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Abstract. At Financial Cryptography 02, Okamoto, Tada, and Miyagi [8]
proposed a new fast signature scheme of the Schorr/DSS family, without
on line multiplication. Following earlier proposals [5, 10, 11], a part of the
data, independent of the message to sign, is generated at a preprocess-
ing stage, while the computing effort needed to complete the signature
“on the fly”, is dramatically reduced. Whereas the so-called GPS scheme
from [5,10] and its variant from [11] avoid modular operations by com-
puting over the integers, thus reducing the workload to one (regular)
multiplication, the new scheme simply gives up multiplication at the
cost of bringing back a single modular reduction with respect to a 160
bit integer. Thus, the scheme could appear as achieving better perfor-
mances. Unfortunately, due to a concealed design weakness, the scheme
in [8] is insecure with the proposed parameters. The present paper shows
a devastating attack against the scheme, forging a signature in ~ 22° op-
erations. The scheme can be rescued in a rather straightforward way by
significantly raising the parameters, but this degrades its performances
which do not compare anymore favorably to [10]. In place, we suggest
to replace modular reduction by another novel operation, which we call
dovetailing. We argue that this operation can be performed in such an
efficient way that it could allow for signing with a memory card, rather
than a smart card. This equally applies to GPS but the new scheme is
better than GPS in terms of signature size.

1 Introduction

In the last twenty years, public key cryptography has dramatically developed, as
a means to offer confidentiality to end users. Popular applications such as SSL
are now widely accepted as a simple and cost effective method to protect data
obtained from WEB servers. However, in many applications, notably outside the
Internet, public key techniques are hampered by the computing cost that they re-
quire. Currently, banking cards and mobile phones, almost exclusively make use
of conventional symmetric cryptography. This entails serious drawbacks such as



the impossibility of producing actual digital signatures, or of achieving off-line
authentication without storing secrets in the verifying device. Many potential
applications would greatly benefit of the availability of signature and identifica-
tion schemes that could be executed, say, on a low cost smart card. The Holy
Grail here would be the use of memory cards: this would allow to authenticate
phone cards or to sign up at toll booths, thus opening a mass market to public
key techniques.

In an attempt to find a partial solution to the above, several authors [3,12,
13] have proposed to break signature generation into two steps

1. a preprocessing step, where data independent of the message to sign are
generated,

2. a second step, performed “on the fly”, where the signature is completed,
with limited computing effort.

Even, Goldreich, and Micali [3] have shown a general albeit not very practical
method for converting any signature scheme into a scheme of this form. This has
recently been pursued by Shamir and Tauman [14]. In a more restricted setting,
the discrete logarithm has been found particularly suitable to this approach, as
already noted by Schnorr [12,13]: ignoring one modular addition, the only oper-
ation that needs to be performed on the fly is a single modular multiplication.
In [5,10], this was reduced to a single regular multiplication. Besides reducing
the computing cost, discarding modular multiplication had several nice conse-
quences in terms of key size or signature size. Aiming at a standard security level
measured by 289 basic computing steps, the scheme in [10] allowed for secret keys
of 160 bits and for signatures of 420 bits.

A further step was taken in a paper [8] presented at Financial Cryptography
2002. In this paper, a scheme that could sign with no on-the-fly multiplication
was proposed. We will refer to this scheme as OTM, from the names of the
authors, Takeshi Okamoto, Mitsuru Tada and Atsuko Miyaji. Besides avoiding
multiplication, the scheme was achieving secret key size 160 bits and signature
size 304 bits, thus clearly beating the GPS scheme from [10], at least in terms
of size. The price to pay for giving up multiplication was to bring back a single
modular reduction with respect to the secret key s, a 160 bit integer. Whether
or not the latter is more time consuming than multiplication is debatable and
will be discussed further on. In any case, the answer clearly depends on the size
of the integer to be reduced modulo s, and any increase of this size entails a loss
of efficiency.

In this paper, we first show that, due to a concealed design weakness, the
scheme in [8] is insecure with the proposed parameters. The present paper shows
a devastating attack against the scheme, forging a signature in ~ 225 operations.
We next discuss whether the scheme can be rescued. A rather straightforward
option consists in significantly raising the parameters. However, as explained
above, this degrades the performances which do not any more compare favorably
to [10]. In place, we suggest to replace modular reduction by another novel
operation, which we call dovetailing. Basically, dovetailing a pair of integers
(r,e) with respect to a smaller integer s is adding to r a small multiple of s so



to as to make the trailing bits of the result match with e. Surprisingly, we found
that this operation can be performed in an extremely efficient way. We even
argue that the resulting scheme could allow for signing with a memory card,
rather than a smart card.

2 A flaw in the OTM scheme

2.1 Brief description of the scheme

The public key of the OTM scheme consists of an RSA integer n, together with
an element g of Z*, whose order is s is bounded by S = 2¥ (typically S = 2160).
Paper [8] describes how to manufacture such pairs (n, g). We will return to the
matter further on in the present paper. The secret key is precisely the order s
of g. The signature scheme is derived from an identification scheme, depicted on
figure 1. Notations a, ¢ refer to additional parameters of the scheme, typically
a=224, = 24.
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Fig. 1. The OTM identification scheme from FC’02

To derive the signature scheme, one applies the usual trick from [4], replacing
e by a hash value H(m,z), computed from the message m and the so-called
commitment z. The signature is the pair (e,y). To achieve bit length 304, as
claimed in [8], one uses another trick, keeping only say 80 bits of H(m,z) and
extending the result to a + £ bits by means of a hash function again.



2.2 A forgery attack

The security analysis of the OTM appearing in [8], relies on the claim that an
attacker cannot cheat the identification protocol with probability significantly
larger than 2°t¢ (theorem 4 of [8]). This result is incorrect, as shown by the
attack that we now mount. The attack is based on guessing the £ + 1 leading
bits of the “challenge” e. This means guessing e;, where

e=e2°"1 + ¢

and 0 < eg < 2271, From this guess, the attacker manufactures his commitment
z by picking at random r, 0 < r < 2°~! and setting z = ¢"~*2""" mod n. Upon
receiving the challenge e, the attacker gives up if the leading bits of e do not
match up with e;. Otherwise, he is successfully identified by returning

y=r-+eo

Indeed, both tests y ; 20 +2% and L 9Y~° mod n are easily seen to be satisfied.

The above directly translates into a forgery attack against the signature
scheme. The attacker guesses an £+ 1 bit integer e; and computes H (my, z) for
a sample of messages m; until the £ leading bits of the result match up with e;.
The forgery requires 2¢+! operations.

2.3 Repairing the scheme

It appears that theorem 4 from [8] is correct when the security bound 1/2° is re-
placed by 1/2¢. Without going into details, we just mention that the “extractor”
that the proof builds needs to find a situation where the attacker can answer
two queries with different leading bits, given the same commitment. The proof
in [8] is erroneous in that it simply looks for distinct queries.

Thus, the signature scheme can be repaired by raising £ to at least 80. At
this point, we wish to suggest to raise a to at least k + 80. The size of a controls
the bound 2s/2% for the statistical zero-knowledge property (theorem 5 of [8]).
However, this bound is only for a single execution and should be multiplied
by the number of identifications (signatures) allowed. Thus, we feel that the
suggested margin of 64 bits is not enough.

We have a final concern about the scheme, related to the key generation
algorithm. The RSA integer n = pq used in [8] is manufactured in such a way
that p = 2p'p" + 1, and ¢ = 2¢'q" + 1, with p’, ¢’ prime integers and p", ¢" odd.
Next, an element g, of Z7 of order p' is built, and similarly an element g, of Z} of
order 2¢'. Finally g is obtained by Chinese remaindering. Now, the paper states
that taking s of size 160 bits is enough to be immune to Pollard’s method [9]
for finding the order of g, since the method has computing time O(4/s). Thus,
g has order < 2% in either Z% or Z}. Although we have not found any attack,
we are concerned that revealing such a g might open the way to speeding up
the factorization of n. Of course, the OTM scheme can perfectly be adapted to
the case where n is a prime number. However, in this case, the order of g is a



relatively small factor of n — 1, and accordingly it should be taken large enough
to withstand ECM factorization. Given the current ECM factoring record of 54
decimal digits (see [7]), one would have to raise the size of s to at least 256 bits.

2.4 Comparing the resulting scheme to GPS
The GPS scheme from [5,10] is depicted on figure 2 below.
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Fig. 2. The GPS identification scheme

Typical parameters in signature mode, where e is replaced by a hash value
H(m,z), are k = 180, £ = 80, a = 340, which yield signature size over 400 bits.

As noticed by the authors of [8], raising the value of £ in the OTM scheme
has no consequences on the size of signatures, since the challenge e is computed
from a short seed anyway (say 80 bits). Thus, even taking into account the slight
increase of a that was suggested above, the scheme still beats GPS in terms of
signature size, since it achieves bit size 320 whereas GPS stands over 400 bits.

On the other hand, we claim that, in terms of efficiency, the OTM scheme
now has much worse performance, when aiming at a comparable security level
280 Indeed, the core operation that GPS performs on the fly, is the (regular)
multiplication of the secret key s (160 bits) by the challenge e (80 bits). By
the usual shift and add algorithm, this means 40 additions of a 160 bit integer.
This computation sums up to about 200 8-bits multiplication or about 800 8-bit
additions, if we are in a multiplication free context.

Let us now look at the core operation involved in OTM in more detail. This
operation is the modular reduction of the random challenge e by the secret key
s. With the new security parameters suggested above, e is 320 bits and s is 160



bits. We note that s and e must be chosen at random to maintain security, and
therefore that they cannot be chosen of a certain specific form that could speed
up modular reductions.

Hence, the efficiency of OTM is essentially the efficiency of general modular
reductions of 320 bit numbers by 160 bit numbers. The modular reduction prim-
itive on large numbers has been extensively studied in [1], where the authors
compare the performances of the three main reduction techniques: the so-called
“classical” one, Barrett’s algorithm and Montgomery’s algorithm.

It turns out, both from their theoretical analysis and from their implemen-
tation on a 80386, that the reduction of a (2k)-bit number by a k-bit number is
roughly comparable to the multiplication of 2 k-bit numbers, with an advantage
for the multiplication (it costs between 420 and 480 8-bit multiplications, if we
neglect the precalculation and postcalculation steps).

Thus, with the corrected security parameters, the core modular reduction

needed by OTM is more than twice more expensive as the core multiplication
needed by GPS.

3 A signature scheme based on dovetailing

In this section, we suggest to replace modular reduction by another novel oper-
ation, which we call dovetailing.

3.1 Dovetailing

Let s be an odd integer. Let (r, ) be a pair of integers, r > s, r > e. Dovetailing
(r,e) with respect to s is adding to 7 a small multiple of s so to as to make the
trailing bits of the result match with e. In mathematical terms, the operation
might look intricate: setting y = 7 + As, one can choose A as (e —r)s~! mod 2,
where k is the bit size of e. However, as will be seen in the sequel, it can be
performed by a surprisingly efficient algorithm. We let D;(r, e) be the result of
dovetailing.

3.2 The new scheme

We now introduce a scheme that uses dovetailing in place of modular reduction.
The setting is essentially identical to OTM, except that we need to assume that
the order s of g is odd.

The security analysis is similar to the (corrected) analysis of OTM: probabil-
ity of forgery is of the order 1/2¢ and statistical zero knowledge of a single round
of identification is controlled by 2s/2%~%=¢  Thus, we suggest to set k = 160,
a = 320, £ = 80.

The signature scheme is derived as usual. Note that, since the trailing bits
of y match up with e, it is enough to output y, which means 320 bits for the
suggested parameters.
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Fig. 3. An identification scheme based on dovetailing

It should also be noted that checking the size of the response, (e.g. checking

?
that y < 2% +25+¢) is not critical for the security of our scheme but is preferable
for implementation reasons.

3.3 Implementation

While general modular reductions are fairly complex algorithms, the special case
of dovetailing allows for very efficient implementations.

Software implementation We will first show that dovetailing can be imple-
mented in software as fast as the primitive operation of GPS. In other words,
dovetailing a (320-bit, 80-bit) pair with respect to a 160-bit integer can be im-
plemented at least as efficiently as multiplying a 160-bit number by an 80-bit
one.

We first start with the most natural and simpler dovetailing algorithm, de-
scribed in algorithm 1. This algorithm requires on average 40 additions of a 160
bit number with a 320 bit number. If we neglect the few extra additions caused
by the possible propagation of the carry in some pathological cases, the number
of 8-bit additions is the same as in GPS.

Now, it is almost always as fast to substract an integer as to add it. We
can take advantage of this property to speed up the computation time of the
algorithm by optimizing on the fly the number of bits where r and e are equal.
We assume in algorithm 2 that s is equal to 1 mod 4. The case where s = 3 mod 4
is similar.



Algorithm 1 Simple dovetailing algorithm
INPUT: 7, €, s
OuTPUT: Ds(r,e€)
10
while i < |e| do
if e; # r; then
r<r+s
end if
s+ s<<1
1 i+1
end while

It is fairly straightforward to compute the cost of this algorithm: when r and
e match on a bit, there is simply a shift of one bit and when they don’t, there
is one addition or one subtraction which makes them match on two bits and a
shift of two bits.

Hence, the average number of addition/subtraction of a 320 bit number and
a 160 bit number needed to complete a run of the algorithm is |3ﬂ = 27, which
means that approximately 540 additions on 8 bit numbers are needed, which has
to be compared with the 800 additions in case of GPS. It is certainly possible
to optimize GPS in a similar way by introducing substractions in the usual
shift-and-add algorithm for multiplication. However, this will involve carries that
dovetailing does not need, and result in a slightly less efficient implementation.

One can further optimize the scheme at the cost of creating a table of precom-
puted small multiples of s. To compute a multiple of s to add in the dovetailing
algorithm, the table could be indexed according to the difference between the
last d bits of e and r, taken modulo 2. Given this approach, d might be made
larger than 2. For example, a table with 28 = 256 entries would permit d = 8 and
reduce the cost to about 200 additions on 8 bit numbers. We will not pursue this
matter here as it is unclear whether the corresponding memory can be available
in the setting of low cost smart cards that we envision.

Hardware implementation We will now see that dovetailing can also be
implemented fairly efficiently in hardware. Such an implementation would again
be of a similar magnitude as the one for GPS.

We recall that the context of hardware implementation of these algorithms is
simplicity and low cost, as they are reasonable candidates for performing digital
signatures on memory cards. As a consequence, we considered the simplest and
most compact designs.

The simplest way to implement a multiplication in hardware is by using the
shift and add paradigm. Typically, one input is presented in bit parallel form
while the other is in bit serial form. Each bit in the serial input “multiplies” the
parallel input by either 0 or 1. The parallel input is held constant while each bit
of the serial input is presented. Then, the result from each bit is added to an
accumulated sum, which is shifted one bit before the next addition.



Algorithm 2 Twobits dovetailing algorithm
InpPUT: 7, €, 8
OuTPUT: Ds(r,e)
10
while i < |e| do
if ¢; = r; then
s+—s<<1
1—1+1
else
if i =|e| — 1 then
r<r+s
t—1+1
else
t= (2’)“¢+1 +r; —2ei4+1 — 6¢) mod 4
if t =1 then
rr—=s
else
r<r-4+s
end if
s s<<L2
L4142
end if
end if
end while

Now, when working on fairly large numbers, one will use a chain of unitary
full-adders (say 8 bits), and might not want to wait until the carries fully propa-
gate. This can be fairly easily solved by adding, at each cycle, the current value
of the result, the value of this round input and the carry of the previous cycle.
When all the additions have been performed the remaining carry is propagated.

At first, it seems to be harder to do such an optimization with dovetailing
because the current value of the result should be used in the input test. How-
ever, we remark that in the implementation of dovetailing described above, the
equality tests of the loop can be performed before the addition is completed. As
a matter of fact, while it is necessary to eventually complete the additions so
that r yields the correct result, we just need the ¢ — th bit of r to be correct
when performing the ¢ — th iteration of the loop.

Hence it seems possible to implement a hardware design following the general
principle described below:

— The bits of r and e are compared to figure out whether to add 0 or s to r
(easily done with a MUX).

— Additions are made with full adders of some given small size, say 8 bits.

— Every addition between r and s is performed in parallel on all the 8 bits
full adder, but the carries between full adders are propagated only once.
Remaining carries are reinserted in the full adders at the next round.

— s is shifted.



Because we propagate the carry only once every round, each addition between
r and s only needs 2 clock cycles, and the carry propagation only need to be
performed once after the main loop.

Going into more details, we note that it is in fact necessary to perform the
extra propagation step only once every 8 cycles (if we are working with 8-bit
full adders). So, at the price of a more complex clocking algorithm, it might be
possible to perform dovetailing in hardware at virtually the same cost as the
GPS multiplication.

4 Conclusion

We have shown an attack against the OTM signature scheme [8] presented at
Financial Cryptography 2002. Although the scheme can be repaired in a straight-
forward manner by raising the parameters, this drastically degrades its perfor-
mances in terms of computing time, making it less efficient than GPS. We have
also designed another scheme, based on a novel operation called dovetailing,
which can be implemented in a surprisingly efficient way. This scheme appears
to achieve performances similar to OTM in terms of key size, and similar to GPS
in terms of computing power requirements, thus yielding a strictly better scheme
than both of them, by matching their respective strengths. We argue that both
our scheme and GPS plausibly qualify as a candidate for execution on a memory
card rather than a smart card. Still, our scheme is better in terms of signature
size.
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