
Public Key Encryption Against Related Key Attacks

Hoeteck Wee⋆

George Washington University

hoeteck@gwu.edu

Abstract. In this work, we present efficient public-key encryption schemes

resilient against linear related key attacks (RKA) under standard assumptions

and in the standard model. Specifically, we obtain encryption schemes based

on hardness of factoring, BDDH and LWE that remain secure even against an

adversary that may query the decryption oracle on linear shifts of the actual

secret key. Moreover, the ciphertext overhead is only an additive constant number

of group elements.

1 Introduction

The traditional model for security assumes that the internal states of the honest parties are

completely hidden from the adversary. We often also extend the same assumption to cryptographic

hardware devices such as a RSA SecurID token; here, we assume the internal states to be both

completely hidden and protected from the adversary. However, recent timing, ‘cold-boot’ and

virtual-machine attacks demonstrated that physical side-channels can leak partial information

about internal states of program executions [32, 25, 40]. Similarly, given physical access to a

hardware device, we can use fault injection techniques to tamper with and induce modifications

to the internal state of the device [10, 8]. When an adversary tampers with the key stored in

a cryptographic hardware device and subsequently observes the outcome of the cryptographic

primitive under this modified key, we have a related-key attack (RKA) [21, 7]. The key here may be

a signing key of a certificate authority or SSL server or a decryption key for an encryption scheme.

RKA security for public-key encryption. In this work, we study public-key encryption schemes

secure against related-key attacks (RKA), under the definition given by Bellare et. al [7]. The attack

is on the secret key, so we are considering a chosen-ciphertext related-key attack (CC-RKA). The

decryption oracle refuses to act only when the ciphertext it is given matches the challenge ciphertext

and the derived key equals the real one. We will also consider weak CC-RKA security, where the

decryption oracle refuses to act whenever the ciphertext it is given matches the challenge ciphertext.

Note that both notions imply IND-CCA security [39, 19], which correspond to the special case where

the related-key attack uses the identity function.

We view the system as having the following components: algorithms (code), public parameters,

public/secret key pairs. Of these, only the public and secret keys are subject to RKAs. The

public parameters are system-wide, meaning fixed beforehand and independent of users. In an

implementation, these parameters could be hardwired into the algorithm code and stored on tamper-

proof hardware, or distributed via some public channel where tampering is infeasible or could be

⋆ Supported by NSF CAREER Award CNS-0953626.

easily detected. In our constructions, the decryption algorithms do not use the public key and

therefore we will only consider attacks on secret keys. We note that our model is the same as that

considered in prior works [4, 7], though it is by no means the only possible model.

1.1 Our results

We present the first public-key encryption schemes resilient against linear related key attacks under

standard assumptions and in the standard model (see Appendix A for examples of such attacks).

Specifically, we obtain encryption schemes based on hardness of factoring and BDDH that remain

secure even against an adversary that may query the decryption oracle on linear shifts of the actual

secret key. In addition, we present schemes based on DDH and LWE that achieve the weaker notion

of RKA security where the adversary is not allowed to query the decryption oracle on the challenge

ciphertext.

Moreover, in all these schemes, the ciphertext overhead is only an additive constant number

of group elements. Our factoring-based scheme is also the first RKA-secure primitive based on

standard number-theoretic assumptions related to factoring, as well as the first from search

assumptions not related to lattices. (The latter is somewhat surprising in lieu of the negative

results in [22], showing that certain natural classes of constructions based on search assumptions

cannot achieve RKA-pseudorandomness).

Warm-up. The starting point of our constructions are CCA-secure encryption schemes in which

the decryption of a ciphertext C using a secret key ϕ(sk) – where ϕ denotes a linear shift – equals

the decryption of some other (efficiently computable) ciphertext C ′ using the original secret key

sk. We refer to this property as key homomorphism. Roughly speaking, this enables us to reduce

the CC-RKA-security of the scheme to its CCA-security. The same high-level strategy of exploiting

homomorphism was also used in [4, 3] to achieve RKA security for pseudorandom functions and

private-key encryption respectively.

The above strategy breaks down whenever the ciphertext C ′ equals challenge ciphertext in the

CCA-security game. We address this problem with the following modifications:

– We work with a tag-based notion of CCA-security [34, 30], where we derive the tag using a strong

one-time signature scheme and add a signature to the ciphertext. In addition, we require that the

two ciphertexts above C and C ′ (where C ′ is derived from C via key homomorphism) share the

same tag. We may then consider two cases: if C shares the same tag as the challenge ciphertext,

then the one-time signature scheme tells us that C must equal the challenge ciphertext. On

the other hand, if C has a different tag from the challenge ciphertext, then so does C ′ and we

can decrypt C ′ using the decryption oracle in the CCA-security game. This suffices for weak

CC-RKA security, where the RKA decryption oracle refuses to act whenever the ciphertext it

is given matches the challenge ciphertext.

– In order to achieve “full fledged” CC-RKA security, we need to handle the case where the

ciphertext C equals the challenge ciphertext but ϕ(sk) ̸= sk. Here, we simply stipulate that the

challenge ciphertext is an invalid ciphertext under any key sk′ ̸= sk; we refer to this property

as finger-printing (c.f. [4, 7]). In other words, a random valid ciphertext (along with the public

parameters but not the public key) uniquely determines a consistent secret key.

2

At this point, it suffices to describe how we instantiate the underlying building blocks, namely a tag-

based CCA-secure encryption scheme that achieves both finger-printing and key-homomorphism,

as well as an efficient strong one-time signature scheme.

Achieving finger-printing. As it turns out, the Cramer-Shoup CCA-secure constructions [15, 16]

do not satisfy the finger-printing; this is in some sense inherent since the smoothness requirement

in hash proof systems essentially stipulate the secret key has some residual entropy given only its

evaluation on a no instance of the underlying subset membership problem (but not the public

key). Instead, we turn to constructions of CCA-secure public-key encryption based on the “all-but-

one extraction” paradigm, starting with [9], and further developed in [12, 11, 30, 38, 26, 1, 31,

42, 35]. In these constructions, the secret key is often only a single group element, which makes

achieving finger-printing much simpler. While the Cramer-Shoup framework inherently relies on

decisional assumptions e.g., the Decisional Diffie-Hellman (DDH) assumption or the quadratic

residuosity assumption, the “all-but-one extraction” paradigm admits instantiations from search

assumptions, such as factoring. Search assumptions encompass a larger class of intractable problems

than decisional assumptions.

Achieving key homomorphism. This leads us to our final technical hurdle, namely that CCA-

secure public-key encryption schemes based on search assumptions may not be key-homomorphic.

Take for instance the Hofheinz-Kiltz factoring-based CCA-secure scheme [26]; it is not key-

homomorphic because the underlying Blum-Blum-Shub PRG is not homomorphic. As it turns

out, the “all-but-one extraction” paradigm allows us to overcome this hurdle too – informally,

the trapdoor decryption algorithm allows us to recover the seed of the PRG (for CCA security,

it suffices to recover the output of the PRG). For this reason, we present our schemes via the

framework of adaptive trapdoor relations [42, 31], which seems particularly suited for our analysis,

as it abstracts the “all-but-one” aspect for achieving CCA-security, allowing us to directly focus on

the new challenges posed by CC-RKA-security. For the concrete instantiations of CC-RKA-secure

encryption, we look at known instantiations of adaptive trapdoor relations given in [42, 35]; we

show that the ones based on hardness of factoring and BDDH satisfy key homomorphism and

finger-printing, and that the ones based on DDH and LWE satisfy key homorphism.

One-time signatures. As a result of independent interest, we present a new strong one-time

signature scheme based on hardness of factoring, which is inspired by Groth’s one-time signature

based on hardness of discrete log [24]. In Appendix B, we also sketch a generic construction of

strong one-time signatures starting from any Σ-protocol. In the application to CCA-security and

our CC-RKA-secure schemes, we want to design one-time signature schemes where the total cost

of key generation and signing is small. In our factoring-based scheme, the signing algorithm does

not require knowing the factorization of the modulus and we may therefore use a modulus from the

public parameter instead of generating RSA modulus from scratch (which requires a linear number

of exponentiations).

3

1.2 Discussion

There is a general transformation for achieving security against linear related key attacks via

algebraic manipulation detection (AMD) codes [18, 20] – in the case of encryption, this requires

modifying the key generation algorithm of a CCA-secure encryption scheme, so that the stored

secret key is the encoded version of the original secret key, using such a code (thereby increasing

the secret key size). The encoding has the property that with high probability any linear shift

of a valid codeword can be detected (and in those cases the new decryption algorithm would

simply reject). Our constructions achieve several advantages over this generic approach: first,

the key generation algorithm coincides with existing CCA-secure encryption schemes. This offers

compatibility with existing public key set-ups. Second, we avoid the blow-up in key sizes. Finally,

the existing constructions of AMD codes only work over finite fields, which are not applicable to

the constructions based on hardness of factoring.

Perspective. We do not know if linear relations capture any meaningful attacks in practice, or

whether security against linear relations would be useful for specific practical applications. As

such, we regard our results largely as proof of concept, demonstrating that we can indeed achieve

RKA-security for a non-trivial class of functions while paying only a small overhead in efficiency

and without changing existing public-key set-ups. Interestingly, our constructions exploit the fact

that certain encryption schemes are susceptible to linear related-key attacks (as implied by key

homomorphism) to obtain encryption schemes that are secure against linear related-key attacks.

Ironically, the fact that we do not know how to achieve RKA security for larger classes of relations

is intimately related to the fact that we do not know of theoretical attacks for such classes!

Additional related work. The works of Lucks, Goldenberg and Liskov, and Bellare, Cash and

Miller [33, 22, 7] gave constructions of RKA-secure primitives from RKA-secure building blocks,

but provided no new constructions of the latter and hence of the former. Also, a number of works

gave RKA-secure schemes in the standard model, notably symmetric encryption [2, 3], signatures

[23] (based on q-ary assumption) in addition to PRFs [4]; these schemes all rely lattices and Diffie-

Hellman type assumptions, none of these are based on number-theoretic assumptions. There are

also feasibility results on RKA-secure public-key encryption based on non-standard assumptions,

e.g. [28] as well as results on tamper-resilient UC-secure computation [14]. We also point out here

that encryption schemes secure against linear related-key attacks have also found applications in

garbled circuits used in secure computation [3, 29].

Organization. We present our main construction in Section 3. We present the instantiations from

various classes of assumptions in Sections 5 through 6.

4

2 Preliminaries

Strong one-time signatures. For a stateful adversary A, we define the advantage function

Adv.OTSA(λ) to be:

Pr

Verify(vksig,M ′, σ′) = 1

and (M ′, σ′) ̸= (M,σ)
:

(vksig, sksig)← SignKeyGen(1λ);

M ← A(vksig);
σ ← Sign(sksig,M);

(M ′, σ′)← A(σ)

A signature scheme is a strong one-time signature if for all PPT adversaries A, the advantage

Adv.OTSA(λ) is a negligible function in λ.

Adaptive trapdoor relations. Informally, trapdoor functions are a family of functions {Ffid}
that are easy to sample, compute and invert with trapdoor, but hard to invert without the trapdoor

(we always assume that the functions are injective). In the tag-based setting, the function takes

an additional input, namely the tag; also, the trapdoor is independent of the tag. A family of

adaptive trapdoor functions [31] is one that remains one-way even if the adversary is given access

to an inversion oracle, except the adversary cannot query the oracle on the same tag as that in the

challenge. In a trapdoor relation, instead of requiring that Ffid be efficiently computable, we only

require that we can efficiently sample from the distribution (s,Ffid(tag, s)) for a random s given

fid,tag.

More precisely, a family of (tag-based) adaptive trapdoor relations [42] is given by a family of

injective functions {Ffid} that satisfies the following properties:

(trapdoor generation.) There is an efficient randomized algorithm TDG that outputs a random

(fid,tid).

(public sampling.) There is an efficient randomized algorithm PSamp that on input (fid,tag),

outputs (s,Ffid(tag, s)) for a random s.

(trapdoor inversion.) There is an efficient algorithm TdInv such that for all (fid,tid)← TDG

and for all tag, y, computes TdInv(tid,tag, y) = F−1
fid(tag, y).

(adaptive one-wayness.) For all efficient stateful adversaries A, the following quantity is

negligible in λ:

Pr

s = s′ :

tag∗ ← A(1λ);
(fid,tid)←r TDG(1λ);

(s, y)←r PSamp(fid,tag∗);

s′ ← AF−1
fid (·,·)(fid, y)

where A is allowed to query F−1

fid(·, ·) on any tag different from tag∗.

It is convenient to work with the following stronger notion of adaptive pseudorandomness [37],

where the adversary has to distinguish G(s) from random given y and an inversion oracle, for some

5

pseudorandom generator G associated with the family {Ffid}. There is indeed a generic way to

obtain adaptive pseudorandomness from adaptive one-wayness via the Goldreich-Levin hard-core

bit (since the proof relativizes with respect to the inversion oracle). However, for the concrete

instantiations we consider here, there are more efficient ways to derive multiple hard-core bits.

(adaptive pseudorandomness.) For all efficient stateful adversaries A, the following quantity

is negligible in λ:

Pr

b = b′ :

tag∗ ← A(1λ);
(fid,tid)←r TDG(1λ);

(s, y)←r PSamp(fid,tag∗);

K0 := G(s);K1 ←r {0, 1}λ;
b←r {0, 1};
b′ ← AF−1

fid (·,·)(fid, y,Kb)

− 1

2

where A is allowed to query F−1
fid(·, ·) on any tag different from tag∗.

2.1 RKA Security

Related-key derivation functions. Following [5], a class of Φ of related-key deriving functions

(RKDFs) is a finite set of functions, all with the same domain and range that could possibly depend

on the public parameter pp. The class of functions should also admit an efficient membership test,

and its functions should be efficiently computable. For our concrete instantiations, we consider the

class Φ+ of linear shifts.

CC-RKA security. We follow the definition of related-key attack (RKA) security from [7, 4]. For

a stateful adversary A, we define the advantage function Adv.RKA.PKEA,Φ(λ) to be:

Pr

b = b′ :

pp← Setup(1λ); (pk, sk)← Gen(pp);

(m0,m1)← ARKA.Dec(sk,·,·)(pp,pk), |m0| = |m1|;
b←r {0, 1};
C∗ ← Enc(pk,mb);

b′ ← ARKA.Dec(sk,·,·)(C∗)

− 1

2

where RKA.Dec(sk, ·, ·) is an oracle that on input (ϕ,C): returns Dec(ϕ(sk), C). We restrict the

adversary A to only make queries (ϕ,C) such that ϕ ∈ Φ and (ϕ(sk), C) ̸= (sk, C∗). An encryption

scheme is said to be Φ-CC-RKA secure if for all PPT A, the advantage Adv.RKA.PKEA,Φ(λ) is a

negligible function in λ.

Weaker CC-RKA security. We also consider weak CC-RKA security, where in the security

experiment, we further restrict the adversary A to only make queries (ϕ,C) such that ϕ ∈ Φ and

C ̸= C∗ where C∗ is the challenge ciphertext. Previously, we also allow queries (ϕ,C∗) as long as

ϕ(sk) ̸= sk.

6

3 Realization from Adaptive Trapdoor Relations

In this section, we present our constructions of RKA-secure encryption via adaptive trapdoor

relations. We begin by introducing two additional notions for adaptive trapdoor relations.

Φ-Key homomorphism. We say that {Ffid} is Φ-key homomorphic if there is a PPT algorithm

T such that with overwhelming probability over pp, for all ϕ ∈ Φ and all tid,tag, y:

TdInv(ϕ(tid),tag, y) = TdInv(tid,tag, T (pp, ϕ,tag, y))

In fact, a weaker formulation that asserts an oracle PPT algorithm T that outputs TdInv(ϕ(tid),tag, y)

given oracle access to TdInv(tid,tag, ·) suffices for our proofs. This latter formulation is more

similar to the formulation of key-malleability in [4, Section 3.1] for achieving RKA-security for

pseudorandom functions. A similar notion also appears in [3] for symmetric-key encryption.

Φ-Fingerprinting. Informally, Φ-fingerprinting stipulates that any attempt to maul tid invali-

dates a random output of Ffid(·). More formally, for a stateful adversary A, we define the advantage
function Adv.FPA,Φ(λ) to be:

Pr

TdInv(ϕ(tid),tag∗, y) ̸=⊥
and ϕ ∈ Φ and ϕ(tid) ̸= tid

:

tag∗ ← A(pp);
(fid,tid)← TDG(pp);

(s, y)←r PSamp(fid,tag∗);

ϕ← A(pp, fid,tid, y);

A trapdoor relation admits a Φ-fingerprint if for all PPT adversariesA, the advantage Adv.FPA,Φ(λ)

is a negligible function in λ. We stress that in the above experiment, the adversary receives tid,

which it can use to compute s from y.

3.1 Our construction

We present our construction in Fig 1, which is the same as the construction of CCA-secure

encryption schemes from adaptive trapdoor relations via strong one-time signatures, as given in

[31, 42].

Theorem 1. Suppose the following hold:

1. {Ffid} is a family of adaptive trapdoor relations;

2. {Ffid} is Φ-key homomorphic;

3. {Ffid} admits a Φ-fingerprinting;

4. (SignKeyGen, Sign,Verify) is a strong one-time signature scheme.

Then, (Gen,Enc,Dec) as given in Fig 1 is a Φ-CC-RKA secure public-key encryption scheme.

Moreover, if all of the conditions hold apart from Φ-fingerprinting, then (Gen,Enc,Dec) as given in

the above construction is a Φ-weak-CC-RKA secure public-key encryption scheme.

7

RKA PKE

Gen(pp): Run TDG(pp)→ (fid,tid). Output (pk, sk) := (fid,tid).

Enc(pk,m): On input pk and a message m:

1. Run SignKeyGen(pp)→ (vksig, sksig);

2. Run PSamp(pk,vksig)→ (s, y);

3. Compute ψ := G(s)⊕m;

4. Run Sign(sksig, y∥ψ)→ σ;

Output as ciphertext vksig∥σ∥y∥ψ

Dec(sk, C): On input sk and a ciphertext C = vksig∥σ∥y∥ψ,
1. Output ⊥ if Verify(vksig, y∥ψ, σ) = reject.

2. Compute s := TdInv(tid,vksig, y). Output ⊥ if s =⊥.
Otherwise, output G(s)⊕ ψ

Fig. 1. CC-RKA security from adaptive trapdoor relations

We observe that correctness of the encryption scheme follows readily from the correctness of

trapdoor inversion. Φ-CC-RKA security follows from the next technical claim. After the proof,

we explain how to deduce Φ-weak-CC-RKA security without relying on Φ-fingerprinting.

Lemma 1. Let A be an adversary against the Φ-CC-RKA security of the above encryption scheme

(Gen,Enc,Dec) that makes at most Q oracle queries. Then, we can construct an adversary B0 against
the strong one-time security of (SignKeyGen, Sign,Verify), an adversary B1 against Φ-fingerprinting

of {Ffid}, and an adversary B2 against adaptive pseudorandomness of {Ffid} and G such that:

Adv.RKA.PKEA,Φ(λ) ≤ Adv.OTSB0(λ) + Adv.FPB1,Φ(λ) + Adv.Adaptive.PRGB2(λ)

The running times of B0 and B1 are that of A plus an additional polynomial overhead that grows

linearly with Q. The running time of B2 is similar to that of A, and B2 makes at most Q oracle

queries.

Proof. In the following, we write C∗ = vksig∗∥σ∗∥y∗∥ψ∗ to denote the ciphertext in the Φ-CC-

RKA experiment. We proceed via a sequence of games. We start with Game 0 as in the Φ-CC-RKA

experiment and end up with a game where the view of A is statistically independent of the challenge

bit b. The sequence of games is analogous to those for obtaining CCA security from all-but-one

extractable hash proofs and adaptive trapdoor functions [42, 31]; the main difference lies in handling

the RKA queries in the first two games.

game 1: eliminating tag reuse. We replace the decapsulation mechanism RKA.Dec with RKA.Dec′

that outputs ⊥ on ciphertexts vksig∥σ∥y∥ψ such that vksig = vksig∗ but otherwise proceeds

8

like RKA.Dec. We show that Games 0 and 1 are computationally indistinguishable, by arguing

that RKA.Dec and RKA.Dec′ essentially agree on all inputs vksig∥σ∥y∥ψ. We consider four

cases depending on the input:

– Case 1: vksig ̸= vksig∗. Here, RKA.Dec and RKA.Dec′ agree by definition of RKA.Dec′.

– Case 2: vksig = vksig∗, (σ, y∥ψ) = (σ∗, y∗∥ψ∗) and ϕ(sk) = sk. Such queries are ruled out

by definition of the Φ-CC-RKA security game.

– Case 3: vksig = vksig∗, (σ, y∥ψ) ̸= (σ∗, y∗∥ψ∗). Here, by the security of the signature

scheme, we have:

Pr[Verify(vksig, y∥ψ, σ) = 1] ≤ Adv.OTS(λ)

Therefore, RKA.Dec outputs ⊥ except with negligible probability.

– Case 4: vksig = vksig∗, (σ, y∥ψ) = (σ∗, y∗∥ψ∗) and ϕ(sk) ̸= sk. Here, by the Φ-

fingerprinting property, we have:

Pr[TdInv(ϕ(sk),vksig∗, y) ̸=⊥] ≤ Adv.FP(λ)

(Here, we use the fact that the adversary in the Φ-fingerprinting experiment is given tid,

which is needed to simulate the decryption oracle.) Therefore, RKA.Dec outputs ⊥ except

with negligible probability.

game 2: decrypting using F−1
fid(·, ·). Next, we simulate oracle access to RKA.Dec′ using oracle

access to F−1
fid(·, ·) as follows: on input (ϕ,vksig∥σ∥y∥ψ),

1. If vksig = vksig∗ or Verify(vksig, y∥ψ, σ) = 0, output ⊥.
2. Compute s′ := F−1

fid(vksig, T (pp, ϕ,vksig, y)). Output ⊥ if s′ =⊥.
3. Otherwise, output ψ := G(s′)⊕ ψ.

Note that we only query F−1
fid(·, ·) on tags different from vksig∗. Observe that

s′ = F−1
fid(vksig, T (pp, ϕ,vksig, y))

= TdInv(tid,vksig, T (pp, ϕ,vksig, y)) using trapdoor inversion

= TdInv(ϕ(tid),vksig, y) using Φ-key homomorphism

Correctness of the simulation follows readily, and thus Games 1 and 2 are identically distributed.

game 3: replacing G(·) with random. In the computation of Enc(pk,mb) in the Adv.RKA.PKE

experiment, we replace ψ∗ := G(s∗)⊕mb with ψ
∗ := K⊕mb where K ←r {0, 1}λ. Then, Games

2 and 3 and computationally indistinguishable by adaptive pseudorandomness using vksig∗ as

the selective tag.

We conclude by observing that in Game 3, the distribution of ϕ∗ is statistically independent of the

challenge bit b. Hence, the probability that b′ = b is exactly 1/2. ⊓⊔

Observe that in the above proof, we only used Φ-fingerprinting in the analysis of Game 1 Case

4. For Φ-weak-CC-RKA security, the queries for this case are ruled out by definition and therefore

we do not need Φ-fingerprinting.

9

4 Instantiations from Hardness of Factoring

Fix a Blum integer N = PQ for λ-bit primes P,Q ≡ 3 (mod 4) such that P = 2p+1 and Q = 2q+1

for primes p, q. Let JN denote the subgroup of Z∗
N with Jacobi symbol +1, and let QRN denote the

subgroup of quadratic residues. Observe that |JN | = 2pq = 2|QRN |. Following [27], we work over

the cyclic group of signed quadratic residues, given by the quotient group QR+
N := JN/± 1. QR+

N

is a cyclic group of order pq and is efficiently recognizable (by verifying that the Jacobi symbol is

+1). Here, we use a hash function H : {0, 1}∗ → {0, 1}λ, though we will treat the output of H as

a number in Z2λ .

4.1 Strong one-time signature

For main construction in Section 3, we require efficient strong one-time signature schemes, where

the total computational complexity for key generation and signing is small. In addition, we want

short verification key and signatures. Previous factoring-based one-time signatures [41, 36] require

generating an RSA modulus during key generation, which is computationally expensive. We provide

a new construction that uses a public modulus. For the one-time signature, we can work with any

Blum integer N = PQ, that is, we do not require that P,Q be safe primes.

SignKeyGen(pp),pp = (N):

sksig := (s0, s1, x)←r QR+
N

(u0, u1, c) := (s2
λ

0 , s
2λ
1 , x

2λ)
vksig := (u0, u1, c)
return (vksig, sksig)

Sign(sksig,m):

e←r Z2λ

w := x · se0 · s
H(m)+e mod 2λ

1

return (e, w) ∈ Z2λ ×QR+
N

Verify(vksig,m, (e, w))

check w2λ = c · ue0 · u
H(m)+e mod 2λ

1

Fig. 2. Factoring-based strong one-time signature

Theorem 2. Suppose factoring Blum integers is hard on average and H is collision resistant.

Then, the protocol (SignKeyGen, Sign,Verify) described above is a strong one-time signature scheme

for signing messages m ∈ {0, 1}∗ with perfect correctness.

Proof. Correctness is straight-forward. To establish security, we first describe two simulators

Sim0,Sim1 that given (u0, s1) and (s0, u1) respectively, simulates the verification key and the

signature on a single message.

Sim0(N, u0, s1): Pick w̃ ←r QR+
N , e←r Z2λ . Output

vksig := (u0, u1, w̃
2λ · u−e

0)

When asked to sign a message m ∈ {0, 1}∗, output(
e, w̃ · sH(m)+e mod 2λ

1

)
10

Sim1(N, s0, u1): Pick w̃ ←r QR+
N , ẽ←r Z2λ . Output

vksig := (u0, u1, w̃
2λ · u−ẽ

1)

When asked to sign a message m ∈ {0, 1}∗, output(
ẽ−H(m) mod 2λ, w̃ · sẽ−H(m) mod 2λ

0

)
It is straight-forward to check that the outputs of both Sim0 and Sim1 are identically distributed to

the output of a honestly generated vksig and an honestly generated signature on a single message.

Now, we consider several cases for a forgery (e′, w′) on m′:

– m′ = m, same e′ = e: then, w′ = w.

– e ̸= e′: in Sim0, the forgery will allow us to compute the 2λ’th root of ue−e′

0 where |e− e′| < 2λ,

i.e.:

(ue−e′

0)2
−λ

=
w

w′ ·
s
H(m′)+e′

1

s
H(m)+e
1

Using Shamir’s GCD in the exponent algorithm, this value along with u0 allows us to recover

a square root of u0.

– e = e′, H(m) ̸= H(m′): in Sim1, extract a square root of u1, analogous to the previous case.

– e = e′, H(m) = H(m′), but m′ ̸= m: contradict collision resistance of H.

That is, we can show that if an adversary outputs a forgery with probability ϵ, then we can compute

a square root of a random challenge u with probability roughly ϵ/2 as follows: we pick b←r {0, 1},
run Simb with u as ub and choosing a random s1−b. ⊓⊔

4.2 Adaptive trapdoor relations

TDG(pp),pp = (N, g):

tid←r [(N − 1)/4]

fid := g2
λ+ℓ·tid

return (fid,tid)

G(s) := BBS(s)

PSamp(fid,tag; r):

(s, u) := (g2
ℓr, g2

λ+ℓr)
τ := (fid · gtag)r
return (s, u∥τ)

TdInv(tid,tag, u∥τ):
check u, τ ∈ QR+

N

check τ2
λ+ℓ

= utag+2λ+ℓ·tid

find a, b, c ∈ Z: 2c = atag+ b2λ+ℓ

return (τa · ub−a·tid)2
ℓ−c

Fig. 3. An adaptive trapdoor relation based on factoring [42, 26]

The class Φ+. The functions ϕ∆ : [N/4]→ Z in this class are indexed by ∆ ∈ [−N/4, N/4], where
ϕ∆(tid) := tid+∆.

Φ+-key homomorphism. Observe that for all tid,∆ ∈ Z, all tag and all u, τ ∈ QR+
N :

TdInv(tid+∆,tag, u∥τ) = TdInv(tid,tag, u∥(τ · u−∆))

11

The above equality follows from the fact that TdInv returns s = u2
−λ

in both sides of the equation

when the following condition holds

τ2
λ+ℓ

= utag+2λ+ℓ·(tid+∆) ⇐⇒ (τ · u−∆)2
λ+ℓ

= utag+2λ+ℓ·tid

and ⊥ otherwise.

Φ+-fingerprinting. We establish a stronger statement, namely Φ-fingerprinting for any class Φ of

efficiently computable functions ϕ : [(N − 1)/4]→ {−N, . . . , N}. Fix an adversary A. Let y = u∥τ
denote the challenge in the security experiment. Furthermore, suppose A outputs ϕ such that

ϕ(tid) ̸= tid and TdInv(ϕ(tid),tag∗, y) ̸=⊥. This means:

τ2
λ+ℓ

= utag
∗+2λ+ℓ·tid = utag

∗+2λ+ℓ·ϕ(tid)

and thus

utid = uϕ(tid)

With probability 1 − O(
√
N), both g and u are generators of QR+

N . This means tid = ϕ(tid)

(mod ϕ(N)/4). This would allow us to factor N .

5 Instantiations from Diffie-Hellman Assumptions

5.1 Strong one-time signature from hardness of discrete log

For completeness, we present here Groth’s one-time signature scheme [24, Section 5.4]; we modified

the underlying algebra in order to clarify the similarity to our factoring-based scheme. Here, we use

a hash function H : {0, 1}∗ → Zq. The scheme is secure if computing discrete log is hard on average

and H is collision resistant.

SignKeyGen(pp),pp = (G, q, g):
sksig := (s0, s1, x)←r Z3

q

(u0, u1, c) := (gs0 , gs1 , gx)
vksig := (u0, u1, c)
return (vksig, sksig)

Sign(sksig,m):

e←r Zq

w := x+ e · s0 + (H(m) + e) · s1
return (e, w) ∈ Zq × Zq

Verify(vksig,m, (e, w))

check gw = c · ue0 · u
H(m)+e
1

Fig. 4. Discrete-log-based strong one-time signature [24]

5.2 Instantiations from BDDH

The class Φ+. The functions ϕ∆ : Zq → Zq in this class are indexed by ∆ ∈ Zq, where ϕ∆(tid) :=

tid+∆.

12

TDG(pp),pp = (G, q, g, gα, gγ):
tid←r Zq; fid := gtid

return (fid,tid)

G(s) := e(s, gγ)

PSamp(fid,tag; r):

(s, u) := ((gα)r, gr)
τ := (fid · (gα)tag)r
return (s, u∥τ)

TdInv(tid,tag, u∥τ):
compute s := (τ · u−tid)tag

−1

if e(g, s) = e(gα, u):
return s, else ⊥

Fig. 5. An adaptive trapdoor relation based on BDDH [42, 9]

Φ+-key homomorphism. Observe that for all tid,∆ ∈ Zq, all tag and all u, τ ∈ G:

TdInv(tid+∆,tag, u∥τ) = TdInv(tid,tag, u∥(τ · u−∆))

The above equality follows from the fact that on both sides of the equation, TdInv computes s such

that

stag = τ · u−(tid+∆) = (τ · u−∆) · u−tid

Φ+-fingerprinting. We establish a stronger statement, namely Φ-fingerprinting for any class Φ of

functions ϕ : Zq → Zq. Fix an adversary A. Let y = u∥τ denote the challenge in the security

experiment. Furthermore, suppose A outputs ϕ such that TdInv(ϕ(tid),tag∗, y) ̸=⊥. This means:

(τ · u−tid)tag
∗−1

= (τ · u−ϕ(tid))tag
∗−1

and thus

utid = uϕ(tid)

Hence, tid = ϕ(tid).

5.3 Weakly CC-RKA-secure schemes from DDH

TDG(pp),pp = (G, q, g):
tid := (α, β, γ0, γ1)←r Z4

q

fid := (gα, gβ, gγ0 , gγ1)
return (fid,tid)

G(s) := s

PSamp(fid,tag; r):

(s, u) := ((gα)r, gr)
τ0 := (gγ0 · (gα)tag)r
τ1 := (gγ1 · (gβ)tag)r
return (s, u∥τ0∥τ1))

TdInv(tid,tag, u∥τ0∥τ1):
compute s0 := (τ0 · u−γ0)tag

−1

compute s1 := (τ1 · u−γ1)tag
−1

if s0 = uα ∧ s1 = uβ :
return s0, else ⊥

Fig. 6. An adaptive trapdoor relation based on DDH [42, 13]

The class Φ+. The functions ϕ∆ : Z4
q → Z4

q in this class are indexed by ∆ ∈ Z4
q , where ϕ∆(tid) :=

tid+∆.

Φ+-key homomorphism. Observe that for all tid,∆ ∈ Z4
q , all tag and all u, τ0, τ1 ∈ G:

TdInv(tid+∆,tag, u∥τ0∥τ1) = TdInv(tid,tag, u∥(τ0 · u−∆)∥(τ1 · u−∆))

13

6 Instantiations from LWE

We rely on a construction from [35, 1]. Here, G is a public matrix with special structure for which

the bounded-distance decoding problem is easy.

TDG(pp),pp = (G,A) ∈ Zn×(w+m)
q :

tid := R←r Dm×w
q

fid := A′ := AR
return (fid,tid)

PSamp(fid,tag):

u := A
⊤
s+ e, s←r Zn

q

Atag := A′ + tag ·G
v := A⊤

tags+ e′

return (s,u∥v)

TdInv(tid,tag,u∥v):
compute v′ = v −R⊤u
solve s s.t. v′ ≈ tag ·G⊤s
if ∥v′ − tag ·G⊤s∥, ∥u−A

⊤
s∥

are small:
return s else ⊥

Fig. 7. An adaptive trapdoor relation based on LWE [35]

The class Φ+. The functions ϕ∆ : Zm×w
q → Zm×w

q in this class are indexed by ∆ ∈ Zm×w
q , where

ϕ∆(tid) := tid+∆.

Φ+-key homomorphism. Observe that for all R,∆ ∈ Zm×w
q , all tag and all u∥v ∈ Zm+w

q :

TdInv(R+∆,tag,u∥v) = TdInv(R,tag,u∥(v −∆⊤u))

The above equality just follows from the fact that on both sides of the equation, TdInv computes

v′ = v − (R+∆)⊤u = (v −∆⊤u)−R⊤u

14

Acknowledgments. I would like to thank David Cash, Dennis Hofheinz, Payman Mohassel and

Daniel Wichs for helpful discussions and the anonymous referees for detailed and helpful feedback.

References

[1] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In EUROCRYPT, pages

553–572, 2010.

[2] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure encryption

based on hard learning problems. In CRYPTO, pages 595–618, 2009.

[3] B. Applebaum, Y. Ishai, and E. Kushilevitz. Semantic security under related-key attacks and applications. In

ICS, pages 45–55, 2011.

[4] M. Bellare and D. Cash. Pseudorandom functions and permutations provably secure against related-key attacks.

In CRYPTO, pages 666–684, 2010.

[5] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and

applications. In EUROCRYPT, pages 491–506, 2003.

[6] M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and Fiat-Shamir without random

oracles. In Public Key Cryptography, pages 201–216, 2007.

[7] M. Bellare, D. Cash, and R. Miller. A comparitive study of achievability of security against related-key attack.

In Asiacrypt, pages 486–503, 2011. Also Cryptology ePrint Archive, Report 2011/252.

[8] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In CRYPTO, pages 513–525,

1997.

[9] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random oracles. In

EUROCRYPT, pages 223–238, 2004.

[10] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic protocols for faults.

In EUROCRYPT, pages 37–51, 1997.

[11] X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-based techniques. In ACM

CCS, pages 320–329, 2005.

[12] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In EUROCRYPT,

pages 207–222, 2004.

[13] D. Cash, E. Kiltz, and V. Shoup. The Twin Diffie-Hellman problem and applications. J. Cryptology, 22(4):

470–504, 2009.

[14] S. G. Choi, A. Kiayias, and T. Malkin. BiTR: Built-in tamper resilience. In Asiacrypt, 2011.

[15] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext

attack. In CRYPTO, pages 13–25, 1998.

[16] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key

encryption. In EUROCRYPT, pages 45–64, 2002. Also, Cryptology ePrint Archive, Report 2001/085.

[17] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness

hiding protocols. In CRYPTO, pages 174–187, 1994.

[18] R. Cramer, Y. Dodis, S. Fehr, C. Padró, and D. Wichs. Detection of algebraic manipulation with applications

to robust secret sharing and fuzzy extractors. In EUROCRYPT, pages 471–488, 2008.

[19] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391–437, 2000.

[20] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In ICS, pages 434–452, 2010.

[21] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic tamper-proof (ATP) security:

Theoretical foundations for security against hardware tampering. In TCC, 2004.

[22] D. Goldenberg and M. Liskov. On related-secret pseudorandomness. In TCC, pages 255–272, 2010.

[23] V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. In TCC, pages 182–200, 2011.

[24] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In

ASIACRYPT, pages 444–459, 2006.

[25] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman,

J. Appelbaum, and E. W. Felten. Lest we remember: cold-boot attacks on encryption keys. Commun. ACM, 52

(5):91–98, 2009.

[26] D. Hofheinz and E. Kiltz. Practical chosen ciphertext secure encryption from factoring. In EUROCRYPT, pages

313–332, 2009.

15

[27] D. Hofheinz and E. Kiltz. The group of signed quadratic residues and applications. In CRYPTO, pages 637–653,

2009.

[28] Y. T. Kalai, B. Kanukurthi, and A. Sahai. Cryptography with tamperable and leaky memory. In CRYPTO,

pages 373–390, 2011.

[29] J. Katz and L. Malka. Constant-round private function evaluation with linear complexity. In Asiacrypt, pages

556–571, 2011. Also Cryptology ePrint Archive, Report 2010/528.

[30] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC, pages 581–600, 2006.

[31] E. Kiltz, P. Mohassel, and A. O’Neil. Adaptive trapdoor functions and chosen ciphertext security. In

EUROCRYPT, pages 673–692, 2010.

[32] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In CRYPTO,

pages 104–113, 1996.

[33] S. Lucks. Ciphers secure against related-key attacks. In FSE, pages 359–370, 2004.

[34] P. D. MacKenzie, M. K. Reiter, and K. Yang. Alternatives to non-malleability: Definitions, constructions, and

applications. In TCC, pages 171–190, 2004.

[35] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EUROCRYPT, 2012.

To appear. Also, Cryptology ePrint Archive, Report 2011/501.

[36] P. Mohassel. One-time signatures and chameleon hash functions. In Selected Areas in Cryptography, pages

302–319, 2010.

[37] O. Pandey, R. Pass, and V. Vaikuntanathan. Adaptive one-way functions and applications. In CRYPTO, pages

57–74, 2008.

[38] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC, pages 187–196, 2008.

[39] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack.

In CRYPTO, pages 433–444, 1991.

[40] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my cloud: exploring information

leakage in third-party compute clouds. In ACM Conference on Computer and Communications Security, pages

199–212, 2009.

[41] A. Shamir and Y. Tauman. Improved online/offline signature schemes. In CRYPTO, pages 355–367, 2001.

[42] H. Wee. Efficient chosen-ciphertext security via extractable hash proofs. In CRYPTO, pages 314–332, 2010.

16

A Related-key Attacks on Cramer-Shoup

We point out two simple linear RKAs on the Cramer-Shoup CCA-secure encryption scheme [15]

based on DDH; these attacks also highlight some of the main technical difficulities in achieving

RKA security. We stress that this does not undermine the Cramer-Shoup scheme in any way, since

the scheme was not designed to resist RKAs. The scheme is as follows:

Gen(pp),pp = (G, q, g1, g2):
sk := (x, y, a, b, a′, b′)←r Z6

q

(h, c, d) := (gx1g
y
2 , g

a
1g

b
2, g

a′
1 g

b′
2)

pk := (h, c, d)
return (pk, sk)

Enc(pk,m; r):

(u, v, w) := (gr1, g
r
2, h

r ·m)
t := TCR(u∥v∥w)
e := (cdt)r

return u∥v∥w∥e

Dec(sk, u∥v∥w∥e):
t := TCR(u∥v∥w)
if ua+t·a′ · vb+t·b′ = e:
return w/(uxvy) else ⊥

Suppose we are given a valid encryption (u, v, w, e) of some unknown message m. The following

attacks allow us to recover m by making decryption queries on a related secret key. Specifically, for

any ∆ ∈ Zq,

– if we change a in the secret key to a+∆, observe that (u, v, w, e · u∆) decrypts to m under the

modified secret key.

– if we change x in the secret key to x + ∆, observe that (u, v, w, e) decrypts to m · u−∆ under

the modified secret key.

In both cases, we can easily recover the message m given the output of the decryption algorithm

on the modified secret key.

B Strong One-Time Signatures from Σ Protocols

We sketch here a generic construction of one-time signatures for Σ protocols. We start with a

Σ-protocol Π for any one-way relation. Applying the CDS-transform [17], we may derive another

Σ-protocol that given a pair of instances (u0, u1), proves knowledge for one of the two witnesses.

Now consider the following signature scheme: the verification key is (u0, u1, c0, c1) and a signature on

a message M is a triplet (e, a0, a1) such that (c0, e, a0) and (c1,M ⊕ e, a1) are accepting transcripts

for Π for the instances u0 and u1 respectively.

We show that this scheme is one-time unforgeable; moreover, if Π has unique responses, then the

scheme is one-time strongly unforgeable. The proof of security is very simple: we generate (u0, u1)

along with the witness for ub, where b ∈ {0, 1} is chosen at random. Using the witness, we can

simulate the signature oracle for a single message. Given a forgery, we can extract a witness to one

of u0, u1, which with probability 1/2, is different from the one we already know.

Constructions of one-time signatures from Σ-protocols were also given in [36, 6]. However, the

transformation given here as well as our factoring-based instantiation appear to be novel.

17

