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Abstract. In response to the current need for fast, secure and cheap public-key cryp-
tography, we propose an interactive zero-knowledge identification scheme and a derived
signature scheme that combine provable security based on the problem of computing
discrete logarithms in any group, short keys, very short transmission and minimal on-
line computation. This leads to both efficient and secure applications well suited to
implementation on low cost smart cards.

We introduce GPS, a Schnorr-like scheme that does not require knowledge of the order
of the group nor of the group element. As a consequence, it can be used with most
cryptographic group structures, including those of unknown order. Furthermore, the
computation of the prover’s response is done over the integers, hence can be done with
very limited computational capabilities. This paper provides complete security proofs
of the identification scheme. From a practical point of view, the possible range of pa-
rameters is discussed and a report on the performances of an actual implementation on
a cheap smart card is included: a complete and secure authentication can be performed
in less than 20 milliseconds with low cost equipment.

Key words. Identification scheme, digital signature, discrete logarithm problem, min-
imal on-line computation, low cost smart cards.

1 Introduction

The rapid world-wide development of electronic transactions stimulates a strong de-
mand for fast, secure and cheap public-key cryptography. Besides confidentiality, cryp-
tographers need to solve two important problems: authentication and providing digital
signatures or, in plain words, how to prove one’s identity and how to digitally sign a
document. Several proposals have addressed those questions, putting forward elegant
solutions, many of them based on the concept of zero-knowledge introduced in 1985
by Goldwasser, Micali and Rackoff [30].

In order to assess the performances of proposed schemes, three main properties
have to be considered. The most important concern is, of course, security. Obviously,



a system can be supported by the claim that nobody has been able to jeopardize it
so far. This is of course important but, in many applications, it is not a satisfactory
enough guarantee. A much better paradigm tries to prove security in a mathematical
sense, i.e. to establish theorems claiming that illegal actions such as impersonation are
as difficult as solving a specific problem, whose difficulty is well-established. Among
these problems are integer factorization, or the computation of discrete logarithms in
a finite group. Half way between heuristic validation and formal proofs are proofs in
a model where concrete objects are replaced by some ideal substitutes: applying this
paradigm to hash functions yields the so-called random oracle model described by
Bellare and Rogaway in [3]. Although this approach may not be considered as offering
absolute proofs of security for cryptographic schemes, it provides a strong guarantee
that their general design is not flawed.

Next, the size of the data involved in the scheme is of crucial practical significance.
We usually need short public and private keys, mainly when they have to be stored in
portable devices like chip cards, which may have small storage capabilities. We also
want to reduce the amount of transmissions and the length of the signatures. The
latter is an important parameter in applications for which many signatures have to
be stored (e.g. electronic commerce) or transmitted (e.g. pay TV).

Another key property is the time complexity, since it directly controls the cost
of the devices on which a scheme may be implemented. Here, we have to distinguish
between precomputations that can be performed off-line and stored in memory, and
calculations that have to be done on-line during authentication or signature compu-
tation. The latter is often the bottleneck of many applications, especially when smart
cards are used. Naccache et al. [34] proposed to precompute use & throw coupons
in order to make the DSA signature process much more efficient. However this at-
tempt for designing on the fly signature schemes is not optimal since it still requires a
modular multiplication. Another approach is much more general in character: Even,
Goldreich and Micali [15] proposed the concept of on-line/off-line digital signature
and described a construction to transform any signature scheme in such a way that
most of the computations can be done off-line. This was further improved by Shamir
and Tauman [44].

In this paper, we study an interactive zero-knowledge identification scheme, called
GPS for short, and a derived signature scheme. They combine provable security based
on the discrete logarithm problem over an arbitrary finite group, short keys, short
transmissions and signature size and minimal on-line computation.

The coupon-based signature algorithm GPS allows to implement public-key sig-
nature or identification schemes on low cost smart cards, without crypto-processor.
Another promising application is the implementation of such schemes on contactless
smart cards. Such cards just look like credit cards but they have an electronic mi-
crochip and an embedded antenna. These components allow the card to communicate
with an antenna/coupler unit without any physical contact. Contactless cards are the



ideal solution when transactions must be processed very quickly, as in mass-transit
or toll collection but, since the power supply comes from electromagnetic induction,
heavy-consumption crypto-processors hardly can be used.

A typical application of GPS is “on the fly” authentication at a toll. The basic idea
is to equip each authorized car with a low cost contactless smart card. When a car
goes through a toll, it does not have to stop but just performs a GPS authentication in
order to prove that it is a legitimate user. In such an application, the time allowed to
transmit data and to perform on-line calculations is very short, about 100 milliseconds.

The main feature of GPS is to use public key cryptography in this setting (very
short authentication time and low cost devices), thus achieving a high level of security.
Furthermore, in such an independent application that does not require interoperability
with other systems, the coupons can be computed and stored in the card by the
authority who also acts as a verifier.

Notice that symmetric cryptography could also be used to solve this problem
efficiently. But the advantage of using public key cryptography is that no secret master
key has to be stored by the verifier (here the toll). Consequently, the system is much
more secure against piracy.

Earlier announcements. The GPS scheme was first proposed by Girault at Euro-
crypt ‘91 [22] as an example of a scheme with self-certified public keys but without
security analysis. Then, the main results of this paper appeared in a preliminary ver-
sion at Eurocrypt '98 [40]. The main technical differences are a more precise security
model and a complete proof of security. Many technicalities have been streamlined
and we only assume the intractability of computing discrete logarithms with short
exponents.

The GPS scheme has been submitted to the European NESSIE project and la-
belled by this project as a strong cryptographic primitive [12]|. Various modes of use
are described in [26]. Finally, the GPS identification scheme has been standardized by
ISO/IEC (International Organization for Standardization/ International Electrotech-
nical Commission) [32], while the signature scheme is currently at an earlier stage.

Paper organization. In this paper, we show that GPS achieves a combination of the
strongest properties that one can demand in authentication applications. In section 2
we first recall the Schnorr scheme and several of its variants. Then we describe the GPS
identification scheme and we recall how it can be turned into a signature scheme. In
section 3, we develop our security model for identification, and we study the security of
the GPS identification scheme. We prove that GPS is secure against active adversaries
provided the so-called discrete logarithm with short exponents problem is hard. In
section 4, we establish the security of the derived signature scheme using the random
oracle model in order to validate the proposed design. The last section is more practical



in character: we discuss how to choose secure parameters in order to resist the known
attacks against factorization and the discrete logarithm problem. Then we explain
how to optimize size of the data and, finally, report on the performances of a smart
card application.

2 Description of GPS

2.1 Identification schemes based on the discrete logarithm problem

In 1989, C. Schnorr [42] proposed a nice proof of knowledge of a discrete logarithm
in groups of known prime order. This proof is a more efficient version of previous
proposals of Chaum et al. [11,10] and Beth [4]. Such a proof can be used as an iden-
tification scheme, and also converted into a signature scheme using the Fiat-Shamir
paradigm [18]. In these schemes, the size of the data is short, and the computation
load is quite acceptable.

Towards a more precise description, we let p be a prime number. We denote by Z;
the set of invertible elements modulo p. Let ¢ be a large prime divisor of p — 1 and ¢
an element of Zj of order g, i.e. such that g? = 1 mod p but g # 1. The prover knows
a secret element s in Z, and he wants to prove that he knows the discrete logarithm
of I = ¢7® mod p in base g. We first notice that any verifier can immediately check
that p is prime, ¢ is a prime divisor of p — 1, ¢ is of order ¢ and that I belongs to
the subgroup of Z; generated by g. This last verification just consists in checking that
1?7 =1 mod p.

In order to prove knowledge of s, the prover first generates r € Z; at random
and sends the commitment = ¢" mod p to the verifier who answers a challenge
¢ randomly chosen in the interval [0, B — 1], where B is a publicly known system
parameter. Next, the prover computes y = r 4+ sc mod ¢ and sends y to the verifier
who checks the equation x = ¢YI° mod p. This elementary round can be repeated
sequentially; we denote by £ the number of repetitions.

The security analysis of the scheme shows that a prover accepted with probability
substantially greater than 1/Bl must know the discrete logarithm of I, i.e. the secret s;
the proof is sound. Furthermore, even a dishonest verifier cannot learn any additional
information about the secret, whatever the number of authentications may be, if B
and £ are polynomial in a security parameter, i.e. asymptotically “not too large”; the
proof is perfectly zero-knowledge.

Many modifications of the Schnorr scheme, that achieve additional properties, have
been proposed. Firstly, one can use a composite modulus instead of a prime modulus
and keep the factorization of the modulus secret. As a consequence, the order of the
multiplicative group in which the computations are performed may remain secret.

Furthermore, the order of the publicly known base g can also be public or private.
In the Schnorr scheme, both the order p — 1 of the group and the order ¢ of g are



known. We will see that in the GPS scheme, both of those parameters can remain
unknown to provers and verifiers. Other schemes, classified in figure 1, achieve different
combinations. We now briefly review those protocols.

Order of the multiplicative group

KNOWN UNKNOWN
Chaum, Evertse, van de Graaf

Order of g and Peralta [11,10], Girault [21],

KNOWN Beth [4], Schnorr [42], Biham and Shulman [6]
Okamoto [36]
Order of g . GPS [22, 40], RDSA [5]
Brickell and McCurley [7]

UNKNOWN Poupard and Stern [41]

Fig. 1. Discrete logarithm related schemes classified according to the need for the order of the group
and/or of the base g to be known by provers and verifiers

The Okamoto scheme. The Schnorr scheme is known to be perfectly zero-knowledge
if the parameters B and £ remain polynomial in a security parameter. The one-round
(¢ = 1) variant remains sound if B is super-polynomial, but, as a consequence, this
variant is perfectly zero-knowledge only w.r.t a honest verifier, i.e. a verifier who ran-
domly chooses the challenges. However it is unknown how to prove the zero-knowledge
property if the verifier can bias the distribution of his challenges. This means that,
for large challenges, we can only prove the security of Schnorr identification against
passive adversaries who just observe regular authentications. Exactly the same remark
applies to the GPS scheme.

A solution proposed by Okamoto [36] consists in using two bases g1 and gs and to
prove the knowledge of a “representation” (s1,s2) such that I = gi'g¢5?> mod p. While
this protocol is not proven to be zero-knowledge, it nonetheless is witness indistin-
guishable [17]. As a consequence, provided the computation of the discrete logarithm
of g1 in base go modulo p is intractable, the scheme is provably secure against active
adversaries, even for large challenges (note that so is GPS, as explained in section 3).

The Brickell-McCurley scheme. In the protocol proposed in |7], the computations
are still done modulo a prime number p but instead of using a base g of publicly known
prime order ¢, the parameters are chosen such that p — 1 is divisible by the product
q X w of two secret prime numbers. The rest of the scheme is similar to the Schnorr
protocol; it uses a base g of order ¢ but the answer y is equal to r + scmod p — 1
in order not to reveal information about ¢g. The main advantage of this variant is to



base the security on the intractability of the discrete logarithm problem modulo p or
on the factorization of p — 1. This means that it is secure if at least one of those two
problems is difficult.

The Girault scheme. The idea of [21] is to choose a composite modulus n =
(2fp+1) x (2fq+ 1) where 2fp+ 1, 2fq+ 1, p, g and f are prime. The integer f is
public, the base g has order f and the answer y is computed modulo f. A public key
of a prover of identity ID is obtained with the formula I = IDl/egs mod n where the
e-th root of ID is computed by an authority who knows the factorization of n and s
is a secret key chosen by the prover. In this setting, an identification, in spirit, is a
Schnorr proof of knowledge of the discrete logarithm (e x s) of I¢/ID mod n in base g.

The GPS scheme. A way of improving the Schnorr protocol efficiency is to get rid
of modular reductions during identification or signature. Exponentiation modulo p
can be performed off-line by the user’s device or precomputed by an authority in a
use & throw coupons [34] setting. Therefore, in order to further reduce the on-line
computation to a very simple operation, it is natural to eliminate the second modulus
q by performing the operations y = r+sc in Z. This has first been proposed by Girault
in [22] and the security analysis of this protocol is precisely the subject of the present
paper in a more general setting. Note that in [24], the on-line operation is reduced to
a single, but much longer, addition.

Other schemes. A variant of GPS, called RDSA, has been proposed in [5] and
analyzed in [19]. We can also note that the scheme described in [41] is based on the
intractability of the factorization problem, but it can be seen as a proof of knowledge
of discrete logarithm where the order of the group and the order of the base are
secrets owned by the prover. More recently, another factorization-based scheme has
been proposed, in which the key pair is a RSA key pair [25].

2.2 GPS identification scheme

We now describe precisely the GPS identification scheme. The security analysis ap-
pears in the next section.

Choice of the underlying mathematical structure. The GPS identification
scheme is defined on a generic group G and uses a specific element, namely the base
g € G. In the theoretical security analysis of the next section, we only assume the in-
tractability of computing discrete logarithms in the group G, in base g, for exponents
in the range [0, S — 1] where S is a public parameter of the scheme.



More precisely, we assume the existence of a randomized algorithm PP(wpy,, k)
that generates public parameters G and g according to a security parameter k using
a random tape wpp.

In practice, several mathematical structures can be used; the most interesting
choices for G are listed below:

— G =7, with p a prime number s.t. p — 1 has a large prime factor g; the order of
the base g should be q. We obtain a variant of the Schnorr identification scheme
in which on-line computation is twice as fast for the same security.

— the set G = Zj; of invertible elements modulo an RSA modulus n, i.e. a composite
integer with typically two prime factors of almost the same size. Note that the
factors of n are no longer required so they can be discarded after the generation
of n. Then g can be randomly chosen. However, the generation of n and g must
be done by a trusted party since the computation of “short” exponents, typically
of 160 bits, can be done very easily using partial Pohlig-Hellman techniques [45]
if the order of ¢ is known and if it has many small prime factors. In practice, we
advise the use of modulus n which is the product of two strong primes, i.e. primes
p s.t. (p—1)/2 is also prime. We also advise the use of the base g = 2 for efficiency
reasons.

— G can also be derived from an elliptic curve. Analogs of GPS in the elliptic curve
setting can be defined in a straightforward manner; see for example [13].

— Much more sophisticated mathematical structures can also be used; the only con-
straint is the intractability of the discrete logarithm with short exponent problem
is such groups. An example of such an approach is proposed in [5].

Other public parameters. Besides the upper bound S for the secret keys, additional
parameters of the GPS scheme are the number £ of elementary rounds and two integer
bounds A and B, defined below. The relations between those parameters are analyzed
in section 3. We just summarize some facts about these parameters in order to make
their meaning more explicit:

~ the probability of impersonation is 1/BY,

— the computation of discrete logarithms in base ¢ in the group G must be intractable
for exponents in the interval [0,S — 1],

— A must be significantly larger than S x B since it defines the size of some random
data used to mask the secret.

Public/private keys. The private keys s are integers chosen in the range [0, S — 1]
and the related public keys I are computed in the group G by the relation I = ¢°.

Protocol (see figure 2). We let & = (B — 1)(S — 1). A round of identification
consists for the prover in randomly choosing an integer r in [0, A — 1], and computing



the commitment x = ¢g". Next, he sends x to the verifier, who answers a challenge ¢
randomly chosen in [0, B—1]. The prover checks ¢ € [0, B—1] and computes the integer
y =r+cx s. He sends y to the verifier who checks ¢ =z x I®and y € [0, A+ P —1].

A complete identification consists in repeating # times the elementary round. The
theoretical analysis shows that £ should be super-logarithmic in the security parameter
in order to be able to prove the security of the scheme against active adversaries, as
in the Schnorr scheme. However, in many practical applications, £ will often be equal
to £ =1.

Parameters: £, A, B and S integers

g an element of a multiplicative group G
Secret key: s € [0,S — 1]
Public key: I = g¢°

Verifier

Repeat £ times
choose r in [0, A — 1]

r z \
=g N
check ¢ € [0, B — 1] € choose ¢ in [0, B — 1]
y=r-+cxs Y > checkgy;xxfcand

ye0,A+(B-1)x(S—-1)—1]

Fig. 2. GPS identification scheme

As usual in this kind of scheme, many straightforward variants can be designed,
such as choosing I = ¢7% and/or y = r — ¢ X s, with some trivial impact on the rest
of the protocol.

2.3 GPS signature scheme

We can turn the identification scheme into a signature scheme by following the tech-
nique originally proposed by Fiat and Shamir [18], and used by Schnorr [42] and
many others: challenges ¢ are no longer randomly chosen by a verifier but computed
by means of a hash function h with output range [0, B — 1], with B larger than in the
identification scheme.

The signature of a message m is computed by taking a random r in [0, A — 1] and
computing z = ¢", ¢ = h(m,z) and y = r + ¢s. This produces the signature (z,c,y)
that may be checked by anybody using the equations ¢ = h(m,z), y € [0, A+ (B —
1) x (S—=1)—1] and g¥ = zI°.



Furthermore, well known optimizations, described in section 5.2, such as reducing
the signature to the pair (c¢,y) can be applied. This leads to the following signature
scheme:

Input:

— public parameters (G, g, A, B, S)

— hash function A(.), with output range [0, B — 1]
— signer’s private key s

— message encoded as an integer m

Operations: signature (c, y) shall be computed by the following sequence of steps:

Randomly generate an integer r from the range [0, A — 1].
Compute z = g¢".

Compute ¢ = h(m, z).

Compute y =r + ¢ X s.

Output (¢, y).

Ol o=

A signature is verified using the following scheme:
Input:

— public parameters (G, g, S, A, B)

— hash functions h(.)

signer’s public key [

— message encoded as an integer m

— signature to be verified (¢, y), a pair of integers

Output: “valid” if m and (¢, y) are consistent given the public key; “invalid” otherwise

Operations: output shall be computed by the following sequence of steps:

1. If cisnot in [0, B — 1] or y is not in [0, A+ (B — 1) x (S — 1) — 1] output “invalid”
and stop.

2. Compute 2’ = g¥/I°.

Compute ¢ = h(m,z').

4. If ¢ = ¢ then output “valid” else output “invalid”.

w

3 Security analysis of the GPS identification scheme

The aim of this section is to formally prove the security of the GPS identification
scheme. We first define the security model we use. Next, in order to prove the security
of the GPS protocol against active adversaries, we follow the approach of Feige, Fiat
and Shamir [16], proving completeness, zero-knowledge and soundness.

Another strategy to demonstrate the security against active adversaries is to prove
that GPS is witness indistinguishable [17]. In [38], Pointcheval proved that the GPS
scheme enjoys this property for some specific group G and base g € G.



3.1 Security model

By means of an identification scheme a prover convinces a verifier of his identity.
Both the prover and the verifier are modeled as probabilistic polynomial time Turing
machines (PPTM). They have a special tape, denoted w, initially filled with randomly
and uniformally chosen bits. They also have additional tapes where they can read
and/or write the messages that they exchange. See [30] for a complete definition of
interactive PPTMs.

We consider the following scenario for identification; firstly a randomized algo-
rithm generates public parameters on input the security parameter k. Its running
time is polynomial in k. Next a second probabilistic algorithm, using random tape
wrg, generates pairs of public and private keys (pk,sk) and sends the secret key to
the prover while the related public key is made available to anybody, including of
course the prover and the verifier. Finally, the identification is an interactive protocol
between the prover and the verifier which respectively use random tapes wp and wy.
At the end, the verifier accepts or not.

We now modify this scenario, where everybody is honest, in order to add an
attacker whose aim is to impersonate the prover, i.e. to be accepted by a verifier with
the public key of the prover. In this model, we consider an attacker that does not
corrupt public parameters and key generation. Thus, there are only two ways for him
to obtain information. Firstly, the attacker can passively observe the communication
during regular authentications between the prover and the verifier. Secondly, he can
take control over the verifier. The difference between the passive and the active attacks
is that the active attacker can make the verifier deviate from the protocol in order to
try to extract more information about the prover’s secret key.

In the active scenario, we can view the attacker and the verifier under control as a
single machine. Accordingly, an attacker is made of two probabilistic polynomial time
Turing machines; the first one, “attacker A1”, interacts with a prover and sequentially
executes a polynomial number of identifications while the second one, “attacker As”,
acts as a prover and tries to impersonate the original prover. Of course, the first
attacker can transmit some information to the second one but the contrary is not
allowed. Notice that such a security model does not take into account concurrent
attacks where the attacker performs parallel authentications with the prover [14] or
reset attacks where he can reset the prover in a former state [9,2|. Furthermore,
classical man-in-the-middle attacks cannot be performed since we separate interactions
with the prover from those with the verifier.

We can now define what is a secure identification protocol in this model: a protocol
is secure if the probability for any probabilistic polynomial time attacker (A, As) to
be accepted is negligible:

Vd € N Jkg Vk > ko Pr [Verifier accepts As] < %
where the probability is computed over all the random tapes.

10



3.2 The discrete logarithm with short exponent problem

For efficiency reasons, GPS secret keys are chosen in the range [0,S — 1] and not
modulo the (possibly unknown) order of g. As a consequence, the security of GPS is
not reduced to the discrete logarithm problem but, more precisely, to the so-called
discrete logarithm with short exponent problem. Among other studies, this problem has
been used by [45] in the context of the Diffie-Hellman key agreement scheme and also
by [37,20] in the context of provably secure pseudorandom generators. Of course, if
S is chosen greater or equal to the order of g then the security assumption is reduced
to the ordinary intractability of computing discrete logarithms in G in base g.

We assume the existence of a randomized algorithm PP(wpp, k) that generates
public parameters G, g and S from a security parameter £ using a random tape wp,.
The discrete logarithm with short exponent problem consists, given inputs of G, g, S
and ¢ s.t. z € [0, S — 1], to find z.

The intractability assumption we will further use in the security proof of GPS is
as follows:

Discrete Logarithm with short exponent assumption. For every poly-
nomial () and every probabilistic polynomial time Turing machine M running
on random tape wyy, for sufficiently large &,

Pr [M(G,9.S,9") = = where (G, g,5) < PP(wpp, k) and z € [0, S — 1]] < o
Wpp, W

3.3 Security analysis of GPS

In the case of GPS, some public parameters are the group G, the element g € G and
the bound S which are generated according to the security parameter k. The exact
way of generating those parameters depends on the kind of cryptographic group G that
is used but, roughly speaking, k defines the “size” of G and S in such a way that the
discrete logarithms with short exponent problem may be assumed to be intractable,
i.e. that there should not exist any polynomial algorithm in the security parameter k
able to solve this problem.

In order to prove the security of GPS, we first prove in theorem 1 that honest
provers are correctly authenticated. Next, we need to prove than an attacker (A;, As),
as described in section 3.1, cannot be accepted with non-negligible probability. Firstly,
Ay interacts with a prover. The zero-knowledge property, proven in theorem 2, shows
that the communication between the A; and a prover can be simulated. This means
that the prover can be replaced by a simulator, who does not know any secret. Since
the simulated communication is indistinguishable from real ones, the attacker cannot
detect this change. So, the attacker learns as much information from the simulator as
from the real prover and we conclude that no information about the secret is leaked
during the execution of the protocol.

11



Then, we show that if the second part of the attacker, Ay, is accepted with non-
negligible probability, it can be used to solve in polynomial time a problem that is
assumed to be intractable. Such a proof modifies the key generation algorithm but
the distribution of the keys remains indistinguishable from the real one. In conclusion,
we obtain that, if a PPTM attacker exists in our model, the discrete logarithm with
short exponent problem can be solved in expected polynomial time in the security
parameter k. In applications where this problem is assumed to be intractable, we
conclude that the GPS scheme is secure against the active adversaries we consider.

Let us introduce some notation. For any integer z, |z| is the number of bits
([logy(z)] + 1) of z, and abs(z) denotes the absolute value of z. We use function
d, defined by d (true) = 1 and d (false) = 0. Finally, we denote by A the logical
operator “and”.

Implicitly, we consider that S, A, B and £ are functions of the security parameter
k. In order to simplify notations, we do not explicitly write the dependencies on &
but, when we say that a positive expression f is negligible, this means that f depends
on k and that, for any constant d and for large enough &, f(k) < 1/k¢.

Theorem 1 (Completeness). The execution of the protocol between a prover who
knows the secret key corresponding to his public key and a verifier is always successful.

Proof. At the end of each round, the verifier obtains z = ¢" and y = r + ¢s, which
can be easily computed by the prover if he knows the secret key s. Consequently,

gy:gr+sc:gr x J¢ = ¢I°
Furthermore, 0 <y=r+cs<(A-1)+(B-1)x(S—-1) < A+ 9. O

Theorem 2 (Zero-knowledge). The GPS protocol is statistically zero-knowledge if
¢ and B are polynomial and £LSB/A is negligible.

Proof. We describe an expected polynomial time simulation of the communication
between a prover P and a dishonest verifier A1 who can use an adaptive strategy to
bias the choice of the challenges in order to try to obtain information about s. In
this case, the challenges are no longer randomly choosen and this must be taken into
account in the security proof. If we focus on the it" round of identification, A; has
already obtained data, denoted by hist, from previous interactions with P. Then the
prover sends the commitment z; and A; chooses, possibly using hist, z; and bits from
its random tape w4, the challenge ¢;(x;, hist,w4).

Here is an algorithm that uses a random tape wys to simulate the i*" round of
identification by the usual method of resettable simulation:

step 1. using wys, choose random values ¢; € [0, B — 1] and g; € [@, A — 1] (recall that
¢ =(B-1)(S-1)),

12



step 2. compute T; = g% /I%,
step 3. if ¢;(7;, hist,wy) # ¢ then return to step 1 and try again with another pair
(€, 7i), else return (77,7, 7).

The rest of the proof shows that, provided @ is much smaller than A, this simula-
tion algorithm outputs triplets statistically indistinguishable from real ones, for any
fixed random tape w4. The main goal is to justify the intuition according which the
distribution of T; = g% /I, as computed by the simulator, and the distribution of g",
as chosen by the real prover, are statistically close.

Let us prove that the distribution of the generated triplets is statistically indistin-
guishable from the distribution of real triplets, i.e. formally that

EDY

a,Byy

}315 [(Z‘,C, y) = (a71877)] - E\E [(Ea c, g) = (a71877)]

is negligible. This means that the two distributions cannot be distinguished by any
algorithm, even using an infinite computational power, but only accessing a polynomial
number of triplets of both distribution. We refer to [30] for more details on this
definition.

Let (o, 8,7) be a fixed triplet. Let us evaluate the respective probabilities to obtain
such a triplet during one round of proof and during simulation.

We assume that the prover is honest, i.e. follows the protocol. Consequently,

EPI)‘ [(x,c,y) = (a71877)]

Pr [a=¢"AB=cla,hist,wa) Ny =1+ X §]
re(0,A—1]

Z %5 (a =g"/16 AB =cla,hist,wa) A\r =7 — B X s)
re[0,A—1]
1
= Z& (a:g'y/I’B AB =clahist,wq) Ny —F xs€[0,A— 1])

= % X 6(a=g”/[5) X 8 (8 =cla,hist,wa)) x 6 (y— B xs€0,4A-1]) (%)

We now consider the probability Pr [(Z,¢,7) = (a, 8,7)] to obtain the triplet
wym

(a, B,7y) during the simulation described above. This is a conditional probability given
by:

Pr

=gV I°ANB=CAy=T7 | ¢=c(g’/I hist,
seioa rop oy | 9T A=A =T | e=clg?/I" hist,wa)

Using the definition of conditional probabilities, this can be written as

P =gV/I°NB=¢c= hist Ay=T1y
ye[@,Afl}}ée[o,Bq] [a 9"/ f=e=clohist,wa) Ny y]

P o — y IE h t
?€[¢,A—1},%e[0,3_1] [c=c(g¥/I%, hist,wa)]
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Let Q = Z 6 (¢ = c(¢7/I°, hist,wa)). We obtain that the denominator
ye[d,A—1],c€[0,B—1]
of the previous fraction is

Q

Pr (= clg" /T histwa)] = =375 5

ye[®,A—1],e€[0,B—1]

We now return to the evaluation of Pr [(Z,¢,7) = (o, 5, 7)]
wym

a=g"/I° N y=7A Q
B =¢=cla,hist,wa) (A—®)x B
a=g"/I° N y=7A XA—Qﬁ
B = cla hist, wy) q
=q7/IP =7 -
_ 1 w5l g /1P N y=7A ><A o
A-d t Q

=—x46 (a = g”/[ﬁ) X 8 (8 =c(a, hist,wa)) x 6 (y € [P, A4 —1]) (xx)

1
= 2 Hudh
c€[0,B—1] ye.A-l

Comparing (%) and (%*), we see that, in order to proceed with the indistinguisha-
bility proof, we have to show that () is close to A. The question is how many pairs
(¢,y) € [0,B — 1] x [}, A — 1] satisfy ¢ = ¢(g¥ /I, hist,wa)? The answer is provided
by the following combinatorial lemma the proof of which appears in appendix A:

Lemma 3. If f is a function from G to [0, B—1] and I € {g°;s € [0, S — 1]} then the
total number N of solutions (c,y) € [0, B —1] x [®, A— 1] of the equation c = f(g¥/I°)
satisfies A — 20 < N < A.

We can specialize the result of lemma 3 by setting f to the function which computes
c(g¥ /16, hist,wy) from (¢,7). Consequently we obtain that @ is between A — 2@ and
A.

We are now able to bound the distance X between the actual and simulated
distributions:

o=y

By
a:ﬁsfye[ésA_l}

+ Z Epf [(z,c,y) = (o, 8,7)]

a:ﬁsvg[ésA_l}

Pri(2.c.9) = (006,7)] - Pr [7,57) = (o 8.7)]

Pr[(r.c,3) = (0. 5,7)] - Pr [(72.5) = (0., 7)

w
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% x 8 (8= cla,hist,wa))

_é X 8 (8 =cla,hist,wa))

- >

’yE[Q,A—l},ﬁE[O,B—l],a:g'V/Iﬁ

+11- Z E}E‘ [(x,c,y) = (04,,3,’)’)]

a:B”YG[QS’Afl}
1 1 1 .
= <‘Z—a xQ) +1- Z Z&(ﬁzc(a,hzst,w/;))
’yE[Q,A—l},ﬁE[O,B—l],a:g'V/Iﬁ
_le-4 +1—Q<2‘Q_A| <12 458

A A~ A — A A

This proves that the real and simulated distributions are statistically indistin-
guishable if SB/A is negligible.

We finally explain the reason why the machine M runs in expected polynomial
time. Step 3 outputs a triplet (77, ¢, 7;) if ¢(T7, hist,wa) = ¢;. We have already proven
that

Q

(A-®)x B
and that A — 2@ < ) < A so the probability of success at step 3 is bounded beween
% (1 — %) and % (ﬁ). Since SB/A is negligible, this probability is essen-

b ¢ = c(g"/1° hist -
QE[Q,A—l]’rEE[O’B_H [€=c(g"/I° hist,w,)]

tially 1/B and the expected number of executions of the loop is B. Consequently, the
complexity of the simulation of the £ rounds is O(¢ x B).

In conclusion, if £SB/A is negligible and if £ and B are polynomial, the GPS
protocol is statistically zero-knowledge. O

Since GPS is statistically zero-knowledge, we know that interactions with a prover
cannot help an attacker in our model. Consequently, the end of the security proof of
GPS consists in proving that, if the verifier accepts, then, with overwhelming prob-
ability, the prover must know the discrete logarithm of I in base g. Intuitively, after
one commitment x has been sent, if the prover can correctly answer with probability
> 1/B, he must be able to answer to two different challenges ¢ and ¢ with y and v/,
smaller than A + &, such that ¢ /I =z =gV /I . Let c =y — ¢/ and 7 = ¢ — ¢; we
obtain g = I". The following lemma, where ¢ is implicitly assumed to depend on the
security parameter k, turns those ideas in more formal terms:

Lemma 4. Assume that some prover is accepted for a public key I with probability
e > 1/B". Then there exists an algorithm which outputs

o€[-(A+P—-1),A+P—1] and 7€ [1,B—1] such that ¢° =1I"

—1/B\? . o .
with probability > %(#) . The expected running time is < 2/e x T, where T 1is
the average running time of an execution of the identification protocol.
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Proof. The proof of this lemma appears in appendix B. It is quite similar to the
extractor of the Schnorr scheme [43].

We now meet the main difference between the Schnorr proof and GPS. If the
order of g were known and relatively prime with any integer in the range [1,B — 1],
then, exactly as in the Schnorr scheme where g is of prime order ord(g) = ¢, it would
be very easy to recover the secret s from the equation ¢ = I”, just by solving the
equation o — s7 = 0 mod ord(g). When the order of g is unknown, we cannot solve
this equation. A consequence is that GPS is not a proof of knowledge of a discrete
logarithm because logarithms cannot be extracted from accepted provers. However, we
can prove its security in our model, assuming the sole intractability of computing short
discrete logarithms in base g, modulo n. Let us first recall a well known probabilistic
lemma (see for example [39]) :

Lemma 5 (Splitting Lemma). Let A C X x Y, such that Pr[A(z,y)] > ¢,
$7y

and 2 = {a € X | PrlA(a,y)] > 5/2} then Prx € 2] > ¢/2.
Y T

Theorem 6 (Security of GPS). Assume that an adversary (A1, As) is such that
after interactions between Ay and a prover, As is accepted with non-negligible proba-
bility by honest verifiers. Further assume that £ and B are polynomial while £SB /A
and 1/Bl are negligible, relatively to the security parameter k. Then there exists an
algorithm that solves the discrete logarithm with short exponent problem in expected
polynomial time.

Proof. The basic idea of the proof is to show that if an adversary can impersonate
a prover, he can compute discrete logarithms with short exponent in expected poly-
nomial time. We have already seen in lemma 4 that if a prover is accepted with non
negligible probability, he must know integers o and 7 such that ¢ = I”. Unfortu-
nately, we cannot immediately deduce the discrete logarithm of I in base g from this
equation since we do not know the order of g. However, we show in this proof that
only two situations are possible and that in those two cases we can finally compute
discrete logarithms.

In the first case, the exponents o are most of the time multiples of 7 so it is
easy to simplify the equation g = I" and to compute log, I. In the second case, we
consider the opposite situation in which 7 does not usually divide o; we can no longer
compute log, I but, if we already know that I = ¢g°°, we learn that o — so7 is a non-
zero multiple of the multiplicative order of g. Then, this information finally enables
to solve the discrete logarithm problem for values I’ for which we do not previously
know the logarithm. Some technical details are now provided.

In the proof, we fix the group G and the base g; we consider an adversary accepted
with probability 7, where the probability is considered over the random tapes wg (for
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the choice of the private key s), wa (for the attacker random choices) and wy (for
the verifier random choices). We let Z = {I = ¢°, s € [0, S — 1]} the set of all public
keys. Let Iy be such a key chosen in Z. We now describe an algorithm that uses the
adversary (Ai, Ag) to compute the discrete logarithm of I in base g.

Notice that, in order to make the proof as simple as possible, we present a non-
uniform algorithm for computing discrete logarithms, i.e. an algorithm that depends
on the probability of success of the attacker. However, since the actual value of this
probability is not used but just allows to estimate the complexity, it could easily be
transformed into a uniform algorithm, by just running in parallel all Turing machines
described below.

Firstly, notice that the interaction between A; and a real prover can be simulated
in expected polynomial time as explained in theorem 2. Consequently, the information
transmitted by Aj to As in our security model can be output by a probabilistic Turing
machine that does not know any secret. Furthermore, the program of this machine
can even be included in the program of As.

Then, in our security model, the probability of success 7 for an attacker is

Pr  [the adversary (Ai, A3) is accepted with the public key I] =«
T1€T,wp,wy
The probability is taken over those random tapes and also over the public keys so that
the probability of success can be much smaller for some specific keys. However, for
a non-negligible part of the keys, the probability of success is “not too small”. More
formally, let Zy be the subset of the public keys I such that

wfz) [the adversary is accepted with the public key I] > 7/2

Wy

Lemma 5 proves that the probability for a public key I to be in this subset Zj is
greater than m/2. Since the probability of success of the attacker 7 is non-negligible
while 1/B? is assumed to be negligible, we consider large enough values of the security
parameter k for which 7/2 > 1/B*. In this case we can use the result of lemma, 4 that
shows the existence of a PPTM M (I) which outputs

c€[-(A+®-1),A+®—1] and 7€[l,B—1] suchthat ¢° =1

with probability e > (/2 — 1/B%)2/(6(x/2)?), in time T’ < 4/7 x T.
Thus, the probability that a public key ¢* is in Zy and that M(I) outputs (o, 7)
such that g7 = I is larger than 7/2 x e.
TE

P eIy N 8 tputs (o,7)] > —
o1 197 € To A Mg outputs (0.7)] >

Two situations can occur depending on the probability for M(I) to output o and 7
such that o — s7 = 0:
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— First case: if most of the time M(I) outputs (o,7) such that o — s7 = 0, we
immediately obtain the discrete logarithm s = o /7 that we are looking for,

— Second case: on the contrary, if M(I) outputs (o, 7) such that o — st # 0, we
obtain a multiple of the multiplicative order of g in G. Then this information
enables to solve equations such as ¢/ — 7’ = 0 mod ord(g) and consequently to
compute discrete logarithms from the outputs of M(I).

First case: if the probability that a public key ¢° is in Zy and that the PpTm M ()
outputs (o,7) such that o — st = 0 is greater than me/4,

Pr [¢° € Zo A M(g®) outputs (o,7) Ao — st =0] > e
5€[0,5—1] 4

we can immediately compute the discrete logarithm of the target public key Iy by
means of the following algorithm:

step 1. choose r € [-(S —1),5 — 1],
step 2. compute I' = Iy x ¢",
step 3. run M on input I’
step 4. if M(I') outputs (o,7) such that 7 divides o, /7 —r € [0,S — 1] and
Iy = ¢°/™", output log, In = o/T — r; otherwise restart at step 1.

Notice that if Iy € Z and r € [—(S — 1), S — 1], the probability for I to be in Z is
1/2. Furthermore, if I' € Z, it is uniformly distributed. Consequently, using the fact
we are in the “first case”, we obtain that this algorithm finds log, Iy after about 8/(r¢)

executions of the loop on average. Each loop calls M once so the expected running
time of this algorithm is O(T"/(7¢)) = O(T /).

Second case: we now consider the case where M does not directly output secret keys:

Pr [¢° € Io A M(g®) outputs (o,7) Ao — sT # 0] > e
5€[0,5—1] 4

The first step consists in computing a multiple of the multiplicative order of g. We
use the following algorithm:

step 1. choose sy € [0,S — 1],
step 2. compute I = g%,
step 3. run M on input 7,
step 4. if M outputs (o, 7) such that ¢° = I" and Ly = abs(o — so7) # 0 output Lg;
otherwise restart at step 1.
After an expected running time O(T"/(ne)), we obtain Lg # 0 such that g% = 1.

Consequently, Lq is a multiple, smaller than A + @, of the order of g in G. We can
now compute discrete logarithm of Iy in base g using the following algorithm:
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step 1. choose r € [-(S —1),5 — 1],

step 2. compute I' = Iy X g",

step 3. run M on input I’

step 4. if M does not output (o,7) s.t. g7 = I'” restart at step 1; otherwise output

(o,7).

We obtain I, o and 7 such that I'” = ¢7. In order to find the discrete logarithm
of I', we solve the equation o — 7z = 0 mod Lg. Let d = ged(r, Lg); since 7/d and
Loy/d are relatively prime, the equation (o/d) — (7/d) X £ = 0 mod Lg/d has exactly
one solution z¢ mod Ly/d,

2o = (0/d) x (r/d)”" mod Loy /d

We now consider the equation 0 — 7 x = 0 modulo L and not only modulo Lg/d.
As a consequence, we can write £ = zg + ¢ X Ly/d mod Ly with ¢ € [0,d — 1]. The
solution x such that I' = ¢g* can finally be found among those d solutions. We can of
course use exhaustive search since d < 7 < B but a Baby-step Giant-step algorithm
allows to find the solution in time O(v/B).

In conclusion, in time O(T"/(we) + v/B) we obtain sg such that Iy = g®0. A final
problem is that sy may not be in the range [0, S — 1]; we now describe an iterative
algorithm that finally outputs a short discrete logarithm in this range.

If the probability over s € [0,S — 1] that M(g®) outputs (o,7) and that the
previously described algorithm computes exactly s is larger that me/4, we obtain
so € [0,S — 1] in time O(T'/(we) + B). Otherwise, we can run the algorithm with
I = g*® and we obtain s’ such that ¢ = T = gs' but s # s’. Consequently Lo and
(s —s") mod Lg are multiples of the order of gso L{ = ged(Lo, (s — s') mod Ly) is also
such a multiple but Ly < Ly/2. We obtain a new value for Ly and we restart the
procedure. When the size of Ly decreases, we are finally able to compute the discrete
logarithm of I in the range [0, S — 1]. The recursive step is repeated less than |A + @]
times because |A + @| is the size of the first value of Lj. Finally, the expected time
complexity of this algorithm is O(|A + &|(T"/(ne) + VB)).

If  is non-negligible and 1/B¢ is negligible, for infinitely many values of k, 1/B¢ <
m/4. Consequently, the probability of success of the PPTM M of lemma 4 is

1(/7/2—1/B*
> 6( /2

and its expected running time 7" is less than 4/7 x T. Finally, if B is polynomial, we
obtain an expected polynomial time algorithm to compute discrete logarithms in base
g, in the range [0, S — 1]. 0

>2>1/24
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4 Security analysis of the GPS signature Scheme

As explained in section 2.3, the GPS identification scheme is turned into a signature
scheme by following the technique originally proposed by Fiat and Shamir [18]: chal-
lenges ¢ are no longer randomly chosen by a verifier but computed by means of a
hash function h with output range [0, B — 1]. In order to avoid the parallel execu-
tion of a super-logarithmic number of rounds, we need to increase the bound B to be
super-polynomial.

In order to prove the security of the GPS signature scheme, described in section 2.3,
we can show that, if an attacker is able to forge valid signatures after having obtained
signatures of messages of his choice, then we can use it to compute the secret key
and consequently to solve the discrete logarithm with short exponent problem. The
random oracle model [3] is used to simulate the behavior of the hash function so that
the proof only validates the overall design.

The GPS signature scheme uses a cryptographically secure hash function. Ideally,
a security proof should only be based on some intractability assumption such as the
impossibility to find collisions. However, in order to obtain security arguments, we
need to simulate the hash function as a random function, following the initial idea of
Bellare and Rogaway |3, 18]. In this model, the hash function is not considered as a
deterministic public function but it is modeled by an oracle that randomly answers
the queries. The only limitation is that this oracle provides the same answer if the
same query is asked twice.

The use of the random oracle model is known to be a good engineering principle
when it is not possible to provide proofs without such an additional assumption. This
approach validates the design of the scheme even if we must be careful with this model
as shown by Canetti et al. [8].

A generic result due to Abdalla et al. [1] shows that the use of the Fiat-Shamir
paradigm to transform an identification scheme secure against passive attacks into
a signature scheme leads to a secure signature scheme since even existential forgery
under adaptive chosen message attack is impossible (see [31, 1] for standard definition
of security of digital signature schemes). Consequently, the only property we need to
prove is that the GPS identification scheme remains zero-knowledge if the bound B
is increased to be super-polynomial but in a setting where the verifier is honest, i.e.
randomly chooses the challenges in the range [0, B — 1]. Going through the proof of
theorem 2, we see that the simulation requires B to be polynomial. This is a well known
restriction for zero-knowledge and appears in the Schnorr scheme as well. However,
we can notice that if the verifier is honest the simulation complexity is only O(¥).

Theorem 7. Under the discrete logarithm with short exponent assumption, if SB/A
and 1/B are negligible, the GPS signature scheme is existentially unforgeable under
adaptive chosen message attacks in the random oracle model.
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5 Applications

This section is more practical in character: we discuss how to choose secure parameters
in order to resist the known attacks against factorization and the discrete logarithm
problem. Then we explain how to optimize size of the data and, finally, report on the
performance of a smart card application.

5.1 Choice of the underlying mathematical structure

Let us first focus on the group G and the base g. We already proposed in the description
of GPS several possible options. We now clarify the practical choice of the parameters
for the first two options:

— G = Z,, with p a prime number s.t. p—1 has a large prime factor g; the order of the
base g should be ¢ and the size of ¢ should be larger than 160 bits. The discrete
logarithm problem modulo a prime integer seems currently intractable if the size
of the modulus is larger than 1536 bits. For more secure applications, |p| = 2048
may be appropriate; we refer to specific overviews such as [33] for a more precise
analysis.

— G = 7} with n an RSA modulus, i.e. a composite integer with two prime factors
with almost the same size. The use of a 1536-bit modulus seems adequate to
guarantee a high level of security based on the intractability of factorization for
the next years. Then g can be randomly chosen. In practice, we advise the use of
modulus n which is the product of two strong primes, i.e. primes p s.t. (p—1)/2 is
also prime, in order to avoid partial Pohlig-Hellman attacks [45]. We also advise
the use of the base g = 2 for efficiency reasons.

The security is related to the choice of G, g and S in such a way that computing
discrete logarithms in base g is intractable, even if those exponents are in the range
[0,S — 1]. Since discrete logarithms can be computed in O(v/S) using Pollard rho
algorithm or Shanks baby-step giant-step algorithm, S should be at least equal to 2160
and preferably to 2256 for a high level of security.

Then, the choice of the size of B is related to the probability of impersonation of
an adversary. The expected security depends on the application and B = 232 with
¢ =1, i.e. using just one elementary round, would probably be large enough for many
identification systems since it guarantees that an adversary cannot impersonate a user
with probability larger than 1/232. For signature applications, the use of a standard
hash function such as SHA-256 [35] (B = 2256) can be advised.

Finally, the parameter A must be s.t. A/SB is “large” in order to guarantee the
statistical zero-knowledge property. We advise to take A = § x B x 280,
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5.2 Optimization of coupons

In order to decrease the number of communication bits, Fiat and Shamir [18] have
suggested to send a hash value of the commitment issued at the first step of the
identification. This trick can be used with our scheme. Let i’ be a hash function and
\h| be the size of its output. The modifications are very simple: the commitment
z is replaced in the protocol by z' = h'(z) and the verification equation becomes
7' = W (gV/I).

Using the notion of ¢-collision-free hash functions, i.e. functions such that it is
infeasible to find ¢ distinct values with the same image, Girault and Stern [28] have
precisely analyzed the consequences of such a modification on the security of identifi-
cation schemes. This result can still be improved [23] if we consider that an attacker
cannot perform more than a fixed number of on-line operations during the authenti-
cation process. In this setting, if we want a security level of 32 bits, we can choose
\h'| = 50 bits only.

Finally, we have already observed that the commitments can be computed off-
line, by the individual device or by an authority. In fact, we just have to compute and
to keep in memory pairs of the form (r,h’'(¢")). Notice that the computation of the
exponentiation can use the Chinese remainder theorem, in order to be more efficient,
when the factorization of the modulus is known.

Memory space can be saved if the random values r are not stored but generated
when needed by a pseudo-random generator. This finally leads to store the seed of the
generator and the commitments, i.e. about only 6 bytes per authentication using [23]
commitment hashing technique.

5.3 Performance

An implementation of GPS on a PC shows the very high practical efficiency of this
scheme for identification and signature applications.

G = 7% with |n| = 1536 (n = p x q)
|S| =2 x80 =160, £ =1
|B| =35, |[A| =|S| + |B| + 80 = 275

Parameters
(see sections 2.2 for notations)

Parameters generation ~1s
Computation of commitment z 10.1 ms (5940 per minute)

Computation of answer y <1ups
Verification 11.8 ms (5084 per minute)

Fig. 3. Implementation of GPS in C using GMP library on a PC PIII 450 MHz

Figure 3 shows the performances obtained with a Pentium III 450 MHz processor
and a C program using the GMP multiprecision arithmetic library [29].
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The public parameters and key generation needs about one second but this oper-
ation does not happen very often. The computation of commitments or of coupons
just consists in computing an exponentiation. The verification is a similar operation.
We see that we can perform a few thousands of such operation by minute with a
simple PC. Note that the computation of the answer is so easy that we cannot really
measure it. Also note that verification can be server-aided and made as efficient as
Guillou-Quisquater verification [27].

5.4 Smart card application

In order to show to what extent computations are minimal and transmissions very
short, we now present an application we have implemented on a low cost smart card
based on a 6805 chip. The size of the program is very small, about 300 bytes. We
see in figure 4 that the running time of the computation is very short and actually
most of the time needed for an authentication is taken by the communication protocol
between the card and the computer. Notice that, for signature, we would have to take
into account the computation time of the hash function; this would probably be the
bottleneck of many very fast applications. In conclusion, this demonstrates that the
scheme under study is really suitable for very fast “on the fly” applications.

Parameters G = Zp with |n| = 1536
(see sections 2.2 for notations) 5] =280 =160, £ =1
|B| = 35, |[A| = |S| + |B| +80 =275
Size of a coupon (= |h']) 50 bits
Number of coupons in 4 KBytes 655
Running time at 3.57 MHz < 2 ms
Amount of communication 45 bytes
Running time at 9600 bauds 38 ms
at 115000 bauds 3.1 ms
Total running time
at 9600 bauds ~ 40 ms
at 115000 bauds ~ 5 ms

Fig. 4. Implementation of GPS on low cost smart card
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A Proof of lemma 3

Lemma 3. If f is a function from G to [0, B — 1] and I € {g*;s € [0, S — 1]} then the
total number N of solutions (¢,y) € [0, B—1] x [®, A—1] of the equation ¢ = f(g¥/I¢)
satisfies A — 20 < N < A.

Let f be any function from G to [0, B — 1]. We first notice that, since I = ¢°, if
f(g¥/I¢) = c then f(g¥T*s/Itk) = ¢ so f(g¥Ths/I°TF) 4 ¢ + k for any k # 0 such
that ¢+ k € [0,B —1].
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We define the following sets of pairs (¢, y):
Px ={(¢, X +¢s) suchthat c¢€[0,B—1] and X +cs € [P, A — 1]}

Those subsets have many properties that are summarized below:

VX # X' PxNPx =1

proof: if (¢,y) € Px N Px,y=X +ecsand y=X'+csso X = X',
Uxez Px =1[0,B -1] x [@, A — 1]

proof: for any pair (c,y) € [0,B — 1] x [, A — 1], (¢,y) € Py—cs.
if X <®—3s(B—-1), Px is empty

proof: if X <@ —s(B—1),Vee[0,B—1] X +cs< .

if X > A, Px is empty

proof: if X > A, Ve € [0,B—1] X +¢s > A.
card(Py) =B X >® and X < A—-s(B-1)

proof: obvious since X + ¢s € [@,A — 1] for all ¢ € [0, B — 1].

VX €7 Y(c,y) € Px Y(,y') € Px f(g¥/I¢) = f(g¥ /I¢)

proof: this is obvious since g¥/I¢ = g¥ /T°.

for any X € Z, there is at most one pair (¢,y) € Px such that f(¢¥/I¢) =¢

proof: this is an immediate consequence of property (6) because all the pairs (¢, y)

in a set Px have different values of c.

for any X such that card(Px) = B, there is exactly one pair (¢,y) € Py such that

flgV/1¢) = ¢

proof: a pair (c,y) such that f(g¥/I°) = c is given by (f(g%), X + f(g%) x s).

Uniqueness follows from property (7).

Consequently, the total number N of solutions of the equation ¢ = f(g¥/I°) is
upper bounded by the number of non-empty sets Px, this is a consequence of prop-
erty (7), and lower bounded by the number of sets Px with exactly B pairs, this is a
consequence of property (8). Using properties (3), (4) and (5), we obtain that N lies

between A — 2@ and A in the following way:

B

Assume that a prover As running on random tape wy, is accepted with probability
e = 1/B!4¢' for a public key I. We write Succ(wa, c1,...c;) € {true, false} the result
(successful of not) of the identification of As(w4) when successive challenges ¢y, ...cy

A-20<A-6—(B-1)s<N<A-d+(B-1)s< A

Proof of lemma 4

are used.

Pr [Succ(wa,ci,..c))] =e=1/B +¢

WA,CL50Cp
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We consider the following algorithm (inspired from [43]):

step 1. Pick a random tape wy and a tuple ¢ of £ integers ¢y, ...cy in [0, B — 1] until
Succ(wa, ¢). Let u be the number of probes.

step 2. Probe up to u random /-tuples ¢’ different from ¢ until Succ(wa,c'). If after
the u probes a successful ¢ is not found, the algorithm fails.

step 3. Let j be the first index such that ¢; # ¢;'; we note y; and y;’ the related
correct answers of As. If ¢; > ¢;/, the algorithm outputs o = y; — y;’ and 7 = ¢; — ¢}’
and otherwise it outputs o = y;' — y; and 7 = ¢;' — ¢;.

If this algorithm does not fail, the prover is able to correctly answer two challenges
¢; and ¢;' given the same comm1tment z;, with the answers y; and y;’. This means
that g¥% /1% = ¢ = g¥%' /1% so g” = I". Furthermore, 0 € [-(A+® — 1), A+ & — 1]
and 7 € [1,B —1].

We now analyze the complexity of the algorithm. By assumption, the probability
of success of Ag is g, so the first step finds wy and ¢ with this probability. The
expected number E of repetitions is 1/¢ and the number u of probes is equal to N
with probability e x (1 — )V~

Let 2 be the set of random tapes w4 such that l:lr [Succ(wa,c)] > e —€'/2 =

1/B* 4 €'/2. The probability for the random tape w4 found in step 1 to be in £2,
conditioned by the knowledge that Succ(wa,c) = true, can be lower bounded in the
following way:

Pr [wa € 2|Succ(wa,c)] =1— Pr [wa & 2]|Succ(wa, c)]

wA,C wA,C
Sr lwag ] 1 ¢\ 1 ¢
—1- Pr [S Q] x A~ >1- (=45 ) x-=
wAr,c[ uce(was c)lwa & 2] Pr [Succ(wa,c)] — <Bl * 2) e T e
waC

Thus, with probability > ¢'/(2¢), the random tape wy is in 2 and, in this case,
by definition of the set §2, the conditional probability for a tuple of challenges ¢’ # ¢
to lead to success is > ¢’/2. The probability to obtain such a tuple ¢’ after less than
N probes is > 1 — (1 —¢'/2)N

Therefore, the probability to obtain a random tape w4 in {2 and to find an appro-
priate ¢’ is greater than
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Since e > 1/Bf and 1 > &' > 0, we obtain 0 < 1/(Bx¢)+¢' < 2s0

2 2
——~ > 3.
37(BZ1><€+8,) i

In conclusion, the algorithm finds (o, 7) with probability > ¢'?/(6¢2) and the total
expected number of executions of the protocol between the prover and a verifier is

smaller than 2/e. 0
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