
Simple, Black-Box Constructions of
Adaptively Secure Protocols?

Seung Geol Choi1, Dana Dachman-Soled1, Tal Malkin1, and Hoeteck Wee2??

1 Columbia University {sgchoi,dglasner,tal}@cs.columbia.edu
2 Queens College, CUNY hoeteck@cs.qc.cuny.edu

Abstract. We present a compiler for transforming an oblivious transfer (OT)
protocol secure against an adaptive semi-honest adversary into one that is secure
against an adaptive malicious adversary. Our compiler achieves security in the
universal composability framework, assuming access to an ideal commitment
functionality, and improves over previous work achieving the same security
guarantee in two ways: it uses black-box access to the underlying protocol
and achieves a constant multiplicative overhead in the round complexity. As a
corollary, we obtain the first constructions of adaptively secure protocols in the
stand-alone model using black-box access to a low-level primitive.

1 Introduction

Secure multi-party computation (MPC) allows several mutually distrustful
parties to perform a joint computation without compromising, to the greatest
extent possible, the privacy of their inputs or the correctness of the outputs.
An important criterion in evaluating the security guarantee is how many parties
an adversary is allowed to corrupt and when the adversary determines which
parties to corrupt. In this work, we focus on MPC protocols secure against
an adversary that corrupts an arbitrary number of parties, and in addition,
adaptively determines who and when to corrupt during the course of the
computation. Even though the latter is a very natural and realistic assumption
about the adversary, most of the MPC literature only addresses security against
a static adversary, namely one that chooses (and fixes) which parties to corrupt
before the protocol starts executing.

In the absence of an honest majority, secure MPC protocols can only be
realized under computational assumptions. From both a theoretical and practical
stand-point, it is desirable for these protocols to be based on general hardness
assumptions, and in addition, to require only black-box access to the primitive
guaranteed by the assumption (that is, the protocol refers only to the input/output
behavior of the primitive). Indeed, the first MPC protocols achieving security

? supported in part by NSF Grants CNS-0716245, CCF-0347839, and SBE-0245014.
?? part of this work was done while a post-doc at Columbia University.



without an honest majority [GMW87] require non-black-box access to the
underlying cryptographic primitives: the first step in the construction is to
obtain protocols that are secure against semi-honest adversaries, and the second
handles malicious behavior by having the parties prove in zero knowledge that
they are adhering to the protocol constructions. It is the second step that requires
the code of the underlying primitive with the use of general NP reductions to
prove statements in zero knowledge. This aversely affects both computational
complexity and communication complexity of the resulting protocol as well as
the complexity of implementing the protocol.

In a recent work, Ishai et al. [IKLP06] exhibited MPC protocols that are
secure against a static adversary corrupting any number of parties and that
rely only on black-box access to a low-level primitive, such as (enhanced)
trapdoor permutations and homomorphic encryption schemes. This, along with
the follow-up work of Haitner [H08], resolves the theoretical question of the
minimal assumptions under which we may obtain black-box constructions of
secure MPC protocols against a static adversary. The main technical contribu-
tion in both works is to construct a secure protocol for a specific two-party
functionality, that of oblivious transfer (OT). The general result then follows
from a classic result of Kilian’s [K88] showing that any multi-party functionality
can be securely computed using black-box access to a secure OT protocol.
However, none of these works addresses security against an adaptive adversary,
which begs the following question:

Is it possible to construct MPC protocols secure against a
malicious, adaptive adversary that may corrupt any number of
parties, given only black-box access to a low-level primitive?

Towards resolving this question, Ishai, Prabhakaran and Sahai [IPS08] estab-
lished an analogue of Kilian’s result for an adaptive adversary. While there has
been fairly extensive work on secure OT protocols against a static malicious
adversary (e.g. [NP01,K05,PVW08]), very few - namely [B98,CLOS02,KO04] -
provide security against an adaptive adversary; moreover, all of those which do
follow [GMW87] paradigm and exploit non-black-box access to the underlying
primitive.

1.1 Our results

Our main technical contribution is the construction of efficient OT protocols that
achieve security against an adaptive adversary, while relying only upon black-
box access to some low-level primitive. Specifically, we provide a compiler that
transforms an OT protocol secure against a semi-honest, adaptive adversary into



one that is secure against a malicious, adaptive adversary, given only black-box
access to the underlying OT protocol and an “ideal” commitment scheme. In
addition, we achieve security in the universal composability (UC) model, where
a protocol may be executed concurrently with an unknown number of other
protocols [C01]. This is a notable improvement over afore-mentioned works
of Ishai et al. [IKLP06,H08] which provide a compiler for semi-honest OT to
malicious OT, but only for static adversaries in the stand-alone model.3

Theorem 1 (informal). There exists a black-box construction of a protocol
that UC realizes OT against a malicious, adaptive adversary in the FCOM-
hybrid model, starting from any protocol that UC realizes OT against a semi-
honest, adaptive adversary.4 Moreover, the construction achieves a constant
multiplicative blow-up in the number of rounds.

Our construction also improves upon the earlier work of Canetti et. al [CLOS02]
achieving the same guarantee; their construction is non-black-box and incurs a
blow-up in round complexity proportional to the depth of the circuit computing
the semi-honest OT protocol. Combined with the 2-round semi-honest OT
protocol in [CLOS02,CDMW08], we obtain the first constant-round protocol for
OT in the FCOM-hybrid model secure against a malicious, adaptive adversary.5

Moreover, the protocol uses black-box access to a low-level primitive, that of
trapdoor simulatable cryptosystems6, which may in turn be based on the RSA,
DDH, worst-case lattice assumptions or hardness of factoring.

The key conceptual insight underlying the construction is to view the
[IKLP06,H08] compiler as an instantiation of the [GMW87] paradigm in the
FCOM-hybrid model, except enforcing consistency via cut-and-choose tech-
niques instead of using zero-knowledge proofs. This perspective leads naturally
to a simpler, more modular, and more direct analysis of the previous compiler
for static adversaries. In addition, we immediately obtain a string OT protocol,

3 We note that our construction does not improve on the computational complexity of the
previous compiler, as measured by the number of invocations of the underlying semi-honest
OT protocol. However, we believe our construction may be combined with the OT extension
protocol in [IPS08, Section 5.3] to achieve better efficiency.

4 In both the semi-honest and the malicious OT protocols, we allow the adaptive adversary to
corrupt both the sender and the receiver.

5 In an independent work [GWZ08], Garay, Wichs and Zhou also constructed a constant-round
protocol for OT in the common reference string model, secure against a malicious, adaptive
adversary. Their underlying assumptions are seemingly more restrictive.

6 Trapdoor simulatable cryptosystems are introduced in [CDMW08], as a relaxation of
simulatable cryptosystems [DN00]. These are semantically secure encryption schemes with
special algorithms for “obliviously” sampling public keys and ciphertexts without learning the
respective secret keys and plaintexts. In addition, both of these oblivious sampling algorithms
are efficiently invertible given the corresponding secret key.



which is important for obtaining round-efficient MPC protocols [LP07,IPS08].
Showing that the modified compiler achieves UC security against an adaptive
adversary requires new insight in constructing a simulator and in the analysis.
We defer a more detailed discussion of the construction to Section 2, and instead
focus here on the applications to secure MPC derived by combining our OT
protocol with various MPC protocols in the FOT-hybrid model in [IPS08].

MPC in the FCOM-hybrid model. Combining our OT protocol with [IPS08,
Theorem 2], we obtain UC-secure MPC protocols in the FCOM-hybrid model
against a malicious, adaptive adversary, which improves upon [CLOS02] in that
we only require black-box access to the underlying primitive:

Theorem 2 (informal). There exists a protocol in the FCOM-hybrid model
that uses black-box access to a (trapdoor) simulatable cryptosystem and UC
realizes any well-formed multi-party functionality against a malicious, adaptive
adversary that may corrupt any number of parties.

The round complexity of the protocol is proportional to the depth of the
circuit computing the functionality. By combining our OT protocol with [IPS08,
Theorem 3], we obtain a constant-round MPC protocol in the FCOM with the
same guarantees, except that the adversary is limited to corrupting up to m− 1
parties for a m-party functionality. The advantage of constructing UC-secure
MPC protocols in the FCOM-hybrid model is that they may be combined with
many of the existing UC feasibility results under various set-up or modeling
assumptions e.g. [CLOS02,BCNP04,CDPW07,K07], almost all of which start by
showing how to UC realizeFCOM in some new security model7. Moreover, if the
protocol realizing FCOM uses black-box access to a low-level primitive, so will
the combined protocol.

MPC in the stand-alone model. Next, we present our results for the stand-
alone model with adaptive post-execution corruptions [C00], which is a weaker
notion of security than UC security with adaptive corruptions (and in particular,
our protocols in the FCOM-hybrid model achieve this notion of security). Here,
there is a constant-round two-party protocol that uses black-box access to a one-
way function and securely realizes FCOM in the plain model without any set-up
assumptions [PW09]. This immediately yields the following corollaries (via the
composition theorem in [C00]):

7 This is because it is impossible to UC realize any non-trivial 2-party functionality in the plain
model (even against static adversaries) [CKL06,C01].



Corollary 1 (informal). There exists a constant-round string OT protocol that
uses black-box access to a (trapdoor) simulatable cryptosystem and is secure in
the stand-alone model against a malicious, adaptive adversary.

Corollary 2 (informal). There exists a protocol that uses black-box access to
a (trapdoor) simulatable cryptosystem and securely computes any well-formed
multi-party functionality in the stand-alone model against a malicious, adaptive
adversary that may corrupt any number of parties.

Both of these results improve on the work of Beaver’s [B98] which achieve
similar security guarantees but with non-black-box access to the underlying
primitive.

Corollary 3 (informal). For any constantm ≥ 2, there exists a constant-round
protocol that uses black-box access to a (trapdoor) simulatable cryptosystem
and securely computes any well-formedm-party functionality in the stand-alone
model against a malicious, adaptive adversary that may corrupt up to m − 1
parties.

This extends a result of Katz and Ostrovsky [KO04] which presents a 4-round
protocol achieving the same security guarantee for two parties but relying on
non-black-box access to the underlying primitive.

2 Construction

High-level description. We provide an overview of the [IKLP06,H08] com-
piler. Our presentation is slightly different from, and simpler than, that in
the original works, and is closer in spirit to the [GMW87] compiler. Our
presentation is easier to adapt to the UC setting and the adaptive setting (and
also OT with strings instead of bits) since we do not need to rely on the
intermediate notion and construction of a defensible OT protocol.8 We focus
on the main transformation Comp (shown in Fig 3), which “boosts” the security
guarantee of an OT protocol Π from security against semi-honest receivers to
security against malicious receivers while preserving the security guarantee for
corrupted senders.

Phase I: Random tape generation. The sender and the receiver engage in a
coin-tossing (in the well) protocol to determine a collection of 2n random
strings for the receiver.

8 Specifically, the previous compiler proceeds in two phases. The first [H08] transforms any
semi-honest OT protocol into defensible OT protocols. A defensible OT protocol provides
an intermediate level of security interpolating semi-honest and malicious OT. The second
[IKLP06] transforms any defensible OT protocol into a malicious one.



Phase II: Basic execution. The sender and the receiver engage in 2n parallel
executions of Π with random inputs: the sender will choose its own inputs
randomly and independently for each of the 2n executions, whereas the
inputs and randomness for the receiver are determined by the preceding
coin-tossing protocol (one random string for each execution of Π).

Phase III: Cut-and-choose. The sender and the receiver engage in a coin-
tossing protocol to pick a random subset Q of n executions, and the
receiver proves that it acted accordingly to Π for the n executions in Q
by revealing the inputs and randomness used for those executions. The
sender verifies that the inputs and randomness are indeed consistent with
both the n executions of Π and the coin-tossing protocol, and if so, we are
guaranteed that the receiver must have behaved honestly in at least one of
the n executions of Π not in Q (except with negligible probability).

Phase IV: Combiner. We may then apply a combiner that (essentially) yields
a single secure OT protocol, starting a collection of n OT protocols all of
which guarantee security against a malicious sender, but only one of which
guarantee security against a malicious receiver.

To obtain a full-fledged string-OT protocol secure against both a malicious
sender and a malicious receiver starting from a semi-honest bit-OT protocol, we
proceed as in [IKLP06], with the addition of Step 3 to directly obtain a string-OT
protocol and with references to semi-honest instead of defensible adversaries:

1. Use Comp to obtain a bit-OT protocol secure against a semi-honest sender
and a malicious receiver.

2. Use OT reversal [WW06] (shown in Fig 4) to obtain a bit-OT protocol secure
against a malicious sender and a semi-honest receiver.

3. Repeat in parallel to obtain a string-OT protocol secure against a malicious
sender and a semi-honest receiver.

4. Use Comp again to obtain a string-OT protocol secure against malicious
sender and receiver.

In this work, we will view the above construction in the FCOM-hybrid model,
where the FCOM functionality is used to implement the coin-tossing protocol in
Phases I and III [B81,CR03]. To instantiate the protocol in the plain stand-alone
model, we will need to replace FCOM with an extractable trapdoor commitment
scheme. This is different from the original [IKLP06,H08] compiler, where a
standard commitment scheme is used in the Phase I commitments. We will use
the same construction for an adaptive adversary except a minor simplification
to Comp: the sender picks the challenge Q in Phase III (even when it may be
malicious) We note here that we will exploit the extractability of the Phase I
commitments in a crucial way when handling an adaptive adversary.



Functionality FCOM

1. Upon receiving input (commit, sid, Pj , x) from Pi where x ∈ {0, 1}m,
internally record the tuple (Pi, Pj , x) and send the message (sid, Pi, Pj)
to the adversary; When receiving (ok) from the adversary, output
(receipt, sid, Pi) to Pj . Ignore all subsequent (commit, ...) inputs.

2. Upon receiving a value (reveal, sid) from Pi, where a tuple (Pi, Pj , x) is
recorded, send (x) to the adversary; When receiving (ok) from the adversary,
output (reveal, sid, x) to Pj .

Fig. 1. String Commitment Functionality

Functionality FOT

1. Upon receiving input (sender, sid, s0, s1) from S where s0, s1 ∈ {0, 1}`,
record the pair (sid, s0, s1).

2. Upon receiving input (receiver, sid, r) from R where r ∈ {0, 1}, send
(sid, sr) to R and (sid) to the adversary, and halt. If no (sender, sid, . . .)
message was previously sent, send nothing to R.

Fig. 2. Oblivious Transfer Functionality

Improved analysis for static adversaries. We sketch an improved analysis of
Comp for static adversaries in the stand-alone FCOM-hybrid model (i.e. showing
that if Π is secure against a semi-honest receiver, then Comp(Π) is secure
against a malicious receiver). Our simulator for a malicious receiver R∗ is
similar to that in [IKLP06], except we extract R∗’s input to FOT (in the ideal
model) from Phase I instead of Phase III. This way, we achieve straight-line
and strict polynomial time simulation. In the reduction9, we will need to use
repeated sampling to estimate for each r = 1, 2, . . . , n, a quantity related to
the probability that an honest sender interacting with a malicious receiver R∗

in Comp(Π) does not abort at the end of Phase III, and amongst the remaining
executions not in Q, exactly r are consistent with the random tape determined
in Phase I. This is reminiscent of the analysis in [H08, Lemma 3] but much
simpler. Putting everything together, we obtain the following result10:

Proposition 1. There exists a black-box construction of a string-OT protocol
secure against a static, malicious adversary in the stand-alone FCOM-hybrid
model, starting from any bit-OT protocol secure against a static, semi-honest
adversary. Moreover, the construction achieves a constant multiplicative blow-

9 This step is not necessary if we use a non-uniform reduction.
10 We believe our analysis also extends to static adversaries in the UC model and we plan to look

into that in the full version of this paper.



INITIALIZATION.

Sender input: (sender, sid, s0, s1) where s0, s1 ∈ {0, 1}`.
Receiver input: (receiver, sid, r) where r ∈ {0, 1}.

PHASE I: RANDOM TAPE GENERATION.

1. R chooses 2n random strings (rR
1 , τ

R
1 ), . . . , (rR

2n, τ
R
2n) and sends

(commit, sidi, r
R
i , τ

R
i ) to FCOM , for i = 1, 2, . . . , 2n.

2. Upon receiving (receipt, sid1), . . . , (receipt, sid2n) from FCOM , S sends 2n random
strings (rS

1, τ
S
1 ), . . . , (rS

2n, τ
S
2n).

3. R sets ri = rR
i ⊕ rS

i and τi = τR
i ⊕ τ S

i , for i = 1, 2, . . . , 2n.

PHASE II: BASIC EXECUTION.

1. S chooses 2n pairs of random inputs (s01, s
1
1), . . . , (s

0
2n, s

1
2n).

2. S and R engages in 2n parallel executions of the protocol Π. In the ith execution, S
inputs (s0i , s

1
i ) and R inputs ri with randomness τi and obtains output sri

i .

PHASE III: CUT-AND-CHOOSE.

1. S chooses a random q = (q1, . . . , qn) ∈ {0, 1}n. The string q is used to define a set
of indices Q ⊂ {1, 2, . . . , 2n} of size n in the following way: Q = {2i− qi}n

i=1.
2. For every i ∈ Q, R sends (reveal, sidi) to FCOM and upon receiving

(reveal, sidi, r
R
i , τ

R
i ) from FCOM , S computes (ri, τi).

3. S checks that for all i ∈ Q, (ri, τi) is consistent with R’s messages in the i’th
execution of Π. If not, S aborts and halts.

PHASE IV: COMBINER.

1. For every j /∈ Q, R computes αj = r ⊕ rj and sends {αj}j /∈Q to S.
2. S computes σ0 = s0 ⊕ (

L
j /∈Q s

αj

j ) and σ1 = s1 ⊕ (
L

j /∈Q s
1−αj

j ) and sends
(σ0, σ1).

3. R computes and outputs sr = σr ⊕ (
L

j /∈Q s
rj

j ).

Fig. 3. THE COMPILER Comp(Π)

up in the number of rounds, and has a strict polynomial-time and straight-line
simulator.

Our result and analysis even for static adversaries offers several improvements
over that in [IKLP06,H08]:

– The simulator in [IKLP06] uses rewinding and runs in expected polynomial
time, even in the FCOM-hybrid model.

– Our result immediately yields string-OT protocols and in a constant number
of rounds.

– We eliminate many of the tedious steps in the analysis in both [IKLP06]
and [H08], most notably verifying that the OT reversal protocol in [WW06]
works for defensible adversaries [IKLP06, Claim 5.2]. The overall analysis
is simpler, more modular, and more intuitive.



As shown in [PW09], there exists a constant-round protocol that securely
realizes FCOM against a static adversary in the stand-alone model and that uses
black-box access to a one-way function. Combined with Proposition 1, we
obtain a constant-round string-OT protocol secure against a static, malicious
adversary, relying only on black-box access to a constant-round bit-OT protocol
secure against a static, semi-honest adversary.

Achieving security against adaptive adversaries. In order to cope with
adaptive adversaries in Comp(Π), we will further modify our simulator for static
adversaries. The main difference lies in how we simulate the sender messages in
Phase II of Comp(Π). For static adversaries, we may simply follow the honest
sender strategy for Comp(Π) (i.e., run the honest sender in Π on random inputs
for all 2n parallel executions of Π). This simulation strategy fails against an
adaptive adversary because we will then be unable to present random tapes that
are consistent with different sender’s inputs and the protocol transcript if the
sender is corrupted at the end of the protocol. Instead, we will simulate honest
sender messages in Phase II against a malicious receiver as follows:

1. For each i, extract the receiver’s input and randomness for the i’th execution
of Π from the commitment in Phase I.

2. Upon receiving a message from the receiver in the i’th execution of Π,
check if all of the receiver’s messages so far are consistent with its input
and randomness. If so, generate the sender’s response by using the simulator
for Π. Otherwise, corrupt the sender in the i’th execution of Π to obtain its
input and random tape and complete the simulation of the sender’s messages
using the honest sender strategy.

Organization. We present our analysis of Comp and OT reversal for adaptive
adversaries in the UC model in Sections 3 and 4 respectively. We defer the
proof of Proposition 1 for static adversaries to the full version of the paper.
Henceforth, we will always refer to adaptive adversaries.

3 Achieving security against a malicious receiver

In this section, we show that Comp boosts the security guarantee from security
against semi-honest receivers to security against malicious receivers.

Proposition 2. Suppose Π is a protocol that UC realizes FOT against a semi-
honest, adaptive adversary, and let Comp(Π) be the protocol obtained by
applying the compiler in Fig 3 to Π. Then, Comp(Π) UC realizes FOT against
an adaptive adversary with a semi-honest sender and a malicious receiver.



Moreover, if Π is in addition secure against a malicious, adaptive sender, then
Comp(Π) UC realizesFOT against an adaptive adversary with malicious sender
and receiver.

A hybrid execution. To facilitate the analysis, we introduce an intermediate
setting (inspired by [IKOS07]) in which the protocol Comp(Π) is executed,
where there is again a sender S and a receiver R and in addition 2n pairs of
“virtual” parties (S1,R1), . . . , (S2n,R2n). The i’th execution of Π in Comp(Π)
will be executed by Si and Ri with inputs from S and R respectively. We will
require that R1, . . . ,R2n are always semi-honest; i.e. they use a truly random
tape for Π. Moreover, the environment is not aware of the “virtual parties”.

PHASE I/II: BASIC EXECUTION.11 S chooses 2n pairs of random inputs
(s01, s

1
1), . . . , (s

0
2n, s

1
2n) and R chooses 2n random inputs r1, . . . , r2n. For

each i = 1, . . . , 2n, S activates Si with (sender, sidi, s0i , s
1
i ) and R activates

Ri with (receiver, sidi, ri). In HYBRIDΠ,A,Z , the parties Si and Ri execute
Π in parallel. In HYBRIDFOT,A,Z , the parties Si and Ri call the ideal
functionality FOT.

PHASE III: CUT-AND-CHOOSE. S chooses a random q ∈ {0, 1}n which
identifies Q ⊂ {1, 2, . . . , 2n} as in Comp(Π) and sends q to R. S checks
that for all i ∈ Q, Si is not corrupted. Otherwise, abort.

PHASE IV: COMBINER. Proceed as in Phase IV of Comp(Π).

We say that an adversary A in the hybrid execution is well-formed if it satisfies
the following properties:

– When A corrupts S, it also corrupts each of S1, . . . ,S2n. Moreover, if S is
semi-honest, then S1, . . . ,S2n are semi-honest.

– When A corrupts R, it also corrupts each of R1, . . . ,R2n. Moreover,
R1, . . . ,R2n are always semi-honest, even if R is malicious.

– If R is corrupted, then A may corrupt any of S1, . . . ,S2n with semi-honest
behavior, without corrupting S.

– Upon receiving the set Q in Phase III from S, A may corrupt all of Rj , j ∈
Qwith semi-honest behavior, even if neither R nor S is corrupted. However,
if R is not corrupted, then Rj , j /∈ Q are also not corrupted.

We will also stipulate that the communication channels between S and each
of S1, . . . ,S2n are private and authenticated. The same holds for the commu-
nication channels between R and each of R1, . . . ,R2n. In addition, S learns
whether each of S1, . . . ,S2n is corrupted.
11 The choice of notation is so that Phase III always corresponds to cut-and-choose and Phase IV

corresponds to combiner in both Comp(Π) and in the hybrid executions.



Lemma 1. For every adversary A that interacts with Comp(Π) in the FCOM-
hybrid model, there exists a well-formed adversary A′ that interacts in the
hybrid execution running Π, such that for every environment Z ,

EXEC
FCOM
Comp(Π),A,Z ≡ HYBRIDΠ,A′,Z

In the first step, we show how to enforce semi-honest behavior of R1, . . . ,R2n

in HYBRIDΠ,A′,Z . The high-level strategy is as follows: if a corrupted receiver
in Comp(Π) deviates from semi-honest behavior in the i’th execution of Π in
Phase III, we corrupt Si in HYBRIDΠ,A′,Z to obtain its input and randomness,
and continue the simulation by running the honest sender strategy.

Proof. As usual, A′ works by invoking a copy of A and running a simulated
interaction of A with Z and the parties S and R. We will refer to the
communication of A′ with Z and Comp(Π) as external communication, and
that with the simulated A as internal communication. More precisely, A′ works
as follows:

Simulating the communication withZ: Every input value thatA′ receives from
Z externally is written into the adversary A’s input tape (as if coming from
A’s environment). Every output value written by A on its output tape is
copied to A′’s own output tape (to be read by the external Z).

Simulating the case when neither party is corrupted:
PHASE I. A′ internally passesA the message (receipt, sid1), (receipt, sid2),

. . . , (receipt, sid2n) as if sent from FCOM to S. Then, A′ chooses 2n
random strings (rS

1 , τ
S
1 ), . . . , (rS

2n, τ
S
2n), and simulates S sending R

those 2n strings.

PHASE II. For each round in the protocol Π, if it is the receiver’s turn, then
for each i = 1, . . . , 2n, A′ obtains βi from Ri for the corresponding
round. Next, A′ internally passes A the message (β1, . . . , β2n), as if
sent from R to S. The sender’s turn is handled analogously.

PHASE III. When S externally sends q which determines Q, then for each
i ∈ Q: corrupt Ri to obtain (ri, τi) and compute rR

i = ri ⊕ rS
i and

τR
i = τi ⊕ τ S

i . Send (reveal, sidi, rR
i , τ

R
i ) to A as if coming from FCOM.

PHASE IV. Just forward all the messages between S and R.

Simulating the case when only the sender is corrupted: This is essen-
tially the same as when neither party is corrupted, except the values
(rS

1 , τ
S
1 ), . . . , (rS

2n, τ
S
2n) in Phase I and the value q in Phase III are chosen

by A.



Simulating the case when only the receiver is corrupted:
PHASE I. A′ externally corrupts (R1, . . . ,R2n) to obtain (τ1, . . . , τ2n)

and picks 2n random values r1, . . . , r2n. Next, A′ obtains from A the
messages (commit, sidi, rR

i , τ
R
i ) as sent by R to FCOM. Then, A′ sets

rS
i = ri ⊕ rR

i and τ S
i = τi ⊕ τR

i for i = 1, 2, . . . , 2n and internally
passes (rS

1 , τ
S
1 ), . . . , (rS

2n, τ
S
2n) to A as if sent by S to R.

PHASE II. We need to simulate the external messages sent by S in Comp(Π)
(with the “help” of S1, . . . ,S2n). If R behaves consistently in the ith
execution of Π, we will just obtain the corresponding message from Si;
otherwise, we will corrupt Si so that we may compute those messages.

First, we handle receiver messages in Comp(Π). Whenever A sends
a message (β1, . . . , β2n) from R where βi is the message in the ith
parallel execution of Π, do the following for each i = 1, . . . , 2n:

– If Ri has not aborted and βi is consistent with (ri, τi), deliver the
corresponding message from Ri to Si.

– If Ri has not aborted and βi is not consistent with (ri, τi), A′ tells
Ri to abort. In addition, A′ corrupts Si to obtain its input (s0i , s

1
i )

and its randomness.
– If Ri has aborted, then record βi and do nothing.

Next, we handle sender messages in Comp(Π). Whenever A expects a
message (γ1, . . . , γ2n) from S, where γi is the message in the ith parallel
execution of Π, do the following for each i = 1, . . . , 2n:

– If Si is corrupted, then A′ computes γi according to Si’s input and
randomness and the previous messages from Ri.

– If Si is not corrupted, then set γi to be the corresponding message
sent from Si to Ri.

A′ then sends (γ1, . . . , γ2n) to A as if sent by S to R.

PHASE III. Deliver q sent externally by S to R. Check that for all i ∈ Q,
Si is not corrupted. Otherwise, abort.

PHASE IV. Just forward all the messages between S and R.

Dealing with corruption of parties: When the simulated A internally corrupts
R, A′ externally corrupts R and thus R1, . . . ,R2n, and learns the values
r1, . . . , r2n and τ1, . . . , τ2n (in addition to the input r). A′ then sets rR

i =
ri ⊕ rS

i and τR
i = τi ⊕ τ S

i for i = 1, 2, . . . , 2n and internally passes
(rR

1 , τ
R
1 ), . . . , (rR

2n, τ
R
2n) to A as the randomness for R in Comp(Π). Sim-

ilarly, when the simulated A internally corrupts S, A′ externally corrupts
S and thus S1, . . . ,S2n and learns the values (s01, s

1
1), . . . , (s

0
2n, s

1
2n) along

with the randomness used by S1, . . . ,S2n in the 2n executions of Π. A′



then internally passes all of these values to A as the randomness for S in
Comp(Π). In addition, for all i ∈ Q, A′ passes the value (rR

i , τ
R
i ) to A as

the value sent from FCOM to S in Phase III.

It is straight-forward to verify that in Phase III, checking Si is not corrupted in
HYBRIDΠ,A′,Z is identical to R behaving consistently in the ith execution of Π
in Comp(Π). Thus, the abort condition at the end of Phase III are identical. We
may therefore conclude that the ensembles EXEC and HYBRID are identical. ut

Lemma 2. For every well-formed adversary A′ that interacts in the hybrid
execution running Π, there exists a well-formed adversary A′′ that interacts
in the hybrid execution running FOT, such that for every environment Z ,

HYBRIDΠ,A′,Z
c
≈ HYBRIDFOT,A′′,Z

Proof (sketch). The idea is that we may interpret HYBRIDΠ,A′,Z as an execution
involving 4n + 2 parties S,R,S1, . . . ,S2n,R1, . . . ,R2n jointly running some
protocol that uses Π as a sub-routine, and HYBRIDFOT,A′′,Z as an execution
involving the same 4n+2 parties running the same protocol except with an ideal
FOT functionality instead of Π. The claim then follows from the UC composition
[C01]. ut

Lemma 3. For every well-formed adversary A′′ that interacts in the hybrid
execution running FOT, there exists an ideal-process adversary S, such that for
every environment Z ,

HYBRIDFOT,A′′,Z
s
≈ IDEALFOT,S,Z

Proof. Again, we first specify S depending on the corruption pattern:

Simulating the communication with Z: Every input value that S receives from
Z externally is written into the adversaryA′′’s input tape (as if coming from
A′′’s environment). Every output value written by A′′ on its output tape is
copied to S’s own output tape (to be read by the external Z).

Simulating the case when neither party is corrupted:
PHASE I/II. Send (sid1, . . . , sid2n) internally to A′′ as if sent from FOT.

PHASE III. Send a random q ∈ {0, 1}n as if sent from S to R. For each
i ∈ Q, when A′′ corrupts Ri, pick a random ri ∈ {0, 1} and a random
srii ∈ {0, 1}`.

PHASE IV. Send random {αj}j /∈Q as if sent from R and random (σ0, σ1)
as if sent from S.



Simulating the case when only the sender is corrupted:
PHASE I/II. When A′′ sends (sender, sidi, s0i , s

1
i ) to FOT as Si, then S

records (s0i , s
1
i ). Then, send (sid1, . . . , sid2n) internally to A′′ as if sent

from FOT.

PHASE III. Proceed as in the case neither party is corrupted, except q is
chosen by A′′.

PHASE IV. Send random {αj}j /∈Q to A′′ as if sent from R. When A′′

sends (σ0, σ1) as S, compute s0 = σ0 ⊕ (
⊕

j /∈Q s
αj

j ) and s1 =

σ1 ⊕ (
⊕

j /∈Q s
1−αj

j ). Next, send (sender, s0, s1) to FOT as if sent from
S.

Simulating the case when only the receiver is corrupted:
PHASE I/II. S picks 2n pairs of random inputs (s01, s

1
1), . . . , (s

0
2n, s

1
2n). If

A′′ sends (receiver, sidi, ri) to FOT as Ri, record ri and pass (sidi, s
ri
i )

toA′′ as if sent by FOT to Ri. IfA′′ corrupts Si, then S presents (s0i , s
1
i )

as Si’s input to A′′.

PHASE III. Pick a random q ∈ {0, 1}n and send q to A′′ as if coming from
S. Compute Q ⊂ {1, 2, . . . , 2n} as in Comp(Π). Check that for all
i ∈ Q, Si is not corrupted. Otherwise, S simulates an abort from S.

PHASE IV. Compute j∗ /∈ Q where Sj∗ is not corrupted; output failure
if such a j∗ does not exist. When A′′ sends {αj}j /∈Q as R, compute
r = αj∗⊕rj∗ and send (receiver, sid, r) toFOT. Upon receiving (sid, sr)
from FOT, compute (σ0, σ1) so that σr is consistent with sr as follows:

– If r = 0, then σ0 = s0 ⊕ (
⊕

j /∈Q s
αj

j ) and σ1 is a random string in
{0, 1}`.

– If r = 1, then σ0 is a random string in {0, 1}` and σ1 = s1 ⊕
(
⊕

j /∈Q s
1−αj

j ).
S then sends (σ0, σ1) to A′′ as if sent by S to R.

Dealing with corruptions: Corruptions of R1, . . . ,R2n,S1, . . . ,S2n may be
handled as above. For corruptions of R and S, we will consider two cases
depending on the corruption schedule. In the first case, at least one of the
parties is corrupted before the message (σ0, σ1) is sent.

– Once S is corrupted, S learns the actual input (s0, s1). If S is corrupted
before the messages (σ0, σ1) are computed, then S may simply present
(s01, s

1
1), . . . , (s

0
2n, s

1
2n) (as chosen in Phase I) as the randomness of S.

Otherwise, S modifies s
1−rj∗
j∗ (if necessary) so that both relations σ0 =

s0 ⊕ (
⊕

j /∈Q s
αj

j ) and σ1 = s1 ⊕ (
⊕

j /∈Q s
1−αj

j ) are satisfied.



– Once R is corrupted, S learns the actual input r. If R is corrupted
before the messages {αj}j /∈Q are computed, then S may simply present
(r1, . . . , r2n) (as chosen in Phase I) as the randomness of R. Otherwise,
S modifies {rj}j /∈Q so that rj = r ⊕ αj . In addition, S presents srii as
the output of Ri, i = 1, 2, . . . , 2n.

In the other case, neither party is corrupted when the message (σ0, σ1) is
sent.

– Once S is corrupted, we will modify both s0j∗ and s1j∗ so that (σ0, σ1) is
consistent with (s0, s1).

– Once R is corrupted, we will first modify {rj}j /∈Q as in the previous
case and then modify s

rj∗
j∗ so that σr is consistent with sr.

We claim that if S does not output failure, then the ensembles HYBRIDFOT,A′′,Z
and IDEALFOT,S,Z are identical. This is clear up to the end of Phase III. For
Phase IV, observe that if S and Sj∗ are not corrupted, then from the view of A′′

and Z in HYBRIDFOT,A′′,Z , the string s
1−rj∗
j∗ is truly random. As such, σ1−r is

also truly random. Similarly, if R is not corrupted, then from the view of A′′

and Z , the n values {rj}j /∈Q are truly random and thus {αj}j /∈Q are also truly
random. Furthermore, if neither S nor R is corrupted just before the message
(σ0, σ1) is sent, then from the view of A′′ and Z , both s0j∗ and s1j∗ are truly
random, and thus both σ0 and σ1 are truly random.

It remains to show that S outputs failure with negligible probability. Observe
that S only outputs failure if at the start of Phase IV, all of the following
conditions hold:

– Neither party has aborted. In addition, the sender is honest at the start of
Phase IV, so the challenge q is chosen at random.

– Amongst the n pairs of parties (S1,S2), . . . , (S2n−1,S2n), exactly one
party in each pair is corrupted. Otherwise, if there is a pair where both
parties are corrupted, then S will abort at the end of Phase III; and if there
is a pair where neither party is corrupted, then there is an uncorrupted Sj∗ .

– The set Q corresponding to the challenge q is exactly the set of n
uncorrupted parties (one in each pair).

Clearly, the last condition only holds with probability 2−n over a random choice
of q. ut

4 Malicious sender and semi-honest receiver

In this section, we reverse the OT protocol from the previous section to obtain
one that is secure for a malicious sender and a semi-honest receiver. The



INITIALIZATION.

Sender input: (sender, sid, s0, s1) where s0, s1 ∈ {0, 1}.
Receiver input: (receiver, sid, r) where r ∈ {0, 1}.

PHASE I: CALL FOT .
1. R chooses a bit ρ ∈ {0, 1} and sends (sender, sid, ρ, ρ⊕ r) to FOT .
2. S sends (receiver, sid, s0 ⊕ s1) to FOT .

PHASE II: REVERSE.

1. Upon receiving (sid, a) from FOT , S computes α = s0 ⊕ a and sends α to R.
2. Upon receiving α, R computes and outputs ρ⊕ α.

Fig. 4. THE OT-REVERSAL PROTOCOL ψ

construction (shown in Fig 4) is the same as that in [WW06], the novelty lies in
the analysis which establishes security against an adaptive adversary. We note
that the analysis though tedious, is fairly straight-forward.

Proposition 3. For every adaptive adversary A that interacts with the protocol
ψ in the FOT-hybrid model, there exists an adaptive adversary S that interacts
with FOT, such that for every environment Z ,

EXEC
FOT
ψ,A,Z ≡ IDEALFOT,S,Z .

Moreover, the corruption pattern in S is the reverse of that in A.

Proof (sketch). As usual, S works by invoking a copy of A and running a
simulated interaction of A with Z and the parties S and R in the FOT-hybrid
model. We will refer to the communication of S with Z and ψ as external
communication, and that with the simulated A as internal communication. In
addition, we will refer to the FOT functionality in the real execution as the
internal FOT, and that in the ideal execution as the external FOT. S works as
follows:

Simulating the communication with Z: Every input value that S externally
receives from Z is written into the adversary A’s input tape (as if coming
from A’s environment). Every output value written by A on its output tape
is copied to S’s own output tape (to be read by the external Z).

Simulating the case when neither party is corrupted: S internally passes (sid)
to A as if coming from the internal FOT. When S receives (sid) from the
externalFOT, S chooses α ∈ {0, 1} at random and sends it toA as if coming
from S.



Simulating the case when only the sender is corrupted: When A sends
(receiver, sid, d) to the internal FOT as S, S chooses a ∈ {0, 1} at random
and sends (sid, a) to A the output from the internal FOT. When A sends α
as S, S sends (sender, sid, a⊕ α, a⊕ α⊕ d) to the external FOT.

Simulating the case when only the receiver is corrupted: When A internally
sends (sender, sid, a0, a1) to FOT as R, S sets ρ = a0, r = a0 ⊕ a1 and
externally sends (receiver, sid, r) toFOT. Upon receiving (sid, sr) externally
from FOT, S internally sends α = sr ⊕ ρ to A as if coming from S.

Dealing with corruptions: When R is corrupted, S needs to present A with a
consistent random tape comprising of a single bit ρ. When S is corrupted, S
needs to present A with the output bit a which S receives from the internal
FOT. We consider four cases depending on the corruption schedule:

– Case 1: R is corrupted before it sends its input to the internal FOT. In
this case, S proceeds as in the case when only the receiver is corrupted
to compute ρ and r. If and when S is corrupted, S computes a = ρ⊕ rd
where d is S’s input to the internal FOT (set to s0 ⊕ s1 if S is honest
when it submits its input to the internal FOT).

– Case 2: Neither party is corrupted when α is sent. In this case, S picks a
random α ∈ {0, 1}. Then, when R is corrupted, S learns both its input
r and its output sr, and computes ρ = α ⊕ sr. When S is corrupted, S
learns its input s0, s1 and computes a = α⊕ s0.

If neither Case 1 nor Case 2 holds, then the adversary A corrupts either R
or S (or both) and learns at least one of ρ and a before seeing α.

– Case 3: A learns a first. This means A corrupts S first and corrupts R
(if at all) after S receives a from the internal FOT. Then, S proceeds
as in the case where only the sender is corrupted and picks a random
a ∈ {0, 1}. When R is corrupted, S learns r and computes ρ = a⊕ rd
(where d is again S’s input to the internal FOT).

– Case 4: A learns ρ first. This means either A corrupts R first, or A
corrupts R before S receives a from the internal FOT.12 In this case, S
picks ρ ∈ {0, 1} at random when R is corrupted, and subsequently (if
and when A corrupts S) computes a = ρ⊕ rd.

Finally, we need to check that EXEC
FOT
ψ,A,Z ≡ IDEALFOT,S,Z , which is similar to

that in [WW06] which addresses static corruptions. ut

Acknowledgments. We thank Ran Canetti, Yehuda Lindell and Manoj Prab-
hakaran for helpful discussions.
12 In particular, it could be that A corrupts S at the start of the protocol (learning nothing at this

point), and then corrupts R immediately after it sends its input to the internal FOT .



References

[B81] M. Blum. Coin flipping by telephone. In CRYPTO, 1981.
[B98] D. Beaver. Adaptively secure oblivious transfer. In ASIACRYPT, 1998.
[BCNP04] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols

with relaxed set-up assumptions. In FOCS, 2004.
[C00] R. Canetti. Security and composition of multiparty cryptographic protocols. J.

Cryptology, 13(1):143–202, 2000.
[C01] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In FOCS, 2001.
[CDMW08] S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Non-committing encryption

and adaptively secure protocols from weaker assumptions, 2008. manuscript.
[CDPW07] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with

global setup. In TCC, 2007.
[CKL06] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally

composable two-party computation without set-up assumptions. J. Cryptology,
19(2):135–167, 2006.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In STOC, 2002.

[CR03] R. Canetti and T. Rabin. Universal composition with joint state. In CRYPTO, 2003.
[DN00] I. Damgård and J. B. Nielsen. Improved non-committing encryption schemes based

on a general complexity assumption. In CRYPTO, 2000.
[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a

completeness theorem for protocols with honest majority. In STOC, 1987.
[GWZ08] J. A. Garay, D. Wichs, and H.-S. Zhou. Somewhat non-committing encryption and

efficient adaptively secure oblivious transfer. Cryptology ePrint 2008/534, 2008.
[H08] I. Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In TCC,

2008.
[IKLP06] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. Black-box constructions for

secure computation. In STOC, 2006.
[IKOS07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure

multiparty computation. In STOC, 2007.
[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious

transfer - efficiently. In CRYPTO, 2008.
[K88] J. Kilian. Founding cryptography on oblivious transfer. In STOC, 1988.
[K05] Y. T. Kalai. Smooth projective hashing and two-message oblivious transfer. In

EUROCRYPT, 2005.
[K07] J. Katz. Universally composable multi-party computation using tamper-proof

hardware. In EUROCRYPT, 2007.
[KO04] J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In

CRYPTO, 2004.
[LP07] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in

the presence of malicious adversaries. In EUROCRYPT, 2007.
[NP01] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA, 2001.
[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and

composable oblivious transfer. In CRYPTO, 2008.
[PW09] R. Pass and H. Wee. Black-box constructions of two-party protocols from one-way

functions. In TCC, 2009. to appear.
[WW06] S. Wolf and J. Wullschleger. Oblivious transfer is symmetric. In EUROCRYPT,

2006.


