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t. In response to the 
urrent need for fast, se
ure and 
heap publi
-key 
ryp-tography, we propose an intera
tive zero-knowledge identi�
ation s
heme and a derivedsignature s
heme that 
ombine provable se
urity based on the problem of 
omputingdis
rete logarithms in any group, short keys, very short transmission and minimal on-line 
omputation. This leads to both e�
ient and se
ure appli
ations well suited toimplementation on low 
ost smart 
ards.We introdu
e GPS, a S
hnorr-like s
heme that does not require knowledge of the orderof the group nor of the group element. As a 
onsequen
e, it 
an be used with most
ryptographi
 group stru
tures, in
luding those of unknown order. Furthermore, the
omputation of the prover's response is done over the integers, hen
e 
an be done withvery limited 
omputational 
apabilities. This paper provides 
omplete se
urity proofsof the identi�
ation s
heme. From a pra
ti
al point of view, the possible range of pa-rameters is dis
ussed and a report on the performan
es of an a
tual implementation ona 
heap smart 
ard is in
luded: a 
omplete and se
ure authenti
ation 
an be performedin less than 20 millise
onds with low 
ost equipment.Key words. Identi�
ation s
heme, digital signature, dis
rete logarithm problem, min-imal on-line 
omputation, low 
ost smart 
ards.1 Introdu
tionThe rapid world-wide development of ele
troni
 transa
tions stimulates a strong de-mand for fast, se
ure and 
heap publi
-key 
ryptography. Besides 
on�dentiality, 
ryp-tographers need to solve two important problems: authenti
ation and providing digitalsignatures or, in plain words, how to prove one's identity and how to digitally sign ado
ument. Several proposals have addressed those questions, putting forward elegantsolutions, many of them based on the 
on
ept of zero-knowledge introdu
ed in 1985by Goldwasser, Mi
ali and Ra
ko� [30℄.In order to assess the performan
es of proposed s
hemes, three main propertieshave to be 
onsidered. The most important 
on
ern is, of 
ourse, se
urity. Obviously,



a system 
an be supported by the 
laim that nobody has been able to jeopardize itso far. This is of 
ourse important but, in many appli
ations, it is not a satisfa
toryenough guarantee. A mu
h better paradigm tries to prove se
urity in a mathemati
alsense, i.e. to establish theorems 
laiming that illegal a
tions su
h as impersonation areas di�
ult as solving a spe
i�
 problem, whose di�
ulty is well-established. Amongthese problems are integer fa
torization, or the 
omputation of dis
rete logarithms ina �nite group. Half way between heuristi
 validation and formal proofs are proofs ina model where 
on
rete obje
ts are repla
ed by some ideal substitutes: applying thisparadigm to hash fun
tions yields the so-
alled random ora
le model des
ribed byBellare and Rogaway in [3℄. Although this approa
h may not be 
onsidered as o�eringabsolute proofs of se
urity for 
ryptographi
 s
hemes, it provides a strong guaranteethat their general design is not �awed.Next, the size of the data involved in the s
heme is of 
ru
ial pra
ti
al signi�
an
e.We usually need short publi
 and private keys, mainly when they have to be stored inportable devi
es like 
hip 
ards, whi
h may have small storage 
apabilities. We alsowant to redu
e the amount of transmissions and the length of the signatures. Thelatter is an important parameter in appli
ations for whi
h many signatures have tobe stored (e.g. ele
troni
 
ommer
e) or transmitted (e.g. pay TV).Another key property is the time 
omplexity, sin
e it dire
tly 
ontrols the 
ostof the devi
es on whi
h a s
heme may be implemented. Here, we have to distinguishbetween pre
omputations that 
an be performed o�-line and stored in memory, and
al
ulations that have to be done on-line during authenti
ation or signature 
ompu-tation. The latter is often the bottlene
k of many appli
ations, espe
ially when smart
ards are used. Na

a
he et al. [34℄ proposed to pre
ompute use & throw 
ouponsin order to make the DSA signature pro
ess mu
h more e�
ient. However this at-tempt for designing on the �y signature s
hemes is not optimal sin
e it still requires amodular multipli
ation. Another approa
h is mu
h more general in 
hara
ter: Even,Goldrei
h and Mi
ali [15℄ proposed the 
on
ept of on-line/o�-line digital signatureand des
ribed a 
onstru
tion to transform any signature s
heme in su
h a way thatmost of the 
omputations 
an be done o�-line. This was further improved by Shamirand Tauman [44℄.In this paper, we study an intera
tive zero-knowledge identi�
ation s
heme, 
alledGPS for short, and a derived signature s
heme. They 
ombine provable se
urity basedon the dis
rete logarithm problem over an arbitrary �nite group, short keys, shorttransmissions and signature size and minimal on-line 
omputation.The 
oupon-based signature algorithm GPS allows to implement publi
-key sig-nature or identi�
ation s
hemes on low 
ost smart 
ards, without 
rypto-pro
essor.Another promising appli
ation is the implementation of su
h s
hemes on 
onta
tlesssmart 
ards. Su
h 
ards just look like 
redit 
ards but they have an ele
troni
 mi-
ro
hip and an embedded antenna. These 
omponents allow the 
ard to 
ommuni
atewith an antenna/
oupler unit without any physi
al 
onta
t. Conta
tless 
ards are the2



ideal solution when transa
tions must be pro
essed very qui
kly, as in mass-transitor toll 
olle
tion but, sin
e the power supply 
omes from ele
tromagneti
 indu
tion,heavy-
onsumption 
rypto-pro
essors hardly 
an be used.A typi
al appli
ation of GPS is �on the �y� authenti
ation at a toll. The basi
 ideais to equip ea
h authorized 
ar with a low 
ost 
onta
tless smart 
ard. When a 
argoes through a toll, it does not have to stop but just performs a GPS authenti
ation inorder to prove that it is a legitimate user. In su
h an appli
ation, the time allowed totransmit data and to perform on-line 
al
ulations is very short, about 100 millise
onds.The main feature of GPS is to use publi
 key 
ryptography in this setting (veryshort authenti
ation time and low 
ost devi
es), thus a
hieving a high level of se
urity.Furthermore, in su
h an independent appli
ation that does not require interoperabilitywith other systems, the 
oupons 
an be 
omputed and stored in the 
ard by theauthority who also a
ts as a veri�er.Noti
e that symmetri
 
ryptography 
ould also be used to solve this probleme�
iently. But the advantage of using publi
 key 
ryptography is that no se
ret masterkey has to be stored by the veri�er (here the toll). Consequently, the system is mu
hmore se
ure against pira
y.Earlier announ
ements. The GPS s
heme was �rst proposed by Girault at Euro-
rypt '91 [22℄ as an example of a s
heme with self-
erti�ed publi
 keys but withoutse
urity analysis. Then, the main results of this paper appeared in a preliminary ver-sion at Euro
rypt '98 [40℄. The main te
hni
al di�eren
es are a more pre
ise se
uritymodel and a 
omplete proof of se
urity. Many te
hni
alities have been streamlinedand we only assume the intra
tability of 
omputing dis
rete logarithms with shortexponents.The GPS s
heme has been submitted to the European NESSIE proje
t and la-belled by this proje
t as a strong 
ryptographi
 primitive [12℄. Various modes of useare des
ribed in [26℄. Finally, the GPS identi�
ation s
heme has been standardized byISO/IEC (International Organization for Standardization/ International Ele
trote
h-ni
al Commission) [32℄, while the signature s
heme is 
urrently at an earlier stage.Paper organization. In this paper, we show that GPS a
hieves a 
ombination of thestrongest properties that one 
an demand in authenti
ation appli
ations. In se
tion 2we �rst re
all the S
hnorr s
heme and several of its variants. Then we des
ribe the GPSidenti�
ation s
heme and we re
all how it 
an be turned into a signature s
heme. Inse
tion 3, we develop our se
urity model for identi�
ation, and we study the se
urity ofthe GPS identi�
ation s
heme. We prove that GPS is se
ure against a
tive adversariesprovided the so-
alled dis
rete logarithm with short exponents problem is hard. Inse
tion 4, we establish the se
urity of the derived signature s
heme using the randomora
le model in order to validate the proposed design. The last se
tion is more pra
ti
al3



in 
hara
ter: we dis
uss how to 
hoose se
ure parameters in order to resist the knownatta
ks against fa
torization and the dis
rete logarithm problem. Then we explainhow to optimize size of the data and, �nally, report on the performan
es of a smart
ard appli
ation.2 Des
ription of GPS2.1 Identi�
ation s
hemes based on the dis
rete logarithm problemIn 1989, C. S
hnorr [42℄ proposed a ni
e proof of knowledge of a dis
rete logarithmin groups of known prime order. This proof is a more e�
ient version of previousproposals of Chaum et al. [11, 10℄ and Beth [4℄. Su
h a proof 
an be used as an iden-ti�
ation s
heme, and also 
onverted into a signature s
heme using the Fiat-Shamirparadigm [18℄. In these s
hemes, the size of the data is short, and the 
omputationload is quite a

eptable.Towards a more pre
ise des
ription, we let p be a prime number. We denote by Z�pthe set of invertible elements modulo p. Let q be a large prime divisor of p� 1 and gan element of Z�p of order q, i.e. su
h that gq = 1 mod p but g 6= 1. The prover knowsa se
ret element s in Zq and he wants to prove that he knows the dis
rete logarithmof I = g�s mod p in base g. We �rst noti
e that any veri�er 
an immediately 
he
kthat p is prime, q is a prime divisor of p � 1, g is of order q and that I belongs tothe subgroup of Z�p generated by g. This last veri�
ation just 
onsists in 
he
king thatIq = 1 mod p.In order to prove knowledge of s, the prover �rst generates r 2 Z�q at randomand sends the 
ommitment x = gr mod p to the veri�er who answers a 
hallenge
 randomly 
hosen in the interval [0; B � 1℄, where B is a publi
ly known systemparameter. Next, the prover 
omputes y = r + s
 mod q and sends y to the veri�erwho 
he
ks the equation x = gyI
 mod p. This elementary round 
an be repeatedsequentially; we denote by ` the number of repetitions.The se
urity analysis of the s
heme shows that a prover a

epted with probabilitysubstantially greater than 1=B` must know the dis
rete logarithm of I, i.e. the se
ret s;the proof is sound. Furthermore, even a dishonest veri�er 
annot learn any additionalinformation about the se
ret, whatever the number of authenti
ations may be, if Band ` are polynomial in a se
urity parameter, i.e. asymptoti
ally �not too large�; theproof is perfe
tly zero-knowledge.Many modi�
ations of the S
hnorr s
heme, that a
hieve additional properties, havebeen proposed. Firstly, one 
an use a 
omposite modulus instead of a prime modulusand keep the fa
torization of the modulus se
ret. As a 
onsequen
e, the order of themultipli
ative group in whi
h the 
omputations are performed may remain se
ret.Furthermore, the order of the publi
ly known base g 
an also be publi
 or private.In the S
hnorr s
heme, both the order p � 1 of the group and the order q of g are4



known. We will see that in the GPS s
heme, both of those parameters 
an remainunknown to provers and veri�ers. Other s
hemes, 
lassi�ed in �gure 1, a
hieve di�erent
ombinations. We now brie�y review those proto
ols.Order of the multipli
ative groupknown unknownOrder of gknown Chaum, Evertse, van de Graafand Peralta [11, 10℄,Beth [4℄, S
hnorr [42℄,Okamoto [36℄ Girault [21℄,Biham and Shulman [6℄Order of gunknown Bri
kell and M
Curley [7℄ GPS [22, 40℄, RDSA [5℄Poupard and Stern [41℄Fig. 1. Dis
rete logarithm related s
hemes 
lassi�ed a

ording to the need for the order of the groupand/or of the base g to be known by provers and veri�ersThe Okamoto s
heme. The S
hnorr s
heme is known to be perfe
tly zero-knowledgeif the parameters B and ` remain polynomial in a se
urity parameter. The one-round(` = 1) variant remains sound if B is super-polynomial, but, as a 
onsequen
e, thisvariant is perfe
tly zero-knowledge only w.r.t a honest veri�er, i.e. a veri�er who ran-domly 
hooses the 
hallenges. However it is unknown how to prove the zero-knowledgeproperty if the veri�er 
an bias the distribution of his 
hallenges. This means that,for large 
hallenges, we 
an only prove the se
urity of S
hnorr identi�
ation againstpassive adversaries who just observe regular authenti
ations. Exa
tly the same remarkapplies to the GPS s
heme.A solution proposed by Okamoto [36℄ 
onsists in using two bases g1 and g2 and toprove the knowledge of a �representation� (s1; s2) su
h that I = gs11 gs22 mod p. Whilethis proto
ol is not proven to be zero-knowledge, it nonetheless is witness indistin-guishable [17℄. As a 
onsequen
e, provided the 
omputation of the dis
rete logarithmof g1 in base g2 modulo p is intra
table, the s
heme is provably se
ure against a
tiveadversaries, even for large 
hallenges (note that so is GPS, as explained in se
tion 3).The Bri
kell-M
Curley s
heme. In the proto
ol proposed in [7℄, the 
omputationsare still done modulo a prime number p but instead of using a base g of publi
ly knownprime order q, the parameters are 
hosen su
h that p� 1 is divisible by the produ
tq � w of two se
ret prime numbers. The rest of the s
heme is similar to the S
hnorrproto
ol; it uses a base g of order q but the answer y is equal to r + s
 mod p � 1in order not to reveal information about q. The main advantage of this variant is to5



base the se
urity on the intra
tability of the dis
rete logarithm problem modulo p oron the fa
torization of p� 1. This means that it is se
ure if at least one of those twoproblems is di�
ult.The Girault s
heme. The idea of [21℄ is to 
hoose a 
omposite modulus n =(2fp+ 1)� (2fq + 1) where 2fp+ 1, 2fq + 1, p, q and f are prime. The integer f ispubli
, the base g has order f and the answer y is 
omputed modulo f . A publi
 keyof a prover of identity Id is obtained with the formula I = Id1=egs mod n where thee-th root of Id is 
omputed by an authority who knows the fa
torization of n and sis a se
ret key 
hosen by the prover. In this setting, an identi�
ation, in spirit, is aS
hnorr proof of knowledge of the dis
rete logarithm (e�s) of Ie=Id mod n in base g.The GPS s
heme. A way of improving the S
hnorr proto
ol e�
ien
y is to get ridof modular redu
tions during identi�
ation or signature. Exponentiation modulo p
an be performed o�-line by the user's devi
e or pre
omputed by an authority in ause & throw 
oupons [34℄ setting. Therefore, in order to further redu
e the on-line
omputation to a very simple operation, it is natural to eliminate the se
ond modulusq by performing the operations y = r+s
 in Z. This has �rst been proposed by Giraultin [22℄ and the se
urity analysis of this proto
ol is pre
isely the subje
t of the presentpaper in a more general setting. Note that in [24℄, the on-line operation is redu
ed toa single, but mu
h longer, addition.Other s
hemes. A variant of GPS, 
alled RDSA, has been proposed in [5℄ andanalyzed in [19℄. We 
an also note that the s
heme des
ribed in [41℄ is based on theintra
tability of the fa
torization problem, but it 
an be seen as a proof of knowledgeof dis
rete logarithm where the order of the group and the order of the base arese
rets owned by the prover. More re
ently, another fa
torization-based s
heme hasbeen proposed, in whi
h the key pair is a RSA key pair [25℄.2.2 GPS identi�
ation s
hemeWe now des
ribe pre
isely the GPS identi�
ation s
heme. The se
urity analysis ap-pears in the next se
tion.Choi
e of the underlying mathemati
al stru
ture. The GPS identi�
ations
heme is de�ned on a generi
 group G and uses a spe
i�
 element, namely the baseg 2 G. In the theoreti
al se
urity analysis of the next se
tion, we only assume the in-tra
tability of 
omputing dis
rete logarithms in the group G, in base g, for exponentsin the range [0; S � 1℄ where S is a publi
 parameter of the s
heme.6



More pre
isely, we assume the existen
e of a randomized algorithm PP(!pp; k)that generates publi
 parameters G and g a

ording to a se
urity parameter k usinga random tape !pp.In pra
ti
e, several mathemati
al stru
tures 
an be used; the most interesting
hoi
es for G are listed below:� G = Z�p with p a prime number s.t. p� 1 has a large prime fa
tor q; the order ofthe base g should be q. We obtain a variant of the S
hnorr identi�
ation s
hemein whi
h on-line 
omputation is twi
e as fast for the same se
urity.� the set G = Z�n of invertible elements modulo an RSA modulus n, i.e. a 
ompositeinteger with typi
ally two prime fa
tors of almost the same size. Note that thefa
tors of n are no longer required so they 
an be dis
arded after the generationof n. Then g 
an be randomly 
hosen. However, the generation of n and g mustbe done by a trusted party sin
e the 
omputation of �short� exponents, typi
allyof 160 bits, 
an be done very easily using partial Pohlig-Hellman te
hniques [45℄if the order of g is known and if it has many small prime fa
tors. In pra
ti
e, weadvise the use of modulus n whi
h is the produ
t of two strong primes, i.e. primesp s.t. (p�1)=2 is also prime. We also advise the use of the base g = 2 for e�
ien
yreasons.� G 
an also be derived from an ellipti
 
urve. Analogs of GPS in the ellipti
 
urvesetting 
an be de�ned in a straightforward manner; see for example [13℄.� Mu
h more sophisti
ated mathemati
al stru
tures 
an also be used; the only 
on-straint is the intra
tability of the dis
rete logarithm with short exponent problemis su
h groups. An example of su
h an approa
h is proposed in [5℄.Other publi
 parameters. Besides the upper bound S for the se
ret keys, additionalparameters of the GPS s
heme are the number ` of elementary rounds and two integerbounds A and B, de�ned below. The relations between those parameters are analyzedin se
tion 3. We just summarize some fa
ts about these parameters in order to maketheir meaning more expli
it:� the probability of impersonation is 1=B`,� the 
omputation of dis
rete logarithms in base g in the group G must be intra
tablefor exponents in the interval [0; S � 1℄,� A must be signi�
antly larger than S �B sin
e it de�nes the size of some randomdata used to mask the se
ret.Publi
/private keys. The private keys s are integers 
hosen in the range [0; S � 1℄and the related publi
 keys I are 
omputed in the group G by the relation I = gs.Proto
ol (see �gure 2). We let � = (B � 1)(S � 1). A round of identi�
ation
onsists for the prover in randomly 
hoosing an integer r in [0; A� 1℄, and 
omputing7



the 
ommitment x = gr. Next, he sends x to the veri�er, who answers a 
hallenge 
randomly 
hosen in [0; B�1℄. The prover 
he
ks 
 2 [0; B�1℄ and 
omputes the integery = r+ 
� s. He sends y to the veri�er who 
he
ks gy = x� I
 and y 2 [0; A+�� 1℄.A 
omplete identi�
ation 
onsists in repeating ` times the elementary round. Thetheoreti
al analysis shows that ` should be super-logarithmi
 in the se
urity parameterin order to be able to prove the se
urity of the s
heme against a
tive adversaries, asin the S
hnorr s
heme. However, in many pra
ti
al appli
ations, ` will often be equalto ` = 1.Parameters: `, A, B and S integersg an element of a multipli
ative group GSe
ret key: s 2 [0; S � 1℄Publi
 key: I = gsProver Veri�erRepeat ` times
hoose r in [0; A � 1℄x = gr x�������������!
he
k 
 2 [0; B � 1℄ 
 ������������� 
hoose 
 in [0; B � 1℄y = r + 
� s y�������������! 
he
k gy ?= x� I
 andy 2 [0; A + (B � 1)� (S � 1)� 1℄Fig. 2. GPS identi�
ation s
hemeAs usual in this kind of s
heme, many straightforward variants 
an be designed,su
h as 
hoosing I = g�s and/or y = r � 
 � s, with some trivial impa
t on the restof the proto
ol.2.3 GPS signature s
hemeWe 
an turn the identi�
ation s
heme into a signature s
heme by following the te
h-nique originally proposed by Fiat and Shamir [18℄, and used by S
hnorr [42℄ andmany others: 
hallenges 
 are no longer randomly 
hosen by a veri�er but 
omputedby means of a hash fun
tion h with output range [0; B� 1℄, with B larger than in theidenti�
ation s
heme.The signature of a message m is 
omputed by taking a random r in [0; A� 1℄ and
omputing x = gr, 
 = h(m;x) and y = r + 
s. This produ
es the signature (x; 
; y)that may be 
he
ked by anybody using the equations 
 = h(m;x), y 2 [0; A + (B �1)� (S � 1)� 1℄ and gy = xI
. 8



Furthermore, well known optimizations, des
ribed in se
tion 5.2, su
h as redu
ingthe signature to the pair (
; y) 
an be applied. This leads to the following signatures
heme:Input:� publi
 parameters (G; g; A;B; S)� hash fun
tion h(:), with output range [0; B � 1℄� signer's private key s� message en
oded as an integer mOperations: signature (
; y) shall be 
omputed by the following sequen
e of steps:1. Randomly generate an integer r from the range [0; A � 1℄.2. Compute x = gr.3. Compute 
 = h(m;x).4. Compute y = r + 
� s.5. Output (
; y).A signature is veri�ed using the following s
heme:Input:� publi
 parameters (G; g; S;A;B)� hash fun
tions h(:)� signer's publi
 key I� message en
oded as an integer m� signature to be veri�ed (
; y), a pair of integersOutput: �valid� ifm and (
; y) are 
onsistent given the publi
 key; �invalid� otherwiseOperations: output shall be 
omputed by the following sequen
e of steps:1. If 
 is not in [0; B � 1℄ or y is not in [0; A+ (B� 1)� (S� 1)� 1℄ output �invalid�and stop.2. Compute x0 = gy=I
.3. Compute 
0 = h(m;x0).4. If 
0 = 
 then output �valid� else output �invalid�.3 Se
urity analysis of the GPS identi�
ation s
hemeThe aim of this se
tion is to formally prove the se
urity of the GPS identi�
ations
heme. We �rst de�ne the se
urity model we use. Next, in order to prove the se
urityof the GPS proto
ol against a
tive adversaries, we follow the approa
h of Feige, Fiatand Shamir [16℄, proving 
ompleteness, zero-knowledge and soundness.Another strategy to demonstrate the se
urity against a
tive adversaries is to provethat GPS is witness indistinguishable [17℄. In [38℄, Point
heval proved that the GPSs
heme enjoys this property for some spe
i�
 group G and base g 2 G.9



3.1 Se
urity modelBy means of an identi�
ation s
heme a prover 
onvin
es a veri�er of his identity.Both the prover and the veri�er are modeled as probabilisti
 polynomial time Turingma
hines (Pptm). They have a spe
ial tape, denoted !, initially �lled with randomlyand uniformally 
hosen bits. They also have additional tapes where they 
an readand/or write the messages that they ex
hange. See [30℄ for a 
omplete de�nition ofintera
tive Pptms.We 
onsider the following s
enario for identi�
ation; �rstly a randomized algo-rithm generates publi
 parameters on input the se
urity parameter k. Its runningtime is polynomial in k. Next a se
ond probabilisti
 algorithm, using random tape!K , generates pairs of publi
 and private keys (pk,sk) and sends the se
ret key tothe prover while the related publi
 key is made available to anybody, in
luding of
ourse the prover and the veri�er. Finally, the identi�
ation is an intera
tive proto
olbetween the prover and the veri�er whi
h respe
tively use random tapes !P and !V .At the end, the veri�er a

epts or not.We now modify this s
enario, where everybody is honest, in order to add anatta
ker whose aim is to impersonate the prover, i.e. to be a

epted by a veri�er withthe publi
 key of the prover. In this model, we 
onsider an atta
ker that does not
orrupt publi
 parameters and key generation. Thus, there are only two ways for himto obtain information. Firstly, the atta
ker 
an passively observe the 
ommuni
ationduring regular authenti
ations between the prover and the veri�er. Se
ondly, he 
antake 
ontrol over the veri�er. The di�eren
e between the passive and the a
tive atta
ksis that the a
tive atta
ker 
an make the veri�er deviate from the proto
ol in order totry to extra
t more information about the prover's se
ret key.In the a
tive s
enario, we 
an view the atta
ker and the veri�er under 
ontrol as asingle ma
hine. A

ordingly, an atta
ker is made of two probabilisti
 polynomial timeTuring ma
hines; the �rst one, �atta
ker A1�, intera
ts with a prover and sequentiallyexe
utes a polynomial number of identi�
ations while the se
ond one, �atta
ker A2�,a
ts as a prover and tries to impersonate the original prover. Of 
ourse, the �rstatta
ker 
an transmit some information to the se
ond one but the 
ontrary is notallowed. Noti
e that su
h a se
urity model does not take into a

ount 
on
urrentatta
ks where the atta
ker performs parallel authenti
ations with the prover [14℄ orreset atta
ks where he 
an reset the prover in a former state [9, 2℄. Furthermore,
lassi
al man-in-the-middle atta
ks 
annot be performed sin
e we separate intera
tionswith the prover from those with the veri�er.We 
an now de�ne what is a se
ure identi�
ation proto
ol in this model: a proto
olis se
ure if the probability for any probabilisti
 polynomial time atta
ker (A1; A2) tobe a

epted is negligible:8d 2 N 9k0 8k > k0 Pr [Veri�er a

epts A2℄ < 1kdwhere the probability is 
omputed over all the random tapes.10



3.2 The dis
rete logarithm with short exponent problemFor e�
ien
y reasons, GPS se
ret keys are 
hosen in the range [0; S � 1℄ and notmodulo the (possibly unknown) order of g. As a 
onsequen
e, the se
urity of GPS isnot redu
ed to the dis
rete logarithm problem but, more pre
isely, to the so-
alleddis
rete logarithm with short exponent problem. Among other studies, this problem hasbeen used by [45℄ in the 
ontext of the Di�e-Hellman key agreement s
heme and alsoby [37, 20℄ in the 
ontext of provably se
ure pseudorandom generators. Of 
ourse, ifS is 
hosen greater or equal to the order of g then the se
urity assumption is redu
edto the ordinary intra
tability of 
omputing dis
rete logarithms in G in base g.We assume the existen
e of a randomized algorithm PP(!pp; k) that generatespubli
 parameters G, g and S from a se
urity parameter k using a random tape !pp.The dis
rete logarithm with short exponent problem 
onsists, given inputs of G, g, Sand gx s.t. x 2 [0; S � 1℄, to �nd x.The intra
tability assumption we will further use in the se
urity proof of GPS isas follows:Dis
rete Logarithm with short exponent assumption. For every poly-nomial Q and every probabilisti
 polynomial time Turing ma
hineM runningon random tape !M , for su�
iently large k,Pr!pp;!M [M(G; g; S; gx) = x where (G; g; S)  PP(!pp; k) and x 2 [0; S � 1℄℄ < 1Q(k)3.3 Se
urity analysis of GPSIn the 
ase of GPS, some publi
 parameters are the group G, the element g 2 G andthe bound S whi
h are generated a

ording to the se
urity parameter k. The exa
tway of generating those parameters depends on the kind of 
ryptographi
 group G thatis used but, roughly speaking, k de�nes the �size� of G and S in su
h a way that thedis
rete logarithms with short exponent problem may be assumed to be intra
table,i.e. that there should not exist any polynomial algorithm in the se
urity parameter kable to solve this problem.In order to prove the se
urity of GPS, we �rst prove in theorem 1 that honestprovers are 
orre
tly authenti
ated. Next, we need to prove than an atta
ker (A1; A2),as des
ribed in se
tion 3.1, 
annot be a

epted with non-negligible probability. Firstly,A1 intera
ts with a prover. The zero-knowledge property, proven in theorem 2, showsthat the 
ommuni
ation between the A1 and a prover 
an be simulated. This meansthat the prover 
an be repla
ed by a simulator, who does not know any se
ret. Sin
ethe simulated 
ommuni
ation is indistinguishable from real ones, the atta
ker 
annotdete
t this 
hange. So, the atta
ker learns as mu
h information from the simulator asfrom the real prover and we 
on
lude that no information about the se
ret is leakedduring the exe
ution of the proto
ol. 11



Then, we show that if the se
ond part of the atta
ker, A2, is a

epted with non-negligible probability, it 
an be used to solve in polynomial time a problem that isassumed to be intra
table. Su
h a proof modi�es the key generation algorithm butthe distribution of the keys remains indistinguishable from the real one. In 
on
lusion,we obtain that, if a Pptm atta
ker exists in our model, the dis
rete logarithm withshort exponent problem 
an be solved in expe
ted polynomial time in the se
urityparameter k. In appli
ations where this problem is assumed to be intra
table, we
on
lude that the GPS s
heme is se
ure against the a
tive adversaries we 
onsider.Let us introdu
e some notation. For any integer x, jxj is the number of bits(blog2(x)
+ 1) of x, and abs(x) denotes the absolute value of x. We use fun
tionÆ, de�ned by Æ (true) = 1 and Æ (false) = 0. Finally, we denote by ^ the logi
aloperator �and�.Impli
itly, we 
onsider that S, A, B and ` are fun
tions of the se
urity parameterk. In order to simplify notations, we do not expli
itly write the dependen
ies on kbut, when we say that a positive expression f is negligible, this means that f dependson k and that, for any 
onstant d and for large enough k, f(k) < 1=kd.Theorem 1 (Completeness). The exe
ution of the proto
ol between a prover whoknows the se
ret key 
orresponding to his publi
 key and a veri�er is always su

essful.Proof. At the end of ea
h round, the veri�er obtains x = gr and y = r + 
s, whi
h
an be easily 
omputed by the prover if he knows the se
ret key s. Consequently,gy = gr+s
 = gr � I
 = xI
Furthermore, 0 � y = r + 
s � (A� 1) + (B � 1)� (S � 1) < A+ �. utTheorem 2 (Zero-knowledge). The GPS proto
ol is statisti
ally zero-knowledge if` and B are polynomial and `SB=A is negligible.Proof. We des
ribe an expe
ted polynomial time simulation of the 
ommuni
ationbetween a prover P and a dishonest veri�er A1 who 
an use an adaptive strategy tobias the 
hoi
e of the 
hallenges in order to try to obtain information about s. Inthis 
ase, the 
hallenges are no longer randomly 
hoosen and this must be taken intoa

ount in the se
urity proof. If we fo
us on the ith round of identi�
ation, A1 hasalready obtained data, denoted by hist, from previous intera
tions with P . Then theprover sends the 
ommitment xi and A1 
hooses, possibly using hist, xi and bits fromits random tape !A, the 
hallenge 
i(xi; hist; !A).Here is an algorithm that uses a random tape !M to simulate the ith round ofidenti�
ation by the usual method of resettable simulation:step 1. using !M , 
hoose random values 
i 2 [0; B�1℄ and yi 2 [�;A�1℄ (re
all that� = (B � 1)(S � 1)), 12



step 2. 
ompute xi = gyi=I
i ,step 3. if 
i(xi; hist; !A) 6= 
i then return to step 1 and try again with another pair(
i; yi), else return (xi; 
i; yi).The rest of the proof shows that, provided � is mu
h smaller than A, this simula-tion algorithm outputs triplets statisti
ally indistinguishable from real ones, for any�xed random tape !A. The main goal is to justify the intuition a

ording whi
h thedistribution of xi = gyi=I
i , as 
omputed by the simulator, and the distribution of gr,as 
hosen by the real prover, are statisti
ally 
lose.Let us prove that the distribution of the generated triplets is statisti
ally indistin-guishable from the distribution of real triplets, i.e. formally that�1 = X�;�;
 ����Pr!P [(x; 
; y) = (�; �; 
)℄� Pr!M [(x; 
; y) = (�; �; 
)℄����is negligible. This means that the two distributions 
annot be distinguished by anyalgorithm, even using an in�nite 
omputational power, but only a

essing a polynomialnumber of triplets of both distribution. We refer to [30℄ for more details on thisde�nition.Let (�; �; 
) be a �xed triplet. Let us evaluate the respe
tive probabilities to obtainsu
h a triplet during one round of proof and during simulation.We assume that the prover is honest, i.e. follows the proto
ol. Consequently,Pr!P [(x; 
; y) = (�; �; 
)℄= Prr2[0;A�1℄ [� = gr ^ � = 
(�; hist; !A) ^ 
 = r + � � s℄= Xr2[0;A�1℄ 1AÆ �� = g
=I� ^ � = 
(�; hist; !A) ^ r = 
 � � � s�= 1AÆ �� = g
=I� ^ � = 
(�; hist; !A) ^ 
 � � � s 2 [0; A � 1℄�= 1A � Æ �� = g
=I��� Æ (� = 
(�; hist; !A))� Æ (
 � � � s 2 [0; A� 1℄) (?)We now 
onsider the probability Pr!M [(x; 
; y) = (�; �; 
)℄ to obtain the triplet(�; �; 
) during the simulation des
ribed above. This is a 
onditional probability givenby: Pry2[�;A�1℄;
2[0;B�1℄ �� = gy=I
 ^ � = 
 ^ 
 = y ���� 
 = 
(gy=I
; hist; !A)�Using the de�nition of 
onditional probabilities, this 
an be written asPry2[�;A�1℄;
2[0;B�1℄ �� = gy=I
 ^ � = 
 = 
(�; hist; !A) ^ 
 = y�Pry2[�;A�1℄;
2[0;B�1℄ [
 = 
(gy=I
; hist; !A)℄13



Let Q = Xy2[�;A�1℄;
2[0;B�1℄ Æ �
 = 
(gy=I
; hist; !A)�. We obtain that the denominatorof the previous fra
tion isPry2[�;A�1℄;
2[0;B�1℄ �
 = 
(gy=I
; hist; !A)� = Q(A� �)�BWe now return to the evaluation of Pr!M [(x; 
; y) = (�; �; 
)℄= X
2[0;B�1℄ 1B Pry2[�;A�1℄ �� = gy=I� ^ 
 = y ^� = 
 = 
(�; hist; !A) �, Q(A� �)�B= Pry2[�;A�1℄ �� = g
=I� ^ 
 = y ^� = 
(�; hist; !A) �� A� �Q= Xy2[�;A�1℄ 1A� � � Æ�� = g
=I� ^ 
 = y ^� = 
(�; hist; !A) �� A� �Q= 1Q � Æ �� = g
=I��� Æ (� = 
(�; hist; !A))� Æ (
 2 [�;A� 1℄) (??)Comparing (?) and (??), we see that, in order to pro
eed with the indistinguisha-bility proof, we have to show that Q is 
lose to A. The question is how many pairs(
; y) 2 [0; B � 1℄ � [�;A � 1℄ satisfy 
 = 
(gy=I
; hist; !A)? The answer is providedby the following 
ombinatorial lemma the proof of whi
h appears in appendix A:Lemma 3. If f is a fun
tion from G to [0; B�1℄ and I 2 fgs; s 2 [0; S � 1℄g then thetotal number N of solutions (
; y) 2 [0; B�1℄� [�;A�1℄ of the equation 
 = f(gy=I
)satis�es A� 2� � N � A.We 
an spe
ialize the result of lemma 3 by setting f to the fun
tion whi
h 
omputes
(gy=I
; hist; !A) from (
; y). Consequently we obtain that Q is between A� 2� andA. We are now able to bound the distan
e �1 between the a
tual and simulateddistributions:�1 = X�;�;
 ����Pr!P [(x; 
; y) = (�; �; 
)℄� Pr!M [(x; 
; y) = (�; �; 
)℄����= X�;�;
2[�;A�1℄ ����Pr!P [(x; 
; y) = (�; �; 
)℄� Pr!M [(x; 
; y) = (�; �; 
)℄����+ X�;�;
 62[�;A�1℄ Pr!P [(x; 
; y) = (�; �; 
)℄14



= X
2[�;A�1℄;�2[0;B�1℄;�=g
=I� ���� 1A � Æ (� = 
(�; hist; !A))� 1Q � Æ (� = 
(�; hist; !A)) ����+0�1� X�;�;
2[�;A�1℄ Pr!P [(x; 
; y) = (�; �; 
)℄1A= ����� 1A � 1Q �����Q�+ 1� X
2[�;A�1℄;�2[0;B�1℄;�=g
=I� 1AÆ (� = 
(�; hist; !A))= jQ�AjA + 1� QA � 2 jQ�AjA � 4�A < 4SBAThis proves that the real and simulated distributions are statisti
ally indistin-guishable if SB=A is negligible.We �nally explain the reason why the ma
hine M runs in expe
ted polynomialtime. Step 3 outputs a triplet (xi; 
i; yi) if 
(xi; hist; !A) = 
i. We have already proventhat Pry2[�;A�1℄;
2[0;B�1℄ �
 = 
(gy=I
; hist; !A)� = Q(A� �)�Band that A� 2� � Q � A so the probability of su

ess at step 3 is bounded beween1B �1� �=A1��=A� and 1B � 11��=A�. Sin
e SB=A is negligible, this probability is essen-tially 1=B and the expe
ted number of exe
utions of the loop is B. Consequently, the
omplexity of the simulation of the ` rounds is O(`�B).In 
on
lusion, if `SB=A is negligible and if ` and B are polynomial, the GPSproto
ol is statisti
ally zero-knowledge. utSin
e GPS is statisti
ally zero-knowledge, we know that intera
tions with a prover
annot help an atta
ker in our model. Consequently, the end of the se
urity proof ofGPS 
onsists in proving that, if the veri�er a

epts, then, with overwhelming prob-ability, the prover must know the dis
rete logarithm of I in base g. Intuitively, afterone 
ommitment x has been sent, if the prover 
an 
orre
tly answer with probability> 1=B, he must be able to answer to two di�erent 
hallenges 
 and 
0 with y and y0,smaller than A+ �, su
h that gy=I
 = x = gy0=I
0 . Let � = y � y0 and � = 
� 
0; weobtain g� = I� . The following lemma, where " is impli
itly assumed to depend on these
urity parameter k, turns those ideas in more formal terms:Lemma 4. Assume that some prover is a

epted for a publi
 key I with probability" > 1=B`. Then there exists an algorithm whi
h outputs� 2 [�(A+ �� 1); A + �� 1℄ and � 2 [1; B � 1℄ su
h that g� = I�with probability > 16� "�1=B`" �2. The expe
ted running time is < 2=" � T , where T isthe average running time of an exe
ution of the identi�
ation proto
ol.15



Proof. The proof of this lemma appears in appendix B. It is quite similar to theextra
tor of the S
hnorr s
heme [43℄.We now meet the main di�eren
e between the S
hnorr proof and GPS. If theorder of g were known and relatively prime with any integer in the range [1; B � 1℄,then, exa
tly as in the S
hnorr s
heme where g is of prime order ord(g) = q, it wouldbe very easy to re
over the se
ret s from the equation g� = I� , just by solving theequation � � s� = 0 mod ord(g). When the order of g is unknown, we 
annot solvethis equation. A 
onsequen
e is that GPS is not a proof of knowledge of a dis
retelogarithm be
ause logarithms 
annot be extra
ted from a

epted provers. However, we
an prove its se
urity in our model, assuming the sole intra
tability of 
omputing shortdis
rete logarithms in base g, modulo n. Let us �rst re
all a well known probabilisti
lemma (see for example [39℄) :Lemma 5 (Splitting Lemma). Let A � X � Y , su
h that Prx;y [A(x; y)℄ � ",and 
 = �a 2 X j Pry [A(a; y)℄ � "=2� then Prx [x 2 
℄ � "=2.Theorem 6 (Se
urity of GPS). Assume that an adversary (A1; A2) is su
h thatafter intera
tions between A1 and a prover, A2 is a

epted with non-negligible proba-bility by honest veri�ers. Further assume that ` and B are polynomial while `SB=Aand 1=B` are negligible, relatively to the se
urity parameter k. Then there exists analgorithm that solves the dis
rete logarithm with short exponent problem in expe
tedpolynomial time.Proof. The basi
 idea of the proof is to show that if an adversary 
an impersonatea prover, he 
an 
ompute dis
rete logarithms with short exponent in expe
ted poly-nomial time. We have already seen in lemma 4 that if a prover is a

epted with nonnegligible probability, he must know integers � and � su
h that g� = I� . Unfortu-nately, we 
annot immediately dedu
e the dis
rete logarithm of I in base g from thisequation sin
e we do not know the order of g. However, we show in this proof thatonly two situations are possible and that in those two 
ases we 
an �nally 
omputedis
rete logarithms.In the �rst 
ase, the exponents � are most of the time multiples of � so it iseasy to simplify the equation g� = I� and to 
ompute logg I. In the se
ond 
ase, we
onsider the opposite situation in whi
h � does not usually divide �; we 
an no longer
ompute logg I but, if we already know that I = gs0 , we learn that � � s0� is a non-zero multiple of the multipli
ative order of g. Then, this information �nally enablesto solve the dis
rete logarithm problem for values I 0 for whi
h we do not previouslyknow the logarithm. Some te
hni
al details are now provided.In the proof, we �x the group G and the base g; we 
onsider an adversary a

eptedwith probability �, where the probability is 
onsidered over the random tapes !K (for16



the 
hoi
e of the private key s), !A (for the atta
ker random 
hoi
es) and !V (forthe veri�er random 
hoi
es). We let I = fI = gs; s 2 [0; S � 1℄g the set of all publi
keys. Let I0 be su
h a key 
hosen in I. We now des
ribe an algorithm that uses theadversary (A1; A2) to 
ompute the dis
rete logarithm of I0 in base g.Noti
e that, in order to make the proof as simple as possible, we present a non-uniform algorithm for 
omputing dis
rete logarithms, i.e. an algorithm that dependson the probability of su

ess of the atta
ker. However, sin
e the a
tual value of thisprobability is not used but just allows to estimate the 
omplexity, it 
ould easily betransformed into a uniform algorithm, by just running in parallel all Turing ma
hinesdes
ribed below.Firstly, noti
e that the intera
tion between A1 and a real prover 
an be simulatedin expe
ted polynomial time as explained in theorem 2. Consequently, the informationtransmitted by A1 to A2 in our se
urity model 
an be output by a probabilisti
 Turingma
hine that does not know any se
ret. Furthermore, the program of this ma
hine
an even be in
luded in the program of A2.Then, in our se
urity model, the probability of su

ess � for an atta
ker isPrI2I;!A;!V [the adversary (A1; A2) is a

epted with the publi
 key I℄ = �The probability is taken over those random tapes and also over the publi
 keys so thatthe probability of su

ess 
an be mu
h smaller for some spe
i�
 keys. However, fora non-negligible part of the keys, the probability of su

ess is �not too small�. Moreformally, let I0 be the subset of the publi
 keys I su
h thatPr!A;!V [the adversary is a

epted with the publi
 key I℄ � �=2Lemma 5 proves that the probability for a publi
 key I to be in this subset I0 isgreater than �=2. Sin
e the probability of su

ess of the atta
ker � is non-negligiblewhile 1=B` is assumed to be negligible, we 
onsider large enough values of the se
urityparameter k for whi
h �=2 > 1=B`. In this 
ase we 
an use the result of lemma 4 thatshows the existen
e of a PptmM(I) whi
h outputs� 2 [�(A+ �� 1); A + �� 1℄ and � 2 [1; B � 1℄ su
h that g� = I�with probability " > (�=2 � 1=B`)2=(6(�=2)2), in time T 0 < 4=� � T .Thus, the probability that a publi
 key gs is in I0 and that M(I) outputs (�; �)su
h that g� = I� is larger than �=2� ".Prs2[0;S�1℄ [gs 2 I0 ^M(gs) outputs (�; �)℄ � �"2Two situations 
an o

ur depending on the probability for M(I) to output � and �su
h that � � s� = 0: 17



� First 
ase: if most of the time M(I) outputs (�; �) su
h that � � s� = 0, weimmediately obtain the dis
rete logarithm s = �=� that we are looking for,� Se
ond 
ase: on the 
ontrary, if M(I) outputs (�; �) su
h that � � s� 6= 0, weobtain a multiple of the multipli
ative order of g in G. Then this informationenables to solve equations su
h as �0 � x� 0 = 0 mod ord(g) and 
onsequently to
ompute dis
rete logarithms from the outputs ofM(I).First 
ase: if the probability that a publi
 key gs is in I0 and that the Pptm M(I)outputs (�; �) su
h that � � s� = 0 is greater than �"=4,Prs2[0;S�1℄ [gs 2 I0 ^M(gs) outputs (�; �) ^ � � s� = 0℄ � �"4we 
an immediately 
ompute the dis
rete logarithm of the target publi
 key I0 bymeans of the following algorithm:step 1. 
hoose r 2 [�(S � 1); S � 1℄,step 2. 
ompute I 0 = I0 � gr,step 3. runM on input I 0,step 4. if M(I 0) outputs (�; �) su
h that � divides �, �=� � r 2 [0; S � 1℄ andI0 = g�=��r , output logg I0 = �=� � r; otherwise restart at step 1.Noti
e that if I0 2 I and r 2 [�(S � 1); S � 1℄, the probability for I 0 to be in I is1/2. Furthermore, if I 0 2 I, it is uniformly distributed. Consequently, using the fa
twe are in the ��rst 
ase�, we obtain that this algorithm �nds logg I0 after about 8=(�")exe
utions of the loop on average. Ea
h loop 
alls M on
e so the expe
ted runningtime of this algorithm is O(T 0=(�")) = O(T=�2").Se
ond 
ase: we now 
onsider the 
ase whereM does not dire
tly output se
ret keys:Prs2[0;S�1℄ [gs 2 I0 ^M(gs) outputs (�; �) ^ � � s� 6= 0℄ � �"4The �rst step 
onsists in 
omputing a multiple of the multipli
ative order of g. Weuse the following algorithm:step 1. 
hoose s0 2 [0; S � 1℄,step 2. 
ompute I = gs0 ,step 3. runM on input I,step 4. ifM outputs (�; �) su
h that g� = I� and L0 = abs(�� s0�) 6= 0 output L0;otherwise restart at step 1.After an expe
ted running time O(T 0=(�")), we obtain L0 6= 0 su
h that gL0 = 1.Consequently, L0 is a multiple, smaller than A + �, of the order of g in G. We 
annow 
ompute dis
rete logarithm of I0 in base g using the following algorithm:18



step 1. 
hoose r 2 [�(S � 1); S � 1℄,step 2. 
ompute I 0 = I0 � gr,step 3. runM on input I 0,step 4. ifM does not output (�; �) s.t. g� = I 0� restart at step 1; otherwise output(�; �).We obtain I 0, � and � su
h that I 0� = g� . In order to �nd the dis
rete logarithmof I 0, we solve the equation � � �x = 0 mod L0. Let d = g
d(�; L0); sin
e �=d andL0=d are relatively prime, the equation (�=d) � (�=d) � x = 0 mod L0=d has exa
tlyone solution x0 mod L0=d,x0 = (�=d) � (�=d)�1 mod L0=dWe now 
onsider the equation � � � � x = 0 modulo L0 and not only modulo L0=d.As a 
onsequen
e, we 
an write x = x0 + i � L0=d mod L0 with i 2 [0; d � 1℄. Thesolution x su
h that I 0 = gx 
an �nally be found among those d solutions. We 
an of
ourse use exhaustive sear
h sin
e d < � < B but a Baby-step Giant-step algorithmallows to �nd the solution in time O(pB).In 
on
lusion, in time O(T 0=(�") +pB) we obtain s0 su
h that I0 = gs0 . A �nalproblem is that s0 may not be in the range [0; S � 1℄; we now des
ribe an iterativealgorithm that �nally outputs a short dis
rete logarithm in this range.If the probability over s 2 [0; S � 1℄ that M(gs) outputs (�; �) and that thepreviously des
ribed algorithm 
omputes exa
tly s is larger that �"=4, we obtains0 2 [0; S � 1℄ in time O(T 0=(�") + B). Otherwise, we 
an run the algorithm withI = gs and we obtain s0 su
h that gs = I = gs0 but s 6= s0. Consequently L0 and(s� s0) mod L0 are multiples of the order of gso L00 = g
d(L0; (s� s0) mod L0) is alsosu
h a multiple but L00 � L0=2. We obtain a new value for L0 and we restart thepro
edure. When the size of L0 de
reases, we are �nally able to 
ompute the dis
retelogarithm of I0 in the range [0; S� 1℄. The re
ursive step is repeated less than jA+�jtimes be
ause jA + �j is the size of the �rst value of L0. Finally, the expe
ted time
omplexity of this algorithm is O(jA+ �j(T 0=(�") +pB)).If � is non-negligible and 1=B` is negligible, for in�nitely many values of k, 1=B` <�=4. Consequently, the probability of su

ess of the PptmM of lemma 4 is" > 16��=2� 1=B`�=2 �2 > 1=24and its expe
ted running time T 0 is less than 4=�� T . Finally, if B is polynomial, weobtain an expe
ted polynomial time algorithm to 
ompute dis
rete logarithms in baseg, in the range [0; S � 1℄. ut19



4 Se
urity analysis of the GPS signature S
hemeAs explained in se
tion 2.3, the GPS identi�
ation s
heme is turned into a signatures
heme by following the te
hnique originally proposed by Fiat and Shamir [18℄: 
hal-lenges 
 are no longer randomly 
hosen by a veri�er but 
omputed by means of ahash fun
tion h with output range [0; B � 1℄. In order to avoid the parallel exe
u-tion of a super-logarithmi
 number of rounds, we need to in
rease the bound B to besuper-polynomial.In order to prove the se
urity of the GPS signature s
heme, des
ribed in se
tion 2.3,we 
an show that, if an atta
ker is able to forge valid signatures after having obtainedsignatures of messages of his 
hoi
e, then we 
an use it to 
ompute the se
ret keyand 
onsequently to solve the dis
rete logarithm with short exponent problem. Therandom ora
le model [3℄ is used to simulate the behavior of the hash fun
tion so thatthe proof only validates the overall design.The GPS signature s
heme uses a 
ryptographi
ally se
ure hash fun
tion. Ideally,a se
urity proof should only be based on some intra
tability assumption su
h as theimpossibility to �nd 
ollisions. However, in order to obtain se
urity arguments, weneed to simulate the hash fun
tion as a random fun
tion, following the initial idea ofBellare and Rogaway [3, 18℄. In this model, the hash fun
tion is not 
onsidered as adeterministi
 publi
 fun
tion but it is modeled by an ora
le that randomly answersthe queries. The only limitation is that this ora
le provides the same answer if thesame query is asked twi
e.The use of the random ora
le model is known to be a good engineering prin
iplewhen it is not possible to provide proofs without su
h an additional assumption. Thisapproa
h validates the design of the s
heme even if we must be 
areful with this modelas shown by Canetti et al. [8℄.A generi
 result due to Abdalla et al. [1℄ shows that the use of the Fiat-Shamirparadigm to transform an identi�
ation s
heme se
ure against passive atta
ks intoa signature s
heme leads to a se
ure signature s
heme sin
e even existential forgeryunder adaptive 
hosen message atta
k is impossible (see [31, 1℄ for standard de�nitionof se
urity of digital signature s
hemes). Consequently, the only property we need toprove is that the GPS identi�
ation s
heme remains zero-knowledge if the bound Bis in
reased to be super-polynomial but in a setting where the veri�er is honest, i.e.randomly 
hooses the 
hallenges in the range [0; B � 1℄. Going through the proof oftheorem 2, we see that the simulation requires B to be polynomial. This is a well knownrestri
tion for zero-knowledge and appears in the S
hnorr s
heme as well. However,we 
an noti
e that if the veri�er is honest the simulation 
omplexity is only O(`).Theorem 7. Under the dis
rete logarithm with short exponent assumption, if SB=Aand 1=B are negligible, the GPS signature s
heme is existentially unforgeable underadaptive 
hosen message atta
ks in the random ora
le model.20



5 Appli
ationsThis se
tion is more pra
ti
al in 
hara
ter: we dis
uss how to 
hoose se
ure parametersin order to resist the known atta
ks against fa
torization and the dis
rete logarithmproblem. Then we explain how to optimize size of the data and, �nally, report on theperforman
e of a smart 
ard appli
ation.5.1 Choi
e of the underlying mathemati
al stru
tureLet us �rst fo
us on the group G and the base g. We already proposed in the des
riptionof GPS several possible options. We now 
larify the pra
ti
al 
hoi
e of the parametersfor the �rst two options:� G = Z�p with p a prime number s.t. p�1 has a large prime fa
tor q; the order of thebase g should be q and the size of q should be larger than 160 bits. The dis
retelogarithm problem modulo a prime integer seems 
urrently intra
table if the sizeof the modulus is larger than 1536 bits. For more se
ure appli
ations, jpj = 2048may be appropriate; we refer to spe
i�
 overviews su
h as [33℄ for a more pre
iseanalysis.� G = Z�n with n an RSA modulus, i.e. a 
omposite integer with two prime fa
torswith almost the same size. The use of a 1536-bit modulus seems adequate toguarantee a high level of se
urity based on the intra
tability of fa
torization forthe next years. Then g 
an be randomly 
hosen. In pra
ti
e, we advise the use ofmodulus n whi
h is the produ
t of two strong primes, i.e. primes p s.t. (p�1)=2 isalso prime, in order to avoid partial Pohlig-Hellman atta
ks [45℄. We also advisethe use of the base g = 2 for e�
ien
y reasons.The se
urity is related to the 
hoi
e of G, g and S in su
h a way that 
omputingdis
rete logarithms in base g is intra
table, even if those exponents are in the range[0; S � 1℄. Sin
e dis
rete logarithms 
an be 
omputed in O(pS) using Pollard rhoalgorithm or Shanks baby-step giant-step algorithm, S should be at least equal to 2160and preferably to 2256 for a high level of se
urity.Then, the 
hoi
e of the size of B is related to the probability of impersonation ofan adversary. The expe
ted se
urity depends on the appli
ation and B = 232 with` = 1, i.e. using just one elementary round, would probably be large enough for manyidenti�
ation systems sin
e it guarantees that an adversary 
annot impersonate a userwith probability larger than 1=232. For signature appli
ations, the use of a standardhash fun
tion su
h as SHA-256 [35℄ (B = 2256) 
an be advised.Finally, the parameter A must be s.t. A=SB is �large� in order to guarantee thestatisti
al zero-knowledge property. We advise to take A = S �B � 280.21



5.2 Optimization of 
ouponsIn order to de
rease the number of 
ommuni
ation bits, Fiat and Shamir [18℄ havesuggested to send a hash value of the 
ommitment issued at the �rst step of theidenti�
ation. This tri
k 
an be used with our s
heme. Let h0 be a hash fun
tion andjh0j be the size of its output. The modi�
ations are very simple: the 
ommitmentx is repla
ed in the proto
ol by x0 = h0(x) and the veri�
ation equation be
omesx0 = h0(gy=I
).Using the notion of t-
ollision-free hash fun
tions, i.e. fun
tions su
h that it isinfeasible to �nd t distin
t values with the same image, Girault and Stern [28℄ havepre
isely analyzed the 
onsequen
es of su
h a modi�
ation on the se
urity of identi�-
ation s
hemes. This result 
an still be improved [23℄ if we 
onsider that an atta
ker
annot perform more than a �xed number of on-line operations during the authenti-
ation pro
ess. In this setting, if we want a se
urity level of 32 bits, we 
an 
hoosejh0j = 50 bits only.Finally, we have already observed that the 
ommitments 
an be 
omputed o�-line, by the individual devi
e or by an authority. In fa
t, we just have to 
ompute andto keep in memory pairs of the form (r; h0(gr)). Noti
e that the 
omputation of theexponentiation 
an use the Chinese remainder theorem, in order to be more e�
ient,when the fa
torization of the modulus is known.Memory spa
e 
an be saved if the random values r are not stored but generatedwhen needed by a pseudo-random generator. This �nally leads to store the seed of thegenerator and the 
ommitments, i.e. about only 6 bytes per authenti
ation using [23℄
ommitment hashing te
hnique.5.3 Performan
eAn implementation of GPS on a PC shows the very high pra
ti
al e�
ien
y of thiss
heme for identi�
ation and signature appli
ations.Parameters(see se
tions 2.2 for notations) G = Z�n with jnj = 1536 (n = p� q)jSj = 2� 80 = 160, ` = 1jBj = 35, jAj = jSj+ jBj+ 80 = 275Parameters generation � 1 sComputation of 
ommitment x 10.1 ms (5940 per minute)Computation of answer y < 1 �sVeri�
ation 11.8 ms (5084 per minute)Fig. 3. Implementation of GPS in C using GMP library on a PC PIII 450 MHzFigure 3 shows the performan
es obtained with a Pentium III 450 MHz pro
essorand a C program using the GMP multipre
ision arithmeti
 library [29℄.22



The publi
 parameters and key generation needs about one se
ond but this oper-ation does not happen very often. The 
omputation of 
ommitments or of 
ouponsjust 
onsists in 
omputing an exponentiation. The veri�
ation is a similar operation.We see that we 
an perform a few thousands of su
h operation by minute with asimple PC. Note that the 
omputation of the answer is so easy that we 
annot reallymeasure it. Also note that veri�
ation 
an be server-aided and made as e�
ient asGuillou-Quisquater veri�
ation [27℄.5.4 Smart 
ard appli
ationIn order to show to what extent 
omputations are minimal and transmissions veryshort, we now present an appli
ation we have implemented on a low 
ost smart 
ardbased on a 6805 
hip. The size of the program is very small, about 300 bytes. Wesee in �gure 4 that the running time of the 
omputation is very short and a
tuallymost of the time needed for an authenti
ation is taken by the 
ommuni
ation proto
olbetween the 
ard and the 
omputer. Noti
e that, for signature, we would have to takeinto a

ount the 
omputation time of the hash fun
tion; this would probably be thebottlene
k of many very fast appli
ations. In 
on
lusion, this demonstrates that thes
heme under study is really suitable for very fast �on the �y� appli
ations.Parameters(see se
tions 2.2 for notations) G = Z�n with jnj = 1536jSj = 2� 80 = 160, ` = 1jBj = 35, jAj = jSj+ jBj+ 80 = 275Size of a 
oupon (= jh0j) 50 bitsNumber of 
oupons in 4 KBytes 655Running time at 3.57 MHz < 2 msAmount of 
ommuni
ation 45 bytesRunning time at 9600 bauds 38 msat 115000 bauds 3.1 msTotal running timeat 9600 bauds � 40 msat 115000 bauds � 5 msFig. 4. Implementation of GPS on low 
ost smart 
ardA
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tion from G to [0; B� 1℄ and I 2 fgs; s 2 [0; S � 1℄g then thetotal number N of solutions (
; y) 2 [0; B�1℄� [�;A�1℄ of the equation 
 = f(gy=I
)satis�es A� 2� � N � A.Let f be any fun
tion from G to [0; B � 1℄. We �rst noti
e that, sin
e I = gs, iff(gy=I
) = 
 then f(gy+ks=I
+k) = 
 so f(gy+ks=I
+k) 6= 
 + k for any k 6= 0 su
hthat 
+ k 2 [0; B � 1℄. 25



We de�ne the following sets of pairs (
; y):PX = f(
;X + 
s) su
h that 
 2 [0; B � 1℄ and X + 
s 2 [�;A� 1℄gThose subsets have many properties that are summarized below:(1) 8X 6= X 0 PX \ PX0 = ;proof: if (
; y) 2 PX \ PX0 , y = X + 
s and y = X 0 + 
s so X = X 0.(2) SX2ZPX = [0; B � 1℄� [�;A� 1℄proof: for any pair (
; y) 2 [0; B � 1℄� [�;A� 1℄, (
; y) 2 Py�
s.(3) if X < �� s(B � 1), PX is emptyproof: if X < �� s(B � 1), 8
 2 [0; B � 1℄ X + 
s < �.(4) if X � A, PX is emptyproof: if X � A, 8
 2 [0; B � 1℄ X + 
s � A.(5) 
ard(PX) = B , X � � and X < A� s(B � 1)proof: obvious sin
e X + 
s 2 [�;A� 1℄ for all 
 2 [0; B � 1℄.(6) 8X 2 Z 8(
; y) 2 PX 8(
0; y0) 2 PX f(gy=I
) = f(gy0=I
0)proof: this is obvious sin
e gy=I
 = gy0=I
0 .(7) for any X 2 Z, there is at most one pair (
; y) 2 PX su
h that f(gy=I
) = 
proof: this is an immediate 
onsequen
e of property (6) be
ause all the pairs (
; y)in a set PX have di�erent values of 
.(8) for any X su
h that 
ard(PX) = B, there is exa
tly one pair (
; y) 2 PX su
h thatf(gy=I
) = 
proof: a pair (
; y) su
h that f(gy=I
) = 
 is given by (f(gX);X + f(gX) � s).Uniqueness follows from property (7).Consequently, the total number N of solutions of the equation 
 = f(gy=I
) isupper bounded by the number of non-empty sets PX , this is a 
onsequen
e of prop-erty (7), and lower bounded by the number of sets PX with exa
tly B pairs, this is a
onsequen
e of property (8). Using properties (3), (4) and (5), we obtain that N liesbetween A� 2� and A in the following way:A� 2� � A� �� (B � 1)s � N � A� �+ (B � 1)s � AB Proof of lemma 4Assume that a prover A2 running on random tape !A, is a

epted with probability" = 1=B`+"0 for a publi
 key I. We write Su

(!A; 
1; :::
`) 2 ftrue; falseg the result(su

essful of not) of the identi�
ation of A2(!A) when su

essive 
hallenges 
1; :::
`are used. Pr!A;
1;:::
` [Su

(!A; 
1; :::
`)℄ = " = 1=B` + "026



We 
onsider the following algorithm (inspired from [43℄):step 1. Pi
k a random tape !A and a tuple 
 of ` integers 
1; :::
` in [0; B � 1℄ untilSu

(!A; 
). Let u be the number of probes.step 2. Probe up to u random `-tuples 
0 di�erent from 
 until Su

(!A; 
0). If afterthe u probes a su

essful 
0 is not found, the algorithm fails.step 3. Let j be the �rst index su
h that 
j 6= 
j 0; we note yj and yj 0 the related
orre
t answers of A2. If 
j > 
j 0, the algorithm outputs � = yj � yj 0 and � = 
j � 
j 0and otherwise it outputs � = yj 0 � yj and � = 
j 0 � 
j .If this algorithm does not fail, the prover is able to 
orre
tly answer two 
hallenges
j and 
j 0 given the same 
ommitment xj , with the answers yj and yj 0. This meansthat gyj=I
j = x = gyj 0=I
j 0 so g� = I� . Furthermore, � 2 [�(A+ �� 1); A + �� 1℄and � 2 [1; B � 1℄.We now analyze the 
omplexity of the algorithm. By assumption, the probabilityof su

ess of A2 is ", so the �rst step �nds !A and 
 with this probability. Theexpe
ted number E of repetitions is 1=" and the number u of probes is equal to Nwith probability "� (1� ")N�1.Let 
 be the set of random tapes !A su
h that Pr
 [Su

(!A; 
)℄ � " � "0=2 =1=B` + "0=2. The probability for the random tape !A found in step 1 to be in 
,
onditioned by the knowledge that Su

(!A; 
) = true, 
an be lower bounded in thefollowing way:Pr!A;
 [!A 2 
jSu

(!A; 
)℄ = 1� Pr!A;
 [!A 62 
jSu

(!A; 
)℄= 1� Pr!A;
 [Su

(!A; 
)j!A 62 
℄� Pr!A;
 [!A 62 
℄Pr!A;
 [Su

(!A; 
)℄ � 1�� 1B` + "02�� 1" = "02� "Thus, with probability > "0=(2"), the random tape !A is in 
 and, in this 
ase,by de�nition of the set 
, the 
onditional probability for a tuple of 
hallenges 
0 6= 
to lead to su

ess is � "0=2. The probability to obtain su
h a tuple 
0 after less thanN probes is � 1� (1� "0=2)N .Therefore, the probability to obtain a random tape !A in 
 and to �nd an appro-priate 
0 is greater than"02" � +1XN=1 "� (1� ")N�1 � "1��1� "02 �N#= "02  +1XN=0(1� ")N ��1� "02 � +1XN=0 �(1� ")�1� "02��N!= "02  1" � 1� "02"+ "02 � "� "02 ! = "024"2 � 11 + "02" � "02 = "024"2 � 23� � 1B`�" + "0�27



Sin
e " > 1=B` and 1 > "0 > 0, we obtain 0 < 1=(B`�")+"0 < 2 so 23�� 1B`�"+"0� > 23 .In 
on
lusion, the algorithm �nds (�; �) with probability > "02=(6"2) and the totalexpe
ted number of exe
utions of the proto
ol between the prover and a veri�er issmaller than 2=". ut
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