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Abstract. At Eurocrypt '96, Coppersmith presented a novel applica-
tion of lattice reduction to find small roots of a univariate modular poly-
nomial equation. This led to rigorous polynomial attacks against RSA
with low public exponent, in some particular settings such as encryption
of stereotyped messages, random padding, or broadcast applications 4 la
Hastad. Theoretically, these are the most powerful known attacks against
low-exponent RSA. However, the practical behaviour of Coppersmith’s
method was unclear. On the one hand, the method requires reductions of
high-dimensional lattices with huge entries, which could be out of reach.
On the other hand, it is well-known that lattice reduction algorithms out-
put better results than theoretically expected, which might allow better
bounds than those given by Coppersmith’s theorems. In this paper, we
present extensive experiments with Coppersmith’s method, and discuss
various trade-offs together with practical improvements. Overall, prac-
tice meets theory. The warning is clear: one should be very cautious when
using the low-exponent RSA encryption scheme, or one should use larger
exponents.

1 Introduction

One longstanding open problem in cryptography is to find an efficient attack
against the RSA public key cryptosystem [13]. In the general case, the best-
known method is factoring, although the equivalence of factorization and break-
ing RSA is still open (note that recent results [3] suggest that breaking RSA
might be easier than factoring). However, under certain conditions, more effi-
cient attacks are known (for a survey, see [2]). One of these conditions is when
the public exponent is small, e.g. 3. This is the so-called low-exponent RSA,
which is quite popular in the real world.

The most powerful known attack against low-exponent RSA is due to Cop-
persmith [5,6]. At Eurocrypt '96, Coppersmith presented two applications [5,
4] of a novel use of the celebrated LLL algorithm [12]. Both applications were
searches for small roots of certain polynomial equations: one for univariate mod-
ular equations, the other for bivariate integer equations. Instead of using lattice



reduction algorithms as shortest vector oracles, Coppersmith applied the LLL
algorithm to determine a subspace containing all reasonably short lattice points.
He then deduced rigorous polynomial attacks, as opposed to traditional heuristic
lattice-based attacks.

Finding small integer roots of a modular polynomial equation has great prac-
tical significance, for instance with the low-exponent RSA encryption scheme, or
the KMOV cryptosystem (see [1]). More precisely, in the case of low-exponent
RSA, such roots are related to the problems of encryption of stereotyped mes-
sages, random padding and broadcast applications.

However, Coppersmith did not deal with practical issues: the practical be-
haviour of his attack was unclear. On the one hand, the method would a priori
require reductions of high-dimensional lattices with huge entries, in order to
achieve the theoretical bounds. For instance, with a small example such as 512-
bit RSA and a public exponent of 3, Coppersmith’s proofs suggest to reduce
matrices of dimension over 300, and 17000-digit entries. Obviously, some ad-
justements need to be made. On the other hand, it is well-known that lattice re-
duction algorithms output better results than theoretically expected. Moreover,
one could apply improved reduction algorithms such as [14], instead of LLL.
Thus, if one uses smaller parameters than those suggested by Coppersmith’s
theorems, one might still obtain fairly good results.

In this paper, we present extensive experiments with Coppersmith’s method
applied to the low-exponent RSA case, and discuss various trade-offs together
with practical improvements. To our knowledge, only limited experiments (see [1,
9]) had previously been carried out. Our experiments tend to validate Copper-
smith’s approach. Most of the time, we obtained experimental bounds close to
the maximal theoretical bounds. For instance, sending e linearly related mes-
sages to participants with the same public exponent e is theoretically insecure.
This bound seems unreachable in practice, but we were able to reach the bound
e + 1 in a very short time. The warning is clear: one should be very cautious
when using low-exponent RSA encryptions, or one should use larger exponents.

The remainder of the paper is organized as follows. In Section 2, we review
Coppersmith’s method. In Section 3, we recall applications of this method to
the low-exponent RSA encryption scheme. We describe our implementation, and
discuss practical issues in Section 4. Finally, Section 5 presents the experiments,
which gives various trade-offs.

2 Coppersmith’s Method

In this section, we recall Coppersmith’s method, as presented in [6]. Let N be a
large composite integer of unknown factorization, and p(z) = #° + ps_1 29! +
-+ -+ p2x? + p1x + po, be a monic integer polynomial. We wish to find an integer
xo such that, for some € > 0:

p(xo) =0 (mod N) (1)
N(1/8)—e @

|.’IJO|<X= 2



(2) means that we look for a reasonably short solution. We select an integer h
such that:

h > max (M 7)

ed? 4§ 3)
Let n = hd. For (i, j) € [0..6—1] x [L..h—1], let the polynomial ¢; j(z) = z'p(z)?,
for which ¢; j(z0) = 0 (mod N7).

A rational triangular matrix M is built using the coefficients of the polyno-
mials ¢; j(), in such a way that an integer linear combination of the rows of
M corresponding to powers of zg and yo will give a vector with relatively small
Euclidean norm. Multiplying by the least common denominator produces an in-
teger matrix on which lattice basis reduction can be applied. This will disclose
a certain linear relation satisfied by all sufficiently short vectors. Finally, this
relation will translate to a polynomial relation on zy over Z (not mod N) of
degree at most n, which we can solve over Z to discover zg.

The matrix M of size (2n — §) x (2n — d) is broken into four blocks:

AB

M= ( ; C) |
The n x (n — §) block B has rows indexed by g € [0..n — 1], and columns
indexed by v(i,j) = n+ i+ (j — 1)d with (¢,5) € [0..0] x [1..h — 1], so that
n < v(i,7) < 2n — §. The entry at (g,v(i,7)) is the coefficient of 29 in the
polynomial g; j(x). The (n —6) x (n —d) block C is a diagonal matrix, with the
value N7 in each column «(i, ). The n x n block A is a diagonal matrix, whose
value in row g is a rational approximation to X~9/4/n, where X is defined by
(2).

The rows of M span a lattice. In that lattice, we are interested in a target
vector s, related to the unknown solution xo. Namely, we define s = rM, where
r is a row vector whose left-hand elements are ry = z§, and whose right-hand
elements are 7.,(; ;) = —a}yd with yo = p(zo)/N. The vector r and the matrix
M were constructed in order to make s a short lattice point, with norm strictly
less than 1. Indeed, s has left-hand elements given by s, = (z0/X)?/+/n, and
right-hand elements equal to zero, as s,(; ;) = ¢i,;(zo) — zhyd Ni. In other words,
the blocks B and C translate the polynomial modular equations g; ;(z). The
fact that x( satisfies these equations makes the right-hand elements of s equal
to zero. And the upper bound of (2) on the root x, is expressed by the block A.
The diagonal coefficients “balance” the left-hand elements of s.

In traditional lattice-based attacks, one would reduce the matrix M, and
hope that the first vector of the reduced basis is equal to the target vector +s.
But Coppersmith notices that computing this vector explicitly is not necessary.
Indeed, it suffices to confine the target vector in a subspace, which we now detail.

As the right-hand elements n_— § of the desired vector s are 0, we restrict
our attention to the sublattice M of M consisting of points with right-hand
elements 0, namely M N (R" x {0}"~9). It is possible to compute explicitly this
sublattice, by taking advantage of the fact that p(z) and hence g; ;(z) are monic



polynomials: certain n — § rows of the block B form an upper triangular matrix
with 1 on the diagonal. Thus, we can do elementary row operations on M to
produce a block matrix M of the form:

— (70
= (21),

where I is the (n — ) x (n — ¢§) identity matrix. The n x n upper-left block
represents the desired sublattice: an n-dimensional lattice, of which s is one
relatively short element. In particular, M and M have the same volume.

Next, we compute an LLL-reduced basis (by,...,b,) of the matrix M. From
the theoretical bounds of the LLL algorithm and the value of the volume of M
(which can be bounded thanks to (3) and (2)), Coppersmith proved that any
lattice point of norm strictly less than 1 must lie in the hyperplane spanned by
by,bs,...,by_1. In particular, s is such a lattice point. In terms of the larger
matrix M, there is an n-dimensional space of vectors r such that rM = s has
0’s in its right-hand n — é entries. And those integer vectors r which additionally
satisfy s < 1 must lie in a space of dimension one smaller, namely dimension
n — 1. This gives rise to a linear equation on the entries r4,0 < g < n. That is,
we compute coefficients ¢, such that: for any integer vector r = (r4,7,(; j)) such
that s = rM has right-hand entries 0 and ||s|| < 1, we must have > ¢,ry = 0. In

particular:
n—1
g _
g cgzg = 0.
9=0

This is a polynomial equation holding in Z, not just modulo N. We can solve
this polynomial for zq easily, using known techniques for solving univariate poly-
nomial equations over Z (for instance, the Sturm sequence [11] suffices). This
shows:

Theorem 1 (Coppersmith). Let p(x) be a polynomial of degree & in one vari-
able modulo an integer N of unknown factorization. Let X be the bound on the
desired solution xq. If X < %Nl/‘s_s, then in time polynomial in (log N,d,1/¢),
we can find all integers o with p(xzg) =0 (modN) and |zo| < X.

Corollary 2 (Coppersmith). With the same hypothesis, except that X <
N3, then in time polynomial in (log N,2%), we can find all integers xo such
that p(zo) =0 (modN) and |zo| < X.

Proof. See [6]. The result is obtained by applying the previous theorem four
times, with ¢ = 1/log, N. |

This is a major improvement over the bound N?/I0¢+D] which was previously
obtained in [17]. But, theoretically, one would a priori need the following pa-
rameters in order to achieve the theoretical bound N'/%: ¢ = 1/log, N and
h ~ (6—1)log, N/§2. For example, if we take § = 3 and a 512-bit number N, this
means reducing several 341 x 341 matrices with entries at least as large as N*~1,



that is 17000-digit numbers ! Unfortunately, that appears to be a drawback of
Coppersmith’s improvement. Indeed, instead of using only the polynomial p(x)
(such as in [17]), Coppersmith introduced shifts and powers of this polynomial.
This enlarges the volume of the lattice M, which is what makes the target vector
more and more short compared to other lattice points, but at the expense of the
size of the entries. In other words, the larger the entries are, the better the bound
is supposed to be, and the more expensive the reduction is. This leads to several
questions: is Coppersmith’s method of any use in real life 7 How much can we
achieve in practice 7 How do the practical bounds compare with the theoretical
bounds ? We will answer these questions in Sections 4 and 5.

3 Applications to Low-Exponent RSA

We briefly review some applications of Coppersmith’s method. More can be
found in [6].

3.1 Stereotyped messages

Suppose the plaintext m consists of two pieces: a known piece B = 2*b, and an
unknown piece . If this is RSA-encrypted with an exponent of 3, the ciphertext
c is given by ¢ = m® = (B + ) (mod N). If we know B, ¢ and N we can
apply the previous results to the polynomial p(z) = (B + )% — ¢, and recover
xo satisfying

p(zo) = (B +20)® — ¢ =0 (mod N),

as long as such an z, exists with |zo| < N'/3. The attack works equally well if
the unknown z lies in the most significant bits of the message m rather than
the least significant bits.

3.2 Random padding

Suppose two messages m and m' satisfy an affine relation, say m' = m + r.
Suppose we know the RSA-encryptions of the two messages with an exponent
of 3:

c=m? (mod N)

d = (m')? =m®+3m?r + 3mr? +r® (mod N)

We can eliminate m from the two equations above by taking their resultant,
which gives a univariate polynomial in r of degree 9, modulo N:

r? + (3¢ — 3¢ )78 + (3¢ + 21ec’ + 3(<)?*)r® + (c — ¢)®.

Thus, if |r| < N'/?, we can theoretically recover 7, from which we can derive the
message m = r(c' + 2c —r®)/(c’ — ¢+ 2r?) (mod N) (see [7]).



3.3 Broadcast attacks

As was pointed out in [15,1], Coppersmith’s result improves known results of
Haéstad [8]. We consider the situation of a broadcast application, where a user
sends linearly related messages m; to several participants with public exponent
e; and public modulus N;. That is, m; = a;m+ 8; (mod N;), for some unknown
m and known constants «; and ;. This precisely happens if one sends a similar
message with different (known) headers or time-stamps which are part of the
encryption block.

Let e = maxe;. If k& such messages m; are sent, the attacker obtains k poly-
nomial equations p;(m) = 0 (mod N;) of degree e; < e. Then we use the Chinese
Remainder Theorem to derive a polynomial equation of degree e:

k
p(m) =0 (mod N),where N = HNl-.

i=1

And thus, by Coppersmith’s method, we can theoretically recover m if |m| <
N'/¢_In particular, this is satisfied if k > e. This improves the previous bound
k > e(e + 1)/2 obtained by Hastad.

4 Implementation

In Section 2, we saw that Coppersmith’s method required reductions of high-
dimensional lattices with huge entries. This is because the proof uses the param-
eter € which induces a choice of h. Actually, € is only of theoretical interest, as
h is the natural parameter. In practice, one would rather choose h and ignore
€, so that the matrix and its entries are not too large. To compute the theoret-
ical maximal rootsize (for a fixed h), one needs to look back at Coppersmith’s
proof. However, we will obtain this maximal rootsize from another method, due
to Howgrave-Graham (see [9]). It can be shown that from a theoretical point of
view, the two methods are strictly equivalent: they provide the same bounds,
and they have the same complexity. But Howgrave-Graham’s method is simpler
to implement and to analyze, so that the practical behaviour of Coppersmith’s
method is easier to explain with this presentation.

4.1 Howgrave-Graham’s method

We keep the notations of Section 2: a monic polynomial p(z) of degree d; a bound
X for the desired solutions modulo /V; and h a fixed integer. In both methods, one
computes a polynomial r(z) of degree at most n = hd for which small modular
roots of p(z) are also integral roots of r(z). In Coppersmith’s method, such a
polynomial is deduced from the hyperplane generated by the first vectors of a
reduced basis of a certain n-dimensional lattice. In Howgrave-Graham’s method,
any sufficiently short vector of a certain n-dimensional lattice can be transformed
into such a polynomial. Actually, these two lattices are related to each other by



duality. Coppersmith uses lattice reduction to find a basis for which sufficiently
short vectors are confined to the hyperplane generated by the first vectors of the
basis. But this problem can also be viewed as a traditional short vector problem
in the dual lattice, a fact that was noticed by both Howgrave-Graham [9] and
Jutla [10].

Given a polynomial r(z) = Y a;z* € Z[z], define ||r(z)| = /3. a?.

Lemma 3 (Howgrave-Graham). Let r(z) € Z[z] of degree n, and let X be a
positive integer. Suppose ||r(zX)|| < M//n. If r(zq) =0 (mod M) and |zo| < X,
then 7(xo) = 0 holds over the integers.

Proof. Notice that |r(zo)| = |Y. aizi| < Y |a; X < ||r(zX)||v/n < M. Since
r(zo) = 0 (mod M), it follows that r(z¢) = 0. O

The lemma shows that a convenient r(x) € Z[z]is a polynomial with small norm
having the same roots as p(z) modulo N. We choose such a polynomial as an
integer linear combination of the following polynomials (similar to the g; ;’s of
Coppersmith’s method):

Qu,v(m) — Nh—l—vxuf(m)v‘

Since g is a root of gy (z) modulo N1 r(zX) must have norm less than
N"=1/\/n to use the lemma. But this can be seen as a short vector problem in
the lattice corresponding to the gy, ,(zX). So we define a lower triangular n x n
matrix M whose i-th row consists of the coefficients of ¢, ,(zX), starting by the
low-degree terms, where v = | (i — 1)/d] and w = (i — 1) — dv. It can be shown
that:

det(M) — Xn(n_l)/2Nn(h_1)/2.

We apply an LLL-reduction to the lattice spanned by the rows of M. The first
vector of the reduced basis corresponds to a polynomial of the form r(zX). And
its Euclidean norm is equal to ||r(zX)]||.

One the one hand, to apply the lemma, we need :

Ir(@X)Il < N*~'/v/n.

On the other hand, the theoretical bounds of the LLL algorithm guarantee that
the norm of the first vector satisfies:

”’r‘(.’L‘X)” < 2(n—1)/4 det(M)l/n < 2(n—1)/4X(n—1)/2N(h—1)/2‘
Therefore, a sufficient condition for the method to work is:
2(n—1)/4X(n—1)/2N(h—1)/2 S Nh_l/\/ﬁ.

Hence, for a given h, the method is guaranteed to find modular roots up to X
if:

1
X< N(h=1)/(n=1), ~1/(n~1) (4)



This is also the expression found by Coppersmith in [6] (p. 241). And the limit
of this expression, when h grows to oo, is %N 1/6_ But what is worth noticing
is that the logarithm of that expression, as a function of h, is quite concave (see
Figure 1). This means that small values of h should already give results close
to the limits. And hopefully, with a small h, the lattice is low-dimensional and
its entries are not excessively large. This indicates that Coppersmith’s method
should be useful in real life. Fortunately, we will see that experiments confirm
this prediction.

Fig. 1. Bit-length of the bound X for § = 3 and RSA-512, as a function of h.
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4.2 Limits of the method

It is well-known that lattice reduction algorithms perform better in practice
than theoretically expected. And when the LLL algorithm does not provide
sufficiently short vectors, one can turn to improved lattice reduction algorithms
such as Schnorr’s [14]. However, a simple argument shows that Coppersmith’s
method and its variants are inherently limited, no matter how good the reduction
algorithm is.

Indeed, if we assume that the lattice M to be reduced is “random”, there
are probably no lattice points of M significantly shorter than det(M)'/™, that
is X(n=1)/2N(h=1)/2 And therefore, since the conditions of lemma 3 are quite
tight, any lattice reduction algorithm will not detect roots much larger than:

N(h=1)/(n=1), ~1/(n—1)

Compared to (4), only the factor 1/4/2 is removed, which is a very small im-
provement. Thus, it is likely that when the LLL algorithm fails to provide the
solution, other lattice reduction algorithms will not help. The bound provided
by (4) is probably tight.



4.3 Complexity

In both Coppersmith’s method and Howgrave-Graham’s method, the most ex-
pensive step is the lattice reduction step. The matrices to be reduced have the
same dimension n = hd, and the size of their entries are similar. Therefore, from
a theoretical point of view, the methods have the same complexity. We assume
that X is chosen less than N1/

The worst-case complexity of the LLL algorithm is O(n°dlog® R) where n is
the lattice dimension, d is the space dimension and R an upper bound for the
squared norms of the basis vectors. So the method has worst-case complexity
O(nlog® R) where R is an upper bound for all the ||g, ,(zX)|?>. We have:

gu,o (@ X)||* = N2 P10 X2 [p(2 X)),
All the coefficients of p(xX) are less than N?2. It follows that:
Ip(@X)*|I> < N*[|(1+z +--- +2°)°|> < N*(6 + 1)*.
Therefore:
w0 (@X)|? < N2h=140) x2u(5 4 1)20 < N2t x20-2(5 4 1)2h=2,

Thus, the complexity is O(n®[(2h — 4 + (26 — 2)/8)log N + (2h — 2)(6 + 1)]3),
that is:
O(h°6%log® N + 8log? N + 6%log N + 6°]).

For large N compared to 4, this is O(h?3% log® N). And that means large values
of h and § are probably not realistic. It also means that the running time of the
method should be more sensitive to an increase of h, than an increase of §, or
an increase of the size of the modulus V.

5 Experiments

Our implementation uses the NTL library [16] of Victor Shoup. Due to the size
of the entries, we had to use the floating point versions of reduction algorithms
with extended exponent. Timings are given for a 500 MHz DEC Alpha. We used
two sorts of computers: 64-bit 500 MHz DEC Alpha using Linux and 64-bit 270
MHz Sparc Ultra-2i using Solaris. It is worth noticing that for large reductions,
the Alpha was about 6 times faster than the Ultra. In part, this is because we
were able to use a 64-bit compiler for the Alpha, but not for the Ultra; and the
clock frequency of the Alpha is twice as high than the one of the Ultra.

We implemented both Coppersmith’s method and its variant by Howgrave-
Graham. The running times and the results are very similar, but Howgrave-
Graham’s method is simpler to implement. Therefore, the tables given here hold
for both methods.
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5.1 Running times

Tables 1, 2 and 3 show the running time of the reduction stage, as a function
of the parameter h and the polynomial degree §, for different sizes of moduli.
The polynomial was randomly chosen. The other parts of the method, such as
computing the integral roots of the polynomial found, are negligible compared
to the reduction stage.

In Section 4, we saw that the worst-case complexity was O(h%5% log® N). The
running times confirm that an increase in h is more expensive than an increase
in §. But the dominant factor is n = hd. If § is not small, only small values of h
are realistic. And if A is chosen large, only small values of § are possible.

Doubling the size of the modulus from RSA-512 to RSA-1024 roughly mul-
tiplies by 5 the running times. And doubling the size of the modulus from RSA-
1024 to RSA-2048 roughly multiplies by 5.5 the running times. From the com-
plexity, one would expect a multiplication by 8. It turns out that the method
is practical even for very large N. And therefore, one would expect broadcast
attacks with small exponent to be practical, as they multiply the size of the mod-
ulus by the number of linearly related messages, but keep the (low) polynomial
degree unchanged.

Table 1. Running time (in seconds), as a function of h and 4, for RSA-512.

Parameter h Polynomial degree §

2 3 4 5 6 7 8 9 10
2 0 004|012 (029057098 | 1.71 | 2.8 | 4.4
3 0.07|0.34 | 1.02 | 2.66 | 5.71 | 11 21 36 56
4 0.27|1.48 | 509 | 14 | 33 | 64 120 | 191 | 318
5 0.84{499 | 19 | 53 | 123 | 242 | 455 | 773 | 1170
6 2.21| 14 | 55 | 161 | 368 | 764 | 1395 | 2341|3773
7 5.34| 37 | 150 | 415 | 919 | 1868 | 3417 | 6157 | 9873
8 11 | 82 | 331 | 912 | 2146 | 4366 | 7678 |13725|21504
9 21 | 166 | 646 | 1838|4464 | 8777 | 17122 |27314|42212
10 38 | 323 | 1234 | 3605 | 8343 [15997| 30600 |47612|84864
11 70 | 598 | 2239 | 6989 |15881|30488| 50866 |91100
12 126 | 994 | 4225 |11650|25637|48249| 91824
13 194 | 1582 | 6598 |17892|44616|82290|158051
14 311 | 2498 {10101(29785|65267
15 474 | 4097 |15835|41856
16 714 | 5857 |25059(64158
17 1066| 9296 |34365|96503
18 1437|12431|50095




Table 2. Running time (in seconds), as a function of h and §, for RSA-1024.

Parameter h Polynomial degree §
2|3 4 5 6 7 8 9 10

2 0.03|0.13| 0.37 | 0.83 | 1.68 | 3.02 | 5.17 | 8.53 | 13
3 0.24|1.19| 3.76 | 9.19 | 21 42 | 76 | 128 | 209
4 1.16|5.89| 21 57 | 134 | 270 | 492 | 813 | 1306
5 3.69| 21 | 82 | 238 | 541 | 1111|2030 | 3426 | 5745
6 9.68| 66 | 264 | 752 | 1736 | 3423 | 6272 |11064|17040
7 25 | 175 | 699 | 2017 | 4521 | 9266 |17746
8 53 | 392 | 1623 | 4748 |10858|21662
9 103 | 815 | 3277 | 9800 |22594|44712
10 204 |1605| 6512 |18608
11 364 (2813|11933
12 627 |5191/20947
13 1028|8530

Table 3. Running time (in seconds), as a function of h and §, for RSA-2048.

Parameter h Polynomial degree §

2 3 4 5 6 7 8 9 10

0.09 0.46 | 1.29 | 3.01 | 5.93 | 11 19 | 31 48

1.04| 511 | 16 | 42 | 93 | 187 | 343 | 598 | 928
521 29 | 97 | 277 | 635 | 1308|2386 | 4151 | 6687
19 | 107 | 405 | 1185 | 2780 | 5616 {10584 |17787|28458
52 | 337 | 1355|3922 | 9129 (18776
123 | 920 | 3729 |10697|25087
282 | 2122 | 8697 |25089(58258
9 555 | 4503 |18854|53345
10 1072| 9313 |36468
11 2008|16042(68669
12 3499(28187
13 5796

O[O O x| WD
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5.2 Experimental bounds

For a given choice of h and 4, one can theoretically find roots as large as X =
NGh=D)/(n=1)p=1/(n=1) /\/2 where n = hé. However, in practice, one has to use
floating point versions of lattice reduction algorithms, because exact versions
(using only integer arithmetic) are quite expensive, especially with this size of
entries. This means that the basis obtained is not guaranteed to be LLL-reduced,
and therefore, the upper bound X cannot be guaranteed either. But, in practice,
in all our experiments, the basis obtained was always LLL-reduced, and thus,
we have always been able to find roots as large as the bound. Approximation
problems occur only when the lattice dimension is very high (larger than say,
150), which was not the case here. When the LLL algorithm failed to provide a
sufficiently short vector, we applied improved lattice reduction algorithms. But
as expected (see the previous section), it did not help: the method is inherently
limited by the value of the lattice determinant.

We only made experiments with the case of an RSA encryption using 3 as a
public exponent. Coppersmith-like attacks are useful only for a very small expo-
nent such as 3, because the polynomial degree must be very small for efficiency,
and the roots cannot be much larger than the size of the modulus divided by the
polynomial degree. For instance, a public exponent of 65537 is not threatened
by Coppersmith’s method. One should also note that these attacks do not re-
cover the secret factorization: they can only recover the plaintext under specific
conditions.

Stereotyped messages. This case corresponds to § = 3. Table 4 give the
bounds obtained in practice, and the corresponding running times. The bound
of (4) is tight: we never obtained an experimental bound X more than twice
as large as the theoretical bound. There is a value of h which gives the best
compromise between the maximal rootsize and the running time. Of course, this
value depends on the implementation. If one wants to compute roots larger than
the corresponding rootsize, one should treat the remaining bits by exhaustive
search, rather than by increasing h. Here, this value seems to be slightly larger
than 13.

Table 4. Bounds and running time for stereotyped messages

Size of N|Data type Parameter h
2 3 4 |56 |7[8]9]10|11 |12 |13 |0
512 Size of X |102|128|139|146|150({153|156|157| 159 | 160 | 161 | 162 (170
Seconds [0.05(0.36{1.54| 5 | 15 |36 | 82 |161| 308 | 542 | 910 |1501
768 Size of X |153|192 (209 [219(226|230(234(236| 238 | 240 | 241 | 242 {256
Seconds [0.09(0.76(3.39| 12 | 35 | 90 |211|418| 853 {1490(2563|4428
1024 | Size of X | 204|256 |279(292|301(307|311|315| 318 | 320 | 322 | 323 |341
Seconds [0.14({1.28] 6 |23 |66 [179(393|823|1634|3044(5254(9224
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Random padding. This case corresponds to § = 9. Table 5 give the bounds
obtained in practice, and the corresponding running times. Note that for this
case, the experimental bound X had a few bits more than the theoretical bound
for small values of h, which is why we added new data in the table. Again, there
is a value of h which gives the best compromise between the maximal rootsize
and the running time. This value seems to be h = 6 for RSA-512 and RSA-
768, and h = 7 for RSA-1024. In all these cases, the running time is less than
than a few minutes, and the corresponding rootsize is not far from the maximal
theoretical rootsize (corresponding to h = o).

Note that the running time is significantly less than the one given in tables 1,
2 for 6 = 9. This is because the polynomial of degree 9 is of particular form here,
as it is quite sparse.

Table 5. Bounds and running time for random padding

Size of N Data type Parameter h
2|3 |4|5|6 |7 8 9 |10 |©
512  |Experimental size of X | 34 | 42 |46|48| 50 |51 | 51 | 52 | 52
Theoretical size of X | 30 | 39 [44|46| 48 |49 | 50 | 51 | 52 |57
Seconds 0.28]2.07| 8 (29| 76 |190| 396 | 769 (1307
768 |Experimental size of X | 51 | 63 |69(73| 75|76 | 77 | 78 | 79
Theoretical size of X | 45 | 59 |66(70{ 72 |75 | 76 | 77 | 77 |85
Seconds 0.46(3.76|17(55/163|396| 835 |1713|3095
1024 |Experimental size of X | 68 | 85 {93(97|100{102| 103 | 104 | 105
Theoretical size of X | 60 | 79 (88|93 96 |99 | 101 | 102 | 103 |114
Seconds 0.74| 6 |28]97|298|733|1629|3468|6674

Broadcast applications. We consider the situation of a broadcast application,
where a user sends k linearly related messages m; (built from an unknown mes-
sage m) to several participants with public exponent e; < e and public modulus
N;. Theoretically, Coppersmith’s method should recover the message m, as soon
as k > e. The problem is that the case k = e corrresponds to a large value of
h, which is unrealistic in practice, as shown in Table 3. Table 6 give the bounds
obtained in practice, and the corresponding running times for a public exponent
of 3 (which corresponds to § = 3), depending on the number of linearly related
messages and the size of the modulus N. When one allows e + 1 messages, the
attack becomes practical. We have always been able to recover the message when
e = 3 and 4 messages are sent, with a choice of h = 4 (the value is h = 3 is a bit
tight). The corresponding running time is only a few minutes, even with RSA-
1024. For larger exponents (and thus, a larger number of necessary messages),
the method does not seem to be practical, as the running time is very sensitive
to the polynomial degree § and the parameter h.
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Table 6. Bounds and running time for broadcast attacks with public exponent 3

Size of N |Messages|Data type Parameter h
2|1 3| 4|5 |6 |o0
512 2 Size of X |204 | 256 | 279 | 292 | 301 | 341

Seconds [0.12|1.27| 6 | 22 | 67
3 Size of X |307|384 | 419 | 439 | 452 | 511
Seconds [0.28{2.85| 15 | 55 | 164
4 Size of X |409| 512 | 558 | 585 | 602 | 682
Seconds [0.45| 5 | 28 |104 | 329
768 2 Size of X | 307|384 | 419 | 439 | 452 | 511
Seconds [0.27/2.72| 15 | 55 | 169
3 Size of X 460|576 | 628 | 658 | 677 | 767
Seconds [0.57| 7 | 36 | 135|435
4 Size of X | 614|768 | 837 | 877 | 903 |1022
Seconds [0.93| 12 | 67 | 272|873
1024 2 Size of X |409| 512 | 558 | 585 | 602 | 682
Seconds [0.48] 5 | 29 |107 | 340
3 Size of X | 614|768 | 837 | 877 | 903 |1024
Seconds [1.41| 13 | 71 | 283 | 896
4 Size of X |819(1024(1117|1170|1204|1364
Seconds [1.89| 25 | 144 | 567 {1793

6 Conclusion

We presented extensive experiments with lattice-based attacks against RSA with
low public exponent, which validate Coppersmith’s novel approach to find small
roots of a univariate modular polynomial equation. In practice, one can, in a
reasonable time, achieve bounds fairly close to the theoretical bounds. We also
showed that these theoretical bounds are essentially tight, in the sense that one
cannot expect to obtain significantly better results in practice, regardless of the
lattice reduction algorithm used.

The experiments confirm that sending stereotyped messages with a small
public exponent e is dangerous when the modulus size is larger than e times
the size of the hidden part (consecutive bits). Random padding with public
exponent 3 is also dangerous, as while as the modulus size is larger than 9 times
the padding size. Interestingly, Hastad-like attacks are practical: if a user sends 4
linearly related messages encrypted with public exponent 3, then one can recover
the unknown message in a few minutes, even for 1024-bit modulus. Note that this
improves the former theoretical bound of 7 messages obtained by Hastad. For 3
messages, one can recover the message if the unknown part has significantly less
bits than the modulus.

This stresses the problems of the low-exponent RSA encryption scheme. How-
ever, it only applies to the case of very small public exponents such as 3. It does
not seem to threaten exponents such as 65537. And these attacks do not seem
to apply to the RSA signature scheme with a small validating exponent.
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