model

The polyhedral model [3, 5, 19] represents a program and its semantics

using iteration domains, access relations, dependences and schedules.

for (h=0;h<H;h++)
for (w=0;w<W;w++)
Alh] [wl=Quant (A[h] [w]l); /* Sgo */
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++) {
C[hl[wl=0; /* Sy */
for (kh=0; kh<KH;Kkh++)
for (kw=0; kw<KW;kw++)
C[h][w]l+=A[h+kh] [w+kw]*B[kh] [kwl; /* Sp */
}
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++)
C[hl[wl=ReLU(C[h]I[w]); /* S3 */

original schedule (textual execution order, affine maps):

[So(h, w) = (0, h, w); S1(h, w) — (1, h, w, 0); Sp(h, w, kh, kw) — (1, h, w, 1, kh, kw); S3(h, w) — (2, h, w)]
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The polyhedral model

The polyhedral model [3, 5, 19] represents a program and its semantics
using iteration domains, access relations, dependences and schedules.

for (h=0;h<H;h++)
for (w=0;w<W;w++)
Alh] [wl=Quant (A[h] [w]l); /* Sgo */
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++) {
C[hl[wl=0; /* Sy */
for (kh=0; kh<KH;Kkh++)
for (kw=0; kw<KW;kw++)
C[h] [wl+=A[h+kh] [w+kw]*B[kh] [kw];
}
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++)

C[h][wl=ReLU(C[h][wl); /* S3 */

/* S */

new schedule (new execution order, affine maps):

[So(h, w) — (0, h, w); S1(h,w) — (1, h, w,0,0,0); So(h, w, kh, kw) — (1, h, w, kh, kw, 1); S3(h, w) — (1, h,w, KH —

1, KW — 1,2)]
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The polyhedral model

The new schedule implies a fusion strategy ({So}, {S1, S2,S3}), and opti-
mizing compilers can apply tiling on the generated code.

for (h=0;h<H;h++)
for (w=0;w<W;w++)
Alh] [wl=Quant (A[h] [w]l); /* Sgo */
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++) {
C[hl[wl=0; /* Sy */
for (kh=0; kh<KH;Kkh++)
for (kw=0; kw<KW;kw++)
C[h][w]l+=A[h+kh] [w+kw]*B[kh] [kwl; /* Sp */
}
for (h=0;h<=H-KH;h++)
for (w=0;w<=W-KW;w++)
C[hl[wl=ReLU(C[h]I[w]); /* S3 */

new schedule (new execution order, affine maps):
[So(h, w) — (0, h, w); S1(h,w) — (1, h, w,0,0,0); So(h, w, kh, kw) — (1, h, w, kh, kw, 1); S3(h, w) — (1, h,w, KH —

1, KW — 1,2)]
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The polyhedral model

The new schedule implies a fusion strategy ({So}, {S1, S2,S3}), and opti-
mizing compilers can apply tiling on the generated code.

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tp ; hp++)
for (wp=0;wp<Ty ; wp++)
Sp (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=T5)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH; kh++)
for (kw=0; kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

new schedule (new execution order, affine maps):
[So(h, w) — (0, h, w); S1(h,w) — (1, h,w,0,0,0); So(h, w, kh, kw) — (1, h, w, kh, kw, 1); S3(h, w) — (1, h,w, KH —

1, KW —1,2)]
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The polyhedral model

The new schedule implies a fusion strategy ({So}, {S1, S2,S3}), and opti-
mizing compilers can apply tiling on the generated code.

#pragma omp parallel for
for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tp ; hp++)
for (wp=0;wp<Ty ; wp++)
Sp (ht+h,wt+wp) ;

#pragma omp parallel for
for (ht=0;ht<(H-KH) /Ty ;ht+=T5)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH; kh++)
for (kw=0; kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

One can generate OpenMP code for CPUs ( Ty, T1, To, T3 are tile sizes).
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The polyhedral model

The new schedule implies a fusion strategy ({So}, {S1, S2,S3}), and opti-
mizing compilers can apply tiling on the generated code.

b0

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tp ; hp++)
for (wp=0;wp<Ty ; wp++)
Sp (ht+h,wt+wp) ;

Grid

J0)[Block(Z,0

BB

BIock(U, I)[Block(T, INBlock(Z T

for (ht=0;ht<(H-KH) /Ty ; ht+=T5)
for (wt=0;wt< (W-KW) /T3 ;wt+=W/T3) bl
for (hp=0;hp<Ty ;hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0; kh<=H-KH;kh++)
for (kw=0; kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

}

55195 5

t0

Block(T, T

tl
One can map code to GPU thread blocks and threads.

Introduction

The polyhedral model

October 20, 2020

4/18



The polyhedral model

The new schedule implies a fusion strategy ({So}, {S1, S2,S3}), and opti-
mizing compilers can apply tiling on the generated code.

[[for (h}=0;ht<H/T(;ht+=Tp)

for (wh=0;wt<W/Tq ;wt+=W/T1)

for (hg=0;hp<Tg; hp++)

for (wp=0;wp<Ty ;up++) KernelO

Sq (ht+h,wt+wp) ;

Grid

BIocKk(U, I)[BIock(T, T

for (h§=0;ht<(H-KH) /T ;ht+=T;)
for (wi=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<Ty ;hp++)
for (wg=0;wp<T3 ;wp++) {
Sq (ht+h,wt+wp) ;
for (kh=0; kh<=H-KH;kh++)
for (kw=0; kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;

S3 (ht+h,wt+wp) ;

kernell

T %

%55

i
%

Block(T, T

"1
One can map code to GPU thread blocks and threads.
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The polyhedral model

The new schedule implies a fusion strategy ({So}, {S1, S2,S3}), and opti-
mizing compilers can apply tiling on the generated code.

b0

Grid

J0)[Block(Z,0

[BIock(0,0)[Block(1,0))
|[for (59-0; n6<H/Tg ; m0+=Tg) iiii ii;; i;;;
for (wh=0;wt<W/Tq ;wt+=W/T1)

for (hp=0;hp<Tq ; hp++)
for (up=0;wp<Ty ;up++) kernel| ||[BI6CK(T I)BIocK(T, INBIock(Z T

ggg. XK 1“§§§§

for (h§=0;ht<(H-KH) /T ;ht+=T;)
for (wi=0;wt<(W-KW) /T3 ;wt+=W/T3) - N % .
for (hp=0;hp<Ty ;hp++) N N n "
for (wg=0;wp<T3;up++) { Block( LT 0

S1 (ht+h,wt+wp) ;
for (kh=0; kh<=H-KH;kh++)

for (kw=0; kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;
"1
One can map code to GPU thread blocks and threads.
Can we fuse all statements into a single kernel? Can we reorder the sequence
of loop fusion and tiling?

T %
=

kernell
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Conflicts in the data space

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)

for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3) h
for (hp=0;hp<T; ; hp++)

for (wp=0;wp<T3;wp++) {

S1 (ht+h,wt+wp) ; A
£or (kh=0; Kh<=H-KH; kh++) e
for (kw=0; kw<=W-KW; kw++) —— > w - >
quantization space reduction space

Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

Let us first construct the (h, w) computation spaces for each fusion group,
quantization for the first and reduction for the second.
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Conflicts in the data space

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)

for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3) h
for (hp=0;hp<T; ; hp++)

for (wp=0;wp<T3;wp++) {

S1 (ht+h,wt+wp) ; A
£or (kh=0; Kh<=H-KH; kh++) e
for (kw=0; kw<=W-KW; kw++) —— > w - >
quantization space reduction space

Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

One can construct the data space of tensor A that is written by Sy in the
quantization group and read by S; in the reduction group.
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Conflicts in the data space

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)

for (hp=0;hp<Tp ; hp++) h
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ; Lttt
for (ht=0;ht<(H-KH) /T ;ht+=T)) ISR —)
for (wt=0;wt< (W-KW) /T3 ;wt+=W/T3) h data space of tensor /,\7
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) { y g 4
S1 (ht+h,wt+up) ; ARy Jlwy
for (kh=0;kh<=H-KH;kh++) m L7 LT
for (kw=0;kw<=W-KW; kw++) T > w - > W
quantization space reduction space

Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

Existing polyhedral compilers tile each computation space individually, with
tilesizes To =Ty =4, T, = T3 = 2.
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Conflicts in the data space

for (ht=0;ht<H/Tq ;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH;kh++)
for (kw=0;kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

> W -
quantization space reduction space

A tile of the quantization space writes to 4 points into the data space of
tensor A.
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Conflicts in the data space

for (ht=0;ht<H/T(;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++) h
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ; PR *\. * ..'. .-‘.\
. .\l . . ci ¢V \
. o e et A% 0\ \
for (ht=0;ht<(H-KH) /T ;ht+=Tp) LRI S SO FOSE AV
for (wt=0;wt< (W-KW) /T3 ; wt+=W/T3) h data space of temsor \/’\7 N
for (hp=0;hp<Ty ; hp++) Rt N \\\\ \\
for (wp=0;wp<T3 ;wp++) { Ampimpiny” Awy AR
S1 (Bt+h, wthup) ; Amy uy
for (kh=0;kh<=H-KH;kh++) m L7 LT
for (kw=0;kw<=W-KW; kw++) T > w - > W
quantization space reduction space

Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

A tile of the reduction space requires 16 points from the data space of tensor
A.
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Conflicts in the data space

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)

for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)

for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)

for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;

reduction space

o e et A% 0\ \
o o e e ste teN \
h data spaiset"i‘:;qrs‘O( \/’\1 \\\ \\
Ay ey
for (kh=0; kh<=H-KH; kh++) m =7 L7
for (kw=0;kw<=W-KW; kw++) T >
S, (ht+h,wt+wp,kh, kw) ; quantization space
S3 (ht+h,wt+wp) ;
There exists a conflict in the data space of tensor A.

Constructing Tile Sh

Tiling by considering data space
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Conflicts in the data space

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH;kh++)
for(k s kw<=W-KW; ku++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

We can first apply tiling only to the reduction space.
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Conflicts in the data space

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH;kh++)
for (kw=0; kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

And we only tile the reduction space. This can tighten the tile size space
and thus reduce compilation time.
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Conflicts in the data space

for (ht=0;ht<H/Tq ;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH;kh++)
for (kw=0;kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

Next we construct the data space of tensor A.
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Conflicts in the data space

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH;kh++)
for (kw=0;kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

One can compute the data tiles required by each of those computation tile
of the reduction space. Let us focus on the blue and red tiles.
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Conflicts in the data space

for (ht=0;ht<H/Tq ;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH;kh++)
for (kw=0;kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

Now we can think about the tiling of the quantization space.
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Conflicts in the data space

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH;kh++)
for (kw=0;kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

Polyhedral compilers can infer the tile shapes of the quantization space using
the reverse of read access relation between Sy and tensor A.
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Conflicts in the data space

for (ht=0;ht<H/Tg;ht+=Tg)
for (wt=0;wt<W/Ty ;wt+=W/T1)
for (hp=0;hp<Tg; hp++)
for (wp=0;wp<Ty ; wp++)
So (ht+h,wt+wp) ;

for (ht=0;ht<(H-KH) /Ty ;ht+=Tp)
for (wt=0;wt<(W-KW) /T3 ;wt+=W/T3)
for (hp=0;hp<T; ; hp++)
for (wp=0;wp<T3;wp++) {
S1 (ht+h,wt+wp) ;
for (kh=0;kh<=H-KH;kh++)
for (kw=0;kw<=W-KW; kw++)
Sy (ht+h,wt+wp,kh,kw) ;
S3 (ht+h,wt+wp) ;

Our algorithm determines the tile shapes of intermediate computation spaces
using the reverse of access relations, which was impossible in existing work.
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The tiling algorithm

Our tiling algorithm can be summarized as:
e Compute tiling schedules for a live-out computation space (e.g., the
reduction space) using polyhedral schedulers;
@ Compute the data tiles required by each tile of a live-out computation
space;
@ Determine the tile shapes of an intermediate computation space using
the reverse of access relations.
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The tiling algorithm

Our tiling algorithm can be summarized as:
e Compute tiling schedules for a live-out computation space (e.g., the
reduction space) using polyhedral schedulers;
@ Compute the data tiles required by each tile of a live-out computation
space;
@ Determine the tile shapes of an intermediate computation space using
the reverse of access relations.
Our tiling algorithm
> is described in Algorithm 1 in the paper.
» can construct abitrary tile shapes for intermediate computation
spaces.

» can be used to handle more general applications like image processing
pipelines, SpMV, linear algbra.
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The tiling algorithm

Our tiling algorithm can be summarized as:

e Compute tiling schedules for a live-out computation space (e.g., the
reduction space) using polyhedral schedulers;

@ Compute the data tiles required by each tile of a live-out computation
space;
@ Determine the tile shapes of an intermediate computation space using
the reverse of access relations.
Our tiling algorithm generates

» A tiling schedule for the reduction space:

[{S(hw)—>(— —th)S(hwkhkw)a(— —thkhk)S(hw)%(——hw)}]
) ) ERL) V » Wy ) ) s My, Wy s Kw); ) ) IR
1 ' T 2 o T 3 o' T

€
» An extension schedule for the quantization space:

{(00,01) = So(h,w) : 0 < 0p < [(H—KH+1)/T2] A0 < 0o < [(W— KW +1)/T3]
ATy <h<Tp-09g+KH+ Ty —1ATz-01 <w< T3-01+KW+T3—1}
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Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].
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Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].

original schedule (textual execution order, affine maps):

[So(h, w) — (0, h, w); S1(h, w) — (1, h, w,0); So(h, w, kh, kw) — (1, h, w, 1, kh, kw); S3(h, w) — (2, h, w)]
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Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].

original schedule (textual execution order, affine maps):

[So(h, w) — (0, h, w); S1(h, w) — (1, h, w,0); So(h, w, kh, kw) — (1, h, w, 1, kh, kw); S3(h, w) — (2, h, w)]

domain
(5o} —— {sl;‘ ES! T {53}
otk ) s (w5000 w) =5 G S ) = oo} (5] ()
{51}/ \{52}

[{S2(h, w, kh, kw) — (kh, kw)}]
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Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].

new schedule (new execution order, affine maps):

[So(h, w) — (0, h, w); Sy(h, w) — (1, h, w,0,0,0); So(h, w, kh, kw) — (1, h, w, kh, kw, 1); S3(h, w) — (1, h, w, KH —
1, KW —1,2)]
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Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].

new schedule (new execution order, affine maps):

[So(h, w) — (0, h,w); S1(h,w) — (1, h,w,0,0,0); Sp(h, w, kh, kw) — (1, h, w, kh, kw, 1); S3(h, w) — (1, h,w, KH —
1, KW —1,2)]

domain

sequence
{So}

/
\

{So(h, w) — (h, w)}]

{51:52: S3}
\

[{S1(h, w) — (h, w); Sa(h, w, kh, kw) — (h, w); S3(h, w) — (h, w)}]

SequenCe
\
o — (s} T (55}
\

[{S2(h, w, kh, kw) — (kh, kw)}]
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Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].

Domain: set of statement instances to be scheduled
Band: multi-dimensional piecewise quasi-affine partial schedule

Filter: selects statement instances that are executed by descendants

vvyyvyy

Sequence/Set: children executed in given/arbitrary order

domain

{50}/ {51:5: 53}
[{So(h, w) . (h,w)}] [{S1(h, w) — (h, w); Sa(h, w, kh, k‘w) — (b, w): S3(h, w) — (h, w)}]
seaence
(51} — {5‘2} T (53}

[{S2(h, w, kh, kw) — (kh, kw)}]
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Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].

Domain: set of statement instances to be scheduled
Band: multi-dimensional piecewise quasi-affine partial schedule

Filter: selects statement instances that are executed by descendants

vvyyvyy

Sequence/Set: children executed in given/arbitrary order

domain

{50}/ {51:52: S3}
[{So(h, w) | (h,w)}] [{S1(h, w) — (h, w); Sa(h, w, kh, k‘w) — (b, w): S3(h, w) — (h, w)}]
seaence
{51}/ (52} \{53}

[{Sa2(h, w, kh, kw) — (kh, kw)}]
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Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].

Domain: set of statement instances to be scheduled
Band: multi-dimensional piecewise quasi-affine partial schedule

Filter: selects statement instances that are executed by descendants

vvyyvyy

Sequence/Set: children executed in given/arbitrary order

domain

{50}/ {51:5: 53}
[{So(h, w) . (h,w)}] [{S1(h, w) — (h, w); Sa(h, w, kh, k‘w) — (b, w): S3(h, w) — (h, w)}]
seaence
(51} — (52} T (53}

[{S2(h, w, kh, kw) — (kh, kw)}]
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Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].

Domain: set of statement instances to be scheduled
Band: multi-dimensional piecewise quasi-affine partial schedule

Filter: selects statement instances that are executed by descendants

vvyyvyy

Sequence/Set: children executed in given/arbitrary order

domain

sequence
{50}/ {51: 52: S3}
\ \
[{So(h, w) — (h, w)}] [{S1(h, w) — (h, w); Sp(h, w, kh, kw) — (h, w); S3(h, w) — (h, w)}]
\
sequence
\
{51} / {%} \ {S3}
\

[{S2(h, w, kh, kw) — (kh, kw)}]

Post-tiling Fusion Schedule trees October 20, 2020 7 /18



Schedule trees

The polyhedral model can also represent a program and its semantics
using schedule trees [6].

Schedule trees also provide convenience node types:
» Mark: attach additional information to subtrees

» Extension: add additional domain elements to facilitate non-polyhedral semantics

domain

sequence
{50}/ {51:52: S3}
\ \
[{So(h, w) — (h, w)}] [{S1(h, w) — (h, w); Sp(h, w, kh, kw) — (h, w); S3(h, w) — (h, w)}]

sequence

— LT
1} {2}
\

[{S2(h, w, kh, kw) — (kh, kw)}]

{S3}
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Manipulations on schedule trees

domain
{50}/ (51: 2 53}
[{So(h, w) L (h,w)}] [{S1(h, w) — (h, w); Sy(h, w, kh, k‘w) = (b, w): S3(h,w) = (h, w)}]
sequ‘ence
{sl}/ {5‘2} \{53}

[{S2(h, w, kh, kw) — (kh, kw)}]

We can implement post-tiling fusion by manipulating a schedule tree ob-
tained after applying the Pluto-like schedulers [3].
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Manipulations on schedule trees

domain

{50}/ (5158215}
[{So(h, w) L (hy W) [{S1(h, w) = (s, 45 by w); Sa(b, w, kb, kw) = (45, 45, by w)i Sa(hyw) = (45, 45, by w)}]
sequ‘ence
51} — {52} T {53}

[{S2(h, w, kh, kw) — (kh, kw)}]

Classical rectangular/parallelogram tiling can be applied using the tiling
schedule (1) on page 6, with T x T3 the tile sizes along h x w dimensions,
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Manipulations on schedule trees

domain
{50}/ (5158215}
[{So(h, w) L (h, w)}] (€510, w) = (&, 42): Salh, w, kb, kw) = (&, 4£): S3(h,w) = (&, 4)}]

|
[{S1(h, w) — (h, w); Sa(h, w, kh, kw) — (h, w); S3(h, w) — (h, w)}]

sequence

\
{sl}/ {5‘2} \{53}

[{S2(h, w, kh, kw) — (kh, kw)}]

Split the band node that has implemented rectangular/parallelogram tiling
for post-tiling fusion.
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Manipulations on schedule trees

domain
sequane
{50}/ {51: 52 53}
| |
[{So(h, w) — (h, w)}] [{S1(hw) = (5. 42): Sab, w. kb, kw) — (5, 45); S3(hw) = (5. 45)3]
sequ‘ence
\
{So} {515 %2: S3}

[{So(h, w) — (h, w)}] ‘
[{S1(h, w) — (h, w); Sa(h, w, kh, kw) — (h, w); S3(h, w) — (h, w)}]

sequence

\
{sl}/ {5‘2} \{53}

[{S2(h, w, kh, kw) — (kh, kw)}]

The subtree of Sy is introduced with a sequence node indicating the order
with its siblings.
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Manipulations on schedule trees

domain
{50}/ (5158215}
[{So(h, w) L (h, w)}] (€510, w) = (&, 4£): Salh, w, kb, kw) = (&, 4£): S3(h, w) = (&, 4)}]

|
extension: “extension schedule (2) on page 6"

sequence

{So} {51: 52 S3}

[{So(h, w) — (h,w)}]
[{S1(h, w) — (h, w); Sa(h, w, kh, kw) — (h, w); S3(h, w) — (h, w)}]

sequence

\
{sl}/ {5‘2} \{53}

[{S2(h, w, kh, kw) — (kh, kw)}]

An expansion node is mandatory to introduced additional statements, i.e.,
the subtree of Sg.
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Manipulations on schedule trees

domain
sequane
/
{So} {51:5‘2:53}
mark: “skipped [{Sl(h, W) = (5, 45 Salb, w, kh, kw) = (5, 45): S3(h,w) = (45, %)}}
[{So(h, w) — (h, w)}] extension: ‘“extension s‘chedule (2) on page 6"
sequ‘ence
{So} {51752 53}

[{So(h, w) — (h,w)}]
[{S1(h, w) — (h, w); Sa(h, w, kh, kw) — (h, w); S3(h, w) — (h, w)}]

sequence
\
{51}/ {S:} \{53}
\

[{S2(h, w, kh, kw) — (kh, kw)}]

A mark node is used to indicate the absence of the original subtree of Sp.
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The post-tiling fusion algorithm

Our post-tiling fusion algorithm can be summarized as:

@ Tile a live-out computation space using the tiling schedules obtained
by the tiling algorithm;

@ Integrate extension schedules obtained by the tiling algorithm into the
schedule tree representation;

@ Indicate the absence of original subtree of the fused intermediate
computation spaces.
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The post-tiling fusion algorithm

Our post-tiling fusion algorithm can be summarized as:
@ Tile a live-out computation space using the tiling schedules obtained
by the tiling algorithm;
@ Integrate extension schedules obtained by the tiling algorithm into the
schedule tree representation;

@ Indicate the absence of original subtree of the fused intermediate
computation spaces.

Our post-tiling fusion algorithm
> is described in Algorithm 2 in the paper.
» does not resort to tedious aggressive fusion heuristics used by existing
optimizers [3, 5, 17, 19].
» does not lose the parallelism of the program, guaranteeing the high
performance of the generated code.
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The post-tiling fusion algorithm

Our post-tiling fusion algorithm can be summarized as:

@ Tile a live-out computation space using the tiling schedules obtained
by the tiling algorithm;

@ Integrate extension schedules obtained by the tiling algorithm into the
schedule tree representation;

@ Indicate the absence of original subtree of the fused intermediate
computation spaces.

Our post-tiling algorithm returns a fusion strategy of ({So, S1, S2, S3}), fus-
ing all statements into a single loop nest without hampering the parallelism.
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Generalizing the approach

@ We have to handle the scene that the values defined by an
intermediate space opg are used by multiple live-out spaces op; and
op2.
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Generalizing the approach

@ We have to handle the scene that the values defined by an
intermediate space opg are used by multiple live-out spaces op; and
op2.

@ opy represents the subset of opy that computes the values used by
op1, and opy the subset that writes to the values read by op..
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Generalizing the approach

@ Unlike existing heuristics [8, 11], op and opj can be fused with their
uses, respectively, without introducing redundant computations.

Otherwise, fusion is prevented due to possible redundancy.

This strategy also implements dead code elimination in some extreme
cases that was not considered by existing polyhedral optimizers

[3, 5, 18].

See Algorithm 3 in the paper for detailed explanation.
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Code generation

domain

sequence

PN
{So} {51: %2; 53}
I |
mark: “skipped”  tile_band
I I
bandy extension: “expr (2)

sequence
~ N
{So} {S1: $2: S3}
| |
bandg point_band
sequence

1
{51} {$2} {S3}
[{S2(h, w, kh, ka) — (kh, kw)}]
Code generation for CPUs and GPUs is implemented in PPCG [19], a poly-
hedral compiler using the is/ library [18] as the solver.
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Code generation

domain
/* This loop nest will not be generated
sequence due to the skipped mark.
e N for (h=0;h<H;h++)
{So} {51:52; 53} for (w=0;w<W;w++)
| | So (h,w) ;*/
mark: “skipped”  tile_ban #pragma omp parallel for
‘ | w(MFO ;ht<(H-KH) /T3 ;ht+=Tp)
bandy extension: “expr (2)" or (wt=0;wt< (W-KW) /T3 ;wt+=T3) {
| for (hp=0;hp<KH+T>-1 ;hp++).>
sequence for (wp=0; wp<KW+T3-1;wp++
~ N So(h,w);

{So} {51: 52 S3} for (hp=0; hp<T ; hp++)
! I %vfor(wwompqs supt+) {
bandg point_ban S1 (ht+hp,wt+wp) ;

for (kh=0;kh<=KH;kh++)

sequence for (kw=0; kw<=KW; kw++)
P N S, (ht+hp,wt+wp,kh,kw) ;
{51} {S} {S3} S3 (ht+hp,wt+wp) ;

[{S2(h, w, kh, ka) — (kh, kw)}] }
Code generation for CPUs and GPUs is implemented in PPCG [19], a poly-
hedral compiler using the is/ library [18] as the solver.
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Code generation

domain
/* This loop nest will not be generated
sequence due to the skipped mark.
e N for (h=0;h<H;h++)
{So} {51:52; 53} for (w=0;w<W;w++)
| So (h,w) ;*/
mark: “skipped”  tile_ban #pragma omp parallel for
I I For (ht=0;ht<(H-KH) /Tp;ht+=T,)
bandy extension: “expr (2)" [PEor (wt=0;wt< (W-KW) /T3 ;wt+=T3) {
| for (hp=0;hp<KH+Tp-1;hp++)e__ |
sequence for (wp=0; wp<KW+T3-1;wp++)*|
~ N So(h,w);
{So} {51;52: 53} | wfor (hp=0;hp<Ty ; hp++)
| | | »for(wp=0;wp<T3;wp++) {
bandg point_ban S1 (ht+hp,wt+wp) ;
for (kh=0;kh<=KH;kh++)
sequence for (kw=0; kw<=KW; kw++)
P N Sy (ht+hp,wt+wp,kh,kw)
{S1} {5} {S3} S3 (ht+hp, wt+wp) ;
|
[{S2(h, w, kh, kw) — (kh, kw)}] } kernelO

Code generation for CPUs and GPUs is implemented in PPCG [19], a poly-
hedral compiler using the is/ library [18] as the solver.
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Code generation

Cube Unit — LoC
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| L1 Buffer DaVinci Core ‘—f l :
I

I
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I
I
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I
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I

I
I

I
I

I

|

Unified Buffer

Code generation for Huawei Ascend910 chips is available in the akg project?,
a wrapper of TVM compiler [4].

“https://gitee.com/mindspore/akg
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Code generation

Cube Unit — LoC

I
I
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I
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| L1 Buffer DaVinci Core ‘—f l :
I

I
I

I
I

I
I

I
I

I
I

I
I

I

<—>< Vector Unit
<—>{ Scalar Unit

> Unified Buffer

Aggressive memory optimizations are fully considered:
@ Allow scratchpad allocations on CPUs.

@ Software-controlled memory management of private/shared memory
on GPUs.

@ Automatic memory promotion between different hierarchy buffers on
Ascend910 chips.
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Setup and methodology

@ Benchmarks:
Resnet-50 workload [7]
PolyMage benchmarks [13]
equake from the SPEC CPU2000 benchmarks [2]
PolyBench benchmarks [14]
@ Architectures:
» Huawei Ascend910 chip
» NVIDIA Quadro K4000 GPU
» dural-socket 32-core Intel Xeon(R) CPU E5-2683 v4 ©2.10GHz
@ Methodology: Run each benchmark 10 times and report the average
value.

v

vV vyy

@ Please refer to our paper for more details.
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Performance of the PolyMage benchmarks

Benchmark stages  Tile size CPU execution time (ms)

naive  PolyMage Halide Our work

parameter (1 core) (32 cores) (32 cores) (32 cores)
Bilateral Grid 7 8x 64 66.01 5.57 4.23 4.11
Camera Pipeline 32 16x32 116.32 4.68 4.76 4.40
Harris Corner Detection 11 16x32 246.88 5.10 10.71 5.10
Local Laplacian Filter 99 8X 64 480.48 35.35 29.12 27.08
Multiscale Interpolation 49 32x16 209.10 16.44 20.07 14.87
Unsharp Mask 4 8x32x3 14216 5.01 5.02 3.68

@ Our work provides 20% and 33% improvements over PolyMage [12]
and Halide [15] when targeting CPUs.
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Performance of the PolyMage benchmarks

Benchmark stages GPU grid GPU execution time (ms) Compilation time (s)
parameter . Halide Our minfuse smartfuse maxfuse Our
(minfuse) work work
Bilateral Grid 7 8x64 5.07 3.79 4.09 0.15 120 >24h  0.86
Camera Pipeline 32 16x32 3.51 2.47 2.38 18.3 20.9 >24h 4560
Harris Corner Detection 11 16x32 1.79 1.68  1.60 0.03 0.06 0.12 435
Local Laplacian Filter 99 8x64 16.73 12,53 11.12 6.94 90.8 >24h  89.3
Multiscale Interpolation 49 32x16 15.75 25.65 13.37 0.68 1.40 >24h  3.30
Unsharp Mask 4 8x32x3 2.03 1.94 2.01 0.06 0.08 0.10 0.05

@ Our work provides 20% and 33% improvements over PolyMage [12]
and Halide [15] when targeting CPUs.

@ Our approach outperfoms different fusion heuristics of PPCG [19] and
provides a mean improvement of 17% over Halide [15] when targeting
GPUs.

@ Our approach also alleviates the compilation time.
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Performance of the Resnet-50 workload

Execution time (ms) Compilation time (s)
smart  Our work  Speedup  smart Our work
fwd conv+batchnorm  11.50 6.69 1.72x - -
entire workload 35.03 30.25 1.16 % 736 487

@ The network is trained with the requirement of no less than 76%
validation accuracy and the execution time is reported for a single
training epoch.

@ The tile sizes are specified by experts in the DSL and we did not use
the auto-tuner of the framework.
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Performance of the Resnet-50 workload

Execution time (ms) Compilation time (s)
smart  Our work  Speedup  smart Our work
fwd conv+batchnorm  11.50 6.69 1.72x - -
entire workload 35.03 30.25 1.16 % 736 487

@ The network is trained with the requirement of no less than 76%
validation accuracy and the execution time is reported for a single
training epoch.

@ The tile sizes are specified by experts in the DSL and we did not use
the auto-tuner of the framework.

@ Please refer to our paper for more results on Polybench benchmarks
and the equake benchmark.
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Conclusion

@ Our tiling algorithm can construct arbitrary tile shapes, without
refining scheduling algorithms [12] or resorting to complicated
constraints [20].

@ We model the composition of tiling and fusion in the absence of
tradeoffs between parallelism, locality and recomputation.

@ Our approach moderates compilation time without restricting to
special cases [16] or relaxing scheduling constraints [1].

@ We show an in-depth performance comparison with the state of the
art, with CPU, GPU and an Al accelerator being taken into
consideration.
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