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Introduction to Tiling Techniques [IT88]

for (t=0; t<T; t++)

for (i=1; i<N-1; i++)

A[t+1][i]=0.25*(A[t][i+1]+2.0*A[t][i]+A[t][i-1]);

Stencil Code from heat-1d.c
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Different tile shapes on the above stencil code’s iteration space
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Comparison Between Different Tiling Techniques

parallelogram diamond split overlapped

shape complexity × X X X

parallelism × X X X

locality X X X X

redundancy × × × X

algorithmic complexity × X X ×

Our goal: implement an effective tiling technique for programs
written in general purpose languages:

Concurrent start—((((
(((

((hhhhhhhhhparallelogram tiling
Different target architectures (CPUs and GPUs)—((((

(((hhhhhhhdiamond tiling
Redundancy v.s. algorithmic complexity—���

��XXXXXsplit tiling
Overlapped tiling
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Comparing with PolyMage

for (i=1; i<N; i++)

A[i]=f(i);

for(i=2; i<N-1; i++)

B[i]=0.25*(A[i -1]+2*A[i]+A[i+1]);

for(i=4; i<N-3; i++)

C[i]=0.25*(B[i -2]+2*B[i]+B[i+2]);

A simple image processing pipeline

if
A
B
C

Overlapped tiling on the iteration space
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Overlapped tiling on the iteration space

We mitigate redundant computation by shrinking the shadows; better
performance than a rescheduling-based technique.

Comparing with a DSL Polyhedral Framework January 26, 2018 5 / 13



Comparing with PolyMage

PolyMage Our work

Redundancy More Less
Implementation With shifting With/Without shifting

Applicability Domain-specific language General-purpose language
Targets CPU CPU & GPU
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Overlapped Tiling With Shifting

if
A
B
C

Iteration Space

if
A
B
C

Overlapped tiling with shifting

domain

[SA(i) → (i/bb); SB(i) → ((i + 1)/bb); SC (i) → ((i + 2)/bb)]

sequence

SA(i)

expansion: [SA(i) → SA(j)]

SB(i)

expansion: [SB(i) → SB(j)]

SC (i)

[SC (i) → (i + 2)]

Schedule tree
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Overlapped Tiling Without Shifting
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if
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Experimental Setup and Methodology

Code generator: PPCG (version ppcg-0.07-26-g236d559).

Architecture:

CPU: 32-core Intel Xeon(R) E5-2683 v4 @2.10GHz
GPU: NVIDIA Quadro K4000

Compilation:

CPU: ICC18.0 (-O3 -xHost -qopenmp -ipo)
GPU: NVCC9.0 (-O3)

Baseline:

sequential PolyMage naive code (without tiling) [MVB15]
CUDA code generated by PPCG (parallelogram tiling) [VCJC+13]

Comparison:

Halide manual and automatic scheduling [RKBA+13], PolyMage naive
and optimized scheduling [MVB15]

Experimental Results January 26, 2018 9 / 13



Performance Comparison on CPU
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Performance Comparison of Unsharp Mask
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Performance Comparison on CPU
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Performance Comparison of Local Laplace Filter

Please refer to our poster for more experimental data on the remaining
benchmarks, with a detailed comparison with the state of the art.
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Performance Comparison on GPU
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Performance Comparison of All Benchmarks on GPU

Our technique is also applicable to iterated stencils. Please check on our
poster for the evaluation on both CPU and GPU.
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Conclusion and Future Work

We implemented a general purpose overlapped tiling technique in a
polyhedral framework.

We implemented overlapped tiling technique with/without shifting.

Our work can generate codes for both CPU and GPU.

We get better performance due to less redundant computation.

Future work: finish the experiments and prepare the paper submisson.
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