
Internship proposals

Certification of program termination

Frédéric Blanqui (INRIA)

http://www-rocq.inria.fr/~blanqui

Place:
The internship will take place at Tsinghua University1 (Beijing, China)

within the INRIA2 project-team FORMES3 which is part of the LIAMA4 Con-
sortium, the Sino-French Laboratory for Computer Science, Automation and
Applied Mathematics. The members of the FORMES project-team also in-
clude Pr Ming Gu, Dr Fei He, Dr Claude Helmstetter, Pr Vania Joloboff, Pr
Jean-Pierre Jouannaud, Pr Jean-François Monin, Dr Pierre-Yves Strub and Dr
Bow-Yaw Wang.

Introduction:
Termination is an important property of programs. For a given program, it

may even be necessary to establish its termination in order to prove its correct-
ness. For this undecidable problem, many criteria and tools have been developed
over the last years. But these become more and more complex and difficult to
verify. To recover the confidence one can expect from such tools, it is nec-
essary to certify their results. For stimulating the research in this area, the
steering committee of the international competition on termination5 organizes
a competition for certified termination provers since 2007.

The CoLoR project6 aims at providing tools for certifying the results of
automated provers. The tools developed in this project, CoLoR and Rainbow,
are currently used by four different termination provers: AProVE (best 2007
termination tool for TRSs), Matchbox (best 2007 termination tool for SRSs),
TPA and TTT2. And CoLoR+Rainbow was the best certification back-end for
the last two years in the international competition on termination7.

The approach taken in CoLoR is as follows. It is based on two impor-
tant elements. First, a grammar for termination certificates (TCG) (currently
implemented as an XML Schema). Second, a Coq library of the termination
techniques used in the grammar. Coq8 is a highly secure proof checker and
proof development tool which allows one to reach the highest security standards

1http://www.thss.tsinghua.edu.cn/index_en.asp
2http://www.inria.fr
3http://formes.asia
4http://liama.ia.ac.cn
5http://termination-portal.org
6http://color.inria.fr
7http://termination-portal.org/wiki/Termination_Competition
8http://coq.inria.fr

1



(Common Criteria EAL7 level).
The certification chain is then as follows. Termination tools provide a cer-

tificate in TCG (XML file). The Rainbow program generates then a Coq file
from this certificate using the Coq library CoLoR. Finally, the Coq compiler is
called to check the correctness of the termination certificate.

Many powerful termination criteria have been developed for rewrite rules
based programs [4]. Rewriting is a fundamental notion that is also of practical
interest since programs in other programming paradigms can be encoded by
using rewrite systems. Currently, CoLoR and Rainbow can handle rewrite sys-
tems only. The following subjects propose to extend CoLoR and Rainbow with
other important termination techniques and to other programming paradigms.

Subjects:

1. Rainbow certification and efficient proof checking.

One way to improve proof checking efficiency and reduce the risk of errors
that the program converting TCG to Coq could itself introduce, is to for-
malize this program in Coq and use the Coq extraction mechanism to get
an OCaml program that can in turn be compiled and run independently
of Coq.

2. Modular and parallel proof checking.

Another way to improve proof checking efficiency, but inside Coq, is to
prove each TCG step as a separate lemma (the verification of each lemma
can then be done in parallel).

3. Usable rules.

Among the various techniques used by the current state-of-the-art provers,
an important one is the usable rules in the dependency pair framework
[6]. We propose to extend CoLoR and Rainbow with this notion.

4. Rewriting under strategy.

General rewriting imposes no specific stragegy for applying rules. Some
particular strategies (innermost, outermost, context sensitive) are often
used in practice. For instance, innermost rewriting corresponds to the
usual evaluation strategy in most common programming languages, where
the arguments of a function are computed before calling it, and innermost
termination implies termination for an important class of rewrite systems
[7]. We propose to formalize in Coq termination certificates for innermost
rewriting.

5. Haskell programs.

AProVE9 can prove the termination of Haskell10 programs [8] by adapting
the technique of dependency pairs to Haskell programs [5]. We propose

9http://aprove.informatik.rwth-aachen.de
10http://www.haskell.org

2



to define and prove in Coq a notion of termination certificate for Haskell
programs based on this work.

6. Prolog programs.

AProVE11 can prove the termination of Prolog12 programs13 by adapting
the technique of dependency pairs to logic programs [10, 11]. We propose
to define and prove in Coq a notion of termination certificate for Prolog
programs based on this work.

Prerequisites:
Some knowledge on rewriting theory [4], dependency pairs [1, 12], functional

programming (Rainbow is written in OCaml [9]) and Coq [2] is recommended.
CoLoR, Rainbow and the papers related to them can be downloaded on http:
//color.inria.fr. See in particular [3].

References

[1] T. Arts and J. Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236:133–178, 2000.

[2] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Construc-
tions. EATCS Texts in Theoretical Computer Science. Springer, 2004.

[3] F. Blanqui and A. Koprowski. Automated verification of termination cer-
tificates. Technical Report 6949, INRIA Rocquencourt, France, 2009.

[4] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, chapter 6.
North-Holland, 1990.

[5] J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated
termination analysis for haskell: From term rewriting to programming lan-
guages. In Proceedings of the 17th International Conference on Rewriting
Techniques and Applications, Lecture Notes in Computer Science 4098,
2006.

[6] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and
improving dependency pairs. Journal of Automated Reasoning, 37(3):155–
203, 2006.

[7] B. Gramlich. On proving termination by innermost termination. In Pro-
ceedings of the 7th International Conference on Rewriting Techniques and
Applications, Lecture Notes in Computer Science 1103, 1996.

11http://aprove.informatik.rwth-aachen.de
12http://en.wikipedia.org/wiki/Prolog
13http://en.wikipedia.org/wiki/Logic_programming

3



[8] S. P. Jones and all. Haskell 98 Language and Libraries, The revised report.
Cambridge University Press, 2003.

[9] X. Leroy and P. Weis. Le langage Caml (Seconde édition). Dunod, 1999.

[10] M. T. Nguyen, J. Giesl, P. Schneider-Kamp, and D. De Schreye. Termina-
tion analysis of logic programs based on dependency graphs. In Proceedings
of the 17th International Symposium on Logic-Based Program Synthesis and
Transformation, Lecture Notes in Computer Science 4915, 2007.

[11] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated
termination proofs for logic programs by term rewriting. ACM Transactions
on Computational Logic, ?(?):?–?, 2008. To appear.

[12] R. Thiemann. The DP Framework for Proving Termination of Term
Rewriting. PhD thesis, RWTH Aachen University, Germany, 2007.

4


