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ABSTRACT

Sound-based person identification has largely focused on speaker recognition. However, also non-speech
sounds may convey personal information, as suggested by our previous studies on hand clap recognition.
We propose the use of a probabilistic model-based technique for person identification based on their hand
clapping sounds. The method is based on a Hidden Markov Model which uses spectral templates in its
observation model. The technique has been evaluated in an experiment with 16 subjects, resulting in an

overall correct classification rate of 64 %.
interactive systems.

1. INTRODUCTION

Person identification has many practical applications,
ranging from security systems to non-security critical
real-time applications, such as multi-user video games.
Several approaches to person identification have been
presented especially in the field of security systems, such
as iris scanning [18], acoustic cues and face recognition
[2], biometric sensor fusion [5], and biological motion
[19]. The use of multiple information sources has been
found beneficial. However, many of these systems re-
quire either expensive specialized hardware or heavy al-
gorithms, which may be unsuitable for less serious real-
time applications, such as multiplayer video games or
multi-user musical systems, with multiple people per-
forming simultaneously.

A remedy on desktop systems can be found in tempo-
rality: just as with handwritten signatures, the way an
individual types on a keyboard can be unique enough
to identify her [11]. In the last decade, research on
keystroke dynamics, i.e., the study of extracted keystroke
timing features, has been an active area of research (see
[7] for an overview). More recently, keystroke dynam-
ics have been combined with affective computing to in-
fer the emotional states of people during their interaction
with desktop computers [6]. These kind of studies that
combine feature extraction, classification, and matching

The algorithm runs in real-time, making it suitable also for

with self reports are promising in manipulating the inter-
faces and systems within close proximity. For longer dis-
tances, sound-based solutions that rely on the metaphor
”sound is touch at distance” may work better.

To date, sound-based person identification has mainly
focused on speaker recognition. However, also other
sounds may convey personal information. For example,
it has been suggested that humans are capable of recog-
nizing their own hand clapping sound from that of others
[15]. Our previous work on the recognition of percus-
sive non-speech sounds has indicated that an algorithm
taught on one person’s hand clapping sounds does not
function well with those of another person [12], suggest-
ing that the recognition of personal information is ex-
tendable also to computational systems.

In this work, we propose the use of a probabilistic model-
based technique for person identification from their hand
clapping sounds. We have previously utilized the tech-
nique in the recognition of different hand clapping types
and percussion instrument strokes [4], and now aim at
examining its utility on person identification.

In the following section, a brief review of related work
on percussive sound recognition and sound-based person
identification is presented, followed by a description of
our recognition algorithm in Section 3. The experiment
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and results of the clapper identification problem are pre-
sented in Section 4, and finally conclusions and indica-
tions for future work are drawn in Section 5.

2. RELATED WORK

The problem setting in this study relates to detecting sub-
tle differences in percussive sounds. While there are nu-
merous techniques applicable for percussive event recog-
nition, one prominent approach in the recent past has
been the use of template-based techniques. Computing a
characteristic spectral template for the sound events has
been utilized for example by Yoshii, Goto, and Okuno
in an automatic description system for bass and snare
drum sounds [20]. The technique functions in two steps
of template matching and template adaptation, making it
possible to tune the templates to a given musical excerpt.

The spectral template can also be characterized by fea-
tures of lower dimensionality, such as Mel-frequency
cepstral coefficients (MFCC), as proposed by Paulus and
Klapuri [14] for automatic drum transcription. They use
MFCCs in conjunction with musical meter analysis and
probabilistic modeling. More recently, the same authors
have proposed the use of networked Hidden Markov
Models (HMM) for drum sound detection in polyphonic
music, using MFCCs and their first differences as char-
acteristic features.

Related to detecting subtle differences in percussive
sounds, Gillet and Richard have studied the automatic
recognition of Tabla strokes using a combination of
Gaussian Mixture Models (GMM) and HMMs [9]. This
line of study differs from typical instrument sound recog-
nition in that the instrument remains the same, and the
differences in sound arise from the stroke, and therefore
resembles the hand configuration inference problem of
[12] and [4].

For a more comprehensive overview of percussive sound
identification (in the context of musical transcription),
the reader is referred to [10] and [8].

3. MODEL-BASED TECHNIQUE FOR HAND
CLAP RECOGNITION

Simsekli and Cemgil have presented two probabilistic
models for online pitch tracking [17]. The models are
template-based and do not heavily depend on the ap-
plication, which makes the models fairly easy to apply

to percussive events. Instead of detecting pitch labels
from streaming audio data, in [4], one of the probabilis-
tic models has been adapted to percussive event tracking,
aiming at inferring a predefined set of short, percussive
events. Here, a summary of the model is presented; for
more details, see [4].

In the model, the audio signal is represented by its mag-
nitude spectrum that is computed via the fast Fourier
transform (FFT). xy ; is defined as the magnitude spec-
trum of the audio data with frequency index v and 7
as the time frame index. Here, v € {1,2,...,F} and
Tt € {1,2,..,T}. For each time frame 7, an indicator
variable r; is defined on a discrete state space D,, de-
termining the label we are interested in. D, consists of
event labels, i.e., in this study, clapper identities. The
indicator variables r; are hidden since they are not ob-
served directly.

In the model, the main idea is that each event has a cer-
tain characteristic spectral shape which is assumed to be
rendered by a specific hidden scaling variable, v;. The
spectral shapes, referred to as spectral templates, are de-
noted by ;. The v index is again the frequency index
and the index i indicates the event labels. Here, i takes
values between 1 and I, where [ is the number of differ-
ent spectral templates. The scaling variables v; define the
overall amplitude factor, by which the whole template is
multiplied. The probabilistic model is formally defined
as follows:

ro ~ p(ro)
’”1|”1—1 ~ p(rf|r1_1)

ve ~ 9 (vesay, by)

1
xv,r|V‘ra’”r ~ He@ﬁ(xv,r;tv,i‘/r)[rr:l]- (1
i=1

Here [x] = 1 if x is true, [x] = O otherwise and the sym-
bols & and &0 represent the Gamma and the Poisson
distributions respectively, where

Y (x;ay,by) = exp((a, — 1)logx — byx —logI'(ay)
+a,log(by)) 2)
PO(y; L) =exp(ylogh —A —logl(y+1)), ()
where I is the Gamma function.

The Poisson distribution, recently applied in non-
negative matrix factorization problems [3], is chosen as
the observation model. Also, a Gamma prior on v; is
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chosen to preserve conjugacy and make use of the scal-
ing property of the Gamma distribution. The conjugate
prior grants an analytic closed-form solution to the pos-
terior.

Moreover, a Markovian prior is chosen on the indica-
tor variables, r; which means r; depends only on r;_;.
A single state is used in order to represent the acoustic
events (i.e. hand claps).

One advantage of this model is that the scaling variables
v can be integrated out analytically. It is easy to check
that once this is done, provided the templates #, ; are al-
ready known, the model reduces to a standard Hidden
Markov Model (HMM) with a Compound Poisson ob-
servation model as shown below:

p(xle,r|rr = i)

log P 0 (xy 1;vety i) +10g¥ (vesay, by))

:/dvf exp(i

v=1

F
=exp <logF<Zx”+av> ZlogF (xyz+1)

v=1
F
+ va,rtv,i— xvr+av log Ztvz+b
v=1 =1
+a,logh, — log a)) 4)

As we have a standard HMM from now on, the well-
known forward algorithm can be run in order to perform
inference on the model. Also, the most probable state
sequence can be estimated by running the Viterbi algo-
rithm, which lets us identify the clappers on streaming
audio. A benefit of having a standard HMM is that the
inference algorithm can be made to run very fast. There-
fore, the inference scheme can be implemented in real-
time without any approximation [1]. Furthermore, for
learning the spectral templates, the well-known Expecta-
tion - Maximization (EM) algorithm is utilized (for de-
tails, see [4] and [16]).

Our previous work on recognizing different hand clap-
ping types has indicated that reverberation and room re-
flections can cause degradation in classification accuracy
with hand clapping sounds [4]. As a remedy, the algo-
rithm output is post-processed by skipping the 10 frames
(23.2 ms) after the initial non-silent frame for each de-
tected event to reduce the degradation effect.

4. RESULTS

Monophonic hand clapping sounds of 16 people were
recorded in a quiet room (concrete walls, reverberation
time around 0.7 s on low frequencies, 0.5 s at 250 Hz -
2000 Hz, and less than 0.3 s on high frequencies). The
sounds were captured with the built-in microphone of a
Dell laptop computer in order to keep the audio hardware
similar to a realistic use scenario. The distance between
the hands of the seated subjects and the microphone was
40-60 cm. The subjects were instructed to clap freely
with a constant tempo for a minimum of 30 seconds, re-
sulting in a sound bank of 78 claps per subject on average
(ranging from 44 claps of subject 2 to 138 claps of sub-
ject 12). The clapping style was not strictly controlled,
since we wanted to capture as natural clapping as possi-
ble.

The individual sound files of each clapper were seg-
mented into four segments of equal duration, and two
segments were randomly assigned as training data and
two as test data. In other words, the training and the
test data were both recorded in the same environment.
The model was then trained with the training data from
all 16 subjects, resulting in spectral templates. Fig. 1 il-
lustrates the templates learned by the algorithm after the
training. The differences in frequency distribution be-
tween different people can be clearly observed, but also
some very similar templates can be pinpointed, such as
those of subjects 9, 12, and 16, portraying a prominent
resonance around the lower frequencies, and 2, 3, and
11, having a concentration of energy within a common
wider frequency range. It should be noted, however, that
in some cases (such as with subject 2) the hand configu-
ration evolved throughout the clapping sequence, which
is also audible in the resulting sound file. As the template
represents the overall spectral shape, it can thus contain
information from a number of fluidly changing hand con-
figurations.

The classification accuracy was evaluated with the test
data from all 16 subjects. The classification results are
presented in Table 1. The overall performance of cor-
rectly classifying different people’s clapping is 64 %.
While the performance of the system varies between sub-
jects, it performs way beyond chance level (6.25 %) in
all cases. For people whose spectral templates clearly
contain unique high-energy regions, the results are very
good. Some subjects were very consistent with their
hand configuration during the recording, for example
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Fig. 1: Spectral templates of 16 subjects.

Table 1: Relative classification results for recognizing the clapping of 16 subjects. Row labels indicate target class and
columns the percentage (rounded) of classifying the claps of target class to all classes. Overall correct classification
rate is 64 %.

Subject A

Label | S1 | S2 | S3 | S4 | S5 S6 S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | SI5 | S16
S1 9% | 0 0 0 0 005 | 0 0 2 0 0 0 0 0 0 0
S2 4 22| 4 0 0 4 0 4 0 0 22 4 35 4 0 0
S3 5 9 |45 | 0 0 0 9 2 2 0 18 0 0 0 9 0
S4 0 0 4 1179 4 0 7 0 0 0 0 4 0 0 0 4
S5 0 0 0 0 | 100 0 0 0 0 0 0 0 0 0 0 0
S6 2 4 0 0 6 77 2 0 0 6 0 0 0 2 0 0
S7 121 0 0 11 5 2 60 | O 2 7 0 0 0 0 2 0
S8 0 10 | 13 3 0 0 0 |40 | O 0 7 0 20 7 0 0
S9 0 0 0 14 3 0 8 0 | 44 0 0 25 0 0 0 6
S10 6 0 4 0 2 0 12 ] 2 0 42 0 2 13 15 2 0
S11 3 13 8 0 3 3 0 3 0 0 68 0 0 0 3 0
S12 0 0 1 9 1 1 3 0 4 0 0 76 0 0 1 3
S13 2 9 0 9 5 9 9 0 0 2 2 0 49 2 0 0
S14 5 0 0 0 20 0 3 3 5 3 0 0 3 57 3 0
S15 0 0 0 10 5 2 2 2 0 2 0 2 0 0 74 0
S16 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 93
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subjects 5 and 16. Notably, subject 5 has a unique res-
onance structure observable from the template, yielding
100 % classification accuracy with this data set, while
the frequency distribution of subject 1 is very wideband
compared to most others with a couple of prominent res-
onances, giving 96 % correct classification.

On the other hand, for people, whose hand configuration
varied more during the recording, the classification re-
sults are less consistent. A systematic overlap can also be
observed between people, whose natural clapping sounds
according to the learned spectral templates are similar,
such as with subjects 2, 3, and 11.

The suggestion of Repp [15] that humans could iden-
tify their own hand clapping sound has previously not
been utilized in computational systems. The results of
this study show that the claim is plausible and that there
indeed are machine-identifiable spectral differences be-
tween the hand clap sounds of different people.

These results on identifying the person based on free
clapping sounds are promising and indicate that hand
claps could be used as one type of person identification,
but possibly not in systems with high security require-
ments. On the other hand systems such as multiplayer
video games or multi-user musical software could po-
tentially utilize hand claps as one identification mech-
anism. Combining the spectral template-based classifi-
cation with temporal patterning of the events could be
beneficial.

5. CONCLUSIONS

We proposed the use of a model-based machine learning
technique for person identification based on hand clap
sounds. The probabilistic model is generic and suitable
for the recognition of percussive sounds in real-time, and
has now been evaluated on the hand clapping sounds of
16 people. The results of clapper recognition are encour-
aging, and given the overall performance, we can assume
that clapping could be used as one identifier in appli-
cations requiring person identification. For example, in
multi-person games there is typically a limited number
(2-4) of players, and therefore the proposed method can
achieve arguably a higher classification rate than in this
study with 16 people.

One curious question is how well human listeners would
perform in a similar identification task, compared to the
64 % overall classification rate of our algorithm among

16 subjects. While we have not specifically tested this,
Repp’s results reported in [15] can provide some insight.
In his tests, while the participants identify their own claps
with a score of 46 % among 20 subjects, their overall
performance considering the whole group is 11 % when
self-recognition scores are excluded and 13 % when in-
cluded. One should note, however, that our experimental
design was very different from that of [15], where for in-
stance the subjects had three guesses about the identity
of the clapper.

In this experiment some of the clappers varied their hand
configuration during the test, so it is reasonable to as-
sume that had they been instructed to keep their hand
configuration constant, the results would be even better.
While we did not examine the utilization of temporal data
in this experiment, time-related information from multi-
ple claps could be used in combination with the spectral
information for improved accuracy. Clapper identifica-
tion based on a sequence of claps is likely more robust
than identifying the person based on a single clap, so
fusing the plain clap recognition with simple rhythmic
patterns can be considered a promising direction.

As discussed, reverberation and varying acoustic condi-
tions can degrade the recognition accuracy. If the room
response has strong resonances overlapping the strong
modes of a certain clapper, the algorithm can make clas-
sification errors. A future study is planned to quantify
the effects of varying acoustic conditions.

The model-based technique used in this study has been
designed for monophonic signals. A considerable chal-
lenge is to perform person identification in polyphonic
signals, such as dense, applause-type signals [13], akin
to how pitch detection is performed in polyphonic musi-
cal signals [17]. If this challenge can be tackled, many
applications of interactive spatial audio coding, for in-
stance point-of-view renderings of multichannel concert
recordings, will be possible.
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