
Attack-preserving Program Transformations

K. Bhargavan

Internship Proposal 2010
(2-3 months)

Background The security of a distributed application typically depends on
the correctness of an underlying cryptographic protocol that protects messages
exchanged butween different participants. In previous work, we verified imple-
mentations of widely-deployed cryptographic protocols, such as TLS [Bhargavan
et al., 2008a] and Windows Cardspace [Bhargavan et al., 2008b], using special-
ized state-of-the-art cryptographic provers, such as ProVerif [Blanchet, 2001].

Whole-program security verification does not scale beyond a few thousand
lines of code. Even with careful rewriting of the source code, verification may
take hours or sometimes not terminate. However, large portions of protocol
implementations are irrelevant for security, for example, the code for message
formatting and parsing. By carefully separating the security-critical core of an
implementation and by conservatively approximating the rest of its code (treat-
ing it as untrusted), we can significantly reduce the code passed to specialized
protocol verifiers.

In earlier work, Hui and Lowe[Hui and Lowe, 2001] show how to trans-
form a cryptographic protocol model into a simpler model such that if there
is is any attack on the original model, then that attack is also possible on the
transformed model. They demonstrate that by applying such transformations,
complex cryptographic protocol models can be brought within the reach of au-
tomated verification techniques. We propose to extend this idea and apply it
directly to protocol source code.

Project In this internship, we shall design and implement program transfor-
mations that preserve all attacks on the source program while reducing the size
and complexity of the verified model. Hence, by verifying the security of the
transformed program, we can prove the security of the source program. We shall
prove the correctness of these transformations using a combination of standard
results in type theory, program analysis, formal cryptography, and program-
ming language semantics. We shall evaluate our verification method through an
extended case study of a protocol implementation for web services security.

Keywords: Functional programming, Security protocols, Cryptography, Type
theory, Program verification.

1



References

K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Cryptographically ver-
ified implementations for TLS. In 15th ACM conference on Computer and
Communications Security (CCS’08), pages 459–468. ACM, 2008a. PDF.

K. Bhargavan, C. Fournet, A. D. Gordon, and N. Swamy. Verified implemen-
tations of the Information Card federated identity-management protocol. In
ACM Symposium on Information, Computer and Communications Security
(ASIACCS’08), pages 123–135. ACM, 2008b. PDF.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules.
In Proceedings of the 14th IEEE Computer Security Foundations Workshop,
pages 82–96. IEEE Computer Society Press, 2001. ProVerif Homepage.

M. Hui and G. Lowe. Fault-preserving simplifying transformations for security
protocols. Journal of Computer Security, 9(1/2):3–46, 2001.

2


