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ABSTRACT

Probabilistic Latent Tensor Factorization (PLTF) is a recently

proposed probabilistic framework for modeling multiway

data. Not only the popular tensor factorization models but

also any arbitrary tensor factorization structure can be real-

ized by the PLTF framework. This paper presents Markov

Chain Monte Carlo procedures (namely the Gibbs sampler)

for making inference on the PLTF framework. We provide

the abstract algorithms that are derived for the general case

and the overall procedure is illustrated on both synthetic and

real data.

Index Terms— Probabilistic Latent Tensor Factorization

(PLTF), Markov Chain Monte Carlo (MCMC), Space Alter-

nating Data Augmentation (SADA)

1. INTRODUCTION

Factorization based data modeling has become popular to-

gether with the advances in the computational power. Non-

negative Matrix Factorization (NMF) model, proposed by Lee

and Seung [1], is one of the most popular factorization mod-

els where the aim is to estimate the matrices Z1 and Z2 as the

matrix X is observed:

X(i, j) ≈ X̂(i, j) =
∑

k

Z1(i, k)Z2(k, j). (1)

Here X , Z1, and Z2 are all non-negative matrices. This mod-

eling paradigm has found place in many fields including au-

dio/music processing, image processing, and bioinformatics

[2, 3, 4].

Although the NMF model has its own advantages, cer-

tain applications require more structured modeling and incor-

poration of prior knowledge where NMF can be inadequate.

Accordingly, several complex factorization models have been

proposed in the literature [4]. The Probabilistic Latent Tensor
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Factorization framework (PLTF) [5] enables one to incorpo-

rate domain specific information to any arbitrary factorization

model and provides the update rules for multiplicative gradi-

ent descent and expectation-maximization algorithms.

The PLTF framework is defined as a natural extension of

the matrix factorization model of (1):

X(v0) ≈ X̂(v0) =
∑

v̄0

∏

α

Zα(vα), (2)

where α = 1 . . .K denotes the factor index. Here the aim

is computing an approximate factorization of a given a mul-

tiway array X in terms of a product of individual factors Zα,

some of which are possibly fixed. The product
∏

α Zα(vα) is

summed over a set of indices which makes the factorization

latent.

In the PLTF framework, each tensor is described by an

index set. Here we define V as the set of all indices in a

model, V0 as the set of visible indices, Vα as the set of indices

in Zα, and V̄α = V −Vα as the set of all indices not in Zα. We

use small letters as vα to refer to a particular setting of indices

in Vα. For example, the NMF model of [1], introduced in

(1), can be defined in the PLTF framework by selecting the

index sets as V = {i, j, k}, V0 = {i, j}, V1 = {i, k}, and

V2 = {k, j}.

In this paper, we present Markov Chain Monte Carlo pro-

cedures (namely the Gibbs sampler) for making inference on

the PLTF framework. We first provide a more conventional

sampling schema, and then we describe how the sampling al-

gorithm can be made more efficient by making use of space

alternating data augmentation (SADA) [6]. We also describe

how the marginal likelihood of a tensor factorization model

can be estimated by using Chib’s method. Finally, we illus-

trate our method on both synthetic and real data.

1.1. Probability Model

The usual approach to estimate the factors Zα is trying to find

the optimal Z∗
1:K = argmin

Z1:K

d(X ||X̂), where d(·) is a di-

vergence typically taken as Euclidean, Kullback-Leibler or
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Fig. 1. The generative model of the PLTF framework

as a Bayesian network. The directed acyclic graph de-

scribes the dependency structure of the variables: the

full joint distribution can be written as p(X,S, Z1:K) =
p(X |S)p(S|Z1:K)

∏

α p(Zα).

Itakura-Saito divergences. Since the analytical solution for

this problem is intractable, one should refer to iterative or ap-

proximate inference methods.

In this study, we use the Kullback-Leibler (KL) diver-

gence as the cost function which is equivalent to selecting

the Poisson observation model [3, 5], while our approach can

be extended to other observation models where a composite

structure is present. The overall probabilistic model is defined

as follows:

Zα(vα) ∼ G(Zα(vα);Aα(vα), Bα(vα)) factor priors

Λ(v) =
∏

α

Zα(vα) intensity

S(v) ∼ PO(S(v); Λ(v)) components

X(v0) =
∑

v̄0

S(v) observation

X̂(v0) =
∑

v̄0

Λ(v) parameter

where the symbols PO and G symbols refer to Poisson and

Gamma distributions respectively, where

PO(s;λ) = e−λλ
s

s!
(3)

G(z; a, b) = e−bz z
a−1ba

Γ(a)
. (4)

The Gamma prior on the factors are chosen in order to pre-

serve conjugacy. The graphical model for the PLTF frame-

work is depicted in Fig 1. Note that p(X |S) is a degenerate

distribution that is defined as follows:

p(X |S) =
∏

v0

δ

(

X(v0)−
∑

v̄0

S(v)

)

. (5)

Here, δ(·) is the Kronecker delta function where δ(x) = 1
when x = 0 and δ(x) = 0 otherwise.

The rest of the paper is organized as follows: We de-

scribe the MCMC procedures and the method for estimat-

ing marginal likelihood (
∫
dZ1:K p(X |Z1:K)p(Z1:K)) in Sec-

tion 2. In Section 3, we illustrate the proposed approach on

three different factorization models. Section 4 concludes this

paper.

2. MARKOV CHAIN MONTE CARLO, THE GIBBS

SAMPLER

Monte Carlo methods are a set of numerical techniques to

estimate expectations of the form:

〈ϕ(x)〉π(x) ≈
1

N

N∑

n=1

ϕ(x(i)) (6)

where x(i) are independent samples drawn from the target

π(x). Under mild conditions on the test function ϕ, the es-

timate converges to the true expectation for N → ∞. The

difficulty here is obtaining independent samples from a non-

standard target density π.

The Markov Chain Monte Carlo (MCMC) techniques

generate subsequent samples from a Markov chain defined by

a transition kernel T , that is, one generates x(i+1) conditioned

on x(i) as follows:

x(i+1) ∼ T (x|x(i)). (7)

The transition kernel T is not needed explicitly in practice; all

is needed is a procedure to sample a new configuration, given

the previous one. Perhaps surprisingly, even though subse-

quent samples are correlated, provided that T satisfies certain

ergodicity conditions, (6) remains still valid, and estimated

expectations converge to their true values when number of

steps i goes to infinity. To design a transition kernel T such

that the desired distribution is the stationary distribution, that

is, π(x) =
∫
T (x|x′)π(x′)dx′, many alternative strategies

can be employed; the most popular one being the Metropolis-

Hastings (MH) algorithm [7]. One particularly convenient

and simple MH strategy is the Gibbs sampler where one sam-

ples each block of variables from the so called full conditional

distributions. The Gibbs sampler for the PLTF model may be

formed by iteratively drawing samples from the full condi-

tional distributions as follows:

S(i+1) ∼ p(S|Z
(i)
1:K , X,Θ) (8)

Z(i+1)
α ∼ p(Zα|S

(i), Z ′
¬α, X,Θ) α = 1 . . .K (9)

where Z ′
¬α denotes the most recent values of all the fac-

tors but Zα, Θ denotes the prior distribution parameters

{Aα, Bα}
K
α=1, and the full conditionals are defined as:

p(S|·) =
∏

v0

M

(

S(v0, V̄0);X(v0),
Λ(v0, V̄0)

X̂(v0)

)

(10)

p(Zα|·) =
∏

vα

G (Zα(vα); Σα(vα),Φα(vα)) (11)



Algorithm 1 Block Gibbs Sampler for PLTF

Input: Observed data X , Θ

Initialize factors: Z
(0)
α ∼ G(Zα;Aα, Bα) ∀α = 1 . . .K

for i = 1 . . .MAXITER do

Compute the intensity and parameter tensors:

Λ(v) =
∏

α Z
(i−1)
α (vα)

X̂(v0) =
∑

v̄0
Λ(v)

Sample Sources:

for all v0 ∈ V0 do

S(v0, V̄0)
(i) ∼ M

(

·;X(v0),
Λ(v0,V̄0)

X̂(v0)

)

end for

Sample Factors:

for α = 1 . . .K do

for all vα ∈ Vα do

Σα = Aα(vα) +
∑

v̄α
S(i)(v)

Φα = Bα(vα) +
∑

v̄α

∏

α′ 6=α Z ′
α′(vα′ )

(Z ′
α refers to the most recent value of Zα)

Z
(i)
α (vα) ∼ G (Zα(vα); Σα,Φα)

end for

end for

end for

where

Σα(vα) = Aα(vα) +
∑

v̄α

S(v) (12)

Φα(vα) = Bα(vα) +
∑

v̄α

∏

α′ 6=α

Zα′(vα′ ). (13)

Here, Λ is the intensity tensor that is defined in Section 1.1,

G is the Gamma distribution and M refers to the Multinomial

distribution that is defined as follows:

M(s;x,p) = δ(x−
∑

i

si)x!

I∏

i=1

psii
si!

(14)

where s = {s1, . . . , sI} and p = {p1, . . . , pI}. Verbally,

given a particular instance of observed indices v0, the full

conditional of S is a Multinomial distribution over all the la-

tent indices V̄0.

Note that, it can easily be verified that the Gibbs sampler

for the NMF model that is presented in [3] is a special case of

our method. The pseudo-code is given in Algorithm 1 and this

procedure will be illustrated with an example in Section 3.

2.1. Efficient Inference with Space Alternating Data Aug-

mentation

Space alternating data augmentation (SADA) was first pre-

sented in [8] for making inference in Gaussian mixture mod-

els. In a recent work [6], Fevotte et al. presented a MCMC

procedure with SADA for making inference in composite

models including NMF. In this section we will generalize this

procedure to the PLTF framework.

The main idea behind SADA is sampling each slice of the

components from their marginal distribution instead of sam-

pling all the slices from their full conditional at the same time.

This approach significantly reduces the memory requirements

of a sampler since it only requires storing |V0| elements in-

stead of |V | elements of the latent components at each itera-

tion of the sampling procedure.

Applying the SADA algorithm to the PLTF framework

is not straightforward since the index structure for different

models can lead to different conditional independence struc-

tures. Therefore, we rewrite the original PLTF model (2) as

a collection of several ‘marginal’ models, one for each latent

factor Zα as follows:

X̂(v0) =
∑

v̄0∩vα

Zα(vα)
∑

v̄0∩v̄α

∏

α′ 6=α

Zα′(vα′)

︸ ︷︷ ︸

≡Λα(λα)

(15)

where λα = v \ (v̄0 ∩ v̄α). We also define Sα(λα) by using

the additivity property of Poisson distribution:

Sα(λα) ∼ PO(Sα(λα); Λα(λα)) (16)

X(v0) =
∑

v̄0∩vα

Sα(λα). (17)

In the SADA algorithm, each slice of Sα is drawn from its

marginal distribution and then each Zα is drawn by condi-

tioning on Sα. Curious reader is referred to [6] for a detailed

description and the proof of convergence for the matrix case.

The pseudo-code is given in Algorithm 2. Note that the BI
symbol in the pseudocode refers to the Binomial distribution:

BI(s;x, p) =
x!

s!(x− s)!
ps(1− p)(x−s). (18)

2.2. Marginal Likelihood Estimation with Chib’s Method

The marginal likelihood of the observed data under a tensor

factorization model p(X) is often necessary for certain prob-

lems such as model selection. This quantity can be estimated

from the Gibbs output and it is known as the Chib’s method

[9]. This method is applied in [3] for NMF; here we general-

ize it in order to estimate the marginal likelihood for the PLTF

framework.

Suppose the Gibbs sampler has been run until conver-

gence and we haveN samples for each variable. The marginal

likelihood is defined as:

p(X) =
p(S,Z1:K , X)

p(S,Z1:K |X)
. (19)

This equation holds for all points (S,Z1:K). Provided that the

distribution is unimodal, a good candidate point in the con-

figuration space is a configuration near the mode (S̃, Z̃1:K).



Algorithm 2 SADA Sampler for PLTF

Input: Observed data X , Θ

Initialize factors: Z
(0)
α ∼ G(Zα;Aα, Bα) ∀α = 1 . . .K

for i = 1 . . .MAXITER do

for α = 1 . . .K do

for all vα ∈ Vα do

X̂(v0) =
∑

v̄0

∏

α Z ′
α(vα)

Sample Slices of Components

for all v0 ∈ V0 do

Λα(vα ∪ v0) =
∑

v̄α∩v̄0

∏

α′ Z ′
α′(vα′)

S
(i)
α (vα ∪ v0) ∼ BI

(

·;X(v0),
Λα(vα∪v0)

X̂(v0)

)

end for

Sample Factors

Σα = Aα(vα) +
∑

v̄α
S
(i)
α (λα)

Φα = Bα(vα) +
∑

v̄α

∏

α′ 6=α Z ′
α′(vα′ )

(Z ′
α refers to the most recent value of Zα)

Z
(i)
α (vα) ∼ G (Zα(vα); Σα,Φα)

end for

end for

end for

The numerator (the full joint distribution) is straightforward

to evaluate. We can expand the denominator as follows:

p(S̃, Z̃1:K |X) =p(Z̃1|Z̃2:K , S̃)p(Z̃2|Z̃3:K , S̃) . . .

p(Z̃K−1|Z̃K , S̃)p(Z̃K |S̃)p(S̃|X) (20)

=p(S̃|X)p(Z̃1|Z̃2:K , S̃)

K∏

α=2

p(Z̃α|Z̃α+1:K , S̃), (21)

where p(Z̃K |Z̃K+1, S̃) = p(Z̃K |S̃). The ordering of the vari-

ables at this expansion step can be changed, however without

loss of generality we assume that the ordering is Z1 . . . ZK .

The term p(Z̃1|Z̃2:K , S̃) is full conditional, so it is avail-

able for the Gibbs sampler. We can also approximate p(S̃|X)
as:

p(S̃|X) =

∫

dZ1:K p(S̃|Z1:K , X)p(Z1:K |X) (22)

≈
1

N

N∑

i=1

p(S̃|Z
(i)
1:K , X). (23)

Evaluating the term p(Z̃α|Z̃α+1:K , S̃) is more compli-

cated. Firstly, we start by rewriting the term p(Z̃K |S̃) as:

p(Z̃K |S̃) =

∫

dZ1:K−1 p(Z̃K |Z1:K−1, S̃)p(Z1:K−1|S̃)

(24)

The first term here is again full conditional. However, we

do not have samples from the distribution p(Z1:K−1|S̃) since

the sampler gives us samples from p(Z1:K−1|X). The so-

lution is approximating this term by running the Gibbs sam-

pler M more iterations and clamping S at S̃: (Z
(N+m)
1:K ) ∼

p(Z1:K |S = S̃). The estimate is as follows:

p(Z̃K |S̃) ≈
1

M

N+M∑

m=N+1

p(Z̃K |Z
(m)
1:K−1, S̃). (25)

We can apply the same idea to the rest of the terms in (21)

by clamping some of the factors and running the sampler M

more iterations for each α = (K − 1), . . . , 2. The resulting

estimation is as follows:

p(Z̃α|Z̃α+1:K , S̃)

=

∫

dZ1:α−1 p(Z̃α|Z1:α−1, Z̃α+1:K , S̃)p(Z1:α−1|Z̃α+1:KS̃)

≈
1

M

uα∑

m=lα

p(Z̃α|Z
(m)
1:α−1, Z̃α+1:K , S̃) (26)

where lα and uα denote the first and the last indices of the

drawn samples while p(Z̃α|Z̃α+1:K , S̃) is being estimated

and they are defined as lα = N + (K − α)M + 1 and

uα = N + (K − α+ 1)M .

After replacing the terms in (21) with their estimates that

are defined in (23) and (26), Chib’s method estimates the

marginal likelihood as follows:

log p(X) = log p(S̃, Z̃1:K , X)− log p(S̃, Z̃1:K |X) (27)

≈ log p(S̃, Z̃1:K , X)− log p(Z̃1|Z̃2:K , S̃)

− log

N∑

i=1

p(S̃|Z
(i)
1:K , X)

−

K∑

α=2

log

uα∑

m=lα

p(Z̃α|Z
(m)
1:α−1, Z̃α+1:K , S̃)

+ log(K − 1)MN. (28)

3. EXPERIMENTS

In this section, we will illustrate the block and SADA sam-

pler and Chib’s method on three different tensor factorization

models: a deconvolution model, a Parafac model, and an ex-

tended version of the NMF model.

3.1. Model I

Convolutive models emerge in various fields such as audio

processing, image processing or seismic sciences. In order

to illustrate the proposed sampling schemata, we give the de-

convolution problem as an example and define it as a tensor



10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

Z
1

 

 Ground Truth

Block

SADA

10 20 30 40 50 60 70 80 90 100 110
0

50

100

Z
2

10 20 30 40 50 60 70 80 90 100 110
0

500

1000

1500
X

50 100 150 200 250 300 350 400 450 500
−10

4

−10
3

−10
2

Log Likelihood

Fig. 2. Inference results for Model I. From top to bottom: the

first and second figures show the real and the estimated val-

ues for the first factor (Z1) and the second factor (Z2), respec-

tively. Third: Observed signal (X) and the model predictions

(X̂). Fourth: Log likelihood vs iteration plots of the samplers.

factorization problem as follows:

X(t) ≈ X̂(t) =
∑

r

Z1(r)Z2(

d
︷︸︸︷

t− r)

=
∑

r,d

Z1(r)Z2(d)Z3(d, t, r) (29)

where Z1 and Z2 are the convolved signals and X̂ is the out-

put signal. In order to be able to define this model in the PLTF

framework, we define a dummy index d and a dummy tensor

Z3(d, t, r) = δ(d− t+ r), where δ(·) is the Kronecker delta

function.

In order to build the samplers, we first start by defining the

index sets for this particular model: V = {t, r, d}, V0 = {t},

V1 = {r}, V2 = {d}, and V3 = {t, r, d}. After placing these

index sets in Algorithm 1, we obtain the block Gibbs sampler

as presented in Algorithm 3. Similarly, we can also obtain

the SADA sampler for this model by placing these index sets

in Algorithm 2. The inference results of block and SADA

samplers on a toy problem are illustrated in Figure 2.

3.2. Model II

Parafac (also known as Candecomp or CP) is a popular model

for decomposing three-way data and has been used in many

fields including chemometrics, psychometrics, and signal

processing [4]. The model is defined as:

X̂(i, j, k) =
∑

m

Z1(i,m)Z2(j,m)Z3(k,m) (30)

where the three-way tensor X is decomposed into three ma-

trices, Z1, Z2, and Z3. In practice, the optimal number of

Algorithm 3 Block Gibbs Sampler for Model I

Input: Observed data X , Aα, Bα ∀α = 1, 2

Initialize factors: Z
(0)
α ∼ G(Zα;Aα, Bα) ∀α = 1, 2

for i = 1 . . .MAXITER do

Compute the intensity and parameter tensors:

Λ(t, r, d) = Z ′
1(r)Z

′
2(d)Z3(d, t, r)

X̂(t) =
∑

r,d Λ(t, r, d)
Sample Sources:

for all i do

S(t, :, :)(i) ∼ M
(

·;X(t), Λ(t,:,:)

X̂(t)

)

end for

Sample Z1:

for all r do

Σ1 = A1(r) +
∑

t,d S
(i)(t, r, d)

Φ1 = B1(r) +
∑

t,d Z
′
2(d)Z3(d, t, r)

Z
(i)
1 (r) ∼ G (Z1(r); Σ1,Φ1)

end for

Sample Z2:

for all d do

Σ2 = A2(d) +
∑

t,r S
(i)(t, r, d)

Φ2 = B2(d) +
∑

t,r Z
′
1(r)Z3(d, t, r)

Z
(i)
2 (d) ∼ G (Z2(d); Σ2,Φ2)

end for

end for
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Fig. 3. Model selection results for Model II. The marginal

Likelihood of the three-way observed data under the CP

model (
∫
dZ1:3 p(X |Z1:3)p(Z1:3)) is estimated by using

Chib’s method.

components (indexed with m above) is not known beforehand

and should be estimated.

In order to test our approach for model selection, we gen-

erated synthetic data where |i| = 10, |j| = 5, |k| = 8, and

|m| = 3 and applied Chib’s method to estimate marginal like-

lihood of the observed tensor under CP models with different

number of components. Figure 3 shows the marginal likeli-

hood estimates of the synthetic data for different number of

components. It can be seen that the marginal likelihood esti-

mate is at the highest when the correct number of components

is selected.

3.3. Model III

Pioneering work on NMF for audio processing [10] has

demonstrated that factorization based audio modeling can be

very powerful. Many factorization based models have been
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and SADA sampler.

proposed for several audio/music processing applications

such as source separation, transcription, and restoration.

We slightly modify the NMF model and define the follow-

ing audio model:

X̂(f, t) =
∑

i

Z1(f, i)

∑
k
Z2(i,k)Z3(k,t)
︷ ︸︸ ︷

Z(i, k)

=
∑

i,k

Z1(f, i)Z2(i, k)Z3(k, t) (31)

where X(f, t) is the observed magnitude spectrum of the au-

dio, f is the frequency index, and t is the time-frame index.

When the musical signals are considered, i is called the note

index. Here, Z1 is called the ‘spectral dictionary’ since it en-

capsulates the spectral information for each musical note and

Z is called the ‘excitation’ matrix. In this particular model we

hierarchically decompose the excitation matrix as multiplica-

tion of a chord dictionary matrix Z2 and its weights Z3. Here

the basis matrix Z2 encapsulates the harmonic structure of

the music and incorporates additional information to the fac-

torization model. Note that, similar models to this model have

been applied to different audio/music processing applications

such as audio restoration [11] and musical source separation

[12] and promising results have been reported.

We ran both the block sampler and the SADA sampler

on a short polyphonic piano sound. We first estimated and

fixed the spectral dictionary Z1 than ran the inference algo-

rithms. We used 4 spectral templates and 3 chord templates

while having 1025 frequency bins and 86 time frames. Fig-

ure 4 shows the log-likelihoods of the algorithms. It can be

observed that, both algorithms converge smoothly. Matlab

implementations of these algorithms are available at http:

//www.cmpe.boun.edu.tr/˜umut/pltf_mcmc/.

4. CONCLUSION

In this paper, we presented Markov Chain Monte Carlo pro-

cedures for making inference on the PLTF framework. We

first provided a conventional sampling schema, and a more

efficient sampling algorithm that makes use of space alternat-

ing data augmentation. We also described how the marginal

likelihood of a tensor factorization model can be estimated by

using Chib’s method. The proposed methods were illustrated

on three different tensor factorization models.

As a future direction and a next step of this work, we aim

to extend our method in order to be able to make inference on

tensor factorization models where multiple observed tensors

(X1, . . . , XK) can share a set of factors [11]. As another ex-

tension to the proposed approach, we also aim to apply more

complex MCMC methods to the tensor factorization problem,

such as the reversible jump algorithm.
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