
A General Purpose Automatic Overlapped Tiling
Technique in Polyhedral Frameworks

Jie Zhao

INRIA & École Normale Supérieure
45 rue d’Ulm, 75005 Paris, France

ACM Student Research Competition (SRC)
2018 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO)
Vienna, Austria

January 26, 2018

January 26, 2018 1 / 13



Outline

1 Background

2 Comparing with a DSL Polyhedral Framework

3 Polyhedral Implementation of the Overlapped Tiling

4 Experimental Results

5 Conclusion and Future Work

January 26, 2018 2 / 13



Introduction to Tiling Techniques [IT88]

for (t=0; t<T; t++)

for (i=1; i<N-1; i++)

A[t+1][i]=0.25*(A[t][i+1]+2.0*A[t][i]+A[t][i-1]);

Stencil Code from heat-1d.c

i

t

Different tile shapes on the above stencil code’s iteration space

Background January 26, 2018 3 / 13



Introduction to Tiling Techniques [IT88]

for (t=0; t<T; t++)

for (i=1; i<N-1; i++)

A[t+1][i]=0.25*(A[t][i+1]+2.0*A[t][i]+A[t][i-1]);

Stencil Code from heat-1d.c

i

t
parallelogram [BHRS08]

Different tile shapes on the above stencil code’s iteration space

Background January 26, 2018 3 / 13



Introduction to Tiling Techniques [IT88]

for (t=0; t<T; t++)

for (i=1; i<N-1; i++)

A[t+1][i]=0.25*(A[t][i+1]+2.0*A[t][i]+A[t][i-1]);

Stencil Code from heat-1d.c

i

t
parallelogram [BHRS08]

diamond [BBP17]

Different tile shapes on the above stencil code’s iteration space

Background January 26, 2018 3 / 13



Introduction to Tiling Techniques [IT88]

for (t=0; t<T; t++)

for (i=1; i<N-1; i++)

A[t+1][i]=0.25*(A[t][i+1]+2.0*A[t][i]+A[t][i-1]);

Stencil Code from heat-1d.c

i

t
parallelogram [BHRS08]

diamond [BBP17]

split [KBB+07]

Different tile shapes on the above stencil code’s iteration space

Background January 26, 2018 3 / 13



Introduction to Tiling Techniques [IT88]

for (t=0; t<T; t++)

for (i=1; i<N-1; i++)

A[t+1][i]=0.25*(A[t][i+1]+2.0*A[t][i]+A[t][i-1]);

Stencil Code from heat-1d.c

i

t
parallelogram [BHRS08]

diamond [BBP17]

split [KBB+07]

overlapped [KBB+07]

Different tile shapes on the above stencil code’s iteration space

Background January 26, 2018 3 / 13



Comparison Between Different Tiling Techniques

parallelogram diamond split overlapped

shape complexity × X X X

parallelism × X X X

locality X X X X

redundancy × × × X

algorithmic complexity × X X ×

Our goal: implement an effective tiling technique for programs
written in general purpose languages:

Concurrent start—((((
(((

((hhhhhhhhhparallelogram tiling
Different target architectures (CPUs and GPUs)—((((

(((hhhhhhhdiamond tiling
Redundancy v.s. algorithmic complexity—���

��XXXXXsplit tiling
Overlapped tiling

Background January 26, 2018 4 / 13



Comparison Between Different Tiling Techniques

parallelogram diamond split overlapped

shape complexity × X X X

parallelism × X X X

locality X X X X

redundancy × × × X

algorithmic complexity × X X ×

Our goal: implement an effective tiling technique for programs
written in general purpose languages:

Concurrent start—((((
(((

((hhhhhhhhhparallelogram tiling
Different target architectures (CPUs and GPUs)—((((

(((hhhhhhhdiamond tiling
Redundancy v.s. algorithmic complexity—���

��XXXXXsplit tiling
Overlapped tiling

Background January 26, 2018 4 / 13



Comparison Between Different Tiling Techniques

parallelogram diamond split overlapped

shape complexity × X X X

parallelism × X X X

locality X X X X

redundancy × × × X

algorithmic complexity × X X ×

Our goal: implement an effective tiling technique for programs
written in general purpose languages:

Concurrent start—((((
(((

((hhhhhhhhhparallelogram tiling

Different target architectures (CPUs and GPUs)—((((
(((hhhhhhhdiamond tiling

Redundancy v.s. algorithmic complexity—���
��XXXXXsplit tiling

Overlapped tiling

Background January 26, 2018 4 / 13



Comparison Between Different Tiling Techniques

parallelogram diamond split overlapped

shape complexity × X X X

parallelism × X X X

locality X X X X

redundancy × × × X

algorithmic complexity × X X ×

Our goal: implement an effective tiling technique for programs
written in general purpose languages:

Concurrent start—((((
(((

((hhhhhhhhhparallelogram tiling
Different target architectures (CPUs and GPUs)—((((

(((hhhhhhhdiamond tiling

Redundancy v.s. algorithmic complexity—���
��XXXXXsplit tiling

Overlapped tiling

Background January 26, 2018 4 / 13



Comparison Between Different Tiling Techniques

parallelogram diamond split overlapped

shape complexity × X X X

parallelism × X X X

locality X X X X

redundancy × × × X

algorithmic complexity × X X ×

Our goal: implement an effective tiling technique for programs
written in general purpose languages:

Concurrent start—((((
(((

((hhhhhhhhhparallelogram tiling
Different target architectures (CPUs and GPUs)—((((

(((hhhhhhhdiamond tiling
Redundancy v.s. algorithmic complexity—���

��XXXXXsplit tiling

Overlapped tiling

Background January 26, 2018 4 / 13



Comparison Between Different Tiling Techniques

parallelogram diamond split overlapped

shape complexity × X X X

parallelism × X X X

locality X X X X

redundancy × × × X

algorithmic complexity × X X ×

Our goal: implement an effective tiling technique for programs
written in general purpose languages:

Concurrent start—((((
(((

((hhhhhhhhhparallelogram tiling
Different target architectures (CPUs and GPUs)—((((

(((hhhhhhhdiamond tiling
Redundancy v.s. algorithmic complexity—���

��XXXXXsplit tiling
Overlapped tiling

Background January 26, 2018 4 / 13



Comparing with PolyMage

for (i=1; i<N; i++)

A[i]=f(i);

for(i=2; i<N-1; i++)

B[i]=0.25*(A[i -1]+2*A[i]+A[i+1]);

for(i=4; i<N-3; i++)

C[i]=0.25*(B[i -2]+2*B[i]+B[i+2]);

A simple image processing pipeline

if
A
B
C

Overlapped tiling on the iteration space

Comparing with a DSL Polyhedral Framework January 26, 2018 5 / 13



Comparing with PolyMage

for (i=1; i<N; i++)

A[i]=f(i);

for(i=2; i<N-1; i++)

B[i]=0.25*(A[i -1]+2*A[i]+A[i+1]);

for(i=4; i<N-3; i++)

C[i]=0.25*(B[i -2]+2*B[i]+B[i+2]);

A simple image processing pipeline

if
A
B
C

Overlapped tiling on the iteration space

Comparing with a DSL Polyhedral Framework January 26, 2018 5 / 13



Comparing with PolyMage

for (i=1; i<N; i++)

A[i]=f(i);

for(i=2; i<N-1; i++)

B[i]=0.25*(A[i -1]+2*A[i]+A[i+1]);

for(i=4; i<N-3; i++)

C[i]=0.25*(B[i -2]+2*B[i]+B[i+2]);

A simple image processing pipeline

if
A
B
C

Overlapped tiling on the iteration space

Comparing with a DSL Polyhedral Framework January 26, 2018 5 / 13



Comparing with PolyMage

for (i=1; i<N; i++)

A[i]=f(i);

for(i=2; i<N-1; i++)

B[i]=0.25*(A[i -1]+2*A[i]+A[i+1]);

for(i=4; i<N-3; i++)

C[i]=0.25*(B[i -2]+2*B[i]+B[i+2]);

A simple image processing pipeline

if
A
B
C

Overlapped tiling on the iteration space

Comparing with a DSL Polyhedral Framework January 26, 2018 5 / 13



Comparing with PolyMage

for (i=1; i<N; i++)

A[i]=f(i);

for(i=2; i<N-1; i++)

B[i]=0.25*(A[i -1]+2*A[i]+A[i+1]);

for(i=4; i<N-3; i++)

C[i]=0.25*(B[i -2]+2*B[i]+B[i+2]);

A simple image processing pipeline

if
A
B
C

Overlapped tiling on the iteration space

Comparing with a DSL Polyhedral Framework January 26, 2018 5 / 13



Comparing with PolyMage

for (i=1; i<N; i++)

A[i]=f(i);

for(i=2; i<N-1; i++)

B[i]=0.25*(A[i -1]+2*A[i]+A[i+1]);

for(i=4; i<N-3; i++)

C[i]=0.25*(B[i -2]+2*B[i]+B[i+2]);

A simple image processing pipeline

if
A
B
C

Overlapped tiling on the iteration space

Comparing with a DSL Polyhedral Framework January 26, 2018 5 / 13



Comparing with PolyMage

for (i=1; i<N; i++)

A[i]=f(i);

for(i=2; i<N-1; i++)

B[i]=0.25*(A[i -1]+2*A[i]+A[i+1]);

for(i=4; i<N-3; i++)

C[i]=0.25*(B[i -2]+2*B[i]+B[i+2]);

A simple image processing pipeline

if
A
B
C

Overlapped tiling on the iteration space

We mitigate redundant computation by shrinking the shadows; better
performance than a rescheduling-based technique.

Comparing with a DSL Polyhedral Framework January 26, 2018 5 / 13



Comparing with PolyMage

PolyMage Our work

Redundancy More Less
Implementation With shifting With/Without shifting

Applicability Domain-specific language General-purpose language
Targets CPU CPU & GPU

Comparing with a DSL Polyhedral Framework January 26, 2018 6 / 13



Overlapped Tiling With Shifting

if
A
B
C

Iteration Space

if
A
B
C

Overlapped tiling with shifting

domain

[SA(i) → (i/bb); SB(i) → ((i + 1)/bb); SC (i) → ((i + 2)/bb)]

sequence

SA(i)

expansion: [SA(i) → SA(j)]

SB(i)

expansion: [SB(i) → SB(j)]

SC (i)

[SC (i) → (i + 2)]

Schedule tree

Polyhedral Implementation of the Overlapped Tiling January 26, 2018 7 / 13



Overlapped Tiling With Shifting

if
A
B
C

Iteration Space

if
A
B
C

Overlapped tiling with shifting

domain

[SA(i) → (i/bb); SB(i) → ((i + 1)/bb); SC (i) → ((i + 2)/bb)]

sequence

SA(i)

expansion: [SA(i) → SA(j)]

SB(i)

expansion: [SB(i) → SB(j)]

SC (i)

[SC (i) → (i + 2)]

Schedule tree

Polyhedral Implementation of the Overlapped Tiling January 26, 2018 7 / 13



Overlapped Tiling With Shifting

if
A
B
C

Iteration Space

if
A
B
C

Overlapped tiling with shifting

domain

[SA(i) → (i/bb); SB(i) → ((i + 1)/bb); SC (i) → ((i + 2)/bb)]

sequence

SA(i)

expansion: [SA(i) → SA(j)]

SB(i)

expansion: [SB(i) → SB(j)]

SC (i)

[SC (i) → (i + 2)]

Schedule tree

Polyhedral Implementation of the Overlapped Tiling January 26, 2018 7 / 13



Overlapped Tiling With Shifting

if
A
B
C

Iteration Space

if
A
B
C

Overlapped tiling with shifting

domain

[SA(i) → (i/bb); SB(i) → ((i + 1)/bb); SC (i) → ((i + 2)/bb)]

sequence

SA(i)

expansion: [SA(i) → SA(j)]

SB(i)

expansion: [SB(i) → SB(j)]

SC (i)

[SC (i) → (i + 2)]

Schedule tree

Polyhedral Implementation of the Overlapped Tiling January 26, 2018 7 / 13



Overlapped Tiling Without Shifting

if
A
B
C

Iteration space

if
A
B
C

Overlapped tiling without shifting

domain

[SA(i) → (i/bb); SB(i) → (i/bb); SC (i) → (i/bb)]

sequence

SA(i)

expansion: [SA(i) → SA(j)]

SB(i)

expansion: [SB(i) → SB(j)]

SC (i)

[SC (i) → (i)]

Schedule Tree

Polyhedral Implementation of the Overlapped Tiling January 26, 2018 8 / 13



Overlapped Tiling Without Shifting

if
A
B
C

Iteration space

if
A
B
C

Overlapped tiling without shifting

domain

[SA(i) → (i/bb); SB(i) → (i/bb); SC (i) → (i/bb)]

sequence

SA(i)

expansion: [SA(i) → SA(j)]

SB(i)

expansion: [SB(i) → SB(j)]

SC (i)

[SC (i) → (i)]

Schedule Tree

Polyhedral Implementation of the Overlapped Tiling January 26, 2018 8 / 13



Overlapped Tiling Without Shifting

if
A
B
C

Iteration space

if
A
B
C

Overlapped tiling without shifting

domain

[SA(i) → (i/bb); SB(i) → (i/bb); SC (i) → (i/bb)]

sequence

SA(i)

expansion: [SA(i) → SA(j)]

SB(i)

expansion: [SB(i) → SB(j)]

SC (i)

[SC (i) → (i)]

Schedule Tree

Polyhedral Implementation of the Overlapped Tiling January 26, 2018 8 / 13



Overlapped Tiling Without Shifting

if
A
B
C

Iteration space

if
A
B
C

Overlapped tiling without shifting

domain

[SA(i) → (i/bb); SB(i) → (i/bb); SC (i) → (i/bb)]

sequence

SA(i)

expansion: [SA(i) → SA(j)]

SB(i)

expansion: [SB(i) → SB(j)]

SC (i)

[SC (i) → (i)]

Schedule Tree

Polyhedral Implementation of the Overlapped Tiling January 26, 2018 8 / 13



Experimental Setup and Methodology

Code generator: PPCG (version ppcg-0.07-26-g236d559).

Architecture:

CPU: 32-core Intel Xeon(R) E5-2683 v4 @2.10GHz
GPU: NVIDIA Quadro K4000

Compilation:

CPU: ICC18.0 (-O3 -xHost -qopenmp -ipo)
GPU: NVCC9.0 (-O3)

Baseline:

sequential PolyMage naive code (without tiling) [MVB15]
CUDA code generated by PPCG (parallelogram tiling) [VCJC+13]

Comparison:

Halide manual and automatic scheduling [RKBA+13], PolyMage naive
and optimized scheduling [MVB15]

Experimental Results January 26, 2018 9 / 13



Performance Comparison on CPU

1 2 4 8 16 32

9

18

27

36
4
.8

7

7
.1

7 1
2
.0

2

1
3
.8

8 2
2
.6

2
8
.3

2

3
.8

1

4
.1

5 9
.3

1 1
2
.7

3 1
9
.2

4

2
3
.3

8

1 1
.6

6

2
.7

2

4
.5

3

5
.1

4
.9

3

3
.3 6
.4

5 1
2
.6

1

1
5
.7

8 2
2
.6

7 2
8
.3

8

3
.6

7 7
.0

9 1
2
.9

8

2
4
.9

2
5
.8

3
8
.6

3

S
p

ee
d

u
p

Halide manual Halide automatic PolyMage naive PolyMage opt Our work

Performance Comparison of Unsharp Mask

Experimental Results January 26, 2018 10 / 13



Performance Comparison on CPU

1 2 4 8 16 32

4

8

12

16
1
.4

3

2
.7

2 5
.1

7
.7

4

1
2
.2

3

1
6
.5

1
.9

8

2
.8

8 5
.8

5

9
.3

3

1
2
.6

7

1
3
.5

7

1 1
.6

8

2
.5

4
.9

4

5
.6

9

5
.9

1

1
.6 3
.0

2 4
.9

3

8
.5

5 1
1
.6 1

3
.5

9

1
.8

5 3
.4

7 6
.0

2

9
.9

8

1
4
.3

5 1
7
.7

4

S
p

ee
d

u
p

Halide manual Halide automatic PolyMage naive PolyMage opt Our work

Performance Comparison of Local Laplace Filter

Please refer to our poster for more experimental data on the remaining
benchmarks, with a detailed comparison with the state of the art.

Experimental Results January 26, 2018 10 / 13



Performance Comparison on GPU

H
ar

ris
Cor

ner
D

et
ec

tio
n

Bila
te

ra
l Grid

Cam
er

a
Pip

el
in

e

M
ulti

sc
al

e
In

te
rp

ol
at

io
n

Loca
l Lap

la
ci

an
Filt

er

Pyr
am

id
Ble

ndin
g

U
nsh

ar
p

M
as

k

1

2

3

1 1 1 1 1 1 1

1
.6

3

3
.1

6

1
.7

4

0
.5

1
.4

5

2
.3

1

1
.7

5

1
.0

8

1
.9

0
.9

1
.7

4

1
.2

1
.7

7

1
.1

1
.9

7

1
.6

6

1
.5

1
.4

4 1
.6

8

S
p

ee
d

u
p

PPCG Halide manual Halide automatic Our work

Performance Comparison of All Benchmarks on GPU

Our technique is also applicable to iterated stencils. Please check on our
poster for the evaluation on both CPU and GPU.

Experimental Results January 26, 2018 11 / 13



Conclusion and Future Work

We implemented a general purpose overlapped tiling technique in a
polyhedral framework.

We implemented overlapped tiling technique with/without shifting.

Our work can generate codes for both CPU and GPU.

We get better performance due to less redundant computation.

Future work: finish the experiments and prepare the paper submisson.

Conclusion and Future Work January 26, 2018 12 / 13



References

I Uday Bondhugula, Vinayaka Bandishti, and Irshad Pananilath.
Diamond tiling: Tiling techniques to maximize parallelism for stencil computations.
IEEE Transactions on Parallel and Distributed Systems, 28(5):1285–1298, October 2017.

I Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
A practical automatic polyhedral parallelizer and locality optimizer.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’08,
pages 101–113, New York, NY, USA, 2008. ACM.

I F. Irigoin and R. Triolet.
Supernode partitioning.
In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88, pages
319–329, New York, NY, USA, 1988. ACM.

I Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanujam, Atanas Rountev, and P Sadayappan.
Effective automatic parallelization of stencil computations.
In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’07,
pages 235–244, New York, NY, USA, 2007. ACM.

I Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula.
Polymage: Automatic optimization for image processing pipelines.
In Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, pages 429–443, New York, NY, USA, 2015. ACM.

I Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13,
pages 519–530, New York, NY, USA, 2013. ACM.

I Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and Francky Catthoor.
Polyhedral parallel code generation for cuda.
ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, January 2013.

Conclusion and Future Work January 26, 2018 13 / 13


	Background
	Comparing with a DSL Polyhedral Framework
	Polyhedral Implementation of the Overlapped Tiling
	Experimental Results
	Conclusion and Future Work

