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Abstract. We revisit previous formulations of zero knowledge in the random
oracle model due to Bellare and Rogaway (CCS ’93) and Pass (Crypto ’03), and
present a hierarchy for zero knowledge that includes both of these formulations.
The hierarchy relates to the programmability of the random oracle, previously
studied by Nielsen (Crypto ’02).

– We establish a subtle separation between the Bellare-Rogaway formulation
and a weaker formulation, which yields a finer distinction than the separation
in Nielsen’s work.

– We show that zero-knowledge according to each of these formulations is not
preserved under sequential composition. We introduce stronger definitions
wherein the adversary may receive auxiliary input that depends on the
random oracle (as in Unruh (Crypto ’07)) and establish closure under
sequential composition for these definitions. We also present round-optimal
protocols for NP satisfying the stronger requirements.

– Motivated by our study of zero knowledge, we introduce a new definition of
proof of knowledge in the random oracle model that accounts for oracle-
dependent auxiliary input. We show that two rounds of interaction are
necessary and sufficient to achieve zero-knowledge proofs of knowledge
according to this new definition, whereas one round of interaction is
sufficient in previous definitions.

– Extending our work on zero knowledge, we present a hierarchy for circuit
obfuscation in the random oracle model, the weakest being that achieved in
the work of Lynn, Prabhakaran and Sahai (Eurocrypt ’04). We show that the
stronger notions capture precisely the class of circuits that is efficiently and
exactly learnable under membership queries.

Keywords. zero-knowledge, random oracle model, sequential composition, ob-
fuscation

1 Introduction

The random oracle (RO) model, introduced by Fiat and Shamir [10] and refined by
Bellare and Rogaway [3], was proposed as a framework for designing and analyzing
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cryptographic schemes that offers a trade-off between provable security and practical
efficiency. In this model, every party has oracle access to a truly random function.
With this additional functionality, many cryptographic problems admit more efficient
solutions than in the standard model, along with considerably simpler proofs of
security [3, 4, 24, 11]. In practice, the idealized random function is instantiated using
a “good” cryptographic hash function, like SHA-1 or a variation thereof. There are also
cryptographic problems for which we have partial solutions in the random oracle model
but not in the standard model, most notably that of circuit obfuscation [1, 19, 20]. In
both cases, proofs in the random oracle model do not guarantee security or feasibility
in the standard model (and in fact, there has been substantial evidence to the contrary
[6, 15, 2]); nonetheless, the model provides a useful idealized test-bed for analyzing
cryptographic schemes.

As a first step towards establishing security, it is necessary to define security in
the random oracle model. A naive extension of a definition in the standard model
may affect the semantics of the underlying notion of security. Consider the case of
zero-knowledge proofs, namely proofs that yield no knowledge beyond the validity of
the assertion proved [17]. Formally, an interactive protocol is zero-knowledge if there
exists a simulator that can simulate the behavior of every, possibly cheating, verifier
without access to the prover, such that its output is indistinguishable from the output
of the verifier after having interacted with the honest prover. In the standard model,
a zero-knowledge proof is necessarily deniable, in that the protocol’s transcript does
not constitute any evidence of the interaction, since any party could have generated the
transcript by himself. However, the Bellare-Rogaway formulation of zero-knowledge
in the random oracle model does not imply deniability, since the simulator can choose
the random oracle [22, 21]. In particular, the formulation allows for (non-trivial) one-
round zero-knowledge proof systems, and the transcript of such a protocol constitutes
evidence of participating in the protocol, contradicting deniability.

In this work, we revisit two aspects of formulating zero-knowledge in the random
oracle model. The first relates to defining security in the random oracle model and
in particular, what it means to choose the random oracle, an issue first addressed by
Nielsen [21]. The second relates to a different aspect of zero-knowledge proofs, namely,
we want the zero-knowledge guarantee to hold even if the verifier may have some
additional a priori information about the input. The need to account for such auxiliary
input, which arises in typical applications such as sequential repetitions of a protocol,
was articulated in the work of Goldreich and Oren [14] and again in that of Unruh
[25]. While the Bellare-Rogaway formulation of zero-knowledge does take into account
auxiliary input, it does not allow for dependencies between the auxiliary input and the
random oracle, which arise for instance, when the auxiliary input is a transcript of a
previous interaction using the oracle.

1.1 Programmability in the random oracle model

There are two reasons why, in the simulation-based paradigm, it is easier to achieve
security in the random oracle model:



– the simulator can see the queries parties make to the random oracle;
– the simulator can choose the answers to these queries.

The second is what we refer to as programming the random oracle, and may be qualified
in several different ways. Suppose our goal is to simulate a transcript RO(s), namely
the evaluation of the random oracle RO at some value s. Our intuition about the
random oracle as a truly random function indicates that picking a truly random string τ
should suffice (essentially choosing the evaluation of RO at s to be τ ), and indeed, no
distinguisher - even computationally unbounded ones - can distinguish a truly random
string from RO(s), provided the distinguisher does not get access to RO. On the other
hand, if we give the distinguisher access to RO, then the only “good” simulation of
the transcript is RO(s), and the simulation must query RO at s. This is because the
distinguisher may have s hardwired into it, then queries RO at s and checks whether
the answer matches the transcript. In this setting, the simulator does not get to choose
the answers to oracle queries. To distinguish between these two notions of security, we
will refer to the former as the fully programmable random oracle (FPRO) model, and
the latter as the non-programmable random oracle (NPRO) model (as coined by Nielsen
[21]).

In the case where we allow the simulator to choose the answers to oracle queries,
we may still impose an additional requirement, namely that the simulator must output
its choices of these query/answer pairs. In the above example, whether the simulator
chooses the output of RO at s to be some random string τ , its output will include the
transcript τ , along with the list (s, τ), corresponding to the query s and answer τ . This
is in fact the notion of programmability raised by Bellare and Rogaway [3] for zero-
knowledge, and we will refer to this as the explicitly programmable random oracle
(EPRO) model. We defer a precise definition to the body of the paper, but note at this
point that security in the non-programmable random oracle model (strongest security
guarantee) implies security in the explicitly programmable random oracle model, which
in turn implies security in the fully programmable random oracle model (weakest
security guarantee).

1.2 Our contributions and techniques

Hierarchy for zero knowledge. We begin with a simple and unified framework for
defining zero knowledge in the three variants of the random oracle model, and then
present a (perhaps surprising) separation for zero knowledge in the fully programmable
and explicitly programmable random oracle models. This yields a finer separation than
that in Nielsen’s work [21], and complements Pass’s separation for zero knowledge in
the explicitly programmable and non-programmable random oracle models.

Auxiliary input and sequential composition. Following the work of Goldreich et al.
[14, 13] for zero-knowledge in the standard model, we use closure under sequential
composition as a yardstick for evaluating formulations of zero-knowledge. We show
that zero-knowledge in all three variants of the random oracle model are not closed



under sequential composition1. This motivates a new formulation of zero-knowledge
in the random oracle which allows for auxiliary inputs that depend on the oracle, as
was done in [25] for one-way functions, encryption and other primitives.2 We show that
for efficient-prover protocols, zero-knowledge with oracle-dependent auxiliary input in
the explicit-programmable and non-programmable random oracle models are preserved
under a polynomial number of sequential repetitions. We also present round-optimal
protocols for NP satisfying the new formulations of zero-knowledge.

Proofs of knowledge. Our constructions demonstrating that previous formulations of
zero knowledge are not closed under sequential composition implicitly rely on a non-
interactive zero-knowledge “proofs of knowledge” in the random oracle model. Specif-
ically, non-interactive protocols are necessarily malleable (without unique identifiers),
and the cheating verifier can generate a convincing proof of knowledge by copying
one sent by the prover in a previous iteration of the protocol. This motivates a new
formulation of proof of knowledge in the random oracle model that takes into account
oracle-dependent auxiliary input. We show that two rounds of interaction are necessary
and sufficient to achieve zero-knowledge proofs of knowledge according to this new
definition.

Circuit obfuscation. We extend our framework for programmability to circuit obfusca-
tion3 in the random oracle model [19, 1], and note that the obfuscator constructions of
Lynn et al. [19] achieve security in the fully programmable random oracle model. Next,
we show circuit obfuscation in the explicit-programmable random oracle model can
only be realized for classes of circuits that are efficiently and exactly learnable under
membership queries, and for these classes, obfuscation may be (trivially) realized in
the plain model, so the characterization is exact. We find it surprising that we can have
non-trivial constructions in the explicitly programmable model for zero knowledge but
not for circuit obfuscation.

1 That this may be the case has been previously noted (e.g. [22]), but to our knowledge, there
has been no formal (published) proof.

2 For the primitives considered in [25], the random oracle is typically only used in the proof
of security. Specifically, Unruh [25] does not explicitly address primitives with a simulation-
based notion of security, which is the focus of this work and where the random oracle is also
exploited in constructing a simulator. On the other hand, Unruh considers a stronger notion
of oracle-dependent auxiliary input, where a polynomial bound is imposed only on the output
length of the machine generating the auxiliary input and not its query complexity.

3 We use the term obfuscation to refer to the stronger notion of obfuscation against general
adversaries, instead of obfuscation against predicate adversaries [1, 26]. In the standard
model, only classes of circuits that are efficiently and exactly learnable under membership
queries are obfuscatable against general adversaries [26]. The result also extends to the fully-
programmable RO model.



1.3 Discussion

Formulating zero-knowledge. A general framework for defining security in the random
oracle model was presented by Nielsen [21], based on augmenting the universally
composable (UC) framework [5] with a random oracle functionality. This guarantees
composability. As pointed out by Pass [22], deniability is not guaranteed in this
framework. Nielsen also defined security with a non-programmable random oracle,
where the environment in the UC framework is also given access to the random oracle.
This offers deniability, but may no longer guarantee universal composability.

Instead of adopting Nielsen’s formulation, we consider a minimal framework (based
on [3, 14]) for which we can provide the weaker guarantee of sequential composition.
The simplicity allows us to focus on how the random oracle is incorporated differently
in each of [21, 3, 22]. In addition, it offers several conceptual advantages: it offers
modularity (which allows us to decouple the zero-knowledge property from the proof-
of-knowledge property and other properties implied by UC zero-knowledge, and for
impossibility results, these distinctions are particularly important) and reinforces the
theme of this work, that of understanding how semantics can change between the
standard model and the random oracle model. Furthermore, our framework is simple
enough to be applied to circuit obfuscation, for which we have very few non-trivial
positive results, let alone constructions that compose arbitrarily (which probably only
exist for trivially obfuscatable families of circuits).

Sequential composition not the end-goal. We recall the arguments used in [14] to
motivate the study of auxiliary-input zero-knowledge: first, it fully captures the intuitive
meaning of the concept of zero-knowledge; and second, this stronger requirement is
necessary when a zero-knowledge protocol is used as a sub-protocol within larger
cryptographic protocols4. It is for these same reasons that we pursue a formulation
of zero-knowledge in the random oracle model that incorporates auxiliary input (refer
to [25] for additional arguments). Indeed, we regard our sequential composition lemma
as evidence that we have properly accounted for auxiliary input in our formulation
and not a goal in and of itself. Similarly, constructing protocols for NP that remain
zero-knowledge under sequential composition should not be an objective in itself.5

Neither should a generic method for transforming protocols that are zero-knowledge
into another that remain zero-knowledge under sequential composition.

On “explicit programmability”. From previous work [3, 22, 19, 26], we know that
allowing the simulator to program the random oracle is necessary and sufficient for

4 One may ask, why not aim for universal composability then? This is addressed in the previous
paragraph, and as with previous work in the standard setting, we feel that zero-knowledge w.r.t.
auxiliary input is indeed the right compromise.

5 All “natural” zero-knowledge protocols for NP in the RO model (in the [3] sense) remain zero-
knowledge under sequential, even concurrent, composition, but this does not obliterate the
need for the “right” definition. After all, when auxiliary-input zero-knowledge was introduced,
all known zero-knowledge protocols were black-box and therefore remained zero-knowledge
under sequential composition.



one-round zero-knowledge protocols for NP and obfuscating point functions in the
random oracle model. However, while explicit programmability is sufficient for zero-
knowledge, we show that full programmability is necessary for the latter. This means
that the reason we are able to realize non-trivial circuit obfuscation in the random oracle
model comes not only from programming the random oracle, but also from not having
to specify explicitly how we program the random oracle.

The issue of explicit programmability also arises in the study of sequential
composition. To obtain zero-knowledge that is closed under a polynomial number
of sequential compositions, it appears that explicit programmability is necessary, in
addition to properly accounting for auxiliary input.

Self-composition for circuit obfuscation. Lynn et al. introduce self-composition for
circuit obfuscation [19], a notion of composition analogous to sequential composition.
In addition, they give an obfuscator for point functions in the random oracle model
that is not 2-self-composing. This is because the construction is not a valid obfuscator
w.r.t. dependent auxiliary input. To obtain polynomial self-composition for obfuscation
using techniques in this work, we will need a definition that incorporates both oracle-
dependent auxiliary input and explicit programmability.

2 Preliminaries

A negligible function is a function of the form n−ω(1), and is denoted neg(n). We use
PPT as an abbreviation for a probabilistic (strict) polynomial-time Turing machine. We
also consider the nonuniform and oracle analogues, which we denote by nonuniform
PPT and oracle PPT respectively. In probability expressions that involve a probabilistic
computation, the probability is also taken over the internal coin tosses of the underlying
computation. We refer the reader to [12] for definitions of interactive proof systems,
zero-knowledge, proofs of knowledge and witness-indistinguishability (WI) in the
standard model. For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the language associated with
R is LR = {x : ∃y (x, y) ∈ R}.

3 Zero knowledge in the random oracle model

In this section, we present our hierarchy of formulations for zero knowledge in the RO
model, along with those that account for oracle-dependent auxiliary input. We begin
with several formalisms we will use in defining zero knowledge:

– We use RO to denote the random oracle and ε to denote an oracle that returns the
empty string on all inputs.

– Given a function f : {0, 1}∗ → {0, 1}∗ and a list ` ⊆ {0, 1}∗ × {0, 1}∗, we use
f [`] to denote a function that agrees with f everywhere except on inputs specified



by the set `. Specifically,

f [`](x) =

{
y if ∃!y such that (x, y) ∈ `
f(x) otherwise

Informally, we refer to f [`] as the function obtained by programming f on the
inputs in `. In the definition of zero-knowledge, the simulator generates a pair (τ, `):
the simulator programs the random oracle on the inputs in `, and τ corresponds to
the view of the cheating verifier while interacting with the prover using the oracle
RO[`].

– We allow the auxiliary input to be generated by a nonuniform oracle PPT Z
(the nonuniformity allows for auxiliary information that may depend on the input
instance) which we refer as the auxiliary input machine. We will give Z oracle
access to either ε or RO, depending on whether we allow the auxiliary input to
depend on the random oracle.

Definition 1 (zero-knowledge [3, 22]). Let (P, V ) be an interactive protocol for a
language L = LR. Let V ∗, S, Z,D be oracle PPTs. Given (x,w) ∈ R, we define
diffO1,O2,O3

V ∗,S,Z,D(x,w) to be the quantity

Pr
RO

[
z ← ZO1(1|x|); τ ← (P RO(w), V ∗RO(z))(x); DO2(x, τ, z) = 1

]
−Pr

RO

[
z ← ZO1(1|x|); (τ, `)← SRO(x, z); DO3(x, τ, z) = 1

]
We say that (P, V ) is zero-knowledge in the fully programmable random oracle

model (FPRO) if for every oracle PPT V ∗, there exists an oracle PPT S such that for
all (x,w) ∈ R and for all nonuniform oracle PPTs Z and D, diffε,ε,ε

V ∗,S,Z,D(x,w) is
negligible (as a function of |x|). In addition, we obtain zero-knowledge in the:

explicitly programmable RO (EPRO) model if O1 = ε,O2 = RO,O3 = RO[`]
non-programmable RO (NPRO) model if O1 = ε,O2 = RO,O3 = RO

FPRO model w.r.t dependent auxiliary input if O1 = RO,O2 = ε,O3 = ε

EPRO model w.r.t dependent auxiliary input if O1 = RO,O2 = RO,O3 = RO[`]
NPRO model w.r.t. dependent auxiliary input if O1 = RO,O2 = RO,O3 = RO

For simplicity, we will also refer to the respective notions of zero-knowledge as FPRO

zero-knowledge, EPRO zero-knowledge, NPRO zero-knowledge, auxiliary-input FPRO

zero-knowledge, auxiliary-input EPRO zero-knowledge, and auxiliary-input NPRO zero-
knowledge.

Zero-knowledge in the FPRO model. This definition captures the weakest requirement,
in that the simulator may choose the random oracle in the simulated transcript, as
long as it “looks” random. We point out that we require simulating the output of the
cheating verifier, but not the random oracle used in the simulated transcript. This
is equivalent to a definition wherein the simulator S is given access to RO. Since



the distinguisher does not have access to RO, the simulator can simply generate
a random oracle by itself, so giving the simulator access to RO does not give the
simulator any extra power. Note that this definition also constitutes a relaxation
of the UC framework augmented with a random oracle functionality (namely,
that obtained by replacing the interactive environment with a non-interactive
distinguisher) [21, 5].

Zero-knowledge in the EPRO model. The main qualitative difference between FPRO

zero-knowledge and EPRO zero-knowledge6 is that the simulator is required to
completely specify a simulated random oracle (namely RO[`]) in the latter, which
the distinguisher is given access to.7 We require that S specifies ` explicitly, which
implies a polynomial bound on the size of `. On the other hand, the oracle RO[`] is
specified implicitly. EPRO zero-knowledge is equivalent to the Bellare-Rogaway
formulation, except the latter does not give the simulator oracle access to RO.
As with zero-knowledge in the FPRO model, this does not make any qualitative
difference as the simulator can simply generate random answers to the RO queries
and add these query-answer pairs to the list `.

Zero-knowledge in the NPRO model. Here, the simulator is not allowed to choose the
random oracle in the simulated transcript. This implies deniability, and is equivalent
to Pass’s formulation [22]. It is a special case of EPRO zero-knowledge with ` = ∅.
For efficient-prover protocols, the NPRO zero-knowledge requirement is equivalent
to requiring that the following quantity be negligible [22, 8]:

ERO

[∣∣Pr[z ← ZO1(1|x|); DRO(x, (P RO(w), V ∗RO(z))(x), z) = 1]

−Pr[z ← ZO1(1|x|); DRO(x, SRO(x, z), z) = 1]
∣∣]

This is also true w.r.t. dependent auxiliary input.

Incorporating dependent auxiliary input. Incorporating dependent auxiliary input
provides some guarantee of “independence” between the queries made to the
random oracle in the protocol and prior queries, even though we do not know
what the prior queries are. To achieve this definition, we construct simulators that
program the random oracle on inputs that have not been previously queried by Z
(here, we exploit the polynomial bound on the query complexity of Z). Unlike the
case without auxiliary input, it is essential that we provide the simulator for zero-
knowledge and EPRO zero-knowledge with oracle access to RO so that the simulator
may generate transcripts that are consistent with the output from Z.

Verifier’s view. A common convention in defining zero-knowledge in the standard
model is to use (P RO(w), V ∗RO(z))(x) to denote the view of the verifier V ∗, which

6 Indeed, making this distinction in the UC framework would require clumsy modifications.
7 For some secret value s and a random RO, we may easily simulate a view of RO(s) with a

random string. However, in order to simulate a view of RO(s) along with an oracle that is
consistent with this view, we will need to either query RO at s or program RO at s; either
operation requires “knowing” s.



consists of the protocol’s transcript and the verifier’s random tape, instead of the
output of the verifier. This is because we may incorporate the computation of the
output from the view into the distinguisher. This argument does not necessarily
apply to definitions in the RO model. In this case, the distinguisher does not have
access to RO and may not be able to compute the output from the view.8 Therefore,
we reserve (P RO(w), V ∗RO(z))(x) to denote the output of the verifier.

A note on black-box simulation. As with previous works on zero knowledge in the RO
model, we will establish the zero-knowledge property via black-box simulation,
except we will allow the simulator to see the oracle queries made by the cheating
verifier. This is consistent with the definition of zero knowledge because the
simulator can execute the code of the cheating verifier and observe the oracle
queries made during the executions. This is a crucial advantage over mere black-
box simulation of the cheating verifier in the standard model. On the other hand,
we do not allow the simulator to see the oracle queries made by Z. Consider a
typical application, namely that of sequential repetitions of the protocol. Here, the
auxiliary input is a transcript from previous executions of the protocol and may
therefore depend on the oracle RO. The cheating verifier receives the transcript,
but does not gain access to the private coin tosses used to generate the transcript.
The distinction arises from the fact that we allow the simulator to depend on the
cheating verifier but not on Z.

4 Zero-knowledge protocols and separations

Several constructions of zero-knowledge protocols for NP in the RO model were
given in [3, 22, 11]. It is straight-forward to verify that the zero-knowledge protocol
in [3] is also auxiliary-input EPRO zero-knowledge. In an unpublished work [23], Pass
determined the round-complexity of auxiliary-input NPRO zero-knowledge protocols
for NP. We summarize these results below:

Theorem 1 (protocols [3, 22, 23]). Assuming the existence of one-way functions, there
exist:

– a one-round proof of knowledge protocol for NP that is auxiliary-input EPRO zero-
knowledge (moreover, we may assume that the knowledge extractor is straight-line
and runs in strict polynomial time [22, 11]);

– a two-round protocol for NP that is NPRO zero-knowledge; and
– a 3-round protocol for NP that is auxiliary-input NPRO zero-knowledge.

Furthermore, each of these protocols has perfect completeness, negligible soundness,
and an efficient prover.

8 Simply requiring that the verifier’s query/answer pairs be included in its view may not be
sufficient as we may also need the prover’s query/answer pairs.



Theorem 2 (triviality [22, 23]). Only languages in BPP have a one-round NPRO zero-
knowledge protocol or a 2-round auxiliary-input NPRO zero-knowledge protocol.

We outline the proofs in [23]. The 3-round auxiliary-input NPRO zero-knowledge
protocol for NP is based on the 2-round NPRO zero-knowledge protocol in [22] except
we have the prover pick a random prefix α in the first round, and prepend α to all
prover’s and verifier’s queries to the random oracle. The proof of Theorem 2 follows
essentially from the fact that the proofs of the analogous statments in the standard model
[14] relativizes.

Next, we state our first result, separating FPRO and EPRO zero-knowledge.

Theorem 3. Assuming the existence of one-way permutations, there exists a protocol
that is auxiliary-input FPRO zero-knowledge but not EPRO zero-knowledge.

Proof. Let π be a one-way permutation, and consider the following protocol for the
relation R = {(x,w) | x = π(w)}, where LR = {0, 1}∗ (note that soundness holds
vacuously):

Common input: An instance x ∈ {0, 1}n.
Prover’s private input: A witness w ∈ {0, 1}n.

P → V : Sends α R←− {0, 1}n.

V → P : Sends τ R←− {0, 1}n.
P → V : If τ = RO(α ◦ w), send w; else, send RO(α ◦ w).

verification: V always accepts.

To see that this protocol is auxiliary-input FPRO zero-knowledge9, fix a cheating
verifier V ∗ (along with its random tape and an auxiliary input z from Z), pick a random
α, and simulate the execution of V ∗, forwarding the oracle queries made by V ∗ to
RO, until we obtain its first message τ . During the simulation, we also check if any
of V ∗’s queries matches α ◦ w (which we can check efficiently given x). If so, we
would have recovered w, and may successfully compute the output of V ∗. If we do
not manage to recover w, we simulate the prover’s response with a random string τ ′ ∈
{0, 1}n and continue to simulate the execution of V ∗, forwarding all oracle queries
to RO, unless the query matches α ◦ w, in which case we respond with τ ′. This is ok
because with probability 1− neg(n) over α, none of the queries made by Z has prefix
α. This completes the description of the zero-knowledge simulator.

Suppose on the contrary that the protocol is EPRO zero-knowledge, and consider
the simulator S that outputs the view of the honest verifier. Fix x ∈ L, and consider
a distinguisher with w = π−1(x) hardwired into it. Then, S must output a transcript
that contains RO[`](α ◦w) with probability 1−neg(n). For the latter, S must with high
probability, either query RO at α ◦ w or output a list ` that contains the string α ◦ w. In

9 Informally, the prover uses (α, RO(α ◦ w)) to check whether the verifier already “knows” w.
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Fig. 1. Relations between different variants of zero knowledge in the RO model,
assuming the existence of one-way permutations. An arrow is an implication, and
a crossed arrow indicate separation. We stress that the relations refer to protocols
satisfying the respective notion of zero-knowledge.

both cases, we may derive a PPT that on input x, outputs π−1(x) with high probability,
which contradicts π being one-way. ut

5 Sequential composition fails without dependent auxiliary input

In this section, we present zero-knowledge protocols which are no longer zero-
knowledge when executed twice sequentially. The protocols are similar in spirit to
that in [9], a zero-knowledge protocol in the standard model that is no longer zero-
knowledge when executed twice in parallel. The protocols exploit zero-knowledge
proofs of knowledge (which may be realized non-interactively in the random oracle
model), using these proofs as the auxiliary input which a cheating verifier could use
to “gain knowledge”. Specifically, the prover will send the verifier a zero-knowledge
proof of knowledge of the witness, and the cheating verifier will copy this proof to
“claim” knowledge of the witness. The apparent contradiction arises from a problem
in the definition of proofs of knowledge in the random oracle model, an issue we will
address in Section 7.

Theorem 4. Assuming the existence of one-way functions, FPRO zero knowledge,
EPRO zero knowledge, and NPRO zero knowledge are not closed under sequential
composition.

Proof (sketch). We begin by constructing an EPRO zero-knowledge protocol that is
no longer zero-knowledge when composed twice. The protocol is for the language
L corresponding to the relation R = {(x,w) | x = f(w)}, where f is a one-way
function, and we use as an underlying protocol a one-round EPRO zero-knowledge proof
of knowledge protocol (from Theorem 1).



Common input: An instance x ∈ {0, 1}n.
Prover’s private input: A witness w ∈ {0, 1}n.

V → P : Send a random string τ .
P → V : If τ is an EPRO zero-knowledge proof of knowledge that x ∈ L,

send w; else, send an EPRO zero-knowledge proof of knowledge
that x ∈ L.

verification: V accepts if it receives either w such that f(w) = x or an
accepting proof of knowledge that x ∈ L.

To prove EPRO zero-knowledge, the simulator runs the cheating verifier to obtain the
first message τ . If τ is an accepting proof of knowledge for x ∈ L, the simulator runs
the knowledge extractor to obtain a valid witness w. Otherwise, the simulator runs the
zero-knowledge simulator for the underlying zero-knowledge protocol to generate the
second-round message. We would actually require that the underlying zero-knowledge
protocol be auxiliary-input EPRO zero-knowledge, which is ok.

To see that this protocol is not zero-knowledge when composed twice, consider
the cheating verifier V ∗ that sends a random string in the first execution, and sends
the prover’s response as its first message in the second execution. For all x ∈ L, the
transcript between the honest prover and V ∗ (for two sequential repetitions) will contain
f−1(x) with probability 1. That f is one-way implies that there is no PPT simulator for
two sequential repetitions of this protocol.

A similar modification to Pass’s 2-round NPRO zero-knowledge protocol for NP
yields a 2-round NPRO zero-knowledge protocol that is no longer NPRO zero-knowledge
when composed twice. ut

Remark 1. Our counter-example are efficient-prover protocols (looking ahead, our
sequential composition theorem only holds for efficient-prover protocols). This mean
that a cheating verifier (which is allowed to be nonuniform) can in fact simulate an
interaction between the honest prover and the honest verifier. This is different from
the counter-example in [13] wherein the cheating verifier cannot simulate such an
interaction. There, the honest prover is allowed nonuniformity, whereas the cheating
verifier is not, and the counter-example exploits the fact that the honest prover is “more
powerful” than the class of cheating verifiers in an essential manner. This distinction
was previously made in [9].

6 Sequential composition with dependent auxiliary input

Next, we prove a sequential composition lemma for auxiliary-input EPRO zero-
knowledge and auxiliary-input NPRO zero-knowledge, which confirms that these are
in some sense indeed the “right” definitions.

Theorem 5 (sequential composition). Let (P, V ) be an efficient-prover protocol in the
RO model. Let Q(·) be a polynomial, and let (PQ, VQ) be an interactive protocol that



on common input x ∈ {0, 1}n, proceeds in Q(n) phases, each of them consisting of
executing the interactive protocol (P, V ) on common input x (with independent coin
tosses for P ). If (P, V ) is auxiliary-input EPRO (resp. NPRO) zero-knowledge, then
(PQ, VQ) is also auxiliary-input EPRO (resp. NPRO) zero-knowledge.

Proof (sketch). We begin with the proof for EPRO zero-knowledge. The high-level
structure is similar to that in [14] for establishing a sequential composition lemma for
zero-knowledge proofs in the standard model. We start by partitioning the cheating
verifier V ∗Q for (PQ, VQ) into Q(n) phases, each of which is the execution of a verifier
V ∗ for a stand-alone protocol (P, V ). V ∗ takes as input the common input x and an
auxiliary string encoding the state10 for V ∗Q at the end of some phase i (the string also
encodes i) of an interaction with PQ, and upon interacting with P produces as output
another string encoding the state for V ∗ at the end of phase i+ 1. The zero-knowledge
property of (P, V ) then guarantees a simulator S for V ∗.

We generalize the earlier notation for programming a function by recursively
defining RO[`1, . . . , `i+1] as (RO[`1, . . . , `i])[`i+1]. We may now specify the simulator
for V ∗Q as follows: on input (x, z),

– Set τ0 = z

– Run the simulator S for Q phases using the simulated oracle generated in
the previous phase; that is, for i = 1, 2, . . . , Q,

SRO[`1,...,`i−1](x, τi−1)→ (τi, `i)

– Output (`1 ∪ . . . ∪ `Q, τQ).11

We define Q(n) + 1 hybrids, H0, . . . ,HQ. The j’th hybrid is defined as the output of
the following experiment:

– Run ZRO(1n)→ z, τ0 = z.
– Let the honest prover interact with the cheating verifier for j phases; that

is, for i = 1, 2, . . . , j,

(P RO, V ∗RO(τi−1))(x)→ τi

– For the remaining Q − j phases, run the simulator S using the simulated
oracle generated in the previous phase; that is, for i = j + 1, . . . , Q,

SRO[`j ,...,`i−1](x, τi−1)→ (τi, `i)

– Hj is (RO[`j+1, . . . , `Q], τQ, z).

10 For simplicity, we may think of the string as encoding the transcript for the first i phases of
interaction with PQ along with the random tape and auxiliary input for V ∗

Q.
11 We abuse ∪ slightly here; we want `1∪. . .∪`Q to denote the set satisfying RO[`1∪. . .∪`Q] =

RO[`1, . . . , `Q].



Note that H0 and HQ correspond to simulated transcript and the actual transcript
respectively. We need to show that H0 and HQ are computationally indistinguishable.
Suppose on the contrary that this is not the case. Therefore, we have a nonuniform
oracle PPTD that distinguishes two consecutive hybrid distributionsHj andHj+1. We
define an auxiliary input machine Zj that computes the interaction between P and V ∗

for the first j phases:

– Run ZRO(1n)→ z, τ0 = z.
– For i = 1, 2, . . . , j, (P RO, V ∗RO(τi−1))(x)→ τi
– Output (z, τj).

This allows us to rewrite Hj and Hj+1 as follows:

– Run ZRO
j (1n)→ (z, τj).

– SRO(x, τj)→ (τj+1, `j+1)
– for i = j + 2, . . . , Q,

(SRO[`j+1,...,`i−1](τi−1))(x)→ (τi, `i)
– Output (RO[`j+1, . . . , `Q], τQ, z).

– Run ZRO
j (1n)→ (z, τj).

– (P RO, V ∗RO(τj))(x)→ τj+1

– for i = j + 2, . . . , Q,
(SRO[`j+2,...,`i−1](τi−1))(x)→ (τi, `i)

– Output (RO[`j+2, . . . , `Q], τQ, z).

This is sufficient to contradict zero-knowledge of (P, V ) for the j + 1’th phase.12 The
result for NPRO zero-knowledge follows as a special case corresponding to `1 = . . . =
`Q = ∅. ut

Remark 2. One might expect a priori that the zero knowledge is preserved under a
polynomial number of repetitions once we take into account oracle-dependent auxiliary
information. However, we are only able to establish such a statement in the EPRO and
NPRO models. Technically, the proof breaks down for FPRO zero-knowledge because
the simulator is not required to specify the simulated random oracle. In particular, this
shows that sequential composition is more subtle than merely accounting for auxiliary
input. A natural question that arises is whether prepending a random prefix to all oracle
queries allows us to transform any protocol that is FPRO zero-knowledge into one
that remains zero-knowledge under a polynomial number of sequential compositions.
We note that using a random prefix only guarantees “independence” of the prover’s
messages across different iterations; a cheating verifier is not limited to queries with the
given prefix.13

12 Unlike in the standard model, we cannot use an averaging argument to fix the output (z, τj)
from Zj . This is because the output depends on RO. We may eliminate the efficient-prover
constraint in the lemma by allowing the auxiliary input machine Z in the definition of zero-
knowledge to be unbounded, but we do not know how to achieve zero-knowledge without a
bound on the query complexity of Z.

13 Specifically, consider the trivial protocol for the language {0, 1}∗ wherein the prover sends
nothing and the (honest) verifier always accepts. Note that using a random prefix does not
affect this protocol in any way. Now, consider a cheating verifier that after each iteration
outputs RO(0n). The zero-knowledge simulator for a single iteration (without dependent
auxiliary input) may simply output a random string, but simply concatenating the output of



7 Proofs of knowledge with dependent auxiliary input

Several constructions of zero-knowledge protocols begin with the verifier sending a
proof of knowledge, for instance, that used in our counter-example, and the NPRO zero-
knowledge protocol in [22]. If we allow the cheating verifier to receive an auxiliary
input that depends on the random oracle, we would need to also extend the definition of
proof of knowledge to incorporate auxiliary inputs that depend on the random oracle.

Definition 2. Let (P, V ) be an interactive protocol for a language L = LR. We say
that (P, V ) is a proof of knowledge w.r.t. dependent auxiliary input in the RO model
(or auxiliary-input proof of knowledge) if for every oracle PPT P ∗, there exists an
oracle PPT E such that for all nonuniform oracle PPT Z and for all x:

Pr
RO

[
ZRO(1|x|)→ z; ERO(x, z)→ w; (x,w) ∈ R

]
> Pr

RO

[
ZRO(1|x|)→ z; (P ∗RO(z), V RO)(x) accepts

]
− neg(|x|)

The next result implies a separation between zero-knowledge proofs of knowledge
and zero-knowledge auxiliary-input proofs of knowledge. Specifically, we rule out non-
interactive protocols that are simultaneously zero-knowledge and a proof of knowledge
(in the above sense); otherwise, we can simply apply the knowledge extractor to the
simulated proof to obtain a candidate witness. Some care is needed in arguing that the
knowledge extractor works on the simulated proof, which uses a simulated random
oracle and not the actual one. The reason why this approach only works for the new
definition of proofs of knowledge is that we allow a cheating prover to receive oracle-
dependent auxiliary input. In particular, the cheating prover may receive a convincing
proof as auxiliary input, and the knowledge extractor can neither rewind the auxiliary
input machine nor observe the oracle queries it makes. The proof is deferred to the full
version.

Theorem 6. Assuming the existence of one-way functions, there is a 2-round public-
coin argument system for NP that is auxiliary-input EPRO zero-knowledge, and also an
auxiliary-input proof of knowledge. On the other hand, only languages in BPP have a
non-interactive argument system that is EPRO zero-knowledge and an auxiliary-input
proof of knowledge.

this simulator for a polynomial number of times does not yield a correct simulation of the view
of the cheating verifier for a polynomial number of iterations. This highlights the difference
between simulating the transcript vs the output of the verifier, and the difficulty in ensuring
“independence” of the random oracles amongst different iterations.



8 Circuit obfuscation in the random oracle model

LetO be a probabilistic polynomial-time algorithm and let C be a family of circuits. Let
A,S, Z,D be oracle PPTs. Given C ∈ C, we define diffO1,O2,O3

A,S,Z,D (C) to be the quantity

Pr
RO

[
z ← ZO1(1|C|); τ ← ARO(ORO(C)); DO2(τ, z)) = 1

]
−Pr

RO

[
z ← ZO1(1|C|); (τ, `)← SRO,C(z); DO3(τ, z) = 1

]
Definition 3 (circuit obfuscation [19, 1, 16]). A probabilistic polynomial-time algo-
rithm O is an obfuscator for the family of circuits C = ∪n Cn in the FPRO model
(where Cn is the subset of circuits in C that take inputs of length n) if the following three
conditions hold:

– (approximate functionality) There exists a negligible function α such that for all
n, for all C ∈ Cn, with probability 1 − α(n) over the internal coin tosses of the
obfuscator and over RO, ORO(C) describes a circuit with RO-gates that computes
the same function as C.

– (polynomial slowdown) There is a polynomial p such that for every circuit C ∈ C,
|O(C)| ≤ p(|C|).

– (virtual black-box property) For every oracle PPT A, there exists an oracle PPT
S such that for all C ∈ C and for all nonuniform oracle PPTs Z and D,
diffε,ε,ε

A,S,Z,D(C) is negligible (as a function of |C|).

We say that C is FPRO obfuscatable if there exists an obfuscator for C. In addition, we
obtain:

EPRO obfuscatable if O1 = ε,O2 = RO,O3 = RO[`]
NPRO obfuscatable if O1 = ε,O2 = RO,O3 = RO

auxiliary-input FPRO obfuscatable if O1 = RO,O2 = ε,O3 = ε

auxiliary-input EPRO obfuscatable if O1 = RO,O2 = RO,O3 = RO[`]
auxiliary-input NPRO obfuscatable if O1 = RO,O2 = RO,O3 = RO

A point function Iw is a boolean function that evaluates to 1 on input w and 0
everywhere else. As observed in [19], to obfuscate Iw in the RO model, we may simply
pick a random α ∈ {0, 1}|w| and store α, RO(α ◦w) in the obfuscated circuit, which on
input x, outputs 1 iff RO(α ◦ x) = RO(α ◦ w).

Theorem 7 (obfuscating point functions [19]). There exists an auxiliary-input FPRO

obfuscator for the class of point functions.

One may expect some modification of the previous construction to yield an EPRO

obfuscator for point functions, but this turns out to be impossible. The next result
follows from a similar characterization in [26] for NPRO obfuscation:

Theorem 8 (triviality). A family of circuits C = ∪n Cn is EPRO obfuscatable iff C is
efficiently and exactly learnable using membership queries.
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Fig. 2. Relations between different variants of obfuscation in the RO model. An arrow
is an implication, a double-tailed arrow is an equivalence, and a crossed arrow indicate
separation. We stress that the relations refer to families of circuits that are obfuscatable
according to the respective notions.

Proof (sketch). Suppose C is efficiently and exactly learnable using membership
queries. Consider an obfuscator that simply takes the input circuit C and outputs the
circuit produced by the learning algorithm given oracle access to C; the simulator does
essentially the same thing.

The learning algorithm for an EPRO obfuscatable family of circuits C is very simple.
To evaluate C ∈ C on input x (given oracle access to C and input x), run the simulator
S for the trivial adversary A that merely outputs the obfuscated circuit to obtain (τ, `),
answering queries to RO with random coin tosses, and then evaluate τ on the input
x using the simulated oracle RO[`]. This may be modified via standard techniques
(specifically, we will need to amplify the soundness error via repetition and then take
a union bound over all inputs) to yield a learning algorithm that on oracle access to C
output w.h.p. a (standard) circuit that agrees with C on all inputs. ut
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