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3 LRI, Université Paris-Sud, 91405 Orsay Cedex, France

Abstract. We consider the following problem: can we construct constant-
round zero-knowledge proofs (with negligible soundness) for NP assum-
ing only the existence of one-way permutations? We answer the question
in the negative for fully black-box constructions (using only black-box
access to both the underlying primitive and the cheating verifier) that
satisfy a natural restriction on the “adaptivity” of the simulator’s queries.
Specifically, we show that only languages in coAM have constant-round
zero-knowledge proofs of this kind. We also give strong evidence that we
are unlikely to find fully black-box constructions of constant-round zero
knowledge proofs for NP, even without this restriction on adaptivity.

Keywords: constant-round zero-knowledge proofs, black-box separa-
tions

? Part of this research was completed while a post-doc at Columbia University. Sup-
ported in part by NSF CAREER Award CNS-0953626.

?? Part of this reseach was completed while a student at Princeton University.



1 Introduction

A zero-knowledge proof is a protocol wherein one party, the prover, convinces
another party, the verifier, of the validity of an assertion while revealing no ad-
ditional knowledge. Introduced by Goldwasser, Micali and Rackoff in the 1980s
[18], zero-knowledge proofs have played a central role in the design and study
of cryptographic protocols. In these applications, the main measure of efficiency
is the round complexity of the proof system, and it is important to construct
constant-round zero-knowledge protocols for NP (with negligible soundness)
under minimal assumptions. In many cases, a computational zero-knowledge ar-
gument system (where both the zero-knowledge and soundness guarantees hold
against computationally bounded adversaries) suffices, and we know how to con-
struct such protocols for NP under the minimal assumption of one-way functions
[9, 29]. However, in this work, we focus on computational zero-knowledge proof
systems, where the soundness guarantee must hold against computationally un-
bounded adversaries.

A common intuition in constructing zero knowledge protocols (typically based
on some form of commitments) is that statistical (resp. computational) sound-
ness corresponds to using a statistically (resp. computationally) binding com-
mitment, while statistical (resp. computational) zero knowledge corresponds to
using statistically (computationally) hiding commitments. One might also expect
that the round complexity of the resulting zero knowledge protocol is roughly
the same as the round complexity of the underlying commitment scheme.

However, the best known construction of computational zero-knowledge proofs
from one-way permutations has ω(1) rounds [16, 7], and the minimal assump-
tion from which we know how to construct constant-round computational zero-
knowledge proofs for NP is constant-round statistically hiding commitments [14,
35], which seem to be a stronger assumption than one-way permutations [37, 21].
There are no known constructions of constant-round computational zero knowl-
edge proofs from constant-round statistically binding commitments. We note
that the latter may be constructed from one-way permutations [7] and one-way
functions [28, 24]. This raises the following intriguing open problem:

Can we base constant-round zero-knowledge proofs for NP on
the existence of one-way permutations?

We briefly survey what’s known in this regard for constant-round black-box
zero-knowledge protocols (that is, those using a black-box simulation strategy).
We clarify that while we do know of non-black-box zero-knowledge protocols [2,
20], these protocols are all zero-knowledge arguments and not proofs.

Unconditional Constructions. The only languages currently known to have constant-
round zero-knowledge proofs from assumptions weaker than statistically hiding
commitment schemes are those that admit statistical zero-knowledge proofs,
which do not require any computational assumption at all. Even though this
includes languages believed to be outside of BPP such as graph isomorphism
and graph non-isomorphism [16, 6], all languages with statistical zero knowledge



proofs lie in AM∩ coAM [1, 11] (and therefore do not include all of NP unless
the polynomial hierarchy collapses).

Lower Bounds. Goldreich and Krawczyk [15] showed that 3-round zero-knowledge
protocols and public-coin constant-round zero-knowledge protocols with black-
box simulators exist only for languages in BPP. Katz [26] showed that 4-round
zero-knowledge proofs only exist for languages in MA ∩ coMA. Haitner et al.
[21] ruled out fully black-box constructions of constant-round statistically hid-
ing commitment schemes (in fact, any O(n/ log n)-round protocol) from one-way
permutations, which means that we are unlikely to obtain constant-round zero-
knowledge proofs from one-way permutations via the approach in [14]. More re-
cently, Haitner et al. [23] established a partial converse to [14], namely that any
constant-round zero-knowledge proof for NP that remains zero-knowledge under
parallel composition implies the existence of constant-round statistically hiding
commitments. Unlike the case for stand-alone zero-knowledge, we do not know if
there exists a ω(1)-round zero-knowledge proof system for NP that remains zero-
knowledge under parallel composition, assuming only the existence of one-way
permutations. Indeed, zero-knowledge under parallel composition appears to be
a qualitively much stronger security guarantee than stand-alone zero-knowledge.

1.1 Our Result.

In this work, we establish new barriers towards constructing zero-knowledge
proof systems from one-way permutations for all of NP:

Main Theorem (informal). Only languages in AM ∩ coAM admit
a fully black-box construction of zero-knowledge proofs starting from
one-way permutations where the construction relies on a black-box sim-
ulation strategy with constant adaptivity.

A fully black-box construction (c.f. [34, 25]) is one that not only relies on a
black-box simulation strategy, but where the protocol relies on black-box access
to the underlying primitive. Adaptivity is a measure of how much the black-box
simulator relies on responses from previous queries to the cheating verifier in
order to generate new queries. We point out that all known constructions of
black-box simulators achieve adaptivity that is linear in the round complexity
of the protocol and therefore constant adaptivity is a fairly natural restriction
for constant-round protocols. Apart from the restriction on adaptivity, this is
essentially the best one could hope for in lieu of various positive results mentioned
earlier:

– Our result only applies to constant-round protocols – running the O(log n)-
fold parallel repetition of Blum’s Hamiltonicity protocol [7] sequentially
yields a ω(1)-round black-box zero-knowledge proof system for NP.



– Our result applies only to proofs, but not arguments – there exists a fully
black-box construction of constant-round computational zero-knowledge ar-
guments with constant adaptivity from one-way functions for all of NP. [10,
32].

– We have unconditional constructions of constant-round statistical black-box
zero-knowledge proofs for graph isomorphism and graph non-isomorphism,
languages which are in AM∩coAM but are commonly believed to lie outside
BPP.

Limitations of Our Impossibilty Result. Our impossibilty result imposes three
main restrictions on the construction: black-box simulation strategy, black-box
access to the one-way permutation, and bounded adaptivity of the black-box
simulator, amongst which adaptivity appears to be the greatest limitation. Our
current ability to prove general lower bounds for zero-knowledge (without limita-
tion to black-box simulation) is relatively limited [17, 4]; moreover, non-black-box
simulation strategies so far only yield arguments and not proof systems. In the
context of zero-knowledge protocols, there is no indication whether non-black-
box access to the underlying primitive has an advantage over black-box access
to the primitive.

Extensions to Higher Adaptivity. The formal statement of our result (Theorem 2)
is slightly more general than stated above and, in particular, allows us to obtain
non-trivial consequences even when the simulator’s adaptivity is polynomial.

Generalized Main Theorem (informal). If a language L admits
a fully black-box construction of zero-knowledge proofs starting from
one-way permutations where the construction relies on a black-box sim-
ulation strategy with adaptivity t, then both L and L have O(t)-round
public coin interactive proofs where the honest prover strategy can be
implemented in BPPNP.

For the case t = O(1) this is just our main theorem. If we now let L be an
NP-complete language, then for t = O(log n) this implies a collapse in the
quasi-polynomial hierarchy [33], which one can view as a weakened version of a
collapse in the polynomial hierarchy. For t = o(n) this would improve on the
best known round complexity for an interactive protocol for a coNP-complete
language (the best known is linear [27]), and even for t = poly(n) this would
improve on the best known honest prover complexity for an interactive protocol
for a coNP-complete language (the best known is P#P [27]). We view these
results as evidence that such constructions will be hard to find.

1.2 Proof Overview

Recall that we start out with a constant-round zero-knowledge proof system
(P,V) with constant adaptivity for a language L and we want to show that L lies
in AM ∩ coAM. The high level strategy is to extend the Goldreich-Krawczyk



lower bound for constant-round public-coin protocols [15] to the private-coin
setting. Following [15] (also [30, 26, 23]), we consider a cheating verifier V∗GK that
“resamples” new messages that are distributed identically to the real verifier’s
messages (conditioned upon the partial transcript) every time it is rewound.
We will need to address the fact that we do not know how to simulate such a
V∗GK efficiently for general private-coin protocols. The computational complexity
of V∗GK comes up in two ways in [15]: first to deduce that the zero-knowledge
property holds against such a V∗GK, and second to derive an efficient AM protocol
for the underlying language L and its complement L.

To address the first issue, we rely on a result of Haitner et al. [21], which,
roughly speaking, demonstrates the existence of a one-way permutation π secure
in the presence of a V∗GK oracle (as long as the zero-knowledge protocol has
bounded round complexity, which is the case here). We will then instantiate
the zero-knowledge protocol (P,V) with the permutation π. This will remain
zero-knowledge against the cheating verifier V∗GK since π is one-way against V∗GK.

Following [15, 26, 23], we may then deduce a BPPπ,V∗
GK algorithm for L. (Such a

statement was obtained independently by Pass and Venkitasubramaniam [31].)
Along the way, we will exploit (as with [26, 23]) the fact that (P,V) is a proof
system as we need soundness to hold against a cheating prover that is able to
simulate V∗GK.

Next, we will essentially show that BPPπ,V∗
GK ⊆ AM ∩ coAM from which

our main result follows. Since L already has a constant-round proof system by
assumption4, L ∈ AM. Thus, it suffices to show that BPPπ,V∗

GK ⊆ coAM. We
do this by constructing a AM protocol for L where the strategy is to have the
AM prover and verifier jointly simulate π and V∗GK. In more detail, the AM
verifier will pick the permutation π at random from a space of poly(Tm) per-
mutations, where T is an upper bound on the running time of the reduction in
the zero-knowledge protocol and m is the round complexity of the protocol; this
turns out to suffice as a one-way permutation for the result in [21].5 Next, we
will have the AM prover and verifier jointly simulate each oracle computation of
V∗GK using a (constant-round public-coin) random sampling protocol from [22].
Note that naively having the AM prover perform the computation of V∗GK fails
for two reasons: a cheating AM prover may resample messages from a distribu-
tion different from the uniform distribution, and may not answer all of the V∗GK
queries “independently”. Finally, we rely on the constant adaptivity requirement
of (P,V) to partially parallelize the executions of the random sampling protocol,
so that the final protocol for L has constant round complexity.

As mentioned previously, in a recent work, Pass et al. [31] independently ob-
tained results similar to ours. They also show that any language L for which there
exists a fully black-box construction of constant-round zero-knowledge proofs
from one-way functions is in BPPπ,V∗

GK . Their techniques for doing this are dif-

4 We can instantiate the protocol (P,V) for L with the identity permutation for this
purpose.

5 Having the AM verifier sample a random permutation “on the fly” does not work
because the permutation π needs to be defined everywhere for V∗

GK to be well-defined.



ferent from ours. They use a generic transformation from private-coin protocols
into V∗GK-relativized public-coin protocols, upon which the result then follows
from the (relativized) lower bound for constant-round public-coin protocols in
[15]. They then argue that if such proofs exist for all of NP, this would imply

unlikely properties for the complexity class BPPπ,V∗
GK . Our techniques, on the

other hand, allow us to relate the existence of such proofs to old questions in com-
plexity such as whether NP ⊆ coAM or whether coNP has interactive proofs
with a BPPNP prover, whereas BPPπ,V∗

GK is a new and less well-understood
notion.

2 Preliminaries

2.1 Definitions

We let [m] = {1, . . . ,m}. For a random variable X, we let x←R X denote that
x is sampled according to X. For a set S, we let x ←R US denote x sampled
according to the uniform distribution over S. We say that an event occurs with
negligible probability if it occurs with probabilty n−ω(1), and it occurs with
overwhelming probability if it occurs with probability 1−n−ω(1), where n is the
input length.

Definition 1. A permutation π : {0, 1}n → {0, 1}n is T -hard if for any circuit
C of size at most T , and for y chosen uniformly at random, Pr[C(y) = π−1(y)] ≤
1
T , where the probability is taken over the choice of y. If, given x, π(x) is also
efficiently computable then we call such a permutation a one way permutation
(OWP).

Definition 2. Let Πn be the set of all permutations from {0, 1}n → {0, 1}n.
Then, using the notation of [12], we define Πk,n ⊆ Πn as {πk,n | πk,n(a, b) =
(πk(a), b) for some πk ∈ Πk} In other words, a uniform element of Πk,n is a
random permutation on the first k bits, and fixes the last n− k bits.

Complexity Classes. We let AM[k] denote the class of languages that have
O(k)-round public-coin interactive protocols (recall that public-coins are equiv-
alent to private coins by [19]). Namely:

Definition 3. L ∈ AM[k] if there is a O(k)-round public-coin interactive proof
between an efficient verifier V and an all-powerful prover P such that:

– For all x ∈ L, V always accepts when interacting with P.
– For all x /∈ L and all possibly cheating prover strategies P∗, V accepts when

interacting with P∗ with only negligible probability.

We let AM = AM[O(1)]. We say that a protocol (P,V) has an honest prover
strategy of complexity C if the prover algorithm can be implemented by a machine
in the class C. We recall that coNP is in AM[n] with an honest prover strategy



complexity of P#P [27], and it is an open question whether the round complexity
or the honest prover strategy complexity can be improved.

For any oracle O, we let BPPO[k] denote the class of languages that are
decidable by efficient randomized algorithms using at most k rounds of adaptive
queries to an oracle O. One round of adaptivity is a set of queries x1, . . . , xk the
algorithm asks to the oracle such that the xi can only depend on oracle answers
to queries asked in previous rounds.

2.2 Zero-knowledge

In what follows we define a fully black-box construction of weak computational
zero knowledge (CZK) from one way permutations. For a more general definition
of CZK we refer the reader to previous literature [13]. As usual, we let negl(n)
be some function such that negl(n) < 1

p(n) for all polynomials p(n).

Notation: we will use the following notation for interactive protocols. For any
interactive protocol between a prover P and a verifier V , we let 2m denote the
total number of rounds of communication, where a round consists of one message,
either from P to V or from V to P . We let αi denote the ith message sent from
P to V , and βi the ith response from V to P . Note that αi is sent in round
2i− 1 and βi is sent in round 2i. Also, having P always send the first message is
without loss of generality as we can set α1 =⊥ to model a proof where V goes
first. For i ∈ {1 . . . ,m}, we let α[i] = (α1, . . . , αi). Let V = (V1, . . . Vm) be the
decomposition of V into its next-message functions. Here Vi(x, α[i], ω) outputs
βi, the ith message sent by V when using input x, random coins ω, and receiving
messages α[i] from P . Let 〈P, V 〉(x) denote the verifier’s view of an execution
of the interactive protocol on an input x. This view includes all messages α[m]

sent by the prover, the verifier’s random coins ω, and (if V is allowed access
to an oracle) the answers to any oracle queries V may have made. We say that
〈P, V 〉(x) accepts if Vm(x, α[m], ω) = 1.

We will reserve calligraphic P,V,S to denote the prover, verifier, and sim-
ulator in a zero-knowledge protocol, and regular P, V to denote the prover and
verifier in a (possibly non-zero-knowledge) interactive protocol.

Definition 4. A fully black-box construction of a (weak) computational zero-
knowledge proof system from one-way permutations for a language L is a tuple of
oracle procedures (P,V,S,M) such that there exists a polynomial T (n) satisfying
the following properties for every family of permutations π = {πn}n≥1:

Efficiency. The running times of V,S,M are bounded by T = T (n).

Completeness. For all x ∈ L: Pr[〈Pπ,Vπ〉(x) accepts] ≥ 1− negl(n).

Soundness. For all x /∈ L and for all (possibly computationally unbounded) P∗,

Pr[〈P∗,Vπ〉(x) accepts] ≤ negl(n).



Black-Box Zero-Knowledge. For all (possibly computationally unbounded)
V∗, D and for all x ∈ L: if∣∣∣Pr[D(〈Pπ,V∗〉(x)) = 1]− Pr[D(Sπ,V

∗
(x)) = 1]

∣∣∣ > 1/n

then M can invert π, namely:

Pr
y∈{0,1}n

[Mπ,V∗,D(y) = π−1(y)] > 1/T

We note that completeness and soundness hold even if the given permutations
are not one-way. Also, V∗, D are quantified after π is fixed and therefore may
depend on π.

Comparison with standard definitions of zero-knowledge: The property
that makes the above definition weak zero knowledge is that we only require
the distinguishing advantage to be smaller than 1/n, rather than negligible (the
choice of 1/n was arbitrary; any non-negligible function will do). This enables
us to consider simulators that run in strict polynomial time; it is known that
in the standard definition of zero knowledge where the distinguishing advantage
is negligible, no strict polynomial-time black-box simulators exist for constant-
round protocols [3], although there are examples of non-black-box simulators [2].
It is useful for us to consider strict polynomial-time simulators because defin-
ing adaptivity is more straight-forward for such simulators than for expected
polynomial-time simulators. This is discussed in the next section.

Nevertheless, we note here that any zero knowledge proof satisfying the stan-
dard definition also satisfies the weak definition above: if a simulator S ′ satisfies
the standard definition and runs in expected time T ′, then a simulator S satis-
fies the weak definition by running S ′ for at most 2nT ′ steps, and halting with
a failure symbol if S ′ does not produce an output in that time. By ruling out
black-box constructions of weak zero knowledge proofs from one-way permuta-
tions, we also rule out proofs satisfying the standard definition. We note that
the same discussion applies to the runtime of the reduction algorithm M .

Simplifying assumptions: we assume for simplicity that on inputs of length
n, V and S only query π on inputs of length n. We assume that in an honest
interaction of the protocol, the last message is from the verifier V to the prover P
and contains the verifier’s random coins. Clearly this does not affect either zero
knowledge or soundness since it occurs after all “meaningful” messages are sent.
This assumption allows us to define a transcript to be accepting if the honest
verifier would accept that transcript using the coins output in the last message,
and this definition remains meaningful even for transcripts generated by cheating
verifiers. We assume without loss of generality that the simulator S never asks
the same query twice and that it only asks refinement queries. Namely, for i > 1
and for every query α[i] = (α[i−1], αi) that the simulator queries to its cheating
verifier black box V∗, it must have previously queried α[i−1] as well. We direct
the reader to [14] for a discussion of why this holds without loss of generality.



2.3 Adaptivity

Here we define the adaptivity of the simulator, namely how much it uses re-
sponses from previous queries to the verifier black-box in order to generate new
queries. All of the black-box simulators for constant-round zero knowledge in the
literature intuitively work the following way: repeatedly query the cheating veri-
fier with dummy queries enough times until it leaks some secret, then rewind and
use this secret to output a simulated transcript [14, 5, 8, 9, 35]. The simulator may
use the verifier’s answers to determine whether to continue with dummy queries
or to proceed to the next step of the simulation. If the simulator runs in expected
polynomial time (rather than strict polynomial time), this procedure lasts indef-
initely, making it hard to define the degree of the simulator’s adaptivity. This is
why we choose to work with weak zero knowledge, where the simulation is strict
polynomial time; the definition of adaptivity becomes much simpler and more
intuitive in this setting. We stress again that this only strengthens our result, as
any zero-knowledge proof system satisfying the standard definition also satisfies
the weak definition.

Definition 5. A simulator S running in time T is said to be t-adaptive if it
can be decomposed into t + 1 oracle machines S = (S1, . . . ,St,St+1) with the
following structure. Let x, ω (respectively) be the input and random coins for S.
For all permutations π and all cheating verifiers V∗, Sπ,V∗

operates as follows:

1. Sπ,V
∗

1 (x;ω) generates at most T queries q
(1)
1 , . . . , q

(1)
T using x, ω. It sends

these queries to V∗ and gets back answers a1 = (a
(1)
1 , . . . , a

(1)
T ).

2. For each phase j, 1 < j ≤ t, Sπ,V
∗

j (x;ω,aj−1) generates at most T queries

q
(j)
1 , . . . , q

(j)
T using x, ω and aj−1 which is the concatenation of all oracle

answers from phases 1, . . . , j − 1. Sπ,V
∗

j sets aj to be the oracle answers

a
(j)
1 , . . . , a

(j)
T for the j’th phase, concatenated with aj−1.

3. After obtaining at, Sπt+1(x;ω,at) computes the final output (notice it does
so without calling V∗).

2.4 The Sam Oracle

Here we provide a description of the Sam oracle as defined in [21]. A more formal
description can be found in [21].

Description of Samd: Samd takes as input a query q = (i, Cnext, Cprev, z) and
outputs (ω′, z′), such that:

1. ω′ is chosen uniformly at random from:
– the domain of Cnext if i = 1.
– the set {ω | Cprev(ω) = z} if i > 1.

2. z′ = Cnext(ω
′).

The inputs to Samd are subject to the following restrictions:



1. The root query in every tree must include a security parameter 1n such that
d = d(n) is the maximum depth query.

2. Queries with i > d receive output ⊥.

3. If i > 1, then the input (i−1, Cprev, ·, ·) was previously queried and resulted in
output (ω, z) for some ω. Note that this restriction imposes a forest structure
on the queries.

4. Cnext is a refinement of Cprev. Formally: Cnext = (Cprev, C̃) for some circuit

C̃.

For our purposes, it is easier to think of Samd as being stateful, in which case
the above restrictions can easily be implemented. Technically however Samd must
be stateless, and so the above restrictions are enforced in [21] by giving Samd

access to a signature protocol, and having him sign the output to every query,
as well as the depth of the query, before returning a response. New queries are
required to include a signature on a prior query, demonstrating that the first and
third requirements have been met. (The refinement property can be verified by
Samd independently.) Any query not meeting these restrictions receives output
⊥. We direct the reader to [21] for the complete details (see also [22] for a precise
statement about how to remove state), and we work with a stateful Samd for
the remainder of this paper.

We will also consider Samd in a relativized world with a random permutation
π = {πn}n∈N, where πn : {0, 1}n → {0, 1}n is chosen at random from all permu-
tations mapping {0, 1}n → {0, 1}n. We let Samπ

d denote Samd in this relativized
world. Samπ

d is defined exactly as Samd, except it accepts circuits Cπprev, C
π
next

that can possibly contain π gates.

We will abuse notation and write Sam to denote Samd for some d = O(1).
Our results will apply to all constant d so this slight abuse does not affect the
correctness of our statements.

Using a Prover to Simulate Sam. Let BPPSam[t] denote the class of lan-
guages that can be decided efficiently by a machine making at most t adaptive
rounds of queries to the oracle Sam. We use the following theorem from [22]
which shows that one can simulate this Sam oracle by a constant-round public-
coin protocol.

Theorem 1 ([22]). For any L ∈ BPPSam[t], it holds that both L and L have
AM[t] proofs with an honest prover strategy complexity of BPPNP.

3 Proof of Main Theorem

3.1 Overview

As discussed in the Introduction, our proof involves using a particular cheating
verifier, V∗GK defined in Section 3.2, with the following properties:



– V∗GK cannot invert a random permutation π. This implies that the view
〈Pπ,V∗GK〉(x) can be simulated by a simulator Sπ,V∗

GK(x) whenever x ∈ L.
(Section 3.3)

– The simulator Sπ,V∗
GK(x) cannot produce an accepting transcript whenever

x /∈ L. Together with the previous property, this gives a way of deciding L.
(Section 3.3)

– One can efficiently generate a transcript according to Sπ,V∗
GK(x) in a con-

stant number of rounds with the help of an all-powerful (but possibly cheat-
ing) prover. Since, using the output of Sπ,V∗

GK(x), one can efficiently decide
whether or not x ∈ L, this implies L ∈ AM ∩ coAM. (Section 3.4)

3.2 Defining V∗
GK

Informally, upon receiving a message, the cheating verifier uniformly chooses a
new random tape consistent with the transcript seen so far, and uses this to
compute his next message. The formal definition follows, using notation defined
in Section 2.1.

Fix any black-box construction of weak zero knowledge from one-way per-
mutations (P,V,S,M). Let ω ∈ {0, 1}T be a random tape for the honest verifier
V which is divided into next-message functions V1, . . . ,Vm. Define

R
α[i]
ω = {ω′ ∈ {0, 1}T | ∀j < i, Vj(x, α[j];ω) = Vj(x, α[j];ω

′)} (3.1)

i.e. the set of random tapes that, given prover messages α[i], produce the same
verifier messages as the random tape ω. For the special case where i = 1, set
Rα1
ω = {0, 1}T for all α1 and all ω.

Define V[i] = (V1, . . . ,Vi) to be the circuit that outputs the concatenation of
V1, . . . ,Vi. Namely, for every α[i] and ω, it holds that

V[i](α[i], ω) = (V1(α1, ω),V2(α[2], ω), . . . ,Vi(α[i], ω))

For any α[i], let V[i](α[i], ·) denote the circuit V[i] with the input α[i] hard-wired
(therefore it takes only input ω.

Definition 6. The cheating verifier V∗GK = (V∗GK,1, . . .V
∗
GK,m) is defined using

the Samπ
m oracle and a look-up table that associates server queries α[i] with Samπ

m

oracle responses (ω, z). We write V∗GK with the understanding that the input x
is hardwired into the verifier and the verifier is allowed oracle access to the
permutation π and Samπ

m.

– V∗GK,1(α1): invoke Samπ
m(1,V1(α1, ·), 0, 0) and let (ω1, β1) be the response.

(Here, the 0 inputs are placeholders and can be replaced by anything.) Store
(α1, ω1, β1) in the look-up table and output β1.

– V∗GK,i(α[i]) for i > 1: let α[i] = (α[i−1], αi). Look up the value (α[i−1], ωi−1, β[i−1])
stored during a previous query. Query

Samπ
m(i, V[i](α[i], · ), V[i−1](α[i−1], · ), β[i−1])

and let (ωi, β[i]) be the response. Store (α[i], ωi, β[i]) in the look-up table and
output βi.



Observe that querying Samπ
m in the manner described above for the case

i > 1 returns an ωi that is distributed uniformly in R
α[i]
ωi−1 .

Recall that we assume the simulator never repeats queries and only makes
refinement queries. Therefore, V∗GK never tries to store inconsistent entries in the
table, and V∗GK never queries its table for entries that do not exist. Therefore,
V∗GK’s queries to Samπ

m always satisfy the restrictions laid out in Section 2.4.
Observe that the output of 〈Pπ,V∗GK〉(x) is distributed identically to the honest
〈Pπ,Vπ〉(x).

To complete the description of V∗GK we also need to construct a one-way
permutation that remains one-way in the presence of a V∗GK-oracle. To accomplish
this, we refer to a result of Haitner et al. [21], which ruled out fully black-
box constructions of o(n/ log n)-round statistically hiding commitment schemes
form one-way permutations (where n is the security parameter). Building on
and generalizing the works of [12, 36, 37], they demonstrated that by choosing
π from Πk,n for appropriate k, π remains one-way even in the presence of a
Samπ

m-oracle.
Formally, the following lemma follows directly from their results.

Lemma 1 (implicit in [21]). Suppose T, k satisfy T 3m+2 < 2k/8. Then, for
any oracle machine A running in time T , it holds that:

Pr
π←RΠk,n,y←RUn

[Aπ,V
∗
GK(y) = π−1(y)] ≤ 1/T

Proof. This follows from [21, Theorem 5.1], which established the above state-
ment where V∗GK is replaced by Samπ

m. From our definition of V∗GK, it is clear that
one call to V∗GK can be implemented using one call to Samπ

m Furthermore, as
noted above, since we assume S only makes unique refinement queries, all of the
queries that V∗GK asks of Samπ

m satisfy the restrictions in the definition of Samπ
m.

3.3 Deciding L Using V∗
GK

We prove that Sπ,V∗
GK(x) generates an accepting transcript with high probability

if and only if x ∈ L.

Lemma 2. Given any fully black-box construction from one-way functions of a
constant-round weak zero knowledge proof (P,V,S,M) for a language L, and
any n, k satisfying T 3m+2 < 2k/16, where 2m = O(1) is the round complexity of
the proof system and T = poly(n) is the strict polynomial bound on the running
times of V,S,M , the following hold:

1. If x ∈ L, then Prπ←RΠk,n,S,V∗
GK

[Sπ,V∗
GK generates accepting transcript] ≥ 2/3.

2. If x /∈ L, then Prπ←RΠk,n,S,V∗
GK

[Sπ,V∗
GK generates accepting transcript] ≤ 1/3.

Proof.
Yes instances: We use the zero-knowledge property of the proof system to
prove that for all x ∈ L:

Pr[Sπ,V
∗
GK(x) outputs an accepting transcript] ≥ 2/3 (3.2)



The proof proceeds by contradiction, showing that if S fails to output an
accepting transcript with sufficiently high probability then, by the weak zero-
knowledge property of (P,V,S,M), M can invert a random permutation π ∈
Πk,n.

As was noted before, the distributions 〈Pπ,V∗GK〉(x) = 〈Pπ,Vπ〉(x). There-
fore, by the completeness of the proof system, for x ∈ L, the transcript 〈Pπ,V∗GK〉(x)
is accepted by the honest verifier with probability 1 − negl(n). More formally,
Pr[Vπm(x, 〈Pπ,V∗GK〉(x)) = 1] ≥ 1− negl(n).

For the sake of contradiction, assume that Sπ,V∗
GK(x) outputs an accepting

transcript with probability less than 2/3. That is, Pr[Vπm(x,Sπ,V∗
GK(x)) = 1] <

2/3. Then we can use the honest verifier V to distinguish between the prover
and simulator output, since |Pr[Vπm(x, 〈Pπ,V∗GK〉) = 1]− Pr[Vπm(x,Sπ,V∗

GK(x)) =
1]| > 1/3 − negl(n). Therefore, by the weak black-box zero-knowledge property
of (P,V,S,M), there exists an oracle machine Mπ,V∗

GK,V running in time T that
can break the one-wayness of π with probability at least 1/T . We can remove
oracle access to V by having M simulate V by making at most T oracle calls
to π for each call to V. Thus, we get a machine Mπ,V∗

GK running in time T 2

such that Prπ←RΠk,n,y←RUn
[Mπ,V∗

GK(y) = π−1(y)] ≥ 1/T > 1/T 2. This yields a
contradiction to Lemma 1, and Equation (3.2) follows.

No instances: here, we use statistical soundness (following [23, 26, 15]) to argue
that for all x /∈ L:

Pr[Sπ,V
∗
GK(x) outputs an accepting transcript] ≤ 1/3 (3.3)

The proof proceeds by contradiction, showing that if S outputs an accepting
transcript with high probability, then there exists a cheating prover P∗GK that
breaks the statistical soundness of the proof system. Let T , the running time of
S, be the bound on the total number of V∗GK queries made by S, and let m be
the round complexity of the zero knowledge proof system. Starting from V∗GK, we
define a new (inefficient) prover strategy P∗GK which interacts with an external
verifier V as follows:

1. Choose queries to forward to V: On input x, P∗GK picks a random subset of
query indices U = {j1, j2, . . . , jm} ⊂ [T ] of size m. The set U represents the
queries that P∗GK will forward to the verifier V.

2. Simulate Sπ,V∗
GK(x): Internally simulate Sπ,V∗

GK(x) step by step. We handle
the j’th oracle query, qj , that S makes to V∗GK as follows. Let qj = α[i] for
some i ≤ m.
– If j /∈ U : Simulate V∗GK internally to answer qj . More formally, look

up the value (α[i−1], ω) stored during a previous V∗GK query. (Note that
since S only makes refinement queries, S must have made such a query.)
Choose ω′ ← R

α[i]
ω uniformly at random (P∗GK can do this since he is

computationally unbounded), store (α[i], ω
′) and output Vi(x, α[i], ω

′).
– If j ∈ U : If qj = α[i] and i > 1, forward αi to the external V. Upon re-

ceiving βi in response, look up the stored value (α[i−1], ω) and uniformly

sample a random string ω′′ ← {ω′ ∈ Rα[i]
ω ∧ Vi(x, α[i], ω

′) = βi}. Store
(α[i], ω

′′) and output βi.



Note that as long as S outputs an accepting transcript with noticeable proba-
bility when interacting with V∗GK on x /∈ L then this cheating prover P∗GK has
a noticeable probability of outputting an accepting transcript when interacting
with the honest verifier V. This happens if P∗GK chooses U to include exactly the
messages that are used by S in his output. P∗GK succeeds in choosing the cor-
rect queries with probability at least 1/TO(m). Thus, if S outputs an accepting
transcript with probability > 1/3 then P∗GK outputs an accepting transcript with
probability at least 1/3 · 1/TO(m) which is non-negligible when m = O(1). This
is a contradiction of the fact that the proof has negligible soundness error, thus
(3.3) follows.

3.4 Applying Theorem 1 To Remove V∗
GK

We can now combine Lemma 2 and Theorem 1 to prove our main theorem.

Theorem 2. Suppose there is a black-box construction from a one-way permu-
tation of a constant-round weak zero knowledge proof (P,V,S,M) for a language
L, where S is t-adaptive. Then both L and L are in AM[t] with honest prover
complexity BPPNP.

Proof. From Lemma 2 we already know that Sπ,V∗
GK decides L. We will construct

an oracle algorithm A based on S, such that ASam decides L and furthermore
the adaptivity of A is the same as the adaptivity of S.

Sampling π Efficiently: By Lemma 1, we know that for π to be one-way in the
presence of V∗GK, it is sufficient to choose π ←R Πk,n with k = 9(3m+ 2) log T =
O(log n). Such a permutation can be sampled in polynomial time by sampling

a uniform permutation on k = O(log n) bits. Let A
V∗

GK
1 be identical to Sπ,V∗

GK ,
except A1 first samples π itself and then runs Sπ,V∗

GK .
From Definition 6, it holds that oracle access to V∗GK can be implemented

using oracle access to Sam and an additional look-up table to associate previous
queries with previous oracle responses. Therefore there exists a reduction ASam

that on all inputs behaves identically to A
V∗

GK
1 , and furthermore the adaptivity

of A is identical to the adaptivity of A1, whose adaptivity in turn is the same as
that of S.

Since S has adaptivity t, this implies that L ∈ BPPSam[t]. We can therefore
apply Theorem 1 to conclude the proof.
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8. Brassard, G., Crépeau, C., Yung, M.: Everything in NP can be argued in perfect
zero-knowledge in a bounded number of rounds. In: Eurocrypt ’89. pp. 192–195
(1989), lNCS No. 434

9. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
Crypto ’89. pp. 526–545 (1989), lNCS No. 435

10. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
CRYPTO. pp. 526–544 (1989)

11. Fortnow, L.: The complexity of perfect zero-knowledge. In: STOC ’87. pp. 204–209
(1987)

12. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

13. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA (2004)

14. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptology 9(3), 167–190 (1996)

15. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996)

16. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991), prelim. version in FOCS ’86

17. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems
7(1), 1–32 (Winter 1994), preliminary version in FOCS’ 87

18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

19. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. Advances in Computing Research: Randomness and Computation 5, 73–
90 (1989)

20. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
CRYPTO. pp. 408–423 (1998)

21. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols - a tight lower bound on the round complexity of statistically-hiding
commitments. In: Proc. FOCS ’07. pp. 669–679 (2007)

22. Haitner, I., Mahmoody-Ghidary, M., Xiao, D.: A new sampling protocol and ap-
plications to basing cryptography on NP-hardnss. In: Proc. CCC 2010 (2010), to
appear. Full version available as ECCC TR-867-09

23. Haitner, I., Reingold, O., Vadhan, S., Wee, H.: Inaccessible entropy. In: STOC. pp.
611–620 (2009)



24. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. of Com. 28(4), 1364–1396 (1999), preliminary
versions appeared in STOC’ 89 and STOC’ 90.

25. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC. pp. 44–61 (1989)

26. Katz, J.: Which languages have 4-round zero-knowledge proofs? In: TCC. pp. 73–
88 (2008)

27. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: FOCS. pp. 2–10 (1990)

28. Naor, M.: Bit commitment using pseudorandomness 4(2), 151–158 (1991), prelim-
inary version in CRYPTO’ 89

29. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-
knowledge. In: ISTCS ’93. pp. 3–17 (1993)

30. Pass, R.: Parallel repetition of zero-knowledge proofs and the possibility of basing
cryptography on np-hardness. In: IEEE Conference on Computational Complexity.
pp. 96–110 (2006)

31. Pass, R., Venkitasubramaniam, M.: Private coins versus public coins in zero-
knowledge proof systems. In: TCC. pp. 588–605 (2010)

32. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: TCC. pp. 403–418 (2009)

33. Pavan, A., Selman, A.L., Sengupta, S., Vinodchandran, N.V.: Polylogarithmic-
round interactive proofs for conp collapse the exponential hierarchy. Theor. Com-
put. Sci. 385(1-3), 167–178 (2007)

34. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Proc. 1st TCC. pp. 1–20 (2004)

35. Rosen, A.: A note on constant-round zero-knowledge proofs for np. In: Naor, M.
(ed.) TCC. Lecture Notes in Computer Science, vol. 2951, pp. 191–202. Springer
(2004)

36. Simon, D.R.: Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In: Proc. EUROCRYPT ’98. vol. 1403, pp. 334–345
(1998)

37. Wee, H.: One-way permutations, interactive hashing and statistically hiding com-
mitments. In: TCC. pp. 419–433 (2007)


