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General Introduction

How to solve this problem? How fast can it be solved? Answering those questions rigor-
ously for a computational problem often entails the design and analysis of an algorithm –
a step-by-step method that, applied to an instance of the problem, produces a solution to
that instance. In 2013, Frey and Osborne [87] estimated that about 47 percent of the total
U.S. employment could be concerned by job automation in roughly two decades, showing
that algorithms are taking a preponderant role in our lives. Thus, proceeding naı̈vely by, for
example, designing algorithms that achieve good enough performances on a benchmark or
in a very specific context is often unsatisfactory when not risky. How can one rely on an
algorithm whose efficiency and correctness are not established for solving critical tasks?

0 250(km)

41°

51° 30'

Figure 1: A (traveling salesman) tour through several french cities using the highway net-
work.
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A systematic approach consists in proceeding at a more abstract level by: (1) distilling
a problem faced in practice by proposing a model (2) designing and analyzing an algorithm
for the problem in that model and (3) applying this algorithm to practical instances.

However, the distilling step sometimes introduces a gap between theory and practice.
If the model is too general it induces a two-fold gap: on the one hand no guarantee on the
algorithms that are efficient in practice can be proven, on the other hand the best theoretical
algorithms turn out to be noncompetitive in practice. This gap has been observed in several
contexts, in particular for clustering and network design problems.

(a) Three 8px-by-8px images of handwritten dig-
its.

(b) A clustering of a 2-dimensional embedding
of a dataset of handwritten digits images. Clus-
ters (areas of the same color) contain data points
corresponding to the images of the same digit.

Figure 2: 8px-by-8px images can be seen as a set of points lying in a 64-dimensional
space by reading each pixel as a coordinate. For images of handwritten digits, it is possible
to project the dataset to a 2-dimensional space while preserving some of the underlying
structure of the data (using principal component analysis).

The distilling gap: illustrative examples. Given a set of points in a metric space, a clus-
tering is a partition of the points into clusters according to a measure of proximity. There is
a tremendous number of contexts in which clustering problems occur. For example, in ma-
chine learning and data sciences, it is standard to measure the similarity of two data points
by a distance function (see Figure 2). Hence, a clustering of the input points provides a
fundamental information: points in the same cluster have common features.

Now suppose that we are asked to build a few warehouses to serve a set of shops. Here,
we would like to optimize the distance from each shop to its closest warehouse. Thus, we
again look for a clustering of the shops: each cluster contains points that are close to one
another and therefore, that could be served by a the same warehouses (see Figure 3).
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Figure 3: Location and district of activity of the fire stations in the french département du
Haut-Rhin. Each red point corresponds to a fire station. Bold boundaries represent the
districts of activity of the fire stations. Each district of activity can be seen as a cluster: all
the points – the dwellings – are close to the same fire station.

This illustrates the heterogeneity of the contexts in which clustering problems arise.
However, at a more abstract level, this historically resulted in the general k-means prob-
lem1 which makes no distinction between those different contexts (see Definition A.1 for a
general version).

This lends clustering an easy-in-practice, hard-in-theory character. On the one hand,
various heuristics have been designed to solve specific instances. Those heuristics achieve
good experimental results although no performance guarantees have been established. On
the other hand, theoretical results showed that the problem is NP-hard2, preventing the
community from deriving theoretical bounds that match experimental observations and
thus, preventing a formal explanation of the success of the heuristics.

Another symbolic example is the famous traveling salesman problem (TSP). Given a
set of points in a metric space, this problem asks for a tour of the points of minimum
length (see Definition A.4). This is one of the most famous problems in combinatorial
optimization because of its impressive number of applications and because its study has
led to the development of new algorithmic techniques over the years (see also the popular
science book of Cook [61]).

In 2000, David Johnson et al. organized the 8th DIMACS implementation Challenge
on TSP [70]. The goal was to thoroughly compare the different heuristics people have

1Or slight variations like k-median and k-center.
2Assuming P ‰ NP, there cannot exist an algorithm returning an optimal solution to the problem in a

number of operations that is polynomial in the size of the input.
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developed through the years using random and real-world Euclidean instances. They re-
viewed more than 30 heuristics on thousands of instances. Quite surprisingly the best
known theoretical algorithms for Euclidean TSP – for which Sanjeev Arora and Joseph S.
B. Mitchell received the Gödel price in 2010 – is absent from the challenge. Johnson and
McGeoch [109] explain that despite the strong theoretical guarantees, it is likely that those
algorithms are not competitive on real-world instances.

From practice to theory. The attempts to bridge the gap between theory and practice
resulted in various characterizations of real-world instances (see for example [25, 36, 151]).

(a) Map of Manhattan, its grid-like road network
is a planar graph.

(b) A grid planar graph with 250 vertices.

Figure 4: The road network of Manhattan on the left can be modeled by grid graph (similar
to the one on the right).

However, those approaches mainly resulted in either a class of instances for which the
theoretical analysis still yield bounds that are very far from what is experienced in practice
or ad-hoc algorithms that leverage the properties of a class of instances but that are not used
in practice.

We proceed in the reverse order. We focus on an algorithm that is widely used in
practice for hard combinatorial optimization problems, local search (Algorithm 1), and
investigate in which contexts this algorithm performs well.

This algorithm proceeds almost naı̈vely. Initially, it starts with an arbitrary solution S
to the problem. Then, while there exists a neighboring solution S 1 – a solution obtained via
a slight modification of S – of smaller cost, it replaces S by S 1 and repeats.
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Algorithm 1 The Local Search algorithm.
1: Input: An instance of an optimization problem.
2: Parameter: A positive integer s for the neighborhood size.
3: S Ð arbitrary solution to the problem
4: while there is a solution S 1: |SzS 1| ` |S 1zS| ď s and cost(S 1) ă costpSq
5: do
6: S Ð S 1

7: Output: S

This algorithm can be adapted to any combinatorial optimization problem. For exam-
ple, in the case of the k-means problem a solution is defined by a set of centers1. Thus, a
neighboring solution for local search is obtained from the current solution by removing a
few of the current centers and adding back a few different centers.

It can also be easily adapted to TSP. Let us view a tour as a sequence of edges2. Given
a current tour T , a neighboring tour is obtained by removing a constant number of edges
– this breaks T into a constant number of paths – and reconnecting the paths in the best
possible way.

This makes local search very appealing: it is easy to implement, easy to run in parallel,
and easy to tune. Indeed, the space of neighboring solutions can be explored in parallel and
the number of modifications allowed to define a neighboring solution, the neighborhood
size, allows some trade-off between the quality of the solution and the running time. It
has received a considerable amount of attention over the years, from both practical and
theoretical points of view (see the book of Aarts and Lenstra [2]).

Yet, the theoretical analysis of this algorithm for clustering problems and TSP is very
unsatisfactory. In 2004, Arya et al. [16] and Kanungo et al. [112] showed strong theoretical
guarantees but still quite far from the performances experienced in practice. Similarly,
the theoretical understanding of local search for TSP does not fit the experimental results
obtained by Johnson et al. during the DIMACS Challenge.

Therefore, the first question we tackle is the following.

Is it possible to prove better performance guarantees for local search on real-world in-
stances?

1The centers induce the clustering: each input point is assigned to its closest center, thus defining a
partition.

2For example, the tour that starts from a city A goes to a city B, then to a city C and goes back to city A
can be encoded by the following sequence of pairs, called edges: (city A, city B), (city B, city C), (city C,
city A).
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Contributions of this thesis.

We answer the above question by proving that local search achieves nearly-optimal per-
formances in a variety of types of instances stemming from real-world applications. This
leads local search to be the best known theoretical algorithm for several problems.

Several practical instances of both k-means1 (see Figure 2) and TSP consists of points
lying in a 2- or 3-dimensional Euclidean space (see Figure 5).

Figure 5: A tour through 13,509 cities of the U.S.A. The instance was created by embed-
ding the cities in R2. It turns out that the real distances between the cities are very close to
their Euclidean distances in the embedding.

However, even for this type of instances, both TSP and k-means are NP-hard (see [137,
140] for example). Thus, the best result one can hope for is a polynomial-time approx-
imation scheme (PTAS) – loosely speaking, an algorithm that approximates the optimal
solution within a 1` ε factor in polynomial time2 for any constant ε.

First, we observe that local search for TSP could return a solution of cost at least two
times the optimal cost in the worst-case, very far from the results observed by Johnson
et al. [70] (a factor less than 1.05 roughly). Therefore, we turn to the case of random
instances3 and show that local search is a PTAS in this setting (Theorem 7.1).

For any d-dimensional random instance of TSP, local search with neighborhood of size
1{εOpdq returns a solution of cost at most p1 ` εq times the cost of the optimal solution
with high probability.

1For ease of exposition, we describe the results for the well-known k-means problem. Our results apply
for other clustering objectives and to a more general problem called the k-clustering problem (Definition A.1)

2For ε fixed.
3For a formal definition, see Chapter 8.
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Giving the first PTAS for k-means for low-dimensional instances is a central problem
that has received a lot of attention during the past 15 years (see [19] for example). In this
thesis, we solve this problem by showing that local search is a PTAS for d-dimensional
instances of the k-means problem (Theorem 1.3).

For any d-dimensional instance of the k-means problem, local search with neighborhood
of size 1{εOpdq returns a solution of cost at most p1 ` εq times the cost of the optimal
solution.

Another significant part of the real-world instances of the k-means problem consists of
road networks. Thus, we turn to instances that consist of a planar graph1 (see Figure 4).
Researchers have been trying to find a PTAS for planar instances of k-means since at least
2001 (see [6, 77] for example). We solve this problem by showing that local search is a
PTAS for planar instances of the k-means problem (Theorem 1.2).

For any instance of the k-means problem that consists of a planar graph, local search
with neighborhood of size 1{εOp1q returns a solution of cost at most p1 ` εq times the
cost of the optimal solution.

Finally, as shown in Figure 2, clustering data points is a useful tool in data sciences.
We then consider various characterizations of real-world instances ([17, 36, 126]). Each
characterization is motivated by a particular type of instances stemming from data science.
For each of them, an ad-hoc algorithm leveraging the properties induced by the characteri-
zation has been designed. We identify three main characterizations of real-world instances:
distribution stability (Definition 1.4), perturbation-resilience (Definition 1.6), and separa-
bility (Definition 1.9). We show that for all those families of instances local search achieves
strong theoretical guarantees (Theorems 1.8, 1.5 and 1.10).

For any instance of the k-means problem that satisfies the stability or separability con-
ditions, local search with neighborhood size 1{εOp1q returns a solution of cost at most
p1` εq times the cost of the optimal solution.
For any instance of the k-means problem that is p3 ` εq-perturbation-resilient, local
search with neighborhood size 1{εOp1q returns the optimal clustering.

Those results make a concrete step towards the understanding of the success of local
search for clustering problems and TSP. Indeed, they show that the algorithms used in
practice are nearly-optimal for any real-world instance of those types. Thus, we may won-
der what properties makes local search efficient and which contexts are conductive to this
approach. This leads us to our second question.

What structural properties of the instances lead local search to be efficient?
1More generally a graph drawn from a minor-closed family of graphs
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Clustering (Definition A.1) Best known approximation guarantee
Prev. New (by local search)

d-dimensional Euclidean instances 1` ε (k-median [11, 123]) 1` ε

9 (k-means [112])
H-minor free graphs (includes planar graphs) 2.675` ε (k-median [129, 46]) 1` ε

9 (k-means [112])
α
?
k-separability (Def. 1.9) 1` α ([20]) 1` ε

β-distribution-stability (Def. 1.4) 1` ε ([17]) 1` ε

γ-perturbation-resilience (Def. 1.6) Opt if γ ě 1`
?
2 ([27]) Opt for γ ą 3

Table 1: Summary of our results on local search for clustering. There is no PTAS in
general metrics for this problem unless P = NP. The previous best known approximation
for k-means was 9 for general metrics (even in the cases of low dimensional Euclidean
space and planar graphs). For k-median, there was already a PTAS in low dimensional
Euclidean space. Nothing better than the general case was known for planar graphs. For
the main characterizations of real-world instances, we show that local search is better than
the state-of-the-art algorithms for the separability condition, matches the performances of
the best algorithm for the distribution-stability condition and is a little bit worse than the
state-of-the-art algorithm for perturbation-resilient instances.

The separation property. The proofs of Theorems 1.3, 1.2, and 7.1 rely on a common
key ingredient: the existence of cheap separators in the instances. For the problems we
consider, both Euclidean and planar instances feature a property that resembles the isoperi-
metric inequality.

Indeed, each instance contains a set of input elements whose removal yields two sub-
instances of the same problem that (1) can be processed independently and (2) whose solu-
tions can be combined at small cost to form a solution to the initial instance.

For example, any planar graph with n vertices contains a set of at most 2
?
n vertices

whose removal splits the graph into two parts of roughly equal size (see Figure 6).
The existence of cheap separators often implies strong theoretical results (see for exam-

ple [134]) by providing a decomposition of the instance into small pieces whose solutions
can be combined at small cost. Intuitively, this allows to apply very basic techniques such
as divide-and-conquer or dynamic programming. It turns out that it is also a very efficient
tool to analyze the performance of local search.

An oblivious use of the separation property. Local search uses cheap separators in an
oblivious manner. As we have seen, local search proceeds naively by enumerating neigh-
boring solutions; it does not require to compute a cheap separator or to decompose the
graph. Yet, the analysis shows that the existence of cheap separators implies that any local
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(a) The red line splits the instance into two parts.
Observe that the length of the tour in each part is
much bigger than the length of the red line. Thus,
if the traveling salesperson makes a detour from
Chicago to New-Orleans and back, its tour is not
much longer. Therefore, we can compute the opti-
mal tours on the west and east coasts and combine
them by adding, at most, the red line. In this case,
the resulting tour will not be much more expen-
sive.

Length of 
the 

sub-tours: 
> 110

Length of 
the

separator: 
9

(b) A grid planar graph with 250 vertices and a
set of 10 ă

?
250 vertices that splits the graph

into two disconnected parts. The existence of
a separator set of at most

?
n vertices in every

planar graph with n vertices was proved by Lip-
ton and Tarjan in 79 [133].

Figure 6: Examples of the separation property and its algorithmic implications.

optimum is close to a global optimum.
Our analysis of local search relies on the existence of a decomposition of the instance

into small regions that can be dealt with separately. In a nutshell, local search iteratively
optimizes a solution by refining its current solution to make it optimal in one of the regions.
Since the regions are “small”, the modification is minor and so, this solution is indeed a
solution neighboring the current solution. Since the regions are (almost) independent from
one another this allows local search to end up with a nearly optimal solution.

More structured separators. This leads us to the study of separators and their limita-
tions. Separators are the cornerstone of three central algorithmic paradigms for combina-
torial optimization in planar graphs. Those three techniques ([24, 66, 117]) jointly yield
most approximation schemes known for planar graphs.

However, we identify a variety of network design problems, for which no PTAS is
known and for which those approaches fail. Arguably, the failure lies in the lack of structure
of the separator theorems proved so far. For example, when dealing with a network design
problem whose solution has to be a connected network, a good separator often needs to be
both connected and of small length so that combining two solutions can be done by simply
adding the separator to the solutions.
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We then show how to compute a more structured separator tailored to network design
problems (Theorem 7.4). From this we deduce a new framework that yields the first PTAS
for several problems on planar graphs. We summarize our results in table 7.1.

Problem Best known approximation guarantee
Prev. (for general graphs) New

(Edge-weights) Tree Cover 2 [149] 1` ε

(Edge-weights) Tour Cover 3 [124] 1` ε

(Vertex-weights) Connected Dominating Set Oplogpnqq [96] 1` ε

(Vertex-weights) Maximum Leaf Spanning Tree Oplogpnqq [96] 1` ε

(Vertex-weights) Connected Vertex Cover Oplogpnqq [90] 1` ε

(Vertex-weights) Feedback Vertex Set 2 [22] 1` ε

Table 2: Summary of our results. None of the problems admit a PTAS in general graphs
unless P = NP and the approximation ratios of the Weighted Dominating Set, the Vertex-
Weighted Connected Vertex Cover and the Vertex-Weighted Connected Dominating Set
problems are Ωplogpnqq for general graphs assuming P ‰ NP. All the problems are NP-
hard in planar graphs. Previous to our work, polynomial-time approximation schemes
were known [66] for the unweighted versions of these problems in planar graphs. For
each of the weighted versions, the best approximation known before our work was the
approximation for general graphs. We obtain PTASs for bounded-genus weighted graphs,
except for feedback vertex set, where the algorithm is restricted to weighted planar graphs.

Back to practice. Finally, we run several experiments to analyze the practical perfor-
mances of local search for the clustering. We compare the local search presented in this
chapter to Lloyd’s famous algorithm for clustering. We show that for several relevant cases,
our algorithm outperforms Lloyd’s algorithm and converges to a nearly-optimal solution
much faster. We also experimentally study for which contexts our model, the k-means
problem, is relevant. Indeed, in some practical cases, the “natural clustering” of the in-
stance induces a “bad” solution for the k-means problem. In those particular cases, the
local search solution yields a clustering that is very far from the natural one.

Those experimental observations together with our theoretical results raise several open
problem that we summarize in the last parts of this thesis.

Organization of this thesis. Chapter A introduces formal definitions of the problems we
study in this thesis and provides some background on the separation property.

Part I is devoted to the clustering problems. We start by giving a proof of the perfor-
mance guarantees of local search for general instances (Chapter 2). In Chapter 3 we show
how to use separation in order to prove Theorems 1.2 and 1.3. Chapter 4 is dedicated
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to the various characterizations of real-world instances and to the proof of Theorems 1.8,
1.5 and 1.10. Finally, Chapter 5 introduces an algorithm for the case of massive datasets.
In this setting, due to the huge amount of data no separator can be computed and so, we
introduce a different greedy approach.

We tackle network design problems in Part II. We prove the efficiency of local search
for random d-dimensional instances of TSP (Theorem 7.1) in Chapter 8. We then introduce
our new framework for network design problems in Chapter 9.

For a global picture of the organization see Figure 7.
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CHAPTER 1

Introduction to Clustering

Clustering data according to similarity is ubiquitous in computer and data sciences. Simi-
larity between data is often modeled by a distance function: two data points are close if and
only if they are similar. This induces a metric space in which each data point is associated
to a point of the space. Thus, a clustering according to similarity is a partition of the points
such that the distance between two points in the same part, called cluster, is small. How-
ever, making this problem more formal is hard. From a practitioner’s point of view, the
appropriateness of a particular clustering depends on the underlying structure of the data.
For instance, if the data is assumed to be generated from a mixture of unit Gaussians, the
problem of finding the k mixtures generating the points is often modeled by the k-means
problem. Yet, even when the data points lie in Rd, this problem is APX-Hard (assuming k
and d are part of the input).

This induces a gap between theory and practice: on the one hand, with an appropriate
model a benchmark algorithm often yields a good clustering. On the other hand, many
clustering objectives are NP-hard to approximate. Thus, to bridge the gap between theory
and practice, prior approaches usually proceed in two steps: (1) restrict attention to either
data lying in some specific metric spaces or data satisfying some properties characterizing
real-world instances and (2) design an algorithm leveraging the properties of the data.

Clustering in the Classic Memory Model

Well-separated instances. As argued in the introduction, clustering problems come up
in a variety of contexts. The problem of locating warehouses induces a clustering problem
whose instances are very structured since road or transport networks are planar (or embed-
dable on a surface of small genus) or can be modeled by embedding the points in R2 or
R3. Thus, it is fairly natural to restrict attention to inputs consisting of metrics induced by,
more generally, minor-free graphs or points lying in Euclidean spaces of small dimensions.
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Researchers have been trying to find a polynomial-time approximation scheme for the
planar restriction of facility location (see Definition A.2) for many years. An unpublished
manuscript by Ageev [6] dating back at least to 2001 addressed the planar case via a
straightforward application of Baker’s method [24], giving an algorithm whose perfor-
mance on an instance depends on how much of the cost of the optimal solution is the cost of
opening a facility. Despite the title of the manuscript1, the algorithm is not an approxima-
tion scheme for instances with arbitrary weights. Since then there have been no results on
the problem despite efforts by several researchers in the area (e.g., [77]). We tackle more
general instances consisting of graphs excluding a fixed minor or d-dimensional Euclidean
space for constant d and a more general problem, the k-clustering problem.

Definition A.1 (k-Clustering). Given a finite set of clients A Ď A, a set of candidate
centers F Ď A, two positive integers k and p, the k-clustering problem asks for a set of
centers S Ď F , of cardinality at most k, that minimizes

costpSq “
ÿ

xPA

min
cPS

distpx, cqp.

Instances of the k-clustering problem consisting of graphs excluding a fixed minor or
d-dimensional Euclidean space are known to have small separators (see Appendix A for
a more formal definition). However, previous work failed in applying the most successful
algorithmic approaches based on the existence of small separators.

We show that local search (Algorithm 2) can take advantage of those properties, for
both graph and Euclidean instances. As far as we know, this is the first algorithm that has
strong theoretical guarantees for both settings simultaneously.

Algorithm 2 Local search for finding k clusters.

1: Input: A metric space and associated cost function costp¨q, an n-element set C of
points, error parameter ε ą 0, number of clusters k

2: Parameter: A positive integer parameter s for the neighborhood size
3: S Ð Arbitrary size-k set of points
4: while D S 1 s.t. |S 1| ď k and |SzS 1| ` |S 1zS| ď s and cost(S 1) ď p1´ ε{nqcostpSq
5: do
6: S Ð S 1

7: Output: S

The following lemma has been used in several context and shows that Algorithm 2 runs
in polynomial time.

Lemma 1.1 ([16, 112]). If the initial solution has cost at most cpolypnqOPT, then the running
time of Algorithm 2 is at most nOpc`sq{ε.

1“An approximation scheme for the uncapacitated facility location problem on planar graphs”
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Beyond well-separated instances: other real-world instances. Planar and Euclidean
instances are not the only practical instances. Machine learning and database systems make
use of clustering to extract useful information from the data. Thus, bridging the gap be-
tween theory and practice for clustering instances stemming from those fields has led to
a large body of work during the last decade. Several groups of researchers have come up
with properties that aim at characterizing those instances, together with various algorithms
making use of the properties induced. Thus, the characterization of real-world instances
has resulted in new, ad-hoc algorithms that bypass NP- and APX-hardness results.

From practice to theory. At this point, there is a wide variety of (1) characterizations of
well-clusterable instances and (2) algorithms tuned to those instances. In contrast, we pro-
ceed in the reverse order: (1) focus on a single, all-purpose, easy-to-implement algorithm
that is already widely used in practice: local search (Algorithm 2)1, and (2) prove that
it works well for both well-clusterable and well-separated instances for the k-clustering
problem.

Beyond the Classic Memory Model: Clustering in Data Streams

The increasing size of datasets has made clustering in data streams an important problem
that has received considerable theoretical and practical attention. For example, cluster-
ing data on the fly, as new elements are inserted into the database allows to obtain useful
information at any time at low memory cost. Hence, in the standard streaming setting,
algorithms are constrained to use as little space as possible while computing high-quality
solutions. The complexity of clustering is well understood for insertion-only streams where
input points arrive one by one. The more general settings, like dynamic streams and the
sliding window model, have also recently received some attention for other clustering ob-
jectives. Both generalizations aim to incorporate dynamic behavior; in dynamic streams
input points are removed via a dedicated delete operation and in the sliding window model
older elements expire as new ones arrive.

We focus on maintaining a k-center clustering in the sliding window model. We con-
sider a greedy approach and prove strong theoretical guarantee, showing that the approach
is almost optimal.

Contributions and Techniques
Well-separated instances. We distinguish two kinds of well-separated instances. First,
we address instances of the k-clustering problem that consists of an edge-weighted graph
G belonging to a fixed nontrivial minor-closed family of graphs2. We then consider the

1 See [112] or Chapter 6 for a experimental study and comparison with other heuristics.
2A family is nontrivial if it contains a graph with a least one edge.
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metric completion of G, i.e., the metric space whose points are the vertices of G and where
the distance between two vertices u and v is the length of the shortest u-to-v path in G with
respect to the given edge-weights.

In this setting we show that local search yields a polynomial-time approximation scheme
for the k-clustering problem. This is the first PTAS for both k-median and k-means in this
setting.

Theorem 1.2 (Graphs – Chapter 3, Section 3.4). LetK be a nontrivial minor-closed family
of edge-weighted graphs. For any integer p ą 0, there is a constant c such that the following
holds. For any 0 ă ε ă 1{2, for any graph G “ pV,Eq in K with clients set A Ď V and set
of centers locations F Ď V , Algorithm 2 applied to the metric completion of G with cost
function

costpSq “
ÿ

aPA

pmin
uPS

distpa, uqqp

and with s “ 1{εcp outputs a solution S whose cost is at most 1 ` ε times the cost of the
optimal solution to the k-clustering problem with parameter p.

Second, we consider the instances of the k-clustering problem where A Ă Rd and
F Ď Rd for some fixed d equipped with Euclidean distance. In this thesis, we are mainly
interested in polynomial-time algorithms. In order for local search to run in polynomial-
time, the set of candidate centers F needs to be of polynomial size. We define a pair of
finite sets A,F Ď Rd to be an ε-discretization of a d-dimensional Euclidean space for
the k-clustering problem if F is of size polynomial in the size of A and OPTpA,F q ď
p1` εqOPTpA,Rdq, where OPTpS0, S1q denote the value of the optimal solution for the k-
clustering problem on the instance pS0, S1q equipped with Euclidean distance. There is an
important literature on finding good candidate centers since this is a common preprocessing
step for many algorithms (see e.g., [138]).

We also show that local search is a PTAS for the k-clustering problem in this setting.
Again, this is the first PTAS for k-means in this setting.

Theorem 1.3 (Euclidean Spaces – Chapter 3, Section 3.5). For any fixed integers p, d ą 0,
there is a constant c such that the following holds. For any 0 ă ε ă 1{2, client set A Ă Rd,
candidate centers F Ă Rd, Algorithm 2 applied to A,F with

costpSq “
ÿ

uPC

pmin
fPS

distpu, fqqp

and s “ 1{εcpd yields a solution S whose cost is at most 1 ` ε times cost of the optimal
solution to the k-clustering problem with parameter p.

The proofs of the two theorems are very similar. The first key ingredient in our analysis
is the existence of a certain kind of decomposition of the input called weak r-division. The
concept (in a stronger form) is due to Frederickson [86] in the context of planar graphs. It
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is straightforward to extend it to any family of graphs with balanced separators of sublinear
size. Building upon the work of Bhattiprolu and Har-Peled [34], we also define a weak
r-division for points in a Euclidean space, and show that such a decomposition always
exists.

The second ingredient is the notion of isolation. As we will see in Section 3.4, a simple
analysis shows that a local search algorithm that is allowed to pick up to p1 ` εqk centers
yields a solution of cost at most p1 ` εq times the optimal solution with k centers. When
looking at this analysis, it seems hard to avoid an increase in the number of centers when
comparing a locally optimal solution to a globally optimal solution.

The idea then is to compare the output L of the local search algorithm to a globally op-
timal solution with fewer than k centers. However, it is easy to see that, for some instances
the cost of such a solution might be significantly larger than the cost of the optimal solution
using k centers and so, comparing the cost of L to the cost of such a solution is useless.
When this happens though, the intuition is that the clusters are obvious or rather very far
from one another and so, local search can find them efficiently.

Our analysis leverages these observations, proving that local search is a p1` εq approx-
imate solution. It relies on finding pairs of centers of L and OPT that serve roughly the
same set of clients in the two solutions. This yields a structure theorem that could have
applications beyond the analysis of local search.

Well-clusterable instances. We then consider instances stemming from data analysis and
machine learning. Those instances are often call well-clusterable because they are assumed
to possess a “natural” clustering that needs to be identified. Various characterizations of
well-clusterable instances, called stability conditions, have been proposed (see Figure 1.1).
The three incomparable notions that have received the most attention are distribution sta-
bility, perturbation resilience, and spectral separability.

In one of the earliest attempts to formalize the notion of a real-world instance, Ostro-
vsky et al. [151] assumed that the cost of an optimal k-clustering of the instance is smaller
than an ε-fraction of the cost of an optimal clustering with k´ 1 centers. It is motivated by
the commonly used “elbow method” of determining the correct value of k: run an algorithm
for an incrementally increasing number of clusters until the cost drops significantly. The
condition of Ostrovsky et al. was later generalized to the distribution stability by Awashti
et al. [17]. We state the latter condition.

Definition 1.4 (Distribution Stability [17]). Let pA,F, cost, kq be an input for the k-clustering
problem and let tC˚1 , . . . , C

˚
k u denote the optimal k-clustering of A with centers S “

tc˚1 , . . . c
˚
ku. Given β ą 0, the instance is β-distribution stable if, for any i, for any x R C˚i ,

costpx, c˚i q ě β
OPT
|C˚i |

.

A PTAS for β-distribution stable instances was previously given by Awasthi et al. [17].
Guided by our work on isolation, we show that local search is already a PTAS: no ad-hoc
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Distribution Stability
Awasthi, Blum, Sheffet [17]

Approximation Stability
Balcan, Blum,
Gupta [25, 26]

Cost Separation
Ostrovsky, Rabani, Schul-

man, Swamy [151]
Jaiswal, Garg [107]

Spectral Separation
Kumar, Kannan [126]
Awasthi, Sheffet [20]

Perturbation Resilience
Bilu, Daniely,

Linial, Saks [35, 36]
Awasthi, Blum, Sheffet [18]

Balcan, Liang [27]

Center Proximity
Awasthi, Blum, Sheffet [18]

Balcan, Liang [27]

Figure 1.1: An overview over all definitions of well-clusterability. Arrows correspond to
implication. For example, if an instance is cost-separated then it is distribution-stable;
therefore the algorithm by Awasthi at al. also works for cost-separated instances.

algorithm is needed. Moreover, β-distribution stability is also implied by “cost separation”
as defined by Ostrovsky et al. [151], so local search is also a PTAS in that setting.

Theorem 1.5 (β-Distribution Stability – Chapter 4, Section 4.2). Let β, p ą 0. There exists
a constant c such that the following holds. For any 0 ă ε ă 1{2, for any β-stable instance,
the solution output by local search with parameter s “ cpε´3β´1 (Algorithm 2) has cost at
most p1 ` εq time the cost of the optimal solution to k-clustering problem with parameter
p.

Furthermore, we are able to show that local search is efficient for a slightly more general
definition of β-distribution stability (see Chapter 4).

We now turn to the second notion of stability. This definition, due to Awashti et al. [18],
adapts the definition of stability used by Bilu and Linial [36] for the max-cut problem to the
k-clustering problem. It allows to characterize instances for which a small perturbation of
the data (due, for example, to measurement errors) does not change the natural clustering
of the data.

Definition 1.6 (Perturbation Resilience [18]). Let pA,F, cost, kq be an input for the k-
clustering problem and let tC˚1 , . . . , C

˚
k u denote the optimal k-clustering of A with centers

S “ tc˚1 , . . . c
˚
ku. Given α ě 1, the instance is α-perturbation-resilient if for any cost
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function cost1 on A with

@ pp, qq P Aˆ F, costpp, qq ď cost1pp, qq ď αcostpp, qq,

tC˚1 , . . . , C
˚
k u is the unique optimal clustering of the instance pA,F, cost1, kq.

To make this more formal we introduce the notion of locally-optimal solution. Given a
solution S0 to the k-clustering problem, we say that S0 is 1{ε-locally optimal if any solution
S1 such that |S0zS1| ` |S1zS0| ď 2{ε has cost at least costpS0q. We derive the following
theorem.

Theorem 1.7 (α-Perturbation Resilience – Chapter 4, Section 4.1). For any p ą 0, there
exists αp ą 0 such that, for any instance of the k-clustering problem with parameter p if the
instance is αp-perturbation-resilient then any fpαpq-locally optimal solution is the optimal
clustering tC˚1 , . . . , C

˚
k u, for some function f .

This notion of stability was mainly defined for cost “ dist. In this case, we show that for
any instance that is α-perturbation-resilient for α ą 3, for any large enough neighborhood
size, a local optimum must be a global optimum as well.

Theorem 1.8. Let α ą 3. For any instance of the k-median problem that is α-perturbation-
resilient, any 2pα ´ 3q´1-locally optimal solution is the optimal clustering tC˚1 , . . . , C

˚
k u.

An optimal algorithm was already known for 1 `
?

2-perturbation resilient k-median
instances [27]. Our contribution is to show that local search is already optimal for 3 ` ε-
perturbation resilient instances; no ad-hoc algorithm is needed.1

We now turn to the third stability condition. In the Euclidean setting, Kumar and Kan-
nan [126] introduced a condition under which a target clustering may be found. There have
been several results on clustering data points generated from a mixture of k probability
distributions, under the assumption that the means of those distributions are far enough
from one another. Kumar and Kannan [126] showed that assuming such a proximity condi-
tion, one can retrieve the underlying clustering of the data. The spectral separation defined
below generalizes the proximity condition of Kumar and Kannan.

Definition 1.9 (Spectral Separation [126]). Let pA,Rd, || ¨ ||2, kq be an input for k-means
clustering in Euclidean space and let tC˚1 , . . . C

˚
k u denote an optimal clustering of A with

centers S “ tc˚1 , . . . c
˚
ku. Denote byC an nˆdmatrix such that the rowCi “ argmin

c˚j PS

||Ai´

c˚j ||
2. Denote by || ¨ ||2 the spectral norm of a matrix. Then tC˚1 , . . . C

˚
k u is γ-spectrally

separated, if for any pair pi, jq the following condition holds:

||c˚i ´ c
˚
j || ě γ ¨

¨

˝

1
a

|C˚i |
`

1
b

|C˚j |

˛

‚||A´ C||2.

1We do not quite match [27]: One limitation is that local search is not necessarily optimal for p1`
?
2q-

perturbation resilient instances, see Proposition 4.1
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Since this stability is defined over non-finite metric spaces, we again require standard
preprocessing steps in order to reduce the number of dimensions and discretize the space
in order to bound the number of candidate centers. We obtain the following theorem.

Theorem 1.10 (δ-Spectral Separation – Chapter 4, Section 4.4). Let pA,Rd, || ¨ ||2, kq be an
instance of Euclidean k-means clustering with optimal clustering C “ tC˚1 , . . . C

˚
k u and

centers S “ tc˚1 , . . . c
˚
ku. If C is more than 3

?
k-spectrally separated, then Algorithm 4

(which consists in projecting the points and before applying local search (Algorithm 2)) is
a polynomial time approximation scheme.

In previous work by Kumar and Kannan [126], an algorithm is given with approxima-
tion ratio 1 ` OpOPTk{OPTk´1q, where OPTi denotes the value of the optimal clustering
with i clusters. Assuming that OPTk{OPTk´1 ď ε implies that the optimal k-clustering
C is Ωp

a

k{εq-spectrally separated [126]. Thus our assumption in Theorem 1.10, that C
is
?
k-spectrally separated is weaker (it does not depend on ε) and therefore our result is

stronger since the approximation guarantee does not depend on the properties of the in-
stance.

Clustering in data streams In the context of massive datasets, different algorithms are
needed. Indeed, it is not possible to store all the input points in memory while performing
computations. Therefore, we are interested in algorithms that only stores a very small
number of elements at the expense of a slightly worse approximation ratio. In the sliding
window model (see Chapter 5 for a formal definition), we are given an integer W which
represents the window size and a stream of data (input points in a metric space in our case).
The goal is to maintain over time a solution to a problem where the input consists of the
last W elements of the stream (the element that are in the “window”). Additionally, the
algorithm is required to use a memory of size sublinear1 in W .

Since the main applications of clustering in data streams lie in machine learning and
databases, we aim at avoiding any dependency on the number of dimensions. We will
assume an oracle distance function: given two points of the metric space, the oracle can
provide at any time of the execution the distance between those two points. Then, the goal
our the algorithm is to store the most relevant points for our problem.

We focus on the problem of computing the diameter of a set of points (the maximum
distance between two points) and the k-center problem where we aim to find k points
such that the maximum distance over all points to their closest center is minimized. For
Euclidean space this is equivalent to finding k spheres of minimum radius containing the
entire point set. Throughout this section, we define the aspect ratio of a set of points A in
a metric space to be maxa,bPA distpa, bq{mina‰bPA distpa, bq.

For the diameter problem, we obtain the following theorem.

1Note that for some problems an exact solution can be computed trivially using memory of size OpW q.
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Theorem 1.11 (Diameter in Sliding Window – Chapter 5, Section 5.1). Given a set of
points A with aspect ratio α, there exists an algorithm computing a p3 ` εq-approximate
solution for the metric diameter problem storing at most Opε´1 logαq points in memory.
The update time is Opε´1 logαq.

This is a substantial improvement over the best sliding window algorithm for diameter
in general metric spaces by Chan and Sadjad [50] which computes a p2m`2 ´ 2 ` εq-
approximation using OpW 1{pm`1q logαq memory. Observe that the memory dependency
in logα is inherent to the model: Feigenbaum et al. [82] showed that even in the case of
1-dimensional Euclidean space, for any algorithm using less than ΩplogW logαq memory
there exists an instance in which the approximation ratio of the algorithm is arbitrarily bad.
Moreover, we obtain a lower bound of Ωp 2

?
W q for any deterministic algorithm achieving

a p3´ εq-approximation to the diameter problem for any ε ą 0. Together with the result of
Feigenbaum et al. [82], this implies that our algorithm is tight up to a Op1{εq factor.

To our knowledge there exists no previous work on k-center in the sliding window
model. For the 2-center problem our diameter algorithm yields a p4 ` εq-approximate
clustering. We are also able to obtain a matching lower bound. For arbitrary values of k,
we obtain the following theorem.

Theorem 1.12 (k-center in Sliding Window – Chapter 5, Section 5.2). Given a set of points
A with aspect ratio α, there exists a p6 ` εq-approximation algorithm for the metric k-
center problem storing at most Oppk` 1qε´1 logpαqq points in memory. The update time is
Opk3ε´1 logαq.

We obtain a lower bound of 6 for the k-center problem, with k ą 2.
The techniques are very basic and different from the approaches used in the other chap-

ters. Given an estimate of the value of the optimal solution, the algorithm either finds a
solution of this value or provide a certificate that our estimate is incorrect. For example, in
the case of the diameter, given an estimate γ of the optimal value of the instance, the goal
of an ideal algorithm would be to either provide two points at distance at least γ or provide
a point that is at distance less than γ{2 to every point of the instance. Then, the triangular
inequality ensures that no two points are at distance at least γ from each other.

We will see that such an ideal algorithm is required to store at least Ωp
?
nq points. Thus,

we relax the condition on the certificate and show how to derive an algorithm satisfying the
conditions of Theorem 1.11.

State-of-the-Art
Clustering problems have been extensively studied from an algorithmic perspective since,
at least, the 60s. The heterogeneity of the contexts in which clustering problems arise
has led various communities to develop ad-hoc algorithms. In this section, we review the
general results that are particularly relevant for our work.



28 Chapter 1. Introduction to Clustering

In the Classic Memory Model

Clustering problems are NP-hard: k-median and k-means are already NP-hard in the Eu-
clidean plane (see Meggido and Supowit [140], Mahajan et al. [137], and Dasgupta and
Freud [65]). In terms of hardness of approximation, both problems are APX-hard, even in
the Euclidean setting (when both k and d are part of the input) (see Gua and Khuller [95],
Jain et al. [105], Guruswami et al. [100] and very recently Awasthi et al. [19] for the first
APX-hardness proof for Euclidean k-means when both k and d are part of the input).

On the positive side, constant factor approximations are known in metric space for both
k-median and k-means (see for example [129, 106, 142]). The current best approximation
factor for metric k-median is 2.675 ` ε (see Byrka et al. [46] improving upon Li and
Svensson [129].)

Several algorithms that bypass those hardness results for restricted inputs have been
developed. For example PTASs have been proved, for Euclidean k-means and fixed k
(see [83, 127] for example), or Euclidean space and fixed d [12, 123, 101, 102], or some
stability assumption on the input structure such as cost separation, approximation stability,
perturbation resilience, or spectral separability. However, as far as we know, there is no
algorithm achieving better bounds than the general ones for well-separated instances yet.

Cost Separation The condition by Ostrovsky et al. [151] represent one of the earliest
attempt to formally define real-world instances, see also Schulman [169] for an earlier con-
dition for two clusters and the irreducibility condition by Kumar et al. [127]. An instance
I satisfies the ε-“ORSS” condition if the cost of a solution to the instance using k centers
is smaller than ε times the cost of the optimal solution to the instance using k ´ 1 centers.
This condition has several appealing properties. It is robust towards small perturbations
of the data set and it implies that two low-cost clusterings agree on a large fraction of
points. Moreover, the popular D2 sampling technique (also known as k-means``) has an
improved performance for cost separated instances compared to the worst-case Oplog kq-
approximation ratio [14, 45, 107, 151]. A related, slightly weaker condition called weak-
deletion stability was introduced by Awasthi et al. [17] where the cost of assigning all the
points from one cluster in the optimal k-clustering to another center increases the objective
by some factor p1` αq.

Perturbation Resilience The motivation behind this stability condition is that bounded
modifications to the input should not affect the optimum solution. Bilu et al. [36, 35] for-
malized this as allowing edge weights in a graph to be modified by a factor of at most γ
without changing the structure of the max-cut. Perturbation resilience has some similarity
to smoothed analysis (see Arthur et al. [13, 15] for work on k-means). The main difference
is that smoothed analysis takes a worst case instance and applies a random perturbation,
while perturbation resilience takes a well-behaved instance and applies an adversarial per-
turbation. For results using perturbation resilience, see [18, 27, 32].
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Spectral Separation Kumar and Kannan [126] introduced a deterministic condition un-
der which a target clustering may be found in Euclidean spaces as opposed to the proba-
bilistic assumptions used by previous work. For other deterministic conditions we refer to
[3, 60]. Viewing each data point as a row of a matrix A and the rows of the center matrix
K containing the centroid of the respective target cluster of A, they impose a proximity
condition on each point Ai when projected onto the line connecting its target centroid cj
and some other centroid c`. The condition requires that the projection of Ai is closer to

cj than to any c` by a factor of Ω

ˆ

k ¨

ˆ

1?
|Cj |

` 1?
|C`|

˙

¨ ||A´K||2

˙

, where ||A ´ K||2

is the spectral norm and Cj and C` are the target clusters. This condition implies spectral
separability with γ P Ωpkq. See also [20].

Thus, the various definitions are attempts to model real-world inputs by adding stability
assumptions; in this paper, we analyze a real-world algorithm, local search (see [2]). There
is much prior research on analyzing local search without stability assumptions.

Local search There exist a large body of bicriteria approximations for k-median and k-
means [125, 53, 28]. Arya et al. [16] (see also [99]) gave the first analysis showing that
local search with a neighborhood parameter s “ 1{ε gives a p3 ` 2εq-approximation to k-
median and showed that this bound is tight. Kanungo et al. [112] proved an approximation
ratio of 9 ` ε for k-means clustering by local search, currently the best known algorithm
with polynomial running time in metric and Euclidean spaces1. For further very recent
results on local search, we refer to [89]. Due to its simplicity, local search is also a popular
subroutine for clustering tasks in various computational models [38, 97, 30].

In Data Streams

The diameter problem. In the streaming metric distance oracle model, there exists a
naive 2-approximation algorithm for the diameter problem which consists in maintaining
the first point p of the stream and the point with maximum distance from p inserted after
p. Guha [93] showed that this algorithm is essentially optimal: no algorithm storing fewer
than Ωpnq points can achieve a ratio better than 2´ ε for any ε ą 0. For Euclidean spaces,
the best streaming algorithm with a polynomial dependency on d is due to Agarwal and
Sharathkumar [5] with an almost tight approximation ratio of

?
2 ` ε in Opdε´3 logp1{εqq

space. Agarwal et al. [4] proposed a p1` εq-approximation using Opε´pd´1q{2q points.
Feigenbaum et al. [82] were the first to consider the diameter in the sliding window

model. For d-dimensional Euclidean space, their algorithm usesOpε´pd`1q{2 log3W plogα`
log logW ` ε´1qq bits of space. They also give a lower bound of Ωpε´1 logW logαq for

1They use an algorithm from Matousek [138] that “discretizes”Rd, i.e., finds a good set of candidate cen-
ters. However, as stated, the running time of their algorithm has an exponential dependency in d. As discussed
earlier, this is an important drawback for several applications, we show in Chapter 4 how to circumvent this
issue by using the celebrated Johnson-Lindenstrauss lemma.
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a p1 ` εq-approximation factor in one dimension and, implicitly, a ΩplogW logαq space
bound for any multiplicative approximation factor. This lower bound was later matched by
Chan and Sadjad [50], who also gave an improved space bound of Opε´pd`1q{2 logpα{εqq
points for higher dimensions. For more general metric spaces, they obtain a p2m`2´2`εq-
approximation with OpW 1{pm`1qq points.

The k-Center problem. In one of the earliest works on clustering in streams, Charikar
et al. [52] gave a number of incremental clustering algorithms for metric k-center, among
other results. While storing no more than k ` 1 points at any given time, they were able to
derive a deterministic 8-approximation and a randomized 2e « 5.437-approximation. They
also show that no incremental algorithm can be better than 3. McCutchen and Khuller [139]
and Guha [93] independently derived a p2`εq-approximate algorithm usingOpk{ε log 1{εq
space, with Guha giving an almost tight lower bound of Ωpnq space for any algorithm
achieving a better approximation ratio than 2. In their paper, McCutchen and Khuller [139]
also studied the problem with z outliers, giving a p4` εq-approximate algorithm that stores
Opε´1kzq points, see also Charikar et al. [54] for an earlier treatment of the problem.
Further improvements are possible in Euclidean spaces see Zarrabi-Zadeh [177] or Kim
and Ahn [116].

This is the first attempt to address the k-center problem in the sliding window model.
For k-median and k-means, we remark that Babcock et al. [21] and more recently Braver-
man et al. [43, 44] gave an Op1q-approximation for the metric case and a p1` εq-approxi-
mation for the Euclidean case.
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CHAPTER 2

Local Search for Clustering: General Instances

In this chapter, we consider the following general k-clustering problem.

Definition A.1 (k-Clustering). Given a finite set of clients A Ď A, a set of candidate
centers F Ď A, two positive integers k and p, the k-clustering problem asks for a set of
centers S Ď F , of cardinality at most k, that minimizes

costpSq “
ÿ

xPA

min
cPS

distpx, cqp.

We prove the following structural theorem (Theorem 2.1) about local optima. It can be
seen as a strengthening of Theorem 2.2 (see below) that states that local search is a constant
factor approximation for the k-clustering problem and which was already proven in [99]
who showed that local search achieves an Oppq-approximation. We will see in Chapter 4,
how Theorem 2.1 implies any local optimum is actually a global optimum for perturbation
resilient instances.

Consider a solution S0 to the k-clustering problem with parameter p. We say that S0 is
1{ε-locally optimal if any solution S1 such that |S0zS1| ` |S1zS0| ď 2{ε has cost at least
costpS0q. Furthermore, for each client a, we denote by ga and `a the costs induced by client
a in solution C and L respectively. Finally, for any S 1 Ď S0, denote by the NS0pS

1q the set
of clients that are closer to a center of S 1 than to any other center in S0. We refer to those
clients as the clients served by S 1 in solution S0.

Theorem 2.1 (Local-Approximation Theorem.). Let L be a 1{ε-locally optimal solution
and C be any solution to the k-clustering problem with parameter p. Let S “ L X C and
L̃ “ LzS and C̃ “ CzS. Then, there exists γε,p depending on ε and p such that

ÿ

aPNCpC̃q

`a ď
ÿ

aPNCpC̃q

ga ` γε,p
ÿ

aPNLpL̃q

ga.
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In other words, given a locally optimal solution L and a solution C, the theorem states
that the cost of the clients served by a center of the solution C that is “not found” by the
algorithm, i.e., not in solution L, is at most its cost in C plus γε,p times the costs in C of the
clients served by the “incorrect” centers in L. Note that this is not necessarily the case for
any γε,p-approximate solution.

Obviously, for the clients served by the “correctly” guessed centers, their total cost is at
most their cost in OPT. Thus, this implies that local search is an Opγε,pq-approximation for
the k-clustering problem. This is the purpose of the following theorem. Loosely speaking,
Theorem 2.2 states that any Θpγε,pq-locally optimal solution is an Opγε,pq-approximation
for the k-clustering problem.

Theorem 2.2 (General form of [99]). Let L be a 1{ε-locally optimal solution and C be
any solution to the k-clustering problem with parameter p. There exists a γε,p such that
costpLq ď pγε,p ` 1qcostpCq.
Proof of Theorem 2.2. Consider a client a R NCpC̃q, it is served in solution C̃ by a center in
S. Since S Ď L, its cost in solution L is at most ga. Thus,

ÿ

aRNCpC̃q

`a `
ÿ

aPNCpC̃q

`a ď
ÿ

aPNCpC̃q

ga ` γε,p
ÿ

aPNLpL̃q

ga `
ÿ

aRNCpSq

ga.

Therefore,
ÿ

aPA

`a ď pγε,p ` 1q
ÿ

aPA

ga.

For ease of exposition we proceed to the proof for the k-median problem (p “ 1).
Lemmas 2.8, 2.9 at the end of the chapter imply the results for general values of p. We
prove the following theorem.

Theorem 2.3 (Local-Approximation Theorem.). Let L be a 1{ε-locally optimal solution
and C be any solution to the k-median problem. Define S “ L X C, L̃ “ LzS, and
C̃ “ CzS. Then,

ÿ

aPNCpC̃q

`a ď
ÿ

aPNCpC̃q

ga ` p2` 2εq
ÿ

aPNLpL̃q

ga.

Additionally, we mention that Arya et al. [16] showed that this is tight (see also Fig-
ure 3.1).

We now provide some useful lemmas for the proof of Theorem 2.3. We first introduce
some definitions, following the terminology of [16, 99]. Consider the following bipartite
graph Γ “ pL̃ Y C̃, Eq where E is defined as follows. For any center f P C̃, we have
pf, `q P E where ` is the center of L̃ that is the closest to f . Denote NΓp`q the neighbors of
the point corresponding to center ` in Γ.

For each edge pf, `q P E , for any client a P NCpfqzNLp`q, we define Reassigna as the
cost of a client a after reassignment to `. We derive the following lemma.
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Lemma 2.4. For any client a, Reassigna ď `a ` 2ga.

Proof. By definition we have Reassigna “ distpa, `q. By the triangular inequality distpa, `q
is at most distpa, fq ` distpf, `q. Since f serves a in C we have distpa, fq “ ga, hence
distpa, `q ď ga` distpf, `q. We now bound distpf, `q. Consider the center `1 that serves a in
solution L. By the triangular inequality we have distpf, `1q ď distpf, aq`distpa, `1q “ ga`
`a. Finally, since ` is the closest center of f in L, we have distpf, `q ď distpf, `1q ď ga ` `a
and the lemma follows.

We partition the centers of L̃ as follows.

• Let L̃0 be the set of centers of L̃ that have degree 0 in Γ.

• Let L̃ďε´1 be the set of centers of L̃ that have degree at least one and at most 1{ε in
Γ.

• Let L̃ąε´1 be the set of centers of L̃ that have degree greater than 1{ε in Γ.

We now partition the centers of L̃ and C̃ using the neighborhoods of the vertices of L̃
in Γ. We start by iteratively constructing two set of pairs Sďε´1 and Sąε´1 . For each
center ` P L̃ďε´1 Y L̃ąε´1 , we pick a set A` of |NΓp`q| ´ 1 centers of L̃0 and define a pair
pt`u Y A`, NΓp`qq. We then remove A` from L̃0 and repeat. Let Sďε´1 be the pairs that
contain a center of L̃ďε´1 and let Sąε´1 be the remaining pairs.

The following fact follows from the definition of the pairs.

Fact 2.5. Let pRL̃, RC̃q be a pair in SďpYSąp. If ` P RL̃, then for any f such that pf, `q P E ,
f P RC̃ .

Lemma 2.6. For any pair pRL̃, RC̃q P Sďp we have that
ÿ

aPNCpRC̃q

`a ď
ÿ

aPNCpRC̃q

ga ` 2
ÿ

aPNLpRL̃q´NCpRC̃q

ga.

Proof. Consider the mixed solution M “ LzRL̃ YRC̃ . For each point a, let ma denote the
cost of a in solution M . We have

ma ď

$

’

&

’

%

ga if a P NCpR
C̃q.

Reassigna if a P NLpR
L̃q ´NCpR

C̃ Y Sq and by Fact 2.5.
`a Otherwise.

Now, observe that the solution M differs from L by at most 2{ε centers. Thus, by 1{ε-
local optimality we have costpLq ď costpCq. Summing over all clients and simplifying, we
obtain

ÿ

aPNCpRC̃qYNLpRL̃q

`a ď
ÿ

aPNCpRC̃q

ga `
ÿ

aPNLpRL̃q´NCpRC̃q

Reassigna.

The lemma follows by combining with Lemma 2.4.
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We now analyze the cost of the clients served by a center of L that has degree greater
than ε´1 in Γ.

Lemma 2.7. For any pair pRL̃, RC̃q P Sąε´1 we have that
ÿ

aPNCpRC̃q

`a ď
ÿ

aPNCpRC̃q

ga ` 2p1` εq
ÿ

aPNLpRL̃q´NCpRC̃q

ga.

Proof. Consider the center ˆ̀ P RL̃ that has in-degree greater than ε´1. Let L̂ “ RL̃ztˆ̀u.
For each ` P L̂, we associate a center fp`q in RC̃ in such a way that each fp`q ‰ fp`1q, for
` ‰ `1. Note that this is possible since |L̂| “ |RC̃| ´ 1. Let f̃ be the center of RC̃ that is not
associated with any center of L̂.

Now, for each center ` of L̂ we consider the mixed solution M ` “ L ´ t`u Y tfp`qu.
For each client a, we bound its cost m`

a in solution M `. We have

m`
a ď

$

’

&

’

%

ga if a P NCpfp`qq.
Reassigna if a P NLp`q ´NCpfp`qq and by Fact 2.5.
`a Otherwise.

Summing over all center ` P L̂ and all the clients inNCpfp`qqYNLp`q, we have by ε´1-local
optimality

ÿ

aPNCpRC̃´f̃qYNLpL̂q

`a ď
ÿ

aPNCpRC̃´f̃q

ga `
ÿ

aPNLpL̂q´NCpRC̃´f̃q

Reassigna. (2.1)

We now complete the proof of the lemma by analyzing the cost of the clients in NCpf̃q.
We consider the center `˚ P L̂ that minimizes the reassignment cost of its clients. Namely,
the center `˚ such that

ř

aPNLp`˚q
Reassigna is minimized. We then consider the solution

M p`˚,f̃q “ L´ t`˚u Y tf̃u. For each client a, we bound its cost mp`˚,f̃q
a in solution M p`˚,f̃q.

We have

mp`˚,f̃q
a ď

$

’

&

’

%

ga if a P NCpf̃q.
Reassigna if a P NLp`

˚q ´NCpf̃q and by Fact 2.5.
`a Otherwise.

Thus, summing over all clients a, we have by local optimality
ÿ

aPNCpf̃qYNLp`˚q

`a ď
ÿ

aPNCpf̃q

ga `
ÿ

aPNLp`˚q´NCpf̃q

Reassigna. (2.2)

By Lemma 2.4, combining Equations 2.1 and 2.2 and averaging over all centers of L̂ we
have

ÿ

aPNCpRC̃q

`a ď
ÿ

aPNCpRC̃q

ga ` 2p1` εq
ÿ

aPNLpRL̃q´NCpRC̃q

ga.
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We now turn to the proof of Theorem 2.3.

Proof of Theorem 2.3. We sum the equations of Lemmas 2.6 and 2.7 over all pairs and
obtain

ÿ

pRL̃,RC̃q

ÿ

aPNCpRC̃q

`a ď
ÿ

pRL̃,RC̃q

¨

˝

ÿ

aPNCpRC̃q

ga ` p2` 2εq
ÿ

aPNLpRL̃q´NCpRC̃q

ga

˛

‚

ÿ

aPNCpC̃q

`a ď
ÿ

aPNCpC̃q

ga ` p2` 2εq
ÿ

aPNLpL̃q

ga.

The two following lemmas show how to handle a relaxed version of the triangular
inequality (when p ą 1).

Lemma 2.8. Let p ě 0 and 1{2 ą ε ą 0. For any a, b, c P A Y F , we have costpa, bq ď
p1` εqppcostpa, cq ` costpc, bq{εpq.

Proof. Suppose first that distpc, bq ă εdistpa, cq, then by the triangular inequality costpa, bq “
distpa, bqp ď pdistpa, cq ` distpc, bqqp. Hence, costpa, bq ď p1 ` εqpdistpa, cqp “ p1 `
εqpcostpa, cq. Now suppose that distpc, bq ě εdistpa, cq. Thus, by the triangular inequality
costpa, bq ď pp1` εqdistpc, bqp{εq “ p1` εqpcostpc, bq{εp.

The following lemma follows from the binomial theorem.

Lemma 2.9. Let p ě 0. For any a, b, c P A Y F , we have costpa, bq ď 2p´1pcostpa, cq `
costpc, bqq.

Proof. By the triangular inequality costpa, bq ď pdistpa, cq ` distpc, bqqp. By the bino-
mial theorem we have that pdistpa, cq` distpc, bqqp “

řp
i“0

`

p
i

˘

distpa, cqidistpc, bqp´i. Thus,
pdistpa, cq`distpc, bqqp “ costpa, cq` costpc, bq`

řp´1
i“1

`

p
i

˘

distpa, cqidistpc, bqp´i. Observe
now that distpa, cqidistpc, bqp´i ď distpa, cqp`distpc, bqp. Hence, pdistpa, cq`distpc, bqqp ď
costpa, cq ` costpc, bq ` pcostpa, cq ` costpc, bqq

řp´1
i“1

`

p
i

˘

and so pdistpa, cq ` distpc, bqqp ď
costpa, cq ` costpc, bq ` pcostpa, cq ` costpc, bqqp2p´1 ´ 1q and the lemma follows.

Rescaling ε as a function of p yields the proof of Theorem 2.1.





CHAPTER 3

Local Search for Clustering: Well-Separated
Instances

This chapter is dedicated to the proof of Theorems 1.2 and 1.3, restated below.
We consider the k-clustering problem and recall its definition for completeness.

Definition A.1 (k-Clustering). Given a finite set of clients A Ď A, a set of candidate
centers F Ď A, two positive integers k and p, the k-clustering problem asks for a set of
centers S Ď F , of cardinality at most k, that minimizes

costpSq “
ÿ

xPA

min
cPS

distpx, cqp.

Theorem 1.2 (Graphs – Section 3.4). Let K be a nontrivial minor-closed family of edge-
weighted graphs. For any integer p ą 0, there is a constant c such that the following holds.
For any 0 ă ε ă 1{2, for any graph G “ pV,Eq in K with clients set A Ď V and set
of centers locations F Ď V , Algorithm 2 applied to the metric completion of G with cost
function

costpSq “
ÿ

aPA

pmin
uPS

distpa, uqqp

and with s “ 1{εcp outputs a solution S whose cost is at most 1 ` ε times the cost of the
optimal solution to the k-clustering problem with parameter p.

Theorem 1.3 (Euclidean Spaces – Section 3.5). For any fixed integers p, d ą 0, there is
a constant c such that the following holds. For any 0 ă ε ă 1{2, client set A Ă Rd,
candidate centers F Ă Rd, Algorithm 2 applied to A,F with

costpSq “
ÿ

uPC

pmin
fPS

distpu, fqqp
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and s “ 1{εcpd yields a solution S whose cost is at most 1 ` ε times cost of the optimal
solution to the k-clustering problem with parameter p.

Section 3.1 highlights the properties of the well-separated instances and provides the
key ingredients to our analysis: r-division and isolation. Section 3.3 introduces our struc-
ture theorem for the analysis of Algorithm 2. The analysis of Algorithm 2 for instances
consisting of graphs with small separators is done in Section 3.4. In Section 3.5 we de-
scribe how a similar analysis holds for instances consisting of points lying in Rd.

3.1 Properties of Well-Separated Instances
As mentioned in the introduction, the analysis of the output of local search on well-sepa-
rated instances relies on a decomposition of the input called a weak r-division.

Chan and Har-Peled [49] showed that local search can be used to obtain a PTAS for
(unweighted) maximum independent pseudo-disks in the plane, which implies the anal-
ogous result for planar graphs. More generally, Har-Peled and Quanrud [103] show that
local search can be used to obtain PTASs for several problems including independent set,
set cover, and dominating set, in graphs with polynomial expansion. These graphs have
small separators and therefore r-divisions. However, our analysis of local search for clus-
tering requires not only that the input graph have an r-division but that a minor of the input
graph have an r-division. This is not true of graphs of polynomial expansion. Indeed, we
show in Section 3.1.4 that there are low-density graphs in low-dimensional space (which
are therefore polynomial-expansion graphs) for which local-search produces a solution that
is worse than the optimum by at least a constant factor.

Thus one of our technical contributions is showing how to take advantage of a property
possessed by nontrivial minor-closed graph families that is not possessed by polynomial-
expansion graph families.

3.1.1 r-Division in Graph with Small Separators
For a graph G, we use V pGq and EpGq to denote the set of vertices of G and the set of
edges of G, respectively. For a subgraph H of G, the vertex boundary of H in G, denoted
BGpHq, is the set of vertices v such that v is in H but has an incident edge that is not in
H . (We might write BpHq if G is unambiguous.) A vertex in the vertex boundary of H is
called a boundary vertex of H . A vertex of H that is not a boundary vertex of H is called
an internal vertex. We denote the set of internal vertices of H as IpHq.

Definition 3.1. Let c1 and c2 be constants. For a number r, a weak r-division of a graph
G (with respect to c1, c2) is a collection R of subgraphs of G, called regions, with the
following properties.

1. Each edge of G is in exactly one region.
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2. The number of regions is at most c1|V pGq|{r.

3. Each region contains at most r vertices.

4. The number of boundary vertices, summed over all regions, is at most c2|V pGq|{r
1{2.

A family of graphs F is said to be closed under taking minor (minor-closed) if for any
graph G P F , for any minor H of G, we have H P F .

Theorem 3.2 (Frederickson [86] combined with Alon, Seymour, and Thomas [7]). Let K
be a nontrivial minor-closed family of graphs. There exist c1, c2 such that every graph in K
has a weak r-division with respect to c1, c2.

Proof. Alon, Seymour, and Thomas [7] proved a separator theorem for the family of graphs
excluding a fixed graph as a minor. Any nontrivial minor-closed family excludes some
graph as a minor (else it is trivial). Frederickson [86] gave a construction for a stronger
kind of r-division of a planar graph. The construction uses nothing of planar graphs except
that they have such separators.

Let G be an undirected graph with edge-lengths. Fix an arbitrary priority ordering of
the vertex set V pGq. For every subset S of V pGq, we define the Voronoi partition with
respect to S. For each vertex v P S, the Voronoi cell with center v, denoted VSpvq, is the
set of vertices that are closer to v than to any other vertex in S, breaking ties in favor of the
highest-priority vertex of S.

Fact 3.3. For any S, for any vertex v P S, the induced subgraph GrVSpvqs is a connected
subgraph of G.

Proof. Let u P VSpvq, and let p denote a v-to-u shortest path. Let w be a vertex on P .
Assume for a contradiction that, for some vertex v1 P S, either the v1-to-w shortest path p1

is shorter than the shortest v-to-w path, or it is no longer and v1 has higher priority than v.
Replacing the v-to-w subpath of p with p1 yields a v1-to-u path that either is shorter than p
or is no longer than p and originates at a higher-priority vertex than v.

It follows that, for any vertex v of G, contracting the edges of the subgraph GrVSpvqs
yields a single vertex.

Definition 3.4. We define GVorpSq as the graph obtained from G by contracting every edge
of GrVSpvqs for every vertex v P S. For each vertex v P S, we denote by v̂ the vertex of
GVorpSq resulting from contracting every edge of GrVSpvqs.

For any set graph G “ pV,Eq and S Ď E, if G belongs to a minor-closed family K
then so does GVorpSq.



42 Chapter 3. Local Search for Clustering: Well-Separated Instances

3.1.2 r-Division in Euclidean Space
We define analogous notions for the case of Euclidean spaces of fixed dimension d. Con-
sider a set of points C in Rd. For a set Z of points in Rd and a bipartition C1 Y C2 of C,
we say that Z separates C1 and C2 if, in the Voronoi diagram of C Y Z, the boundaries of
cells of points in C1 are disjoint from the boundaries of cells of points in C2.

Definition 3.5. Let c1 and c2 be constants. Let C be a set of points in Rd. For an integer
r ą 1, a weak r-division of C (with respect to c1, c2) is a set of boundary points Z Ă

Rd together with a collection of subsets R of C Y Z called regions, with the following
properties.

1. Each element of C appears in exactly one subset ofR.

2. The number of regions is at most c1|C|{r.

3. Each region contains at most r points of C Y Z.

4.
ř

RPR |R X Z| ď c2|C|{r
1{d.

Moreover, for any region Ri, Ri XZ is a Voronoi separator for Ri ´Z and pC YZq ´Ri.

The following theorem is from [34, Theorem 3.7].

Theorem 3.6. [34, Theorem 3.7] Let P be a set of n points in Rd. One can compute, in
expected linear time, a sphere S, and a set Z Ď S, such that

• |Z| ď cn1´1{d,

• There are most σn points of P in the sphere S and at most σn points of P not in S,
and

• Z is a Voronoi separator of the points of P inside S from the points of P outside S.

Here c and σ ă 1 are constants that depends only on the dimension d.

From that theorem we can easily derive the following.

Theorem 3.7. Let r be a positive integer and d be fixed. Then there exist c1, c2 such that
every set of points C Ă Rd has a weak r-division with respect to c1, c2.

Proof. We describe a recursive procedure to construct the set Z in the definition of weak r-
division of C. Assuming that |C| ą r, find a sphere S and a set Z0 satisfying Theorem 3.6.
Let Z1 be the result of applying the procedure to the union of Z0 with the set of points
inside C, and similarly obtain Z2 from the set of points outside C. Return Z0 Y Z1 Y Z2.

It is clear that the set Z together with its induced partition R of C returned by the
procedure satisfies all the properties of a weak r-division except for Property 4, which
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requires some calculation. Let bpnq “
ř

RPR |R X Z| when the procedure is applied to a
set C of size at most n, where n ą p1´ σqr. If n ď r then bpnq “ 0, and if n ą r then

bpnq ď cn1´1{d
` max

αPr1´σ,σs
bpαn` cn1´1{d

q ` bpp1´ αqn` cn1´1{d
q.

We show by induction that bpnq ď β n
r1{d

´ γn1´1{d for suitable constants β, γ ą 0 to be
determined. We postpone the basis of the induction until β, γ are selected.

By the inductive hypothesis,

bpαn` cn1´1{d
q ď β

αn

r1{d
` β

cn1´1{d

r1{d
´ γα1´1{dn1´1{d

bpp1´ αqn` cn1´1{d
q ď β

p1´ αqn

r1{d
` β

cn1´1{d

r1{d
´ γp1´ αq1´1{dn1´1{d

so

bpnq ď

ˆ

c`
2c

r1{d

˙

n1´1{d
` β

n

r1{d
´ γ

“

α1´1{d
` p1´ αq1´1{d

‰

n1´1{d (3.1)

The function fpxq “ x1´1{d ` p1´ xq1´1{d is strictly concave for x P r0, 1s, as can be seen
by taking its second derivative. For any α P r1 ´ σ, σs, there exists a number 0 ă µ ă 1
such that α “ p1´µqp1´σq`µσ. By concavity, therefore, fpαq ě p1´µqfp1´σq`µfpσq.
Since a weighted average is at least the minimum, p1´ µqfp1´ σq ` µfpσq ě mintfp1´
σq, fpσqu. Write fp1´ σq “ fpσq “ 1` δ. Since f is strictly concave, δ ą 0. We choose
γ “ pc ` 2c{r1{dq{δ, for then the first term in Inequality 3.1 is bounded by γδn1´1{d, and
we obtain bpnq ď β n

r1{d
´ γn1´1{d.

For the basis of the induction, suppose n ą p1´ σqr. Then

β
n

r1{d
´ γn1´1{d

“

ˆ

β
n1{d

r1{d
´ γ

˙

n1´1{d
ě

ˆ

β
p1´ σq1{dr1{d

r1{d
´ γ

˙

“
`

βp1´ σq1{d ´ γ
˘

which is nonnegative for an appropriate choice of β depending on σ and γ.

3.1.3 Contraction of Voronoi cells and Properties of the r-Divisions
We present the properties of the r-divisions that we will be using for the analysis of the
solution output by the local search algorithm.

Lemma 3.8. Let G “ pV,Eq be a graph excluding a fixed minor H and let F Ď V . Let
Hi be a region of the r-division of GVorpFq. Suppose c and v are vertices of G such that
one of the vertices in tĉ, v̂u is a vertex of Hi and the other is not an internal vertex of Hi.
Then there exists a vertex x P F such that x̂ is a boundary vertex of the region Hi and
distpc, xq ď distpc, vq.
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Proof. Let p be a shortest c-to-v path in G. By the conditions on ĉ and v̂, there is some
vertex w of p such that ŵ is a boundary vertex of Hi. Let x be the center of the Voronoi
cell whose contraction yields ŵ. By definition of Voronoi cell, distpw, xq ď distpw, vq.
Therefore replacing the w-to-v subpath of p with the shortest w-to-x path yields a path no
longer than p.

We obtain the analogous lemma for the Euclidean case, whose proof follows directly
from the definition of r-division (i.e.: the fact that Z is a Voronoi separator).

Lemma 3.9. Let C be a set of points in Rd and Z be an r-division of C. For any two
different regions R1, R2, for any points c P R1, v P R2 there exists a boundary vertex
x P Z XR1 such that distpc, xq ď distpc, vq.

3.1.4 Tightness of the Analysis
In this section, we show that our analysis of the performance of local search for the k-
clustering problem cannot be extended to other classes of graphs such as t-shallow-minor
free. Loosely speaking, there exist t-shallow-minor free graphs for which local search
might return a solution of cost at least 3 times the optimal.

A graph G has a graph H as a t-shallow minor if each subgraph of G that is contracted
to a single vertex of H has small diameter.

This shows that having small separators is not the only ingredient needed for local
search to work and the fact that the class of planar graphs is closed under edge contraction
is crucial.

Proposition 3.10. For any w, t, there exists an infinite family of graphs excluding Kw as a
t-shallow minor such that for any constant ε, there exists a 1{ε-locally optimal solution of
cost at least 3OPT.

See Figure 3.1 and [16] for a complete proof that local search performs badly on the
instance depicted in the figure.

We additionally remark that Awasthi et al. [19] show that the k-means problem is APX-
Hard for inputs in d-dimensional Euclidean space and d “ Ωplog nq. Moreover, Kanungo
et al. [112] give an example where local search returns a solution of cost at least 9OPT.

3.2 Isolation

In order to obtain our approximation schemes for k-means and k-median clustering, we
need another technique. As mentioned earlier, a bicriteria approximation scheme for k-
means was already known; the solution it returns has more than k centers. It seems hard
to avoid an increase in the number of centers in comparing a locally optimal solution to a
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length 0
length 6
length 1 ...

OPT

Local OPT for neighborhoods
of size 3

...

(k-3)/4

k-(k-3)/4

}
}

Figure 3.1: This instance contains the complete bipartite graph K3,3 as a 1-shallow minor
(and so is not planar) but no non-trivial 0-shallow minor. Clients are denoted by circle and
candidate centers by squares. There exists a local (for neighborhoods of size 3) optimum
whose cost is at least 3OPT. This example can be generalized to handle locality for neigh-
borhoods of size 1{ε for any constant ε ą 0. This is based on an example of [16] and can
be extended to form a i-shallow minor graph for any i “ opnq.

globally optimal solution. It would help if we could show that the globally optimal solu-
tion could be modified so as to reduce the number of centers below k while only slightly
increasing the cost; we could then compare the local solution to this modified global so-
lution, and the increase in the number of centers would leave the number no more than
k.

Unfortunately, we cannot unconditionally reduce the number of centers. However, con-
sider a globally optimal solution C and a locally optimal solution L. A center f in C might
correspond to a center ` in L in the sense that they serve almost exactly the same set of
clients. In this case, we say the pair pf, `q is 1-1 isolated (the formal definition is below).
Such centers do not contribute much to the increase in cost in going from global solution
to local solution, so let’s ignore them. Among the remaining centers of C, there are a sub-
stantial number that can be removed without the cost increasing much. The analysis of the
local solution then proceeds as discussed above.

We now give the formal definition of 1-1 isolated.

Definition 3.11. Let ε ă 1{2 be a positive number and let L and C be two solutions for the
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k-clustering problem with parameter p. Given a facility f0 P C and a facility ` P L, we say
that the pair pf0, `q is 1-1 ε-isolated if most of the clients served by ` in L are served by f0

in C, and most of the clients served by f0 in C are served by ` in L; formally, if

|VLp`q X VCpf0q| ě max

#

p1´ εq|VLp`q|,

p1´ εq|VCpf0q|

+

We will sometimes simply say the pair is 1-1 isolated if the value of ε is clear.
We define the more general concept of isolated regions; 1-1-isolated regions correspond

to the special case of isolated regions when L0 consists of a single center.

Definition 3.12 (Isolated Region). Given a facility f0 P C and a set of facilities L0 Ď L,
we say that the pair pf0,L0q is an ε-isolated region if the following hold:

• For each facility f P L0, most of the clients served by f in L are served by f0 in C:
formally, |VLpfq X VCpf0q| ě p1´ εq|VLpfq|, and

• most of the clients served by f0 in C are served by facilities of L0 in L: formally,
|VLpL0q X VCpf0q| ě p1´ εq|VCpf0q|.

If pf0,L0q is ε-isolated, we say that f0 and the the elements of L0 are ε-isolated. If ε is
clear, we might simply say isolated.

Finally, if pf0,L0q is an isolated region, we say that f0 and the elements of L0 are
isolated.

We can now state the structural theorem arising from the notion of isolation. In simple
words, it claims that it is possible to delete a small fraction of the non-isolated optimal
centers (i.e., the centers that are not part of any isolated region) while preserving roughly
the same cost (i.e., increasing it by an ε fraction of the cost of L and the cost of C).

Theorem 3.13. Let ε ă 1{2 be a positive number and let L and C be two solutions for the
k-clustering problem with exponent p. Let k̄ denote the number of facilities f of C that are
not in a 1-1 ε-isolated region. There exists a set S0 of facilities of C of size at least ε3k̄{6
that can be removed from C at low cost: costpCzS0q ď p1`23p`1εqcostpCq`23p`1ε costpLq.

Note that the preceding theorem does not assume that L is a local optimum and C is an
optimal solution. Thus we believe that this theorem can be of broader interest.

3.3 A Structure Theorem
This section is dedicated to the proof of a theorem that provides a useful handle to compare
two solutions of the k-clustering problem. It is the second ingredient of our analysis of
local search on well-separated instances. We recall the theorem for completeness.
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Theorem 3.13. Let ε ă 1{2 be a positive number and let L and C be two solutions for the
k-clustering problem with exponent p. Let k̄ denote the number of facilities f of C that are
not in a 1-1 ε-isolated region. There exists a set S0 of facilities of C of size at least ε3k̄{6
that can be removed from C at low cost: costpCzS0q ď p1`23p`1εqcostpCq`23p`1ε costpLq.

Observe that this theorem has a broader scope than well-separated instance since L and
C can be solutions to a general instance.

Theorem 3.13 relies on the following lemma, whose proof we momentarily defer.

Lemma 3.14. There exists a function φ : C̃ ÞÑ C such that reassigning all the clients of
VCpfq to φpfq for every center f P C̃ increases the cost of C by at most 23p`1ε´2pcostpLq`
costpCqq.

Proof of Theorem 3.13. Consider the abstract graphH where the nodes are the elements of
C and there is a directed arc from f to φpfq. More formally, H “ pC, txf, φpfqy | f P C̃uq.
Notice that every node of H has outdegree at most 1. Thus, there exists a coloring of the
nodes of H with three colors, such that all arcs are bichromatic. Let S denote the color set
with the largest number of nodes of C̃. We have that S contains at least |C̃|{3 nodes of C̃.

Arbitrarily partition S into 1{ε3 parts, each of cardinality at least ε3|C̃|{3. By Lemma
3.14 and an averaging argument, there exists a part S0 such that reassigning each center
f P S0 to φpfq increases the cost by at most

23p`1ε´2

ε´3
pcostpLq ` costpCqq “ 23p`1εpcostpLq ` costpCqq.

Since the arcs of H are bichromatic, if f P S0 then φpfq R S0. Consider the solution
CzS0. Client that belong to VCpfq for some f P S0 can be assigned in CzS0 to a center that
is no farther than φpfq. Therefore, the cost of the solution CzS0 is at most costpCq`23p`1ε ¨
pcostpLq ` costpCqq.

We now relate |C̃| to k̄. Let kpLq1 be the number of centers of L that belong to an
isolated region that is not 1-1 isolated. Let kpCq1 be the number of centers of C that belong
to an isolated region that is not 1-1 isolated. Finally, let kpCq2 “ |C̃|. By definition, we
have kpCq1 ` kpCq2 “ k̄ ě kpLq1.

Now, observe that there are at least two centers of L per isolated region that is not 1-1
isolated. Thus, 2kpCq1 ď kpLq1. Hence, k̄ “ kpCq1`kpCq2 ď kpLq1{2`kpCq2. But for any
kpCq2 ă kpCq1, kpLq1{2 ` kpCq2 ă kpLq1 ď k̄. Therefore, we must have kpCq2 ě kpCq1,
and so kpCq2 ě k̄{2. Thence ε|C̃|{3 ě εk̄{6 and the theorem follows.

We now define gc to be the cost of client c in solution C˚ and `c to be the cost of client
c in solution L.

Proof of Lemma 3.14. For each center f P C̃, we define φpfq “ argmintdistpf, f 1q | f 1 P
Cztfuu. Instead of analyzing the cost increase when reassigning clients of VCpfq to φpfq
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we will analyze the cost increase of the following fractional assignment. First for a center
f P C, we denote by L̂pfq the set

L̂pfq “ t` P L | 1 ď |VCpfq X VLp`q| ă p1´ εq|VLp`q|u. (3.2)

By definition of isolated regions (Definition 3.12), for any f P C̃ we have
ÿ

`PL̂pfq

|VLp`q X VCpfq| ą ε|VCpfq|. (3.3)

Thus, we partition the clients in VCpfq into parts indexed by ` P L̂pfq, in a such a way that
the part associated to ` has size at most ε´1|VCpfq X VLp`q|. For any ` P L̂pfq, the clients
in the associated part are reassigned to the center ψp`, fq P Cztfu that is the closest to `.

We now bound the cost increase ∆ induced by the reassignment. For each client
c P VCpfq assigned to a part associated to a center `, the new cost for c is cost1c “
distpc, ψp`, fqqp. By the triangular inequality and Lemma 2.9, cost1c ď 2ppdistpc, fqp `
distpf, ψp`, fqqpq “ 2ppgc ` distpf, ψp`, fqqpq. Summing over all clients, we have that the
new cost is at most

ÿ

c

2pgc `
ÿ

fPC̃

ÿ

`PL̂pfq

ε´1
|VCpfq X VLp`q|2

pdistpf, ψp`, fqqp.

Let ∆ “
ř

fPC̃
ř

`PL̂pfq ε
´1|VCpfq X VLp`q|2

pdistpf, ψp`, fqqp. By Lemma 2.9, we have

∆ ď
ÿ

fPC̃

ÿ

`PL̂pfq

ε´1
|VCpfq X VLp`q|4

p
pdistpf, `qp ` distp`, ψp`, fqqpq.

Inverting summations, we have that ∆ is at most

4pε´1

¨

˚

˚

˚

˝

ÿ

`PL

ÿ

fPC̃:

`PL̂pfq

|VCpfq X VLp`q|distpf, `qp `
ÿ

`PL

ÿ

fPC̃:

`PL̂pfq

|VCpfq X VLp`q|distp`, ψp`, fqqp

˛

‹

‹

‹

‚

.

Define
∆1 “

ÿ

`PL

ÿ

fPC̃:`PL̂pfq

|VCpfq X VLp`q|distpf, `qp

and
∆2 “

ÿ

`PL

ÿ

fPC̃:`PL̂pfq

|VCpfq X VLp`q|distp`, ψp`, fqqp.
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We first bound ∆1. By Lemma 2.9, for any client c P VCpfq X VLp`q, we have
distpf, `qp ď 2ppdistpf, cqp ` distp`, cqpq “ 2ppgc ` `cq. Therefore,

∆1 ď ε´1
ÿ

`PL

ÿ

fPC̃ : `PL̂pfq

|VCpfq X VLp`q|
2p

|VCpfq X VLp`q|

ÿ

cPVCpfqXVLp`q

pgc ` `cq

ď 2pε´1
ÿ

`PL

ÿ

fPC̃ : `PL̂pfq

ÿ

cPVCpfqXVLp`q

pgc ` `cq ď 2pε´1
pcostpCq ` costpLqq.

We now turn to bound the cost of ∆2. Let f `min be the center of C that is the closest to `. Let

∆3 “ ε´1
ÿ

`PL

ÿ

f‰f`min:`PL̂pfq

|VCpfq X VLp`q|distp`, ψp`, fqqp

∆4 “ ε´1
ÿ

`PL
|VCpf

`
minq X VLp`q|distp`, ψp`, f `minqq

p.

For any client c P VCpfq X VLp`q, by Lemma 2.9, distp`, ψp`, fqqp, for f ‰ f `min yields
distp`, ψp`, fqqp ď 2ppdistp`, cqp`distpc, ψp`, fqqpq ď 2ppdistp`, cqp`distpc, fqpq “ 2pp`c`
gcq. Thus, ∆3 is at most

ε´1
ÿ

`PL

ÿ

f‰f`min:`PL̂pfq

2p|VCpfq X VLp`q|

|VCpfq X VLp`q|

ÿ

cPVCpfqXVLp`q

p`c ` gcq ď 2pε´1
pcostpCq ` costpLqq.

We conclude by analyzing ∆4. Observe that if ` R L̂pf `minq then we are done: the
clients in VCpf

`
minq are not reassigned through `. Thus we assume ` P L̂pf `minq. We

now apply Lemma 2.9 to distp`, ψp`, f `minqq
p, for any client c P VLp`qzVCpf `minq we have

distp`, ψp`, f `minqq
p ď 2ppdistp`, cqp` distpc, ψp`, f `minqq

pq ď 2pp`c` gcq, since ψp`, f `minq is
the center of C that is the second closest to `. Replacing we have,

∆4 ď ε´1
ÿ

`PL

2p|VCpf
`
minq X VLp`q|

|VLp`qzVCpf `minq|

ÿ

cPVLp`qzVCpf
`
minq

p`c ` gcq

Now, since ` P L̂pf `minq, we have that |VCpf `minq X VLp`q|{|VLp`qzVCpf
`
minq| ď p1 ´ εq{ε.

Therefore,
∆4 ď 2pp1´ εqε´2

ÿ

cPVLp`qzVCpf
`
minq

p`c ` gcq.

Putting ∆1,∆2,∆3,∆4 together we obtain that the total cost increase induced by the reas-
signment is at most 23p`1pcostpCq ` costpLqq{ε2.
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3.4 Clustering in Graphs with Small Separators
Before proving Theorem 1.3, we give a much simpler proof that Local Search is a PTAS
for the uniform facility location problem (Definition A.2). The goal is to provide the reader
with more intuition on our analysis using r-division. In Section 3.4.2, we add second
ingredient, isolation, in order to prove Theorem 1.2. In this section we will use the terms
facility and centers interchangeably to denotes the elements of a solution set for both the
facility location and k-clustering problems.

3.4.1 Local Search for Facility Location
We consider the following adaption of Algorithm 2 to the facility location problem.

Algorithm 3 Local Search for Uniform Facility Location

1: Input: A metric space and associated cost function costp¨q, an n-element set A of
points, error parameter ε ą 0, facility opening cost f ą 0, positive integer parameter s

2: S Ð Arbitrary subset of F .
3: while D S 1 s.t. |SzS 1| ` |S 1zS| ď s and cost(S 1) ď p1´ ε{nq cost(S)
4: do
5: S Ð S 1

6: Output: S

We show that Algorithm 3 is a PTAS for uniform facility location in well-separated
instances.

Theorem 3.15. Fix a nontrivial minor-closed familyK of graphs. There is a constant c such
that, when Algorithm 3 is applied to the metric completion of any graph G “ pA Y F,Eq
in K with

costpSq “ |S|f `
ÿ

aPA

pmin
uPS

distpa, uqqp

and s “ 1{εc, the output has cost at most 1` ε times the minimum.

Throughout this section on facility location, define L to be a solution output by Al-
gorithm 3 (the “local” solution) and a globally optimal solution C of value OPT. Let
F “ L Y C. Let r “ 1{ε2. Consider the graph GVorpFq defined in Definition 3.4, and
recall that each vertex of G maps to a vertex v̂ in the contracted graph GVorpFq.

Since G belongs to K and GVorpFq is obtained from G by contraction, it belongs to K
too and hence it has an r-division. Let H1, . . . Hκ be the regions of this r-division. For
i “ 1, . . . , κ, define Vi and Bi as follows:

Vi “ tv P F : v̂ is a vertex of Hiu

Bi “ tv P F : v̂ is a boundary vertex of Hiu
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Figure 3.2: The diagram shows a region of the weak r-division. The blobs represent ver-
tices of the region. Each blob is obtained by coalescing a set of vertices of the input graph.
These vertices are indicated by circles. The unfilled circles represent the centers of the
Voronoi cells.

That is, Vi is the set of vertices in the union of the local solution and the global solution that
map via contraction to vertices of the region Hi, and Bi is the set of vertices in the union
that map to boundary vertices of Hi.

Let C 1 “ C Y
Ťκ
i“1Bi and fix a region Hi of the r-division of GVorpFq. We define

Li “ LX Vi and C 1i “ C 1 X Vi. We consider the mixed solutionMi defined as follows:

Mi
“ pLzLiq Y C 1i.

Lemma 3.16. We have, |MizL| ` |LzMi| ď 1{ε2.

Proof. To obtainMi from L, one can remove the vertices in LX Vi that are not in G 1, and
add the vertices in G 1 X Vi that are not in L. Thus the size of the symmetric difference is at
most |pLYC 1qXVi|. Since the vertices of LYC 1 are centers of Voronoi cells, these vertices
all map to different vertices in the contracted graph GVorpFq. Therefore |pLY C 1q X Vi| is at
most the number of vertices in region Hi, which is at most r “ 1{ε2.

Denote by mi
a the cost induced by client a in solutionMi

Lemma 3.17. Let a be a vertex of G and Hi a region. Then:

mi
a ´ `a ď

#

ga ´ `a if â is an internal vertex of Hi

0 otherwise.

Proof. First suppose â is an internal vertex of Hi, and let v be the facility inMi closest to
a. If v is in Vi then it is in Ci, so mi

a “ g1a. Suppose v is not in Vi. Then by Lemma 3.8
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there is a vertex x P F such that x̂ is a boundary vertex of Hi and distpa, xq ď distpa, vq.
As before, x is in C 1i so mi

a ď g1a. Since g1a ď ga, this proves the claimed upper bound.
Now, suppose â is not an internal vertex of Hi and let v be the facility in L closest to

a. If v is not in Vi then it is in the mixed solution Mi, so mi
a “ `a. Suppose v is in Vi.

Then by Lemma 3.8 there is a vertex x P F such that x̂ is a boundary vertex of Hi and
distpa, xq ď distpa, vq. Since x is in F and x̂ is a boundary vertex of Hi, we know x is in
C 1XVi, which is C 1i. Therefore x is inMi. Since distpa, xq ď distpa, vq, we obtainmi

a ď `a,
which proves the claimed upper bound.

Lemma 3.18. We have,
κ
ÿ

i“1

|C 1i| ď |C| ` c2εp|C| ` |L|q.

Proof. Let v be a vertex of C 1. For i “ 1, . . . , κ, if v̂ is an internal vertex of the region Hi

then v contributes only one towards the left-hand side. If v̂ is a boundary vertex of Hi then
v P Bi. Therefore

κ
ÿ

i“1

|C 1 X Vi| ď |C| `
κ
ÿ

i“1

|Bi|.

To finish the proof, we bound the sum in the right-hand side. Each vertex in F is the center
of one Voronoi cell, so GVorpFq has |F | vertices. For each region Hi, there is one vertex in
Bi that corresponds to each boundary vertex of Hi, so

řκ
i“1 |Bi| is the sum over all regions

of the number of boundary vertices of that region, which, by Property 4 of r-divisions,
is at most c2|F |{r1{2, which, by choice of r, is at most c2ε|F |, which in turn is at most
c2εp|C| ` |L|q.

Proof. (Proof of Theorem 3.15) Lemma 3.16 and the stopping condition of Algorithm 3
imply the following:

´
1

n
costpLq ď costpMi

q ´ costpLq. (3.4)

We now decompose the right-hand side. For a client a, we denote by `a, g1a and mi
a the

distance from the client a to the closest facilities in L, C 1 andMi respectively. This gives

costpMi
q ´ costpLq “ p|C 1i| ´ |Li|q ¨ f `

ÿ

a

pmi
a ´ `aq. (3.5)

Using Lemma 3.17 and summing over a shows that
ÿ

a

pmi
a ´ `aq ď

ÿ

a:âPIpHiq

pga ´ `aq. (3.6)

Combining Inequalities (3.4), (3.5) and (3.6), we obtain

´
1

n
costpLq ď p|C 1i| ´ |Li|q ¨ f `

ÿ

a:âPIpHiq

pg1a ´ `aq (3.7)
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We next sum this inequality over all κ regions of the weak r-division and use Lemma 3.18.

´
κ

n
costpLq ď

˜

κ
ÿ

i“1

|C 1i| ´
κ
ÿ

i“1

|Li|

¸

¨ f `
κ
ÿ

i“1

ÿ

a:âPIpHiq

pga ´ `aq

ď p|C| ` pc2εp|C| ` |L|q ´ |L|q ¨ f `
ÿ

a

pga ´ `aq

“ pp1` c2εq|C| ´ p1´ c2εq|L|q ¨ f `
ÿ

a

pga ´ `aq

ď p1` c2εqcostpCq ´ p1´ c2εqcostpLq

Since κ ď c1|F |{r ď c1ε
2n, we obtain

´c1ε
2costpLq ď p1` c2εqcostpCq ´ p1´ c2εqcostpLq

so
costpLq ď p1´ c2ε´ c1ε

2
q
´1
p1` c2εqcostpCq

This completes the proof of Theorem 3.15.

3.4.2 Local Search for the k-Clustering Problem

We now prove Theorem 1.2. The proof is similar for graphs and for points lying in Rd.
It builds on the notions of isolation and 1-1 isolation introduced in Section 3.2. As in the
previous section, L denotes the output of Algorithm 2 and C denotes an optimal solution.
We use a parameter 0 ă ε ă 1{2 whose value depends on δ and is chosen later. Let F̄ be
the set of facilities of L and C that are not in 1-1 ε-isolated regions and let k̄ “ |F̄ |.

Theorem 1.2. LetK be a nontrivial minor-closed family of edge-weighted graphs. For any
integer p ą 0, there is a constant c with the following property. For any 0 ă ε ă 1{2, for
any graph G “ pA Y F,Eq in K, Algorithm 2 applied to the metric completion of G with
cost function

costpSq “
ÿ

aPA

pmin
uPS

distpa, uqqp

and with s “ 1{εc yields a solution S whose cost is at most 1` ε times the minimum.

Recall Algorithm 2.
Applying Theorem 3.13 to C and L yields a set S0 Ă C such that costpC ´ S0q ď

p1` 23p`1εqcostpCq ` 23p`1ε costpLq and |S0| ě ε3k̄{6. Let C1 “ CzS0.
For a client c, Lpcq and Cpcq denote, respectively, the facility of L serving c and the

facility of C serving c. We say c is bad if Lpcq and Cpcq do not belong to the same ε-
isolated region but at least one is isolated; otherwise c is good. We define a subset E 1 of
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Algorithm 2 Local search for finding k clusters.

1: Input: A metric space and associated cost function costp¨q, an n-element set C of
points, error parameter ε ą 0, number of clusters k

2: Parameter: A positive integer parameter s for the neighborhood size
3: S Ð Arbitrary size-k set of points
4: while D S 1 s.t. |S 1| ď k and |SzS 1| ` |S 1zS| ď s and cost(S 1) ď p1´ ε{nqcostpSq
5: do
6: S Ð S 1

7: Output: S

edges of G as follows: for each good client c, include in E 1 the shortest c-to-Lpcq and
c-to-Cpcq paths. Let G1 “ pV,E 1q be the corresponding subgraph of G.

Let F “ C1 Y L. Let R1, R2, . . . be an r-division of G1VorpFq where r “ 1{ε7. Define
C˚ “ C1 Y tboundary vertices of the r-divisionu.

The vertex sets of regions are of course not disjoint—a boundary vertex is in multiple
regions—but it is convenient to represent them by disjoint sets. We therefore define a
ground set Ω “ tpv,Rq : v a vertex of G1VorpFq, R a region containing vu, and, for each

region R, we define pR “ tpv,Rq : v a vertex of Ru. Now xR1,xR2, . . . form a partition of
Ω. To allow us to go from an element of Ω back to a vertex, if x “ pv,Rq we define qx “ v.
Finally, define pG “ tpv,Rq P Ω : v P C˚u.

Let F̄ be the set of facilities of local and C that are not in 1-1 isolated regions.

Lemma 3.19. We have, |pG| ď |C1| ` c2ε
3.5|F̄ |, where c2 is the constant in the definition of

r-division.

Proof. Consider the r-division. Each 1-1 isolated region results in a connected component
of size 2 in G1VorpFq and so no boundary vertices arise from such connected components.
By the definition of r-division, the sum over regions of boundary vertices is at most c2 ¨

|n̄0|{r
1{2, where n̄0 is the total number of elements of C1 and L that are not in 1-1 isolated

regions. Since r “ 1{ε7, we have that |pG| ď |C1| ` c2 ¨ ε
4|F̄ |.

Lemma 3.20. We have, |pG| ď k.

Proof. By Theorem 3.13, we have that |C1| ď k ´ ε3k̄{12. By Lemma 3.19 we thus have

|pG| ď |C1| ` c2ε
3.5k̄ ď k ´ ε3k̄{12` c2ε

3.5k̄ ď k,

for ε small enough.

Throughout the rest of the proof, we will bound the cost of L by the cost of C˚. We now
slightly abuse notations in the following way: each facility ` ofL that belongs to an isolated
region and that is a boundary vertex is now in C˚. We say that this facility is isolated.
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Lemma 3.21 (Balanced Partitioning). Let S “ tS1, ..., Spu and tA,Bu be partitions of
some ground set. Suppose |A| ě |B| and, for “ 1, . . . , p, 1{p2ε2q ď |Si| ď 1{ε2. There
exists a partition that is a coarsening of S such that every part C of the coarser partition
satisfies the following:

• Small Cardinality: C is the union of Op1{ε5q parts of S.

• Balanced: |C X A| ě |C XB|.

Proof. We first define for each set Si, vpSiq :“ |AX Si| ´ |B X Si|.
The sizes of the Si imply that vpSiq is an integer in the range r´1{ε2, 1{ε2s. We itera-

tively construct a coarsening of S such that for each part P of the coarsening, P contains
Op1{ε5q sets of S and

ř

SiPP
vpSiq ě 0. It is easy to see that this coarsening satisfies the

condition of the lemma.
For any set Si such that vpSiq “ 0, we create a new part that contains only this set. This

part trivially satisfies the above property.
We now consider the remaining sets. For i in r´1{ε2, 1{ε2s, define Vi to be the collec-

tion of sets S` P S such that vpS`q “ i.
While there exists 1 ď i, j, such that 1{ε2 ă |Vi|, |V´j|, We take i sets from V´j and j

sets from Vi and create a new part containing all of them. This part satisfies the property of
the Lemma and contains at most 2{ε2 sets of S .

Let ∆ “ |A|´ |B|. By a direct induction, at each step before the final step we have that
the sum of VpSiq for the remaining set Si is equal to ∆. We now consider the final step.
We have @j ě 0, |Vj| ď 1{ε2 or @j ď 0 |Vj| ď 1{ε2. Since ∆ ą 0, it must be the case that
@j ď 0 |Vj| ď 1{ε4. We now construct a part containing all the sets in the Vj , for j ă 0.
Additionally, we add the smallest number of sets of Vj , for j ą 0, such that the balanced
property is satisfied. Not that since ∆ ě 0, this is possible. Furthermore, this part has size
at most Op1{ε4q. Finally, we create a new part for each remaining set of the Vj , for j ą 0.
Each such part satisfies the conditions of the lemma.

We now apply Lemma 3.21 to the partition xR1,xR2, . . . with A “ tpv,Rq P Ω : v P Lu
and B “ pG. We refer to the parts of the resulting coarse partition as super-regions. Each
super-region R naturally corresponds to a subgraph of G1VorpFq, the subgraph induced by
tv : pv,Rq P Ru, and we sometimes useR to refer to this subgraph.

For a super-region R, let LpRq (resp. C˚pRq) be the set of facilities of L (resp. C˚) in
the super-region R, i.e.: the set t` | ` P L and p`, Rq P Ωu (resp. tf | f P C˚ and pf,Rq P
Ωu). We consider the mixed solution

MR “ pLzLpRqq Y C˚pRq.

Lemma 3.22. |MRzL| ` |LzMR| “ Op1{ε12q and |MR| ď k.

Proof. Each region of the r-division contains at most 1{ε7 facilities. By Lemma 3.21, each
super-region is the union of Op1{ε5q regions
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For each client c, we define gc “ distpc, Cpfqqp and `c “ distpc,Lpcqqp. For any client
c P VCpf0qzVLpL0q for some isolated region pf0,L0q, define ReassignC˚ ÞÑLpcq to be the
cost of assigning c to the facility of L0 that is the closest to f0. We let ε1 denote a positive
constant to be chosen later.

Lemma 3.23. Consider an isolated region pf0,L0q.

ÿ

c P
VCpf0qzVLpL0q

ReassignC˚ ÞÑLpcq ď p1`ε1q
p

ÿ

c P
VCpf0qzVLpL0q

gc`
2pp1` ε1q

pε´p1 ε

1´ ε

ÿ

cPVCpf0q

pgc``cq,

Proof. Consider a client c P VCpf0qzVLpL0q, and let ` denote the facility of L that is the
closest to f0. By Lemma 2.9, distpc, `qp ď p1 ` ε1q

ppdistpc, f0q
p ` ε´p1 distp`, f0q

pq “

p1` ε1q
ppgc ` ε

´p
1 distp`, f0q

pq. Summing over c P VCpf0qzVLpL0q,

ÿ

cPVCpf0qzVLpL0q

ReassignC˚ ÞÑLpcq ď p1`ε1q
p
p

ÿ

cPVCpf0qzVLpL0q

gc`
|VCpf0qzVLpL0q|

εp1
distp`, f0q

p
q.

To upper bound distp`, f0q
p, we use an averaging argument. Since ` is the facility in L

that is closest to f0, distp`, f0q
p ď distpLpcq, f0q

p. By Lemma 2.9, distpLpcq, f0q
p ď

2ppdistpLpcq, c1qp ` distpc, f0q
pq “ 2pp`c ` gcq, thus

distp`, f0q
p
ď

2p

|VLp`q X VCpf0q|

ÿ

cPVLp`qXVCpf0q

p`c ` gcq.

Substituting, we infer that
ÿ

cPVCpf0qzVLpL0q

ReassignL ÞÑC˚pcq

is at most the sum of
p1` ε1q

p
ÿ

cPVCpf0qzVLpL0q

gc

and

2pp1` ε1q
pε´p1

|VCpf0qzVLpL0q|

|VLp`q X VCpf0q|

ÿ

cPVLp`qXVCpf0q

p`c ` gcq.

By definition of isolated regions, VCpf0qzVLpL0q ď ε|VCpf0q| and |VCpf0qzVLpL0q| ě p1´
εq|VCpf0q|, so the ratio is at most ε{p1´ εq. Summing over ` P L0 proves the lemma.

Similarly, for any client c P VLpL0qzVCpf0q for some isolated region pf0,L0q, define
ReassignLÞÑC˚ as the cost of assigning c to f0.
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Lemma 3.24. For an isolated region pf0,L0q, the sum
ÿ

cPVLpL0qzVCpf0q

ReassignL ÞÑC˚pcq

is at most
p1` ε1q

p
ÿ

cPVLpL0qzVCpf0q

`c

plus
2pp1` ε1q

pε´p1 ε

1´ ε

ÿ

cPVCpf0q

pgc ` `cq.

Proof. Let ` be a facility in L0. For each client c P VLpL0qzVCpf0q, by Lemma 2.8,
distpc, f0q

p ď p1 ` ε1q
ppdistpc, `qp ` ε´p1 distp`, f0q

pq “ p1 ` ε1q
pp`c ` ε´p1 distp`, f0q

pq.
Therefore

ÿ

cPVLp`qzVCpf0q

ReassignL ÞÑC˚pcq

is at most p1` ε1q
p times

ÿ

cPVLp`qzVCpf0q

`c ` ε
´p
1 |VLp`qzVCpf0q| distp`, f0q

p.

To upper-bound distp`, f0q, we use an averaging argument. For each client c P VLp`q X
VCpf0q, by Lemma 2.9 we have distp`, f0q

p ď 2ppdistp`, cqp ` distpc, f0q
pq “ 2pp`c ` gcq,

thus
distp`, f0q

p
ď

2p

|VLp`q X VCpf0q|

ÿ

cPVLp`qXVCpf0q

p`c ` gcq.

Substituting, we infer that
ÿ

cPVLp`qzVCpf0q

ReassignL ÞÑC˚pcq

is at most p1` ε1q
p times

ÿ

cPVLp`qzVCpf0q

`c `

2pε´p1 |VLp`qzVCpf0q|

|VLp`q X VCpf0q|

ÿ

cPVLp`qXVCpf0q

p`c ` gcq.

By definition of isolated regions, |VLp`qzVCpf0q| ď ε|VLp`q| and |VLp`q X VCpf0q| ě p1 ´
εq|VLp`q|, so the ratio is at most ε{p1´ εq. Summing over ` P L0 proves the lemma.
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Lemma 3.25. Consider an isolated region pf,L0q. Let ` be a facility of L0. For any
super-regionR,MR contains f or a facility that is at distance at most distp`, fq from f .

Proof. Since ` and f belong to the same isolated region pf,L0q and ` P L0, they belong
to the same connected component of G1VorpFq. Now consider a super-region R such that
MR does not contain `. Then ` P LpRq. Thus, either f P R or by Lemma 3.8, a boundary
element `1 P R of the r-division is on the path from ` to f and distp`1, fq ď distp`, fq.
Thus, `1 PMR, proving the lemma.

For a client c and a super-region R, we define mRpcq to be the cost of c in the mixed
solutionMR. Moreover, for each client c, we consider the facilities Lpcq and C˚pcq that
serve this client in solution L and C˚ respectively. We define `pcq to be an arbitrary pair
pLpcq, Rq P Ω and g˚pcq to be an arbitrary pair pC˚pcq, Rq P Ω. We say that pv,Rq is
isolated if v belongs to one of the isolated regions.

Lemma 3.26. Let c be a good client andR a super-region. The value of mRpcq´ `c is less
than or equal to:

#

gc ´ `c if g˚pcq P R
0 otherwise

Proof. Observe that if g˚pcq P R, then mRpcq ď gc and the first case holds. Now, for any
super-region R S lpcq, g˚pcq, MR contains the facility serving client c in local. Thus its
cost is at most `c and the second case holds. Finally, assume that R contains lpcq and does
not contain g˚pcq. If ĉ belongs to R, then by the separation property of the r-division (see
Lemmas 3.8, 3.9), g˚pcq P R and mRpcq ď gc. Otherwise, ĉ R R, and so, by the separation
property there must be a boundary vertex ofR that is closer to c than the facility that serves
it in L. Therefore, we have mRpcq ď `c and the second case holds.

We now turn to the bad clients.

Lemma 3.27. Let c be a bad client and R a super-region. If `pcq P R then mRpcq ´ `c is
at most

$

’

’

’

&

’

’

’

%

gc ´ `c if g˚pcq P R
ReassignC˚ ÞÑLpcq ´ `c if g˚pcq R R and g˚pcq is isolated
ReassignL ÞÑC˚pcq ´ `c if g˚pcq R R and g˚pcq is not isolated
0 otherwise.

if `pcq R R then mRpcq ´ `c is at most
#

gc ´ `c if g˚pcq P R and g˚pcq is not isolated
0 otherwise.
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Proof. Observe that the super-regions form a partition of the lpcq and g˚pcq. LetRp`pcqq be
the region that contains `pcq and Rpg˚pcqq be the region that contains g˚pcq. If Rp`pcqq “
Rpg˚pcqq then, the facility serving c in C˚ is inMRp`pcqq, hencemRp`pcqqpcq ď gc. Moreover
for any other region R1 ‰ Rp`pcqq, we have `pcq R R1 and so the facility serving c in L is
inMR1 . Therefore mR1pcq ď `c.

Thus, we consider c such that Rp`pcqq ‰ Rpg˚pcqq. Since c is bad, we have that `pcq
or g˚pcq is isolated. Consider the case where g˚pcq is isolated. The cost of c in solution
MRp`pcqq is, by Lemma 3.25, at most ReassignC˚ ÞÑLpcq satisfying the lemma. Now, for any
other region R1 ‰ Rpg˚pcqq, again we have `pcq R R1 and so the facility serving c in L is
inMR1 . Therefore, mR1pcq ď `c.

Therefore, we consider the case where c is such thatRp`pcqq ‰ Rpg˚pcqq and such that
g˚pcq is not isolated. Since c is bad, `pcq is isolated. Thence, by Lemma 3.25, the cost in
solutionMRp`pcqq is at most ReassignLÞÑC˚pcq, satisfying the Lemma. Moreover, in solution
Rpg˚pcqq, the cost is at most gc. Finally, for any other region R1 ‰ Rp`pcqq,Rpg˚pcqq,
`pcq R R1 and so the facility serving c in L is inMR1 . Therefore, mR1pcq ď `c, concluding
the proof of the lemma.

We now partition the clients into three sets, Λ1,Λ2,Λ3. Let Λ1 be the set of bad clients
such that there exists a super-region R such that `pcq P R and g˚pcq R R and g˚pcq is not
isolated. Let Λ2 be the set of bad clients such that there exists a super-region R such that
`pcq P R and g˚pcq R R and g˚pcq is isolated. Finally let Λ3 be the remaining clients :
Λ3 “ CzΛ1zΛ2. The next corollary follows from combining Lemmas 3.26 and 3.27 and by
observing that the super-regions form a partition of the `pcq and g˚pcq.

Corollary 3.28. For any client c, we have that

ÿ

R
pmRpcq ´ `cq ď

$

’

&

’

%

ReassignL ÞÑC˚ ` gc ´ 2`c if c P Λ1

ReassignC˚ ÞÑL ´ `c if c P Λ2

gc ´ `c if c P Λ3

We now turn to the proof of Theorem 1.2.
Let α ą 1 be a constant to be chosen later. Now we choose ε1 and ε. We maximize

ε1 subject to p1 ` ε1q
p ď 1 ` δ{α. Note that ε1 “ Θpδ{pq. We maximize ε subject

to p2p1 ` ε1q{ε1q
pε{p1 ´ εq ď δ{α and 23p`1ε ď δ{α. Note that ε “ Θpδp`1q. By

Lemma 3.22, therefore, there is a constant c such that using neighborhood parameter s “
1{δc in Algorithm 1 ensures that, for any super-region R the solutionMR is in the local
neighborhood of L. By local optimality, we have

p1´ δ{2nq
ÿ

c

`c ď
ÿ

c

mRpcq.

Hence,

´
δ

2n
costpLq ď

ÿ

c

pmRpcq ´ `cq.
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Observe that the number of regions is at most k ď n. Thus, summing over all regions, we
have

´pδ{2qcostpLq ď
ÿ

R

ÿ

c

pmRpcq ´ `cq.

Inverting summations and applying Corollary 3.28 shows that ´pδ{2q costpLq is at most
ÿ

cPΛ1

pReassignLÞÑC˚pcq ` gc ´ 2`cq `
ÿ

cPΛ2

pReassignC˚ ÞÑLpcq ´ `cq `
ÿ

cPΛ3

pgc ´ `cq. (3.8)

Since each client in Λ1 is bad, applying Lemma 3.24 shows
ÿ

cPΛ1

pReassignL ÞÑC˚pcq `

gc ´ 2`cq is at most
ÿ

cPΛ1

pgc ´ p1´ δ{αq`cq ` pδ{αq pcostpLq ` costpC˚qq

Since each client in Λ2 is bad, Lemma 3.23 shows
ř

cPΛ2
pReassignC˚ ÞÑLpcq ´ `cq is at

most
ÿ

cPΛ2

pp1` δ{αqgc ´ `cq ` pδ{αq pcostpLq ` costpC˚qq

Since Λ1,Λ2,Λ3 is a partition of the clients, therefore, the sum (3.8) is bounded by
ÿ

c

pp1` δ{αqgc ´ p1´ δ{αq`cq ` p2δ{αqpcostpLq ` costpC˚qq

which is p1 ` 3δ{αqcostpC˚q ´ p1 ´ 3δ{αqcostpLq Since ´pδ{2q costpLq is at most the
sum (3.8),

p1´ c1
2ε

1´ ε
´ εqcostpLq ď p1` c1

2ε

1´ ε
qcostpC˚q

p1´ c1
2ε

1´ ε
´ εqcostpLq ď p1` c1

2ε

1´ ε
qp1` εqcostpCq ` c1εcostpLq

because C1 Ď C˚ implies costpC˚q ď costpC1q and Theorem 3.13 implies costpC1q ď p1 `
δ{αqcostpCq ` pδ{αqcostpLq. Thus there is a choice of the constant α for which costpLq ď
p1` δqcostpCq.

3.5 Clustering in the Euclidean Setting

The proof is similar for Rd. We explain how to modify the beginning of the proof of the
graph case, the rest of the proof applies directly.

As before, we define a client c as bad if Lpcq and Cpcq do not belong to the same
ε-isolated region but at least one is isolated; otherwise c is good.
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Again we obtain a solution C1 from C by applying Theorem 3.13 to find a set S0 of
facilities to remove. Let F “ LY C1. We now consider each isolated region pL0, f0q, with
|L0| ą 1{ε7d ´ 1, and proceed to an r-division of L0 Y tf0u with r “ 1{ε7d. Moreover, for
the remaining facilities F of that are not in any isolated region, we proceed to an r-division
of those points with r “ 1{ε7d. We denote byR1, R2 . . . the subset of all the regions defined
by the above r-divisions. Let Z denote the set of boundary elements of all the r-divisions.
Define C˚ “ C1 Y Z.

The point sets of regions are not disjoint since points of Z appear in various regions.
Thus, we again define a ground set Ω “ tpv,Rq : v a point of F , R a region containing vu,
and, for each region R, we define pR “ tpv,Rq : v a point of Ru. Now xR1,xR2, . . . form a
partition of Ω. To allow us to go from an element of Ω back to a point, if x “ pv,Rq we
define qx “ v. Finally, define pG “ tpv,Rq P Ω : v P C˚u.

We now follow the rest of the proof of Theorem 1.2, starting from Lemma 3.19.





CHAPTER 4

Beyond Separators: Local Search for Clustering
in Stable Instances

In this section we prove the following statements:

• If an instance is α-perturbation-resilient, for α ą 3, then Algorithm 2 computes the
optimal solution (Theorem 1.8, Section 4.1).

• If an instance is β-distribution stable then Algorithm 2 is a PTAS (Theorem 1.5,
Section 4.2).

• If an instance is δ-spectrally separated for δ ą 3
?
k, then Algorithm 4 is a PTAS

(Theorem 1.10, Section 4.4).

Recall Algorithms 2 and 4.

Algorithm 2 Local search for finding k clusters.

1: Input: A metric space and associated cost function costp¨q, an n-element set C of
points, error parameter ε ą 0, number of clusters k

2: Parameter: A positive integer parameter s for the neighborhood size
3: S Ð Arbitrary size-k set of points
4: while D S 1 s.t. |S 1| ď k and |SzS 1| ` |S 1zS| ď s and cost(S 1) ď p1´ ε{nqcostpSq
5: do
6: S Ð S 1

7: Output: S
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Algorithm 4 Project and local search

1: Project points A onto the best rank k{ε subspace
2: Embed points into a random subspace of dimension Opε´2 log nq
3: Compute candidate centers (Corollary 4.17)
4: local search(Θpε´4q)
5: Output clustering

4.1 α-Perturbation-Resilient Instances

We recall the definition of α-perturbation-resilient instances as it appears in the introduc-
tion.

Definition 1.6. Let I “ pA,F, cost, kq be an instance for the k-clustering problem. For
α ě 1, I is α-perturbation-resilient if there exists a unique optimal clustering tC1, . . . , Cku
and for any instance I 1 “ pA,F, cost1, kq, such that

@ p, q P AY F, costpp, qq ď cost1pp, qq ď αdistpp, qq,

the unique optimal clustering is tC1, . . . , Cku.

Observe that pAYF, cost1q in Definition 1.6 needs not be a metric, even if pAYF, costq
was originally one. In the following, we assume that costpa, bq “ distpa, bqp for some
fixed p and some distance function dist defined over A Y F . Consider a solution S0 to the
k-clustering problem with parameter p.

For ease of exposition, we give the proof of Theorem 1.8 for the k-median problem,
when p “ 1. Applying Lemmas 2.8 and 2.9 in the proof of Lemma 2.4 yields the result for
general p with α growing exponentially with p (Theorem 1.7). The proof of Theorem 1.8
relies on Theorem 2.3.

Theorem 1.8. Let α ą 3. For any instance of the k-median problem that is α-perturbation-
resilient, any 2pα ´ 3q´1-locally optimal solution is the optimal clustering tC˚1 , . . . , C

˚
k u.

Proof. Given an instance pA,F, cost, kq, we define an instance I 1 “ pA,F, cost1, kq as
follows. For each client a P NCpC̃qYNLpL̃q, let `i be the center of L that serves it in L, for
any point p ‰ `i, we define cost1pa, pq “ αcostpa, pq and cost1pa, `iq “ costpa, `iq. For the
other clients we set cost1 “ cost. Observe that by local optimality, the clustering induced
by L is tC1, . . . , Cku if and only if L “ C. Therefore, the cost of C in instance I 1 is equal
to

α
ÿ

aPNCpC̃qYNLpL̃q

ga `
ÿ

aRNCpC̃qYNLpL̃q

ga.
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On the other hand, the cost of L in I 1 is the same than in I , by Theorem 2.3

ÿ

aPNCpC̃qYNLpL̃q

`a ď
ÿ

aPNCpC̃qYNLpL̃q

`a ď p3`
2pα ´ 3q

2
q

ÿ

aPNCpC̃qYNLpL̃q

ga

and by definition
ÿ

aRNCpC̃qYNLpL̃q

`a ď
ÿ

aRNCpC̃qYNLpL̃q

ga.

Hence the cost of L in I 1 is at most

α
ÿ

aPNCpC̃qYNLpL̃q

ga `
ÿ

aRNCpC̃qYNLpL̃q

ga.

By definition of α-perturbation-resilience, we have that the clustering tC1, . . . , Cku is
the unique optimal solution in I 1. Therefore L “ C and the Theorem follows.

We show that the analysis is tight:

Proposition 4.1. There exists an infinite family of 3-perturbation-resilient instances such
that for any constant ε ą 0, there exists a ε´1-locally optimal solution that has cost at least
3OPT.

This relies on the example from [16] (see also Figure 3.1). It is straightforward to see
that the instance they provide is 3-perturbation-resilient.

4.2 Distribution Stability

We work with the notion pβ, δq-distribution stability which generalizes β-distribution sta-
bility.

Definition 4.2 (pβ, δq-Distribution Stability). Let pA,F, cost, kq be an instance of the k-
-clustering problem where A Y F are embedded into some metric space and let C “

tC1, . . . , Cku denote a partition of A and C “ tC1, . . . , Cku Ď F be a set of centers.
Further, let β ą 0 and 1{2 ą δ. Then pC, Cq is pβ, δq-stable if, for any i, there exists a set
∆i Ď Ci such that |∆i| ě p1´ δq|Ci| and for any a P ∆i, for any j ‰ i,

costpa, Cjq ě β
OPT
|Cj|

,

where costpa, Cjq is the cost of assigning a to Cj .

We show the following theorem.
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c˚i

Lpiq

IRε2

i

IRε
i

C˚i C˚j

c˚j

p P ∆j

β ¨ OPT
|Ci|

Figure 4.1: Example of a cluster C˚i R Z
˚. An important fraction of the points in IRε2

i are
served by Lpiq and few points in

Ť

j‰i ∆j are served by Lpiq.

Theorem 4.3. There exists a constant c such that the following holds. Let β ą 0, δ ă 1{2.
and ε ă 1{2. For any pβ, δq-stable instance with respect to a clustering C and ε ă 1{2,
the cost of the solution output by local search (Algorithm 2) with parameter s “ 2ε´3β´1

is at most p1` c1pε` δqqcostpCq.

Note that taking δ “ 0, Theorem 1.5 is an immediate corollary of Theorem 4.3.
For ease of exposition, we give the proof of Theorem 4.3 for the case of k-median,

namely when p “ 1. Applying Lemmas 2.8 and 2.9 through the proof yields the result for
general values of p.

Throughout this section we consider a set of centers C “ tC1, . . . , Cku whose induced
clustering is C “ tC1, . . . , Cku and such that the instance is pβ, δq-stable with respect to
this clustering. We denote by clusters the parts of a partition C “ tC1, . . . , Cku. Let
costpCq “

řk
i“1

ř

aPCi
costpa, Ciq. Moreover, for any cluster Ci, for any client a P Ci,

denote by ga the cost of client a in solution C: ga “ costpa, Ciq “ distpa, Ciq since p “ 1.
Let L denote the output of the LocalSearch(β´1ε´3) and `a the cost induced by client a in
solution L, namely `a “ min`PL costpa, `q. The following definition is adapted from [17].

Definition 4.4. For any ε0, we define the inner ring of cluster i, IRε0i , as the set of clients a
such that costpa, Ciq ď ε0βOPT{|Ci|.
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We say that cluster i is cheap if
ř

aPCi
ga ď ε3βOPT, and expensive otherwise. We aim

at proving the following structural lemma.

Lemma 4.5. There exists a set of clusters Z˚ Ď C of size at most pε´3 ` 160ε´1qβ´1 such
that for any cluster Ci P CzZ˚, we have the following properties

1. Ci is cheap.

2. At least a p1´ εq fraction of IRε
2

i is served by a unique center Lpiq in solution L.

3. The total number of clients p P
Ť

j‰i ∆j , that are served by Lpiq in L is at most
ε|IRε

2

i |.

See Fig 4.1 for a typical cluster of CzZ˚. We start with the following lemma which
generalizes Fact 4.1 in [17].

Lemma 4.6. Let Ci be a cheap cluster. For any ε0, we have |IRε0i | ą p1´ ε
3{ε0q|Ci|.

Proof. Observe that each client that is not in IRε0
i is at distance at least ε0βOPT{|C˚i | from

Ci. Since i is cheap, the total cost of the clients in C˚i is at most ε3βOPT and in particular,
the total cost of the clients that are not in IRε0

i does not exceed ε3βOPT. Therefore, the
total number of such clients is at most ε3|C˚i |{ε0.

We then prove that the inner rings of cheap clusters are disjoint.

Lemma 4.7. Let ε0 ă 1{3. If Ci ‰ Cj are cheap clusters, then IRε0i X IRε0j “ H.

Proof. Assume towards contradiction that this is not true. Consider a client x P IRε0
i X

IRε0
j . Without loss of generality assume |Ci| ě |Cj|. By the triangular inequality we have

costpCj, Ciq ď costpCj, xq ` costpx, Ciq ď 2ε0βOPT{|Cj|. Since δ ă 1{2, there exists a
client a P IRε0

i X∆i. Thus, we have costpa, Cjq ď 3ε0βOPT{|Cj|. This is a contradiction
to the assumption that the instance is pβ, δq-distribution stable with respect to pC, Cq and a
being in ∆i for any ε0 ă 1{3.

The following observation follows directly from the definition of cheap clusters.

Lemma 4.8. LetZ1 Ď C be the set of clusters ofC that are not cheap. Then |Z1| ď ε´3β´1.

For each cheap cluster Ci, let Lpiq denote a center of L that belongs to IRε
i if there is

one (and remain undefined otherwise). By Lemma 4.7 those centers are all different.

Lemma 4.9. LetCzZ2 denote the set of clustersCi that are cheap, such thatLpiq is defined,
and such that at least p1 ´ εq|IRε

2

i | clients of IRε
2

i are served in L by Lpiq. Then |Z2| ď

pε´3 ` 120ε´1qβ´1.
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Proof. We distinguish five types of clusters in C: expensive clusters (k1), cheap clusters
with Lpiq undefined (k2), cheap clusters with exactly one center of L in IRε

i zIR
p1´εqε
i (k3),

cheap clusters with exactly one center of L in IRp1´εqi (k4), and cheap clusters with at least
two centers of L in IRε

i (k5). Since L and C both have k clusters and the inner rings of
cheap clusters are disjoint (Lemma 4.7), we have k5 ď k1 ` k2. By Lemma 4.8, we have
k1 ď ε´3β´1.

We now bound the number k2 of cheap clusters such that Lpiq is undefined. Consider
a cheap cluster Ci Ď CzZ1 such that at least a p1 ´ εq fraction of the clients of IRε2

i are
served in L by some centers that are either in IRε

i zIR
p1´εqε
i or not in IRε

i . By the triangular
inequality, the cost for any client c in IRε2

i is at least pp1 ´ εqε ´ ε2qβOPT{|Ci|. Since
ε ď 1{2, it is at least εβOPT{p4|Ci|q. Since at least p1 ´ εq|IRε2

i | clients of IRε2

i are
served by centers that are not in IRε

i , the total cost in L induced by those clients is at least
p1´ εq|IRε2

i |εβOPT{p2|Ci|q. By Lemma 4.6, substituting |IRε2

i | yields,

p1´ εq|IRε2

i |εβ
OPT
2|Ci|

ě p1´ εqp1´ εq|Ci|εβ
OPT
2|Ci|

ě εβ
OPT

8

since ε ď 1{2. Now, observe that by Theorem 2.2, the cost ofL is at most a 5 approximation
to the cost of OPT in the worst case. Thus, k2 ď 40pε´1β´1q.

By a similar argument, we can bound the number of clusters k4 such that a p1 ´ εq

fraction the clients in IRε2

i are served by a center not in IRp1´εqεi . We have k4 ď 80pε´1β´1q

since ε ă 1{2. For the remaining clusters, we have that there is a unique center located in
IRp1´εqεi and that IRε

i zIR
p1´εqε
i does not contain any center. Additionally, at least p1´εq|IRε2

i |

clients in IRε2

i are served by a center in IRε
i and so in IRp1´εqεi . Thus, by the triangular

inequality we have that at least p1´ εq|IRε2

i | clients in IRε2

i are served by the unique center
in IRε

i , namely Lpiq. It follows that |Z2| ď pε
´3 ` 120ε´1qβ´1.

We continue with the following lemma, whose proof relies on similar arguments.

Lemma 4.10. There exists a set Z3 Ď CzZ2 of size at most pε´3` 40ε´1qβ´1 such that for
any cluster Cj P CzZ3, the total number of clients a P

Ť

i‰j ∆i, that are served by Lpjq in
L is at most ε|IRε

2

i |.

Proof. Consider a cheap cluster Cj P CzZ2 such that the total number of clients a P ∆i,
for j ‰ i, that are served by Lpjq in L is greater than ε|IRε2

j |. By the triangular inequality
and the definition of pβ, δq-stability, the total cost for each a P ∆i, j ‰ i served by Lpjq is
at least p1´ εqβOPT{|Cj|. Since there are at least ε|IRε2

j | such clients, their total cost is at
least ε|IRε2

j |p1´ εqβOPT{|Cj|. By Lemma 4.6, this is at least

εp1´ εq2|Cj|p1´ εqβ
OPT
|Cj|

ě εβ
OPT

8
,



4.2. Distribution Stability 69

since ε ď 1{2. Recall that by Theorem 2.2, L is a 5-approximation and so there exist at
most 40ε´1β´1 such clusters. By Lemma 4.8, the total number of not cheap clusters is at
most ε´3β´1 and so, there exists a set Z3 of size at most pε´3 ` 40ε´1qβ´1 satisfying the
lemma.

Therefore, the proof of Lemma 4.5 follows from combining Lemmas 4.8,4.9 and 4.10.
We now turn to the cost analysis of the L. Let CpZ˚q “

Ť

CiPZ˚
Ci. For any cluster

Ci P CzZ
˚, let Lpiq be the unique center of L that serves a set of clients Ai Ď IRε2

i such
that |Ai| ě p1´ εq|IRε2

i |. Let L̂ “
Ť

CiPCzZ˚
Lpiq and L̄ “ LzL̂. Define Ā and Â to be the

set of clients that are served in solution L by centers of L̄ and L̂ respectively. Finally, let
ApLpiqq be the set of clients that are served by Lpiq in solution L. Observe that theApLpiqq
partition Â.

Lemma 4.11. We have

´εcostpLq{n`
ÿ

aPĀYCpZ˚q

`a ď
ÿ

aPĀYCpZ˚q

ga ` εpcostpLq ` costpCqq{p1´ εq2.

Proof. Consider the following mixed solutionM “ L̂ Y tc˚i P Z˚ | C˚i P Z˚u. We start
by bounding the cost ofM. For any client a R Ā Y CpZ˚q, the center that serves it in L
belongs toM. Thus its cost is at most `a. Now, for any client a P C̄pZ˚q, the center that
serves it in Z˚ is inM, so its cost is at most ga.

Finally, we evaluate the cost of the clients in ĀzCpZ˚q. Consider such a client a and
let Ci be the cluster it belongs to in solution C. By definition of Ā we have that Ci R Z˚.
Therefore, Lpiq is defined and so we have Lpiq P L̂ ĎM. Hence, the cost of a inM is at
most costpa,Lpiqq. Observe that by the triangular inequality distpa,Lpiqq ď distpa, Ciq `
distpCi,Lpiqq “ ga ` distpCi,Lpiqq.

Now consider a client a1 P Ci X Ai. By the triangular inequality, we have that

costpCi,Lpiqq ď costpCi, a1q ` costpa1,Lpiqq “ ga1 ` `a1 .

Hence,

costpCi,Lpiqq ď
1

|Ci X Ai|

ÿ

a1PCiXAi

pga1 ` `a1q.

It follows that assigning the clients of ĀX Ci to Lpiq induces a cost of at most
ÿ

aPĀXCi

ga `
|Ci X Ā|

|Ci X Ai|

ÿ

a1PCiXAi

pga1 ` `a1q.

By Lemma 4.9 and the definition of Z˚, we have that |Ci X Ā|{|Ci X Ai| ď ε{p1 ´ εq2.
Summing over all clusters Ci R Z˚, we obtain that the cost inM for the clients in Ā X Ci
is at most

ÿ

cPĀzCpZ˚q

ga `
ε

p1´ εq2
pcostpCq ` costpLqq.
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By Lemmas 4.9,4.10, we have that |MzL|`|LzM| ď 3pε´3`40ε´1qβ´1. Thus, by lo-
cal optimality p1´ε{nqcostpLq ď costpMq. Therefore, combining the above observations,
we have

p1´
ε

n
qcostpLq ď

ÿ

aRĀYCpZ˚q

`a `
ÿ

aPĀYCpZ˚q

ga `
ε

p1´ εq2
pcostpCq ` costpLqq

´
ε

n
costpLq `

ÿ

aRĀYCpZ˚q

`a `
ÿ

aPĀYCpZ˚q

`a ď
ÿ

aRĀYCpZ˚q

`a

`
ÿ

aPĀYCpZ˚q

ga `
ε

p1´ εq2
pcostpCq ` costpLqq.

´
ε

n
costpLq `

ÿ

aPĀYCpZ˚q

`a ď
ÿ

aPĀYCpZ˚q

ga `
ε

p1´ εq2
pcostpLq ` costpCqq.

We now turn to evaluate the cost for the clients that are not in Ā Y CpZ˚q, namely
the clients in ÂzCpZ˚q. For any cluster Ci, for any a P Ciz∆i define Reassignpaq to be
the distance from a to the center in L that is the closest to Ci. Before going deeper in the
analysis, we need the following lemma.

Lemma 4.12. For any δ ă 1{2, we have for any Ci,
ÿ

aPCiz∆i

Reassignpaq ď
ÿ

aPCiz∆i

ga `
δ

p1´ δq

ÿ

aPCi

p`a ` gaq.

Proof. Consider a client a P Ciz∆i. Let `1 be the center that serves at least one client of
∆i that is the closest to Ci. Since δ ă 1, `1 is well defined. By the triangular inequality we
have that Reassignpaq ď costpa, `1q ď costpa, Ciq ` costpCi, `1q “ ga ` costpCi, `1q. Then,

ÿ

aPCiz∆i

Reassignpaq ď
ÿ

aPCiz∆i

ga ` |Ciz∆i| ¨ costpCi, `1q.

Now, since `1 is the center that serves at least one client of ∆i that is the closest to
Ci we have that for any a P ∆i, by the triangular inequality costpCi, `1q ď costpCi, aq `
costpa, `1q ď ga ` `a. Therefore,

costpCi, `1q ď
1

|∆i|

ÿ

aP∆i

pga ` `aq.

Combining, we obtain
ÿ

aPCiz∆i

Reassignpaq ď
ÿ

aPCiz∆i

ga `
|Ciz∆i|

|∆i|

ÿ

aP∆i

pga ` `aq

“
ÿ

aPCiz∆i

ga `
δ

p1´ δq

ÿ

aP∆i

pga ` `aq,
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by definition of pβ, δq-stability.

We now partition the clients of cluster Ci P CzZ˚. For any i, let ∆̄i be the set of
clients of Ci that are served in solution L by a center Lpjq for some j ‰ i and Cj P CzZ˚.
Moreover, let ∆̃i “ pApLpiqqXp

Ť

j‰i ∆̄jqqzCpZ
˚q. Finally, define C̃i “ CizpĀY

Ť

j‰i ∆̃jq.

Lemma 4.13. Let Ci be a cluster in CzZ˚. Define the solutionMi “ LztLpiquYtCiu and
denote by mi

c the cost of client c in solutionMi. Then
ÿ

aPA

mi
a ď

ÿ

aRApLpiqqYC̃i

`a`
ÿ

aPC̃i

ga`
ÿ

aP∆̃i

Reassignpaq`
ÿ

aPApLpiqqz
pC̃iY∆̃iq

`a`
ε

p1´ εq
p
ÿ

aPC̃i

ga` `aq.

Proof. For any client a R ApLpiqq Y C̃i, the center that serves it in L belongs toMi. Thus
its cost is at most `a. Moreover, observe that any client a P C̃i can now be served by Ci,
and so its cost is at most ga. For each client a P ∆̃i, since all the centers of L except for
Lpiq are inMi, we bound its cost by Reassignpaq.

Now, we bound the cost of a client a P ApLpiqqzpC̃i Y ∆̃iq. The closest center inMi

for a client a P ApLpiqqzpC̃i Y ∆̃iq is not farther than Ci. By the triangular inequality we
have that the cost of such a client a is at most costpa, Ciq ď costpa,Lpiqq` costpLpiq, Ciq “
`a ` costpLpiq, Ciq, and so

ÿ

aPApLpiqqz
pC̃iY∆̃iq

mi
a ď |ApLpiqqzpC̃i Y ∆̃iq|costpLpiq, Ciq `

ÿ

aPApLpiqqz
pC̃iY∆̃iq

`a. (4.1)

Now, observe that, for any client a P |ApLpiqq X C̃i|, by the triangular inequality we have
that costpLpiq, Ciq ď costpa,Lpiqq ` costpa, Ciq “ `a ` ga. Therefore,

costpLpiq, Ciq ď
1

|ApLpiqq X C̃i|

ÿ

aPApLpiqqXC̃i

p`a ` gaq. (4.2)

Combining Equations 4.1 and 4.2, we have that

ÿ

aPApLpiqqz
pC̃iY∆̃iq

mi
c ď

ÿ

aPApLpiqqz
pC̃iY∆̃iq

`a `
|ApLpiqqzC̃i|
|ApLpiqq X C̃i|

ÿ

aPApLpiqqXC̃i

p`a ` gaq. (4.3)

We now remark that since C̃i is not inZ˚, we have by Lemmas 4.9 and 4.10, |ApLpiqqzC̃i| ď
ε|IRε2

i | and p1´ εq|IRε2

i | ď |ApLpiqqX C̃i|. Thus, combining with Equation 4.3 yields the
lemma.

We can thus prove the following lemma, which concludes the proof.
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Lemma 4.14. There exists a constant η such that

´ε ¨ costpLq `
ÿ

aPÂzCpZ˚q

`a ď
ÿ

aPÂzCpZ˚q

ga ` pηpε`
δ

1´ δ
qqpcostpLq ` costpCqq.

Proof. We consider a clusterCi inCzZ˚. and the solutionMi “ LztLpiquYtCiu. Observe
thatMi and L only differs by Lpiq and Ci. Therefore, by local optimality and Lemma 4.13,
we have that p1´ ε

n
qcostpLiq ď costpMiq. Then,

p1´
ε

n
qcostpLiq ď

ÿ

aRApLpiqqYC̃i

`a `
ÿ

aPC̃i

ga `
ÿ

aPApLpiqqz
pC̃iY∆̃iq

`a

`
ÿ

aP∆̃i

Reassignpaq `
ε

p1´ εq

ÿ

aPCi

pga ` `aq

and so, simplifying

ε

n
costpLiq `

ÿ

aPC̃i

`a `
ÿ

aP∆̃i

`a ď
ÿ

aPC̃i

ga `
ÿ

aP∆̃i

Reassignpaq `
ε

p1´ εq

ÿ

aPCi

pga ` `aq

We now apply this analysis to each cluster C̃i P CzZ˚. Summing over all clusters C̃i P
CzZ˚, we obtain,

´k
ε

n
costpLq`

|CzZ˚|
ÿ

i“1

¨

˝

ÿ

aPC̃i

`a `
ÿ

aP∆̃i

`a

˛

‚ď

|CzZ˚|
ÿ

i“1

¨

˝

ÿ

aPC̃i

ga `
ÿ

aP∆̃i

Reassignpcq

˛

‚`
ε

p1´ εq
pcostpLq ` costpCqq

By Lemma 4.12 and the definition of C̃i,

´k
ε

n
costpLq`

|CzZ˚|
ÿ

i“1

ÿ

aPCiXÂ

`a ď

|CzZ˚|
ÿ

i“1

ÿ

aPCiXÂ

ga`p
ε

p1´ εq
`

δ

p1´ δq
qpcostpLq`costpCqq.

Therefore, ´εcostpLq `
ÿ

cPÂzCpZ˚q

`a ď
ÿ

aPÂzCpZ˚q

ga ` pηpε`
δ

1´ δ
qqpcostpLq ` costpCqq,

for some constant η and any δ ă 1{2.

The proof of Theorem 4.3 follows from observing that Ā Y Â “ A and Ā X Â “ H
and summing the equations from Lemmas 4.11 and 4.14.
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4.3 Euclidean Distribution Stability

In this section we show how to reduce the Euclidean problem to the discrete metric one.
Our analysis is focused on the k-means problem, however we note that the discretization
works for all values of cost “ distp, where the dependency on p grows exponentially. For
constant p, we obtain polynomial sized candidate solution sets in polynomial time. For
k-means itself, we could alternatively combine Matousek’s approximate centroid set [138]
with the Johnson Lindenstrauss lemma and avoid the following construction; however this
would only work for optimal distribution stable clusterings and the proof Theorem 1.10
requires it to hold for non-optimal clusterings as well.

First, we describe a discretization procedure. It will be important to us that the candidate
solution preserves (1) the cost of any given set of centers and (2) distribution stability.

For a set of points P , a set of points Nε is an ε-net of P if for every point x P P there
exists some point y P Nε with ||x ´ y|| ď ε. It is well known that for unit Euclidean ball
of dimension d, there exists an ε-net of cardinality p1` 2{εqd, see for instance Pisier [154].
We will use such ε-nets in our discretization.

Lemma 4.15. Let A be a set of n points in d-dimensional Euclidean space and let β, ε ą 0

with minpβ, ε,
a

7´ 4
?

2 ´ 1q ą 2η ą 0 be constants. Suppose there exists a clustering
C “ tC1, . . . , Cku with centers S “ tc1, . . . cku such that

1. costpC, Sq “
řk
i“1

ř

xPCi
||x ´ ci||

2 is a constant approximation to the optimum
clustering and

2. C is β-distribution stable.

Then there exists a discretization D of the solution space such that there exists a subset
S 1 “ tc11, . . . c

1
ku Ă D of size k with

1.
řk
i“1

ř

xPCi
||x´ c1i||

2 ď p1` εq ¨ costpC, Sq and

2. C with centers S 1 is β{2-distribution stable.

The discretization consists of Opn ¨ log n ¨ ηd`2q many points.

Proof. Let OPT being the cost of an optimal k-means clustering. Define an exponential
sequence to the base of p1` ηq starting at pη ¨ OPT

n
q and ending at pn ¨OPTq. It is easy to see

that the sequence contains t “ log1`ηpn
2{ηq P Opη´1plog n ` logp1{ηqq many elements.

For each point p P A, define Bpp, `iq as the d-dimensional ball centered at p with radius
b

p1` ηqi ¨ η ¨ OPT
n

. We cover the ball Bpp, `iq with an η{8 ¨ `i net Nε{8pp, `iq. As the set
of candidate centers, we let D “ YpPA Y

t
i“0 Nη{8pp, `iq. Clearly, |D| P Opn ¨ log n ¨ p1 `

16{ηqd`2q.



74 Chapter 4. Beyond Separators: Local Search for Clustering in Stable Instances

Now for each ci P S, set c1i “ argmin
qPD

||q ´ ci||. We will show that S 1 “ tc11, . . . c
1
ku

satisfies the two conditions of the lemma.
For (1), we first consider the points p with ||p´ ci|| ď

b

ε ¨ OPT
n

. Then there exists a c1i
such that ||p ´ c1i||

2 ď η2{64 ¨ εOPT
n

and summing up over all such points, we have a total
contribution to the objective value of at most η2 ¨ ε{64 ¨ OPT ď η3{64 ¨ OPT.

Now consider the remaining points. Since the costpC, Sq is a constant approximation,

the center ci of each point p satisfies
b

p1` ηqi ¨ η ¨ OPT
n
ď ||ci´p|| ď

b

p1` ηqi`1 ¨ η ¨ OPT
n

for some i P t0, . . . tu. Then there exists some point q P Nη{8pp, `i`1q with ||q ´ ci|| ď

η{¨
b

p1` ηqi`1 ¨ η ¨ OPT
n
ď η{8 ¨

?
1` η||p´ci|| ď η{4||p´ci||.We then have ||p´c1i||

2 ď

p1 ` η{4q2||p ´ ci||
2. Summing up over both cases, we have a total cost of at most

η3{64 ¨ OPT` p1` η{4q2 ¨ costpC, S 1q ď p1` ηq ¨ costpC, S 1q ď p1` εq ¨ costpC, S 1q.
To show (2), let us consider some point p R Cj with ||p ´ cj||

2 ą β ¨ OPT
|Cj |

. Since

β ¨ OPT
|Cj |

ě 2η ¨ OPT
n

, there exists a point q and an i P t0, . . . tu such that
b

β
1`η

¨ OPT
n
ď

||ci´q|| ď
b

β ¨ p1` ηq ¨ ε ¨ OPT
n

. Then ||c1j´cj|| ď η ¨p1`ηq
b

β ¨ p1` ηq ¨ OPT
n

. Similarly

to above, the point c1j satisfies ||p ´ c1j||
2 ě p||p ´ cj|| ´ ||cj ´ c1j||q

2 ě p

b

β ¨ OPT
|Cj |

´
b

β ¨ ηp1` ηq ¨ OPT
n
q2 ě p1 ´ ηp1 ` ηqqβ ¨ OPT

|Cj |
ą β ¨ OPT

|Cj |
where the last inequality holds

for any η ă 1
2
¨ p
a

7´ 4
?

2´ 1q.

To reduce the dependency on the dimension, we combine this statement with the semi-
nal theorem originally due to Johnson and Lindenstrauss [110].

Lemma 4.16 (Johnson-Lindenstrauss lemma). For any set of n points N in d-dimensional
Euclidean space and any 0 ă ε ă 1{2, there exists a distribution F over linear maps
f : `d2 Ñ `m2 with m P Opε´2 log nq such that

Pf„F r@x, y P N, p1´ εq||x´ y|| ď ||fpxq ´ fpyq|| ď p1` εq||x´ y||s ě
2

3
.

It is easy to see that Johnson-Lindenstrauss type embeddings preserve the Euclidean
k-means cost of any clustering, as the cost of any clustering can be written in terms of
pairwise distances (see also Fact 4.18 in Section 4.4). Since the distribution over linear
maps F can be chosen obliviously with respect to the points, this extends to distribution
stability of a set of k candidate centers as well.

Combining Lemmas 4.16 and 4.15 gives us the following corollary.

Corollary 4.17. LetA be a set of points in d-dimensional Euclidean space with a clustering
C “ tC1, . . . Cku and centers S “ tc1, . . . cku such that C is β-perturbation stable. Then
there exists a pA,F, || ¨ ||2, kq-clustering instance with clients A, npolypε´1

q centers F and a
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subset S 1 Ă F YA of k centers such that C and S 1 is Opβq stable and the cost of clustering
A with S 1 is at most p1` εq times the cost of clustering A with S.

Remark. This procedure can be adapted to work for general powers of cost functions. For
Lemma 4.15, we simply rescale η. The Johnson-Lindenstrauss lemma can also be applied
in these settings, at a slightly worse target dimension ofOppp`1q2 logppp`1q{εqε´3 log nq,
see Kerber and Raghvendra [115].

4.4 Spectral Separability
In this Section we will study the spectral separability condition for the Euclidean k-means
problem. Our main result will be a proof of Theorem 1.10. The algorithm we consider is
as follows (Algorithm 4).

Algorithm 4 Project and local search

1: Project points A onto the best rank k{ε subspace
2: Embed points into a random subspace of dimension Opε´2 log nq
3: Compute candidate centers (Corollary 4.17)
4: local search(Θpε´4q)
5: Output clustering

We first recall the basic notions and definitions for Euclidean k-means. In this section,
let A P Rnˆd be a matrix representing set of points in d-dimensional Euclidean space,
where the row Ai contains the coordinates of the ith point. The singular value decom-
position is defined as A “ UΣV T , where U P Rnˆd and V P Rdˆd are orthogonal and
Σ P Rdˆd is a diagonal matrix containing the singular values where per convention the
singular values are given in descending order, i.e. Σ1,1 “ σ1 ě Σ2,2 “ σ2 ě . . .Σd,d “ σd.

Denote the Euclidean norm of a d-dimensional vector x by ||x|| “
b

řd
i“1 x

2
i . The spectral

norm and Frobenius norm are defined as ||A||2 “ σ1 and ||A||F “
b

řd
i“1 σ

2
i , respectively.

The best rank k approximation min
rankpXq“k

||A ´ X||F is given via Ak “ UkΣV
T “

UΣkV
T “ UΣV T

k , where Uk, Σk and V T
k consist of the first k columns of U , Σ and

V T , respectively, and are zero otherwise. The best rank k approximation also minimizes
the spectral norm, that is ||A´Ak||2 “ σk`1 is minimal among all matrices of rank k. The
following fact is well known throughout k-means literature and will be used frequently
throughout this section.

Fact 4.18. Let A be a set of points in Euclidean space and denote by cpAq “ 1
|A|

ř

xPA x
the centroid of A. Then the 1-means cost of any candidate center c can be decomposed via

ÿ

xPA

||x´ c||2 “
ÿ

xPA

||x´ cpAq||2 ` |A| ¨ ||cpAq ´ c||2
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and
ÿ

xPA

||x´ cpAq||2 “
1

2 ¨ |A|

ÿ

xPA

ÿ

yPA

||x´ y||2.

Note that the centroid is the optimal 1-means center of A. For a clustering C “

tC1, . . . Cku of A with centers S “ tc1, . . . cku, the cost is then
řk
i“1

ř

pPCi
||p ´ ci||

2.
Further, if ci “ 1

|Ci|

ř

pPCi
p, we can rewrite the objective function in matrix form by as-

sociating the ith point with the ith row of some matrix A and using the cluster matrix

X P Rnˆk with Xi,j “

#

1?
|C˚j |

if Ai P C˚j

0 else
to denote membership. Note that XTX “ I ,

i.e. X is an orthogonal projection and that ||A ´ XXTA||2F is the cost of the optimal
k-means clustering. k-means is therefore a constrained rank k-approximation problem.

We first restate the separation condition.

Definition 4.19 (Spectral Separation). Let A be a set of points and let tC1, . . . Cku be a
clustering of A with centers tc1, . . . cku. Denote by C an n ˆ d matrix such that Ci “
argmin
jPt1,...,ku

||Ai´ cj||
2. Then tC1, . . . Cku is γ spectrally separated, if for any pair of centers ci

and cj the following condition holds:

||ci ´ cj|| ě γ ¨

˜

1
a

|Ci|
`

1
a

|Cj|

¸

||A´ C||2.

The following crucial lemma relates spectral separation and distribution stability.

Lemma 4.20. For a point set A, let C “ tC1, . . . , Cku be an optimal clustering with
centers S “ tc1, . . . , cku associated clustering matrix X that is at least γ ¨

?
k spectrally

separated, where γ ą 3. For ε ą 0, let Am be the best rank m “ k{ε approximation of A.
Then there exists a clustering K “ tC 11, . . . C

1
2u and a set of centers Sk, such that

1. the cost of clustering Am with centers Sk via the assignment of K is less than ||Am´
XXTAm||

2
F and

2. pK,Skq is Ωppγ ´ 3q2 ¨ εq-distribution stable.

We note that this lemma would also allow us to use the PTAS of Awasthi et al. [17].
Before giving the proof, we outline how Lemma 4.20 helps us prove Theorem 1.10. We
first notice that if the rank of A is of order k, then elementary bounds on matrix norm show
that spectral separability implies distribution stability. We aim to combine this observation
with the following theorem due to Cohen et al. [59]. Informally, it states that for every
rank k approximation, (an in particular for every constrained rank k approximation such as
k-means clustering), projecting to the best rank k{ε subspace is cost-preserving.
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Theorem 4.21 (Theorem 7 of [59]). For anyA P Rnˆd, letA1 be the rank rk{εs-approxima-
tion of A. Then there exists some constant c such that for any rank k orthogonal projection
P ,

||A´ PA||2F ď ||A
1
´ PA1||2F `

minpn,dq
ÿ

i“r k
ε

s`1

σ2
i ď p1` εq||A´ PA||

2
F .

The combination of the low rank case and this theorem is not trivial as points may
be closer to a wrong center after projecting, see also Figure 4.2. Lemma 4.20 determines
the existence of a clustering whose cost for the projected points Am is at most the cost of
C˚. Moreover, this clustering has constant distribution stability as well which, combined
with the results from Section 4.3, allows us to use Local Search. Given that we can find a
clustering with cost at most p1 ` εq ¨ ||Am ´ XXTAm||

2
F , Theorem 4.21 implies that we

will have a p1` εq2-approximation overall.
To prove the lemma, we will require the following steps:

• A lower bound on the distance of the projected centers ||ciVmV T
m ´ cjVmV

T
m || «

||ci ´ cj||.

• Find a clusteringK with centers S˚m “ tc1VmV
T
m , . . . , c

˚
kVmV

T
m u ofAm with cost less

than ||Am ´XXTAm||
2
F .

• Show that in a well-defined sense, K and C˚ agree on a large fraction of points.

• For any point x P Ki, show that the distance of x to any center not associated with
Ki is large.

We first require a technical statement.

Lemma 4.22. For a point set A, let C “ tC1, . . . Cku be a clustering with associated
clustering matrix X and let A1 and A2 be optimal low rank approximations where without
loss of generality k ď rankpA1q ă rankpA2q. Then for each cluster Ci

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

|Ci|

ÿ

jPCi

`

A2j ´ A
1
j

˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

d

k

|Ci|
¨ ||A´XXTA||2.

Proof. By Fact 4.18 |Ci|¨|| 1
|Ci|

ř

jPCi
pA2i´A

1
iq||

2
2 is, for a set of point indexesCi, the cost of

moving the centroid of the cluster computed on A2 to the centroid of the cluster computed
on A1. For a clustering matrix X , ||XXTA1 ´XXTA1||2F is the sum of squared distances
of moving the centroids computed on the point set A2 to the centroids computed on A1. We
then have
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ci

cmi

cj

cmj

γp∆i `∆jq

p

∆i

∆j

Figure 4.2: Despite the centroids of each cluster being close after computing the best rank
m approximation, the projection of a point p to the line connecting the centroid of clusterCi
and Cj can change after computing the best rank m approximation. In this case ||p´ cj|| ă
||p´ ci|| and ||p´ cmi || ă ||p´ c

m
j ||. (Here ∆i “

b

k
|Ci|
||A´XXTA||2.)
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|Ci| ¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

|Ci|

ÿ

jPCi

pA2j ´ A
1
jq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

2

ď ||XXTA2 ´XXTA1||2F ď ||X||
2
F ¨ ||A

2
´ A1||22

ď k ¨ σ2
k`1 ď k ¨ ||A´XXTA||22.

Proof of Lemma 4.20. For any point p associated with some row of A, let pm “ pVmV
T
m be

the corresponding row in Am. Similarly, for some cluster Ci, denote the center in A by ci
and the center in Am by cmi . Extend these notion analogously for projections pk and cki to
the span of the best rank k approximation Ak.

We have for any m ě k i ‰ j

||cmi ´ c
m
j || ě ||ci ´ cj|| ´ ||ci ´ c

m
i || ´ ||cj ´ c

m
j ||

ě γ ¨

˜

1
?
Ci
`

1
a

|Cj|

¸

?
k||A´XXTA||2

´
1
?
Ci

?
k||A´XXTA||2 ´

1
a

|Cj|

?
k||A´XXTA||2

“ pγ ´ 1q ¨

˜

1
?
Ci
`

1
a

|Cj|

¸

?
k||A´XXTA||2, (4.4)

where the second inequality follows from Lemma 4.22.
In the following, let ∆i “

?
k?
|Ci|
||A ´ XXTA||2. We will now construct our target

clustering K. Note that we require this clustering (and its properties) only for the analysis.
We distinguish between the following three cases.

Case 1: p P Ci and cmi “ argmin
jPt1,...,ku

||pm ´ cj||:

These points remain assigned to cmi . The distance between pm and a different center
cmj is at least 1

2
||cmi ´ c

m
j || ě

γ´1
2
εp∆i `∆jq due to Equation 4.4.

Case 2: p P Ci, cmi ‰ argmin
jPt1,...,ku

||pm ´ cj||, and cki ‰ argmin
jPt1,...,ku

||pk ´ ckj ||:

These points will get reassigned to their closest center.

The distance between pm and a different center cmj is at least 1
2
||cmi ´c

m
j || ě

γ´1
2
εp∆i`

∆jq due to Equation 4.4.
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Case 3: p P Ci, cmi ‰ argmin
jPt1,...,ku

||pm ´ cmj ||, and cki “ argmin
jPt1,...,ku

||pk ´ ckj ||:

We assign pm to cmi at the cost of a slightly weaker movement bound on the distance
between pm and cmj . Due to orthogonality of V , we have for m ą k, pVm´VkqTVk “
V T
k pVm ´ Vkq “ 0. Hence VmV T

mVk “ VmV
T
k Vk ` VmpVm ´ Vkq

TVk “ VkV
T
k Vk `

pVm ´ VkqV
T
k Vk “ VkV

T
k Vk “ Vk. Then pk “ pVkV

T
k “ pVmV

T
mVkV

T
k “ pmVkV

T
k .

Further, ||pk ´ ckj || ě
1
2
||ckj ´ cki || ě

γ´1
2
p∆i ` ∆jq due to Equation 4.4. Then the

distance between pm and a different center cmj is at least

||pm ´ cmj || ě ||pm ´ ckj || ´ ||c
m
j ´ c

k
j ||

“

b

||pm ´ pk||2 ` ||pk ´ ckj ||
2 ´ ||cmj ´ c

k
j ||

ě ||pk ´ ckj || ´∆j ě
γ ´ 3

2
p∆i `∆jq,

where the equality follows from orthogonality and the second to last inequality fol-
lows from Lemma 4.22.

Now, given the centers tcm1 , . . . c
m
k u, we obtain a center matrix MK where the ith row

of MK is the center according to the assignment of above. Since both clusterings use
the same centers but K improves locally on the assignments, we have ||Am ´MK ||

2
F ď

||Am ´ XXTAm||
2
F , which proves the first statement of the lemma. Additionally, due to

the fact that Am ´XXTAm has rank m “ k{ε, we have

||Am ´MK ||
2
F ď ||Am ´XX

TAm||
2
F ď m ¨ ||Am ´XX

TAm||
2
2 ď k{ε ¨ ||A´XXTA||2F

(4.5)
To ensure stability, we will show that for each element of K there exists an element of

C, such that both clusters agree on a large fraction of points. This can be proven by using
techniques from Awasthi and Sheffet [20] (Theorem 3.1) and Kumar and Kannan [126]
(Theorem 5.4), which we repeat for completeness.

Lemma 4.23. Let K “ tC 11, . . . C
1
ku and C “ tC1, . . . Cku be defined as above. Then there

exists a bijection b : C Ñ K such that for any i P ti, . . . , ku

ˆ

1´
32

pγ ´ 1q2

˙

|Ci| ď bp|Ci|q ď

ˆ

1`
32

pγ ´ 1q2

˙

|Ci|.

Proof. Denote by TiÑj the set of points from Ci such that ||cki ´ p
k|| ą ||ckj ´ p

k||. We first
note that ||Ak ´XXTA||2F ď 2k ¨ ||Ak ´XX

TA||22 which is at most

2k ¨
`

||A´ Ak||2 ` ||A´XX
TA||2

˘2
ď 8k ¨ ||A´XXTA||22 ď 8 ¨ |Ci| ¨∆

2
i
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for any i P t1, . . . , ku. The distance

||pk ´ cki || ě
1

2
||cki ´ c

k
j || ě

γ ´ 1

2
¨

˜

1
?
Ci
`

1
a

|Cj|

¸

?
k||A´XXTA||22.

Assigning these points to cki , we can bound the total number of points added to and sub-
tracted from cluster Cj by observing

∆2
j

ÿ

i‰j

|TiÑj| ď
ÿ

i‰j

|TiÑj| ¨

ˆ

γ ´ 1

2

˙2

¨ p∆i `∆jq
2
ď ||Ak ´XX

TA||2F ď 8 ¨ |Cj| ¨∆
2
j

∆2
j

ÿ

i‰j

|TjÑi| ď
ÿ

j‰i

|TjÑi| ¨

ˆ

γ ´ 1

2

˙2

¨ p∆i `∆jq
2
ď ||Ak ´XX

TA||2F ď 8 ¨ |Cj| ¨∆
2
j .

Therefore, the cluster sizes are up to some multiplicative factor of
´

1˘ 32
pγ´1q2

¯

identical.

We now have for each point pm P C 1i a minimum cost of which is at least

||pm ´ cmj ||
2
ě

˜

γ ´ 3

2

˜

1
a

|Ci|
`

1
a

|Cj|

¸

?
k||A´XXTA||2

¸2

ě

¨

˚

˝

γ ´ 3

2

¨

˚

˝

g

f

f

e

1
´

1` 32
pγ´1q2

¯

|C 1i|
`

g

f

f

e

1
´

1` 32
pγ´1q2

¯

|C 1j|

˛

‹

‚

?
k||A´XXTA||2

˛

‹

‚

2

ě
4pγ ´ 3q2

81
ε
||Am ´MK ||

2
F

|C 1j|

where the first inequality holds due to Case 3, the second inequality follows from Lem-
ma 4.23 and the last inequality follows from γ ą 3 and Equation 4.5. This ensures that the
distribution stability condition is satisfied.

Proof of Theorem 1.10
Proof. Given the optimal clustering C˚ of A with clustering matrix X , Lemma 4.20 guar-
antees the existence of a clustering K with center matrix MK such that ||Am ´MK ||

2
F ď

||Am ´ XXTAm|| and that C has constant distribution stability. If ||Am ´MK ||
2
F is not

a constant factor approximation, we are already done, as Local Search is guaranteed to
find a constant factor approximation. Otherwise due to Corollary 4.17 (Section 4.3, there
exists a discretization pAm, F, || ¨ ||2, kq of pAm,Rd, || ¨ ||2, kq such that the clustering C
of the first instance has at most p1 ` εq times the cost of C in the second instance and
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such that C has constant distribution stability. By Theorem 1.5, Local Search with appro-
priate (but constant) neighborhood size will find a clustering C 1 with cost at most p1 ` εq
times the cost of K in pAm, F, || ¨ ||2, kq. Let Y be the clustering matrix of C 1. We then
have ||Am ´ Y Y TAm||

2
F ` ||A ´ Am||

2
F ď p1 ` εq2||Am ´ MK ||

2
F ` ||A ´ Am||

2
F ď

p1`εq2||Am´XX
TAm||

2
F `||A´Am||

2
F ď p1`εq

3||A´XXTA||2F due to Theorem 4.21.
Rescaling ε completes the proof.



CHAPTER 5

Beyond Separators: Clustering in Data Streams

In this chapter, we focus on the sliding window model and describe two algorithms, for the
diameter and k-center problems.

In Section 5.1 we prove the following theorem.

Theorem 1.11. Given a set of points A with aspect ratio α, there exists an algorithm
computing a p3` εq-approximate solution for the metric diameter problem storing at most
at most Opε´1 ¨ logαq points in memory. The update time is Opε´1 logαq.

Section 5.2 is dedicated to the proof of the following theorem.

Theorem 1.12. Given a set of pointsAwith aspect ratio α, there exists a p6`εq-approximation
algorithm for the metric k-center problem storing at most Oppk ` 1qε´1 logpαqq points in
memory. The update time is Opk3ε´1 logαq.

We remark that logα is a very natural dependency: the distance between two points has
to be encoded using at least logα bits and so, any algorithm has to store this amount of bits
in its temporary memory. This was made more formal by Feigenbaum et al. [82] who gave
a space lower bound of Ωplogαq for any multiplicative approximation factor. We provide
the following better lower bounds for the problem in Section 5.3.

Theorem 5.1. For windows of size W , any deterministic sliding window algorithm out-
putting a solution of cost greater than or equal to 1

3
OPT for the distance oracle metric

diameter problem with constant aspect ratio requires Ωp
?
W q memory.

Theorem 5.2. Any randomized sliding window algorithm achieving an approximation fac-
tor less than 4 with probability bounded away from 1

2
for the Window Metric Distance

Oracle 2-Center problem with constant aspect ratio requires Ωp 3
?
W q memory.
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Preliminaries on data streams.

We first provide some intuition about the model. Let (A, dist) be a metric space where A
is a set of points and dist : A ˆ A ÞÑ R` is a distance function. A stream is a (potentially
infinite) sequence of points from the metric space A (note that a point can appear multiple
times in the stream). The sliding window of size N contains the most recent N elements
of the stream.

We define the aspect ratio α “
maxp,qPA distpp,qq
minp‰qPA distpp,qq . To query the distance between two

points p and q, we invoke a distance oracle distpp, qq. We assume that the oracle can ac-
cessed only for those points we currently keep in memory and that the oracle itself requires
no additional space.

We now turn to definitions of the two problems studied in this chapter. We adapt the
definition of k-center problem given in Chapter A to the sliding window context.

Definition 5.3 (Diameter in the sliding window model). Given a stream of a metric space
σ1, σ2, . . ., xdisttytą0, the sliding window diameter problem asks at any time t, for s1, s2 P

Wt that maximize disttps1, s2q.

Definition 5.4 (k-center in the sliding window model). Given a stream of a metric space
σ1, σ2, . . ., xdisttytą0, and a non-negative integer k, the sliding window k-center problem
asks at any time t, for a set of centers S ĎWt, of cardinality at most k, that minimizes

costpSq “ max
xPWt

min
cPS

disttpx, cq.

5.1 The Diameter Problem

For a given estimate γ of the diameter, our algorithm for the metric diameter problem
maintains two witness points x, y (x appearing before y in the stream) at distance greater
than γ together with a point q that has a certain degree of centrality among the points that
are more recent that x. More formally, all points inserted after x up to the insertion time
of q (including q) will be proven to have distance at most 2γ from one another and points
inserted after q will have distance at most γ from q. Thus, the diameter is at most 3γ.

Specifically, Algorithm 5 aims at maintaining a certificate for the diameter consisting
of two points x and y such that distpx, yq ą γ and x inserted before y. In addition, we also
store the point q submitted immediately prior to y and the most recent point. When a new
point arrives, we test whether, based on the points we currently keep in memory, we can
produce two points that were both inserted after x with distance more than γ. If we find
such a pair, we update the points accordingly.

Our algorithm is independent of the size of the window. For any request asking what
is the diameter of the window of size W , it either returns two points that are still in the
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Algorithm 5 Sliding Window Algorithm for pγ, 3γq-gap Diameter
1: Initialization:
2: xÐ first point of the stream
3: y Ð first point σt0 of the stream s.t distpσt0 , xq ą γ
4: if distpσt0´1, yq ą γ then
5: xÐ σt0´1

6:
7: Notation: q last point inserted before y
8: Main Algorithm:
9: Upon reception of a new point σt (t ą t0):

10: if distpσt´1, σtq ą γ then
11: xÐ σt´1

12: y Ð σt
13: else if distpy, σtq ą γ then
14: xÐ y
15: y Ð σt
16: else if distpq, σtq ą γ and q ‰ x then
17: xÐ q
18: y Ð σt

window and at distance greater than γ or, if the oldest of the two has already expired, a
point with a certain degree of centrality.

The properties of our algorithm are summarized by the following invariants.

Lemma 5.5. The following invariants hold at the reception of a new point:

1. distpx, yq ą γ.

2. Any point inserted after x and before q (including q) is at distance at most γ from x.

3. Any point inserted after y is at distance at most γ from y.

4. If q ‰ x, any point inserted after q is at distance at most γ from q.

Proof. Invariant 1 follows directly from the specification of the algorithm. We thus focus
on the proof of Invariants 2, 3, and 4. We proceed by induction on the time t. It is easy to
check that the invariants hold at the end of the initialization step. Assuming all invariants
holds for points x, y, q at time t´ 1 for t ą 1, we will show they hold for x1, y1, q1 at time t.

Suppose first that x did not change. Thus, q did not change. Therefore Invariant 2
holds by the inductive hypothesis. Since q did not change, we have that distpq, σtq ď γ.
Thus, combining this observation with the inductive hypothesis (on Invariant 4) implies
that Invariant 4 holds. Finally, since x did not change, y did not change either and so, we
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have distpσt, yq ď γ. Again, combining this observation with the inductive hypothesis (on
Invariant 3) implies that Invariant 3 holds.

We now assume that x did change upon insertion of σt. Observe that y1 “ σt. Thus,
Invariant 3 is vacuously true. Moreover, if x1 “ σt´1, then Algorithm 5 assigns σt´1 to q.
Thus, Invariants 2 and 4 hold by observing that q “ x.

Otherwise, q1 “ σt´1 and so, we have either x1 “ y or x1 “ q. Assume first that we
have x1 “ y. Thus, by the inductive hypothesis on Invariant 3, we have that for each point
σi inserted after y and strictly before σt, distpy, σiq ď γ. Thus, after assigning x1 “ y and
q1 “ σt´1, Invariant 2 holds. Moreover, in this case we have distpσt´1, σtq ď γ, and so
Invariant 4 holds.

Assume now that we have x1 “ q. This implies that we had q ‰ x (before insertion of
σt). Thus, by the inductive hypothesis on Invariant 4, we have that for each point σi inserted
after q and strictly before σt, distpq, σiq ď γ. Thus, after assigning x1 “ q and q1 “ σt´1,
Invariant 2 holds. In this case again we have distpσt´1, σtq ď γ, and so Invariant 4 holds.

This completes the proof that all the invariants are satisfied at time t, and the lemma
follows.

We can thus turn to the proof of the approximation guarantee of the main theorem.

Proof of Theorem 1.11. Our algorithm for the diameter problem is Algorithm 6. It mainly
consists in running several instances of Algorithm 5 for different values of γ.

Algorithm 6 Sliding Window Approximation Algorithm for the Diameter. At each time
t ą 1, returns a pair of points whose distance is within a factor of 1{3 ´ ε of the diameter
of the window.

1: Let γi “ p1` εqi minp‰qPA distpp, qq
2: In parallel, run Algorithm 5(γi), for i “ 0, . . . , log1`ε α, and
3: Let xi, yi, be the variables corresponding to variables x, y of Algorithm 5(γi), and
4: In addititon, at each time t, find i˚ “ maxti | xi, yi PWtu

5: Return xi˚ , yi˚

We first argue about the approximation guarantee of Algorithm 6. Observe that by
Lemma 5.5, Invariant 1 holds and so, distpx˚i , y

˚
i q ą γ. We now claim that there are no two

points at distance at least 3p1` εqi
˚`1 minp‰qPA distpp, qq in the current window.

Consider Algorithm 5(γi˚`1). Let x, y, q denote xi˚`1, yi
˚`1 and qi˚`1 respectively. By

Lemma 5.5, Invariants 2, 3, and 4 hold. Since i˚ is maximum, we have that x RWt.
First, if q P Wt, we have q ‰ x and by Invariant 4, any point inserted after q is at

distance at most γ from q and so, by the triangular inequality at most 2γ from each other.
Now, since x has expired, the only points in the window that were inserted before q were
inserted after x. Thus, by Invariant 2 and the triangular inequality, we have that all those
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points are at distance at most 2γ from one another and at most 2γ from q. Thus there are
no two points at distance greater than 3γ in the window.

Second, if q R Wt, then recall that q is the predecessor of y in the stream and thus
Invariant 3 implies that all the points inserted strictly after q and before σt are at distance at
most γ from y. Thus, there are at distance at most 2γ from each other. Again, we conclude
that there are no two points at distance greater than 3γ in the window.

This concludes the proof of the approximation guarantee of our Algorithm.
The memory usage of the algorithm consists of 4 points per instance of Algorithm 5

and log1`ε α “
lnα

lnp1`εq
ď 2

ε
lnα instances.

5.2 The k-Center Problem
This section is dedicated to the proof of the following theorem.

Theorem 1.12. Given a set of pointsAwith aspect ratio α, there exists a p6`εq-approximation
algorithm for the metric k-center problem storing at most Oppk ` 1qε´1 logpαqq points in
memory. The update time is Opk3ε´1 logαq.

The algorithm is similar to the algorithm we proposed in the previous section; It can be
seen as a generalization of the diameter algorithm. The idea is again to “estimate” the value
of the optimal solution. For a given estimate γ of the k-center solution, our algorithm for
the metric diameter problem either produces k ` 1 witness points at distance greater than
2γ – this ensures that there is no solution with k centers of cost γ – or a set of points that
have a certain degree of centrality among the points in the current window. However, the
algorithm is a bit more technical than the one for the diameter.

We introduce the Time To Live value of a point p: Upon insertion TTLppq is set to the
window size N and with each subsequently inserted point it is decremented. We say that
p expires if TTLppq “ 0. We extend the common use of TTL to negative numbers to
indicate the number of points submitted after expiration, i.e., TTLppq “ ´10 means that
10 points were submitted after the expiration of p.

A high level description of our algorithm is as follows, see Algorithm 7 for the pseu-
docode.

We maintain a set A of at most k ` 1 attraction points. For each attraction point
a, we maintain the newest point Rpaq within radius 2γ as a representative, i.e. Rpaq “

argmax
p: distpp,aqď2γ

TTLpRpaqq. When an attraction point expires, the representative point remains

in memory. Call the set of representative points whose attraction points expired, the or-
phaned representatives O, and the set of representative points whose attraction points are
still in the current window active representatives R. A new point p may become an attrac-
tion point if its distance is greater than 2γ to any point inA upon insertion. If the cardinality
of A is greater than k, we retain the newest k ` 1 attraction points of A and all points with
a greater TTL than the minimum TTL of A.
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When asked to provide a clustering, we iterate through all estimates and either pro-
vide a counter example, or find a clustering which is then guaranteed to be a 6p1 ` εq-
approximation. Our set of centers C first consists of an arbitrarily chosen point p P A Y
RYO. Thereafter we greedily add any point q P AYRYO with distance distpq, Cq ą 2γ.
If upon termination |C| ą k, we have a certificate for OPT ą γ and move to the next higher
estimate. The smallest estimate with |C| ď k is then guaranteed to be a 6 approximation.

We start by giving the space bound.

Algorithm 7 Sliding Window Algorithm for pγ, 6 ¨ γq-gap k-Center

1: A,R,O ÐH;
2: for all element p of the stream do
3: if q P O expires then
4: O Ð Oztqu;
5: if a P A expires then
6: DELETEATTRACTION(a);
7: INSERT(p);
8: procedure DELETEATTRACTION(a)
9: O Ð O Y tRpaqu;

10: RÐ RztRpaqu;
11: AÐ Aztau;

12: procedure INSERT(p)
13: D Ð ta P A | distpp, aq ď 2 ¨ γu;
14: if D “ H then
15: AÐ AY tpu
16: Rppq Ð p
17: RÐ R Y tRppqu
18: if |A| ą k ` 1 then
19: aold Ð argmin

aPA

TTLpaq;

20: DELETEATTRACTION(aold);
21: if |A| ą k then
22: tÐ min

aPA
TTLpaq;

23: for all q P O do
24: if TTLpqq ă t then
25: O Ð Oztqu;
26: else
27: for all a P D do
28: Exchange Rpaq with p in R;

Lemma 5.6. At any given time, the number of points kept in memory is bounded by at most
3pk ` 1q.

Proof. We number all attraction points we keep in memory via the sequence in which they
arrived, i.e. a1 is the first attraction point, a2 the second, etc. Call this sequence S. Note
that in this sequence a1 also expires before a2.

At any given time, we maintain at most k ` 1 attraction points A and k ` 1 active
representative points R due to lines 18-20 and the subroutine DELETEATTRACTION (lines 8-
11). What remains to be shown is that the number of orphaned representative points O also
never exceeds k ` 1.
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First, we show that TTLpai`k`1q ą TTLpRpaiqq ě TTLpaiq. We distinguish be-
tween two cases. If ai expires, then ai`k`1 gets inserted after ai exits the window, hence
TTLpai`k`1q ą N ` 1` TTLpaiq and TTLpRpaiqq `N ď TTLpaiq. Otherwise, ai gets
deleted via lines 18-20 in the exact same time step in which ai`k`1 got inserted, in which
case the claim also holds.

Now consider any point of time and let j be the maximum index of any attraction point
in S that has expired. By the above reasoning, any representative spawned by aj´pk`1q is
no longer in memory, and the space bounds holds.

Lemma 5.7. Let P be a set of points in a given window, γ ą 0 an estimate of the clustering
cost, A Y R Y O the set of points we currently keep in memory with |A| ď k. Then
max
qPP

distpp,R YOq ď 4γ.

Proof. We note that for any attraction point a, the representative Rpaq has maximum TTL
among all points with distance at most 2γ. When a point p arrives, it has distance at most
2γ to some attraction point (which may be identical to p if we create a new one). Hence, if
Rpaq is still in memory, the claim holds for p.

We now argue that by executing lines 18-25, all points p with distpp,RYOq ą 4γ have
TTLppq ă min

aPA
TTLpaq. If TTLppq ą min

aPA
TTLpaq, then there exists an attraction point

a1 such that distpp, a1q ď 2γ. Then we have TTLpRpa1qq ě TTLppq ą min
aPA

TTLpaq and

distpp,Rpa1qq ď 4γ. Due to lines 24-25, Rpa1q is never deleted until it expires.

Combining these lemmas and using arguments analogous to those of the proof of The-
orem 1.11, we have:

Theorem 1.12. Given a set of points P with aspect ratio α, there exists an algorithm
computing a 6p1 ` εq-approximate solution for the metric k-center problem storing 6pk `
1q lnpαq{εq points. The update time per point is Opk2ε´1 logαq.

Proof. Again define an exponential sequence to the base p1 ` εq and run Algorithm 7 in
parallel for all powers of p1`εq as objective value estimates. The space bound then follows
from Lemma 5.6.

For each estimate γ, we greedily compute a clustering of AYRYO where the pairwise
distance between centers is greater than 2γ. Now consider the smallest estimate γ1 for
which the greedy clustering requires at most k centers C.

We have max
pPAYRYO

distpp, Cq ď 2γ1. We further have for any point q in the current

window max
qPP

distpq, Cq ď max
qPP

distpq, R YOq ` max
pPAYRYO

distpp, Cq ď 4γ1 ` 2γ1 ď 6γ1 due

to Lemma 5.7. Since we have OPT ą γ1

1`ε
, C is a 6p1` εq approximation.



90 Chapter 5. Beyond Separators: Clustering in Data Streams

5.3 Lower bounds

Our lower bounds for the studied problems hold for the metric oracle distance model.
Whenever we wish to know the distance between two points p, q, we have to store the
points in their entirety in order to invoke the oracle. The fundamental assumption used
in the proofs of this section is that the algorithm cannot create new points, unlike, for in-
stance, in Euclidean spaces, where we can store projections, means and similar points. In
particular, this implies that once a point is discarded by the algorithm, it cannot be recalled
by any means at a later date. Without any assumptions as to how the points are encoded,
we measure the space complexity of an algorithm via the number of stored points, rather
than the number of bits. In this model, the space required to store the distance oracle, the
TTL of each point or any other information we might wish to store are not considered. A
similar model can be also found in the paper by Guha [93], where the author was able to
derive a lower bound of Ωpk2q points for any deterministic single-pass streaming algorithm
approximating the cost of the optimal k-center clustering up to a factor 2` 1{k.

We first describe an adversarial input sequence for deterministic algorithms for the
diameter problem and give a proof for deterministic algorithms.

With some modification, these ideas can be extended to the k-center problem and to
randomized algorithm as well. We aim for a lower bound of Ωp

?
W q points for determin-

istic algorithms. We divide the input into
?
W buckets containing

?
W points each. Unless

the distances between two points are further specified, we will set these distances to 1. De-
note the ith bucket byBi and the jth point of bucketBi by pi,j with i, j P t0, . . . ,

?
W ´1u.

The points appear bucket by bucket, that is, pi,j is the pi ¨
?
W ` j ` 1qth input point.

We assume that an algorithm always stores less than
?
W points. Therefore, the algo-

rithm must discard at least one point of bucket Bi before reading the first point of bucket
Bi`1. Let fi be such a discarded point in Bi. To any point from some bucket Bj , j ą i, we
then set the distance to fi to be 2. For the same reason, there is at least one bucket without
any stored points when the pW ` 1qst input point is read. Let Bt be this bucket. We now
introduce the pW ` 1qst input point p that satisfies the distances distpp, pi,jq “ 1 if i ą t,
distpp, pi,jq “ 3 if pi,j “ ft, and distpp, pi,jq “ 2 otherwise.

We proceed to insert copies of p until all points in buckets Bi with i ă t are expired.
Therefore, there is no pair of points in memory with distance larger than 1. The algorithm
can only output two points at distance 1 whereas the true diameter is 3.

Theorem 5.1. For windows of size W , any deterministic sliding window algorithm out-
putting a solution of cost greater than or equal to 1

3
OPT for the distance oracle metric

diameter problem with constant aspect ratio requires Ωp
?
W q memory.

Proof. For the sake of contradiction, we assume that there exists an algorithm ALG that
returns a solution whose cost is a factor 3 from the optimal solution while the algorithm
stores less than

?
W points. We start with the adversarial input sequence by submitting
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B1 B2

. . .

Bi

. . .

B?n

d d d . . . d

B1 B2

Figure 5.1: The lower bound instance. Points of each bucket are inserted one after the other
from bucket B1 to bucket B?W . One of the point fi, in red, of each bucket Bi has to be
“forgotten” by the algorithm upon insertion of the first point of the following bucket. Each
of those “forgotten” point has distance 1 to its predecessor but distance 2 to all the points
of the subsequent buckets. The crux of the argument is that the algorithm cannot know this
since the point is forgotten before the next bucket arrives. Thus this forgotten point looks
similar to the others. Since there are

?
W buckets, all the points of one bucket Bt, in blue,

have to be “forgotten” upon insertion of the first “d” point. Thus, the distance of a “d” point
can be set to 2 to the point of buckets B1, . . . , Bt and to 1 to the other bucket. Additionally
the distance from the “d” points to ft can be set to 3. However, after all the point inserted
before Bt have expired, the algorithm only has points at distance 1 from each other. Thus,
it cannot determine whether the diameter of this instance is 1 or 3.

?
W buckets each containing

?
W points. We denote the ith bucket by Bi and the jth point

of bucket Bi by ai,j with i, j P t0, . . . ,
?
W ´ 1u. Any point of bucket Bi is only read after

all
?
W points of bucket Bi´1 are received. The points within each bucket are at distance 1

from one another.
Since the algorithm stores less than

?
W points, there is at least one point in a bucket

that must be discarded before an point of the next bucket is read. Let fi be such a point for
bucket Bi. The points of bucket Bi have the following distance to all future points:

distpai1,j, ai,lq “

#

2 for all ai1,j “ fi1

1 otherwise

for all i1 ă i.
It is easy to see that the distances satisfy the triangle inequality. Since there are

?
W

buckets and the algorithm stores less than
?
W points, there is at least one bucket for which

all the points are missing. Let Bt be this bucket.
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We now introduce the pW ` 1qst input point a with distances

distpa, ai,jq “

$

’

&

’

%

1 if i ą t

3 if ai,j “ ft

2 otherwise
.

To show that the distances still satisfy the triangle inequality, we first observe that
only distpa, ftq is neither 1 or 2 and thus requires special consideration. Here, we have
3 “ distpa, ftq ď distpa, ai,jq ` distpai,j, ftq “ 1 ` 2 for i ą t, and 3 “ distpa, ftq ď
distpa, ai,jq ` distpai,j, ftq ď 2` 1 for i ď t.

First we note that ft is at distance at least 1 from all the bucketsBi, i ď t so distpa, ftq “
3 satisfies the triangle inequality. Since all the points of buckets Bi1 , i1 ą t are at distance
1 from the points of buckets Bi, i ď t and distance 2 from ft, distpa, ai1,j1q “ 1 satisfies the
triangle inequality as well.

Now, we keep inserting copies of a at distance 1 from one another until all the points
of buckets t1 ă t have expired. Since all the remaining points in memory are a subset of
Ť

t1ątpBt1zft1q plus copies of p, the points in memory are all at distance 1 from one another.
It follows that the algorithm can only output a solution of value 1 whereas the pair pa, ftq
induces a solution of value 3.

We now turn to the k-center lower bound.

Theorem 5.2. Any randomized sliding window algorithm achieving an approximation fac-
tor less than 4 with probability bounded away from 1

2
for the Window Metric Distance

Oracle 2-Center problem with constant aspect ratio requires Ωp 3
?
W q memory.

Proof. The proof uses arguments similar to those given in the proof of Theorem 5.1. Again,
for ease of exposition, we will use a window of size ΘpW q, the theorem then holds by
rescaling W . We first pick a constant ` “ 32. Now, define 8W 1{3 buckets consisting of
128W 2{3 ` ` points each. The points of the ith bucket are at distance 2 from each other.
We iteratively replace one randomly chosen point of the last 128W 2{3 points from bucket

Bi with fi, where distppi,j, pi1,˚q “

#

4 for all pi,j “ fi

2 otherwise
for all points i1 ą i.

We now define ` points p0, . . . , p`´1 whose distances are specified below but we do not
insert them yet. Finally, we randomly choose a bucket t and a point p˚ P tp0, . . . , p`´1u

such that for all pi1 P tp0, . . . , p`´1uztp˚u and point p, we have

distppi1 , pq “

$

’

’

’

&

’

’

’

%

4 if p “ ft

1 p P tp0, . . . , p`´1uztpi1u

2 p P

ˆ

Ť

t1ět

Bt1

˙

ztftu

and distpp˚, pq “

$

&

%

3 if p “ ft

1 p P

ˆ

Ť

t1ět

Bt1

˙

ztftu
.
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Let Tt denote the time at which the first point of Bt is inserted. Note that we do not specify
the distance from the points of tp0, . . . , p`´1u to the buckets Bt2 for t2 ă t, since we
insert copies of the last point of the last bucket in order to make all the points of buckets
0, . . . , t´ 1 expire. Then we insert the points p0, . . . , p`´1.

Several things should be noted about the input. First, all distances obey the triangle
inequality. Second, ft expires after time Tt ` `. And lastly, at any given time from Tt ` `
until ft expires, there exists a solution of cost 1 which consists of p˚ and ft.

By Yao’s minimax principle, it is sufficient to bound the number of points used by any
deterministic algorithm against the above input distribution.

We first bound the probability that the algorithm stores some point fi. Call this event
A. Assuming that the algorithm never stored a point fi1 , the points stored by any future
bucket Bi with i ą i1 are fixed. The probability that fi is one of these points is bounded
by the hypergeometric distribution with population 128W 2{3, W 1{3 samples and 1 success

in both population and sample:
p
128W2{3´1

W1{3´1 q¨p
1
1q

p
128W2{3

W1{3 q
. Then the probability that no fi is stored for

any of the 8W 1{3 buckets can be lower bounded as follows.

1´ PrAs ě

˜

1´

`

128W 2{3´1
W 1{3´1

˘

¨
`

1
1

˘

`

128W 2{3

W 1{3

˘

¸8W 1{3

“

ˆ

1´
W 1{3

128W 2{3

˙8W 1{3

ě 1´
1

16
“

15

16

ô PrAs ď
1

16
.

Now we bound the probability that the algorithm retains any point from bucket t upon
submission, which we call event B. Again, conditioned on the fact that event A does not
hold (A), the buckets from which the algorithm stores at least one point are fixed. The
probability that Bt is among the stored buckets again follows a hypergeometric distribu-
tion with population 8W 1{3, W 1{3 samples and 1 success in both population and sample.

Therefore PrB|As “ p
8W1{3´1

W1{3´1 q¨p
1
1q

p
8W1{3

W1{3 q
“ 1

8
.

Finally, we consider the event that the algorithm does pick p˚ as a center. Let C denote
this event. In order for C to happen, the algorithm has to be able to distinguish between
points of p0, . . . , p`´1 or it has to pick p˚ randomly from p0, . . . , p`´1. The first case is iden-
tical to event B, the second case happens with probability at most 2{`, since the algorithm
can open 2 centers. It follows that PrCs ď PrBs ` 2{`.

If none of the events A, B, or C hold, the algorithm will not output two centers with
approximation factor less than 4, The probability that an algorithm storing W 1{3 points
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achieves this is at most

PrAYB Y Cs ď PrAs ` PrBs ` PrCs ď PrAs ` 2PrBs ` 2{`

“ PrAs ` 2
`

PrB|As ¨ PrAs ` PrB|As ¨ PrAs
˘

` 2{`

ď 3 ¨ PrAs ` 2PrB|As ` 2{` ď
3

16
`

2

8
`

2

32
“

1

2
.



CHAPTER 6

Implementations and Experiments

In this chapter, we provide evidence that local search is competitive in practice. Our the-
oretical trade-off between running time and quality of approximation seems quite pro-
hibitive; for a 3/2-approximation, the running time is at least n8 for 2-dimensional in-
stances. However, Johnson et al. [108] showed that local search for TSP is a competitive
algorithm for both real-world and random instances. Thus, we ask the following natural
question.

How does local search for clustering compare to practical algorithms on real-world and
random instances?

6.1 The Questions
The goal of clustering is to partition data according to similarity. Throughout this thesis, we
model this goal by the k-clustering objective (Definition A.1). Thus, we address the natural
question of the appropriateness of the k-clustering objective (and in particular the k-means
objective) for finding “good” clusters. More precisely, we ask: when is an optimal solution
with respect to the k-means objective a partitioning of the data according to similarity?

To answer this question we consider instances that possess a “natural” partitioning of
the data and compare this clustering to an optimal clustering with respect to the k-means.
We consider the following instances.

• Real instances stemming from machine learning for which the goal is to classify the
input elements into k classes.

• Random Euclidean instances generated from a mixture of k Gaussians for which the
goal is to find the sets of points generated by each of the k Gaussians2.

2Note that this has also been studied as a “learning” problem, see [146] for example.
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We say that a clustering is optimal if its k-means cost is minimum. We define the ground
truth clustering of an instance to be the clustering that we would like to compute. More
precisely, the ground truth clustering of a real instance is the partition of the elements into
the correct classes (see below for a more formal definition) and the ground truth clustering
of a random instance is the family consisting of the k sets of elements generated by the k
Gaussians.

In the following, when we discuss the value of a clustering we always refer to the value
of the clustering with respect to the k-means objective. We thus aim at answering the
following question:

When do the ground truth and optimal clusterings agree?

More precisely, when is the value the ground truth clustering at most 1.05 times the value
of the optimal clustering?

In Chapter 4, we have analyzed three characterizations of the real-world instances. We
have shown that local search is a good heuristic for those instances (see Theorems 1.5,
1.8 and 1.10). In this chapter, we focus on the β-distribution-stability. Theorem 1.5 states
that local search with neighborhood of size nΩpε´3β´1q returns a solution of cost at most
p1` εqOPT. Thus, we ask the following question.

For which values of β are the random and real instances β-distribution-stable?

Finally, we compare local search to Lloyd’s algorithm, a widely-used algorithm in prac-
tice (see Algorithm 8). We focus on the following question.

Is local search a competitive heuristic for random and real-world instances?

Algorithm 8 Lloyd’s algorithm.
1: Input: An instance of k-means
2: S 1 Ð greedy solution to the problem, S ÐH

3: while S ‰ S 1 do
4: S Ð S 1

5: Partition F Ð
A

ta | distpc, aq “ minc1PS distpc1, aqu
E

cPS
(breaking ties arbitrarily)

6: S 1 Ð
Ť

FPF
poptimal center for the elements in F q

7: Output: S
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Related Work
The most prominent experimental work on the analysis of Lloyd algorithm for the k-means
objective is due to Kanungo et al. [111, 112] in 2004. They compare Lloyd algorithm to a
slightly weaker version of local search and different combinations of those algorithms. The
local search algorithm they study is the following. Instead of enumerating all the possible
swaps they only sample a few swaps. They show that this local search algorithm (with
s P t1, 2u) converges much slowly than Lloyd algorithm for real-world datasets stemming
from image compression and consisting of low-dimensional Euclidean instances and for
mixtures of Gaussians. More precisely, they show that after 500 steps (a step is a re-
computation of the clusters in Lloyd’s algorithm and a sampling of a few possible swaps in
local search), local search is worse than Lloyd’s algorithm.

However, the emergence of multicore processors calls for a new study. Indeed, it is
fairly easy to boost the performances of local search using multi-threading. Whereas, be-
cause of its sequential nature, it seems hard to take advantage of multicore processors to
improve the running time of Lloyd algorithm. Note that we only consider multicore pro-
cessors; Researchers have recently come up with variants of Lloyd algorithm for GPUs and
MapReduce environments, see [23] for example.

Technical Aspects
We implemented the Algorithms in C++ and Python. The C++ compiler is g++ 4.6.3.
At each step, the neighborhood of the current solution was explored in parallel: 8 threads
were created by a Python script and each of them correspond to a C++ subprocess that
explores a 1/8 fraction of the space of the neighboring solutions. The best neighboring
solution found by the 8 threads was taken for the next step. For Lloyd’s algorithm we use
the C++ implementation by Kanungo et al. [112] available online [113].

The LP for the linear program was generated via a Python script and solved using the
solver CPLEX [1].

The synthetic data was generated via a Python script using the numpy library [176].
The machines used for the experiments have a processor Intel(R) Core(TM)

i73770 CPU, 3.40GHz with four cores and a total virtual memory of 8GB. The sys-
tem is Ubuntu 12.04.5 LTS.

6.2 Experimental Results

We focus on the k-means objective and we consider real-world and random instances with
ground truth clustering and study under which conditions the value of the solution induced
by the ground truth clustering is close to the value of the optimal clustering with respect to
the k-means objective.
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We approximate the optimal value of the k-means objective using the fractional solution
of a standard LP relaxation for the problem (see Algorithm 9). It thus provides a lower
bound on the value of the optimal solution. We also obtain an upper bound on the optimal
value by running our local search algorithm (Algorithm 2) with s “ 1 and until it reaches a
local optimum. The average ratio between our upper and lower bounds is 1.15. Therefore,
we can estimate the average optimal value within a 1.15 factor. we make use of this estimate
in the following sections to compute the β-distribution-stability of the instance. Note that
the variance for the value of the optimal fractional solution we observe is less than 0.5% of
the value of the optimal solution. Therefore, our estimate of β is quite accurate.

Algorithm 9 Linear relaxation for the k-means problem.
Input: A set of clients A, a set of candidates centers F , a number of centers k, a distance
function dist.

min
ÿ

aPA

ÿ

bPF

xa,b ¨ distpa, bq2

subject to,
ř

bPF yb ď k

@a P A,
ř

bPF xa,b “ 1

@a P A, @b P F, yb ě xa,b

@a P A, @b P F, xa,b ě 0

6.2.1 Real Data
In this section, we focus on four classic real-world datasets with ground truth clustering:
abalone, digits, iris, and movement libras. abalone, iris, and move-
ment libras have been used in various works (see [68, 76, 84, 85, 172] for example)
and are available online at the UCI Machine learning repository [130].

The abalone dataset consists of 8 physical characteristics of all the individuals of a
population of abalones. Each abalone corresponds to a point in a 8-dimensional Euclidean
space. The ground truth clustering consists in partitioning the points according to the age
of the abalones.

The digits dataset consists of 8px-by-8px images of handwritten digits from the
standard machine learning library scikit-learn [153]. Each image is associated to a point
in a 64-dimensional Euclidean space where each pixel corresponds to a coordinate. The
ground truth clustering consists in partitioning the points according to the number depicted
in their corresponding images.

The iris dataset consists of the sepal and petal lengths and widths of all the indi-
viduals of a population of iris plant containing 3 different types of iris plant. Each plant
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is associated to a point in 4-dimensional Euclidean space. The ground truth clustering
consists in partitioning the points according to the type of iris plant of the corresponding
individual.

The Movement libras dataset consists of a set of instances of 15 hand movements
in LIBRAS1. Each instance is a curve that is mapped in a representation with 90 numeric
values representing the coordinates of the movements. The ground truth clustering consists
in partitioning the points according to the type of the movement they correspond to.

Properties Abalone Digits Iris Movement libras

Number of points 636 1000 150 360
Number of clusters 28 10 3 15
Value of ground truth clustering 169.19 938817.0 96.1 780.96
Value of fractional relaxation 4.47 855567.0 83.96 366.34
Value of Algorithm 2 (s “ 1) 4.53 855567.0 83.96 369.65
% of pts correct. class. by Alg. 2 (s “ 1) 17 76.2 90 39
β-stability 1.27e-06 0.0676 0.2185 0.0065

Table 6.1: Properties of the real-world instances with ground truth clustering.

Table 6.1 shows the properties of the four instances.
For the Abalone and Movement libras instances, the values of an optimal solu-

tion is much smaller than the value of the ground truth clustering. Thus, since local search
optimizes with respect to the k-means objective, the clustering output by local search is
far from the ground truth clustering for those instances: the percentage of points correctly
classified by Algorithm 2 is at most 17% for the Abalone instance and at most 39% for
the Movement libras instance. For the Digits and Iris instances the value of the
ground truth clustering is at most 1.15 times the optimal value. In those cases, the number
of points correctly classified is much higher: 90% for the Iris instance and 76.2% for the
Digits instance.

The experiments also show that the β-distribution-stability condition is satisfied for β ą
0.06 for the Digits, Iris and Movement libras instances. This shows that the β-
distribution-stability condition captures the structure of some famous real-world instances
for which the k-means objective is meaningful for finding the optimal clusters. We thus
make the following observations.

Observation 6.1. If the value of the ground truth clustering is at most 1.15 times the value
of the optimal solution, then the instance is β-distribution-stable for β ą 0.06.

The experiments show that Algorithm 2 with neighborhood size 1 (s “ 1) is very
efficient for all those instances since it returns a solution whose value is within 2% of the

1LIBRAS is the official Brazilian sign language
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optimal solution for the Abalone instance and a within 0.002% for the other instances.
Note that the running time of Algorithm 2 with s “ 1 is Õpk ¨ n{εq (using a set of Opnq
candidate centers) and less than 15 minutes for all the instances. We make the following
observation.

Observation 6.2. If the value of the ground truth clustering is at most 1.15 times the value
of the optimal solution, then local search with neighborhood of size 1 computes a clustering
that agrees with the ground truth clustering on more than 75% of the points.

Finally, observe that for those instances the value of an optimal solution to the frac-
tional relaxation of the linear program is very close to the optimal value of an optimal
integral solution (since the cost of the integral solution is smaller than the cost returned by
Algorithm 2). This suggests that the fractional relaxation (Algorithm 9) might have a small
integrality gap for real-world instances.

6.2.2 Data generated from a mixture of k Gaussians
We generate d-dimensional instances consisting of 1000 points generated from a mixture of
k Gaussians with the same variance σ, for d P t5, 10, 50u and k P t5, 50, 100u. We generate
100 instances for each possible choice of the parameters. The means of the k Gaussians
are chosen uniformly and independently at random in Qd. The ground truth clustering is
the family of sets of points generated by the same Gaussian. We compare the value of the
ground truth clustering to the optimal value clustering.

The results are presented in Figures 6.1 and 6.2. We observe that when the variance σ
is large, the ratio between the average value of the ground truth clustering and the average
value of the optimal clustering becomes more important. Indeed, the ground truth clus-
ters start to overlap, allowing to improve the objective value by defining slightly different
clusters.Therefore, the use of the k-means problem as a model is not suitable anymore for
recovering the ground truth. In those cases, since local search optimizes the solution with
respect to the current cost, the clustering output by local search is very different from the
ground truth clustering.

We thus identify instances for which the k-means objective is meaningful and so, local
search is a relevant heuristic.

Definition 6.1. We say that a variance σ̂ is relevant if, for the k-means instances generated
with variance σ̂ the ratio between the average value of the ground truth clustering and the
optimal clustering is less than 1.05.

We summarize in Table 6.2 the relevant variances observed.
Local search is a suitable approach for the instances generated by a relevant variance

only. In Chapter 4, we showed that local search has strong performance guarantees for β-
distribution-stable instances (i.e., returns a p1 ` εq approximation in time nOpε´3β´1q). We



6.2. Experimental Results 101

10-2 10-1 100 101

covariance
1.0

1.2

1.4

1.6

1.8

2.0

2.2

be
ta

(a) k “ 5, d “ 2.

10-3 10-2 10-1 100 101

covariance
100

101

102

ra
tio

(b) k “ 50, d “ 2.

10-4 10-3 10-2 10-1 100 101

covariance
100

101

102

ra
tio

(c) k “ 100, d “ 2.

Figure 6.1: The ratio of the average k-means cost induced by the means over the average
optimal cost vs the variance for 2-dimensional instances generated from a mixture of k
Gaussians (k P t5, 50, 100u). We observe that the k-means objective becomes “relevant”
(i.e., is less than 1.05 times the optimal value) for finding the clustering induced by Gaus-
sians when the variance is less than 0.1 for k “ 5, less than 0.02 when k “ 50, and less
than 0.0005 when k “ 100.

thus turn to the β-distribution-stability condition and ask whether the instances generated
from a relevant variance satisfy this condition for constant values of β. We remark that β
can take arbitrarily small values.

We thus identify relevant variances (see Table 6.2) for each pair k, d, such that optimiz-
ing the k-means objective in a d-dimensional instances generated from a relevant variance
corresponds to finding the underlying clusters.



102 Chapter 6. Implementations and Experiments

hhhhhhhhhhhhhhhhhhhNumber of dimensions
Values of k

5 50 100

2 ă 0.05 ă 0.002 ă 0.0005

10 ă 15 ă 1 ă 0.5

50 ă 1000000.0 ă 100 ă 7

Table 6.2: Relevant variances for k P t5, 50, 100u and d P t2, 10, 50u.

On stability conditions. We now study the β-distribution-stability condition for random
instances generated from a mixture of k Gaussians. The results are depicted in Figures 6.4
and 6.3.

We observe that for random instances that are not generated from a relevant variance,
the instances are β-distribution-stable for very small values of β (e.g., β ă 1e ´ 07). We
also make the following observation.

Observation 6.3. Instances generated using relevant variances satisfy the β-distribution-
stability condition for β ą 0.001.

6.2.3 Experimental Analysis of Local Search on Mixtures of Gaus-
sians

In this section we present the results of our experiments on local search for inputs consisting
of 1000 points drawn from a mixture of k Gaussians (1000{k points drawn from each
Gaussian) in d-dimensional Euclidean space, for k P t5, 50, 100u and d P t2, 10, 50u. We
focus on instances generated from relevant variances. 100 instances were created for each
choice of the parameters.

The study of Kanungo et al [112] showed that the drawback of local search is its rate of
convergence to the local optimum. We follow the study of [112]: we compare the value of
the solution output by Algorithm 2 to the solution output by Lloyd’s algorithm. We perform
2000000 iterations of the main loop of Lloyd’s algorithm for d “ 2, 200000 iterations for
d “ 10 and 20000 iterations for d “ 50. The computation time induced by this number
of iterations is depicted in Figure 6.3. We allow the same amount of computation time to
Algorithm 2. The corresponding number of iterations of the main loop of Algorithm 2 are
presented in Table 6.3. We observe that for k “ 5, it is enough time for Algorithm 2 to
reach a local optimum. Otherwise, none of the two algorithms reaches a local optimum in
the amount of computation time we allowed.

The results are presented in Figures 6.6, and 6.5. We obtain similar results for d “ 50.
We make the following observations.

Observation 6.4. The approximation ratio of local search is a monotonic increasing func-
tion of the variance used to generate the instance.
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Figure 6.2: The ratio of the average k-means cost induced by the means over the average
optimal cost vs the variance for 10-dimensional instances generated from a mixture of k
Gaussians (k P t5, 50, 100u). We observe that the k-means objective becomes “relevant”
(i.e., is less than 1.05 times the optimal value) for finding the clustering induced by Gaus-
sians when the variance is less than 0.1 for k “ 5, less than 0.02 when k “ 50, and less
than 0.0005 when k “ 100.

In other words, we observe that the smaller the variance, the better the approximation
of local search is.

More formally, define costLloyd to be the average cost of a solution returned by Lloyd’s
algorithm and costLS the cost of a solution returned by Algorithm 2. On average, costLloyd

’s algorithm returns solutions of cost less than than Algorithm 2 for high values of σ but
often end up in a bad local optimum for small values of σ and high values of k. On the



104 Chapter 6. Implementations and Experiments

10-2 10-1 100 101 102 103

covariance
10-4

10-3

10-2

10-1

100

101

102

be
ta

(a) k “ 5, d “ 10.

10-2 10-1 100 101 102

covariance
10-6

10-5

10-4

10-3

10-2

10-1

100

be
ta

(b) k “ 50, d “ 10.

10-2 10-1 100 101

covariance
10-5

10-4

10-3

10-2

10-1

100

be
ta

(c) k “ 100, d “ 10.

Figure 6.3: The average minimum value of β for which the instance is β-distribution-stable
vs the variance for 10-dimensional instances generated from a mixture of k Gaussians
(k P t5, 50, 100u). We observe that for relevant variances, the value of β is greater than
0.001.

comparison with Lloyd’s algorithm, we make the following observations.

Observation 6.5. On average, for k “ t50, 100u, and d “ 2,

• If σk,d ą σ ě 0.001 ˚ σk,d

costLloyd ď costLS ď 2.5costLloyd.

• If σ ă 0.001 ˚ σk,d
2costLS ď costLloyd ď 20costLS.



6.3. Interpretation 105

k Average Comput. time (in sec.)
k “ 5 2.82
k “ 50 17.43
k “ 100 35.80

k Average Number of Iterations
k “ 5 9.59
k “ 50 12.45
k “ 100 9.18

Table 6.3: On the left, the computation time corresponding to the 2000000 iterations of
the main loop of Lloyd’s algorithm for 2-dimensional inputs. On the right, the number
of iterations of the main loop of Algorithm 2 for the same computation time than Lloyd’s
algorithm (for 2-dimensional input).

For d “ 10, we observe the following.

Observation 6.6. On average, for k “ t50, 100u, and d “ 10,

• If σk,d ą σ ě 0.00005σk,d

costLloyd ď costLS ď 2.5costLloyd.

• If σ ă 0.00005 ˚ σk,d

5costLS ď costLloyd ď 10000costLS.

We also observe a similar phenomenon, with slightly different bounds, for d “ 10 and
d “ 50.

6.3 Interpretation
We now provide possible interpretations of our observations. Combining Observations 6.1, 6.2,
and 6.3 we make the following conjecture.

Conjecture 6.1. For real-world and random instances, if any nearly-optimal solution to
the k-means objective induces a good classification of the data (i.e., more than 75% of the
points are correctly classified), then the instance satisfies the β-distribution-stability for
β ą 0.05.

Assuming this conjecture and combining it with the following theorem proven in Chap-
ter 4 we have that local search computes the ground truth clustering in those cases.

Theorem 1.5. There exists a constant c such that the following holds. Let β ą 0 and
ε ă 1{2. For any β-stable instance, the solution output by local search with parameter
s “ cε´3β´1 (Algorithm 2) has cost at most p1` εqOPT.
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The global message of this chapter is the following.

If the use of the k-means objective is appropriate for finding the underlying clustering,
then local search is a good heuristic to use.

We remark that this Conjecture 6.1 is formally provable or disprovable for the random
input cases. More concretely, we ask whether the conjecture holds for inputs drawn from a
mixture of Gaussians (with variance σ) and β being some function of σ, k, and n.

On Lloyd’s algorithm. Finally, Observation 6.5 states that Lloyd’s algorithm is slightly
better than Algorithm 2 for high values of σ but can be very bad for small values of σ and
high values of k. We propose the the following explanation to this surprising behavior.
When the variance is small, the cost of not opening a center close to a mean is very ex-
pensive. Thus, local search quickly locates a center near each mean since this significantly
improves the cost of the solution. However, if k is large, Lloyd’s algorithm might still
merge two clusters into a single cluster. Since there is no objective function to guide the
algorithm, Lloyd’s algorithm might not end up assigning a center close to each mean. This
leads Lloyd’s algorithm to find poor solutions in those cases.

Practical vs theoretical bounds. Observation 6.4 states that, for instances generated
from a mixture of Gaussians, the approximation ratio of local search with s “ 1 is a
monotonic increasing function of the variance. The approximation ratio we observe after
a few iterations of the main loop is less than 4. From Observation 6.3, we have that the
instances considered are β-distribution-stable for 0.001 ă β ă 1. Thus, the approximation
ratio is less than the theoretical bounds we proved in Chapter 4 p1 ` εq-approximation for
s “ Θpε´3β´1q). We thus make the following conjecture.

Conjecture 6.2. The analysis of local search for β-distribution-stable or random instances
can be tightened.
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(a) The average minimum value of β for which
the instances is β-distribution-stable vs the vari-
ance for 2-dimensional instances generated from
a mixture of 5 Gaussians.
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(b) The average of the minimum value of β for
which the instances is β-distribution-stable vs the
variance for 2-dimensional instances generated
from a mixture of 50 Gaussians.
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(c) The average minimum value of β for which
the instance is β-distribution-stable vs the vari-
ance for 2-dimensional instances generated from
a mixture of 100 Gaussians.

Figure 6.4: The average minimum value of β for which the instance is β-distribution-
stable vs the variance for 2-dimensional instances generated from a mixture of k Gaussians
(k P t5, 50, 100u). We observe that for relevant variances, the value of β is greater than
0.001.
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(b) k “ 50, d “ 2.
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Figure 6.5: The average approximation ratio for Algorithm 2 (denoted LS) with s “ 1 and
Lloyd’s algorithm for 2-dimensional instances generated from a mixture of 5, 10, and 100
Gaussians.
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(b) k “ 50, d “ 10.
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Figure 6.6: The average approximation ratio for Algorithm 2 (denoted LS) with s “ 1
Lloyd’s algorithm for 10-dimensional instances generated from a mixture of 5, 10, and 100
Gaussians.
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CHAPTER 7

Introduction to Network Design

Network design problems arise in a broad range of contexts, from connecting people at the
surface of the earth to connecting electronic components on a printed circuit board. They
often entail hard and specific constraints that ensure some level of quality-of-service for
the application. In this thesis, we see a network design problem as the problem of building
a graph satisfying some specified constraints.

Among the numerous network design problems, some of them are of more general in-
terest because of their tremendous number of applications or because their study has led
to the development of new algorithmic techniques over the years. This is for example the
case for the traveling salesman problem which received a considerable amount of attention
since at least the 1940s and the work of Tutte [174] and Dantzig et al. [64] and until very
recently (see e.g., [170]). This problem has led to (1) new approaches to design approx-
imation algorithms (see e.g., the results of Arora [9] and Mitchell [144] in the Euclidean
setting) and (2) the design of benchmarks of real-world and random instances to compare
the different heuristics used in practice (see e.g., [109]).

From a theoretical perspective, network design problems are often hard to approximate
when dealing with general instances. Thus, people have looked at more restricted instances.
For example, metrics induced by a graph embeddable on a surface of small genus or points
lying in a Euclidean space of small dimension represent a significant fraction of the in-
stances addressed in practice2.

In this part, we study network connectivity type problems on d-dimensional Euclidean
space and graphs embedded on a surface of small genus. We consider the traveling sales-
man problem (TSP) and the Steiner tree problem (STP) in the Euclidean setting and the
connected dominating set problem together with several related problems in the context of
planar graphs and more generally graphs embedded on a surface of small genus.

2There is also a variety of practical instances that cannot be modeled by a graph embeddable on a surface
of small genus, e.g., instances stemming from computer networks.
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Random TSP and Steiner tree. For the traveling salesman problem, the gap between
theory and practice is significant. Indeed, the performances of several heuristics used in
practice on real-world and random instances have been thoroughly analyzed during the
TSP challenge organized by DIMACS [70] 15 years ago. However, quite surprisingly,
the PTAS designed by Arora et al. [12] and Mitchell [144] is absent from the challenge1.
Quoting Johnson and McGeoch [109]:

“These heuristics, despite their impressive theoretical guarantees, have signifi-
cant drawbacks compared to the competition we shall be describing. Because
of the perturbation of the instances that they initially perform, the versions of
the heuristics guaranteeing 1` ε worst-case ratios are likely to be off by a sig-
nificant fraction of e even in the average case. Thus, to be competitive with
heuristics that typically get within 1 or 2 percent of optimum in practice, one
probably must choose ε ă 0.05. This is likely to make the running times pro-
hibitive, given the large constant factor overheads involved and the fact that
the running times are exponential in 1{ε. It would be interesting to verify that
this is indeed the case, but as of this date we know of no attempt at a serious
implementation of any of the schemes.”

The very strong performances achieved by the heuristics, like 2-OPT, 3-OPT, Lin-
Kernighan or nearest neighbors, suggest a theoretical analysis of local search approaches.

Connectivity and Domination Problem in Planar Graphs. There is a long history of
research on approximation algorithms for combinatorial optimization problems in graphs
embedded on a surface of small genus. Three approaches yield most polynomial-time
approximation schemes known for planar graphs: Baker’s method [24], approximation via
bidimensionality (Demaine and Hajiaghayi) [66], and a framework of Klein [117, 118],
sometimes called brick decomposition. However, those approaches seem hard to extend to
some important network design problems.

For example, in the case of the weighted connected dominating set problem, the non-
local structure of the problem together with the domination requirement and the vertex
weights make it hard to handle with the standard techniques mentioned above (this is further
discussed in Chapter 9). We will derive a new separator whose properties allow us to
develop a new algorithmic framework for various weighted network design problems in
planar graphs.

1Despite the fact that a substantial parts of the instances consisted of points lying in a 2-dimensional
Euclidean space.
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Contributions and Techniques

Tight Result for Random TSP in Euclidean Space. We consider the following standard
local search algorithm for TSP and the Steiner tree problem, Algorithm 10. This is one of
the local search algorithms that were studied during the DIMACS challenge.

Algorithm 10 Local search for TSP or the Steiner tree problem

1: Input: A set C of points in the a Rd.
2: S Ð Arbitrary feasible solution1 (set of edges for TSP, set of Steiner points for the

Steiner tree problem).
3: while D S 1 s.t. S 1 is feasible and |S ´ S 1| ` |S 1 ´ S| ď s and cost(S 1) ď p1 ´ 1{nq

cost(S)
4: do
5: S Ð S 1

6: Output: S

For TSP, we start with the worst-case scenario. We give a family of examples where
for any constant value of s, there exists an example such that the solution output by Algo-
rithm 10 has cost more than p2 ´ εqOPT . This bounds is very far from what is observed
in practice. Thus, we try to explain the success of the local search approach by analyzing
its performance on random inputs. We assume that the input points are random uniform in
r0, 1s2. We show the following theorem.

Theorem 7.1 (Random Euclidean Instances for TSP and Steiner tree – Chapter 8). Con-
sider a set of points chosen independently and uniformly in r0, 1sd. There exists a constant
c such that Algorithm 10 with s “ c{εd{pd´1q produces:

• In the case of the Traveling Salesman problem, a tour of length at most p1` εqOPT;

• In the case of the Steiner Tree problem, a tree whose length is at most p1` εqOPT;

with probability 1.

The techniques are very intuitive. We rely on the existence of a recursive dissection of
the space, based on cheap separators by Karp [114]. This leads to an upper bound on the
length of the tour output by the algorithm of OPT ` εnpd´1q{d (Theorem 8.1). Classical
results on random TSP and the Steiner tree problem show that in the random scenario
OPT{npd´1q{d Ñ β as n tends to infinity for some absolute constant β with probability 1.
Theorem 7.1 follows directly by combining those observations.
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A New Framework for Graphs of Bounded Genus: Ubiquity. We present a new
approach that yields approximation schemes for some weighted, non-local problems for
which no PTAS was previously known in graphs of bounded genus: connected dominat-
ing set, connected vertex cover, feedback vertex set, tree cover, tour cover, spanning tree
maximizing the weight of leaves, and other problems.

A solution to any of those problems consists either of a subgraph or of a set of edges
and/or vertices. In the latter case, the solution can be equivalently expressed by the sub-
graph induced by that set. We proceed at a more abstract level and define a family of
problems that can be solved by our technique.

Definition 7.2. Let t be an integer. We say a graph problem is t-ubiquitous (or simply
ubiquitous) if, for every input graph G and every feasible solution S, S is connected and
G{S has treewidth at most t.

Let g be a positive integer, considered a constant for the purpose of stating running
times in our main theorem, which is as follows:

Theorem 7.3 (Ubiquity Framework – Chapter 9, Section 9.1). Let P be a minimization
problem on edge- and vertex-weighted graphs with genus at most g, such that contracting
an edge of an input graph can only reduce the optimal value, and there exist

1. An Op1q-approximation: For some constant t, P is t-ubiquitous, and there is a
polynomial-time algorithm that, given an inputG for P , outputs an α-approximation1

for P , for some constant α.

2. A Dynamic program: There is a 2Opbqpolypnq algorithm to find an optimal or 1 ` ε-
approximate solution to instances of P with branchwidth at most b.

3. A Lifting: There is a constant β and a polynomial-time algorithm that, given a graph
G and a subgraph K, and given a solution S to problem P for input G{K, outputs a
solution for G of weight at most wpSq ` β ¨ wpKq.

Then there is a polynomial-time approximation scheme for P .

This theorem is a consequence of a slightly more general version in which Condition 1
is replaced with:
Condition 11. There are constants α ě 1 and t and a polynomial-time algorithm that, given
an input G for P , outputs a connected subgraph B such that B has weight at most α times
the optimal value for G, and G{B has treewidth at most t. A bound on the length of B with
respect to OPT is needed, not B being a solution to the problem.

The key ingredient to prove Theorem 7.3 is the following “well-structured” separator
theorem for graphs of bounded genus. Here the mass ensures that the separator has some
balance property.

1This is a variation to what Demaine and Hajiaghayi call a “backbone” in the bidimensional approach [66].
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Theorem 7.4 (Separator Theorem – Chapter 8, Section 9.1). Let b and k be integers. Let
G “ pV,Eq be a planar graph, and H denote a connected subgraph of G such that G{H
has branchwidth at most b´ 1. Let wV and wE be functions assigning nonnegative weights
to, respectively, the vertices and the edges of G.

Let G̃ “ pṼ , Ẽq be the union of G and its face-vertex incidence graph. Suppose the
vertices and faces of G̃ have been assigned nonnegative masses, summing to M , with no
face or vertex having mass more than M{2.

Then G̃ has a cycle C, which may repeat vertices and edges but does not cross itself
and has no spurs, such that:

• C is a balanced separator: the mass of the vertices of G strictly inside (resp., strictly
outside) C is at most 3M{4;

• C is mostly a light piece of H: there exists a set V 1 of Opbkq vertices of G̃, and
a set E 1 of Opbkq edges of G̃, such that CzpE 1 Y V 1q is a subgraph of H and
wV pV pCqzV

1q ` wEpEpCqzE
1q ď W {k, where W is the total weight of the ver-

tices and edges in H .

Moreover, C, V 1, and E 1 can be computed in time Opk2nq.

The proof of Theorem 7.3 in a nutshell is as follows. Applying this theorem recursively
on the graph yields a subgraph S of small edge- and vertex-weight. Then, we show that
contracting this subgraph results in a new graph G1 of small treewidth in which dynamic
programming can be used to find a solution. Finally, since S is of small weight, extending
the solution obtained for G1 by adding S yields a solution of small cost for G. Finally, we
show how to handle the case of graphs of bounded genus by finding a planarizing subgraph
to finally apply Theorem 7.4.

More concretely, the results obtain by thanks to our new framework are displayed in
Table 7.1.

State-of-the-Art

TSP and Steiner Tree. The TSP problem has a long history. A folklore 3/2-approximation
algorithm has been known from a long time (formally stated by Christofides [58] in 1976
as a step of his algorithm).

In this thesis, we focus on Euclidean metrics. TSP in Euclidean plane has also been
extensively studied, including work on local search [62, 131, 132]. In the 90s, Arora [9]
and Mitchell [144], independently gave the first approximation schemes for TSP and the
Steiner tree problem in Euclidean space of fixed dimension. Their algorithms rely on a
hierarchical dissection technique and so, on the existence of well-structured separators.
This work was subsequently improved [10, 156]. However, the idea of using separators



118 Chapter 7. Introduction to Network Design

Table 7.1: Summary of our results. All the problems are APX-hard in general graphs
and the approximation ratios of the Weighted Dominating Set, the Vertex-Weighted Con-
nected Vertex Cover and the Vertex-Weighted Connected Dominating Set problems are
Ωplogpnqq for general graphs assuming P ‰ NP. All the problems are NP-hard in planar
graphs. Previous to our work, polynomial-time approximation schemes were known [66]
for the unweighted versions of these problems in planar graphs, and “almost-PTASs” were
known for bounded-genus graphs. For each of the weighted versions, the best approxima-
tion known before our work was the approximation for general graphs. We obtain PTASs
for bounded-genus weighted graphs, except for feedback vertex set, where the algorithm is
restricted to weighted planar graphs.

Problem General Weights
Prev. (for general graphs) New

(Edge-weights) Tree Cover 2 [149] 1` ε

(Edge-weights) Tour Cover 3 [124] 1` ε

(Vertex-weights) Connected Dominating Set Oplogpnqq [96] 1` ε

(Vertex-weights) Maximum Leaf Spanning Tree Oplogpnqq [96] 1` ε

(Vertex-weights) Connected Vertex Cover Oplogpnqq [90] 1` ε

(Vertex-weights) Feedback Vertex Set 2 [22] 1` ε

to apply dynamic programming date back to Karp [114] in 1977. Indeed, Karp gave a
simple algorithm that computes a near-optimal tour when points are drawn from a random
distribution.

The relationship between separator and local search was already around in the 90s.
Arora noted the relation between hierarchical dissections and local search, observing:

Local-exchange algorithms for the TSP work by identifying possible edge ex-
changes in the current tour that lower the cost [. . . ].Our dynamic program-
ming algorithm can be restated as a slightly more inefficient backtracking
[. . . ]. Thus it resembles k-OPT for k “ Opcq, except that cost-increasing
exchanges have to be allowed in order to undo bad guesses. Maybe it is closer
in spirit to more ad-hoc heuristics such as genetic algorithms, which do allow
cost-increasing exchanges.

In fact, even with neighborhoods of size fpεq, even in the Euclidean plane, local search
for TSP can get stuck in a local optimum whose value is far from the global optimum (See
Figure 8.2). However, in the case of random inputs the intuition is correct. Local search
algorithms have been widely studied for TSP, but mostly for either a local neighborhood
limited to size of 2 or 3 (the so called 2-OPT or 3-OPT algorithms), or for the general
metric case. Those studies lead to proofs of constant factor approximations, see [51, 108,
132, 141, 166]. In particular, in [51], it is proved (by example) that for Euclidean TSP
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2-OPT cannot be a constant-factor approximation in the worst case. For the Steiner Tree
problem, the best approximation algorithm up to 2010 was a constant factor approximation
due to Robins and Zelikovsky and was by local search [164].

Network Design in Graphs Embedded of Bounded Genus. As mentioned earlier, we
distinguish three main approaches to obtain approximation schemes on planar graphs:
Baker’s method [24], approximation via bidimensionality (Demaine and Hajiaghayi) [66],
and a framework of Klein [117, 118]. Note that the two former methods have been gen-
eralized to graphs excluding a fixed minor. Some recent results show that the later can be
extended to graphs of bounded genus [42].

Each of these methods has its limitations. Baker’s method only addresses problems that
are local in character, e.g., min-weight vertex cover and dominating set. Bidimensional-
ity is only defined for problems without weights, and this approach only yields approxi-
mation schemes for such problems, though it does address very non-local problems such
as feedback vertex set and connected dominating set. The framework of [117, 118] has
been used for a variety of weighted, non-local problems; it has yielded, for example, a
linear-time approximation scheme for traveling salesman, near-linear-time approximation
schemes for Steiner tree and generalizations, and polynomial-time approximation schemes
for cut problems such as multiway cut and graph bisection. However, for each problem
addressed, it requires a kind of sparsification that approximately preserves optimality; for
some problems, and in particular the connected dominating set problem, obtaining such a
sparsification seems difficult.
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MEIERFRANKENFELD, Approximating connectivity domination in weighted bounded-
genus graphs, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016.

[2] V. COHEN-ADDAD AND C. MATHIEU, Effectiveness of Local Search for Geometric
Optimization, Proceedings of the 31st International Symposium on Computational
Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, 2015.





CHAPTER 8

Local Search for Random Traveling Salesman
and Steiner Tree

This chapter is dedicated to the proof of Theorem 7.1.

Theorem 7.1. Consider a set of points chosen independently and uniformly in r0, 1sd.
There exists a constant c such that Algorithm 10 with s “ c{εd{pd´1q produces:

• In the case of the Traveling Salesman problem, a tour of length at most p1` εqOPT.

• In the case of the Steiner Tree problem, a tree whose length is at most p1` εqOPT.

We recall the local search algorithm we are considering in this chapter.

Algorithm 10 Local search for TSP or the Steiner tree problem

1: Input: A set C of points in the a Rd.
2: S Ð Arbitrary feasible solution2 (set of edges for TSP, set of Steiner points for the

Steiner tree problem).
3: while D S 1 s.t. S 1 is feasible and |S ´ S 1| ` |S 1 ´ S| ď s and cost(S 1) ď p1 ´ 1{nq

cost(S)
4: do
5: S Ð S 1

6: Output: S

As mentioned in the introduction, the proof of Theorem 7.1 relies on a worst-case
analysis of the output of Algorithm 10 that is summarized by the following theorem.

Theorem 8.1. Consider an arbitrary set of points in r0, 1sd. There exists a constant c such
that Algorithm 10 with s “ c{εd produces:
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• In the case of the Traveling Salesman problem, a tour whose length is at most p1 `
εqTOPT ` εn

pd´1q{d, where TOPT is the length of the optimal solution.

• In the case of the Steiner Tree problem, a tree whose length is at most p1` εqTOPT `

εnpd´1q{d, where TOPT is the length of the optimal solution.

We model a random distribution of points in a region P of the d-dimensional Euclidean
space by a d-dimensional Poisson distribution ΠnpPq. This is a standard model that has
been extensively studied until recently (see e.g., [88]) since Beardwood et al. [31]. The
distribution ΠnpPq is determined by the following assumptions:

1. the numbers of points occurring in two or more disjoint sub-regions are distributed
independently of each other;

2. the expected number of points in a region A is nvpAq where vpAq is the area of A;
and

3. as vpAq tends to zero, the probability of more than one point occurring in A tends to
zero faster than vpAq.

From these assumptions it follows that PrrA contains exactly m pointss “ e´λλm{m!,
where λ “ nvpAq.

The following result is known.

Theorem 8.2. [31] Let P be a set of n points distributed according to a d-dimensional
Poisson distribution ΠnpPq in r0, 1sd and let TSPnpPq and STnpPq be the random variables
that denote the value of the optimal solution to TSP and the value of the optimal solution
to STP where the inputs are the points in P respectively. There exists positive constants
βTSP, βST (independent of P) such that TSPnpPq{npd´1q{d Ñ βTSP and STnpPq{npd´1q{d Ñ

βST with probability 1.

Assuming Theorem 8.1 Theorem 7.1 follows easily.

Proof of Theorem 7.1. Consider the case of TSP. Let L be the tour produced by Algorithm
10 and TOPT be the optimal tour. Combining, Theorems 8.2 and 8.1 implies that there exists
a constant β such that

costpLq ď costpTOPTq ` ε ¨ n
pd´1q{d

ď p1` β1 ¨ εqcostpTOPTq,

with probability 1. The exact same reasoning applies to prove the Steiner Tree case. Theo-
rem 7.1 follows by rescaling ε.

The rest of the chapter is dedicated to the proof of Theorem 8.1. For ease of exposition,
we give the proof for the case of the plane and show how to handle d-dimensional Euclidean
space for fixed d. To this aim, we define a recursive dissection of the unit square according
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Box b

Tours LTSP and L'Tours TTSP and L'

Figure 8.1: The solid black segments form the tourLTSP outside b. The dotted line segments
are the tour TTSP inside b. The red segments are the one needed to connect the two tours.

to a set of points P . At each step we cut the longer side of each rectangle produced by the
previous step in such a way that each of the two parts contains half the points of P that lie
in the rectangle. The process stops when each rectangle contains Θp1{ε2q points of P . We
now consider the final rectangles and we refer to them as boxes. Let B be the set of boxes.

Lemma 8.3 ([114]).
ř

bPB
|Bb| “ Opε

?
nq, where |Bb| is the perimeter of box b.

For any set of segments S and box b and for each segment s, let sb be the part of s that
lies inside b. We define inpS, bq :“ tsb | s P S and s has at least one endpoint in bu and
CrosspS, bq :“ tsb | s P S and s has no endpoint in bu. Moreover we define outpS, bq :“
tsb1 | s P S and b ‰ b1u. Additionally, let Spbq “

ř

sPS lengthpsbq.
We can now prove the two following structural Lemmas. See Fig. 8.1 for an illustration

of the proof.

Lemma 8.4. Let LST be a locally optimal solution to the Steiner Tree problem and let TST

be any Steiner Tree. Let B be a set of boxes produced by a dissection of P Y LST Y TST.
Using the same notation for a set of segments and their total length, we then have for any
box b P B

p1´Opε2
qqLSTpbq ď inpTST, bq ` |Bb| ` LST{n,

where |Bb| is the perimeter of b.

Proof. For each box b, the segments of CrosspLST, bq can be distributed into 6 different
classes according to which side of b they intersect.

We divide further. Since the segments of a class are pairwise disjoint, there is a natural
ordering of the segments inside each class. For each class that contains more than 1{ε2

segments, we partition them into subsets that contain Θp1{ε2q consecutive segments (in the
natural order of the class). We define a sub-box for each subset of each class as follows.
Let s and s1 be the two extreme segments of the set in the ordering of the class. The sides
of the sub-box associated to this subset consists of s and s1 and the two shortest paths p, p1

along the sides of b that connects the endpoints of s and s1.
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Remark that the sum of the lengths of the sides of all the sub-boxes is at most |Bb| `
Opε2LSTpbqq. For each sub-box b0, let L1 be the set of vertices of LST that are outside b0,
plus the set of vertices of TST that are inside b0, plus the set of the intersection points of the
edges of LST and TST with the sides of b0. Thus, L1 ď outpLST, b0q ` inpTST, b0q ` |Bb0|.
Moreover, we have |LST 4 L1| “ Op1{ε2q and the local near-optimality argument applies.
Namely, we obtain that p1´ 1{nqLST ď L1, and so

´1{n ¨ LST ` inpLST, b0q ` CrosspLST, b0q ď inpTST, b0q ` |Bb0|.

We now sum over all sub-boxes of box b and we obtain

LSTpbq “ inpLST, b0q ` CrosspLST, b0q ď inpTST, bq ` |Bb| `Opε
2LSTpbqq ` LST{n.

Lemma 8.5. Let LTSP be a locally optimal solution to the Traveling Salesman problem and
let TTSP be any tour. Let B be a set of boxes produced by a dissection of P . Using the same
notation for a set of segments and their total length, we then have for any box b P B

p1´Opε2
qqLTSPpbq ď inpTTSP, bq ` 3|Bb|{2` LTSP{n,

where |Bb| is the perimeter of b.

Proof. We again further divide the boxes into sub-boxes as we did for Lemma 8.4. For each
sub-box b0, we define a tour L1 obtained by a traversal of the following Eulerian graph. The
graph vertices are P , plus the corners of Bb0, plus all points of intersection of LTSP and TTSP

with Bb0. The edges are the segments of outpLTSP, b0q, plus the segments of inpTTSP, b0q,
plus Bb0 (so that the result is connected), plus a minimum length matching of the odd
vertices of Bb0 (so that the result is Eulerian). Thus, L1 ď outpLTSP, b0q ` inpTTSP, b0q `

3|Bb0|{2.
Since the number of edges of L intersecting b0 is Op1{ε2q and the number of edges

in inpTTSP, b0q is Op1{ε2q, we have |LTSP 4 L1| “ Op1{ε2q and the local near-optimality
argument applies. Namely, we obtain p1´ 1{nqLTSP ď L1, and so

´1{n ¨ LTSP ` inpLTSP, b0q ` CrosspLTSP, b0q ď inpTTSP, b0q ` 3|Bb0|{2.

We now sum over all sub-boxes of box b and we obtain

LTSPpbq “ inpLTSP, bq ` CrosspLTSP, bq ď inpTTSP, bq ` 3|Bb|{2`Opε2LTSPpbqq ` LTSP{n.

We can now prove Theorem 8.1.
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Proof of Theorem 8.1. We first consider the Traveling Salesman case. Let LTSP be a tour
produced by Algorithm 10 and TTSP be any tour. Lemma 8.5 implies that for any box b, we
have

p1´Opε2
qqLTSPpbq ď inpTTSP, bq ` 3|Bb|{2` LTSP{n.

Since there are Opε2nq boxes in total, by summing over all boxes, we obtain

´Opε2LTSPq `
ÿ

bPB
LTSPpbq “ p1´Opε

2
qqLTSP ď

ÿ

bPB
pinpTTSP, bq ` 3|Bb|{2q

ď TTSP `
3

2

ÿ

bPB
|Bb|.

By Lemma 8.3,
ř

bPB |Bb| “ Opε
?
nq and so,

p1´Opε2
qq ¨ LTSP ď TTSP `Opε

?
nq.

To prove the Steiner Tree case, it is sufficient to notice that the total number of vertices
in P Y LST Y TST is at most 3n. It follows that the total number of boxes is Opε2nq and
by Lemma 8.3,

ř

bPB |Bb| “ Opε
?
nq. We apply a reasoning similar to the one for the TSP

case to conclude the proof.

We observe that Lemmas 8.4 and 8.5 and Theorem 8.1 hold in the worst-case since we
do not assume that the points are randomly distributed in the r0, 1s2.

Higher dimensions Karp remarks in [114] that for a d-dimensional Euclidean space,
Lemma 8.3 can be generalized to obtain a bound of Oppε ¨ nqpd´1q{dq. The proof of Theo-
rem 8.1 for d-dimensional Euclidean space follows directly by rescaling ε.

Tightness of the Analysis Figure 8.2 shows that there exists a set of points such that
there is a local optimum whose length is at least p2´ opεqqcostpOPTq.
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CHAPTER 9

Computing More Structured Separators

This chapter introduces our new framework: “Ubiquity”.
We provide the proof of Theorems 7.3 and 7.4 in Section 9.1. The algorithmic applica-

tions are presented in Section 9.2.
Recall that the Ubiquity framework relies on the following definition.

Definition 7.2. Let t be an integer. We say a graph problem is t-ubiquitous (or simply
ubiquitous) if, for every input graph G and every feasible solution S, S is connected and
G{S has treewidth at most t.

The framework is summarized by the Theorem 7.3 that we recall for completeness.

Theorem 7.3. Let P be a minimization problem on edge- or vertex-weighted graphs with
genus at most g, such that contracting an edge of an input graph can only reduce the
optimal value, and there exist

1. An Op1q-approximation: For some constant t, P is t-ubiquitous, and there is a
polynomial-time algorithm that, given an inputG for P , outputs an α-approximation2

for P , for some constant α.

2. A Dynamic program: There is an 2Opbqpolypnq algorithm to find an optimal or 1` ε-
approximate solution to instances of P with branchwidth at most b.

3. A Lifting: There is a constant β and a polynomial-time algorithm that, given a graph
G and a subgraph K, and given a solution S to problem P for input G{K, outputs a
solution for G of weight at most wpSq ` β ¨ wpKq.

Then there is a polynomial-time approximation scheme for P .

We start by giving a more detailed background together with the main motivation be-
hind this work.

2This is a variation to what Demaine and Hajiaghayi call a “backbone” in the bidimensional approach [66].
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Background. Several techniques relying on the small-separator property of graphs of
bounded genus have been developed through the years.

For the unweighted versions of the problems we consider, the bidimensionality frame-
work gives polynomial-time approximation schemes. Bidimensionality applies to a prob-
lem only if a solution is necessarily dense in the graph; in particular if for grid graphs a
solution necessarily uses a constant fraction of the edges. Bidimensionality applies only
when every element (vertex/edge) has the same weight. Thus density is measured in terms
of the value of the optimum.

Similarly, the first step of an algorithm employing the brick decomposition framework
of Klein [117, 118] is to thin the graph (using deletions or contractions) so that the total
weight of the graph is a small factor times the value of the optimum. Thus again the key is
ensuring that the optimum value is a large fraction of the weight of the graph. It remains
unknown for many optimization problems whether such a thinning step can be carried out
in polynomial time.

We therefore want to identify a property of problems for which no thinning step is
needed, like bidimensionality, but we want our property to work for problems with weights,
unlike bidimensionality. The key idea is to define the property in terms of graph structure
rather than solely in terms of the optimum value. As is often the case in recent research
in graph algorithms, “simple structure” is formalized as small treewidth or, equivalently,
small branchwidth. Several state-of-the-art algorithms use the fact that many NP-hard
graph problems can be solved quickly on graphs of small treewidth since those graphs
have very small separators and therefore dynamic programming can be used. However,
in our framework it wouldn’t help to solve the problem in the subgraph of edges not in a
solution. We make a different use of the small treewidth of the graph of edges not in the
solution; it enables us to prove the existence of a certain kind of separator structure for the
entire graph.

Planar graphs, bounded-genus graphs, and, more generally, members of a minor-closed
graph family excluding some apex graph all have the diameter-treewidth property [78]: the
treewidth of such a graph is upper-bounded by some function of its unweighted diameter.
When referring to unweighted distance in a graph, we use the term hops to distinguish this
from measuring distance according to edge- or vertex-weights.

Fact 9.1. Suppose a graph problem restricts the input graphs to have bounded genus. Sup-
pose also that for some integer t, for every input graph G and for every feasible solution
S, S is connected and every vertex of G is within t hops of S. Then the graph problem is
Optq-ubiquitous.

By the observation, for a problem on bounded-genus graphs to be considered ubiqui-
tous, it is enough that every solution be “everywhere” in the sense that every vertex is close
to the solution in terms of number of hops1.

1In fact, it is sufficient even if we measure number of hops in the face-vertex incidence graph (a.k.a. the
radial graph).



131

Figure 9.1: On the left is a fragment of an embedded graph G. On the right is the cor-
responding fragment of G̃, where we have added vertices and edges of the face-vertex
incidence graph of G.

Preliminaries and notations.
We first introduce the definitions and notations that are specific to this section. The follow-
ing definitions are illustrated in Figure 9.1. Given a connected graph G “ pV,Eq cellularly
embedded on a surface, the radial graph (a.k.a. the face-vertex incidence graph) of G is
the embedded graph whose vertex set includes the vertices of G and also a vertex vf for
each face f of G; it contains an edge between v and vf if v is a vertex of G that is incident
to the face f of G. We define G̃ “ pṼ , Ẽq to be the union of G and its radial graph. That
is, G̃ contains the vertices of the radial graph and the edges of G and of the radial graph.

In a walk in a graphG, a spur is the occurence of a single edge used twice consecutively
in oppposite directions.

A branch decomposition [171] of a graph is a maximal noncrossing collection of subsets
of edges of the graph, equivalently a rooted binary tree in which each node corresponds to
a subset of edges, and the two children of an internal node correspond to disjoint subsets
whose union corresponds to the parent. Each subset of edges in a branch decomposition
induces a subgraph of the graph, which we call a cluster of the branch decomposition. The
boundary of a cluster is the set of vertices that are incident both to edges belonging to
the cluster and edges not belonging to the cluster. The width of a cluster is the number
of boundary vertices, and the width of a branch decomposition is the maximum cluster
width. The branchwidth of a graph is the minimum width of a branch decomposition. The
branchwidth w and treewidth t of a graph are related by

w ´ 1 ď t ď t
3

2
wu´ 1.

For fixed w, there is a linear-time algorithm [41] to determine if a graph has branchwidth
at most w and, if so, construct a branch decomposition of width at most w. There is
a polynomial-time algorithm [171] to find an optimal branch decomposition of a planar
graph.

A noose of an embedded graph is a Jordan curve that intersects only vertices of the
graph and not edges.

Consider a planar embedded graph G. A sphere-cut decomposition [73] of a planar
graph G is a branch decomposition in which for each cluster there is a noose that encloses
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Figure 9.2: This figure illustrates the proof of Lemma 9.2. The first diagram shows a
cluster in the original branch decomposition. Original vertices of G are represented by
solid circles, and vertices of G̃ that represent faces of G are represented by open circles.
The remaining diagrams show some new clusters added to form the branch decomposition
of G̃.

exactly the edges in the cluster. The vertices that the noose intersects are exactly the bound-
ary of the cluster. The nooses can be assumed to be mutually noncrossing.

Building on work of Seymour and Thomas [171], Dorn et al. [73] show that every
planar embedded graph has a sphere-cut decomposition whose width equals the graphs’
branchwidth.

Lemma 9.2. If G is a planar graph G of branchwidth at most w then G̃, the union of G
with the radial graph, has branchwidth at most 2w.

Proof. Since G has branchwidth at most w, there exists a sphere-cut decomposition T of
width at most w. Consider a cluster C of T and the noose N that encloses the edges of
that cluster. The noose can be represented as a cycle in G̃ that uses only edges of the
radial graph. The noose passes through at most w vertices, so the cycle passes through
at most 2w vertices of G̃. Let these vertices be v1, v2, . . . , v2k in the order in which they
appear on the cycle, where v1, v3, . . . , u2k´1 are original vertices of G and v2, v4, . . . , v2k

are the vertices of G̃ representing faces of G. To form the branch decomposition of G̃,
we replace the cluster C with 2k ` 1 clusters C0, C1, . . . , C2k, where Ci is obtained from
C by modifying it to include the edges v1v2, v2v3, . . . , vi´1vi. The new cluster with the
largest boundary is C2k, which has a boundary of size 2k. In addition, we add the singleton
clusters tv1v2u, tv2v3u, . . . , tv2k´1v2ku.

9.1 A New Framework
We present the ubiquity framework. As mentioned earlier, the framework relies on a new
separator theorem: Theorem 7.4.

Applying this theorem recursively leads to the following theorem.

Theorem 9.3 (Branchwidth Reduction Theorem). Let ε ą 0 and b, g be two integers. There
is a polynomial-time algorithm achieving the following:

Taking as Input: Graph G0 of genus at most g with edge weights and/or vertex weights, a
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connected subgraph H0 of G0 such that G0{H0 has branchwidth at most b´ 1.

Output: Subgraph K of H0 such that the total weight of the edges and vertices of K is at
most ε times the total weight of the edges and vertices of H0, and G0{K has branchwidth
Oplog nq, where n is the number of vertices of G0.

The branchwidth depends linearly on b and ε´1, and polynomially on g. Assuming
Theorem 9.3, the proof of Theorem 7.3 is easy.

Proof of Theorem 7.3 (Ubiquity Framework). Here is the algorithm.

Algorithm 11 Meta-Algorithm for Ubiquitous Problems

1: Input: A graph G “ pV,Eq of genus g with nonnegative vertex and edge weights.
2: H Ð an α-approximation for the problem in G.
3: K Ð BRANCHWIDTHREDUCTIONpG,Hq. By Theorem 9.3, S1 has total weight at

most ε ¨ α ¨ OPT and G{K has branchwidth Opt{εq ¨ log n.
4: Y Ð an optimal solution for the problem in G{K.
5: Output: S3 Ð a solution for G based on Y and K.

For the analysis, combining the three assumptions and Theorem 9.3, the running time of
the algorithm is polynomial. The solution obtained has cost wpS2q ` β ¨wpS1q, combining
the three assumptions and Theorem 9.3, the total cost is p1` α ¨ β ¨ εqOPT.

We start with the proof of the Separator theorem (Theorem 7.4) for planar graphs,
Section 9.1.1. In Section 9.1.2, we show how to handle graphs of bounded genus. Finally
Section 9.1.3 proves Theorem 9.3.

9.1.1 A Separator Theorem
In this section, we prove the following separator theorem for planar graphs. The balance
is with respect to a given mass function that assigns a nonnegative number to each face,
called the mass of that face.

Theorem 7.4. Let b and k be integers. Let G “ pV,Eq be a planar graph, and H denote a
connected subgraph of G such that G{H has branchwidth at most b´1. Let wV and wE be
functions assigning nonnegative weights to, respectively, the vertices and the edges of G.

Let G̃ “ pṼ , Ẽq be the union of G and its face-vertex incidence graph. Suppose the
vertices and faces of G̃ have been assigned nonnegative masses, summing to M , with no
face or vertex having mass more than M{2.

Then G̃ has a cycle C, which may repeat vertices and edges but does not cross itself
and has no spurs, such that:



134 Chapter 9. Computing More Structured Separators

• C is a balanced separator: the mass of the vertices of G strictly inside (resp., strictly
outside) C is at most 3M{4;

• C is mostly a light piece of H: there exists a set V 1 of Opbkq vertices of G̃, and
a set E 1 of Opbkq edges of G̃, such that CzpE 1 Y V 1q is a subgraph of H and
wV pV pCqzV

1q ` wEpEpCqzE
1q ď W {k, where W is the total weight of the ver-

tices and edges in H .

Moreover, C, V 1, and E 1 can be computed in time Opk2nq.

This theorem is used recursively, with H an Op1q-approximation of the ubiquitous
problem we consider, to prove Theorem 9.3 (see Section 9.1.3). We note that in the prob-
lems described in this paper, b is a small constant.

Algorithm 12 Balanced Separator Algorithm for Planar Graphs

1: Input: A planar graph G “ pV,Eq and a subgraph H such that G{H has branchwidth
at most b ´ 1. Nonnegative weights on vertices and edges of H . Masses on the faces
of G̃ summing to M , each at most M{2.

2: w1 Ð new edge weights on H derived from Lemma 9.4 to represent both edge and
vertex weights.

3: w1E Ð edge weights on G̃ defined in Proposition 9.5
4: G̃1 Ð ShortFacesSubgraph(G̃,H,w1E) as per Proposition 9.7.
5: if there exists a face f of G̃1 with mass at least M{2 then
6: return C Ð fundamental cycle separator of f in G̃ as per Proposition 9.8.
7: else
8: return C Ð cycle separator in G̃1 as per Proposition 9.9.
9: Output: A cycle separator C, fulfilling the requirements of Theorem 7.4.

9.1.1.1 Reduction to a simpler problem with no vertex weights

Lemma 9.4. Without loss of generality we may assume that all vertices have weight zero.

Proof. Recall that H is connected; let H 1 be a spanning tree of H . A cycle satisfying the
conclusion of the theorem with H 1 instead of H also satisfies the conclusion of the original
theorem. This is because W can only decrease by this operation, and the branchwidth of
G{H 1 equals the branchwidth ofG{H (indeed, G{H 1 can be obtained fromG{H by adding
loop edges). Henceforth we assume that H is a tree.

The algorithm for Theorem 7.4 proceeds as follows. Select an arbitrary vertex r of H
to be the root, direct the edges of H toward r, and for each edge uv of H (directed from u
to v), define ŵEpuvq “ wEpuvq ` wV puq. For every vertex u, define ŵV puq “ 0 for every
vertex u. Assume that Theorem 7.4 holds when vertex weights are zero, and apply it with
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the weight functions ŵE and ŵV . Let C be the resulting cycle, and let E 1 be the resulting
edge subset, i.e. such that ŵEpEpCqzE 1q ď W {k where W is the sum of weights. We
prove below that C is also a solution for the weights wV and wE , for the same subset E 1 of
edges and for a suitable subset V 1 of vertices.

Since |E 1| “ Opbkq, we have that CXH is made of Opbkq paths of H . Let P be such a
path. The path’s weight ŵEpP q includes the weightwEpeq for every edge e in P . Moreover,
for every vertex v of P , since the weight wV pvq of a vertex v is transferred to the parent
edge, wV pvq is also included in ŵEpP q except if (i) v is equal to the root r of H , or (ii) v
has no outgoing edge in P . Since every vertex of H has at most one outgoing edge, and P
has no spur, every vertex of P has at most one outgoing edge. So, when walking along P
(oriented arbitrarily), we first encounter an arbitrary nonnegative number of forward edges,
and then an arbitrary nonnegative number of backward edges. It follows that at most one
vertex of P , let us call it vP , has no outgoing edge in P . Let V 1 consist of the root r together
with the vertex vP for each path P comprising C XH . Then |V 1| “ Opbkq and the weight
of CzpV 1 Y E 1q with respect to wV and wE is at most the weight of CzE 1 with respect to
ŵE , which is at most W {k.

Let c be a a constant c ě 4 to be determined.

Proposition 9.5. Finding a balanced separator satisfying the Separator Theorem (Theo-
rem 7.4) can be reduced to finding a balanced separator cycle in G̃ that has weight at most
W {k with respect to the edge-weight assignment

w1Epeq “

#

mintwEpeq,W {pcbk
2qu if e P EpHq

W {pcbk2q otherwise
(9.1)

Proof. By Lemma 9.4, we can assume that there are no vertex weights. Assume that we
find a cycle C as above. Let E 1 be the set of edges e used by C such that w1Epeq “
W {pcbk2q. Since C has weight at most W {k, we have |E 1| ď cbk. For each edge e P
CzE 1, we have w1Epeq “ wEpeq. Since C has weight at most W {k, we have wEpCzE 1q ď
W {k.

9.1.1.2 Adding edges to reduce the weight of face boundaries

The algorithm described in Proposition 9.5 first selects edges to add to H so as to ensure
that each face of the resulting graph has small weight.

Let ` “ W {ck2. Every edge has weight at most `{b.

Lemma 9.6. Let H̃ be a subgraph of G̃ containing H . Let f be a face of H̃ with boundary
weight at least p12 ` 3

b
q` with respect to w1E . Then there are two vertices u and v of G̃ on

the boundary of f , and a path p in G̃ lying in f (possibly touching its boundary), such that:

• each of the two paths between u and v on the boundary of f has weight at least 3`;
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• p has at most 2b edges.

Moreover, p can be computed in time linear in the complexity of the subgraph of G̃ inside f .

Proof. Let Bf be the closed walk that is the boundary of f . We write Bf as the concate-
nation of four paths N,W, S,E in this order, such that each of these paths has weight
at least 3`. (To prove that this is possible, first take N , W , and S with weight between
3` and p3 ` 1

b
q`, which is always possible since each edge has weight at most `{b; then

the remaining part E has weight at least 3`, since the boundary of Bf has weight at
least p12` 3

b
q`.)

Let G̃1 be the part of G̃ inside or on the boundary of f . Similarly, let G1 :“ G X G̃1.
SinceG{H has branchwidth at most b´1,G1{Bf has branchwidth at most b´1. By Lemma
9.2, it follows that G̃1{Bf has branchwidth at most 2b´ 2.

Observe that the distance from any vertex of N to any vertex of S along Bf is at least
3`. Assume that there is no path p as stated in the lemma. Then every path in G̃1 connecting
N to S has at least 2b`2 vertices. This implies that any vertex cut separating W and E has
at least 2b vertices. (Indeed, any vertex cut of size j in G̃1 separating W and E corresponds
to a closed curve separating W and E in the plane, intersecting j vertices of G̃1; since G̃1

is a triangulation, except for the outer face, the part of that curve inside f can be pushed
to G̃1, leading to a path of hop-length j.) Menger’s theorem now implies that there are at
least 2b vertex-disjoint paths between W and E.

Similarly, there are at least 2b vertex-disjoint paths between N and S. This implies the
existence of a grid minor of size 2bˆ 2b in G̃1 (similar arguments were used elsewhere [40,
p. 88], [55, Proof of Theorem 3.1], and seem to originate from Robertson, Seymour, and
Thomas [163]), hence a grid minor of size 2bˆ 2b in G̃1{Bf , which contradicts the fact that
G̃1{Bf has branchwidth at most 2b´2. So there exists such a path p. Computing such a path
takes linear time using two shortest path computations in the planar graph G̃1 [104].

Proposition 9.7. There is an Opk2nq algorithm that computes a subgraph H̃ of G̃ contain-
ing H such that:

• H̃ has weight at most 2W , and

• every face boundary of H̃ has weight at most p12` 3
b
qW {ck2 (w.r.t. w1E).

Proof. Initially, let H̃ :“ H . We iteratively apply Lemma 9.6 by adding edges of the path p
in H̃ , until every face boundary of H̃ has weight less than p12` 3

b
q`. The path p has weight

at most 2`. This operation splits the face f into at least two faces, among which some
number m have boundary length at least p12` 3

b
q`.

We claim that the value of ϕ :“
ř

f pw
1
EpBfq ´ 3`q, where the sum is over all faces f

of weight at least p12 ` 3
b
q`, decreases by at least ` when adding p. Indeed, this is clear

if m “ 0; if m “ 1, the new face f 1 with length at least p12 ` 3
b
q` satisfies w1EpBf

1q ď
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w1EpBfq ` 2` ´ 3` “ w1EpBfq ´ `; and if m ě 2, the contribution of the m new sub-faces
to ϕ is at most w1EpBfq ` 2 ¨ 2`´ 3m`.

Thus the total number of iterations is at most 2W {` “ 2k2. At each step, we add at
most 2b edges, each of weight W {pcbk2q, so the total weight of the added edges is at most
4W {c. Since c ě 4, the total weight of H̃ is at most 2W . The time complexity follows
from the fact that there are Opk2q iterations.

The algorithm of Proposition 9.7 produces a subgraph H̃ of weight W̃ ď 2W .

9.1.1.3 A balanced cycle separator for weighted planar graphs with light faces

Recall that the faces and vertices of G̃ have been assigned nonnegative masses, that M is
the sum of masses, and that no single mass exceeds M{2. Our goal is to give a separator
algorithm for the subgraph H̃ whose existence is guaranteed by Proposition 9.7. Recall
that the total weight W̃ of H̃ is at most 2W

Note that each face of H̃ is (essentially) the union of a collection of faces and vertices
and edges of G̃. We define the mass of a face of H̃ to be the sum of the masses of the
corresponding faces and vertices of G̃.

There are two cases: when a face of H̃ has mass greater than M{2 and when no such
face does. In the first case, we use a simple construction based on sphere-cut decomposi-
tion.

Proposition 9.8. Suppose H̃ has a face f whose mass is greater than M{2. Then there is
a cycle C, which may repeat vertices and edges but does not cross itself and has no spur, of
weight 4W̃ {k2, such that the mass of the faces inside (resp., outside) C is at most 3M{4.
Moreover, C can be computed in linear time.

Proof of Proposition 9.8. Let G̃f be the subgraph of G̃ consisting of the interior and bound-
ary of f . Since f has mass greater than M{2, every face of G̃f that is not part of f has
mass less than M{2. Let L be the graph obtained from G̃f by contracting all but one of the
edges of the boundary of f . Since G̃{H has branchwidth at most 2b ´ 2, so does L. Since
f has mass greater than M “ 2, the face of L corresponding to the part of G̃ not in f has
mass at most M{2. Thus each face of L has mass at most M{2.

Consider a sphere-cut decomposition of L. It defines a rooted binary tree in which each
node corresponds to a noose and a cluster consisting of the edges enclosed by the noose.
Define the mass of a node of the binary tree to be the mass of the faces fully enclosed by, or
intersecting, the corresponding noose. Let v be a deepest node in the binary tree such that
v’s mass is greater than M{2. Among v’s two children let v1 be the child with the greater
weight. The sum of the masses of v’s two children is greater than or equal to the mass of
v, thus the mass of v1 is at least M{4.

Let C1 be the Jordan curve corresponding to v1. The total mass of the faces strictly
enclosed by C1 is at most the mass of v1, which is at most M{2. The total mass of the faces
strictly outside C1 equals M minus the mass of v1, which is at most M ´M{4 “ 3M{4.
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We construct a cycle C2 in L from C1 by pushing each part of the curve which passes
through a face onto part of the face’s boundary. We sequentially choose the direction in
which to push faces: each face is added to the currently lighter side. As the mass of each
face is at most M{2, the new cycle is 3{4 balanced. As L has maximum face degree 3,
the curve C1 passes through each face at most once, so the resulting cycle C2 is non-self-
crossing. If any spurs are formed in C2, we (iteratively) remove them. Removing a spur
does not affect the balance at all, and can only reduce the weight of the cycle.

Since L has branchwidth at most 2b´ 2, the curve corresponding to v passes through at
most 2b ´ 2 vertices, and thus at most 2b ´ 2 faces. Since each face has degree at most 3,
each path through a face is pushed to at most 2 edges. Thus C2 contains at most 4b edges.
Since each edge has weight at most W {pcbk2q, C2 has weight at most 4W {ck2.

C1 can by lifted to a cycle C in G̃ with the same balance by adding to it some (possibly
empty) part of the boundary of f . Since the total weight of the boundary of each face in H̃
is at most p12 ` 3

b
q`, C has weight at most W {k for an appropriate choice of the constant

c. Each step of the algorithm implied in the proof can be implemented in linear time.

If no face is massive, we use a variation of Miller’s simple cycle separator theorem [143].
The main differences are that we do not require 2-connectivity, and that the edges are
weighted. The proof is adapted from the simplified proof of Miller’s theorem in [119].

Proposition 9.9. Suppose that no face of H̃ has mass larger than M{2. Then there is a
cycle C, which may repeat vertices and edges but does not cross itself and has no spur, of
weight OpW̃ {kq, such that the mass of the faces inside (resp., outside) C is at most 3M{4.
Moreover, C can be computed in linear time.

Before proving this proposition, we show why it, together with Proposition 9.8, implies
Theorem 7.4:

Proof of the Separator Theorem (Theorem 7.4). Let H̃ be the graph obtained after apply-
ing Proposition 9.7. By Proposition 9.5, it is sufficient to show that there exists a balanced
cycle separator C of total weight W {k in G̃ (with respect to w1E). If one of the faces of
H̃ has mass at greater than M{2, applying Proposition 9.8 yields such a cycle. Otherwise,
since H̃ is a subgraph of G̃, it suffices to find such a C in H̃ . The advantage is that the
total weight W̃ of H̃ is linear in W , the weight of H , while each face boundary has weight
OpŴ {k2q. So applying Proposition 9.9 gives a cycle of weight W {k, as needed.

Proof of Proposition 9.9. Let T be a breadth-first search in the face-vertex incidence graph J
of H̃ , rooted at an arbitrary face f ; for clarity of exposition below, we assume that f is the
outer face of H̃ in the planar drawing that we consider (thus the notions of “inside” and
“outside” are well defined). We define the level of f to be zero, and the levels of the other
vertices and faces of H̃ by induction: The level of a vertex of H̃ is equal to one plus the
level of the parent face in T , and the level of a face of H̃ is equal to the level of the parent
vertex in T .
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Define a mass function on vertices of J in which vertices corresponding to faces of H̃
have mass equal to the mass of the corresponding faces, and those corresponding to vertices
of H̃ have mass zero. There exists a simple cycle C̃ in J consisting of a path in T and an
edge e not in T such that the mass on either side of the cycle is at most 2M{3 [133]. Such
a cycle is called a fundamental cycle.

Let i be an integer. The set of faces of H̃ of level at least i can be partitioned into
regions, by declaring that two such faces are in the same component if they share an edge,
and extending this relation by transitivity. A component of level i is the topological closure
of such a region.

We claim that the boundary BK of such a component K is a simple cycle in H̃ . Since
K is the closure of a union of faces, BK is a subgraph of H̃ with each vertex of even degree.
If some vertex v has degree at least four in BK, then v has level i, and its incident faces all
have level i and i´1. Because v has degree at least four, there are two faces f 1 and f2 of H̃
with level i that are separated by faces of level i´ 1 in the cyclic ordering around v. Since
f 1 and f2 are in K, there is a simple topological cycle γ passing through f 1, v, and f2, in
this order, entirely lying in the interior of K (except at v). But then all vertices and faces
inside γ must have level at least i, which contradicts the assumption. So BK is the disjoint
union of cycles. Two such cycles cannot be nested, for a similar reason, and they cannot be
separated as well, because their interiors would not be connected to each other. So BK is a
single simple cycle in H̃ . This proves the claim.

Since C̃ is a fundamental cycle in J , the levels of its vertices and faces are increasing
and then decreasing when walking along C̃ starting from the common ancestor in T of the
endpoints of e. Therefore, C̃ enters the interior of at most one component at a given level i.

Let imin ´ 1 and imax be the minimum and maximum levels faces in C̃; for each i,
imin ď i ď imax, let Ki be the (unique) component at level i penetrated by C̃. Moreover,
letKimin´1 “ F pH̃q andKimax`1 “ H. TheKi’s are nested, and the boundaries BKi of the
Ki’s, for imin ď i ď imax, form disjoint simple cycles. Indeed, by construction, a vertex on
BKi is incident with some faces of level i ´ 1, some faces of level i, and no face of other
levels.

Let imed be such that imin ´ 1 ď imed ď imax, and the mass of the faces of H̃ inside
Kimed`1 or outside Kimed

is at most 3M{4. (For this purpose, one can let imed be as large as
possible such that the mass of the faces of H̃ outside Kimed

is at most 3M{4.) Let i´ be the
largest level smaller or equal to imed such that BKi´ has weight at most W1{8k. Similarly,
let i` be the smallest level larger or equal to imed ` 1 such that BKi` has weight at most
W1{8k. Then the total weight of BKi` Y BKi´ is at most 2W1{8k, which is at most W {2k.

Since Ki´`1, Ki´`2, . . . , Ki`´1 each have weight larger than W1{8k, there can be at
most 8k such levels, so we have i` ´ i´ ď 8k ` 1.

We now consider the part of C̃ inside Ki´ but outside Ki` , which consists of two paths
in J . We push each of these two paths into H̃: Each time such a path traverses a face of H̃ ,
we push the corresponding part onto one of the face boundaries. We sequentially choose
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the direction in which to push faces: each face is added to the currently lighter side. Since
the mass of each face is at most M{2, the new cycle is 3{4 balanced. Further, as C̃ enters
each face at most once, the resulting cycle is non-self-crossing. If any spurs are formed, we
(iteratively) remove them. Removing a spur does not affect the balance at all, and can only
reduce the weight of the paths. Let P1 and P2 be the resulting two paths. Each of them has
weight at most p8k` 1q ¨ p12` 3

b
qW {ck2 since the corresponding part of C̃ we pushed was

traversing at most 8k` 1 faces of H̃ , each of boundary weight at most p12` 3
b
qW {ck2. By

choice of c, we can ensure that the weight of these two paths is at most W {2k.
Let S :“ P1 Y P2 Y BKi` Y BKi´ . By construction, S has weight at most W {k. S

separates J into four pieces (some of which can be empty or disconnected):

• the part of J strictly outside Ki´;

• the part of J strictly inside Ki`;

• the part of J strictly inside Ki´ , strictly outside Ki` , and strictly inside C̃;

• the part of J strictly inside Ki´ , strictly outside Ki` , and strictly outside C̃.

By construction, each such piece encloses faces of mass at most 3M{4. The three smallest
pieces together have face mass at most 3M{4, and the largest one at most 3M{4. Thus, we
can take for separator the subset of S that bounds the larger of these pieces; this is indeed
a balanced separator, and a non-self-crossing cycle without spur in H̃ . Each step of the
algorithm implied in the proof can be implemented in linear time.

Algorithm 13 Balanced Separator Algorithm for Planar Graphs

1: Input: A planar graph G “ pV,Eq and a subgraph H such that G{H has branchwidth
at most b ´ 1. Nonnegative weights on vertices and edges of H . Masses on the faces
of G̃ summing to M , each at most M{2.

2: w1 Ð new edge weights on H derived from Lemma 9.4 to represent both edge and
vertex weights.

3: w1E Ð edge weights on G̃ defined in Proposition 9.5
4: G̃1 Ð ShortFacesSubgraph(G̃,H,w1E) as per Proposition 9.7.
5: if there exists a face f of G̃1 with mass at least M{2 then
6: return C Ð fundamental cycle separator of f in G̃ as per Proposition 9.8.
7: else
8: return C Ð cycle separator in G̃1 as per Proposition 9.9.
9: Output: A cycle separator C, fulfilling the requirements of Theorem 7.4.
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9.1.2 Planarization Theorem
In this section, we show the following theorem.

Theorem 9.10. Let b ą 1 be a constant. There exists a polynomial-time algorithm for the
following: The algorithm is given a positive integer parameter k, an edge-weighted graph
G that is cellularly embedded on a surface of genus g, and a connected subgraph H of G
such that G{H has branchwidth at most b´ 1.

The algorithm outputs a subgraph S of G̃ such that G´S is planar, S contains at most
Opg2 ` kq edges not in H , S has at most Opg2 ` kq connected components, and the total
weight of S is at most gOp1qW {k where W is the total weight of H .

Using the argument of Section 9.1.1.1 (which does not use planarity), we can assume
that all vertex weights are zero.

As in Proposition 9.5, the algorithm for Theorem 9.10 assigns edge-weights to G̃ ac-
cording to Equation 9.1. Edges not in H have weight W {cbk2. The algorithm then finds
a subgraph S whose weight is OpW {kq with respect to this edge-weight assignment. As a
consequence, the number of edges in S that are not in H is Opg2 ` kq.

The next lemma follows from [161, Theorem 4.1].

Lemma 9.11. Consider a graph G that is cellularly embedded on a surface of genus g and
a subgraph H of G such that G{H has treewidth at most t. Let f be a face of H of genus
at least one and Gf be the subgraph of G induced by f and its interior. There exists a
non-separating cycle in G̃f that intersects at most Optq vertices of Gf .

Proposition 9.12. Consider a graph G0 with r connected components embedded on a sur-
face of genus g. Then the number of faces of G0 that are not disks is Opr ` gq. Moreover,
the total number of boundary components of all non-disk faces is at most Opr ` gq.

Proof. For any graph G, let ϕpGq denote the sum, over all non-disk faces f of G, of the
number of boundary components of f . We will prove that ϕpG0q “ Opg ` rq.

First, we define a graph G1 obtained from G0 by adding r ´ 1 edges, so that G1 is
connected. Observe that ϕpG0q ď ϕpG1q ` Oprq: indeed, consider the addition of an
edge e in some face f , during the transformation of G0 into G1. Edge e connects two
distinct boundary components of f , so it does not separate f . Moreover, the number of
boundary components of f decreases by at most one.

Second, we define a graph G2 obtained from G1 by contracting the edges of a spanning
tree of G1; the graph G2 has a single vertex, and we have ϕpG1q “ ϕpG2q.

Third, we iteratively apply the following operation to G2: While there is a disk of G2

bounded by a single loop, we remove that loop, and similarly while there is a disk of G2

bounded by exactly two loops, we remove one of the loops. The non-disk faces of this new
graph, G3, have the same topology as those in G2, so ϕpG2q “ ϕpG3q.
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Under these conditions, it is known [48, Lemma 2.1] that the number of loops in G3

is Opgq; in particular, ϕpG3q “ Opgq, which by the above equalities implies ϕpG0q “

Opr ` gq.
That immediately implies that the number of faces of G0 that are not disks is Opr` gq,

hence the proposition holds.

We can now prove the following lemma.

Lemma 9.13. Let H̃ be a subgraph of G̃ containing H . Let f be a face of H̃ . Assume f
has a boundary component f0 with weight at least p12` 3

b
q`. Then there exist two vertices

u and v of G̃ on the boundary of f , and a path p in G̃ with at most 2b edges and lying in f ,
such that:

• if u and v are both in f0, then each of the two paths between u and v in f0 has weight
at least 3`;

• otherwise, u and v belong to different boundary components of f , and the path p
intersects the boundary of f only at u and v.

Moreover, p can be computed in time linear in the complexity of the subgraph of G̃ inside f .

Proof. The proof is similar to the proof of Lemma 9.6. We explain how to adapt its proof.
Observe that by Proposition 9.12, the number of boundary components is at most Opg2q.
Thus, the graph Gf which consists of the interior of f where each boundary component
is contracted to a vertex has branchwidth Opg2q ` b. Indeed, the graph corresponding to
the interior of f where all the boundary components are contracted into a single vertex has
branchwidth at most b. Form a width-b branch decomposition of this graph. When each
boundary component is represented by a single vertex, the width increases by at most the
number of such vertices.

Now, we apply the argument of Lemma 9.6. If the short path that is found does not
intersect any vertex resulting from the contractions, we just return the path and it satisfies
the conditions of the lemma. Otherwise, consider a short path from u to v intersecting at
least one vertex resulting from the contractions, and return a shortest sub-path connecting a
vertex u1 in f0 with a contracted vertex v1. This path connects two different boundary com-
ponents of f , without intersecting the boundary of f except at its endpoints, thus satisfying
the conditions of the lemma.

We can derive the following proposition whose proof resembles that of Proposition
9.14.

Proposition 9.14. Let H̃ be a subgraph of G̃ containing H . There exists an algorithm to
compute a subgraph H̃1 of G̃ containing H̃ such that:

• H̃1 has Opbpk2 ` gqq edges not in H̃;
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• every boundary component of every face f of G̃1 has weight at most p12` 3
b
qW {ck2.

The running time of the algorithm is Oppk2 ` gqnq.

Theorem 9.15. Let k be an integer. Consider a graph G with positive edge weights that
is cellularly embedded on a surface S of Euler genus g and such that every face is a disk.
Let W denote its total weight, and assume that every face has boundary weight at most
W {k2. There exists a subgraph G1 of G, such that cutting S along G1 gives a surface with
genus zero (possibly with several boundary components), with the following properties: G1

has weight Op
?
gW {kq, and has at most g connected components. Furthermore, G1 can be

computed in linear time.

G1 is called a planarizing subgraph of G.

Proof. The proof is a refinement on a result by Eppstein [79]; see also [80]. Let J be the
face-vertex incidence graph of G. Let r be an arbitrary vertex of G, and let T be a breadth-
first search tree in J rooted at r. We define the level `puq of a face or vertex u of G to be
the number of edges of the path in T from r to u.

Let E be the set of edges of J . For each edge uv P E, let Lpuvq be the loop rooted
at r that is the concatenation of the path from r to u in T , edge uv, and the path from v
to r in T . Loop Lpuvq has `puvq “ `puq ` `pvq ` 1 edges. Let C be the primal edges of a
maximum spanning tree of pEzT q˚, where the weight of an edge puvq˚ P E˚ equals `puvq.
Finally, let X :“ EzpT Y Cq.

Euler’s formula implies that |X| “ g. It is known from [81, Section 3.4]) (and not hard
to see) that

Ť

uvPX Lpuvq cuts S into a topological disk, and that an alternative greedy way
to compute X is to iteratively add to X the edge u1v1 with smallest value of `pu1v1q such
that

Ť

uvPX Lpuvq Y Lpu
1v1q does not disconnect the surface.

Let M :“ 2
P

k{p2
?
gq
T

. Recall that W denotes the total weight. We choose an even
i P t0, . . . ,M ´ 1u such that the subgraph G1 of G induced by the vertices of level equal
to i modulo M has weight Op

?
gW {kq.

For each edge uv P X , we consider the smallest level iuv ě maxp`puq, `pvqq ´M that
is equal to i modulo M . Define L1puvq to be the part of Lpuvq of level at least iuv. Since
L1puvq traverses Opk{

?
gq faces of G, each of boundary weight OpW {k2q, we can “push”

L1puvq to a walk L1ppuvq of G, of weight OpW {pk
?
gqq.

Let G2 be the union of the subgraph G1 and of the walks L1ppuvq, for uv P X . By
construction, and since |X| “ g, the weight of G2 is Op

?
gW {kq. We will now (i) prove

that cutting S along G2 results in a genus zero surface (possibly with several boundary
components), and then (ii) extract from G2 a subgraph still having that property, but having
Opgq connected components.

For (i), let i1 be equal to i modulo M . It suffices to prove that the part of the surface S
that is the closure of the union of the faces of levels between i1`1 and i1`M´1, minusG2,
has genus zero; or, equivalently, minusG1 union theL1puvq for uv P X . Actually, that latter
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surface is contained in the closure of the faces of G at level at most i1 `M ´ 1 minus the
union of the loops Lpuvq with iuv ď i1 `M , so it suffices to prove that this latter surface,
S 1 has genus zero. To simplify the discussion, we attach a disk to each boundary of S 1. The
restriction of T to S 1 is also breadth-first search tree of the restriction of J to S 1. If S 1 has
positive genus, then it has a non-separating loop based at r that has the form Lpu1v1q for
some edge u1v1 [47, Lemma 5]; that loop is also non-separating in S minus the loops Lpuvq
with iuv ď i1 ` M . But this contradicts the greedy algorithm mentioned above (which
should have inserted u1v1 in X , since `pu1v1q ď i1 `M ). This contradiction proves (i).

For (ii), we consider an inclusion-wise maximal subgraph G3 of G2 such that cutting S
alongG3 results in a connected surface (which therefore has genus zero as well); computing
G3 can be done in linear time, by computing a spanning tree of the “dual” graph of G2

and keeping the primal edges of the complement. Finally, let G1 be obtained from G3 by
removing any connected component of G3 that is a tree. Cutting S along G1 still results in
a genus zero surface, so G1 is planar. Moreover, G1 has at most g cycles, because otherwise
the complement of G1 would be disconnected (by definition of the genus). Since each
connected component of G1 contains a cycle, G1 has at most g connected components.

Finally, G1 can be computed in linear time.

We can now prove the theorem.

Proof of Theorem 9.10. We consider the following algorithm to construct S.

1. S ÐH

2. While there is a face with positive genus: apply Lemma 9.11 to H in order to obtain
a graph H 1 where each face has genus 0.

3. While there exists a face whose boundary has large weight: apply Lemma 9.13.
Obtain a subgraph H2 with Opgq connected components, that contains H , and of
maximum face weight at most Opg2W {k2q.

4. For each face f of H2, if f is not a disk, then add the entire boundary of f to S and
remove f . Obtain H3.

5. Apply Theorem 9.15 to each connected component of H3 to obtain a planarizing
subgraph S 1, and add it to S.

6. Return S

We prove that the subgraph S satisfies the conditions of Theorem 9.10.
We first argue that iteratively applying Lemma 9.11 yields a graph H 1 of total weight at

most Opg2W {kq. Since for each face we add a non-separating cycle, the total genus of all
the faces decreases by one at each iteration. By Lemma 9.11, the path added is short and
so, the total weight of H 1 is bounded by Opg2W {kq and each face of H 1 has genus 0.
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By applying Lemma 9.13 we either decrease the number of connected components of
the boundary of a face or we reduce the weight of the face. By Proposition 9.12, the total
number of connected components of all the faces is at most Opg2q, thus the total weight of
H2 is at most Opg4W {kq.

We now turn to the analysis of the cost incurred by Step 4. By Proposition 9.12, there
are at most Opgq such faces. Again since the face weight of H2 is at most OpW {k2q, the
total weight added to S at step 4 is at most OpgW {k2q.

Finally, observe that in the remaining graph, by Step 4 each face of H3 is a disk and
contains a subgraph of G of genus 0. Moreover by Step 3, the maximum face weight is
at most OpW {k2q. It is thus possible to apply Theorem 9.15 in order to obtain a subgraph
S 1 of H3 of total weight at most Op

?
gW {kq and such that H3 ´ S 1 is planar. The total

number of connected components of S 1 is at most Opkq.

Since the number of connected components added at Step 4 is Opg2q, the total number
of connected components of S is thus Opg2 ` kq.

9.1.3 Branchwidth reduction

In this section we prove Theorem 9.3: we show that, for constants g, b, ε, there is a polynomial-
time algorithm that, given a genus-g edge/vertex-weighted graph G0 and a connected sub-
graph H0 such that G0{H0 has branchwidth at most b ´ 1, outputs a subgraph K of H0 of
weight at most ε times the weight of H0 such that G0{K has branchwidth Oplog nq, where
n is the number of vertices of G0. We give a procedure that returns a branch decomposition
of G0{K.

First we assume the graph is planar. At the end of this section, we discuss the case of
positive genus.

An overview: The algorithm of Theorem 9.3 uses the algorithm of Theorem 7.4 to re-
cursively find separators and uses them to decompose the graph into clusters of a branch
decomposition. The boundaries of these clusters are subsets of the vertex sets of the separa-
tors. The boundaries might be large but, after contraction of the edges ofH in the separator,
the size of the boundary becomes small. Because the separators are balanced, the recursion
depth is logarithmic (see also Figure 9.3).
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Part 1 Part 2 Part 1 Part 2

Result: 
Interface 

Parts 1 and 2
is 4 vertices

Contract
the 4 connected

components
of the separator

Recurse on both
sides:

1) Find a separator 2) contract each
connected 
component

Figure 9.3: Two steps of the Branchwidth-Reduction algorithm.

In order to ensure the boundaries in the contracted graph remain small, the algorithm
uses a variant of a strategy of [86]. The variant is described, e.g., [119] (and used elsewhere
previously); occasionally, instead of ensuring the separator is balanced with respect to the
size of the subgraphs, the algorithm ensures that the separator is balanced with respect to
the number of vertices appearing on boundaries.

More details: We describe a recursive procedure to select edges to contract and find a
branch decomposition for the contracted graph. The procedure is given a planar embedded
graph G and a subgraph H such that G{H has branchwidth at most b. The procedure is
also given a subset S of vertices of G, which we call boundary vertices.

The initial invocation is BRANCHDECOMPpG0, H0,Hq be the initial invocation. In any
nonterminal invocation
BRANCHDECOMPpG,H, Sq, the two recursive calls in Line 14 operate on disjoint subsets
of H . Therefore, for every level of recursion the invocations operate on disjoint subsets of
H0, so the total weight of these subgraphs is at most the weight of H0. We will see that
the recursion depth is Oplog nq. Therefore the total weight of all subgraphs H passed to all
invocations is Oplog nq times the weight of H0.

In Line 15, the procedure takes branch decompositions returned by the recursive calls
and adds one additional cluster, the cluster consisting of all the edges in the two branch
decompositions. Therefore the procedure returns a branch decomposition of the graph
induced on all those edges. Thus the initial invocation returns a branch decomposition
of the graph obtained from G0 by contracting all edges ever contracted during recursive
invocations of the procedure.

In any nonterminal invocation BRANCHDECOMPpG,H, Sq, in Line 8 the procedure
finds a cycle separator C using the parameter value k “ c3ε

´1 log n. The weight of edges
ofH in C is at most the weight ofH divided by k. It follows that, for an appropriate choice
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Algorithm 14 BRANCHDECOMPpG,H, Sq

1: Input: a planar graph G, a subset H of edges, and a set S of vertices
2: if G has at most c1 vertices then return a branch decomposition of G of width ď c1

3: else
4: if |S| ą c2ε

´1 log n then
5: assign mass 1 to vertices of S and zero to other vertices
6: else
7: assign mass 1 to all vertices of G
8: find a cycle separator C as per Theorem 7.4 using k “ c3ε

´1 log n
9: G1 Ð G{edges of C XH

10: C 1 Ð noose corresponding to C in G1

11: S 1 Ð vertices of G1 on C 1

12: pE1, E2q Ð C 1-induced bipartition of edges of G1

13: pS1, S2q Ð C 1-induced bipartition of vertices of G1 not in C 1

14: Bi ÐBRANCHDECOMPpG1rEis, H X Ei, Si Y S
1q for i “ 1, 2

15: return B1 YB2 Y p
Ť

B1 YB2q

of the constant c3, the total weight of edges in all cycle separators found is at most ε times
the weight of H0. This bounds the weight of all edges contracted in Line 9 throughout all
invocations.

When the edges of C X H are contracted, C becomes a noose C 1 in the contracted
graph G1. The noose C 1 partitions G1 into two edge-induced subgraphs, and also par-
titions the boundary vertices S. In each of the two recursive calls, the vertices on C 1

are included as boundary vertices. This implies the invariant that, for any invocation
BRANCHDECOMPpG,H, Sq, any vertex of G0 that is incident to an edge in G and an edge
not in G is a member of S.

By Theorem 7.4, there are Opbε´1kq vertices on the noose C 1, which is Opbε´1 log nq.
Because of Line 5, one can choose the constant c2 in Line 4 so that there is a constant c4 such
that the number of boundary vertices passed to the procedure never exceeds c4bε

´1 log n,
and that no two consecutive recursive invocations execute Line 5. As a consequence of the
first statement, every branch decomposition returned has width at most c4bε

´1 log n. As a
consequence of the second statement, the recursion depth is Oplog nq as promised.

Finally, consider the case in which the input graph has genus g ą 0. In this case, the
algorithm first applies Theorem 9.10’s algorithm to the input graphG and obtain a subgraph
S. For each piece L of G ´ S that is planar, the algorithm recursively applies the planar
separator theorem and obtains a set of edges S 1L such that L{S 1 has bounded branchwidth.

We now argue that the branchwidth of G{pS Y
Ť

L SLq is bounded. For each planar
piece L of G´ S we take a branch decomposition of L{SL of small width.

Since by Theorem 9.10, S contains at most Opg2 ` kq connected components, these
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branch decompositions can be merged to form a branch decomposition of G{pS YYLSLq,
increasing the width by Opg2 ` kq.

9.2 Algorithmic Implications
A fairly large class of problems to which our framework applies mix structure requirements
and domination requirements, and can have several kinds of weights. More specifically, we
consider problems that take as input a bounded-genus graph with weights on vertices, edges
or faces; a solution must usually be connected, have a connected induced subgraph, or be a
tour; and it must dominate all vertices, edges or faces of the graph.

To derive PTASs for those problems, we rely on Algorithm 11 and appeal to Theo-
rem 7.3. To have a subgraph H of total weight OpOPTq such that G{H has bounded
tree width, it is sufficient to take an Op1q approximate solution, either available from pre-
vious work or obtained by designing Op1q-approximation when needed (for example for
weighted connected dominating set).

In [167], the authors introduce a new tree-decomposition for graphs embedded on sur-
face, called surface cut decomposition. All the problems listed in Table 7.1 are packing-
encodable according to the definition in [167]. Even though this theorem is designed for
unweighted versions of the problems, it is straightforward to extend it to weighted versions.

Theorem 9.16. [167, Theorem 3.2] Every connected packing-encodable problem whose
input graph G is embedded in a surface of genus g, and has branchwidth at most b, can be
solved in time gOpb`gqbOpgqnOp1q.

9.2.0.1 Weighted Connected Dominating Set, Max Weighted Leaf Spanning Tree

Consider the Vertex-Weighted Connected Dominating Set problem defined as follows.

Definition 9.17. Weighted Connected Dominating Set. Given a graph G “ pV,Eq with
vertex weights w : V Ñ R`, a connected dominating set is a set of vertices S such that
GrSs is connected and such that every vertex of V is in S or adjacent to S. The objective
is to find a connected dominating set of minimum weight.

Garey and Johnson’s book [91] showed that the problem is NP-Hard, even for bounded
degree planar graphs. Guha and Keller [94] obtained a log ∆ approximation where ∆ is
the maximum degree of the graph and that no polynomial time algorithm can do better
in general graph unless NP Ď DTIME[nOplog lognq]. The vertex-weighted version of the
problem received a lot of attention as it has applications in network testing problems (see
[152]) and wireless communication problems (see [57]). For the unweighted version of the
problem in graphs of bounded genus, a PTAS was obtained through the framework arising
from the bidimensionality theory in [66]. A linear kernel was found for planar graphs in
[135]. The FPT version of the problem was addressed in [63].
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The vertex-weighted version of the problem was also considered by Guha and Keller
in a later paper [96] who obtained a p1.35` εq log n approximation for general graphs and
which remained the best approximation ratio until this work. Using Theorem 7.3, we obtain
the following result for the connected dominating set problem.

Theorem 9.18. Let 0 ă ε ď 1{2 and let g be a fixed integer. There exists an algorithm,
based on Algorithm 11, that computes a 1 ` ε-approximation to the weighted connected
dominating set problem in graphs of genus bounded by g. Its running time is nOpfpε,gqq.

Clearly, any solution in the original graph remains a solution in the contracted graph,
and its cost can only be reduced. We show that each of the three conditions of Theorem 7.3
hold, implying Theorem 9.18. Condition 2. The second condition is ensured by Theorem
9.16. Condition 3. To prove that the last condition holds, we show that given a graph G, a
subgraph G1 “ pV1, E1q and a solution S for G{G1, there exists an Algorithm Lift which
computes a solution for G of total cost at most wpSq ` wpG1q: Since each vertex resulting
from the contraction of G1 has to be dominated, at least one of its neighbor belongs to
S. Therefore, we can add all the vertices of G1 to S and the solution remains connected.
Furthermore, since each vertex is dominated in G{G1 by S and since we add the all the
vertices of G1 to S, all the vertices of G are dominated by SYV1. The total cost of the new
solution S Y V1 is wpSq ` wpG1q. Condition 1. To show the first condition, we provide
the first known constant factor approximation. Indeed, since for each feasible solution S
each vertex of the graph is dominated by GrSs, each vertex of G{GrSs is at distance at
most 1 from the vertex resulting from the contraction of GrSs. Therefore G{GrSs has
diameter at most 2. It follows that the branchwidth of G{GrSs is Op1q. Therefore, any
Op1q-approximation for the problem is a connected subgraph H of G such that G{H has
branchwidth Op1q. We show the following lemma which is immediately subsumed by the
Approximation Scheme result (Theorem 9.18).

Lemma 9.19. There exists anOp1q-approximation algorithm for the Vertex-Weighted Con-
nected Dominating Set problem for graphs of genus at most g.

For any graph G of genus at most g, we first define a ball of radius i around a vertex v
to be the set of points that are at edge distance at most i from v. We prove the correctness
of Algorithm 15.

Lemma 9.20. Consider the set of vertices V0 after step 6 of Algorithm 15. There exists a
solution S of value at most 2OPT such that V0 Ď S.

Proof. Consider an optimal feasible solution SOPT and a ball b P B. Since SOPT is feasible,
argminvPbwpvq is in SOPT or at least one of its neighbors is in SOPT. Hence S “ SOPTY tv |
Db P B s.t v “ argminvPbwpvqu is connected. We now argue that the cost of S is at most
twice the cost of SOPT. Again, since SOPT is feasible, either the center of b belongs to SOPT

or at least one of its neighbors belongs to SOPT It follows that the sum of the weights of the
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Algorithm 15 Constant factor approximation algorithm for weighted connected dominat-
ing set in bounded genus graphs.

1: Input: A graph G “ pV,Eq of genus at most g, a weight function w : V Ñ R`.
2: B Ð set of disjoint balls of radius 1 that is maximal under inclusion.
3: V0 ÐH

4: for all ball b P B do
5: V0 Ð V0 Y t an element of b of minimum weight u
6: V1 Ð constant-approximation solution to the Vertex-Weighted Steiner Tree problem

on G with terminals V0.
7: G1 Ð G{GrV1s, G1 has bounded branchwidth by Lemma 9.22.
8: V2 Ð an optimal solution to the problem on G1 using Algorithm from Theorem 9.16

for bounded branchwidth graphs.
9: Output: V2 Y V1

vertices in SOPT X b is at least minvPbwpvq and thus, the sum of the weights of the vertices
in S X b is at least 2 minvPbwpvq. Therefore, since the balls are disjoint, the total cost of S
is at most twice the total cost of SOPT.

Line 7 of the Algorithm is achieved thanks to the following theorem. See also [33].

Theorem 9.21 ([67, Theorem 1]). There exists a polynomial-time constant-factor approx-
imation algorithm for the vertex-weighted Steiner tree problem.

Lemma 9.22. Consider the set V1 at step 8 of the algorithm. G{GrV1s has bounded branch-
width.

Proof. Note that by the maximality condition of Step 1 of Algorithm 15, we have that each
vertex of the graph is at distance at most 1 from some ball b and so, at distance at most 3
from all the vertices of some ball b.

Because GrV1s is connected, the contraction of GrV1s in G{GrV1s results in a single
vertex which is at distance at most 3 from all the other vertices of G{GrV1s. Hence, the
diameter of G{GrV1s is constant and so, the branchwidth of G{GrV1s is constant.

Proof of Lemma 9.19. Lemma 9.20 and Theorem 9.21 ensure that costpS1q ď 12 ¨ OPT.
Moreover, Lemma 9.22 and Theorem 9.16 ensure that costpS2q ď OPT. The running time
of the algorithm follows directly from Theorems 9.21 and 9.16.

The weighted connected dominating set problem is also related to the maximum weight-
ed leaf spanning tree defined as follows.

Definition 9.23. Maximum Weighted Leaf Spanning Tree. Given a graph G “ pV,Eq
with vertex weights w : V Ñ R`, a weighted leaf spanning tree is a spanning tree of G
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whose cost is defined as the sum of the weights of its leaves. The objective is to find a leaf
spanning tree of maximum weight.

The unweighted version of the problem has been studied in a series of results (see for
example [39, 136]). The FPT version of the problem has also been extensively studied, for
example in [75, 37].

Using an observation from [74] for the unweighted case, we derive the analogous obser-
vation for the weighted case, Lemma 9.25. Using Lemma 9.25, it is easy to derive Theorem
9.24 from the proof of Theorem 9.18.

Theorem 9.24. Let 0 ă ε ď 1{2 and g be a fixed integer. There exists an algorithm,
based on Algorithm 11, that computes a 1 ` ε-approximation to the maximum weighted
leaf spanning tree problem in graphs of genus bounded by g. Its running time is nOpfpε,gqq.

This lemma is standard and was proven in previous results on maximum weight leaf
spanning tree.

Lemma 9.25. Let G “ pV,Eq be a graph with vertex weights w : V Ñ R`. Let W denote
the sum of the weights of the vertices of G. The sum of the value of the optimal maximum
weighted leaf spanning tree and the value of the optimal connected dominating set is equal
to W .

9.2.0.2 Tour Cover and Tree Cover

The tour and tree cover problems are defined as follows.

Definition 9.26. Tree cover. Given a graph G “ pV,Eq with edge weights w : E Ñ R`, a
tree cover is a set of edges S such thatGrSs is connected and such that for each pu, vq P E,
De P S such that e shares an endpoint with pu, vq. The tree cover problem asks for a tree
cover of minimum weight.

In the tour cover problem, the solution is required to form a tour instead of a tree.
The Tour and Tree cover were introduced by Arkin et al. in [8] who obtained the first
constant factor approximation and a proof of MAX-SNP hardness in general graphs. An
approximation ratio of 3 was later obtained in [124] for both problems and to 2 for tree
cover in [149]. The parameterized version of the problem was addressed in [98, 147].

Theorem 9.27. Let 0 ă ε ď 1{2 and let g be a fixed non-negative integer. There exist
algorithms, based on Algorithm 11, that compute a 1 ` ε-approximation to the tour cover
problem and to the tree cover problem in graphs of genus bounded by g. Their running
times are nOpfpε,gqq.
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Proof of Theorem 9.27. We show that the three conditions of Theorem 7.3 are met.
Condition 1 This condition is fulfilled by an Op1q approximation algorithm, see for

example [149]. Consider a graph G and any feasible solution S. Since S is connected, any
vertex of G{S is at distance at most 1 of the vertex resulting from the contraction of S and
so, G{S has constant diameter and therefore constant branchwidth.

Condition 2 This condition is obtained by Theorem 9.16.
Condition 3 We show how to derive a Lift procedure. Note that each vertex resulting

from the contraction of an edge (or more generally a path) has a loop in the contracted
graph. Since the solution for the contracted graph has to cover all the edges of the graph,
this vertex has to belong to the optimal solution. Therefore it is possible to add the con-
tracted edges to the solution while preserving connectivity. For Tree Cover, the solution in
G is simply SYK, while for tour cover, some edges must be taken twice to form a tour. In
either case, the weight of the solution is bounded by wpSq ` 2wpKq.

9.2.0.3 Weighted Connected Vertex Cover

We now consider the weighted connected vertex cover.

Definition 9.28. Weighted Connected Vertex Cover. Given a graph G “ pV,Eq with
vertex weights w : V Ñ R`, a connected vertex cover is a set of vertices S such that GrSs
is connected and such that for each pu, vq P E, u P S or v P S. The weighted connected
vertex cover problem asks for a connected vertex cover of minimum weight.

Savage [168] gave a 2 approximation algorithm which remains the best approximation
algorithm for general graphs.

There are PTASs for the unweighted case in restricted classes of graphs (see [178, 66]).
The weighted connected vertex cover problem is very related to the tree cover problem.

The difference is that the weights are on the vertices and not the edges. Fujito shows in
[90] that, whereas the tree cover problem can be approximated within a constant factor
in general graphs, the weighted vertex cover problem cannot be approximated within a
factor better than log n in general graphs unless NP Ď DTIME[nOplog lognq] and provides
an Oplog nq approximation algorithm for the problem. See [98, 147] for results in the
parameterized case.

Theorem 9.29. Let 0 ă ε ď 1{2 and let g be a fixed non-negative integer. There exists
an algorithm, based on Algorithm 11, that computes a 1 ` ε-approximation to the vertex-
weighted connected vertex cover problem in graphs of genus bounded by g. Its running
time is nOpfpε,gqq.

Proof of Theorem 9.29. We show that the conditions of Theorem 7.3 hold.
Condition 1’. Here we use the more general version of the first condition, where the

backbone is not required to be a solution: Observe that the value of any optimal solution
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to the weighted connected dominating set problem is a lower bound on the value of the
optimal solution for the weighted connected vertex cover problem. Therefore, it is possible
to compute a subgraph H of the input graph G of total weight at most OpOPTq such that
G{H has treewidth at most Op1q using Lemma 9.19.

Condition 2 is ensured by Theorem 9.16.
Condition 3 is attained by letting the solution on G be S YK. Since every contracted

vertex is either in S or adjacent to S, S YK is connected. As S is a vertex cover in G{H ,
every edge in G has an endpoint in either S or K.

9.2.0.4 Weighted Feedback Vertex Set

There has been much research on feedback vertex set. Here we only mention a few repre-
sentative results. The first constant-factor approximation algorithm for the unweighted case
was achieved in [29]. It was later improved to a factor 2 for both weighted and unweighted
in [22]. Primal-dual approximation algorithms for these and more general problems were
given in [92] The parameterized problem was addressed in [56] and [155]. An approxima-
tion scheme for the unweighted version was given in [66].

Theorem 9.30. There is a PTAS for weighted feedback vertex set in undirected planar
graphs.

We provide a reduction from weighted feedback vertex set to vertex-weighted con-
nected dominating set.

Given a planar graph G “ pV,Eq and a vertex-weight function wp¨q, we construct an
instance for connected dominating set (CDS): the graph G̃ “ pṼ , Ẽq; weights of vertices
of G in G̃ are preserved; others receive a weight of 0. It suffices to show that every FVS
in G corresponds to a CDS in G̃ of the same weight, and vice versa.

Let S be a FVS in G. Let Vf :“ Ṽ zV be the vertices in G̃ inside faces of G, and let
S̃ :“ S Y Vf . Thus wpSq “ wpS̃q. As S̃ contains every vertex in Vf , S̃ is a FVS of G̃.
Note that G̃ is triangulated, and in a triangulated planar graph, every minimal vertex cut is
a simple cycle. Therefore S̃ hits every vertex cut in G̃, i.e., induces a connected graph. S̃
contains Vf , which dominates G̃. Therefore S̃ is a connected dominating set in G̃.

Now let S̃ be a CDS in G̃. Then S̃ 1 :“ S 1 Y Vf is a CDS in G̃ with the same weight.
Thus S̃ 1 hits every cycle in G̃ that strictly separates any two vertices in S̃ 1. Every cycle in
G separates some two faces of G, and therefore the corresponding vertices in Vf . Thus S̃ 1

hits every cycle in G. Thus S :“ S̃ 1 X V “ S̃ X V hits every cycle in G, i.e., is a feedback
vertex set, and wpSq “ wpS̃q.





Concluding Remarks and Open Questions

This thesis is a step toward the understanding of both the algorithms used in practice for
clustering and network design problems and the complexity of those problems. We have
shown that the popular local search heuristic achieves nearly optimal performance for a
variety of characterizations of practical instances. Furthermore, local search is, so far, the
only algorithm that achieves the best possible theoretical bounds (i.e., PTAS1) for cluster-
ing instances consisting of graphs excluding a fixed minor or points in a low-dimensional
Euclidean space. We also proved theoretical bounds on the approximation guarantee of
local search for TSP that match the performances experienced during the DIMACS TSP
Challenge. Thus:

The main message is that local search occupies a sweet spot between practical perfor-
mances and theoretical guarantees for several models of practical instances of clustering
(including planar graphs, low-dimensional Euclidean space, and structured instances)
and low-dimensional Euclidean instances of TSP and Steiner tree.

Beyond the complexity results, proving strong guarantees for a heuristic widely used
in practice for the (theoretical) characterizations of real-world instances suggests that those
characterizations are meaningful: they capture some of the structural properties of the real-
world instances that make local search a good heuristic.

One of the main ingredients of our proofs is the existence of “cheap” separators that
split the instance into two sub-instances of roughly equal size. The notion of separator has
been mainly used to derive algorithmic results via the use of dynamic programming and
divide-and-conquer. Here, we exhibit cases where the existence of cheap separators implies
that any local optimum is close to a global optimum for both clustering and network design
problems2.

In Part II, we have designed a more structured separator, tailored for network design
problems and we have shown that it yields a general approach for obtaining PTASs for
various network design problems in planar graphs. This gives the first PTAS for connected

1The running time could be improved though, see Open Problem 5.
2See [148] for other connections between cheap separators and local search.
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dominating set, connected vertex cover, tour and tree cover and feedback vertex set in
weighted planar graphs.

Perspectives on network design problems. As we have seen in Chapter 8, the standard
local search algorithm cannot achieve better than a 2-approximation for low-dimensional
Euclidean TSP in the worst-case. This seems to be due to the rather non-local constraint
that the solution has to be a tour. Indeed, for low-dimensional Steiner tree – which only
induces a connectivity constraint – there is no lower bound known so far. Thus, two natural
questions are the following.

Open Problem 1. Is there a refinement of local search that achieves better bounds for
Euclidean TSP?

And concerning Steiner tree,

Open Problem 2. What is the performance of local search for low-dimensional Euclidean
Steiner tree?

In Chapter 9.1, we have designed a general framework to obtain approximation schemes
for a variety of network design problems. It is natural to ask about an extension of this work,
in the flavor of the bidimensionality framework of [66].

Open Problem 3. Is it possible to extend the ubiquity framework,

• to more general classes of graphs (e.g., graphs excluding a fixed minor)?

• to more general network design problems (e.g., problems that asks for a i-connected
network, i ą 1)?

Perspectives on clustering problems. Very recent results show that, for some problems,
non-oblivious versions of local search1 allow to avoid trivial local optimum. As we have
seen, the standard local search algorithm can get stuck in a local optimum of cost greater
than 3 times the optimal. Non-oblivious version of local search could avoid this particularly
bad local optimum.

Open Problem 4. Is there a non-oblivious local search algorithm that achieves a better
than 3-approximation for general instances of k-median?

1We say that local search is non-oblivious if the objective of the algorithm is not the same than the
objective of the problem.
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Perspectives on local search. A natural direction consists in designing more efficient
local search algorithms. For example, improving the running time of Algorithm 1 to
Opfpsq ¨ n ¨ polylogpnqq would allow to address big datasets (e.g., social networks) for
which quadratic-time algorithms are not suitable1.

Open Problem 5. Is it possible to improve the running time of local search while preserv-
ing provable guarantees?

We finally conclude with a broader and challenging open problem. Our results on clus-
tering in planar graphs and low-dimensional Euclidean space show that combining center-
based clustering objectives and cheap separators lead local search to be efficient. At a more
general level, it is interesting to determine what are the ingredients that ensure that local
search has provable performance guarantees.

Open Problem 6. Is there a characterization of (1) the problems and (2) the instances for
which local search is efficient (i.e., an Op1q-approximation or a PTAS)?

From practice to theory continued... We highlight two main open question raised by
our experiments in Chapter 6. We have seen that local search achieves a much better ap-
proximation in practice than what we showed in theory. More concretely, for neighborhood
of size 1, our bounds yield an approximation guarantee of at least 2. In the experiments,
we observed that the approximation obtained is less than 1.2.

Open Problem 7. Is it possible to tighten the bounds on the approximation guarantee of
local search for low-dimensional or stable instances?

One step toward this question would be to improve the bounds for instances generated
from a mixture of Gaussians.

Finally, we recall the more challenging question of the appropriateness of the k-means
clustering. Indeed, we observed that, in several cases, the optimal value w.r.t. the k-means
objective can be significantly smaller than the value of the clustering that we would like to
compute.

Open Problem 8. Is it possible to characterize the instances for which the optimal value
w.r.t. the k-means objective corresponds to the value of the “natural” clustering?

1 We also note that there is no FPTAS for the k-median problem unless P = NP, even when the inputs
consist of planar graphs (see Lemma A.10).
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APPENDIX A

Notations and Definitions

In this chapter we formally define the problems studied in this thesis and describe the notion
of separator for both the graph and Euclidean settings. The reader might choose to skip this
section and come back to it whenever a particular concept is needed.

The basic definitions of graph theory, including the description of the main graph
classes studied in this thesis and their properties are postponed to Section A.3. The stan-
dard notations and definitions of graph theory and computational complexity can also be
found in Sections A.3 and A.4. We refer to the books of Knuth [120, 121, 122] and Cormen
et al. [173] for more details on the elementary concepts of computational complexity and
algorithms.

A.1 Problem Definitions

The problems tackled in this thesis are of two main flavors. On one hand, we consider
clustering problems which consists in partitioning a set of points lying in a metric space
into clusters while optimizing a certain objective function. Various objective functions have
been studied, each of them defining a specific clustering problem. We proceed at a more
abstract level and define a single problem (see Definition A.1) that generalizes the classic
clustering problems.

On the other hand, we consider network design problems. We say that a problem is a
network design problem if it asks for a graph satisfying some structural properties (e.g., the
traveling salesman problem asks for a graph that is a cycle). We address network design
problems of different natures, from classic ones like TSP and Steiner tree to more con-
strained ones like connected dominating set.
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A.1.1 Clustering Problems
Partitioning points in metric spaces according to similarity arise in a variety of contexts.
Thus, several clustering problems have been defined thus far. We consider a clustering
problem that generalizes some classic clustering problems like k-median and k-means. In
the following, let pA, distq denote a metric space and assume that costpa, bq “ distpa, bqp

for some fixed constant p ě 1.

Definition A.1 (k-Clustering). Given a finite set of clients A Ď A, a set of candidate
centers F Ď A, two positive integers k and p, the k-clustering problem asks for a set of
centers S Ď F , of cardinality at most k, that minimizes

costpSq “
ÿ

xPA

min
cPS

distpx, cqp.

For a particular clusteringC “ tC1, . . . , Cku and for each client c, we define costpc, Ciq “
distpc, Ciqp. Given an instance I of the k-clustering problem and a solution S to I , a parti-
tion C “ tC1, . . . Cku of A is a clustering of A induced by S if for any i P t1, . . . , ku, for
any a P Ci, costpa, ciq “ minsPS costpx, cqu.

The cases where p “ 1 and p “ 2 are well-studied problems known as the k-median
(or k-clustering in [150]) and k-means problems respectively. A slight relaxation of the
problem is called the facility location problem.

Definition A.2 (Uncapacitated Uniform Facility Location). Given a finite set of clientsA Ď
A, a set of candidate centers F Ď A, an facility cost f , and a function cost : AˆF ÞÑ R`,
the Uncapacitated Uniform Facility Location asks for a set of centers S Ď F ,that minimizes

costpSq “ |S| ¨ f `
ÿ

xPA

min
cPS

costpx, cq.

If pÑ 8, the problem is known as the k-center problem.

Definition A.3 (k-Center). Given a set of clientsA Ď A, a set of candidate centers F Ď A,
a non-negative integer k, and a function cost : A ˆ F ÞÑ R`, the k-center problem asks
for a set of centers S Ď F , of cardinality at most k, that minimizes

distpSq “ max
xPA

min
cPS

costpx, cq.

A.1.2 Network Design Problems
There is a variety of network design problems arising from practical applications. Here
we focus on four classical network design problems. Given a set of elements A and a cost
function cost : AˆA ÞÑ R`, a tour of A is a graph T “ pA,Eq that is a simple cycle. The
cost of tour T is the sum of the cost of the edges of E, i.e.,

ř

pu,vqPE costpu, vq. Similarly
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a tree of A is a graph T “ pA,Eq that is a tree. Its cost is also
ř

pu,vqPE costpu, vq. The
minimum spanning tree of A is a tree of A of minimum cost. Let pA, distq be a metric
space.

We now turn to the definition of two classical problems: the traveling salesman problem
and the Steiner tree problem.

Definition A.4 (Traveling Salesman). Given a set of elements A and a cost function cost :
Aˆ A ÞÑ R`, the traveling salesman problem asks for a tour of A of minimum cost.

The definition of the Steiner tree problem is the following.

Definition A.5 (Steiner Tree). Given a set of elements A, a set of candidate Steiner points
S and a cost function cost : pA Y Sq ˆ pA Y Sq ÞÑ R`, the Steiner tree problem asks for
a subset S0 Ă S of Steiner points such that the minimum spanning tree of A Y S0 is of
minimum cost.

We also consider the connected dominating set problem. This problem is of slightly
different flavor since the value of a solution is a set of vertices. This comes from the fact
that this problem is often used to model wireless networks and so, the cost of the network
is a function of the number of nodes rather than the number of edges (it is more relevant to
optimize the cost of powering the wireless stations rather than the cost of installing cables).

Definition A.6 (Connected Dominating Set). Given a graph G “ pV,Eq, the connected
dominating set problem asks for a subset S of V such that

• GrSs is connected,

• for any v P V , we have that v P S or v is adjacent to a vertex of S and,

S is of minimum size.

In the node-weighted version of the problem, in addition to G we are given a function
w : V ÞÑ R`. Moreover S is required to be minimum with respect to the sum of the
weights of the vertices it contains, i.e., S is minimizing

ř

vPS wpvq.

A.2 Separators

We aim at providing a short overview on the separation property and its algorithmic im-
plications. There is a rather long history (see [165]) of finding “good” ways to separate
an instance into sub-instances of significantly smaller sizes, sometimes depending on the
nature of the problem. We start with reviewing separators in graphs before presenting sep-
arators in low-dimensional Euclidean spaces.
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A.2.1 The Separation Property in Graphs
For a graph G “ pV,Eq, we define a separator of G to be a subset of vertices S such
that G´ S results in a graph which has at least two connected components. When solving
an algorithmic problem, the different connected components of a graph can often be dealt
with separately. Thus, a separator breaks the problem into smaller problems, allowing us to
apply dynamic programming or divide-and-conquer techniques or, as we will see, ensure
that local search algorithms perform well. The size of a separator is often defined by the
number of vertices it contains.

To ensure that the sub-problems are much smaller we are mainly interested in balanced
separators of small size. This ensures some properties that resemble the isoperimetric in-
equality of the Euclidean space. The isoperimetric inequality in the plane states that for any
closed curve of perimeter L enclosing an area A, 4πA ď L2. When the curve is a circle,
the equality holds: 4πA “ L2. Then, the important notion here is that the area enclosed is
much bigger than the perimeter of the curve used to enclose it. This can be generalized to
higher dimensions. In dimension 3 for example, for a given area A, the sphere is the simple
closed surface of area A that encloses a region of maximum volume.

In the context of graphs, a separator that has size opnq and that separates the graphs into
at least two connected components each of size Ωpnq yields some isoperimetric inequality
for graphs. With this in mind, we say that a separator is balanced if it yields a graph such
that each connected components has size at most cn for some constant c ă 1.

Separators in Bounded Treewidth Graphs. The existence of small separators in graphs
of bounded treewidth follow from the definition of tree-decomposition. The definitions and
notations related to treewidth and graph of bounded treewidth are given in Appendix A.3.
Given a tree-decomposition pB,Vq of width w, for any two adjacent nodes Ni, Nj , Vi X Vj
is a separator of the graph. Since each bag contains at most w`1 vertices, we have that the
graph contains a separator of size at most w ` 1 (even if we assume that no bag is a subset
of another bag). It is known that one can find a balanced separator in this class of graph by
moving along the tree and finding two adjacent nodes whose intersection forms a balanced
separator.

The fact that for any two adjacent nodes Ni, Nj , Vi X Vj is a separator of the graph
can be shown as follows. Consider the two subtrees Ti and Tj resulting from the deletion
of nodes Ni and Nj from T . Assume toward contradiction that Vi X Vj is not a separator
and that no bag is contained into another. Thus there exist u, v R Vi X Vj such that there is
an edge pu, vq and u appears in a bag associated with a node of Ti and v appears in a bag
associated with a node if Tj . Since pu, vq is an edge there is a bag containing both of them.
Thus, by the definition u or v appear in Vi X Vj , a contradiction.

Separators in Planar Graphs. In the following, we assume that each vertex is assign a
mass. We say that a separator is balanced if its removal yields a graph such that each of its
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connected component has total mass at most 1/3. Moreover, we say that a mass assignment
is proper if the mass of each vertex is in r0, 1{3s. In the following we will always assume
that the mass assignment are proper.

The first separator theorem for planar graphs is due to Ungar [175] who proved that
each planar graph with n vertices contains a balanced separator with Op

?
n log nq vertices.

Later, Lipton and Tarjan [133] improved the bound to Op
?
nq and gave a linear-time al-

gorithm to compute it. The constant was later improved by Djidjev [71]. Note that this
bound is tight up to a constant factor. There is a variety of algorithmic applications of the
separator theorem. In a nutshell, this allows to apply a divide-and-conquer approach to
the graph. It has lead to e.g., efficient algorithms for finding shortest paths (see [104]), or
approximation algorithms for the independent set problem (see [134]).

However, as we will see in Chapter 9, some problems require more structured balanced
separators. Miller [143] was the first to introduced the notion of “cycle separator”. He
showed that one can find in any planar graph a balanced separator that forms a cycle in the
graph. Later, Djidjev and Venkatesan [72] presented a linear-time algorithm that, given a
2-connected planar graph G with n vertices, returns a subgraph of G that is both a cycle
and a separator of G of size at most 4

?
n.

Separators in H-Minor Free Graphs. The tremendous implications of separator theo-
rems for planar graphs have led researchers to look for separator theorems for more general
classes of graphs. In 1990, Alon, Seymour, and Thomas [7] proved a separator theorem for
the family of graphs excluding a fixed graph as a minor. They showed that given a graph H
with h vertices there exists an algorithm that for any graph G that excludes H as a minor,
any proper mass assignment to the faces, returns a balanced separator of G of size at most?
nh3.

Since for any surface Σ, the family of graphs that can be embedded on Σ excludes a
finite set of graphs as minors, a separator theorem for graphs embedded on a surface can
be deduced from the theorem of Alon, Seymour, and Thomas.

Thus, many algorithms for planar graphs can be applied directly to graphs excluding a
fixed minor. However, some more structured separators, for example Miller’s cycle sepa-
rator theorem, have no equivalent in graphs excluding a fixed minor1.

Separator theorems exist also for even more general classes of graphs such that graphs
of bounded expansion. In this thesis we mainly focus on classes of graph excluding a fixed
minor.

A.2.2 The Separation Property in Euclidean Space
We now aim at defining separators in the Euclidean setting. At an informal level, a separator
splits a set of objects lying in a Euclidean space into two parts of roughly equal size. In

1However, there is no proof that none can exist so far.
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the plane for example, a closed curve containing a constant fraction of the points in both its
interior and exterior forms a separator in a way that is similar to the planar case: Making
use of the isoperimetric inequality, one can find a curve whose length is sublinear with
respect to the area it encloses, yielding a bound that resemble the bound of the planar graph
separator.

Dissections of Rd. One of the first use of Euclidean separators for algorithmic purposes
is due to Karp [114], back in 1977. He introduced a way to partition a set of points in a
Euclidean space of fixed dimension in order to provide an approximation algorithm to the
traveling salesman problem (TSP) via a dynamic programming approach. The algorithm
recursively finds a curve separating the instance into two sub-instances, solves the two sub-
problems separately and combine them by paying (at most) the length of the separating
curve. The approximation guarantee directly depends on the isoperimetric inequality: if
the length of the curve is small compared to the length of the two sub-tours, the final tour
is almost optimal.

In the 90s, Arora [9] and Mitchell [144] independently showed how to build more struc-
tured separators for TSP in order to improve the approximation ratio. They showed that it is
possible to recursively divide a Euclidean space of fixed dimension using separators that are
crossed only a few number of times by a near-optimal solution. This reduces the interface
between two sub-problems induced by a separator to a constant number of bits of informa-
tion, allowing the dynamic programming approach to efficiently compute the near-optimal
solution.

Local Search and Separators. Separators were used more recently to show that local
search algorithms perform well for some geometric problems. For example, given a set of
points and disks in the plane, the problem of hitting all the disks using the minimum number
of points can be well approximated using a simple local search algorithm (see [148]). The
analysis relies on a planar graph that represents some of the possible local exchanges.
Then it uses planar graph separators to partition the graph into locally-optimal regions and
provides an analysis of the solution region by region.

Separators for Voronoi Diagrams. The connection between the isoperimetric inequality
in the Euclidean setting and graphs separators looks even tighter in the light of the recent
results of Bhattiprolu and Har-Peled [34]. Given a set of points P in Rd, they show how to
efficiently compute a set of points Z in Rd such that P can be partitioned into two sets P1

and P2 of roughly equal sizes satisfying the following condition: in the Voronoi diagram
of P Y Z, the cells of the points in P1 do not touch the cells of the points in P2. Thus, Z
separates the points in P1 from the points in P2 in the Voronoi diagram. Moreover, they
show that there exists such a set Z of size |P |1´1{d.
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A.3 Graph Theory

We use the standard notations of Diestel [69]. A graph G “ pV,Eq is a pair pV,Eq where
V Ď t1, . . . , nu is the set of vertices of G, and E is a multiset of (unordered or ordered)
vertex pairs called edges of G. We usually denote by n the number of vertices of a graph
G. Throughout this thesis we mainly consider undirected graphs.

For an edge e “ pu, vq, we call u and v the endpoints. If e “ pu, uq we called it a
loop. Two or more edges corresponding to one pair of vertices are called parallel edges.
An edge e “ pu, vq is said to be incident to vertices u and v and u and v are said to
be adjacent and neighbors of each other. The degree of vertex v is the number of edges
incident to v A path is a graph P “ pV,Eq of the form V “ tx0, x1, . . . , xku and E “

tpx0, x1q, px1, x2q, . . . , pxk´1, xkqu. Its endpoints are x0 and xk. A cycle is a graph C “

pV,Eq of the form V “ tx0, x1, . . . , xk, x0u and E “ t px0, x1q, px1, x2q, . . . , pxk´1, xkq,
pxk, x0qu. Paths and cycles are said to be simple if the xi are distinct. If the number of
vertices of the path is `, we say that the path has size `.

The graph consisting of n vertices and that has an edge between every pair of vertices
is called the complete graph and denoted Kn. A graph is bipartite if it does not contain any
cycle of odd size. The vertices of a bipartite graph can be partitioned into two parts such
that no edge connects vertices of the same part. The bipatite graph consisting of n vertices
on one side and m vertices on the other and with an edge between each pair of vertices
from diffrent sides is called the complete bipartite graph and denoted Kn,m.

A graph H “ pV 1, E 1q is a subgraph of a graph G “ pV,Eq if both V 1 Ď V and
E 1 Ď E. In a graph G “ pV,Eq, vertices v and u are connected if there exists a subgraph
ofG that is path and such that v and u are its endpoints. In this case, we say that there exists
a path between v and u. Connectivity induces an equivalency relationship on the vertices
ofG: A maximal set of vertices that are pairwise connected defines a connected component
of G. If G has only one connected component we say that the graph is connected. More
generally, if for any pair of vertices u, v there exists at least k disjoint paths from u to v, we
say that G is k-connected.

For any graph G “ pV,Eq and subgraph H “ pV 1, E 1q, if E 1 contains all the edges
pu, vq of E such that both u, v P V 1 then H is said to be an induced subgraph of G. In
this case, we denote H by GrV 1s. We say that a graph F “ pV,Eq is a forest if it does not
contain any cycles as subgraph. A forest is said to be a tree if there is only one connected
component. In a forest, we sometimes call a vertex a node and vertices of degree leaves.
We say that a tree is binary if each non-leaf node has degree 3. We say that a tree is
a binary rooted tree if each non-leaf node has degree 3 except for one non-leaf node of
degree 2 (called the root). We say that a set of vertices V 1 Ď V (resp. set of edges E 1 Ď E)
is a cycle of G if there exists a subgraph G1 “ pV 2, E2q of G such that V 1 “ V 2 (resp.
E 1 “ E2) and G1 is a cycle (and similarly for paths, trees, etc.). Given a graph G “ pV,Eq,
we say that a tree T “ pVt, Etq is a spanning-tree if V “ Vt and Et Ď E.
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Throughout this thesis, we will be facing graphs together with weight functions associ-
ated with the edges of the graph. For each graph there will be a function w : E ÞÑ R`. We
slightly abuse notation and define wpE 1q for any subset E 1 Ď E as wpE 1q “

ř

ePE1 wpeq.
When equipped with this weight function, we refer to the length of a path P “ pV 1, E 1q
connecting two vertices by wpE 1q. We slightly abuse notation and refer to the length of P
by wpP q We then define a distance function dist : V ˆ V ÞÑ R` as follows. The distance
between two vertices u and v is the minimum over all paths with endpoints u and v of the
length of the path, i.e., distpu, vq “ minpath P between u and v wpP q.

In the case when no such path exists, the distance is said to be infinite. Otherwise the
distance is finite since the weights are positive. For any pair of vertices u, v, each path of
length distpu, vq is called a shortest path between u and v. We abuse notation and define
distpU, Sq “ minuPU minvPS distpu, vq, for U, S Ď V .

We now define some operators on the edges of any graph G “ pV,Eq. The contraction
of an edge e “ pu, vq consists in removing a vertices u, v and adding a new vertex ve, which
becomes adjacent to all the former neighbours of u and of v. The graph G where edge e
is contracted is denote G{e. The contraction operation is commutative (G{e{e1 “ G{e1{e).
We thus extend the notation to subsets: G{E 1 for E 1 Ď E is the graph G where all the
edges of E 1 are contracted.

The deletion of an edge e of graph G “ pV,Eq results in a graph G1 “ pV,Ezeq. The
deletion of a vertex v of graph G “ pV,Eq results in a graph G1 “ pV ztvu, E 1q where
E 1 is the set of edges of E that do not have v as their endpoints. We write G ´ e and
G´ v to denote the graphs resulting from the deletion of edge e and the deletion of vertex
v respectively.

Given two graphs G and H , we say that H is a minor of G if it can be obtained from G
by deleting zero or more vertices or edges and contracting zero or more edges.

A.3.1 Graph Classes

We introduce several classic families of graphs that appear throughout this thesis. Fig-
ure A.1 shows the inclusion relationships between the different classes.

A.3.1.1 Graphs of Bounded Treewidth

We now introduce a very useful parameter for graphs: the treewidth. Since algorithmic
problems on graphs are often much more tractable when the input is assumed to be a tree,
it is natural to define a parameter measuring how close a graph is to a tree. For example,
the complete graph Kn is very far to be a tree and its treewidth is n´ 1 whereas a tree or a
cycle (which is a tree plus an edge) have treewidth 1 and 2 respectively.

We now give the formal definition of treewidth, as introduced by Robertson and Sey-
mour [157, 158]. For this, we need to define a tree-decomposition of a graph.
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General
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Figure A.1: The different graph classes appearing in this thesis. Arrows from class A to
class B means that class A is included in class B.

Let G “ pV,Eq be a graph. A tree-decomposition of G is a pair pT ,Bq, where B is a
collection of subsets of V called bags and T “ pV , Eq is a tree, such that

• Each vertex appears in at least one bag. In other words, for all v P V , DB P B such
that v P B.

• For all edge pu, vq in E there exists a bag containing both u and v.

• For all i, the ith bag Bi of B is associated to the ith node Ni of V and we have that
if two bags Bj, Bk contain vertex v, then each bag B` such that N` is in the path
between Nj and Nk contains vertex v.

The width of the tree-decomposition is the cardinality of the largest bag minus 1. The
treewidth of a graph is the minimum width over all tree-decompositions. In this thesis, we
define a bounded treewidth graph as a graph whose treewidth is constant. Standard results
show that there exists an efficient algorithm turning a minimum-width tree-decomposition
to a tree-decomposition of same width whose tree is binary. When we refer to tree-
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decomposition, we will assume we will refer to a minimum-width tree-decomposition with
binary tree.

Branchwidth. When dealing with some particular classes of graphs (for example graphs
embedded on a surface), a useful decomposition that often encodes more structure than
tree-decomposition (some topological structure in the context of graphs embedded on a
surface) is the branch-decomposition of the graph.

To formally define the branchwidth, we need to define a branch-decomposition. Let
G “ pV,Eq be a graph. A branch-decomposition of G is an unrooted binary tree T “

pN , Eq together with a bijection φ between the edges of G and the leaves of T . For any
edge e P E , define T 1

e “ pN 1
e , E1

e q and T 2
e “ pN 2

e , E2
e q the two subtrees of the forest

T ´ e. Define midpeq to be the set of vertices that are the endpoints of both an edge in
bijection with a leaf of T 1

e and an edge in bijection with a leaf to T 2
e . More formally,

midpeq “ tv | Dpv, uq, pv, wq P E s.t φppv, uqq P N 1
e and φppv, wqq P N 2

e u.
The width of a branch-decomposition B “ pT , φq, denoted wpBq is maxePT |midpeq|.

The branchwidth of a graph G is the minimum width of all the branch-decompositions.
The branchwidth is closely related to the treewidth: Robertson and Seymour [160] showed
that for any graph G, bwpGq ď twpGq ď 3bwpGq{2´ 1.

A.3.1.2 Planar Graphs

Planar graphs is the class of graphs that can be drawn in the plane in a such a way that no
two edges intersect in a point other than a common endpoint. It is a fairly natural class
of graphs that dates back to at least Euler and his famous “seven bridges of Königsberg”
problem. Indeed, since 2-dimensional objects are often used to represent our environment,
practical instances of several algorithmic graph problems consists of planar graphs. For
example, in the context of designing a network, the input is sometimes a graph whose
edges are streets and vertices are intersections, yielding a planar graph.

In order to formally define planar graphs, we introduce the notion of embedding. An
embedding of a graph G “ pV,Eq on a surface Σ is a continuous injective mapping from
the vertices and edges of E, considered as a topological space, to the surface Σ. Consider-
ing V,E as a topological leads the mapping to map vertices to distinc points and edges to
disjoint paths, intersecting only at their endpoints. Every definition in this section can be
generalized to the case of graphs embedded on a surface. A combinatorial map of an em-
bedded graph is the combinatorial description of its embedding, namely the cyclic ordering
of the edges around each vertex.

A graph is said planar if there it can be embedded into R2. We define the faces of G
to be the set of components of R2zG. We extend the notion of adjacency and incidence to
faces: Vertices and edges of G are said to be incident to a face f if they are part of the cycle
of G forming the boundary of f . Two faces are adjacent if their boundaries share an edge.
We say that the degree or length of a face is the number of edges in its boundary. Observe
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that there is a unique infinite face. We say that a planar graphs is triangulated if each face
has degree three.

A classical notion formula by Euler relates the number of faces, vertices, edges and
connected components of a planar graph. For any planar graph G, let f, n, e, c denote the
number of faces, vertices, edges and connected components of G, we have

n` f ´ e´ c “ 1 (Euler’s formula)

We now consider planar graphs with no parallel edges and no loop and with at least three
vertices. Observe that each edge appears in at most two faces (one for each component
of R2 that it is the boundary of). Thus we have that the sum of the degrees (length of the
boundaries) of the faces is at most 2e. Moreover, each face has degree at least three in this
context. Thus we have that this sum is at least 3f , and so, 2e ě 3f . Replacing in Euler’s
formula yields

e ď 3v ´ 6. (A.1)

Moreover, observing that the sum of the degrees is at most 2e, it is easy to deduce that for
any planar graph with no parallel edges and no loop, there exists a vertex of degree at most
5.

We now turn to a crucial notion in planar graphs that we will use to levarage the topo-
logical properties of embedded planar graphs. The dual G˚ “ pV ˚, E˚q of an embedded
planar graph G “ pV,Eq is the graph whose vertex set consists of the set of faces of G,
and such that for each edge e in E incident to faces f1, f2, E˚ contains an edge connecting
the vertices of V ˚ corresponding to faces f1 and f2. Note that when f1 “ f2 this results
in a loop. The dual G˚ is planar, and the dual of G˚ is isomorphic to G if G is connected.
Throughout this thesis, when we refer to planar graphs we mean planar graphs without loop
and parallel edges unless stated otherwise.

We finally consider the characterization of planar graphs. Perhaps surprisingly, there
exists a beautiful combinatorial characterization of planar graphs dating back to Kuratowski
in 1930 [128] using the definition of minor described above.

Theorem A.7 (Kuratowski [128]). A graph is planar if and only if it does not have K3,3 or
K5 as a minor.

Given a planar graph G, the medial graph MG is the embedded graph obtained by
placing a vertex ve for every edge e of G, and connecting the vertices ve and v1e with an
edge whenever e and e1 are adjacent on a face of G. The barycentric subdivision of an
embedded graph G is the embedded graph obtained by adding a vertex on each edge and
on each face and an edge between every such face-vertex and its adjacent (original) vertices
and edge vertices.



172 Chapter A. Notations and Definitions

A.3.1.3 Bounded Genus Graphs

Planar graphs are commonly used to model a wide array of discrete structures, and in many
cases it is necessary to consider embeddings into surfaces instead of the plane or the sphere.
For example, many instances of network design actually feature some crossings, coming
from tunnels or overpasses, which are appropriately modeled by a surface of small genus.
In other settings, such as in computer graphics or computer-aided design, we are looking
for a discrete model for objects which inherently display a non-trivial topology (e.g., holes),
and graphs embedded on surfaces are the natural tool for that. From a more theoretical point
of view, the graph structure theorem of Robertson and Seymour showcases a very strong
connection between graphs embedded on surfaces and minor-closed families of graphs.

We will use the classic notions on graphs embedded on surfaces, for more formal defi-
nitions and background see the textbook of Mohar and Thomassen [145].

We focus on compact surfaces without boundary. Let Σ be such a surface. Euler’s
formula can be adapted to graphs embedded on surfaces in order to provide define the
Euler genus of Σ: For any connected graph G with n vertices and e edges that is embedded
in Σ with f facial walks, the number g “ 2 ´ n ` e ´ f is independent of G and is called
the Euler genus of Σ. A graph is planar if and only if it has Euler genus zero.

In this setting we rather consider graphs with loops and parallel edges since the topo-
logical properties of parallel edges and loops might be of interest for our problems (for
example, a loop might be non-contractible and so, be used in the solution some network
design problems).

We say that an embedding in cellular if each face is homeomorphic to a disk. We define
a noose to be an embedding of the circle S1 on Σ which intersects G only at its vertices.

An embedding of a graph G on a surface is said to be polyhedral if G is 3-connected
and the smallest length of a non-contractible noose is at least 3 or if G is a clique and it
has at most 3 vertices. In particular, a polyhedral embedding is cellular. If G is a graph
embedded on Σ, the surface Σ1 obtained by cutting Σ along G is the disjoint union of the
faces of G, it is a (a priori disconnected) surface with boundary. When we cut a surface
along a set of nooses, viewed as a graph, the resulting connected components will be called
regions.

We now introduce the generalization of Kuratowski’s theorem for graphs of bounded
genus, due to Robertson and Seymour [159]

Theorem A.8 (Robertson and Seymour [159]). For any surface Σ, there exists a finite set
of graphs T pΣq such that any graph can be embedded on Σ if and only if it does not have
any graph in T pΣq as a minor.

The dual graph, medial graph, and barycentric subdivision generalize to graphs embed-
ded on surface (see [145] for more details).

We remark that planar graphs and graphs of bounded genus do not have bounded
treewidth and that graphs of bounded treewidth are not necessarily planar.
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A.3.1.4 H-Minor Free Graphs

We turn to a class of graphs generalizing both bounded genus graphs and graphs of bounded
treewidth.

A (not necessarily finite) family of graphs is said minor-closed if for any graph G of
the family, any minor of G also belongs to the family. A celebrated theorem by Robertson
and Seymour [162] shows that there is a so-called forbidden minor characterization for any
minor-closed family of graphs. In other words, like in the case of graphs of bounded genus,
for any minor-closed family of graphs there exists a finite set T of graphs such that any
graph G is in the family if and only if it does not have any graph in T as a minor. We define
the family of H-minor free graphs as the set of graphs that do not contain H as a minor.
We will see in the next section the structural implications of the theorem of Robertson and
Seymour for this family.

A.4 Computational Complexity

Throughout this thesis, we aim at designing approximation algorithms for optimization
problems. Given a problem Π and an instance I of Π, we usually denote by OPTpΠ, Iq the
value of an optimal solution for instance I of problem Π. When Π and I are clear from
the context we just denote it OPT. We say that an algorithm is an α-approximation for a
minimization problem Π if, for any instance I of Π, the algorithm returns a solution of cost
at most αOPTpΠ, Iq and its running time is polynomial in the size of the instance. We say
that an algorithm is exact if it returns a solution of cost OPTpΠ, Iq

In the classic memory model (as opposed to data streams considered in Chapter 5),
no polynomial-time exact algorithm is known for any NP-Hard problem. Thus, since
polynomial-time is often necessary for practical purposes it is natural to look for polynomial-
time approximation algorithms.

When working on an NP-Hard problem, the best result one can hope for is a polynomial-
time approximation scheme (PTAS). A polynomial-time approximation scheme for a prob-
lem Π is a collection of algorithms A such that for any positive constant ε, there exists an
algorithmApεq P A that is a p1`εq-approximation for Π and runs in polynomial-time when
ε is a fixed constant. If for any positive constant ε, the running time of Apεq is Opfpεqncq
where c is a fixed constant independent of ε and f is any computable function then A is
said to be an efficient polynomial-time approximation scheme (EPTAS).

However, among the NP-Hard problem, some of them are known to be also hard to
approximate. For example, a problem Π is said to be APX-Hard if there exists an integer
a ą 1 such that there is no a-approximation algorithm for Π unless P = NP. Example of
such problems are the k-median and k-means problems for general instances.
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A.5 Hardness Result for an FPTAS for the Planar k-Clustering
Problem

Definition A.9. An approximation scheme is said to be a fully polynomial approximation
scheme (FPTAS) if for any constant ε ą 0, it achieves a p1 ` εq-approximation in time
poly(ε) poly(n).

Lemma A.10. There is no FPTAS for k-clustering problem even if the input consists of
planar graphs unless P = NP.

Proof. Meggido and Supowit [140] showed that the k-median problem is NP-hard even
when the inputs consist of planar graphs1 and the distances are integers in t1, 2, ...,Mu,
where M “ polypnq and n is the number of vertices of the planar graph (thus the size of
the instance is polypnq).

We show the lemma by contradiction. Assume toward contradiction that an FPTAS
exists. Given any ε ą 0, it computes a p1` εq-approximate solution to the problem in time
polypεqpolypnq.

Now, observe that the value of any optimal solution, is at most n¨M (since the objective
function is the sum of the distances from each client to its closest center, which is at most
M ). Moreover, the cost difference between two solutions is at least 1 (because the distances
are integers).

Now, running the FPTAS for ε ă n ¨M yields a solution of cost at most p1` εqOPT ă
OPT`OPT{pnMq ď OPT` 1, from the above observation. Thus, the cost of the solution
obtained by the FPTAS is less than OPT ` 1 and so at most OPT (and thus exactly OPT)
since the cost difference between two solutions is at least 1.

Finally, since n ¨M is polynomial in the size of the input, we have an exact algorithm
(an algorithm computing an optimal solution) running in polynomial time, a contradiction
unless P = NP.

1in fact for the even less general case of rectilinear inputs.
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Abstract

What are the performance guarantees of the algorithms used in practice for clustering and
network design problems? We answer this question by showing that the standard local
search algorithm returns a nearly-optimal solution for low-dimensional Euclidean instances
of the traveling salesman problem, Steiner tree, k-median and k-means. The result also
extends to the case of graphs excluding a fixed minor for k-median and k-means.

The problem of finding a polynomial-time approximation scheme for instances of the k-
means problem consisting of points lying in a low-dimensional Euclidean space or graphs
excluding a fixed minor is a 15-year old open problem. In this work, we solve this prob-
lem by showing that local search is a polynomial-time approximation scheme for those
instances. Furthermore, we show that for three recent characterizations of clustering in-
stances stemming from machine learning and data analysis, local search returns a nearly-
optimal solution.

One of the key ingredients that makes local search efficient is the existence of “cheap
separators” in the instances. In the last part of this work, we show how to compute a more
structured separator tailored for network design problems. This yields a general frame-
work for obtaining approximation schemes for connectivity and domination problems in
weighted planar graphs. It implies the first polynomial-time approximation schemes for
weighted versions of tree and tour cover, connected vertex cover, connected dominating
set, and feedback vertex set in planar graphs.
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