
Black-Box, Round-Efficient Secure Computation
via Non-Malleability Amplification

Hoeteck Wee⋆

Queens College, CUNY
hoeteck@cs.qc.cuny.edu

Abstract. We present round-efficient protocols for secure multi-party computation with
a dishonest majority that rely on black-box access to the underlying primitives. Our main
contributions are as follows:

– a O(log∗ n)-round protocol that relies on black-box access to dense cryptosystems,
homomorphic encryption schemes, or lossy encryption schemes. This improves upon
the recent O(1)log

∗ n-round protocol of Lin, Pass and Venkitasubramaniam (STOC
2009) that relies on non-black-box access to a smaller class of primitives.

– a O(1)-round protocol requiring in addition, black-box access to a one-way function
with sub-exponential hardness, improving upon the recent work of Pass and Wee
(Eurocrypt 2010).

These are the first black-box constructions for secure computation with sublinear round
complexity. Our constructions build on and improve upon the work of Lin and Pass (STOC
2009) on non-malleability amplification, as well as that of Ishai et al. (STOC 2006) on
black-box secure computation.

In addition to the results on secure computation, we also obtain a simple construction
of a O(log∗ n)-round non-malleable commitment scheme based on one-way functions,
improving upon the recent O(1)log

∗ n-round protocol of Lin and Pass (STOC 2009).
Our construction uses a novel transformation for handling arbitrary man-in-the-middle
scheduling strategies which improves upon a previous construction of Barak (FOCS 2002).

Key words: secure multi-party computation, round complexity, black-box constructions,
non-malleable commitments.

⋆ Supported in part by NSF CAREER Award CNS-0953626 and PSC-CUNY Award # 63888-00 41.

1 Introduction

Secure multi-party computation (MPC) allows several mutually distrustful parties to perform a joint
computation without compromising, to the greatest extent possible, the privacy of their inputs or the
correctness of the outputs. The early work of Goldreich, Micali and Wigderson [19] showed that we may
realize secure multi-party computation with a dishonest majority under general cryptographic assumptions.
Over the last decade, substantial progress was made towards improving the round complexity and
computational efficiency of these protocols in two separate lines of works, culminating in (1) constant-round
protocols for secure computation [24, 34, 38, 29] as well as (2) black-box constructions that avoid the use of
(typically expensive) general NP reductions [25, 12, 22, 20, 23]. However, simultaneously achieving both of
these efficiency guarantees has so far remained quite elusive; the state-of-the-art for black-box constructions
is a O(n)-round protocol where n is the number of parties.1 This raises the following natural question:

Does there exist a black-box, o(n)-round protocol for secure multi-party computation, or is
there an inherent trade-off between round complexity and computational efficiency?

Before stating our results, we provide some additional context and motivation.

Round-efficient secure computation. In the GMW protocol for secure computation, each player takes turns
to sequentially commit to its input (along with a “proof of knowledge”); any non-trivial improvement in
round complexity will require interweaving these input commitments, which could potentially allow an
adversary to violate input independence via a man-in-the-middle attack. For this reason, improvements in
round complexity for secure computation has often paralleled results on non-malleability [13]. Constant-
round MPC protocols were first obtained by Katz, Ostrosky and Smith [24] (relying on [2]) and by Pass
[34] based on the existence of enhanced trapdoor permutations and in addition, collision-resistant hash
functions. More recently, Lin, Pass and Venkitasubramaniam [29, 26] showed that the latter assumption
can be eliminated while still maintaining almost constant – specifically, O(1)log

∗ n – round complexity.
In follow-up work, Pass and Wee [38] gave a constant-round protocol, assuming in addition one-way
functions with sub-exponential hardness. An advantage of these latter two works is that they avoid the use
of non-black-box simulation techniques [1] along with the sophisticated machinery (e.g. the PCP theorem)
associated with them.

Black-box secure computation. The general question of whether we can securely realize cryptographic
tasks via black-box access to a general primitive is of great theoretical and practical interest. In particular,
black-box constructions (namely, those that refer only to the input/output behavior of the underlying
primitive) are typically more efficient in terms of both computational and communication complexity, and
also more suited for implementation as compared to non-black-box constructions. As such, non-black box
constructions traditionally only serve as “feasibility” results, and indeed, a series of recent works on secure
computation [12, 22, 31, 23] views black-box constructions as an important step towards making MPC more
“practical”. Upon closer examination, one notices that while the afore-mentioned black-box constructions
of secure protocols do improve on the efficiency of previous non-black-box constructions as measured in
terms of computational and communication complexity, except in the presence of an honest majority or an

1 Throughout the introduction, we use n to denote the number of parties; in particular, the round complexity of all the protocols
we discuss here depends only on the number of parties, and is independent of the security parameter.

1

ideal functionality. (Specifically, the round complexity grows linearly with the number of parties). We also
point out here that the pursuit of black-box constructions has often yielded new techniques (e.g. the use of
randomized encodings in [25, 9]), along with additional conceptual and technical insights into the original
non-black-box constructions.

1.1 Our Results

In this work, we present the first black-box MPC protocols with a sub-linear number of rounds.

Theorem (informal). There exists a O(log∗ n)-round protocol for securely computing any n-party
functionality against a malicious adversary corrupting any number of parties that relies on black-box
access to certifiable enhanced trapdoor permutations.

We point out here that this construction (and the next) may be extended to a larger class of assumptions,
such as dense cryptosystems and lossy encryption schemes. This improves upon the recent O(1)log

∗ n-round
protocol Lin, Pass and Venkitasubramaniam [29, 26], which relies on non-black-box access to a smaller
class of assumptions. Next, we show that we can also obtain constant-round protocols by relying on an
additional assumption, namely one-way functions secure against sub-exponential size circuits,2improving
upon the non-black-box construction of Pass and Wee [38].

Theorem (informal). There exists a O(1)-round protocol for securely computing any n-party
functionality against a malicious adversary corrupting any number of parties that relies on black-
box access to certifiable enhanced trapdoor permutations and a one-way function secure against
sub-exponential size circuits.

1.2 Our Constructions and Techniques

Both of our constructions follow the same high-level framework, which we will describe in the context of
our first result.

Basic Commitment Scheme. Our starting point is a O(1)-round non-malleable commitment scheme for a
constant number of parties. We may rely on the trivial construction wherein each party sequentially
commits to its input using an extractable commitment, as we assume a fully synchronized network for
stand-alone MPC. To obtain our second result, we begin with a black-box variant of constant-round
non-malleable commitments in [38] for log log log n + O(1) parties, based on one-way functions with
sub-exponential hardness.

Non-Malleability Amplification. Next, we provide a black-box transformation of a commitment scheme that
is (many-many) non-malleable for t parties into one for 2t−1 parties, while incurring only a constant
additive blow-up in the number of rounds; applying this transformation O(log∗ n) times to our basic
scheme yields a O(log∗ n)-round non-malleable commitment scheme for n parties. Our transformation
simplifies and improves upon the earlier construction of Lin and Pass [26] which is non-black-box and
incurs a constant multiplicative blow-up in the number of rounds.3

2 This is a relatively mild assumption since the best attacks on the standard candidates for one-way functions have sub-exponential
complexity.

3 Subsequent to our work, Lin and Pass observed that they may also achieve a constant additive overhead with a minor modification
of their transformation (c.f. full version of [26]).

2

OT-Compiler. We show how to use our n-party non-malleable commitment scheme to realize an n-party
oblivious transfer (OT) functionality, starting from a two-party OT protocol Π that is secure against
a malicious sender and semi-honest receiver. As it turns out, many existing semi-honest OT protocols
such as those where the sender encrypts both its inputs (c.f. [14, 16, 39, 10]) already has this property.
In order to “boost” the security of Π to tolerate malicious receivers, we rely on a recent construction
of Ishai et al. [22, 20, 11], which may in turn be viewed as a cut-and-choose variant of the “GMW

compiler”. However, this cut-and-choose compiler relies on a commitment scheme that is extractable and
equivocable, and moreover, must remain non-malleable while simulating an equivocable commitment
in the left interaction. Our main technical contribution for this step lies in eliminating the equivocability
requirement.

MPC from OT. In the last step, we combine our round-efficient n-party OT protocol with the constant-round
MPC protocol of Ishai, Prabhakaran and Sahai in the OT-hybrid model [23, Theorem 3]. Here, we rely
on the composition theorem for the stand-alone model in [7].

Next, we provide an overview of the two novel building blocks in our construction, namely the non-
malleability amplification protocol and the OT compiler.

Improved and simpler non-malleability amplification. Given a many-many non-malleable commitment
scheme tagCom for identities of length log t + 1, we construct a many-many non-malleable commitment
scheme for identities of length t with a constant additive blow-up in the number of rounds. Our construction,
roughly speaking, proceeds as follows: to commit to a string v with identity ID = (ID1, . . . , IDt) ∈ {0, 1}t:

– Commit to v using tagCom with identities (1, ID1), . . . , (t, IDt) a total of t times in parallel.
– Prove using a zero-knowledge argument of knowledge that all t committed values are equal.

We argue, informally, that the new scheme is many-many non-malleable. Consider for simplicity the stand-
alone setting, where the adversary receives a single commitment to v on the left with identity ID and tries
to commit to a related value ṽ with identity ĨD ̸= ID. There must exist some i for which ĨDi ̸= IDi and
thus (i, ĨDi) is different from all of (1, ID1), . . . , (t, IDt). By many-many non-malleability of tagCom, the
committed value for (i, ĨDi) is independent of all the left commitments. Furthermore, by soundness of the
argument of knowledge, this value determines ṽ, and thus ṽ must be independent of v. This argument extends
naturally to the setting where there are multiple commitments on the right, which in turn implies non-
malleability with multiple commitments on both the left and on the right [35, 28].

We point out here that the overall approach of using multiple commitments to the same value and
then providing a zero-knowledge proof of consistency is reminiscent of the constructions of CCA2-secure
and non-malleable encryption schemes [13, 36, 9]. Our analysis considers explicitly an “alternative opening
phase”, which is inspired by the notion of an “alternative decryption oracle” in the literature on encryption.

To obtain a fully black-box construction that uses black-box access to a statistically binding commitment
scheme Com (and thus any one-way function [33, 21]), we combine the previous construction with the
message encoding technique from [9, 37]. Here, we rely crucially on the fact that in our construction, the
zero-knowledge argument is used to enforce equality amongst committed values. Indeed, we do not know
how to directly obtain a black-box variant of the Lin-Pass non-malleability amplification protocol [26]
because the zero-knowledge arguments therein are used to enforce that committed values satisfy a more
complex relation.

3

Protocol Rounds
Assumptions Black-Box

Beyond TDPs Additional Primitive Simulation

GMW [19, 5, 30] O(n) yes none no yes

IKLP [22, 23, 37] O(n) yes none yes yes

KOS [24] O(logn) no none no yes

LP/LPV [26, 29] O(1)log
∗ n no none no yes

KOS/Pass [24, 34] O(1) no CRHFs no no

PW [38, 29] O(1) no sub-exp OWFs no yes

this work O(log∗ n) yes none yes yes

this work O(1) yes sub-exp OWFs yes yes

Fig. 1. Summary of MPC Protocols.

OT compiler. We use the OT compiler in [22, 20, 11] to “boost” the security of a two-party OT protocol
Π from tolerating semi-honest receivers to tolerating malicious receivers. The idea is to run multiple copies
of Π and rely on cut-and-choose to guarantee that in most of these instantiations, the malicious OT receiver
is behaving consistently with Π (see [11, Section 2] for an overview). The random n-bit challenge for the
cut-and-choose phase is determined via a coin-tossing protocol as follows: (1) the sender first commits to
a random n-bit string qS (using our extractable non-malleable commitment); (2) the receiver then responds
with a random n-bit string qR; (3) the sender opens its commitment and the challenge is given by qS ⊕ qR.

The OT compiler guarantees that there is at most one random challenge q∗ that allows the malicious
receiver to cheat in the cut-and-choose phase. If the sender’s commitment is equivocable, then the probability
of cheating is negligible since the probability that a random equivocation equals qR⊕q∗ is 2−n. To eliminate
the equivocability requirement while bounding the probability of cheating, we rely on the simulator from
[11] which has the property that q∗ is efficiently computable (this in turn relies on extractability of the
receiver’s commitment in an earlier stage of the protocol). Now suppose the simulator cheats with non-
negligible probability; then, with roughly the same probability, the sender’s committed value must equal
qR ⊕ q∗, which contradicts the hiding guarantee of the commitment scheme (amidst extraction).

MPC from non-malleable commitments. We note that our approach for deriving round-efficient MPC
protocols from non-malleable commitments is quite different from that used in previous protocols with
sub-logarithmic round complexity [29, 24, 34]. One limitation of these approaches is that the ensuing
constructions rely on enhanced trapdoor permutations, or similar primitives with an “oblivious sampling”
requirement; in particular, we do not know how to extend these constructions to work with lossy trapdoor
functions and lossy encryption schemes [40, 6]. This is in fact an inherent limitation in the techniques
underlying previous constructions. Roughly speaking, these previous protocols all entail the use of a coin-
tossing protocol to “obliviously sample” a random challenge,4 whereas in the simulation, this challenge is
generated in a non-oblivious manner along with some trapdoor.

4 In [29, 34, 4], a random challenge is a random element in the range of a trapdoor permutation, and the trapdoor is its preimage,
whereas in [24], a random challenge is the CRS in the CLOS protocol [8], and the trapdoor is that underlying a simulated CRS.

4

1.3 Additional Results

Starting from our improved non-malleability amplification, we obtain several new results on non-malleable
commitments.

O(log∗ n)-round non-malleable commitments. The first is a simple, self-contained construction of non-
malleable commitments from one-way functions with better round complexity:

Theorem (informal). Suppose there exists one-way functions. Then, there exists a O(log∗ n)-
round non-malleable commitment scheme with a black-box proof of security.

This improves upon the previous O(1)log
∗ n-round protocol of Lin and Pass [26]. The technical improvement

comes from the fact that we accomplish non-malleability amplification with an additive instead of a
multiplicative blow-up in the number of rounds. Our construction proceeds in three steps:

– We start with a O(1)-round many-many non-malleable commitment scheme for a constant number
of parties and a synchronizing adversary. As noted earlier, the trivial construction wherein each party
sequentially commits to its input using an extractable commitment suffices.

– Next, we apply non-malleability amplification a total of O(log∗ n) times to obtain a O(log∗ n)-round
many-many non-malleable commitment scheme for n-bit identities and a synchronizing adversary.

– Finally, we provide a simple and general transformation of non-malleable commitment schemes that
are secure against synchronizing adversaries into one that are secure against arbitrary scheduling
strategies, with an additive increase in round complexity. This construction improves upon a previous
transformation of Barak [2, Theorem 6.1], which in turn requires constant-round perfectly hiding
commitments. As with [2], our transformation proceeds by creating multiple rewinding opportunities;
the difference is that we add rewinding slots to the sender (as with the transformation of stand-alone
non-malleable commitments into many-many non-malleable commitments in [26]) as opposed to the
receiver.

In addition, the construction is self-contained in that we never need to rely on the complex rewinding
reschedules from [13, 28].

Black-box non-malleable commitments. The preceding construction can also be made black-box, which
partially addresses in the affirmative an open problem posed by Pass (namely, whether the O(1)log

∗ n

protocol in [26] can be made black-box). However we only achieve a weaker notion of non-malleability
w.r.t extraction, which nonetheless suffices for secure MPC and also implies the notion of non-malleability
in [2, 13] (see [3, Definition 6.4.1]). Roughly speaking, the preceding construction and that in [26] guarantee
the committed values in the right interactions must be computationally independent of those in the left
interactions, whereas in this black-box construction, we only guarantee that the values output by the extractor
(which is the same as the committed value whenever the commitment has a valid opening and may be
arbitrary when the commitment opens to ⊥) for the right interactions are independent of the committed
values in the left interaction.

Theorem (informal). There exists a (fully) black-box construction of a O(log∗ n)-round
commitment scheme that is many-many non-malleable w.r.t extraction, starting from any one-way
function.

5

We obtain this result by applying our black-box non-malleability amplification (for non-synchronizing
adversaries) a total of O(log∗ n) times to the constant-round many-many non-malleable commitment
scheme for 4 parties in [37].

A note on “robustness”. Our work clarifies the connection between the notion of robustness introduced
in [26] –a commitment scheme is “robust” if remains non-malleable with respect to arbitrary constant-
round protocols in the left interaction– and message synchronization. Unlike non-malleability amplification
in [26] as well as the MPC protocol in [29], our basic non-malleability amplification and MPC protocol
do not require that the underlying non-malleable commitment scheme be robust; this is because we only
handle synchronizing adversaries in those constructions. On the other hand, we will require robustness
in order to handle non-malleability amplification for non-synchronizing adversaries and for our general
transformation for handling non-synchronizing adversaries.5 This latter transformation also reinforces an
observation used in [27], that robust commitments can be used in place of statistically-hiding commitments
in many constructions of non-malleable protocols and possibly reducing the assumptions from collision-
resistant hash functions to one-way functions.

1.4 Organization

In Section 3, we present our non-malleability amplification theorem for synchronizing adversaries and
in Section A, we present a black-box variant of the construction. In Section B, we present a black-
box variant of the constant-round non-malleable commitments from [38]. In Section C, we present our
results for secure MPC. In Section D, we show how to transform a non-malleable commitment w.r.t.
synchronizing adversaries into one for non-synchronizing adversaries. In Section E, we show how to achieve
non-malleability amplification for non-synchronizing adversaries.

2 Preliminaries and Definitions

We use Com to denote a non-interactive statistically binding commitment scheme. Our constructions may
be easily extended to handle the 2-message statistically binding commitment scheme based on one-way
functions from [33, 21], where the first message can be fixed “once and for all”. We also use WIPOK to denote
3-round witness-distinguishable proofs of knowledge for NP with special soundness (assuming Com) [17].

Non-malleable commitments. We recall the definition of many-many non-malleability from [28], which
builds upon those in [13, 35]. Let TagCom = (C,R) be a commitment scheme with identities, and 1n

be the security parameter. In the man-in-the-middle execution, the adversary A is participating m left
interactions and m right interactions. In the left interactions, A interacts with C receiving a commitment
to m values v1, . . . , vm, using identities ID1, . . . , IDm of its choice. In the right interactions,A interacts with
R attempting to commit to a sequence of m related values ṽ1, . . . , ṽm, again using identities ĨD

1, . . . , ĨD
m

of its choice.A also receives an auxiliary z. In general, we allowA complete control over the scheduling of
the messages, although we will also refer to an synchronizing adversary that always sends the i’th messages
in each of the right sessions immediately after it receives the i’th messages in all of the left sessions and

5 Indeed, our O(log∗ n)-round protocol for synchronizing adversaries is robust because it has a super-constant number of
rewinding slots.

6

vice versa (i.e. it sends the jth messages in each of the left sessions immediately after it receives the j’th
messages in all of the right sessions.) If any of the right commitments as determined by the transcript6are
invalid or undefined, its value is set to ⊥. For any i such that ĨD

i ∈ {ID1, . . . , IDm}, the value ṽi is also set
to ⊥ (that is, any commitment where adversary uses the same identity as that in one of the left interactions
is considered invalid). We write mimTagCom

A(z) (C(v1, . . . , vm),R) to denote a random variable comprising the
view ofA along with the m-tuple of values (ṽ1, . . . , ṽm). We abbreviate this as mimA(z)(C(v1, . . . , vm),R)
when the commitment scheme TagCom is clear from the context.

Definition 1. A commitment scheme (C,R) is many-many non-malleable (w.r.t. opening) if for every PPT

A and every polynomial m = m(n) and every pair of m values (v01, . . . , v
0
m), (v11, . . . , v

1
m) along with any

z ∈ {0, 1}∗, the distributions{
mimA(z)(C(v01, . . . , v0m),R)

}
and

{
mimA(z)(C(v11, . . . , v1m),R)

}
are computationally indistinguishable.

We will also consider a restricted notion of many-many non-malleability where in the left and right
interactions, the adversary A may only use identities of length at most d. In addition, we will refer to
relaxed notions of many-many non-malleability: one-many and one-one non-malleability. In the former, the
adversary participates in one interaction on the left and m interactions on the right, and in the latter, the
adversary participates in one interaction on the left and one interaction on the right. As shown in [28], any
commitment scheme that is one-many non-malleable is also many-many non-malleable.

Proposition 1 ([28]). Let (C,R) be a one-many non-malleable commitment (resp. w.r.t. synchronizing
adversaries). Then, (C,R) is also a many-many non-malleable commitment (resp. w.r.t. synchronizing
adversaries).

3 Improved Non-Malleability Amplification

We present our construction for non-malleability amplification in Fig 2.

Proposition 2 (Non-malleability amplification with synchronization). For every t = t(n) ≥ 4, if
tagCom is one-many non-malleable for identities of length log t + 1 w.r.t. synchronizing adversaries, then
(C,R) as shown in Fig 2 is one-many non-malleable for identities of length t w.r.t synchronizing adversaries.

3.1 Proof overview

Let ID denote the identity on the left, and fix some identity ĨD ̸= ID on the right. Following the informal
argument given in Section 1.2, the key in the analysis is to examine the committed value in the tagCom

commitment with identity (i, ĨDi) for which ĨDi ̸= IDi. Towards formalizing this argument, it is helpful to
consider an “alternative open phase” for the man-in-the-middle execution corresponding to a “receiver”R∗

0

andR∗ .
6 We stress here that the value is determined by enumerating over all possible openings in the “open phase” of the commitment

scheme that are consistent with the transcript, and not by enumerating over all possible values and random tapes for the honest
sender algorithm.

7

Common input : security parameter 1n and an identity ID = (ID1, . . . , IDt) ∈ {0, 1}t.
Sender’s input : a value v ∈ {0, 1}poly(n).

. .

COMMIT PHASE.
Stage 0: R sends a random s = f(r).a C responds with a dummy message.b

Stage 1: C commits to v using tagCom with tags (1, ID1), . . . , (t, IDt). That is, C executes
tagCom(idi, v) in parallel for i = 1, 2, . . . , t, where idi = (i, IDi).

Stage 2: C proves a WIPOK of the statement:

either all t commitments in Stage 1 are commitments to the same value or s ∈
f({0, 1}n)

using as witness the value v along with the randomnesses it uses for the commitments in Stage 1.

. .

OPEN PHASE.

– C opens the first commitment to v in Stage 1 (the one using (1, ID1)).c

a Following [26], R should send a witness hiding proof that s ∈ f({0, 1}n) after Stage 1.
b The dummy message is essential for technical reasons, to ensure that R’s first message in tagCom is always sent after it

sends the random challenge f(r).
c Note that if the WIPOK in Stage 2 is not accepting, then the committed value corresponds to ⊥.

Fig. 2. Commitment scheme TagCom = (C,R).

More formally, we first write mimA(z)(C(v),R∗
0) to denote a random variable that is the same

as mimA(z)(C(v),R), except the m-tuple of values (ṽ1, . . . , ṽm) is defined as follows: for ĨD ∈
{ĨD

1, . . . , ĨD
m}, we set the corresponding committed value ṽ as follows:

– if ĨD = ID, then we set ṽ to ⊥,

– if ĨD ̸= ID, let i ∈ [t] be the first index such that ĨDi ̸= IDi and set ṽ to be the committed value in Stage
1 corresponding to the tag (i, ĨDi).

Next, we write mimA(z)(C(v),R∗) to denote a random variable that is the same as mimA(z)(C(v),R∗
0),

except each committed value ṽ is set to ⊥ whenever the corresponding WIPOK in Stage 2 is rejecting. We
will argue that the committed values are essentially the same whether we refer to R or R∗. Looking ahead,
we highlight two properties of the intermediateR∗

0 that will come in handy later:

– Property A: We can efficiently compute the output of mimA(z)(C(v),R∗) given that of mimA(z)(C(v),R∗
0);

this is because we can check whether the WIPOK in Stage 2 is accepting given the transcript of the
commit phase.

– Property B: The committed value according to R∗
0 is completely determined upon the completion of

Stage 1 on the right. (In contrast, the committed values according to R and R∗ depend also on the
outcome of Stage 2.)

8

3.2 The hybrid argument

STEP 1: SWITCHING TO R∗. We claim that{
mimA(z)(C(v0),R)

}
∼=

{
mimA(z)(C(v0),R∗)

}
(3.1)

STEP 2: SWITCHING TO C∗(v0). We change the WIPOK on the left to use the trapdoor witness r, i.e. we
replace C(v0) in the left execution with C∗(v0) where C∗ is the following (computationally unbounded)
sender that on input v, behaves exactly like C(v) in Stages 0 and 1, and proceeds as follows in Stage 2:

– (Stage 2) Extract r ∈ f−1(s) via brute force (where s is the challenge sent by theR in Stage 0) and
complete the WIPOK using witness r.

Here, we exploit security of the WIPOK and the fact that the adversary is synchronizing to argue that{
mimA(z)(C(v0),R∗)

}
∼=

{
mimA(z)(C∗(v0),R∗)

}
(3.2)

STEP 3: SWITCHING TO C∗(v1). We switch the left commitment in Stage 1 to v1 (i.e. we replace C∗(v0) on
the left with C∗(v1)) and exploit many-many non-malleability of tagCom to argue that{

mimA(z)(C∗(v0),R∗)
}
∼=

{
mimA(z)(C∗(v1),R∗)

}
(3.3)

STEP 4: SWITCHING TO C(v1). This is analogous to Step 2.{
mimA(z)(C∗(v1),R∗)

}
∼=

{
mimA(z)(C(v1),R∗)

}
STEP 5: SWITCHING BACK TO R. This is analogous to Step 1.{

mimA(z)(C(v1),R∗)
}
∼=

{
mimA(z)(C(v1),R)

}
Looking ahead, for steps 2, 3 and 4, it suffices to establish indistinguishability of the distributions where
we replace every instance ofR∗ withR∗

0. This is because we can efficiently compute the committed values
according toR∗ from that ofR∗

0 together with the transcript (c.f. Property A).

Switching to R∗ (step 1). Here, we just need to argue that for each of the right sessions, if the Stage 2

WIPOK is accepting, then the t committed values in Stage 1 are equal (and whenever this holds, the
committed values are the same whether we considerR orR∗ and (3.1) follows). Suppose otherwise, that is,
there exists a MIM adversary A that with non-negligible probability, produces an accepting right execution
in which the t committed values in Stage 1 are not all equal. Now, we may incorporate the left execution
into A (by honestly committing to v0) to obtain a stand-alone cheating prover P∗ for the WIPOK in that
particular right execution. Then, rewinding and extracting from P∗ must yield a witness for s ∈ f({0, 1}n),
which contradicts one-wayness of f . We note that this is the only step of the hybrid argument (apart from
the analogous Step 5) that requires rewinding or extraction.

Switching to C∗ (step 2). As noted above, to prove (3.2), it suffices to establish the following claim:

Lemma 1 (exploiting WIPOK).
{
mimA(z)(C(v0),R∗

0)
}
∼=

{
mimA(z)(C∗(v0),R∗

0)
}

.

9

We begin with the observation that the only difference between these two distributions is the witness used
in the WIPOK used in Stage 2 on the left.

Proof. Let Φ(A, z) denote the distribution of all joint views τ of A and the receivers on the right up to the
point before Stage 2 on the left begins (i.e., just after the completion of Stage 1 on the right). In addition, we
add to Φ(A, z) the following values: (1) v0 and the randomness σ used for all of the Stage 1 commitments on
the left in τ ; (2) r ∈ f−1(s) where s is the Stage 0 challenge on the left in τ ; and (3) the m committed values
(ṽ1, . . . , ṽm) in m executions on the right as determined by R∗

0 (here, we use the fact that to determine the
committed values according toR∗

0, we only need to look at the transcript up to the completion of Stage 1, c.f.
Property B). We do not require that these latter values ((v0, σ), s, (ṽ1, . . . , ṽm)) be efficiently computable.

Now, consider a WIPOK prover P for the statement

either all t commitments in Stage 1 are commitments to the same value or s ∈ f({0, 1}n)
(the commitments and s refer to those for the left interaction embedded in the view τ).

against a cheating verifier V∗ that receives as auxiliary input Φ(A, z). It is straight-forward to construct V∗
such that

– if P uses the witness (v0, σ), then the output of V∗ has the same distribution as
{
mimA(z)(C(v0),R∗

0)
}

;
and

– ifP uses the witness r ∈ f−1(s), then the output of V∗ has the same distribution as
{
mimA(z)(C∗(v0),R∗

0)
}

.

Roughly speaking, V∗ upon receiving the auxiliary input from Φ(A, z) (i.e. the view τ together with the
values (v0, σ), s, (ṽ1, . . . , ṽm)), proceeds by simulating A(z) internally, using the messages from P for the
messages from C or C∗ in the left interaction and internally simulating the receiver in Stage 2 for the m right
interactions; the committed values (ṽ1, . . . , ṽm) for the m right interactions are provided as part of V∗’s
auxiliary input. The claim then follows from witness indistinguishability. ⊓⊔

Exploiting non-malleability of tagCom (step 3). Again, it suffices to show that
{
mimA(z)(C∗(v0),R∗

0)
}

and
{
mimA(z)(C∗(v1),R∗

0)
}

are indistinguishable. We begin with the observation that the only difference
between these two distributions lies in Stage 1 on the left; in the former, they comprise t commitments to v0

using tagCom and in the latter, they comprise t commitments to v1 using tagCom. To carry out the reduction
to the non-malleability of tagCom, we consider a “cut-off” point as in [28].

Let Φ(A, z) denote the distribution of all joint views τ ofA and the receivers on the right up to the point
immediately after A sends the dummy messages in Stage 0 in the right interactions. In addition, we add to
Φ(A, z) the value r ∈ f−1(s) where s is the Stage 0 challenge on the left in τ .

Lemma 2 (reduction to tagCom). For all ppt A, there exists a ppt B and D such that for all z, v:

{
mimTagCom

A(z) (C∗(v),R∗
0)
}
∼=

{
D(mimtagCom

B(z∗) (C(
t times︷ ︸︸ ︷
v, . . . , v),R)) : z∗ ← Φ(A, z)

}
are statistically indistinguishable. Note that in the second distribution, there are t left interactions, all
committing to v using tagCom.

Once we establish this lemma, (3.3) follows readily from the many-many non-malleability of tagCom,
which guarantees that

mimtagCom
B(z∗) (C(v0, . . . , v0),R)) ∼= mimtagCom

B(z∗) (C(v1, . . . , v1),R))

10

Proof. The high-level idea is to construct a machine B that on input z∗ = z||τ ||r runs internally a
copy of A and simulates the view of A in the experiment mimTagCom

A(z) (C∗(v),R∗
0) while participating in

mimtagCom
B(z∗) (C(v, . . . , v),R). The machine D will essentially “post process” the committed values in the

second distribution according to R∗
0. Note that B will run t interactions of tagCom on the left, and tm

interactions of tagCom on the right.
We first describe how to simulate the messages from C∗(v) in the left interaction in the view of A:

Stage 0. Stage 0 is embedded in τ .

Stage 1. B chooses identities (1, ID1), . . . , (t, IDt) for the t left interactions (scheduled in parallel), and
forwards the messages from the external C(v, . . . , v) to A as if coming from C∗(v).

Stage 2. B computes the prover’s messages in the WIPOK by using the witness r which is part of its auxiliary
input z∗.

Next, we describe how B simulates the messages from R in the m executions of TagCom on the right
and also how D computes the committed values. Again, let ĨD

1, . . . , ĨD
m denote the m identities on the

right. For each j = 1, . . . ,m,

Stage 0. Stage 0 is embedded in τ .

Stage 1. B uses identities (1, ĨD
j
1), . . . , (t, ĨD

j
t) for the t executions of tagCom on the right. It forwards the

messages from the t external copies ofR to A.

Stage 2. B simulates the verifier’s messages in the WIPOK internally.

Committed value. If ĨD
j = ID, then D simply outputs ⊥. Otherwise, D first computes the first index i for

which IDi ̸= ĨD
j
i and outputs as ṽj the committed value corresponding to the tag (i, ĨD

j
i). (D receives

this value as part of the output of mimtagCom
B(z∗) (C(v, . . . , v)),R).

This completes the reduction. ⊓⊔

11

Acknowledgments. I would like to thank Rafael Pass for numerous insightful discussions and his constant
encouragement as well as the staff at Ninth Street Espresso for their hospitality.

References

1. B. Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115, 2001.
2. B. Barak. Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In FOCS, pages

345–355, 2002.
3. B. Barak. Non-Black-Box Techniques in Cryptography. Ph.D., Weizmann Institute of Science, Jan. 2004.
4. B. Barak and Y. Lindell. Strict polynomial-time in simulation and extraction. SIAM J. Comput., 33(4):738–818, 2004.
5. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In STOC, pages 503–513, 1990.
6. M. Bellare and S. Yilek. Encryption schemes secure under selective opening attack. Cryptology ePrint Archive, Report

2009/101, 2009. http://eprint.iacr.org/.
7. R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–202, 2000.
8. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure computation. In

STOC, pages 494–503, 2002.
9. S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Black-box construction of a non-malleable encryption scheme from

any semantically secure one. In TCC, pages 427–444, 2008.
10. S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Improved non-committing encryption with applications to adaptively

secure protocols. In ASIACRYPT, pages 287–302, 2009.
11. S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Simple, black-box constructions of adaptively secure protocols. In

TCC, pages 387–402, 2009.
12. I. Damgård and Y. Ishai. Constant-round multiparty computation using a black-box pseudorandom generator. In CRYPTO,

pages 378–394, 2005.
13. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391–437, 2000.
14. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. In CRYPTO, pages 205–210, 1982.
15. U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. In CRYPTO, pages 526–544, 1989.
16. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The relationship between public key encryption and

oblivious transfer. In FOCS, pages 325–335, 2000.
17. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
18. O. Goldreich. Foundations of Cryptography: Volume II, Basic Applications. Cambridge University Press, 2004.
19. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest

majority. In STOC, pages 218–229, 1987.
20. I. Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In TCC, pages 412–426, 2008.
21. J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM J. Comput.,

28(4):1364–1396, 1999.
22. Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. Black-box constructions for secure computation. In STOC, pages 99–108,

2006.
23. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. In CRYPTO, pages 572–591,

2008.
24. J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a dishonest majority. In EUROCRYPT,

pages 578–595, 2003.
25. J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.
26. H. Lin and R. Pass. Non-malleability amplification. In STOC, pages 189–198, 2009.
27. H. Lin, R. Pass, W. D. Tseng, and M. Venkitasubramaniam. Concurrent non-malleable zero knowledge proofs. In CRYPTO,

pages 429–446, 2010.
28. H. Lin, R. Pass, and M. Venkitasubramaniam. Concurrent non-malleable commitments from any one-way function. In TCC,

pages 571–588, 2008.
29. H. Lin, R. Pass, and M. Venkitasubramaniam. A unified framework for concurrent security: universal composability from

stand-alone non-malleability. In STOC, pages 179–188, 2009.
30. Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. J. Cryptology, 16(3):143–184, 2003.
31. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious adversaries. In

EUROCRYPT, pages 52–78, 2007.

12

32. D. Micciancio, S. J. Ong, A. Sahai, and S. P. Vadhan. Concurrent zero knowledge without complexity assumptions. In TCC,
pages 1–20, 2006.

33. M. Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.
34. R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In STOC, pages 232–241, 2004.
35. R. Pass and A. Rosen. Concurrent nonmalleable commitments. SIAM J. Comput., 37(6):1891–1925, 2008.
36. R. Pass, A. Shelat, and V. Vaikuntanathan. Construction of a non-malleable encryption scheme from any semantically secure

one. In CRYPTO, pages 271–289, 2006.
37. R. Pass and H. Wee. Black-box constructions of two-party protocols from one-way functions. In TCC, pages 403–418, 2009.
38. R. Pass and H. Wee. Constant-round non-malleable commitments from sub-exponential one-way functions. In EUROCRYPT,

pages 638–655, 2010.
39. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer. In CRYPTO, pages

554–571, 2008. Also, Cryptology ePrint Archive, Report 2007/118.
40. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC, pages 187–196, 2008.
41. M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent zero knowledge with logarithmic round-complexity. In FOCS, pages

366–375, 2002.
42. S. Wolf and J. Wullschleger. Oblivious transfer is symmetric. In EUROCRYPT, pages 222–232, 2006.

13

A Non-malleability w.r.t. Extraction

A.1 Definitions

We begin with definitions for non-malleability w.r.t extraction.

Concurrently extractable commitments. Let (C,R) be a statistically binding commitment scheme. We
say that (C,R) is a concurrently extractable commitment scheme if there exists an expected polynomial-
time probabilistic oracle machine (the extractor) EXT that given oracle access to any PPT cheating sender
C∗ participating in m = m(n) concurrent executions of (C,R) outputs a view τ and a m-tuple of values
(v∗1, . . . , v

∗
m) such that:

– (simulation) τ is identically distributed to the view of C∗ at the end of interacting with m executions of
an honest receiverR in commit phase.

– (extraction) Let v1, . . . , vm be the committed values as defined by the transcript τ . Then, Pr[∃i : vi ̸=⊥
and v∗i ̸= vi] is negligible.

The second condition means that except with negligible probability, if τ is a valid commitment to some
value (not equal to ⊥), then the extractor must output that value, and otherwise, there is no restriction on the
output of the extractor.

Proposition 3 ([37, 32, 41]). There exists a (fully) black-box construction of a 4-round public-coin
concurrently extractable commitment ExtCom from one-way functions.

Non-malleability w.r.t extraction. We consider a notion of non-malleability for concurrently extractable
commitments. As before, consider a man-in-the-middle execution for a concurrently extractable commit-
ment scheme (C,R). We use the random variable extmimA(z)(C(v1, . . . , vm),R) to denote the output
(τ, ṽ∗1, . . . , ṽ

∗
m) of EXT, treating A along with the m left interactions as a single cheating sender for the

m right interactions. As before, for any i such that ĨD
i ∈ {ID1, . . . , IDm}, we set ṽ∗i to ⊥.7

Definition 2. A concurrently extractable commitment scheme (C,R) is concurrent non-malleable w.r.t

extraction if for every PPT A and every polynomial m = m(n) and every m values (v1, . . . , vm) along with
any z ∈ {0, 1}∗, the distributions{

extmimA(z)(C(v01, . . . , v0m),R)
}

and
{
extmimA(z)(C(v11, . . . , v1m),R)

}
are computationally indistinguishable.

We have the following analogue of Proposition 1 for non-malleability w.r.t extraction:

Proposition 4. Let (C,R) be a commitment scheme that is one-many concurrent non-malleable w.r.t
extraction (resp. and w.r.t. synchronizing adversaries). Then, (C,R) is also concurrent non-malleable w.r.t.
extraction (resp. and w.r.t. synchronizing adversaries).

7 If in addition we set ṽ∗i to ⊥ whenever the actual committed value ṽi is ⊥, then we recover a distribution that is statistically
close to mimA(z)(C(v1, . . . , vm),R).

14

Common input : security parameter 1n and an identity ID = (ID1, . . . , IDt) ∈ {0, 1}t.
Sender’s input : a value v ∈ {0, 1}poly(n).

. .

COMMIT PHASE.
Stage 0: R commits to a random subset Γ ⊂ [10n] of size n. C responds with a dummy message.

Stage 1: C computes shares s of v using a n-out-of-10n secret-sharing scheme and commits to the
shares using tagCom with tags (1, ID1), . . . , (t, IDt).

– C picks a random degree n polynomial p over GF(2|v|) whose constant term is v, and computes
s = (s1, . . . , s10n) = (p(1), . . . , p(10n)). (Note that s is a Reed-Solomon encoding of v.)

– C executes tagCom(idi, s1), . . . , tagCom(idi, s10n) in parallel, for i = 1, 2, . . . , t and where
idi = (i, IDi).

Stage 2: C proves consistency of the commitments by opening to the shares indexed by Γ.

– R opens the commitment to Γ.
– C opens all t commitments to sj in Stage 1 for all j ∈ Γ.
– R checks that all t commitments to sj are consistent for all j ∈ Γ.

. .

OPEN PHASE.

– C sends v and opens the commitment to s corresponding to the tag (1, ID1) in Stage 1.
– R computes the codeword w that is 0.9-close to s.
– R checks that w is a codeword corresponding to v and that w and s agree on all positions in Γ.

Fig. 3.

A.2 The construction and analysis

We present our black-box construction for non-malleability amplification in Figure 3. The key step in our
analysis lies in establishing the following analogue of Prop 2:

Proposition 5 (Black-box amplification with synchronization). For every t = t(n) ≥ 4, if tagCom is
one-many non-malleable w.r.t extraction and synchronizing adversaries for identities of length log t+1, then
(C,R) is one-many non-malleable w.r.t. extraction and synchronizing adversaries for identities of length t.

As before, we first present an alternative open phase for the commitment scheme TagCom.

An alternative opening R∗ for TagCom. As before, we consider an “alternative open phase” for the
man-in-the-middle execution corresponding to a “receiver” R∗

0 and R∗ . More formally, we first write
extmimA(z)(C(v),R∗

0) to denote a random variable that is the same as extmimA(z)(C(v),R), except the
m-tuple of values (ṽ1, . . . , ṽm) is defined as follows: for ĨD ∈ {ĨD

1, . . . , ĨD
m}, we set the corresponding

committed value ṽ as follows:

– if ĨD = ID, then we set ṽ to ⊥,

15

– if ĨD ̸= ID, let i ∈ [t] be the first index such that ĨDi ̸= IDi. Then we determine ṽ as follows (analogous
to NMDec∗SK in [9, Section 4.3]):

• We define the vector s̃′ = (s̃′1, . . . , s̃
′
10n) to be the extracted values8 in the i’th execution of tagCom

in Stage 1 on the right corresponding to the tag (i, ĨDi).
• Compute a codeword w̃ that is 0.8-close to s̃′.
• If w̃ and s̃′ agree on all positions on Γ, output the value ṽ corresponding to the codeword w̃, else

output ⊥.

Next, we write extmimA(z)(C(v),R∗) to denote a random variable that is the same as extmimA(z)(C(v),R∗
0),

except each committed value ṽ is set to ⊥ whenever the cut-and-choose phase in Stage 2 is rejecting.

A.3 The hybrid argument

STEP 1: SWITCHING TO R∗. We claim that{
extmimA(z)(C(v0),R)

}
∼=

{
extmimA(z)(C(v0),R∗)

}
STEP 2: SWITCHING TO C(v1). We switch the left commitment in Stage 1 to v1, i.e., we replace C(v0) in

the left execution with C(v1). As before, we will use a reduction to the many-many non-malleability of
tagCom to argue that:{

extmimA(z)(C(v0),R∗)
}
∼=

{
extmimA(z)(C(v1),R∗)

}
STEP 3: SWITCHING BACK TO R.{

extmimA(z)(C(v1),R∗)
}
∼=

{
extmimA(z)(C(v1),R)

}
Switching to R∗ (step 1, also step 3). Let s denote the extracted values in the first execution of tagCom in
stage 1 on the right corresponding to the tag (1, ĨD1), whereas s′ is that corresponding to the tag (i, ĨDi). Note
that s and s′ are used to determine ṽ in extmimA(z)(C(v0),R) and extmimA(z)(C(v0),R∗) respectively. We
consider two cases, almost exactly as in [9, 37]:

YES instance — s̃ is 0.9-close to some codeword w̃ and s̃′ is 0.9-close to s̃.

This means that s̃′ is 0.8-close to w̃. Therefore, both R and R∗ will recover the same codeword w̃ and
therefore the same value ṽ.

NO instance — either s̃ is 0.1-far from every codeword or s̃′ is 0.1-far from s̃.

We claim here that (with high probability) both R and R∗ will output ⊥. Suppose R commited to a
dummy value instead of Γ in Stage 0; then this follows from a simple statistical argument as in [9,
Section 4.2]. To switch from a dummy commitment to a commitment to Γ, we follow exactly the same
argument as in [37] (the idea is to exploit the fact that the commitment to Γ is hiding and that we can
extract the values s̃ and s̃′).

8 By “extracted values”, we refer to the values output by the extractor for tagCom.

16

Exploiting non-malleability of tagCom (Step 2). We provide a sketch of the analysis for Step 2, which
relies on the many-many non-malleability of tagCom. It suffices to show that:{

extmimA(z)(C(v0),R∗
0)
}
∼=

{
extmimA(z)(C(v1),R∗

0)
}

As before, we work withR∗
0 instead ofR∗ for simplicity as it allows us to essentially ignore the outcome of

Stage 2. We define Φ and Ξ as in Section 3, except Ξ now extracts (Γ, σ) from Com(Γ;σ) instead of r from
s. The following lemma is an analogue of Lemma 2.

Lemma 3 (reduction to tagCom). For all pptA, there exists a ppt B and D such that for all z, v0, v1, there
exists (s01, . . . , s

0
9n), (s

1
1, . . . , s

1
9n) such that for all b ∈ {0, 1}:{

extmimTagCom
A(z) (C∗0,b(v0, v1),R∗

0)
}

and{
D(extmimtagCom

B(z∗) (C(sb1, . . . , sb9n, . . . , sb1 . . . , sb9n),R)) : z∗ ← Ξ(Φ(A, z))
}

are statistically indistinguishable.

Proof. We construct B essentially as in the proof of Lemma 2 and also the proof of the third claim in [9,
Section 4.3]. For notational simplicity and WLOG, we assume Γ = {9n+1, . . . , 10n}. We may then sample
random shares s0 = (s00, . . . , s

0
10n) and s1 = (s11, . . . , s

1
10n) of the messages v0 and v1 that agree on all of

the positions in Γ, that is, s09n+1 = s19n+1, . . . , s
0
10n = s110n.

Next, we describe how to simulate the messages from C(vb) in the left interaction in the view of A:

Stage 0. Stage 0 is embedded in τ .

Stage 1. B internally simulates tagCom for the indices in Γ in parallel with the messages from the external
sender C.

– The choice of the 9nt external executions of tagCom on the left will depend on the set Γ, which we
will assume WLOG to be {9n+ 1, . . . , 10n} for notational simplicity.

– The 9nt external executions of tagCom will correspond to commitments to sb1, . . . , s
b
9n with identi-

ties id1, . . . , idt, i.e., tagCom(id1, s
b
1), . . . , tagCom(id1, s

b
9n), . . . , tagCom(idt, s

b
1), . . . , tagCom(idt, s

b
9n)

– B will internally simulate nt executions of tagCom corresponding to commitments of sb9n+1, . . . , s
b
10n

(these n values do not depend on b) with identities id1, . . . , idt, i.e. tagCom(id1, s
b
9n+1), . . . , tagCom(id1, s

b
10n), . . . ,

tagCom(idt, s
b
9n+1), . . . , tagCom(idt, s

b
10n)

Stage 2. Internally simulate the openings for the indices in Γ.
– If A opens the Stage 0 commitment to a value different from Γ, abort. Otherwise, open the

commitments nt to the values sb9n+1, . . . , s
b
10n.

Next, we describe how B handles the m executions of TagCom on the right, with identities ĨD
1, . . . , ĨD

m.
For each j = 1, . . . ,m:

Stage 0. Stage 0 is embedded in τ .

Stage 1. B initiates 10nt external executions of tagCom on the right, with 10n executions for each of the
identities idj1, . . . , id

j
t .

17

Stage 2. B internally simulates the opening to the challenges in Stage 0 (it gets the randomness used for the
commmitments Com(Γ) from z∗).

Committed value. If ĨD
j = ID,then D simply outputs ⊥. Otherwise, D first computes the first index i for

which IDi ̸= ĨD
j
i and computes ṽj from the extracted values corresponding to the tag (i, ĨD

j
i) as inR∗

0.

B Constant-Round Non-Malleable Commitments from Sub-Exponential OWFs

Suppose there exists a one-way function secure against sub-exponential size circuits. Then, we may construct
a hierarchy of commitment schemes Com0, . . . ,Comd+1 with d = log log log n+O(1) such that:

– For each i = 0, 1, . . . , d− 1: Comi (and ExtComi) is Ti-hiding but can be broken in time T
1/2
i+1 .

Proposition 6 (Non-malleability from sub-exponential hardness). Suppose there exists one-way func-
tions secure against sub-exponential sized circuits. Then, the commitment scheme shown in Fig 4 is one-
many non-malleable w.r.t. extraction for identities of length log log log n+O(1).

18

Common input : security parameter 1n and an identity id ∈ {0, 1, . . . , d− 1}.
Sender’s input : a value v ∈ {0, 1}poly(n).

. .

COMMIT PHASE.
Stage 0:
C → R : C computes shares s = (s1, . . . , s10n) of v using Shamir’s n-out-of-10n secret-sharing

scheme and commits to the shares using Comd.

Stage 1:
– R commits to a random string γR

1 using ExtComid.
– C commits to s using ExtComd+1, and in addition, sends a random string γS

1.
– R opens the commitment to γR

1 and both parties use γR
1 ⊕ γS

1 to select a subset Γ1 ⊂ [10n] of
size n/2.

– C opens the commitments to sj in Stages 0 and 1 for all j ∈ Γ1.
– R checks that the commitments are consistent for all j ∈ Γ1.

Stage 2:
– R commits to a random string γR

2 using ExtComd−id.
– C commits to s using ExtComd+1, and in addition, sends a random string γS

2.
– R opens the commitment to γR

2 and both parties use γR
2 ⊕ γS

2 to select a subset Γ2 ⊂ [10n] of
size n/2.

– C opens the commitments to sj in Stages 0 and 2 for all j ∈ Γ2.
– R checks that the commitments are consistent for all j ∈ Γ2.

. .

OPEN PHASE.

– C sends v and opens the commitment to s in Stage 0.
– R computes the codeword w that is 0.9-close to s.
– R checks that w is a codeword corresponding to v and that w and s agree on all positions in

Γ1 ∪ Γ2.

Fig. 4. The commitment scheme tagCom = (C,R) for short identities.

19

C Secure MPC

We consider the standard stand-alone model for secure computation [7, 18]. Specifically, we consider a
fully synchronized network with a global clock, a rushing adversary, and where all n players have unique
identities. For simplicity, we also assume pairwise private channels, an assumption that can be removed with
the use of public-key encryption.

C.1 Building blocks and the n-party OT protocol

We require two building blocks to instantiate our compiler Comp shown in Figure 5: a constant-round OT
protocol Π that is the input to Comp, and a commitment scheme that Comp relies on.

OT tolerating malicious senders. Our first building block is a constant-round OT protocol Π that is
secure against a malicious sender and a semi-honest receiver. As it turns out, many existing semi-honest
OT protocols already have this property (c.f. [39, 10]):

Proposition 7. There exists a (fully) black-box construction of a constant-round OT protocol secure against
a malicious sender and a semi-honest receiver, starting from lossy encryption schemes, homomorphic
encryption schemes, dense cryptosystems or certifiable enhanced trapdoor permutations. Moreover, the OT
protocol admits a straight-line simulator.

We sketch the proofs for the OT protocols based on lossy encryption schemes or dense cryptosystems. These
are 2-message protocols where the receiver first sends two public keys, such that it can decrypt for exactly
one of the two keys (the other being either lossy or oblivously sampled), and the sender sends encryptions of
both secrets using the respectively public key. To handle a malicious sender, the simulator simply generates
both public keys along with the corresponding secret keys so that it can decrypt messages encrypted either
key and thus extract both of the sender’s inputs.9 For the semi-honest OT protocol based on homomorphic
encryption schemes from [22], the same idea allows us to handle a malicious receiver but not a malicious
sender; we will handle this by first applying OT reversal [42] to the protocol.

The n-party OT protocol. In the n-party OT protocol, every pair of parties Pi, Pj run two executions
Comp(Π) in parallel, one with Pi as the sender and the other with Pj as the sender. Whenever the parties
in Comp(Π) run a commitment scheme, we execute our non-malleable commitment scheme tagCom in
parallel. The adversaryA in the n-party OT protocol then corresponds to a man-in-the-middle adversary for
the commitment scheme. Looking ahead, we handle the simultaneous commitments and extraction in the
simulation by running EXT.

C.2 Proof of security

Lemma 4. Suppose Π is a OT protocol that is secure against a malicious sender and a semi-honest
receiver with a straight-line simulator and that tagCom is a many-many non-malleable commitment scheme
w.r.t. extraction and synchronizing adversaries for n identities. Then, Comp(Π) realizes the n-party OT
functionality against a malicious adversary that may corrupt any number of parties. Moreover, if Π is
constant-round and tagCom has c rounds, then Comp(Π) has O(c) rounds.

9 Here, we require perfect correctness of the decryption algorithm to hold w.h.p. over the public key.

20

Common input : security parameter 1n

Sender’s input : (sender, sid, s0, s1) where s0, s1 ∈ {0, 1}ℓ.
Receiver’s input : (receiver, sid, r) where r ∈ {0, 1}.

. .
PHASE I: RANDOM TAPE GENERATION.

1. R chooses 2n random strings (rR
1 , τ

R
1), . . . , (r

R
2n, τ

R
2n) and commits to (rR

i , τ
R
i), for i =

1, 2, . . . , 2n.
2. S sends 2n random strings (rS

1, τ
S
1), . . . , (r

S
2n, τ

S
2n).

3. R sets ri = rR
i ⊕ rS

i and τi = τR
i ⊕ τ S

i , for i = 1, 2, . . . , 2n.

PHASE II: BASIC EXECUTION.

1. S chooses 2n pairs of random inputs (s01, s
1
1), . . . , (s

0
2n, s

1
2n).

2. S and R engages in 2n parallel executions of the protocol Π. In the ith execution, S inputs
(s0i , s

1
i) and R inputs ri with randomness τi and obtains output srii .

PHASE III: CUT-AND-CHOOSE.

1. S commits to a random string qS ∈ {0, 1}n.
2. R sends a random string qR ∈ {0, 1}n.
3. S opens the commitment to qS and both parties compute q = (q1, . . . , qn) = qR ⊕ qS. The

string q is used to define a set of indices Q ⊂ {1, 2, . . . , 2n} of size n in the following way:
Q = {2i− qi}ni=1.

4. For every i ∈ Q, R opens the commitment to (rR
i , τ

R
i), and S computes (ri, τi).

5. S checks that for all i ∈ Q, (ri, τi) is consistent with R’s messages in the i’th execution of Π.
If not, S aborts and halts.

PHASE IV: COMBINER.

1. For every j /∈ Q, R computes αj = r ⊕ rj and sends {αj}j /∈Q to S.
2. S computes σ0 = s0 ⊕ (

⊕
j /∈Q s

αj

j) and σ1 = s1 ⊕ (
⊕

j /∈Q s
1−αj

j) and sends (σ0, σ1).
3. R computes and outputs sr = σr ⊕ (

⊕
j /∈Q s

rj
j).

Fig. 5. OT protocol Comp(Π)

The simulator and the analysis are similar to that in [11, 22]; the key difference lies in bounding the
failure probability of the simulator, which is related to the “soundness” of the cut-and-choose phase against
a cheating receiver. (A cheating receiver breaks soundness if for all i /∈ Q, it did not behave consistently
in the i’th execution of Π.) The previous analysis relies on the fact that the sender’s commitment in
Phase III is equivocable. Our analysis only relies on the fact that the commitment scheme is hiding (even
amidst extraction) and exploits the observation from [11] that the cut-and-choose phase has an efficiently
recoverable “easy challenge” (c.f. [37]). (This is because by extracting from the cheating receiver’s
commitments in Phase I, we may efficiently check whether it is behaving consistently for each execution of
Π in Phase II.)

21

Our simulator. We construct a simulator S in the ideal execution that given access to a n-party OT
functionality, simulates the view of an adversary A in the real execution. As usual, the simulator S works
by invoking a copy of A and simulating its interaction with the honest parties. In particular, S does the
following in parallel for each pair of parties running Comp(Π):

– Simulating the case when only the sender is corrupted: S begins by picking a random q ∈ {0, 1}n and
computing the corresponding Q ⊂ {1, 2, . . . , 2n}, then proceeds as follows:

PHASE I. For each i ∈ Q, S follows the strategy of the honest R to commit to random (rR
i , τ

R
i) and to

compute (ri, τi). For each i /∈ Q, S commits to (0, 0poly(n)) as R.

PHASE II. For each i ∈ Q, S continues to follow the strategy of the honest R and executes Π as the
receiver with input ri and randomness τi. For each i /∈ Q, S runs the simulator for Π to simulate the
view of A and in addition, extract its input (s0i , s

1
i).

PHASE III. S extracts the value qS that A committed to as S, and sends qR = qS ⊕ q to A as if sent
from R. When A opens its commitment to qS, S opens its commitment to (rR

i , τ
R
i) for all i ∈ Q.

PHASE IV. S sends random {αj}j /∈Q toA as if sent from R. WhenA sends (σ0, σ1) as S, S computes
s0 = σ0 ⊕ (

⊕
j /∈Q s

αj

j) and s1 = σ1 ⊕ (
⊕

j /∈Q s
1−αj

j). Next, S sends (sender, s0, s1) to FOT as if
sent from S.

– Simulating the case when only the receiver is corrupted:

PHASE I. For each i = 1, 2, . . . , 2n, S extracts the value (rS
i , τ

S
i) that A committed to as R,

picks a random string (rR
i , τ

R
i), sets rS

i = ri ⊕ rR
i and τ S

i = τi ⊕ τR
i and internally passes

(rS
1 , τ

S
1), . . . , (r

S
2n, τ

S
2n) to A as if sent by S to R.

PHASE II AND III. S runs the honest sender algorithm.

PHASE IV. S computes j∗ /∈ Q such that the values (rj∗ , τj∗) are consistent with the messages A sent
as R in the j∗’th execution of Π in Phase II, and output failure if such a j∗ does not exist. When A
sends {αj}j /∈Q as R, S computes r = αj∗ ⊕ rj∗ and sends (receiver, sid, r) to FOT. Upon receiving
(sid, sr) from FOT, compute (σ0, σ1) so that σr is consistent with sr as follows:

• If r = 0, then σ0 = s0 ⊕ (
⊕

j /∈Q s
αj

j) and σ1 is a random string in {0, 1}ℓ.
• If r = 1, then σ0 is a random string in {0, 1}ℓ and σ1 = s1 ⊕ (

⊕
j /∈Q s

1−αj

j).

S then sends (σ0, σ1) to A as if sent by S to R.

Analyzing S. By an analogous analysis to that in [11, 22], it follows that if S does not output failure, the
output of S in the ideal execution is indistinguishable from that of A in the real execution. Specifically, we
will use a distinguisher for this two distributions to violate the security of Π. Roughly speaking, the reduction
works by randomly embedding an execution of Π into Comp(Π) (we also need to pick a random Comp(Π)

for a random pair of parties), and whenever S does not output failure, we have that with probability at least
1/2n, A behaves like a semi-honest receiver in the embedded execution of Π.

22

Bounding failure probability of S. It remains to show that probability 1 − neg(n), S does not output
failure in any execution of Comp(Π). This is where our analysis differs significantly from previous works.
Suppose otherwise, that is, S outputs failure in some execution of Comp(Π) with non-negligible probability
ϵ. Fix a Comp(Π) execution for which this happens, and observe that S only outputs failure if only the
receiver is corrupted and at the start of Phase IV, all of the following conditions hold:

– For each of the n pairs of executions of Π corresponding indices (1, 2), . . . , (2n − 1, 2n), A (as the
corrupted receiver) behaved consistently with (ri, τi) in exactly one execution in each pair. This is
because if there is a pair where both are inconsistent, then the sender will abort at the end of Phase
III; and if there is a pair where both are consistent, then there exists a j∗ /∈ Q in that pair.

– Let q∗ denotes the unique challenge that allows A to cheat. If S outputs failure, it must be because after
the honest commits to qS, A sends qR such that qR ⊕ qS = q∗. Note that the simulator can compute q∗

efficiently since it knows all the (ri, τi) (by extraction for Phase I).

Now, suppose we pick a random execution π of Comp(Π) and run S – in particular, committing to a random
qS – up to the point that the embedded A sends qR. Then with probability ϵ/2n2, we have that qR = qS ⊕ q∗.
Note that while committing to a random qS, S is possibly simultaneously extracting a commitment to qS

from A in a different execution π′ of Comp(Π) where A corrupted the sender, in order to compute qR in
π′. Moreover, A’s choice of qR in π may in turn depend on that in π′. Informally, non-malleability w.r.t.
extraction guarantees that changing the commitment to qS in π to a commitment to 0n does not affect qR in
π′ and therefore will not affect qR in π. This is because we may compute qR in π′ and π from the output of
EXT.

More precisely, suppose we still pick a random qS while running S but commit to 0n instead of qS in π.
Then, non-malleability guarantees that with probability ϵ/2n2 − neg(n), we still have that qR = qS ⊕ q∗ in
π (again because we may compute qR from the output of EXT). This is impossible because the view of A is
statistically independent of qS.

23

D Handling Non-Synchronizing Adversaries

We present our construction for handling non-synchronizing adversaries in Fig 6.

Proposition 8 (Handling non-synchronization). If tagCom is non-malleable w.r.t. synchronizing adver-
saries and non-malleable w.r.t 4-round protocols and non-synchronizing adversaries, then (C,R) as shown
in Fig 6 is non-malleable w.r.t. non-synchronizing adversaries.10

This improves upon [2, Theorem 6.1] which requires in addition, the existence of constant-round, perfectly-
hiding commitments. In the construction, we use the 4-round public-coin witness-indistinguishable proof of
knowledge WIPOK based on the Feige-Shamir protocol from [15], which satisfies the following properties:

– The first two messages depend only on the length of the instance and the security parameter and can be
pre-computed efficiently without knowing the instance or the witness.

– The third message can be computed efficiently given the instance, the witness, and the randomness used
to generate the first message.

– The protocol is special-sound—namely, given any two accepting proofs of x, (α, β, γ), (α, β′, γ′) such
that β ̸= β′. a witness to x can be efficiently recovered.

D.1 An informal argument

We start with an informal argument that the new commitment scheme is stand-alone non-malleable.

Two representative schedulings. We regard the interaction on the right as comprising c + 1 slots, where
the first slot comprises all messages sent before round 2, and for i = 1, . . . , c+1, the i+1’th slot comprise
all messages sent after round 2i + 1 and before round 2i + 2 (i.e., between the second and third messages
of the i’th WIPOK). We will examine how c + 2 sender’s messages sent in the left interaction in rounds
2, 4, . . . , 2c+ 2, 2c+ 4 are distributed across the c+ 2 slots.

Synchronizing: all slots are non-empty. This means that the executions of tagCom in the left and right
interactions are fully synchronized. As such, we may exploit the fact that tagCom is non-malleable w.r.t.
synchronizing adversaries.

Non-Synchronizing: some slot is empty. Here, we consider two cases:

– the first slot is empty: This means that the sender’s first message Com(ṽ) on the right is sent before
the sender’s first message Com(v) on the left; therefore, ṽ must be statistically independent of v.

– the i+ 1’th slot is empty, for some i ∈ {1, . . . , c+ 1}: Following [28], we refer to the first such i as
a safe point. Here, we will simply rewind and extract ṽ from the i’th WIPOK on the right.

We will refer to the three cases as Type I, Type II and Type III schedulings respectively.

10 The statement also holds if we replace non-malleable with one-many non-malleable.

24

Common input : security parameter 1n and an identity ID ∈ {0, 1}t.
Sender’s input : a value v ∈ {0, 1}poly(n).

. .

COMMIT PHASE.
Stage 0: In round 1,R sends a random s = f(r).a

Stage 1: In round 2, C commits to v using Com. In addition, C pre-computes and sends the first
messages of c+ 2 WIPOK to be used in Stages 3 and 4.

Stage 2: In rounds 3, . . . , 2c+ 2, C commits to v using tagCom with identity ID.

Stage 3: In rounds 2c+ 3, 2c+ 4, C sends a WIPOK of the statement.

either the commitments in Stages 1 and 2 are commitments to the same value or
s ∈ f({0, 1}n)

using as witness the value v along with the randomnesses it used for Stages 1 and 2. (The first
message of the WIPOK was sent in round 2.)

Stage 4: C sends c+ 1 WIPOK of the statement:

either the Stage 1 commitment is a valid commitment or s ∈ f({0, 1}n)
using as witness the value v along with the randomnesses it used for Stage 1. The c+1 WIPOK are
scheduled as follows: the first messages are all sent in round 2, and for i = 1, . . . , c+1, the second
and third messages of the i’th WIPOK are sent in rounds 2i+ 1, 2i+ 2.

. .

OPEN PHASE.

– C opens the commitment to v in Stage 1.
a Following [28, 26], R should send a witness hiding proof that s ∈ f({0, 1}n) after Stage 1.

Fig. 6. Commitment scheme TagCom = (C,R).

An alternative opening R∗ for TagCom. As before, we consider an “alternative open phase” for the man-
in-the-middle execution corresponding to a “receiver” R∗, where the committed value for the transcript of
the right interactions depends on the scheduling.

More formally, we first write mimA(z)(C(v),R∗
0) to denote a random variable that is the same as

mimA(z)(C(v),R), except the committed value ṽ is defined as follows:

– Type I scheduling (i.e. all slots are non-empty): set ṽ to the committed value in Stage 2 on the right;

– Type II scheduling (i.e. first slot is empty): set ṽ to be the committed value in Stage 1 on the right if
ĨD ̸= ID and ⊥ otherwise;

– Type III scheduling (i.e. i + 1’th slot is empty for some i ∈ {1, . . . , c + 1}): set ṽ to be value obtained
by rewinding and extracting from the i’th WIPOK on the right (if there is more than one such i, pick the
smallest one), and we refer to i as the safe point. Following [28, Lemma 2], we keep rewinding after
the first message of the i’th WIPOK on the right until we get a transcript with the same safe point. The
expected number of rewindings is bounded by c.

25

Next, we write mimA(z)(C(v),R∗) to denote a random variable that is the same as mimA(z)(C(v),R∗
0),

except the committed value ṽ is set to ⊥ whenever any of the WIPOK in Stage 3 or 4 is rejecting.

D.2 The hybrid argument

STEP 1: SWITCHING TO R∗. We claim that{
mimA(z)(C(v0),R)

}
∼=

{
mimA(z)(C(v0),R∗)

}
(D.1)

STEP 2: SWITCHING TO TRAPDOOR IN STAGE 3. We change the WIPOK in Stage 3 on the left to use the
trapdoor witness r ∈ f−1(s), which we compute via brute force.

STEP 3: SWITCHING TO TRAPDOOR IN STAGE 4. We change the c+1 WIPOKs in Stage 4 on the left – one
by one – to use the trapdoor witness r ∈ f−1(s).

STEP 4: SWITCHING TO Com(v1) IN STAGE 1. We switch the left commitment in Stage 1 from v0 to v1.

STEP 5: SWITCHING TO tagCom(v1) IN STAGE 2. We switch the left commitment in Stage 2 from v0 to
v1.

STEP 6: REVERSING STEPS 3, 2, 1. At this point, we just need to reverse steps 3, 2, and 1.

Switching to R∗ (step 1). Here, we just need to argue that the committed values according to R and R∗

are the same w.h.p. We establish this via two separate claims:

– First, the probability that in the right interaction, the committed values in Stages 1 and 2 are different and
the WIPOK in Stage 3 is accepting, is negligible. Suppose otherwise; then we may as before incorporate
the left execution intoA to obtain a stand-alone cheating proverP∗ for the WIPOK in Stage 3 on the right.
Then, rewinding and extracting from P∗ must yield a witness for s ∈ f({0, 1}n), which contradicts the
one-wayness of f .

– Next, the probability that we have a Type III scheduling and extraction from the safe point does not
yield the committed value ṽ in Stage 1 on the right is negligible. Suppose otherwise; then, extraction
must have yielded a witness for s ∈ f({0, 1}n), which again contradicts the one-wayness of f . (Here,
we also use the fact that the probability that rewinding does not yield accepting responses to two separate
challenges is 2−Ω(n).)

Switching to trapdoor in Stage 3 (step 2). Informally, we consider two cases based on the schedulings:

– Type I or II scheduling: Stage 3 on the left takes place after Stages 1 and 2 on the right, so it does not
affect the distribution of committed values in either Stages 1 or 2.

– Type III scheduling: when we rewind and extract from the i’th WIPOK on the right, there is no message
on the left, and therefore this case follows immediately from the indistinguishability of the WIPOK in
Stage 3.

More formally, suppose there exists a MIM adversaryA and a distinguisher D that breaks indistinguishabil-
ity with advantage ϵ. Then, for one of the three schedulings, the adversary achieves advantage at least ϵ/3,
and we can construct an adversary that breaks the security of the WIPOK (the reduction itself depends on the
type of scheduling).

26

Switching to trapdoor in Stage 4 (step 3). Again, we consider two cases based on the schedulings:

– Type I scheduling: Here, we use the fact that tagCom is non-malleable w.r.t. the 4-round protocols
WIPOK.

– Type II or III scheduling: This can be handled via the same arguments as that for Step 2.

More formally, suppose there exists a MIM adversaryA and a distinguisher D that breaks indistinguishabil-
ity with advantage ϵ. Then, for one of the three schedulings, the adversary achieves advantage at least ϵ/3,
and we can construct an adversary that breaks the security of the WIPOK (for Type II or III scheduling) or
an adversary that breaks the non-malleability of tagCom w.r.t. the 4-round protocols WIPOK.

Switching to Com(v1) in Stage 1 (step 4). As before, we consider two cases based on the schedulings:

– Type I scheduling: Here, we use the fact that tagCom is non-malleable w.r.t. the 2-round protocol Com.

– Type II or III scheduling: This can be handled via the same arguments as that for Step 2.

Switching to tagCom(v1) in Stage 2 (step 5). As before, we consider two cases based on the schedulings:

– Type I scheduling: Here, we use the fact that tagCom is non-malleable w.r.t. synchronizing adversaries.

– Type II or III scheduling: This can be handled via the same arguments as that for Step 2.

E Non-Malleability Amplification for Non-Synchronizing Adversaries

We present our construction for non-malleability amplification with non-synchronizing adversaries in Fig 7.

Lemma 5. For every t = t(n) ≥ 4, if tagCom is one-many non-malleable for identities of length log t+ 1

and one-many non-malleable w.r.t 4-round protocols, then (C,R) as shown in Fig 7 is one-many non-
malleable for identities of length t.

E.1 An informal argument

We start with an informal argument that the new commitment scheme is stand-alone non-malleable.

Two representative schedulings. Let α and α̃ denote the Stage 1 commitment in the left and right
interaction respectively, and let s denote the Stage 0 challenge in the left interaction. We consider two
representative schedulings, depending on whether α̃ is sent before or after s (see Fig 8). The intuition is as
follows:

Type I: α̃ is sent before s. The distribution of the messages up to s in the left interaction are independent
of the value v, so this means that the value α̃ and thus ṽ must be independent of the value v.

Type II: α̃ is sent after s. It must be the case that the first message in TagCom (which comes from the
receiver) in the right interaction is sent after A sends s. We may then rely on the one-many non-
malleability of tagCom with respect to both Com and tagCom to argue that the value committed to
in Stage 2 on the right is independent of the values committed to in both Stages 1 and 2 on the left.
Moreover, this holds even if A is given additional auxiliary information about s (specifically, f−1(s)).

27

Common input : security parameter 1n and an identity ID = (ID1, . . . , IDt) ∈ {0, 1}t.
Sender’s input : a value v ∈ {0, 1}poly(n).

. .

COMMIT PHASE.
Stage 0: R sends a random s = f(r).a

Stage 1: C commits to v using Com.

Stage 2: C commits to v using tagCom with tags (1, ID1), . . . , (t, IDt). That is, C executes
tagCom(idi, v), . . . , tagCom(idi, v) in parallel, for i = 1, 2, . . . , t and where idi = (i, IDi).

Stage 3: C proves a WIPOK of the statement:

either all t+ 1 commitments in Stages 1 and 2 are commitments to the same value
or s ∈ f({0, 1}n)

using as witness the value v along with the randomnesses it uses for the commitments in Stages 1
and 2.

. .

OPEN PHASE.

– C opens the commitment to v in Stage 1.b

a Following [26], R should send a witness hiding proof that s ∈ f({0, 1}n) after Stage 1.
b It is important in our proof of security that C does not open to the commitments in both Stages 1 and 2.

Fig. 7. Commitment scheme TagCom = (C,R).

Remark 1. It may seem apriori that we can eliminate Stage 1, and consider the same scheduling, with α

and α̃ being the respective sender’s first messages in the commitment scheme tagCom. This does not
work because A may initiate Stage 0 on the left immediately after receiving the receiver’s first message
for tagCom on the right (since the receiver goes first in tagCom) and still sends α̃ after receiving α. This
falls into a Type II scheduling, but we cannot exploit the many-many non-malleability of tagCom because
tagCom in the right interaction started before the cut-off point.

An alternative opening R∗ for TagCom. By our construction of TagCom = (C,R), the committed value
in a transcript is determined by the commitment in Stage 1 (assuming for the rest of this informal discussion
that the entire commit phase transcript is accepting). In the preceding informal argument, we reason about
the committed value in Stage 1 on the right for a Type I scheduling, and the committed value in Stage 2 on
the right for a Type II scheduling. Towards formalizing this argument, it is helpful to consider an “alternative
open phase” for the man-in-the-middle execution corresponding to a “receiver” R∗, where the committed
value for the transcript of the right interactions depends on whether we have a Type I or Type II scheduling.

More formally, we write mimA(z)(C(v),R∗) to denote a random variable that is the same as
mimA(z)(C(v),R), except the m-tuple of values (ṽ1, . . . , ṽm) is defined as follows: for each j =

1, 2, . . . ,m:

– if ĨD
j = ID, then we set ṽj to ⊥ as before.

28

C A R
α̃ //

s=f(r)oo

α //

C A R
s=f(r)oo

α // α̃ //

Fig. 8. Two representative schedulings

– if ĨD
j ̸= ID and interaction j is a Type I scheduling, then we set ṽj to be committed value in Stage 1 if

entire commit phase for that interaction is accepting, and ⊥ otherwise.

– if ĨD
j ̸= ID and interaction j is a Type II scheduling, let i ∈ [t] be the first index such that ĨDi ̸= IDi and

therefore, ĩdi /∈ {id1, . . . , idt}. Then we set ṽj to be committed value in Stage 2 if entire commit phase
for that interaction is accepting, and ⊥ otherwise.

In the first two cases, the definition of ṽj is exactly the same as that mimA(z)(C(v),R). In the third case,
soundness of the WIPOK and one-wayness of f essentially guarantees the commited values in both Stages 1
and 2 are the same if the entire commit phase is accepting.

E.2 The hybrid argument

STEP 1: SWITCHING TO R∗. We claim that{
mimA(z)(C(v0),R)

}
∼=

{
mimA(z)(C(v0),R∗)

}
(E.1)

STEP 2: SWITCHING TO C∗0,0. We change the WIPOK on the left to use the trapdoor witness r, i.e. we replace
C(v0) in the left execution with C∗0,0 where C∗b0,b1 for any b0, b1 ∈ {0, 1} is the following (computationally
unbounded) sender that on input (v0, v1):

– (Stage 0) After the receiver sends s, extract r ∈ f−1(s) via brute force.
– (Stage 1) Commit to vb0 using Com.
– (Stage 2) Commit to vb1 using tagCom with tags (1, ID1), . . . , (t, IDt).
– (Stage 3) Provide a WIPOK of the statement:

either all t + 1 commitments in Stages 1 and 2 are commitments to the same value
or s ∈ f({0, 1}n)

using as witness r.

Here, we exploit one-many non-malleability w.r.t. the WIPOK to argue that{
mimA(z)(C(v0),R∗)

}
∼=

{
mimA(z)(C∗0,0(v0, v1),R∗)

}
(E.2)

STEP 3: SWITCHING TO C∗0,1. We switch the left commitment in Stage 2 to v1 and exploit many-many non-
malleability of tagCom to argue that{

mimA(z)(C∗0,0(v0, v1),R∗)
}
∼=

{
mimA(z)(C∗0,1(v0, v1),R∗)

}
(E.3)

29

C A R

τ

OO

��

α̃1 // · · · α̃ℓ //
s=f(r)oo

α // α̃ℓ+1 // · · · α̃m //

Fig. 9. cut-off point

STEP 4: SWITCHING TO C∗1,1. We switch the left commitment in Stage 1 to v1 and exploit one-many non-
malleability w.r.t. Com to argue that{

mimA(z)(C∗0,1(v0, v1),R∗)
}
∼=

{
mimA(z)(C∗1,1(v0, v1),R∗)

}
(E.4)

STEP 5: SWITCHING TO C(v1). This is analogous to Step 2.{
mimA(z)(C∗1,1(v0, v1),R∗)

}
∼=

{
mimA(z)(C(v1),R∗)

}
STEP 6: SWITCHING BACK TO R. This is analogous to Step 1.{

mimA(z)(C(v1),R∗)
}
∼=

{
mimA(z)(C(v1),R)

}
Switching to R∗ (step 1). Here, we just need to argue that reasoning about the committed values in Stages
1 or 2 yields the same values for the right sessions ℓ + 1, . . . ,m. This follows readily from an argument
used in [28, 26]. Suppose otherwise, that is, with non-negligible probability, there exists a right execution,
for which the committed value in Stages 1 is different from that for one of the committed values in Stage 2.
Now, we may incorporate the left execution into A (by honestly committing to v0) to obtain a stand-alone
cheating prover P∗ for the WIPOK in that particular right execution. Then, rewinding and extracting P∗ must
yield a witness for s ∈ f({0, 1}n), which contradicts one-wayness of f . We note that this is the only step of
the hybrid argument (apart from the analogous Step 6) that requires rewinding or extraction.

Exploiting many-many non-malleability of tagCom. We skip ahead to Step 3 (switching to C∗1,1), which
relies on the many-many non-malleability of tagCom. Steps 2 and 4 may be handled with an entirely
analogous (and also simpler) reduction.

We begin with the observation that the only difference between the distributions
{
mimA(z)(C∗0,0(v0, v1),R∗)

}
and

{
mimA(z)(C∗0,1(v0, v1),R∗)

}
lies in the Stage 2 commitment on the left. In the first distribution, the

Stage 2 commitment is a commitment to v0 using tagCom, and in the second distribution, it is a commitment
to v1 using tagCom. Following [28, 26], we consider a “cut-off point” in the analysis.

Let Φ(A, z) denote the distribution of all joint views τ ofA and the receivers on the right up to the point
immediately after A sends the message s in Stage 0 in the left interaction (see Fig 9); we also incorporate z

into τ . We assume here that the first ℓ interactions on the right have a type I scheduling, and the remaining
m − ℓ interactions have a type II scheduling. Let the function Ξ : {0, 1}∗ → {0, 1}∗ be such that Ξ(τ) =

30

z||τ ||r||ṽ1|| · · · ||ṽℓ where r ∈ f−1(s) (corresponding to the s embedded in τ) and ṽ1, . . . , ṽℓ are the values
committed to by A(z) in τ in Stages 1 of the first ℓ interactions with type I scheduling.

Lemma 6 (reduction to tagCom). For all ppt A, there exists a ppt B and D such that for all z, v0, v1 and
all b ∈ {0, 1}:{

mimTagCom
A(z) (C∗0,b(v0, v1),R∗)

}
∼=

{
D(mimtagCom

B(z∗) (C(vb, . . . , vb),R)) : z∗ ← Ξ(Φ(A, z))
}

are statistically indistinguishable. Note that in the second distribution, there are t left interactions, all
committing to vb using tagCom. 11

Proof. The high-level idea is to construct a machine B that on input z∗ runs internally a copy of
A and simulates the view of A in the experiment mimTagCom

A(z) (C∗0,b(v0, v1),R∗) while participating in

mimtagCom
B(z∗) (C(vb, . . . , vb),R). The machine D will essentially “post process” the committed values in the

second distribution according toR∗.
We first describe how to simulate the left interaction with C∗0,b(v0, v1) in the view of A:

Stage 0. Stage 0 is embedded in τ .

Stage 1. B commits to v0 using TagCom.

Stage 2. B chooses identities (1, ID1), . . . , (t, IDt) for the t left interactions (scheduled in parallel), and
forwards the messages from the external C(vb, . . . , vb) to A.

Stage 3. B simulates the WIPOK here by using the witness r which is part of its auxiliary input z∗.

Next, we describe how B simulates the m executions of TagCom on the right, with identities
ĨD

1, . . . , ĨD
m. For each of these interactions, we consider two cases depending on whether the scheduling

is Type I or II. Again, we assume that the first ℓ have Type I scheduling and the last m − ℓ have Type II
scheduling. For each j = 1, . . . ,m, assuming ĨD

j ̸= ID,

Type I (i.e. j ≤ ℓ): B will internally simulate the receiver for this execution, using the state of the
corresponding receiver embedded in z∗. D can then figure out the committed value for this interaction
of TagCom by looking at the value ṽj in its auxiliary input z∗, setting it to⊥ if the overall commit phase
transcript is not accepting.

Type II (i.e. j > ℓ): B will internally simulate Stages 0, 1 and 3. For Stage 1, B will rely on the t external
interactions withR in tagCom, with identities (1, ĨD

j
1), . . . , (t, ĨD

j
t). D will compute ṽj by looking at the

committed value on the right corresponding to the (i, ĨD
j
i) where i is the first index for which IDi ̸= ĨD

j
i .
⊓⊔

E.3 Black-Box Non-Malleability Amplification.

Lemma 7. For every t = t(n) ≥ 4, if tagCom is one-many non-malleable w.r.t extraction for identities of
length log t + 1 and one-many non-malleable w.r.t extraction for 4-round protocols, then (C,R) as shown
in Fig 10 is one-many non-malleable w.r.t. extraction for identities of length t.

As before, we first present an alternative open phase for the commitment scheme TagCom.
11 In the first distribution, we are referring to the commitment scheme TagCom and in the second, we are referring to tagCom.

31

Common input : security parameter 1n and an identity ID = (ID1, . . . , IDt) ∈ {0, 1}t.
Sender’s input : a value v ∈ {0, 1}poly(n).

. .

COMMIT PHASE.
Stage 0: R commits to a random subset Γ ⊂ [10n] of size n.

Stage 1: C computes shares s of v using a n-out-of-10n secret-sharing scheme and commits to the
shares using ExtCom.

– C picks a random degree n polynomial p over GF(2|v|) whose constant term is v, and computes
s = (s1, . . . , s10n) = (p(1), . . . , p(10n)). (Note that s is a Reed-Solomon encoding of v.)

– C executes ExtCom(s1), · · · ,ExtCom(s10n) in parallel.

Stage 2: C commits to s using tagCom with tags (1, ID1), . . . , (t, IDt).

– C executes tagCom(idi, s1), . . . , tagCom(idi, s10n) in parallel, for i = 1, 2, . . . , t and where
idi = (i, IDi).

Stage 3: C proves consistency of the commitments by opening to the shares indexed by Γ.

– R opens the commitment to Γ.
– C opens all t+ 1 commitments to sj in Stages 1 and 2 for all j ∈ Γ.
– R checks that all t+ 1 commitments to sj are consistent for all j ∈ Γ.

. .

OPEN PHASE.

– C sends v and opens the commitment to s in Stage 1.
– R computes the codeword w that is 0.9-close to s.
– R checks that w is a codeword corresponding to v and that w and s agree on all positions in Γ.

Fig. 10.

An alternative opening R∗ for TagCom. As before, we consider two representative schedulings, except
the cut-off is based on the message Com(Γ) instead of s. Also, we write extmimA(z)(C(v),R∗) to denote
a random variable that is the same as extmimA(z)(C(v),R), except the m-tuple of values (ṽ1, . . . , ṽm) is
defined as follows: for each j = 1, 2, . . . ,m:

– if ĨD
j = ID, then we set ṽj to ⊥ as before.

– if ĨD
j ̸= ID and interaction j is a Type I scheduling, then we set ṽj according to the committed value in

Stage 1 as inR and whether the entire commit phase for that interaction is accepting.

– if ĨD
j ̸= ID and interaction j is a Type II scheduling, let i ∈ [t] be the first index such that ĨDi ̸= IDi and

therefore, ĩdi /∈ {id1, . . . , idt}. Then we determine ṽj as follows:

• We define the vector s̃′ = (s̃′1, . . . , s̃
′
10n) to be the extracted values in the i’th execution of tagCom

in Stage 2 on the right.
• Compute a codeword w̃ that is 0.8-close to s̃′.
• If w̃ and s̃′ agrees on all positions on Γ, output the value ṽj corresponding to w̃, else output ⊥.

32

C A R

τ

OO

��

α̃1 // · · · α̃ℓ //
Com(Γ)oo

α // α̃ℓ+1 // · · · α̃m //

Fig. 11. cut-off point

The hybrid argument.

STEP 1: SWITCHING TO R∗. We claim that{
extmimA(z)(C(v0),R)

}
∼=

{
extmimA(z)(C(v0),R∗)

}
STEP 2: SWITCHING TO C∗0,1. We switch the left commitment in Stage 2 to v1, i.e., we replace C in the left

execution with C∗0,1 where C∗b0,b1 for any b0, b1 ∈ {0, 1} is the following (computationally unbounded)
sender that on input (v0, v1):

– (Stage 0) After the receiver commits to Γ in Stage 0, extract the value Γ via brute-force, and compute
random shares s0 and s1 of vb0 and vb1 that agree on the positions in Γ. Specifically, we first pick
n random values for the positions in Γ, then do polynomial interpolation with the point (0, v0) to
compute s0 and with the point (0, v1) to compute s1.

– (Stage 1) Commit to s0 using ExtCom.
– (Stage 2) Commit to s1 using tagCom with tags (1, ID1), . . . , (t, IDt).
– (Stage 3) Open the commitments to sj for all j ∈ Γ.

Note that C(v0) and C∗0,0(v0, v1) are identically distributed. We claim that{
extmimA(z)(C∗0,0(v0, v1),R∗)

}
∼=

{
extmimA(z)(C∗0,1(v0, v1),R∗)

}
STEP 3: SWITCHING BACK TO C . We switch the left commitment in Stage 1 to v1, i.e.,{

extmimA(z)(C∗0,1(v0, v1),R∗)
}
∼=

{
extmimA(z)(C∗1,1(v0, v1),R∗)

}
STEP 4: SWITCHING BACK TO R.{

extmimA(z)(C(v1),R∗)
}
∼=

{
extmimA(z)(C(v1),R)

}
We omit the details of the analysis since they are almost exactly identical to that in Sections A.3 and E.2.

33

