Available online at www.sciencedirect.com

S(:IENCE@DIHECTs Journal of

& Algorithms

ELSEVIER Journal of Algorithms 51 (2004) 122-144 _
www.elsevier.com/locate/jalgor
Cuckoo hashing
Rasmus Pagh! and Flemming Friche Rodléf
a|T University of Copenhagen, Rued Langgaardsvej 7, 2300 Kgbenhavn S, Denmark
b ON-AIR A/S, Digtervejen 9, 9200 Aalborg SV, Denmark
Received 23 January 2002

Abstract

We present a simple dictionary with worst case constant lookup time, equaling the theoretical
performance of the classic dynamic perfect hashing scheme of Dietzfelbinger et al. [SIAM J.
Comput. 23 (4) (1994) 738-761]. The space usage is similar to that of binary search trees. Besides
being conceptually much simpler than previous dynamic dictionaries with worst case constant lookup
time, our data structure is interesting in that it does not use perfect hashing, but rather a variant of
open addressing where keys can be moved back in their probe sequences. Animplementation inspired
by our algorithm, but using weakédsash functions, is found to be quite practical. It is competitive
with the best known dictionaries having an average case (but no nontrivial worst case) guarantee on
lookup time.

0 2003 Elsevier Inc. All rights reserved.

Keywords:Data structures; Dictionaries; Informatiogtrieval; Searching; Hding; Experiments

1. Introduction

The dictionary data structure is ubiquitous in computer science. A dictionary is used
for maintaining a sef under insertion and deletion of elements (referred thegg from
a universelU. Membership queries ‘€ S?”) provide access to the data. In case of a

* Corresponding author.

E-mail addressegpagh@itu.dk (R. Pagh), ffr@onair-dk.com (F.F. Rodler).

1 partially supported by the Future and Emergingtifetogies program of the EU under contract number IST-
1999-14186 (ALCOM-FT). This work was initiated while visiting Stanford University, and the draft manuscript
completed at Aarhus University.

2 This work was done while staying at Aarhus University.

0196-6774/$ — see front mattéi 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2003.12.002

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 123

positive answer the dictionary also provides a pieceaiéllite datathat was associated
with x when it was inserted. In the following we letdenote|S|.

The most efficient dictionaries, in theory and in practice, are based on hashing
techniques. The main performance parameters are of course lookup time, update time,
and space. The constant factors involved ateiet for many applications. In particular,
lookup time is a critical parameter. It is well known that, by using a simple universal hash
function, the expected number of memory probes for all dictionary operations can be made
arbitrarily close to 1 if a sufficiently sparsedtatable is used. Therefore the challenge is
to combine speed with a reasonable space usage. In particular, we only consider schemes
using O (n) words of space. Section 3 surveys the literature on such dictionaries.

The contribution of this paper ia new hashing scheme calleds€&<00 HASHING,
which possesses the same theoretical properties as the classic dictionary of Dietzfelbinger
et al. [10], but is much simpler. The scheme hesrst caseconstant lookup time and
amortized expected constant time for updates. Furthermore, the space usage is roughly
2n words, which should be compared with then3®ords used in [10]. This means
that the space usage is similar to that afidry search trees. A special feature of our
lookup procedure is that (disgarding accesses to an asymptotically small hash function
description) there are just two memory accesses, whicimdependenand can be done
in parallel if this is supported by the hardware.

Using weaker hash functions than those required for our analysiskGo HASHING
is very simple to implement. Section 4 dabess such an implementation, and reports on
experiments and comparisons with the most commonly used hashing methods, having
no nontrivial worst case guarantee on lookup time. It seems that such an experiment,
performed on a modern multi-level memory architecture, has not previously been described
in the literature. Our experiments showw€ko0 HASHING to be quite competitive,
especially when the dictionary is small enough to fit in cache. We thus believe it to be
attractive in practice, when a worst case guarantee on lookups is desired. In contrast,
the hashing scheme of [10] is known to exhibit high constant factors. The LEDA library
of efficient data structures and algorithms [25] now incorporates an implementation of
CuckoO HASHING based on ours.

1.1. Preliminaries

As in most other theoretical works on hashing we consider the case where keys are bit
strings inU = {0, 1} andw is the word length of the computer (for theoretical purposes
modeled as a RAM). If keys are longer, two things should be changed.

(1) The keys should be stored outside the hash table, and hash table cells should contain
pointers to keys.

(2) Hashing of long keys should be handled using a standard technique, described for
completeness in Appendix A.

It is usually, though not always, clear how to return associated information once
membership has been determined. E.g., in the hash table based methods discussed in
this paper, the associated informationao& S can be stored together with in a hash

124 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

table. Therefore we disregard the time amhce used to handle associated information
and concentrate on the problem of maintainkhgNVe will reserve a special value € U
to signal an empty cell in hash tables.

Our algorithm uses hash functions fromaiversalfamily. We use the following well-
known generalization of the original notion of Carter and Wegman [7].

Definition 1. A family {h;}icr, hi :U — R, is (c, k)-universalif, for any k distinct
elementsiy, ..., xx € U, anyyq, ..., yx € R, and uniformly random e I, PiA; (x1) = y1,
o hiG) = wl < c/IRIF

2. Cuckoo hashing

CuCKOO HASHING is a dynamization of a static dictionary described in [26]. The
dictionary uses two hash tableg, and 7>, each consisting of words, and two hash
functionsh1, ho: U — {0, ...,r — 1}. Every keyx € S is stored either in celt1(x) of T
or in cell h2(x) of Tz, but never in both. Our lookup function is

functionlookup(x)
return T1[h1(x)] =x Vv Tolho(x)] = x
end

Two table accesses for lookup is in fact optimal among all dictionaries using linear space,
except for special cases, see [26].

It is shown in [26] that ifr > (1 + ¢)n for some constant > O (i.e., the tables are a bit
less than half full), and1, s are picked uniformly at random from & (1), O (logn))-
universal family, the probability that there is no way of arranging the keysadcording
to h1 andhy is O(1/n). A suitable arrangement of the keys was shown in [26] to be
computable in expected kar time, by a reduction to 2AT.

We now consider a simple dynamization of the above, still assumiagl + ¢)n for
some constant > 0. Deletion is of course simple to perform in constant time, not counting
the possible cost of shrinking the tables if they are becoming too sparse. As for insertion, it
turns out that the “cuckoo apmach”, kicking other keys aay until every key has its own
“nest”, works very well. Specifically, it is to be inserted we first see if céll (x) of Ty is
occupied. If not, we are done. Otherwise we Bg#:1(x)] < x anyway, thus making the
previous occupant “nestless.” This key is then insertefbiim the same way, and so forth
iteratively, see Fig. 1(a).

It may happen that this process loops, as shown in Fig. 1(b). Therefore the number of
iterations is bounded by a value “MaxLoop” to be specified in Section 2.3. If this number
of iterations is reached, we rehash the keys in the tables using new hash functions, and
try once again to accommodate the nestless Kbere is no need to allocate new tables
for the rehashing: We may simply run through the tables to delete and perform the usual
insertion procedure on all keys found not to béhetir intended position in the table. (Note
that kicking away a key that is not in its imtded position simply corresponds to starting a
new insertion of this key.)

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 125

Y

Y

. 7\ u
/
2|

4\

(a) (h)

Fig. 1. Examples of GCKOO HASHING insertion. Arrows show possibilities for moving keys. (a) Keyis
successfully inserted by moving keysandz from one table to the other. (b) Keycannot be accommodated and
a rehash is necessary.

Using the notationr <> y to express that the values of variableandy are swapped,
the following code summarizes the insertion procedure.

procedurenserix)
if lookup(x) then return
loop MaxLooptimes
x < T1lha(x)]
if x = _L thenreturn
x <> Tolha(x)]
if x = _L then return
end loop
rehash(); inserk()
end

The procedure assumes that each table remains largetthan)n cells. When no such
bound is known, a test must be done to find out when a rehash to larger tables is needed.
Resizing of tables can be done in amortized expected constant time per update by the usual
doubling/halving technique (see, e.g., [10]).

If the hash tables have size we enforce that no more thar? insertions are
performed without changing the hash functions. More specifically? iinsertions have
been performed since the beginning of the last rehash, we force a new rehash.

2.1. Hash functions

By a result of Siegel [35] (detailed in Appendix A) we can construct a hash function
family that, when restricted to any set of keys, is(1, n®)-universal, for some constant
8 > 0, with probability 1— 0 (1/r?). Also, we can pick from the family random functions
h1 andhy having constant evaluation time and a description(af words. Since there are
at mostr? keys inserted using a particular pair of hash functions this means that:

126 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

 With probability O (1/r72) the hash functions have some unspecified behavior (i.e., we
should expect the worst possible).

¢ Otherwise, the hash functions behave exactly as if they had been picked flont a
universal family.

For n larger than some constant we will have MaxLoop?, i.e., with high probability
the family will be (1, MaxLoop-universal. This means that and s, will act like truly
random functions on any set of keys processed during the insertion loop.

2.2. Variants

The lookup call preceding the insertion loop ensures robustness if the key to be inserted
is already in the dictionary. A slightly faster implementation can be obtained if this is
known not to occur.

Note that the insertion procedure is biased towards inserting kefijs s will be seen
in Section 4 this leads to faster successful lookups, due to more keys being fofind in
This effect is even more pronounced if one useasymmetriccheme wher& is larger
thanT». In both cases, the insertion time is only slightly worse than that of a completely
symmetric implementation.

Another variant is to use a single talileof size 2- for both hash functions. The results
and analysis for this case are similar to what is described here for the two table scheme. The
following trick due to John Tromp [38] can be used in this case to avoid keeping track of the
hash function according to which each key laqed: If we change the possible locations
for key x to behi(x) and(h2(x) — h1(x)) mod 2, we can jump from one location afto
the other using the map— (h2(x) — i) mod Z-.

In the following we will consider just the symmetric two table scheme.

2.3. Analysis

As in all other analyses of randomized hashing schemes, we assunoblifieus
adversary modeli.e., that the keys inserted are independent of the random choices made
by the algorithm.

Our analysis of the insertion procedure has three main parts:

(1) We first exhibit some useful characteristics of the behavior of the insertion procedure.

(2) We then derive a bound ondlprobability that the inséon procedure uses at least
iterations.

(3) Finally we argue that the procedursas expected amortized constant time.

Behavior of the insertion procedure

The simplest behavior of the insertion procedure occurs when it does not visit any hash
table cell more than once. In this case it simply runs through a sequence of nestless keys
X1, x2, ... With no repetitions, inserting1 in 71 and moving the remaining keys in the
sequence from one table to the other.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 127

If, at some point, the insertion procedure returns to a previously visited cell, the behavior
is more complicated, as shown in Fig. 2. The keyn the first previously visited cell will
become nestless for the second time (occurring at positiamsl j; > i in the sequence)
and be put back in its original cell. Subsequently all keysy, ..., x> will be moved
back where they were at the start of the insertion (assuming that the maximum number of
iterations is not reached). This means thatends up nestless again, and the procedure
will try placing it in the second table. At some point after this there appears a nestless
key x; that is either moved to a vacant cell or apiously visited cell (again assuming
that the maximum number of iterations is neaiched). In the former case the procedure
terminates. In the latter case a rehash must be performed, since we have a “closed loop” of
[—i+1 keys hashing to onli/— i cells. This means that the loop will run for the maximum
number of iterations, followed by a rehash.

Lemma 1. Suppose that the insertion procedure does not enter a closed loop. Then for any
prefix x1, x2, ..., x, of the sequence of nestless keys, there must be a subsequence of at
least p/3 consecutive keys without repetitions,riiteg with an occurrence of the key,

i.e., the key being inserted.

Proof. In the case where the insertion procedure never returns to a previously visited cell,
the prefix itself is a sequence of distinct nestless keys starting with. Otherwise,

the sequence of nestless keys is as shown in Fig. 2. #i + j, the firstj — 1 >

i+ j—1)/2> p/2 nestless keys form the desired sequence pgFpri + j, one of the
sequencesy, ..., xj—1 andx;4;_1,...,x, must have length at leapy3. O

Probalility bounds

We now consider the probability that the insertion loop runs for at leisstations. For
t > MaxLoop the probability is of course 0. Otherwise, using the above analysis, iteration
numbers may be performed in three (not mutually exclusive) situations:

(1) The hash function family used is n@t, MaxLoop)-universal when restricted to the
set of keys in the dictionary (including the key being inserted).

(2) The insertion procedure has entered a “closed loop,”s;én Fig. 2 was moved to a
previously visited cell, fot < 2r.

(3) The insertion procedure has processed a sequence of a{2deasl)/3 consecutive
nestless keys starting with the newly inserted key.

We chose the hash function family such that the first situation occurs with probability
0(1/n?). Under the condition that the first situation doest occur, we now bound the
probability of the two last situations.

In the second situation let< ! denote the number of distinct nestless keys. The number
of ways in which the closed loop can be formed is less tati~1n"~1 (v possible values
for i and j, v possible positions fax;, ! possible choices of cells, amd—1 possible
choices of keys other than). Sincev < MaxLoop, the hash functions a¢&, v)-universal.

128 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

‘l\ I /||\ |
T T T
T] G N e

T3 = Tit;-3

T3 = Titj—3

Fig. 2. Three stages of an insertion of key, involving the movement of keysy, ..., x;. Boxes correspond to
cells in either of the two tables, and arcs show possibilities for moving keys. A bold arc shows where the nestless
key is to be inserted.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 129

This means that each possibility occurs with probability at mogt. Summing over all
possible values of, and using/n > 1+ ¢, we get that the probability of situation 1 is at
most:

l 1 o0
3 v-1 v-1 —2v 3 v 2
gv r'Tnt T rT N K - vzzsv (n/r) —0(1/n)
The above derivation follows a suggestion of Sanders and Vocking [32], and improves the
O (1/n) bound in the conference version of this paper [27].
In the third situation there is a sequencewst [(2t — 1)/3] distinct nestless keys
b1, ..., by, such thab is the key to be inserted, and such that for eittfar, 82) = (1, 2)
or (B1, f2) = (2, 1):

hp,(b1) =hp (b2), hp,(b2) =hp,(b3), hp (b3) =hp, (ba), ...)

Given by there are at most'~! possible sequences of distinct keys. For any such
sequence and any of the two choiceg 8f, 82), the probability that thé — 1 equations

in (1) hold is bounded by-—®~Y since the hash functions were chosen from a
(1, MaxLoop)-universal family. Hence the probability that theraisysequence of length

v satisfying (1), and thus the probability of situation 2, is bounded by

2(n/r)V "t <214 g)” @ /3L)
Concluding the analysis

From the previous section it follows that the expected number of iterations in the
insertion loop is bounded by

MaxLoop

1+ Z (2(14_8)7(2[71)/34’1_’_ 0(1/712))
=2

MaxLoop >
<14 0<T) +23 (A +e) 73
=0

1
=0(1+ i a2m)
=0(1+1/e). (3)

Finally, we consider the cost of rehashing. First we consider émmyed rehashes,
caused by failed insertions. These occur if the insertion loop rung ferMaxLoop
iterations. By the previous section, the probability that this happens because of entering
a closed loop, or because the hash function family fails tolhb#axLoop)-universal, is
0(1/n?). Setting MaxLoop= [3 log, . r1, the probabilityof rehashing without entering
a closed loop is, by (2), at most

2(1+8)7(2 MaxLoop-1)/3+1 — 0(1/”12)

Altogether, the probability that any given insertion causes a rehagh(gs2). In
particular, then insertions performed during a rehaah succeed (i.e., cause no further

130 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

rehash) with probability = O(1/n). The expected time used per insertiondsl), so

the total expected time for trying to insert all keysdgn). If an insertion fails during

the rehash, a recursive rehash is startedceSime keep all keys in the tables all the time,
this simply corresponds to starting over with another attempt at rehashing all keys. As the
probability of having to start over with mehash functions is bounded away from 1, the
total expected time for a rehash sumsQ:). Thus, for any insertion the expected time
used for forced rehashing &(1/n).

There will also be a rehash if? insertions have been performed with no failed
insertions. Since the erpted cost of the rehash (n), the amortized expected cost per
insertion of such rehashesds(1/n).

Summing up, we have shown that the amortized expected time for insertion is bounded
by a constant. The small probability of rehashing, together with (2), in fact implies that
also thevarianceof the insertion time is constant.

3. Background and related work on linear space dictionaries

Hashing, first described in public literature by Dumey [13], emerged in the 1950s as
a space efficient heuristic for fast retrieval of information in sparse tables. Knuth surveys
the most important classical hashing methods in [20, Section 6.4]. The most prominent,
and the basis for our experiments in Section 4, araIQED HASHING (with separate
chaining), LNEAR PROBING and DouBLE HASHING. Judging from leading textbooks
on algorithms, Knuth’s selection of algorithms is in agreement with current practice for
implementation of general purpose dictiomsti In particular, the excellent cache usage
of LINEAR PROBING makes it a prime choice on modern architectures. A more recent
scheme called Wo-WAY CHAINING [2] will also be investigated. All schemes are briefly
described in Section 4.

3.1. Analysis of early hashing schemes

Early theoretical analysis of hashing schemes was done under the assumption that hash
function values are uniformly random and independent. Precise analyses of the average
and expected worst case behaviors of thevatmentioned schemes have been made, see,
for example, [16,20]. We mention just a few facts, disregarding asymptotically vanishing
terms. Note that some figures depend on implementation details—the below hold for the
implementations described in Section 4.

We first consider the expected number of memory probes needed by the two “open
addressing” schemes to insert a key in a hash table where faaction of the table,

0 <o < 1, is occupied by keys. ForiINEAR PROBING the expected number of probes
during insertion ig1+ 1/(1 — «)?)/2. This coincides with the expected number of probes
for unsuccessful lookups, and with the number of probes needed for looking up the key
if there are no subsequent deletions. Aetien rearranges keys to the configuration
that would occur if the deleted key had never been inserted.doH)DE HASHING the
expected cost of an insertion ig(1 — «). As keys are never moved, this coincides with
the number of probes needed for looking up the key and for deleting the key. If a key has

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 131

not been inserted in the hash table since the last rehash, the expected cost of looking it
up (unsuccessfully) is/L1 — B), whereg is the fraction of keys and “deleted” markers in

the hash table. If the key still has a “deleted” marker in the table, the expected cost of the
unsuccessful lookup is one probe more.

For CHAINED HASHING with hash table size:/«, the expected length of the list
traversed during an unsuccessful lookuprisThis means that the expected number of
probes needed to insert a new key is &, which will also be the number of probes needed
to subsequently look up the key (note thablpes to pointers are not counted). A deletion
results in the data structure that would occur if the key had never been inserted.

In terms of expected number girobes the above implies that, for any given
CHAINED HASHING is better than DUBLE HASHING, which is again better thanihEAR
PROBING. It should be noted, however, that the space used ByIKED HASHING is
larger than that in the open addressing schemes for the gafiee difference depends on
the relative sizes of keys and pointers.

Suppose < 1is a constant. Thengestprobe sequence inlNEAR PROBING is then of
expected lengtli2 (logn). For DOUBLE HASHING the longest successful probe sequence
is expected to be of lengtf? (logn), and there is a nonzero probability that the length of
the longest unsuccessful search is linear. The expected maximum chain lengtaNeQ
HASHING is ®(logn/loglogn).

Though the above results seem to agree with practice, the randomness assumptions
used for the analyses are questionablepipligations. Carter and Wegman [7] succeeded
in removing such assumptions from the analysis 8AGIED HASHING, introducing the
concept ofuniversalhash function families. When imgiented with a random function
from Carter and Wegman'’s universal family, chained hashing has constant expected time
per dictionary operation (plus an amortized expected constant cost for resizing the table).
Using the hash function family of Siegel [35], also used in this papeEhR PROBING
and DouBLE HASHING provably satisfy the above performance bounds [33,34].

3.2. Key rearrangement schemes

A number of (open addressing) hashing schemes have been proposed that share a key
feature with @WCckoo HASHING, namely that keys are moved around during insertions
[4,17,21,22,31]. The main focus in these schem¢o reduce the average number of probes
needed for finding a key in a (nearly) full table to a constant, rather thattegn)
average exhibited by standard open addressihis is done by occasionally moving keys
forward in their probe sequences.

Our new algorithm rearranges keys in order to reducevtist casenumber of probes
to a constant. A necessary condition for this is reuse of hash function values, i.e., that keys
are moved back in their probe sequence. Backward moves were not used in any previous
rearrangement scheme, presumably due eodifficulty that moving keys back does not
give a fresh, “random” placement. We can make lookups use constant time in the worst
case because we do not deal with full hash talidesrather hash tables having a constant
fraction of unoccupied cells.

Arrangements of keys with optimal worst case retrieval cost were in fact already
considered by Rivest in [31]. He assumes that the probe sequences are given, and presents

132 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

a polynomial time algorithm for finding an arrangement that minimizes the length of the
longest successful search. It is also shown that if one updates the key set, the expected
number of keys that need to be moved to achieve a new optimal arrangement is constant.
(The analysis requires that the hash taldesifficiently sparse, and assumes the hash
function to be truly random.) This suggests a dictionary that solves a small assignment
problem after each insertion and deletion. ltdars from [26] and this paper, that Rivest's
dictionary achieved worst case constant lookup time and expected amortized constant
update time, 8 years before an algorithm with the same performance and randomness
assumption was published by Aho and Lee [1]. Furthermore, Siegel's hash functions suffice
for the analysis. However, thel€KO0O HASHING insertion algorithm is much simpler and

more efficient than that suggested by Rivest.

Another key rearrangement scheme with similarities toc€oo HASHING is LAST-
COME-FIRST-SERVED HASHING [29], which has low variance on search time as its key
feature. It uses the same greedy strategy for moving keys as is used in this paper, but there
is no reuse of hash function values.

3.3. Hashing schemes with worst case lookup guarantee

Two-WAY CHAINING [2] is an alternative to @AINED HASHING that offers
O (loglogn) maximal lookup time with high probdlily (assuming truly random hash
functions). This scheme shares the feature withit o0 HASHING that keys are stored in
one of two places (in this case linked lists).€limplementation that we consider represents
the lists by fixed size arrays of size(loglogn) (if a longer chain is needed, a rehash
is performed). To achieve linear space wsagne must then use a hash table of size
O(n/loglogn), implying that theaveragechain length is2 (loglogn) [3]. (We remark
that the idea of storing keys in one out of two places was used even earlier by Karp, Luby,
and Meyer auf der Heide [18] in the context of PRAM simulation.)

Another scheme with this worst case guarantee iSLMLEVEL ADAPTIVE HASH-

ING [5]. However, lookups can be performeddn(1) worst case time iD (loglogn) hash
function evaluations, memory probes and comparisons are possible in parallel. This is simi-
lar to CUCKOO HASHING, though the latter uses ontiywo hash function evaluations, mem-

ory probes, and comparisons.

A dictionary with worst caseonstantlookup time was first obtained by Fredman,
Komlés and Szemerédi [15], though it wasatic i.e., did not support updates. It was
later augmented with insertions and deletions in amortized expected constant time by
Dietzfelbinger et al. [10]. Dietzfelbinger and Meyer auf der Heide [11] improved the
update performance by exhibiting a dictiopan which operations are done in constant
time with high probability, namely at least-1n~¢, wherec is any constant of our choice.

A simpler dictionary with the same properties was later developed [8]. Wkefl/ |1~

a space usage @ (n) words is not within a constant factor of the information theoretical
minimum of B = Iog('ff') bits. The dictionary of Raman and Rao [30] offers the same
performance as [10], usin® + o(B) bits in all cases. However, it does not support
information associated with keys.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 133

Very recently, Fotakis et al. [L4]nalyzed a generalization ofXCko0 HASHING with d
possible locations for each key, showing that in this case a space utilization Bf (¢
can be achieved, with constant expected time for insertions.

4. Experiments

To examine the practicality of @ckoo HASHING we experimentally compare it to
three well-known hashing methods, as described in [20, Section G#4INED HASHING
(with separate chaining),INEAR PROBING and DouUBLE HASHING. We also consider
Two-WAY CHAINING [2].

The first three methods all attempt to store a ket positionz(x) in a hash table. They
differ in the way collisions are resolved, i.e., in what happens when two or more keys hash
to the same location.

CHAINED HASHING. A linked listis used to store all keys hashing to a given location.
LINEAR PROBING. A key is stored in the next empty table entry. Lookup of keg done
by scanning the table beginning/atx) and ending when either or an empty
table entry is found. When deleting, some keys may have to be moved back in
order to fill the hole in the lookup sequence, see [20, Algorithm R] for details.
DouBLE HASHING. Insertion and lookup are similar toillEAR PROBING, but instead
of searching for the next position one step at a time, a second hash function
value is used to determine the step size. Deletions are handled by putting a special
“deleted” marker in the cell of the deleted key. Lookups skip over deleted cells,
while insertions overwrite them.

The fourth method, Wo-WAY CHAINING, can be described as two instances of
CHAINED HASHING. A key is inserted in one of the two hash tables, namely the one where
it hashes to the shorter chain. A cache+idly implementation, as recently suggested
in [6], is to simply make each linked list a shpfixed size array. If a longer list is needed,

a rehash must be performed.

4.1. Previous experimental results

Although the dictionaries with worst case constant lookup time surveyed in Section 3
leave little to improve from a theoretical point of view, large constant factors and
complicated implementation hinder their direct practical use. For example, in the “dynamic
perfect hashing” scheme of [10] the upper bound on spacerisw&Bds. The authors
of [10] refer to a more practical variant doe Wenzel that uses ape comparable to that
of binary search trees.

According to [19] the implementation of this variant in the LEDA library [25], described
in [39], has average insertion time larger than that of AVL treesafet 217, and more
than four times slower than insertions in chained hashing. (On a Linux PC with af Intel
Pentiun® 120 MHz processor.) The experimental results listed in [25, Table 5.2] show a
gap of more than a factor of 6 between the update performance of chained hashing and

134 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

dynamic perfect hashing, and a factor of more than 2 for lookups. (On a 300 MHz SUN
ULTRA SPARC.)

Silverstein [36] reports that the space upper bound of the dynamic perfect hashing
scheme of [10] is quite pessimistic compared to what can be observed when run on a subset
of the DIMACS dictionary tests [24]. He goes on to explore ways of improving space as
well as time, improving both the observed time and space by a factor of roughly three.
Still, the improved scheme needs 2 to 3 times more space than an implementation of linear
probing to achieve similar time per operation. Silverstein also considers versions of the
data structures with packed representatioithe hash tables. In this setting the dynamic
perfect hashing scheme was more than 50% slower than linear probing, using roughly the
same amount of space.

Is seems that recent experimental work orasslical” dictionaries (that do not have
worst case constant lookup time) is quite limited. In [19] it is reported that chained hashing
is superior to an implementation of dynamic perfect hashing in terms of both memory
usage and speed.

4.2. Data structure design and implementation

We consider positive 32 bit signed integer keys and use_ D.&%he data structures are
robustin that they correctly handle attempts to insert an element already in the set, and
attempts to delete an element not in the set. During rehashes this is known not to occur and
slightly faster versions of the insertion procedure are used.

Our focus is on minimizing the time for dionary operations under the constraint that
space usage should be reasonable. Byldhd factorof a dictionary we will understand
the size of the set relative to the memory used. (FBARED HASHING, the notion of
load factor traditionally disregards the space used for linked lists, but we desire equal load
factors to imply equal memory usage.) As seen in [20, Fig. 44] the speedNaAr
PROBING and DouBLE HASHING degrades rapidly for load factors abovg21 On the
other hand, none of the schemes improve much for load factors beldwAs Quckoo
HASHING only works when the size of each table is larger than the size of the set, we
can only perform a comparison for load factors less thgh To allow for doubling and
halving of the table size, we allow the load factor to vary betwegnand %2, focusing
especially on the “typical” load factor of/B. For Quckoo HASHING and Two-WAY
CHAINING there is a chance that ansirtion may fail, causing a “forced rehash”. If the
load factor is larger than a certain threshold, somewhat arbitrarily setl®, Sve use the
opportunity to double the table size. By our experiments this only slightly decreases the
average load factor.

Apart from GHAINED HASHING, the schemes considered have in common the fact that
they have only been analyzed under randomness assumptions that are currently impractical
to realize. However, experience shows that rather simple and efficient hash function
families yield performance close to that gieted under stronger nomness assumptions.

We use a function family from [9] with rand@, 1}7 for positive integey; . For every odd,

0 < a < 2%, the family contains the functioh, (x) = (ax mod 2)div2*~4. Note that
evaluation can be done very efficiently by a 32 bit multiplication and a shift. However, this
choice of hash function restricts us to consider hash tables whose sizes are powers of two.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 135

A random function from the family (chosen using €and function) appears to work fine
with all schemes exceptUkoo HASHING. For QUCKOO HASHING we experimented
with various hash functions and found that €Koo HASHING was rather sensitive to the
choice of hash function. It turned out thattkxclusive or of three independently chosen
functions from the family of [9] was fast and worked well. We have no good explanation
for this phenomenon. For all schemes, varialisrnative hash families were tried, with a
decrease in performance.

All methods have been implemented in C. We have striven to obtain the fastest possible
implementation of each scheme. Specifibices made and details differing from the
references are:

CHAINED HASHING. C's mal | oc andf r ee functions were found to be a performance
bottleneck, so a simple “freelist” memory allocation scheme is used. Half of the
allocated memory is used for the hash &laind half for list elements. If the data
structure runs out of free list elements, its size is doubled. We store the first key
of each linked list directly in the hash table, as this often saves one cache miss.
Having the first key in the hash table also slightly improves memory utilization,
in the expected sense. This is becauseyenen-empty linked list is one element
shorter and because we expect more thalhof the hash table cells to contain a
linked list for the load factors considered here.

DouBLE HASHING. To prevent the tables from clogging up with deleted cells, resulting
in poor performance for unsuccessful lookups, all keys are rehashed wBen 2
of the hash table is occupied by keys and “deleted” markers. The fracti®n 2
was found to give a good tradeoff between the time for insertion and unsuccessful
lookups.

LINEAR PROBING. Our first implementation, like that in [36], employed deletion mark-
ers. However, we found that using the deletion method described in [20, Algo-
rithm R] was considerably fasters &ar fewer rehashes were needed.

Two-WAY CHAINING. We allow four keys in each bucket. This is enough to keep the
probability of a forcedehash low for hundreds of thousands of keys, by the results
in [6]. For larger collections of keys one should allow more keys in each bucket,
resulting in general performance degradation.

CucKkoO HASHING. The architecture on which we experimented could not parallelize
the two memory accesses in lookups. Therefee only evaluate the second hash
function after the first memory lookup has shown unsuccessful.

For all schemes, rehashing was implemented as repeated insertion of all keys into a newly
allocated hash table. For efficiency we used special insertion procedures without a check
of whether keys were already inserted.

Some experiments were done with variants afdBoo HASHING. In particular, we
considered AYMMETRIC Cuckoo, in which the first table is twice the size of the
second one. This results in more keys residing in the first table, thus giving a slightly
better average performance for successful lookups. For example, after a long sequence
of alternate insertions ancetions at load factor /B, we found that about 76% of the
elements resided in the first table oSRMMETRIC CuCKOO, as opposed to 63% for

136 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

Cuckoo HASHING. There was no significant slowdown for other operations. We will
describe the results forgyMMETRIC Cuckoo when they differ significantly from those
of CUCKOO HASHING.

4.3. Setup

Our experiments were performed on a PC running Linux (kernel version 2.2) with an
800 MHz Intef® Pentiun® Ill processor, and 256 MB of memory (PC100 RAM). The
processor has a 16 KB level 1 data cache and a 256 KB level 2 “advanced transfer”
cache. Our results nicely fit a simple mod@rameterized by the cost of a cache miss
and the expected number of probes to “random” locations (see the technical report [28] for
details). They are thus believed to have significance for other hardware configurations.
An advantage of using the Penti@nprocessor for timing experiments is itgt sc
instruction which can be used to meastiree in clock cycles. This gives access to
very precise data on the behavior of algorithms, and allows us to discard the time used
by the program issuing the calls to thes€&oo HASHING data structure. In our case
it also supplies a way of discarding measurements significantly disturbed by interrupts
from hardware devices or the process scheduler, as these show up as a small group of
timings significantly separated from all other timings. Programs were compiled using the
gcc compiler version 2.95.2, using optimization flag@9 - DCPU=586 - mar ch=i 586
-fomt-frame-pointer -finline-functions -fforce-mem-funroll -
| oops -fno-rtti.As mentioned earlier, we use a global clock cycle counter to time
operations. If the number of clock cycles spen a dictionary operation exceeds 5000, and
there was no rehash, we conclude that the call was interrupted, and disregard the result (it
was empirically observed that no operation ever took between 2000 and 5000 clock cycles).
If a rehash is made, we have no way of filtering away time spent in interrupts. However,
all tests were made on a machine with no irrelevant user processes, so disturbances should
be minimal. On our machine it took 32 clock cycles to call thit sc instruction. These
clock cycles have been subtracted from the results.

4.4. Results

Our main experiment was designed to model the situation in which the size of the
dictionary is not changing too much. It coneig a sequence of mixed operations generated
at random. We constructed the test operatiegquences from a collection of high quality
random bits publicly available on the Internet [23]. The sequences start by insertion of
n distinct random keys, followed byr3times four operations: A random unsuccessful
lookup, a random successfoldkup, a random deletion, and a random insertion. We timed
the operations in the “equilibrium”, where the number of elements is stable. For load factor
1/3 our results appear in Figs. 3 and 4, which show an average over 10 runs. We ran
experiments with up to%/3 keys. As LNEAR PROBING was consistently faster than
DoUBLE HASHING, we chose it as the sole open addressing scheme in the plots. Time for
forced rehashes was added to the insertion time. The results had a large variance, over the
10 runs, for sets of size'2to 216, Outside this range the extreme values deviated from the
average by less than about 7%. The large variance sets in when the data structure starts to

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 137

Successful Lookup

300— : T T T T .
o Cuckoo
4 Two-Way Chaining
o50H = Chained Hashing e
= Linear Probing o
“.D‘ e
2001 R A
[/}
]
° x
>
O 150t e .
X -
[$]
o
(@]
100 R
50F 1
8 10 12 14 16 18 20 22
logn
Unsuccessful Lookup
300— T :
o Cuckoo
~a Two-Way Chaining
250l &~ Chained Hashing i
- Linear Probing o
200} R
@\ X
3 :
o x
>
O 150} .
X
[$]
°
(6]
100 i
50F b

8 10 12 14 16 18 20 22
logn

Fig. 3. The average time per lookup operation in equilibrium for load fagtér 1

fill the level 2 cache. We believe this is causeddur test program reading data from disk
and thus sometimes evicting paotfsthe data structure from cache.

As can be seen, the time for lookups is almost identical for all schemes as long as the
entire data structure fits in level 2 cache, i.e.,for 216/3. After this the average number
of accesses to a random memory cell (with thebability of a cache miss approaching 1)
shows up. The shape of the curves reflect the increasing probability of a cache miss for an
access to a random memory cell (see Section 5 dkttienical report [28] for details). This
makes linear probing an average case winner, withkt kb0 HASHING and Two-WAY
CHAINING following about 40 clock cycles behinBor insertion the number of accesses to
a random memory cell again dominates the picture for large sets, while the higher number
of in-cache accesses and more computation makexGo HASHING, and in particular
Two-WAY chaining, slower for small sets. The cost of forced rehashes sets inffor T

138 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

Insert
450— : . i . . .
~o- Cuckoo .
400H 2+ Two-Way Chaining B
~-e- Chained Hashing FR
350/~ Linear Probing ..o}.‘,-]
O A
Lo o
w300» @ = |
K i P o
2250 r oA e o]
o 9. =
x - o
§2oo> ; i [N aNEE x 7
O . U
150} L i
1001]
501]
0 ! 1 1 L L . . .
8 10 12 14 16 18 20 22
logn
Delete
350[—= . . : . ‘ ‘
~e- Cuckoo .
B Two—Way Chaining o
300| = Chained Hashing e]
~x-_Linear Probing E,“
2501 N o]
3 4“‘}2 o
‘S 200F 40 P
(6] o
x
8150F i
(&}
100 J
501]
0 L 1 1 L L L . \

8 10 12 14 16 18 20 22

Fig. 4. The average time per update operation in equilibrium for load faggr 1

WAY CHAINING for sets of more than a million elements, at which point better results
may have been obtained by a larger bucket size. For deletioxiINED HASHING lags
behind for large sets due to accesses to a randemory cell when freeing list elements,
while the simplicity of G ckoo HASHING makes it the fastest scheme. We note that, for
dictionaries that fit in cache, the total time fan insertion and a deletion is smallest for
Cuckoo HASHING among the four schemes.

At this point we should mention that the good cache utilization ofHAR PROBING
and Two-WAy CHAINING depends on the cache lines beiogsiderably larger than keys
(and any associated information placed togethith keys). If this is not the case, it causes
the number of cache misses to rise signiftbarThe other schemes discussed here do not
deteriorate in this way.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 139

Joyce Eddington
LINEAR 42-45 (.35) 26-27 (.40)
DOUBLE 48-53 (.35) 32-35 (.40)

CHAINED 49-52 (.31) 36-38 (.28)
A.Cuckoo 47-50 (.33) 37-39 (.32)
Cuckoo 57-63 (.35) 41-45 (.40)
Two-WAY 82-84 (.34) 51-53 (.40)

Fig. 5. Average clock cycles per operation and load factors for two DIMACS string tests.

We made additional experiments concernirgy¢bst of insertions in growing dictionar-
ies and deletions in shrinking dictionaries, which takes into account the cost of rehashes
needed to keep space utilization aroun8.1The interested reader can find the results of
these tests in the technical report [28].

DIMACS tests

Access to data in a dictionary is rarelyndom in practice. In particular, the cache is
more helpful than in the above random tests, for example due to repeated lookups of the
same key, and deletion of short-lived keys. As a rule of thumb, the time for such operations
will be similar to the time when all of the dastructure is in cache. To perform actual tests
of the dictionaries on more realistic data, we chose a representative subset of the dictionary
tests of the 5th DIMACS implementation challenge [24]. The tests involving string keys
were preprocessed by hashing strings to 32 bit integers, as described in Appendix A. This
preserves, with high probability, the access pattern to keys. For each test we recorded the
average time per operation, not including the time used for preprocessing. The minimum
and maximum of six runs can be found in Figs. 5 and 6, which also lists the average load
factor. Linear probing is again the fastest, but mostly just 20—30% faster thanuttied®
schemes.

The number of cache misses during insertion

We have seen that the number of accesses to a random memory cell (i.e., cache
misses) is critical to the performance of haxghschemes. Whereas there is a very precise
understanding of the probe behavior of the classic schemes (under suitable randomness
assumptions), the analysis of the expected time for insertions in Section 2.3 is rather crude,
establishing just a constant upper bound. One reason that our calculation does not give a

3.11-Q-1 Smalltalk-2 3.2-Y-1

LINEAR 99-103 (.30) 68-72 (29) 85-88 (.32)
DouBLE 116-142 (.30) 77-79 (29) 98-102 (.32)
CHAINED 113-121 (.30) 78-82 (29) 90-93 (.31)

A.Cuckoo 166-168 (.29) 87-95 (29) 95-96 (.32
Cuckoo 139-143 (.30) 90-96 (.29) 104-108 (.32)

Two-WAY 159-199 (.30) 111-113 (.29) 133-138 (.32)

Fig. 6. Average clock cycles per operation dodd factors for three DIMACS integer tests.

140 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

4 :
o Cuckoo o
4 Two-Way Chaining
3.5[] =~ Chained Hashing
+- Double Hashing E
o
3l .
8 o7
ol
B25f o
= o a a
) © o
S o 2 a B gy a & A &
© o
o .
o
1.5¢ o 1
o
-
e
L] S
0.5 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Load Factor

Fig. 7. The average number of accesses to a random memory cell for insertion.

very tight bound is that we use a pessimistic estimate on the number of key moves needed to
accommodate a new element in the diction@rgen a free cell will be found even though it
couldhave been occupied by another key in the dictionary. We also pessimistically assume
that a large fraction of key moves will be spéracktracking from an unsuccessful attempt

to place the new key in the first table.

Figure 7 shows experimentally determined values for the average number of probes
during insertion for various schemes and load factors belg#: We disregard reads
and writes to locations known to be in cacled the cost of rehashes. Measurements
were made in “equilibrium” after Tinsertions and deletions, using tables of sizé 2
and truly random hash function values. We believe that this curve is independent of the
table size (up to vanishing terms). The curve foNEAR PROBING does not appear, as
the number of non-cached memory accessegigpon cache architecture (length of the
cache line), but it is typically very close to 1. The curve far€dkoo HASHING seems to
be 2+ 1/(4+ 8x) ~ 2+ 1/(4¢). This is in good correspondence with (3) of the analysis
in Section 2.3. It should be remarked that the highest possible load factomfor\VWay
CHAINING is O(1/loglogn).

As noted in Section 2, the insertion algorithm af @00 HASHING is biased towards
inserting keys inT1. If we instead of starting the insertion iR choose the start table at
random, the number of cache misses decredggtlyg for insertion.This is because the
number of free cells ifTy increases as the load balanezbmes even. However, this also
means a slight increase in lookup time. Also note that since insertion checks if the element
is already inserted, @GCKOO HASHING uses at least two cache misses. The initial lookup
can be exploited to get a small improvement in insertion performance, by inserting right
away wheneither cell Ty1[k1(x)] or T2[h2(x)] is vacant. For load factor/B this places
about 10% of newly inserted keys . The relatively low percentage is the reason why
we found no advantage in performing the extra check in our implementation.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 141

Since lookup is very similar to insertion inHAINED HASHING, one could think that
the number of cache misses would be equalthe two operations. However, in our
implementation, obtaing a free cell from the freelist may result in an extra cache miss.
This is the reason why the curve foH@INED HASHING in the figure differs from a similar
plot in Knuth [20, Fig. 44].

5. Conclusion

We have presented a new dictionary with worst case constant lookup time. It is very
simple to implement, and hawerage case performancewgoarable to the best previous
dictionaries. Earlier schemes with worst case constant lookup time were more complicated
to implement and had worse average casd#opmance. Several challenges remain. First
of all an explicit, truly practical hash function family that is provably good for the scheme
has yet to be found. One step in this direction was recently taken by Dietzfelbinger and
Woelfel [12], but their hash functions stitequire a relatively large amount of space.
Secondly, we lack a precise understanding of why the scheme exhibits low constant factors.
In particular, the curve of Fig. 7 needs to be explained.

Acknowledgments

The authors thank Andrei Broder, Martin Dietzfelbinger, Rolf Fagerberg, Peter Sanders,
John Tromp, and Berthold Vécking for useful comments and discussions on this paper and
CUCKOO HASHING in general.

Appendix A. Constructionsand properties of universal hash functions
A.1. Universal hash function families

As a simple example of a universal family, the family of all functions fronto some
codomain ig(1, |U|)-universal. However, for implementation purposes one needs families
with much more succinct memory representations. A standard constructiori2ok g
universal family for rang® = {0, ..., r — 1} and primep > max2¥*, r) is

k—1
ix — ((Zalxl) modp> modr
=0

This paper uses a hash function construction due to Siegel [35] thatdms$ant
evaluation time (however, the constant is not small). Its properties are captured by the
following theorem, which can be derived from Siegel’'s paper by using a universe collapse
function, as described below.

0<ag,a1,...,ap-1<py. (A1)

142 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

Theorem 1 (Siegel).Lety andé§ > 0 be constants, and take any sétC U. Using space
and initialization timeO (|X|%) it is possible to construct a family of functions such that,
for some constar®’ > 0:

o With probability at leastl — | X|~7 the family is(1, |X|5/)—universal when restricted
to X.

e Furthermore, functions from the family can be evaluated in constant time, and a
random function can be picked using time and spacgx).

A.2. Collapsing the universe

The restriction that keys are single words is not a serious one, as longer keys can be
handled using the standard techniquecoflapsingthe universe. Specifically, long keys
can be mapped to keys 6f(1) words by applying a random functignfrom a (0 (1), 2)-
universal family. There is such a family whose functions can be evaluated in time linear in
the number of words in a key [7]. It works by evaluating a function fro0g1), 2)-
universal family on each word of the key, computing the bitwise exclusive or of the
function values. (See [37] for an efficient implementation.) Such a fungtiaith range
{0, 1)2'odm+e will, with probability 1 — 0 (27¢), be injective onS. In fact, with constant
probability p is injective on a giversequencef £2(2/%n) consecutive sets in a dictionary
of initial sizen (see [10]). When a collision fgs between two elements &fis detected in
the dictionary, everything is rehashed, i,2is chosen anew and the whole data structure
is rebuilt. If a rehash can be done in expecte@:) time, the amortized expected cost of
this is 0 (27°/?) per insertion. In this way we can effectively reduce the universe size to
0 (n?), though the full keys still need to be stored to decide membership.

References

[1] A.V. Aho, D. Lee, Storing a dynamic sparse table, in: Proceedings of the 27th Annual Symposium on
Foundations of Computer Science (FO®86), IEEE Comput. Soc. Press, 1986, pp. 55-60.

[2] Y. Azar, A.Z. Broder, A.R. Karlin, E. Upfal, Blanced allocations, SIAM J. Comput. 29 (1) (1999) 180-200.

[3] P. Berenbrink, A. Czumaj, A. Steger, B. Vocking, Balanced allocations: the heavily loaded case, in:
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC '00), ACM Press,
2000, pp. 745-754.

[4] R.P. Brent, Reducing the retrieval time of #ea storage techniques, Commun. ACM 16 (2) (1973) 105-109.

[5] A.Z. Broder, A.R. Karlin, Multilevel adaptive hashing, in: Proceedings of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA '90), ACM Press, 1990, pp. 43-53.

[6] A.Z. Broder, M. Mitzenmacher, Using multiple sl functions to improve IP lookups, in: Proceedings of
the 20th Annual Joint Conference of the IEEE Conepaind Communications Societies (INFOCOM 2001),
vol. 3, IEEE Comput. Soc. Press, 2001, pp. 1454-1463.

[7] J.L. Carter, M.N. Wegman, Universal classé$ash functions, J. Comput. System Sci. 18 (2) (1979) 143—
154.

[8] M. Dietzfelbinger, J. Gil, Y.Matias, N. Pippenger, Pghomial hash functions are reliable (extended
abstract), in: Proceedings of the 19th Internatid@alloquium on Automata, Languages and Programming
(ICALP '92), in: Lecture Notes in Comput.ck, vol. 623, Springer-Verlag, 1992, pp. 235-246.

[9] M. Dietzfelbinger, T. Hagerup, Katajainen, M. Penttonen, A reliablanrdomized algorithm for the closest-
pair problem, J. Algorithms 25 (1) (1997) 19-51.

R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144 143

[10] M. Dietzfelbinger, A.Karlin, K. Mehlhorn, F. Meyer auf der élde, H. Rohnert, R.E. Tarjan, Dynamic
perfect hashing: upper and lowleounds, SIAM J. Comput. 23 (4) (1994) 738-761.

[11] M. Dietzfelbinger, FMeyer auf der Heide, A new universal ctasf hash functions and dynamic hashing in
real time, in: Proceedings of the 17th Internationall@juium on Automata, Languages and Programming
(ICALP '90), in: Lecture Notes in Comput.ck, vol. 443, Springer-Verlag, 1990, pp. 6-19.

[12] M. Dietzfelbinger, P. Woelfel, Almost random gras with simple hash functions, in: Proceedings of the
35th Annual ACM Symposium on Theory of Computing (STOC '03), 2003, pp. 629-638.

[13] A.l. Dumey, Indexing for rapid random access memory systems, Computers and Automation 5 (12) (1956)
6-9.

[14] D. Fotakis, R. Pagh, P. Sanders, P. Spirakis, Space efficient hash tables with worst case constant access
time, in: Proceedings of the 20th Symposium on Theoretical Aspects of Computer Science (STACS '03), in:
Lecture Notes in Comput. Sci., vol. 2607, Springer-Verlag, 2003, pp. 271-282.

[15] M.L. Fredman, J. Komlés, E. Szemerédi, Storing a sparse tabled\ith worst case access time, J. Assoc.
Comput. Mach. 31 (3) (1984) 538-544.

[16] G. Gonnet, Handbook of Algorithms andafa Structures, Addison—Wesley, 1984.

[17] G.H. Gonnet, J.I. Munro, Efficient orded of hash tables, SIAM J. Comput. 8 (3) (1979) 463-478.

[18] R.M. Karp, M. Luby, F. Meyer auf der Heide, EffictRRAM simulation on a distributed memory machine,
Algorithmica 16 (4-5) (1996) 517-542.

[19] J. Katajainen, M. Lykke, Experiments with univatdashing, Technical Report DIKU, Technical Report
96/8, University of Copenhagen, 1996.

[20] D.E. Knuth, Sorting and Searching, in: The Af@mputer Programming, vol. 3, 2nd ed., Addison-Wesley,
Reading, MA, 1998.

[21] J.A.T. Maddison, Fast lookup in hash tables wdlihect rehashing, The Computer Journal 23 (2) (1980)
188-189.

[22] E.G. Mallach, Scatter storagechniques: a uniform viewpoint and a thed for reducing retrieval times,

The Computer Journal 20 (2) (1977) 137-140.

[23] G. Marsaglia, The Marsaglia random number CDROMding the diehard battg of tests of randomness,
http://stat.fsu.edu/pub/diehard/.

[24] C.C. McGeoch, The fifth DIMACS challenge dictionesj http://cs.amherst.edu/~ccm/challenge5/dictol/.

[25] K. Mehlhorn, S. Naher, LEDA: A Rtform for Combinatorial andseometric Computing, Cambridge
University Press, 1999.

[26] R. Pagh, On the cell probe complexity of membership and perfect hashing, in: Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing (STOC '01), ACM Press, 2001, pp. 425-432.

[27] R. Pagh, F.F. Rodler, Cuckoo hashing, in: Proceedings of the 9th European Symposium on Algorithms
(ESA'01), in: Lecture Notes in Computch, vol. 2161, Springer-Verlag, 2001, pp. 121-133.

[28] R. Pagh, F.F. Rodler, Cuckoo hashing, ResearcieSRS-01-32, BRICS, Department of Computer Science,
University of Aarhus, August 2001, 21 pp.

[29] P.V. Poblete, J.I. Munro, Last-come-first-served hashing, J. Algorithms 10 (2) (1989) 228-248.

[30] R. Raman, S.S. Rao, Succinct dynamic dictionaeed trees, in: Proceedings of the 30th International
Colloguium on Automata, Languag@nd Programming (ICALP '03), in: Lecture Notes in Comput. Sci.,
vol. 2719, Springer-Verlag, 2003, pp. 345-356.

[31] R.L. Rivest, Optimal arrangement of keys in a hash table, J. Assoc. Comput. Mach. 25 (2) (1978) 200-209.

[32] P. Sanders, B. Vockingaersonal communication, 2001.

[33] J.P. Schmidt, A. Siegel, On aspects of universality and performance for closed hashing (extended abstract),
in: Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC '89), ACM Press,
1989, pp. 355-366.

[34] J.P. Schmidt, A. Siegel, The analysis of closedHiiag under limited randomness (extended abstract), in:
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC '90), ACM Press, 1990,
pp. 224-234.

[35] A. Siegel, On universal classes of fast high performance hash functions, their time—space tradeoff, and
their applications, in: Proceedings of the 30thnval Symposium on Foundations of Computer Science
(FOCS '89), IEEE Comput. Soc. Press, 1989, pp. 20-25.

[36] C. Silverstein, A practical péect hashing algorithm, in: Data $tttures, Near Neighbor Searches, and
Methodology: Fifth andSixth DIMACS Implementation Chalfeges, in: DIMACS Series in Discrete

144 R. Pagh, F.F. Rodler / Journal of Algorithms 51 (2004) 122-144

Mathematics and Theoretical Computer Sciena®, 59, American Mathematical Society, 2002, pp. 23—
48.

[37] M. Thorup, Even strongly universal hashing is pretty fast, in: Proceedings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA '00), ACM Press, 2000, pp. 496—-497.

[38] J. Tromp, personal communication, 2003.

[39] M. Wenzel, Wérterbucher fiir ein beschréanktes @émbum, Diplomarbeit, Fachbereich Informatik, Univer-
sitat des Saarlandes, 1992.

