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Abstract
Loop tiling [3] is an essential transformation to exploit data locality and

parallelism, being implemented as a general technique in numerous exist-
ing polyhedral frameworks including Pluto [2], PPCG [7], etc. and domain
specific automatic code generators like PolyMage [5]. Typically, automatic
polyhedral frameworks either choose to implement the parallelogram tiling,
avoiding the difficulty in performing code generation but leading to pipelined
startup, or resort to sophisticated tiling shapes, e.g., diamond tiling [1], en-
abling concurrent startup but complicating both scheduling and code gener-
ation. Overlapped tiling [4] is a technique designed to eliminate pipelined
startup by modifying tile shapes obtained from existing frameworks, but no
implementations for general purpose multicores have been reported in a poly-
hedral framework except those domain specific code generators [5], prevent-
ing its application in general purpose languages and missing a comparison
with other state-of-the-art techniques. We design and implement an automatic
overlapped tiling technique for both general purpose and heterogeneous mul-
ticores in a polyhedral framework, neither being restricted to domain specific
languages nor introducing sophisticated rescheduling in polyhedral frame-
works. We first let a general polyhedral framework perform a parallelogram
tiling and then expand the bounding faces of a tile by taking into considera-
tion the constraints caused by inter-tile dependences, followed by expressing
with well-defined nodes in a schedule-tree-based intermediate representation
in general polyhedral frameworks, and finally achieve automatic code gen-
eration for overlapped tiling. We conduct some preliminary experiments on
both stencil computations and image processing pipelines extracted from the
PolyMage benchmarks but written in general purpose languages, validating
our technique is comparable with the state-of-the-art diamond tiling on stencil
computations by finely selecting tiling sizes without modifying the scheduler
of a polyhedral framework and achieves the performance the same as or even
better than PolyMage for image process pipelines without resorting to domain
specific languages.

Introduction
• Being easy to implement, simple tiling shapes, e.g., parallelogram

tiling, miss parallel startup.
• Enabling concurrent startup, complex tiling shapes complicate

scheduling and code generation.
f o r ( t =0 ; t<T ; t ++)

f o r ( i =1 ; i<N−1; i ++)
A[ t + 1 ] [ i ] = 0 . 2 5∗ (A[ t ] [ i +1 ]+2 .0∗A[ t ] [ i ]+A[ t ] [ i −1 ] ) ;
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Figure 1: Tiling shapes

Table 1: Comparisons of different tiling techniques
parallelogram diamond split overlapped

shape complexity × X X X
parallelism × X X X

locality X X X X
redundancy × × × X

algorithm complexity × X X ×
•Our purpose—implement an effective tiling technique for programs

written in general purpose languages:
– Concurrent startup—
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parallelogram tiling
– Different target architectures (CPUs and GPUs)—
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diamond tiling
– Redundancy v.s. algorithm complexity—
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split tiling

Overlapped Tiling
f o r ( i =1 ; i<N; i ++)

A[ i ]= f ( i ) ;
f o r ( i =1 ; i<N−1; i ++)

B[ i ] = 0 . 2 5∗ (A[ i −1]+2∗A[ i ]+A[ i + 1 ] ) ;
f o r ( i =2 ; i<N−2; i ++)

C[ i ] = 0 . 2 5∗ (B[ i −1]+2∗B[ i ]+B[ i + 1 ] ) ;
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Figure 2: (a) Iteration domain; (b) overlapped tiling with shifting; (c) overlapped
tiling without shifting

Polyhedral Implementation
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Figure 3: Implementing overlapped with expansion nodes (a) with shifting, and its
(b) schedule tree; (c) without shifting, and its (d) schedule tree

Other Transformations
•Alignment and scaling of stages.

•Grouping/Fusion.

• Storage mapping.

•Hybrid tiling.

Experimental Results
• Code generator: PPCG (version ppcg-0.07-26-g236d559).

•Architecture: 32-core Intel Xeon(R) E5-2683 v4 @2.10GHz

• Compilation: ICC18.0 (-O3 -xHost -qopenmp -ipo)

• Baseline:

– sequential PolyMage naive code (without tiling) [5]
– sequential stencil computations

• Comparison:

– Halide manual and automatic scheduling [6], PolyMage naive
and optimized scheduling [5]

– Parallelogram tiling [2] and diamond tiling [1]
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Figure 4: Performance Comparison of (a) Bilateral Grid; (b) Camera Pipelines;
(c) Multiscale Interpolation; (d) Local Laplacian Filter

•Note: Halide automatic scheduling for Multiscale Interpolation is
not publicly available.
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Figure 5: Performance Comparison of (a) heat-1d; (b) heat-2d

Conclusions
The polyhedral framework of compilation unifies a wide variety of
loop and array transformations using affine (linear) transformations.
The availability of a general purpose method to generate imperative
code after the application of such affine transformations brought poly-
hedral compilers to the front scene. As a concurrent-startup-enabling
tiling shape, overlapped tiling [4] is implemented in the domain spe-
cific code generator PolyMage [5]. In this work, we designed and im-
plemented a general-purpose automatic overlapped tiling technique in
a polyhedral framework by showing two implementations with/with-
out shifting/skewing, followed by a series of experimental results on
both image processing pipelines and stencil computations, validating
the effectiveness of our method.

Forthcoming Research
We will be looking at all the remaining PolyMage benchmarks. Also,
we have finished the CUDA code generation of these benchmarks. An
in-depth comparison of all the PolyMage benchmarks by conducting
experiments on both CPU and GPU architectures is coming soon.
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