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Abstract. We briefly discuss the history of lattices and cryptography
during the last fifteen years.

A lattice is a discrete subgroup of R"™ or equivalently the set L
Aty + -+ Apby

of all integral linear combination of a given set of independant n-dimensional
vectors by, - - -, bp. The sequnece (bq,-- -, by) is said to be a basis of L and p is its
dimension.

From the mathematical point of view, the history of lattice reduction goes
back to the theory of quadratic forms developed by Lagrange, Gauss, Her-
mite, Korkine-Zolotareff and others (see [Lag73, Gau01, Her50, KZ73]) and to
Minkowski’s geometry of numbers ([Min10]).

With the advent of algorithmic number theory, the subject had a revival
around 1980. Two basic problems have emerged: the shortest vector problem
(SVP) and the closest vector problem (CVP). SVP refers to the question of
computing the lattice vector with minimum non-zero euclidean length while CVP
addresses the non-homogeneous analog of finding a lattice element minimizing
the distance to a given vector. It has been known for some time that CVP is
NP-complete [Boa81] and Ajtai has recently proved that SVP is NP-hard for
polynomial random reductions [Ajt97].

The celebrated LLL algorithm computes a so-called reduced basis of a lat-
tice and provides a partial answer to SVP since it runs in polynomial time and
approximates the shortest vector within a factor of 2"/2. Actually, a reduction
algorithm of the same flavor had already been included in Lenstra’s work on
integer programming (cf. [Len83], circulated around 1979) and the lattice reduc-
tion algorithm reached a final form in the paper [LLL82] of Lenstra, Lenstra and
Lovész, from which the name LLL algorithm comes. Further refinements of the
LLL algorithm were proposed by Schnorr ([Sch87, Sch88]), who has improved the
above factor into (1 + €)™. Babai [Bab86] gave an algorithm that approximates
the closest vector by a factor of (3/v/2)". The existence of polynomial bounds
is completely open: CVP is hard to approximate within a factor 2(10g % ag
shown in [ABSS97] but a result of Goldreich and Goldwasser [GG] suggests that
it is hopeless to try to extend this inapproximability result to 1/n.



The relevance of lattice reduction algorithms to cryptography was immedi-
ately understood: in April 1982, Shamir ([Sha82]) found a polynomial time algo-
rithm breaking the Merkle-Hellman public key cryptosystem ([MHT78]) based on
the knapsack problem, that had been basically the unique alternative to RSA.
Shamir used Lenstra’s integer programming algorithm but, the same year, Adle-
man ([AdI83]) extended Shamir’s work by treating the cryptographic problem as
a lattice problem rather than a linear programming problem. Further improve-
ments of these methods were obtained by Brickell ([Bri&4, Bri85]), by Lagarias
and Odlyzko ([LO85]), and, more recently by Coster, La Macchia, Odlyzko,
Schnorr and the authors ([CJLT92]).

Lattice reduction has also been applied successfully in various other cryp-
tographic contexts: against a version of Blum’s protocol for exchanging se-
crets ([FHK*88]), against truncated linear congruential generators ([FHK*88,
Ste87]), against cryptosystems based on rational numbers ([ST90]) or modular
knapsacks ([JS91, CJS91]), and, more recently, against RSA with exponent 3
([Cop96]) and in order to attack a new cryptosystem proposed by Hoffstein,
Pipher and Silverman under the name NTRU (see [CS97]).

Recently, in a beautiful paper, Ajtai [Ajt96] discovered a fascinating connec-
tion between the worst-case complexity and the average-case complexity of some
well-known lattice problems. More precisely, he established a reduction from the
problem of finding the shortest non zero element u of a lattice provided that
it is “unique” (i.e. that it is polynomially shorter than any other element of
the lattice which is not linearly related) to the problem of approximating SVP
for randomly chosen instances of a specific class of lattices. This reduction was
improved in [CN97]. Later, Ajtai and Dwork [AD97] proposed a cryptosystem
based on Ajtai’s theorem. Actually, they introduced three such systems which
we will describe as AD1, AD2 and AD3 and showed that the third was prov-
ably secure under the assumption that the “unique” shortest vector problem
considered above is difficult. The same year, Goldreich, Goldwasser and Halevy
[GGHI7] proposed another cryptosystem based on lattices.

Again, from a theoretical point of view, the achievement in the Ajtai-Dwork
paper is a masterpiece. However, its practical significance is unclear. At the
“rump” session of CRYPTQ’97, Phong Nguyen, Victor Shoup and the author
reported on initial experiments on the cryptosystem AD1: their conclusion was
that, in order to be secure, practical implementations of AD1 would require
lattices of very high dimension. This would lead to a totally impractical system
requiring a message of more than one megabyte to simply exchange a DES key.
At the same rump session, Claus Schnorr and his students announced that they
had broken many instances of the acheme proposed by Goldreich, Goldwasser
and Halevy. Later, my student Phong Nguyen could break even larger instances.

Does this mean that lattice cryptosystems cannot be practically viable. Ex-
tensive experiments have to be carried but there is some theoretical indication
that it might well be the case. Together with Phong Nguyen [NS], we have es-
tablished a converse to the Ajtai-Dwork security result by reducing the question
of distinguishing encryptions of one from encryptions of zero to approximating



CVP or SVP (recall that AD encrypts bits). In a way, it becomes possible to
reverse the basic paradigm of the AD cryptosystem “If lattice problems are dif-
ficult, then AD is difficult” into the following “If lattice problems are easy, then
AD is insecure”. It remains to understand which of the two paradigms is the

right one.
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