
Improved Non-Committing Encryption with
Applications to Adaptively Secure Protocols

Seung Geol Choi1?, Dana Dachman-Soled1?, Tal Malkin1?, and Hoeteck Wee2??

1 Columbia University. {sgchoi,dglasner,tal}@cs.columbia.edu
2 Queens College, CUNY. hoeteck@cs.qc.cuny.edu

Abstract. We present a new construction of non-committing encryption schemes.
Unlike the previous constructions of Canetti et al. (STOC ’96) and of Damgård
and Nielsen (Crypto ’00), our construction achieves all of the following proper-
ties:

– Optimal round complexity. Our encryption scheme is a 2-round protocol,
matching the round complexity of Canetti et al. and improving upon that in
Damgård and Nielsen.

– Weaker assumptions. Our construction is based on trapdoor simulatable
cryptosystems, a new primitive that we introduce as a relaxation of those
used in previous works. We also show how to realize this primitive based on
hardness of factoring.

– Improved efficiency. The amortized complexity of encrypting a single bit is
O(1) public key operations on a constant-sized plaintext in the underlying
cryptosystem.

As a result, we obtain the first non-committing public-key encryption schemes
under hardness of factoring and worst-case lattice assumptions; previously, such
schemes were only known under the CDH and RSA assumptions. Combined
with existing work on secure multi-party computation, we obtain protocols for
multi-party computation secure against a malicious adversary that may adaptively
corrupt an arbitrary number of parties under weaker assumptions than were
previously known. Specifically, we obtain the first adaptively secure multi-party
protocols based on hardness of factoring in both the stand-alone setting and the
UC setting with a common reference string.

Key words: public-key encryption, adaptive corruption, non-committing encryp-
tion, secure multi-party computation.

1 Introduction

Secure multi-party computation (MPC) allows several mutually distrustful
parties to perform a joint computation without compromising, to the greatest

? supported in part by NSF Grants CCF-0347839, CNS-0716245, CNS-0831094 and SBE-
0245014.

?? partially supported by a PSC-CUNY Award, and part of this work was done while a post-doc
at Columbia University.

extent possible, the privacy of their inputs or the correctness of the outputs. An
important criterion in evaluating the security guarantee is how many parties an
adversary is allowed to corrupt and when the adversary determines which parties
to corrupt. Ideally, we want to achieve the strongest notion of security, namely,
against an adversary that corrupts an arbitrary number of parties, and adaptively
determines who and when to corrupt during the course of the computation
(and without assuming erasures3). Even though the latter is a very natural
and realistic assumption about the adversary, most of the MPC literature only
addresses security against a static adversary, namely one that chooses (and fixes)
which parties to corrupt before the protocol starts executing. And if indeed such
protocols do exist, it is important to answer the following question:

What are the cryptographic assumptions under which we can
realize MPC protocols secure against a malicious, adaptive
adversary that may corrupt a majority of the parties?

Towards answering this question, we revisit the problem of constructing
non-committing encryption schemes, a cryptographic primitive first introduced
by Canetti et al. [CFGN96] as a tool for building adaptively secure MPC
protocols in the presence of an honest majority. Informally, non-committing
encryption schemes are semantically secure, possibly interactive encryption
schemes, with the additional property that a simulator can generate special
ciphertexts that can be opened to both a 0 and a 1. In a more recent work,
Canetti et al. [CLOS02] (extending [B98]) showed how to construct adaptively
secure oblivious transfer protocols starting from non-committing public-key
encryption schemes (i.e. the key generation algorithm must be non-interactive),
which may in turn be used to construct MPC protocols secure against a
malicious, adaptive adversary that may corrupt an arbitrary number of parties.

Unfortunately, the only known constructions of non-committing public-
key encryption schemes (PKEs) are based on the CDH and RSA assumptions
[CFGN96] and the construction exploits in a very essential way that these
assumptions give rise to families of trapdoor permutations with a common do-
main. If we allow for an interactive key generation phase, Damgård and Nielsen
[DN00], building on [B97,CFGN96], constructed 3-round non-committing en-
cryption schemes based on a more general assumption, that of simulatable
PKEs, which may in turn be realized from DDH, CDH, RSA and more recently,
worst-case lattice assumptions [GPV08] (see figure 1).

3 Refer to [C00, Section 5.2] for a discussion on how trusted erasures may be a problematic
assumption.

1.1 Our results

First, we present a new construction of non-committing encryption schemes,
which simultaneously improves upon all of the previous constructions in
[CFGN96,DN00]:

Optimal Round Complexity. We provide a construction of non-committing
PKEs from simulatable cryptosystems. Our construction is surprisingly sim-
ple - a twist to the standard cut-and-choose techniques used in [DN00,KO04]
- and also admits a fairly straight-forward simulation and analysis. In
particular, our construction and the analysis are conceptually and technically
simpler than those in [CFGN96,DN00]; we avoid having to analyze the
number of one’s in certain Binomial distributions as in [CFGN96] and to
consider a subtle failure mode as in [DN00].

Reducing the assumptions. Informally, a simulatable PKE is an encryption
scheme with special algorithms for obliviously sampling public keys and
random ciphertexts without learning the corresponding secret keys and
plaintexts; in addition, both of these oblivious sampling algorithms should
be efficiently invertible.
We define a weaker assumption, which we refer to as trapdoor simulatable
cryptosystems, and prove that it is sufficient for our construction and anal-
ysis to go through. Roughly speaking, we provide the inverting algorithms
in a simulatable cryptosystem with additional trapdoor information (hence
the modifier “trapdoor”), which makes it easier to design a simulatable
cryptosystem.

Improved efficiency. While the main focus of this work is feasibility results
(notably, reducing the computational assumptions for both non-committing
encryption schemes and adaptively secure MPC), we show how to combine
a variant of our basic construction with the use of error-correcting codes to
achieve better efficiency. That is, the amortized complexity of encrypting a
single bit is O(1) public-key operations on a constant-sized plaintext in the
underlying cryptosystem.

Thus, we obtain the following.

Theorem 1 (informal). There exists a black-box construction of a non-committing
public-key encryption scheme, starting from any trapdoor simulatable cryp-
tosystem.

Factoring-based constructions. Next, we derive trapdoor simulatable cryp-
tosystems from a variant of Rabin’s trapdoor permutations (c.f. [H99,S96,FF02])
based on the hardness of factoring Blum integers.

CDH, RSA // simulatable common-domain TDP

��

// 2-round NCE

DDH, LWE // simulatable PKE

���
�
�

// 3-round NCE

factoring BI //____ trapdoor simulatable PKE
BC

ED�
�
�
�
�

oo_ _

Fig. 1. Summary of previous results (solid lines) along with our contributions
(dashed lines).

Theorem 2 (informal). Suppose factoring Blum integers is hard on average.
Then, there exists a trapdoor simulatable cryptosystem.

We stress that we do not know how to construct a simulatable cryptosystem
under the same assumptions; specifically, inverting the sampling algorithm
for ciphertexts in our construction without the trapdoor (the factorization of
the Blum integer modulus) appears to be as hard as factoring Blum integers.
This shows that trapdoor simulatable cryptosystems is indeed a meaningful
and useful relaxation. In the process, we also obtain the first factoring-based
dense cryptosystems.4 When combined with enhanced trapdoor permutations,
this yields the first factoring-based non-interactive proofs of knowledge [DP92].

Oblivious transfer and MPC. We consider the applications of our main
result to the constructions of adaptively secure oblivious transfer and gen-
eral MPC protocols in both the stand-alone setting and the UC setting (c.f.
[CLOS02,IPS08,CDSMW09]).

Theorem 3 (informal). There exists a black-box construction of a 6-round 1-
out-of-` oblivious transfer protocol for strings in the FCOM-hybrid model5 in the
UC setting that is secure against a malicious, adaptive adversary, starting from
any trapdoor simulatable cryptosystem.

We add that if the oblivious key generation algorithm in the trapdoor simulatable
cryptosystem achieves statistical indistinguishability (which is the case for all
of the afore-mentioned constructions), then we obtain an OT protocol that is
secure against a computationally unbounded malicious sender. While our OT
protocol is not as efficient as that in the recent work of Garay, Wichs and

4 These are PKE schemes where a random string has a inverse polynomial probability of being
a valid public key.

5 FCOM is an ideal functionality for commitment.

Zhou [GWZ09] (we incur an additional multiplicative overhead that is linear in
the security parameter), our protocol along with our general framework offers
several advantages:

– In addition to relying on the FCOM functionality and a simulatable PKE
(to implement non-committing encryption) as in our work, the [GWZ09]
framework requires a so-called enhanced dual-mode cryptosystem. This is
a relatively high-level CRS-based primitive from [PVW08] augmented with
two main additional properties: the first has a flavor of oblivious sampling;
the second requires that the underlying CRS be a common random string
(modulo some system parameters) and not just a common reference string.
This requirement is inherent to their framework, since this CRS is generated
using a coin-tossing protocol. This latter requirement is very restrictive, and
the only known construction of an enhanced dual-mode cryptosystem is
based on the quadratic residuocity assumption.

– Our protocol immediately handles 1-out-of-` OT, whereas [GWZ09] only
addresses 1-out-of-2 OT, a limitation inherited from [PVW08].

Combined with [CLOS02,IPS08,CDSMW09], we obtain the following corollar-
ies:

Corollary 1 (informal). Assuming the existence of trapdoor simulatable cryp-
tosystems, there exists adaptively secure multi-party protocols in the stand-
alone setting and in the FCOM-hybrid model in the UC setting against a
malicious adversary that may adaptively corrupt any number of parties.

Specifically, we obtain the first adaptively secure multi-party protocols based on
hardness of factoring in both the stand-alone setting and the UC setting with a
common reference string.

1.2 Additional related work

The problem of constructing encryption schemes that are secure against adaptive
corruptions was first addressed in the work of Beaver and Haber [BH92]. They
considered a simpler scenario where the honest parties have the ability to
securely and completely erase previous states. For instance, an honest sender
could erase the randomness used for encryption after sending the ciphertext,
so that upon being corrupted, the adversary only gets to see the corresponding
plaintext. An intermediate model, wherein we assume secure erasures for either
the sender or receiver but not both (or, by limiting the adversary to corrupting
at most one of the two parties), has been considered in several other works
[JL00,CHK05,KO04].

Organization. We present an overview of our constructions in Section 2,
preliminaries in Section 3, the formulation of a trapdoor simulatable PKE in
Section 4, our factoring-based trapdoor simulatable PKE in Section 6, and our
non-committing encryption scheme in Section 5. In Section 7, we show the
construction of a 6-round oblivious transfer protocol.

2 Overview of our constructions

At a high level, our non-committing PKE is similar to that from previous works
[CFGN96,DN00,KO04]. The receiver generates a collection of public keys in
such a way that it only knows an α fraction of the corresponding secret keys;
this can be achieved by generating an α fraction of the public keys using the key
generation algorithm and the remaining 1 − α fraction obliviously. Similarly,
the sender generates a collection of ciphertexts in such a way that it only
knows an α fraction of the corresponding plaintexts. Previous constructions
all work with the natural choice of α = 1/2 so that the simulator generates
a collection of ciphertexts half of which are encryptions of 0 and the other half
are encryptions of 1. As noted in [KO04], this is sufficient for obtaining non-
committing PKEs wherein at most one party is corrupted. Roughly speaking,
the difficulty in handling simultaneous corruptions of both the sender and the
receiver with α = 1/2 is that in the simulation, the sender’s choice of the α
fraction of keys completely determine the receiver’s choice of the α fraction of
ciphertexts whereas in an actual honest encryption, these choices are completely
independent (we elaborate on this later in this section). The key insight in our
construction is to work with a smaller value of α (turns out 1/4 is good enough).

A toy construction. Consider the following encryption scheme, which is a
simplification of that in [KO04,DN00]. The receiver generates a pair of public
keys (PK0, PK1) by generating one key (selected at random) using the key-
generation algorithm, and the other using the oblivious sampling algorithm. To
encrypt a bit b, the sender generates a pair of ciphertexts (C0, C1) as follows:
pick a random bit r, set Cr to be EncPKr(b) and choose C1−r using the oblivious
sampling algorithm. To decrypt, the receiver decrypts exactly one of C0, C1

using the secret key that it knows. This construction corresponds to α = 1/2
where α is the fraction of public keys for which the receiver knows the secret
key, and also the fraction of ciphertexts for which the sender knows the plaintext.
Observe that this encryption scheme has the following properties:

– It has a constant decryption error of 1/4 if an obliviously sampled ciphertext
is equally likely to decrypt to 0 or 1. As shown in [KO04], this error can be
reduced by standard repetition techniques.

– It tolerates corruption of either the sender or the receiver, but not both. Con-
sider a simulator that generates both of (PK0, PK1) (along with SK0, SK1)
using the key-generation algorithm, and a ciphertext (C0, C1) as follows:
pick a random bit β, and setC0 to be EncPK0(β) andC1 to be EncPK1(1−β).
Suppose the simulator later learns that this is an encryption of 0. If only the
sender is corrupted, the simulator claims r = β and that C1−β is obliviously
sampled. If only the receiver is corrupted, it claims that it knows SKβ and
that PK1−β is oblivious sampled.

We highlight two subtleties in the above simulation strategy. First, it achieves 0
decryption error (as opposed to 1/4 in an honest encryption); this can be fixed
with a somewhat more involved simulation strategy. This in turn becomes pretty
complicated once we use standard repetition techniques to reduce the decryption
error. Next, it is always the case in the simulation that either both PK0 and C0

are obliviously sampled, or both PK1 and C1 are obliviously sampled. As such,
this simulation strategy fails if both the sender and the receiver are corrupted,
because in an actual encryption, which of PK0, PK1 and which of C0, C1 are
obliviously sampled are determined independently.

Our encryption scheme. As noted in the introduction, the key insight in our
construction is to work with a small value of α. In addition, following [DN00],
we use a random k-bit encoding of 0 and 1, where k is the security parameter:

– The receiver generates 4k public keys PK1, . . . , PK4k: k of them are
generated using the key-generation algorithm, and the remaining 3k are
generated using the oblivious sampling algorithm. The receiver then sends
PK1, . . . , PK4k along with two random k-bit messages M0,M1.

– To encrypt a bit b, the sender sends 4k ciphertexts (one for each of
PK1, . . . , PK4k), of which k are encryptions of Mb, and the remaining ones
are obliviously sampled.

– To decrypt, the receiver decrypts the k ciphertexts for which it knows the
corresponding secret key. If any of the k plaintexts matches M0, it outputs
0 and otherwise, it outputs 1.

Encoding 0 and 1 randomly as M0 and M1 is useful for two reasons:

– That an obliviously sampled ciphertext is equally likely to decrypt to 0
or 1 is no longer needed to guarantee correctness (c.f. [DN00]). Indeed,
reasoning about decryptions of obliviously sampled ciphertext is non-trivial
for the lattice-based simulatable PKEs in [GPV08].

– Constructing a simulator becomes much easier as we avoid having to
generate distributions over k independent biased bits conditioned on the
majority of the bits being 0, say. Generating such distributions arises
for instance in [CFGN96] and is related to the first subtlety associated
with the naive simulation strategy. In our construction, the simulated
ciphertext comprises k encryptions of M0, k encryptions of M1, and
2k obliviously generated ciphertexts. Having these extra 2k obliviously
generated ciphertexts (which is possible because α < 1/2) is crucial for
handling simultaneous corruptions of the sender and the receiver.

Trapdoor Simulatable PKEs from factoring. Our factoring-based trapdoor
simulatable PKE construction consists of two main steps. First, we modify the
Rabin trapdoor permutations based on squaring modulo Blum integer so that
it remains a permutation over any arbitrary integer modulus. This relies on the
following number-theoretical structural lemma implicit in [H99,S96,FF02]6:

Let N be an arbitrary odd k-bit integer, and let QN = {a2k
(mod N) |

a ∈ Z∗
N}. Then, the map ψ : x 7→ x2 defines a permutation over QN .

We also provide an efficient algorithm for inverting ψ given the factorization
of N . Note that the standard algorithm for computing square roots does not
guarantee that the output lies in QN . Moreover, the probability that a random
square root lies in QN may be exponential small so we cannot repeatedly
computing random square roots until we find one in QN ; it’s also not clear
a-priori how to test membership in QN even given the factorization of N .

The next step transforms the family of trapdoor permutations ψ acting on
the domain QN into a family of “enhanced” trapdoor permutations with the
same domain QN , using an idea from [G04, Section C.1]. The latter has the
property that we can obliviously sample a random element y inQN so that given
y along with the coin tosses used to sample y, it is infeasible to compute the
preimage of y under the permutation (note that the naive algorithm for sampling
a random element of QN gives away its preimage under ψ). We will need the
oblivious sampling algorithm for a random element in QN in our oblivious
sampling algorithm for random ciphertexts. We will also need to realize trapdoor
invertibility for the latter, which requires an efficient algorithm that given the
factorization of N and an element y in QN , outputs a random 2k’th root of y.7

6 It was shown in [H99] that ψ defines a permutation over the subgroupON of Z∗N of odd order,
and that ON contains QN ; turns out ON = QN . While QN is trivially sampleable, it is not
clear a-priori how to sample from ON .

7 If we are given just N and not its factorization, this problem is at least as hard as factoring
random Blum integers. This is in essence why we only obtain a factoring-based trapdoor
simulatable PKE and not a simulatable PKE.

Note that iteratively computing random square roots k times does not work:
after computing the first square root, we may not end up with a 2k−1’th power.

3 Preliminaries

If A is a probabilistic polynomial time (hereafter, ppt) algorithm that runs on
input x, A(x) denotes the random variable according to the distribution of the
output of A on input x. We denote by A(x; r) the output of A on input x and
random coins r. To simplify the notation, we will often omit quantifying over the
distribution for r; it will usually be clear from the context when r is not fixed,
that it is drawn from the uniform distribution over strings of the appropriate
length.

We assume that the reader is familiar with the standard definitions of public-
key encryption schemes and semantic security (c.f. [GM84,G04]). We stress that
we allow decryption errors that are exponentially small in k:

Definition 1 (encryption scheme). A triple (Gen,Enc,Dec) is an encryption
scheme, if Gen and Enc are ppt algorithms and Dec is a deterministic
polynomial-time algorithm such that for every message m ∈ {0, 1}∗ of
polynomial length, Pr[Gen(1k)→ (PK, SK),EncPK(m)→ c; DecSK(c) 6= m] <
2−Ω(k).

Non-committing encryption. For simplicity, we present the definition of a
non-committing public-key encryption scheme for single-bit messages:

Definition 2 (non-committing encryption [CFGN96]). A non-committing (bit)
encryption scheme consists of a tuple (NCGen,NCEnc,NCDec,NCSim) where
(NCGen,NCEnc,NCDec) is an encryption scheme and NCSim is the simulation
algorithm that on input 1k, outputs (e, c, σ0

G, σ
0
E , σ

1
G, σ

1
E) with the following

property: for b = 0, 1 the following distributions are computationally indis-
tinguishable:

– the joint view of an honest sender and an honest receiver in a normal
encryption of b:

{(e, c, σG, σE) | (e, d) = NCGen(1k;σG), c = NCEnce(b;σE)}

– simulated view of an encryption of b:
{(e, c, σbG, σbE) | NCSim(1k)→ (e, c, σ0

G, σ
0
E , σ

1
G, σ

1
E)}

It follows from the definition that a non-committing encryption scheme is also
semantically secure.

Encrypting longer messages. Starting with a non-committing bit encryption
scheme (NCGen,NCEnc,NCDec,NCSim), we may encrypt a longer message
of length n by generating n independent public keys using NCGen, encrypting
each bit of the message using a different public key and then concatenating the
n ciphertexts. Note that this is different from the case of semantically secure
encryption, where we may encrypt each bit using the same public key.

4 Trapdoor Simulatable Public Key Encryption

A `-bit trapdoor simulatable encryption scheme consists of an encryption
scheme (Gen,Enc,Dec) augmented with (oGen, oRndEnc, rGen, rRndEnc). Here,
oGen and oRndEnc are the oblivious sampling algorithms for public keys and
ciphertexts, and rGen and rRndEnc are the respective inverting algorithms8.
We require that, for all messages m ∈ {0, 1}`, the following distributions are
computationally indistinguishable:
{rGen(rG), rRndEnc(rG, rE,m), PK, c | (PK, SK) = Gen(1k; rG), c = EncPK(m; rE)}

and {r̂G, r̂E, P̂K, ĉ | (P̂K,⊥) = oGen(1k; r̂G), ĉ = oRndEncP̂K(1k; r̂E)}
It follows from the definition that a trapdoor simulatable encryption scheme is
also semantically secure.

Encrypting longer messages. We note that if we started only with a trapdoor
simulatable PKE for single bits, we may encrypt a longer message of length n
by generating a single public key PK using Gen, and concatenating each of the
message encrypted under PK.

5 Non-Committing Encryption from Weaker Assumptions

Theorem 4. Suppose there exists a trapdoor simulatable encryption scheme.
Then, there exists a non-committing encryption scheme as well as a universally
composable oblivious transfer protocol secure against semi-honest, adaptive
adversaries.

We show how to construct a non-committing bit encryption scheme (NCGen,
NCEnc, NCDec, NCSim) from a k-bit trapdoor simulatable PKE (Gen,Enc,Dec)
(augmented with (oGen, oRndEnc, rGen, rRndEnc)). This is sufficient to estab-
lish the theorem by the connection between encrypting single bits and multiple
bits as discussed in Sections 3 and 4. Our construction is presented in Figures 2
and 3.

8 Existence of such inverting algorithms is called trapdoor invertibility. Compared to the
simulatable cryptosystem (without trapdoor) defined in [DN00], rGen (resp. rRndEnc) takes
rG (resp. (rG, rE,m)) as the additional trapdoor information.

Key Generation NCGen(1k):

1. Pick M0,M1 at random from {0, 1}k.
2. Choose a random subset T ⊆ [4k] of size k.
3. For i = 1, 2, . . . , 4k, generate a pair (PKi, SKi) as follows:

(PKi, SKi) =

{
Gen(1k) if i ∈ T
oGen(1k) otherwise

Set e = [M0,M1, PK1, . . . , PK4k] and d = [T, SK1, . . . , SK4k].

Encryption NCEncPK(b):
1. Choose a random subset S ⊆ [4k] of size k.
2. For i = 1, 2, . . . , 4k, generate a ciphertext ci as follows:

ci =

{
EncPKi(Mb) if i ∈ S
oRndEncPKi(1

k) otherwise

Set c = [c1, . . . , c4k].

Decryption NCDecPK(c):
1. Compute J = {DecPKi(ci)|i ∈ T}.
2. If M0 ∈ J , output 0; else, output 1.

Fig. 2. Non-Committing Encryption Scheme (NCGen,NCEnc,NCDec)

Correctness. We begin by establishing correctness.

– Assume that the input [c1, . . . , c4k] to the decryption algorithm is a random
encryption of 0. Recall that J = {DecSKi(ci) | i ∈ T} and we will output
0 unless M0 /∈ J . It is easy to see that Pr[M0 /∈ J] ≤

(
3k
k

)
/
(
4k
k

)
+ 2−Ω(k)

where the first summand comes from the probability that S ∩ T = ∅ and
the second bounds the probability of a decryption error in the underlying
encryption scheme (Gen,Enc,Dec).

– Assume that the input [c1, . . . , c4k] to the decryption algorithm is a random
encryption of 1. Recall that J = {DecSKi(ci) | i ∈ T} and we will output
1 unless M0 ∈ J . To bound Pr[M0 ∈ J], observe that the distribution of J
depends only on M1, PK1, . . . , PK4k, T, SK1, . . . , SK4k and the coin tosses
used to generate c1, . . . , c4k, and is therefore independent of the choice of a
random M0. This means that for each i ∈ T , the probability that DecSKi(ci)
equals M0 is 2−k. Taking a union bound, we obtain Pr[M0 ∈ J] ≤ k · 2−k.

Security. We need to show that for each b = 0, 1, a normal encryption of b and
a simulated encryption of b are computationally indistinguishable. Note that the
view in a normal encryption of b contains two sets T, S which we will label as

Simulation NCSim:
1. Pick M0,M1 at random from {0, 1}k.
2. Picking the sets S0, S1, T0, T1:

– Pick two random subsets S0, T0 of [4k] each of size k.
– Pick two random subsets S1, T1 of [4k]\(S0∪T0) such that |S1∩T1| = |S0∩T0|.

3. Generating the keys: for i = 1, 2, . . . , 4k, set

(PKi, SKi) =

{
Gen(1k; ri

G) if i ∈ T0 ∪ S0 ∪ T1 ∪ S1

oGen(1k; r̂i
G) otherwise

4. Generating the ciphertext: for i = 1, 2, . . . , 4k, set

ci =

EncPKi(M0; r

i
E) if i ∈ S0

EncPKi(M1; r
i
E) if i ∈ S1

oRndEncPKi(r̂
i
E) otherwise

5. Simulating an opening to b: set σb
G = {Tb, u

b,1
G , . . . , ub,4k

G } and σb
E =

{Sb, u
b,1
E , . . . , ub,4k

E }, where

ub,i
G =

ri

G if i ∈ Tb

rGen(ri
G) if i ∈ T0 ∪ T1 ∪ S0 ∪ S1 \ Tb

r̂i
G otherwise

ub,i
E =

ri

E if i ∈ Sb

rRndEnc(ri
G, r

i
E,M1−b) if i ∈ S1−b

r̂i
E otherwise

Set e = [M0,M1, PK1, . . . , PK4k], c = [c1, . . . , c4k]. Additionally output σ0
G , σ

0
E , σ

1
G , σ

1
E .

Fig. 3. Non-Committing Encryption Scheme NCSim

Tb, Sb and we will append to the view two sets T1−b, S1−b that are determined
as follows: pick two random subsets S1−b, T1−b of [4k] \ (Sb ∪ Tb) such that
|S1 ∩ T1| = |S0 ∩ T0|; call this distribution H0. We will also append to the
view in a simulated encryption of b the sets T1−b, S1−b as determined by the
experiment NCSim; call this distribution H4k. We will show that the augmented
distributions H0 and H4k are computationally indistinguishable in two steps:

Reasoning about the sets. First, we claim that the 4-tuple (S0, T0, S1, T1)
in the augmented distribution H0 and in H4k are identically distributed. If
b = 0, this is obvious since the distributions are defined in exactly the same
way. The case for b = 1 follows from a symmetry argument, namely that if
we switch (S0, T0) with (S1, T1) in the experiment NCSim, we get exactly
the same distribution. Henceforth, it suffices to argue that H0 and H4k are
computationally indistinguishable, conditioned on some fixed (S0, T0, S1, T1)

in both H0 and H4k. We may now WLOG focus on the case b = 0. In
fact, we may as well also fix M0,M1 in both H0 and H4k. In addition to
S0, T0, S1, T1,M0,M1, the distributions H0, H4k comprise:

– 4k public keys PK1, . . . , PK4k (generated using either Gen or oGen);
– 4k ciphertexts c1, . . . , c4k (generated using either Enc or oRndEnc);
– 4k sets of coin tosses u1

G, . . . , u
4k
G for generating the public/secret keys; and

– 4k sets of coin tosses u1
E, . . . , u

4k
E for generating the ciphertexts.

That is, we have 4k tuples of the form (PKi, ci, u
i
G, u

i
E), i = 1, . . . , 4k in each

view. Since S0, T0, S1, T1 are fixed, each of these 4k tuples are independently
sampled from some distribution that only depends on the index i. Denote by
X1, . . . , X4k the random variables for the 4k tuples in H0, and Y1, . . . , Y4k the
random variables for the 4k tuples in H4k.

The hybrid argument. Next, we argue that Xi and Yi are computationally
indistinguishable for i = 1, . . . , 4k, from which the indistinguishability of H0

and H4k follows via a hybrid argument. There are several cases we need to
consider:

– i ∈ T0 or i ∈ [4k] \ (T0 ∪ S0 ∪ T1 ∪ S1). It is easy to verify that in either of
these cases, Xi and Yi are identically distributed.

– i ∈ S1 (“oGen, oRndEnc ∼= Gen,Enc”). Here, Xi is the distribution
{P̂K, ĉ, r̂G, r̂E | (P̂K,⊥) = oGen(r̂G), ĉ = oRndEncP̂K(r̂E)}

and Yi is the distribution
{PK, c, rGen(rG), rRndEnc(rG, rE,M1) | (PK, SK) = Gen(rG), c = EncPK(M1; rE)}.
Indistinguishability follows immediately from the security of the trapdoor
simulatable PKE.

– i ∈ S0 \ T0 (“oGen,Enc ∼= Gen,Enc”). Here, Xi is the distribution
{P̂K, c, r̂G, rE | (P̂K,⊥) = oGen(r̂G), c = EncP̂K(M0; rE)}

and Yi is the distribution
{PK, c, rGen(rG), rE | (PK, SK) = Gen(rG), c = EncPK(M0; rE)}.

Indistinguishability follows again from the security of the trapdoor simulat-
able PKE.

– i ∈ T1 \ S1 (“oGen, oRndEnc ∼= Gen, oRndEnc”). Here, Xi is the
distribution

{P̂K, ĉ, r̂G, r̂E | (P̂K,⊥) = oGen(r̂G), ĉ = oRndEncP̂K(r̂E)}
and Yi is the distribution
{PK, ĉ, rGen(rG), r̂E | (PK, SK) = Gen(rG), ĉ = oRndEncPK(r̂E)}.

Indistinguishability follows again from the security of the trapdoor simulat-
able PKE.

Improving the efficiency. Instead of using sets S, T ⊂ [4k] of size k, we
choose S, T ⊂ [40] of size 10. The previous analysis still goes through, except
we now have a constant decryption error. To address this problem, we first
encode the message9 with a linear-rate error-correcting code that corrects a
constant fraction of errors, and then encrypt the codeword with the encryption
scheme with constant error.

6 Trapdoor Simulatable PKE from Hardness of Factoring

Theorem 5. Suppose factoring Blum integers is hard on average, and that Blum
integers are dense, then there exists a trapdoor simulatable PKE.

For simplicity, we only present a 1-bit trapdoor simulatable encryption scheme;
we may encrypt longer messages by encrypting bit by bit.

A number-theoretic lemma. Fix any k-bit integer modulus N and we will
work with the group Z∗

N . We will use factor(N) to denote the factorization of
N , and we define QN = {a2k | a ∈ Z∗

N}. Now, consider the map ψN : QN →
QN given by ψN (x) = x2 (mod N). As shown in [H99, Facts 3.5-3.7], ψN
defines a permutation on QN . We provide a more direct proof which also yields
an efficient algorithm to invert ψN given factor(N).

Claim. The map ψN defines a permutation on QN .

Proof. Let q denote the largest odd divisor of φ(N), where φ(·) is the Euler’s
totient function. It is easy to see that φ(N) divides 2kq, since N < 2k. Take
any y ∈ QN , where y = a2k

. Then by Euler’s theorem, yq = 1 (mod N) and
thus ψN (y(q+1)/2) = y (mod N). Clearly, y(q+1)/2 ∈ QN , so the map ψN is
surjective. Moreover, the range and domain of ψN have equal sizes, so ψN must
define a bijection. ut

The construction. We sketch the construction here; the formal construction is
shown in Figure 4.

STEP 1: First, we construct a family of “weakly one-way” enhanced trapdoor
permutations. We start by modifying ψN to obtain a new family of per-
mutations πN ; the modification is analogous to that in [G04, Section C.1] to
obtain enhanced trapdoor permutations from Rabin’s trapdoor permutations.

9 The codeword length (or, equivalently the message length) should beΩ(k). Then, by Chernoff
bound, the number of decryption errors remains a constant fraction of the codeword length
with overwhelming probability.

Key generation Gen(1k):
1. Run Bach’s algorithm using the randomness rG to sample random N1, . . . , Nk3 ∈
{0, 1}k along with their factorization factor(N1), . . . , factor(Nk3).

2. Set PK = [N1, . . . , Nk3] and SK = [factor(N1), . . . , factor(Nk3)].
Encryption Enc(b):

1. Parse the randomness rE as (a1, . . . , ak3) ∈ Z∗N1×· · ·×Z
∗
N

k3 , r1, . . . , rk3 ∈ {0, 1}k

and b1, . . . , bk3−1 ∈ {0, 1}.
2. Compute bk3 = b⊕ b1 ⊕ · · · ⊕ bk3−1.
3. Compute xi = a2k

i ∈ QNi , i = 1, . . . , k3.
4. Output [πNi(xi), ri, (xi · ri)⊕ bi, i = 1, . . . , k3].

Decryption Dec(c):
1. Parse c as [yi, ri, βi, i = 1, . . . , k3].
2. Compute bi = (π−1

Ni
(yi) · ri)⊕ βi, i = 1, . . . , k3.

3. Output b1 ⊕ · · · ⊕ bk3 .
Oblivious key generation oGen(1k):

1. Parse the randomness r̂G ∈ {0, 1}k
4

as N1, . . . , Nk3 ∈ {0, 1}k.
2. Output (N1, . . . , Nk3).

Trapdoor invertibility key generation rGen(rG):
1. Run Gen(rG) to obtain r̂G = (N1, . . . , Nk3).
2. Output r̂G.

Oblivious sampling of ciphertexts oRndEnc(1k):
1. Parse the randomness r̂E as (γ1, . . . , γk3) ∈ Z∗N1×· · ·×Z

∗
N

k3 , s1, . . . , sk3 ∈ {0, 1}k

and β1, . . . , βk3 ∈ {0, 1}.
2. Compute yi = γ2k

i ∈ QNi , i = 1, . . . , k3.
3. Output [yi, si, βi, i = 1, . . . , k3].

Trapdoor invertibility for ciphertexts rRndEnc(rG, rE, b):
1. Use rG to compute factor(N1), . . . , factor(Nk). and parse rE as in Enc.
2. Set si = ri and βi = (xi · ri)⊕ bi, i = 1, . . . , k3.
3. Pick a random γi uniformly from the set {γi ∈ Z∗Ni

| γ2k

i = πNi(xi)}.
4. Output r̂E = (γ1, . . . , γk3 , s1, . . . , sk3 , β1, . . . , βk3).

Fig. 4. Trapdoor Simulatable PKE from hardness of factoring Blum integers

The permutations πN : QN → QN are indexed by a k-bit integer N and is
given by:

πN (x) def= ψk+1
N (x) = x2k+1

(mod N)

and the trapdoor is factor(N). We may sample from this family by running
Bach’s algorithm [B88,K02] to pick a random k-bit integer along with its
factorization.
It is easy to verify πN is a family of trapdoor permutations. Clearly, πN is a
permutation because it is the (k+1)-fold iterate of a permutation ψN . Given
the index N , πN is efficiently computable by repeated squaring. Given
the trapdoor factor(N), π−1

N is efficiently computable given factor(N), by
simply mapping y to y((q+1)/2)k+1

, i.e., raising y to the (q + 1)/2’th power

k + 1 times. Here, q denotes the largest odd divisor of φ(N), which is
easy to compute with the trapdoor. Moreover, we can show that if N is a
Blum integer (which occurs with probability Ω(1/k2) [GM04,RS94]), then
inverting πN given N is at least as hard as factoring N . This implies that
πN is one-way with probability Ω(1/k2) over the choice of N .

STEP 2: Construct a “weak” encryption scheme using the standard construc-
tion of PKE from trapdoor permutations via the Goldreich-Levin hard-
core predicate. The public key is N , the secret key is factor(N), and to
encrypt a bit b, we pick a random x ∈ QN , r ∈ {0, 1}k and output
(πN (x), r, (x ·r)⊕b), where x ·r is the standard dot-product of k-bit strings.
Again, this scheme will be semantically secure with probability Ω(1/k2)
over the choice of N .

STEP 3: To boost the security of the “weak” encryption scheme, we define a
new scheme where the public key is k3 random k-bit strings N1, . . . , Nk3

(with overwhelming probability, one of these is a Blum integer), and to
encrypt a bit b, we pick random b1, . . . , bk3 such that b = b1 ⊕ · · · · bk3 and
concatenate the encryptions of b1, . . . , bk3 under the respective public keys
N1, . . . , Nk3 . By a standard argument (c.f. [Y82,DP92]), this encryption
scheme is semantically secure in the standard sense.

Analysis. Indeed, we claim something stronger – that the encryption scheme
derived in Step 3 is a trapdoor simulatable PKE.

– (Oblivious sampling & trapdoor invertibility for key generation) This is
trivial, since a random public key corresponds to a string in {0, 1}4k. We
can clearly sample such a public key without learning the secret key.

– (Oblivious sampling & trapdoor invertibility for random ciphertext) For
simplicity, we present the algorithms for sampling random ciphertext for
the scheme obtained in Step 2. Here, sampling is easy: on input the public
key N , pick γ ∈ Z∗

N , s ∈ {0, 1}k, β ∈ {0, 1}) and output (γ2k
, s, β).

To implement reverse sampling, we need an efficient algorithm that given
factor(N) and x ∈ QN , output a random element of the set {γ ∈ Z∗

N |
γ2k

= πN (x) = x2k+1}. This can be accomplished as follows: pick a
random η ∈ Z∗

N and output x2 · η/(η2k
)((q+1)/2)k

, where q is as before
the largest odd divisor of φ(N). This works because η/(η2k

)((q+1)/2)k
will

be a random 2k’th root of 1 (mod N).

For the actual proof of security, we will need to show that ifN is a random Blum
integer, then the following distributions are computationally indistinguishable
for every b:

{(N, γ, πN (x), r, (x · r)⊕ b)} and {(N, γ, γ2k
, r, β)}

The first distribution corresponds to an encryption of b using modulus N and
randomness (x, r) along with γ the output of rRndEnc (a random solution to
the equation γ2k

= πN (x)). The second corresponds to an obliviously generated
ciphertext along with the randomness. If there exists an efficient distinguisher,
then there exists an efficient procedure A that on input N, γ, outputs π−1

N (γ2k
)

with noticeable probability. Since squaring is a bijection on quadratic residues
modulo Blum integers, the output of A is also the 4th root of γ2. We may then
use a reduction in [G04, Section C.1] to derive fromA an algorithm for factoring
N with noticeable probability.

7 Oblivious Transfer and MPC

We describe the construction underlying Theorem 3, which proceeds in two
steps:

STEP 1: We begin with the [CLOS02] construction of a semi-honest OT
protocol as applied to our non-committing encryption scheme, and observe
that the protocol is secure against malicious senders. For that, we just need
to show how to extract the sender’s input when the receiver is honest. In
this case, the simulator will generate the public keys sent by the receiver in
the first message along with the secret keys, so that it can then extract the
malicious sender’s input by decrypting.

STEP 2: Next, we apply the compiler in [CDSMW09] to “boost” the security
guarantee from tolerating semi-honest receivers to tolerating malicious re-
ceivers. (Note that we will not need to apply OT reversal as in [CDSMW09].)

Acknowledgements. We thank Ran Canetti, Yuval Ishai, Jonathan Katz, and
Chris Peikert for helpful discussions and clarifications.

References

[B88] E. Bach. How to generate factored random numbers. SIAM J. Comput., 17(2):179–
193, 1988.

[B97] D. Beaver. Plug and play encryption. In CRYPTO, pages 75–89, 1997.
[B98] D. Beaver. Adaptively secure oblivious transfer. In ASIACRYPT, pages 300–314,

1998.
[BH92] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic

adversaries. In EUROCRYPT, pages 307–323, 1992.
[C00] R. Canetti. Security and composition of multiparty cryptographic protocols. J.

Cryptology, 13(1):143–202, 2000.
[CDSMW09] S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Simple, black-box

constructions of adaptively secure protocols. In TCC, pages 387–402, 2009.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-
party computation. In STOC, pages 639–648, 1996. Longer version at
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/nce_abs.html.

[CHK05] R. Canetti, S. Halevi, and J. Katz. Adaptively-secure, non-interactive public-key
encryption. In TCC, pages 150–168, 2005.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In STOC, pages 494–503, 2002.

[DN00] I. Damgård and J. B. Nielsen. Improved non-committing encryption schemes based
on a general complexity assumption. In CRYPTO, pages 432–450, 2000.

[DP92] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without
interaction. In FOCS, pages 427–436, 1992.

[FF02] M. Fischlin and R. Fischlin. The representation problem based on factoring. In
CT-RSA, pages 96–113, 2002.

[G04] O. Goldreich. Foundations of Cryptography: Volume II, Basic Applications.
Cambridge University Press, 2004.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GM04] A. Granville and G. Martin. Prime number races, 2004.
http://arxiv.org/abs/math/0408319.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

[GWZ09] J. A. Garay, D. Wichs, and H.-S. Zhou. Somewhat non-committing encryption and
efficient adaptively secure oblivious transfer. In CRYPTO, 2009. To appear. Also,
Cryptology ePrint Archive, Report 2008/534.

[H99] S. Halevi. Efficient commitment schemes with bounded sender and unbounded
receiver. J. Cryptology, 12(2):77–89, 1999.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO, pages 572–591, 2008.

[JL00] S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography:
Introducing concurrency, removing erasures. In EUROCRYPT, pages 221–242,
2000.

[K02] A. Kalai. Generating random factored numbers, easily. In SODA, pages 412–412,
2002.

[KO04] J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In
CRYPTO, pages 335–354, 2004.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and
composable oblivious transfer. In CRYPTO, pages 554–571, 2008.

[RS94] M. Rubinstein and P. Sarnak. Chebyshevs bias. Experiment. Math, 3(3):173–197,
1994.

[S96] C.-P. Schnorr. Security of 2t-root identification and signatures. In CRYPTO, pages
143–156, 1996.

[Y82] A. C.-C. Yao. Theory and applications of trapdoor functions. In FOCS, pages
80–91, 1982.

