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ABSTRACT

This paper introduces probabilistic latent tensor factorization

(PLTF) as a general framework for hierarchical modeling of au-

dio. This framework combines practical aspects of graphical mod-

eling of machine learning with tensor factorization models. Once

a model is constructed in the PLTF framework, the estimation al-

gorithm is immediately available. We illustrate our approach using

several popular models such as NMF or NMF2D and provide exten-

sions with simulation results on real data for key audio processing

tasks such as restoration and source separation.

Index Terms— Audio Modeling, Probabilistic Latent Tensor

Factorization, Factor graphs, Statistical Inference, Message Passing

1. INTRODUCTION

The last decade has witnessed a rapid development of statistical

modeling techniques for various audio applications related to music

information retrieval and content analysis, such as transcription or

source separation.

A particularly useful modeling paradigm, leading to practical

and useful algorithms has been based on matrix factorization [1].

As a particular example, given an observed audio spectrogram X as

a matrix of frequency and time indices f and t, one searches for a

decomposition of form

X(f, t) ≈ X̂(f, t) =
∑

i

D(f, i)E(i, t) (1)

Typically, the goal is to find optimal matrices D∗ and E∗ such that

(D∗, E∗) = argmin
D,E

d(X, X̂) (2)

where d is a divergence (a quasi-squared-distance) typically taken

as Euclidean, Kullback-Leibler (KL) or Itakura-Saito (IS). The β-

divergence generalizes all this divergences and enables a unified

treatment [1, 2, 3]

dβ(x, y) =







1
β(β−1)

(

xβ + (β − 1)yβ − βxyβ−1
)

β 6∈ {0, 1}

x(log x− log y) + (y − x) β = 1
x/y − log(x/y)− 1 β = 0

(3)
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Pioneering work on Nonnegative Matrix Factorization (NMF) for

audio processing [4] has demonstrated that, provided that model

order is properly chosen, the computed factors D and E tend to be

semantically meaningful as they correlate well with the intuitive no-

tion of spectral templates and a musical score. Various extensions

and improvements have been proposed for transcription or source

separation [2]. NMF and related extensions have also a natural in-

terpretation as probabilistic generative models [3, 5].

This paper introduces probabilistic latent tensor factorization

(PLTF) as a general framework for hierarchical modeling of au-

dio. PLTF derives inspiration from two apparently independently

developed tools, namely probabilistic graphical models of statisti-

cal machine learning [6] and tensor decompositions of multiway

analysis [7]. The key motivation behind PLTF is that many use-

ful models scattered in the audio and music processing literature

can be expressed compactly using a tensor factorization and con-

traction (summing over a set of indices) formalism; we will give

several examples later in the paper. In statistical machine learning

literature, it is standard to represent a multivariate probability distri-

bution as a product of local potential functions that describe interac-

tions between random variables. A popular graphical representation

for such objects is a factor graph; this is a bipartite graph of factor

nodes (typically shown as black squares) and variable nodes (shown

as white circles). Each factor node corresponds to a local function

and each variable node corresponds to a random variable. The in-

ference algorithm (e.g. for computing marginal distributions and

moments) can be implemented as a message passing algorithm on

the factor graph [6].

In PLTF, we represent a tensor model by a factor graph, where

now factor tensors correspond to factor nodes and indices corre-

spond to variable nodes. An index i is connected to a tensor node

Z if it appears as an index of Z. One novel contribution of PLTF

is that, once a model is represented in this form, the inference al-

gorithm to estimate the tensor factorization can also be derived au-

tomatically from the factor graph specification. Note that, unlike in

probabilistic graphical models, in PLTF, the factor graph does not

represent a probability measure; only the algebraic representation

is analogous. Yet, this analogy enables us to derive novel message

passing algorithms. Perhaps more importantly, this gives a flex-

ibility for building increasingly more complex hierarchical models

easily without much extra effort; we believe that this is both of prac-

tical and theoretical interest to the audio processing community.
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Table 1: Update rules for different β values

β Cost Function Multiplicative Update Rule

0 Itakura-Saito Zα ← Zα ◦
∆α(M◦X/X̂2)

∆α(M/X̂)

1 Kullback-Leibler Zα ← Zα ◦
∆α(M◦X/X̂)

∆α(M)

2 Euclidean Zα ← Zα ◦
∆α(M◦X)

∆α(M◦X̂)

1.1. Probabilistic Latent Tensor Factorization

The latent tensor factorization model [8] is given as a natural exten-

sion of the matrix factorization model of (1)

X(v0) ≈ X̂(v0) =
∑

v̄0

∏

α

Zα(vα), (4)

where our goal is computing an approximate factorization of a given

a multiway array X in terms of a product of individual factors Zα,

some of which are possibly fixed. The product
∏

α Zα(vα) is col-

lapsed over a set of indices, hence the factorization is latent. The

optimization problem is again minimization of d(X, X̂). Here, we

define V as the set of all indices in a model, V0 as the set of visible

indices, Vα as the set of indices in Zα, and V̄α = V − Vα as the set

of all indices not in Zα. We use small letters as vα to refer to a par-

ticular setting of indices in Vα. For example, in this framework, the

NMF model of [9], introduced in (1) would be represented via the

dictionary matrix Z1 ≡ D, the excitations Z2 ≡ E, and the index

sets V = {f, t, i}, V0 = {f, t}, V1 = {f, i}, and V2 = {i, t}. The

factor graph corresponding to the NMF model is shown in Table 2.

1.2. Inference

The inference, i.e., estimation of the latent factors Zα can be

achieved via iterative optimization (see [8]). For nonnegative data

and factors, one can obtain the following compact fixed point equa-

tion where each Zα is updated in an alternating fashion fixing the

other factors Zα′ for α′ 6= α

Zα ← Zα ◦
∆α(M ◦X ◦ X̂

β−2)

∆α

(

M ◦ X̂β−1
) , (5)

where ◦ is the Hadamard product (element-wise product) and M
is a 0 − 1 mask array where M(v0) = 1 (M(v0) = 0) if X(v0)
is observed (missing). In this iteration, the key quantity is the ∆α

function that is defined as

∆α(A)(vα) ≡
∑

v̄α



A(v0)
∏

α′ 6=α

Zα′(vα′)



 . (6)

For updating Zα, we need to compute this function twice for argu-

ments A = M ◦X ◦ X̂β−2 and A = M ◦ X̂β−1. As an example,

it is easy to verify that the update equations for the KL-NMF prob-

lem (for β = 1) are obtained as a special case of (5). Further cases

are summarized in Table 1. A key observation is that the ∆α func-

tion is computing a product of tensors and collapses this product

over indices not appearing in Zα. Algebraically, this is equivalent

to computing a marginal sum; a task for which several graph based

algorithms exist.

It is also easy to regularize the model or incorporate prior

knowledge (such as sparsity). For example, in the case of the KL

divergence, we can choose a gamma prior model

Zα(vα) ∼ G(Zα(vα);Aα(vα), Bα(vα)/Aα(vα))

where G denotes the gamma distribution G(x; a, b) =
baxa−1 exp(−bx)/Γ(a). In this case, the update equation is

slightly altered and becomes

Zα ←
(Aα − 1) + Zα ◦∆α(M ◦X/X̂)

Aα/Bα +∆α (M)
(7)

For the general case of the β divergence, the choice of priors are

more delicate [10], which we omit from this publication.

2. HIERARCHICAL FACTORIZATIONS FOR AUDIO

The NMF model has obvious limitations due to unrealistic model-

ing assumptions; spectral template components at each frequency

bin are weighted with the same coefficient. To capture richer tem-

poral variations observed in real audio signals, in [11], Smaragdis

introduced the non-negative matrix factor deconvolution (NMFD)

that is defined by

X̂(f, t) =
∑

τ,i

D(f, τ, i)E(i,

d
︷ ︸︸ ︷

t− τ).

=
∑

τ,i,d

D(f, τ, i)E(i, d)Z(d, t, τ) (8)

Here, we have introduced a new dummy index d and define a new

factor Z(d, t, τ) = δ(d− t+ τ) to express this model in our frame-

work. Here, Z is a constant factor not to be updated during the iter-

ations. Again, the update equations are immediately available from

(5). For example, for KL cost, after straightforward simplifications,

one obtains the ∆ functions required for the updates

∆D(A)(f, τ, i) =
∑

t

A(f, t)E(i, t− τ) (9)

∆E(A)(i, d) =
∑

f,t

A(f, t)D(f, t− d, i) (10)

where each function needs to be computed for A = M ◦X/X̂ and

A = M . These are convolutions, hence computation can be further

accelerated via FFT.

The convolutive model has been further extended by Schmidt

and Mørup [12] as the Non-negative Matrix Factor 2D Deconvolu-

tion (NMF2D) to factorize a log-frequency spectrogram (constant-

Q) using a model that can represent both temporal structure and the

pitch changes when an instrument plays different notes. The key

idea of this elegant model is that on log-frequency index, modu-

lations correspond to shifts. We can reformulate the model in the

PLTF framework as

X̂(f, t) =
∑

i,φ,τ

D(

ν
︷ ︸︸ ︷

f − φ, τ, i)E(φ,

d
︷ ︸︸ ︷

t− τ , i) (11)

=
∑

i,φ,τ,ν,d

D(ν, τ, i)E(φ, d, i)Z1(ν, f, φ)Z2(d, t, τ)
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Table 2: Models, index sets and factor graphs. For NMF, NMFD, NMF2D, D, E denote the dictionary and the excitations; for SF-SSNTF

G are gains of sources, H is a filter, N is a harmonic dictionary and W are harmonic weights. Gray shaded nodes are visible indices. In all

models f, t correspond to frequency and time frame, In NMF* models, i is the template index and ν, τ are the ‘local’ frequency and time

indices of spectral templates. In SF-SSNTF, i, p, r, c correspond to instrument, harmonic, note label and channel indices.

Symbol NMF NMFD NMF2D SF-SSNTF

Model V {f, t, i} {f, t, τ, i, d} {f, t, ν, τ, i, φ, d} {c, t, f, i, p, r, τ, d}
Observed V0 {f, t} {f, t} {f, t} {c, t, f}
Latent V̄0 {i} {τ, i, d} {ν, τ, i, φ, d} {i, p, r, τ, d}

Factors
{f, i} {f, τ, i} {d, i} {ν, τ, i} {φ, d, i} {c, i} {f, i} {f, p, r}
{i, t} {d, t, τ} {ν, f, φ} {d, t, τ} {p, i, τ} {r, i, d} {d, t, τ}

D

E

f

i

t

D

E
Z

f

i

dt

τ

Z1

ED

Z2

f

φν i

t

dτ

NG H

EW

Z

fc

rp i

t

dτ

here Z1 = δ(ν − f + φ) and Z2 = δ(d− t+ τ) are fixed. We do

not derive explicitly the update equations here; these follow again

directly from (5). Both models are shown in Table 2.

A related model, proposed by [13], FitzGerald et al. is the

Source-Filter Sinusoidal Shifted Nonnegative Tensor Factorization

Model (SF-SSNTF). A model in the same spirit is also proposed in

[14] by Klapuri et al. The model mimics physically inspired source-

filter models of audio production in the spectral domain, such as a

harmonic excitation multiplied by spectral envelope of a body re-

sponse filter and is defined by

X̂(c, t, f) =
∑

i,p,r,τ

G(c, i)H(f, i)N(f, p, r)W (p, i, τ)E(r, i,

d
︷ ︸︸ ︷

t− τ)

(12)

where G is the gain of each channel, H is the formant filter, N is

the harmonic dictionary, W is the harmonic weight tensor, and E
is the excitation tensor. This model is fairly complex to describe as

it contains both convolutive and hierarchical elements; a derivation

and implementation from scratch is also not straightforward. Again,

by defining a dummy index d and setting Z = δ(d − t + τ) we

obtain the rightmost model given in Table 2, for which the update

equations are directly available in our framework.

2.1. Extensions

In this section, based on the PLTF framework, we will propose ex-

tensions to the models introduced in the previous section. These

concentrate mainly on modeling spectral templates hence focus on

the dictionary but do not exploit temporal continuity or sparsity.

For example, in two dimensional non-negative factor deconvolu-

tion model, we wish to interpret the excitation tensor E(φ, d, i) as

a piano-roll like representation, where a large value indicates the

presence of note φ at time d, played by the i’th source. Hence, it

seems more natural to model the elements of this tensor to reflect

statistical properties of piano rolls. For NMF models, temporal con-

tinuity and smoothness can be enforced via Markovian priors such

as Gamma chains [15]. Here we develop two alternative approaches

Table 3: Evaluation of the models on missing audio restoration

SNR MSE

IS KL EUC IS KL EUC

NMFD 2.99 4.74 5.05 4.43 2.91 2.68
SF-SSNTF −0.28 5.09 5.06 15.00 2.57 2.59
NMFD + I 3.01 6.00 6.91 5.89 2.23 1.68
NMFD + II 5.00 5.79 5.80 2.74 2.20 2.17

that fit directly to the PLTF framework. The decompositions are:

E(φ, d, i) =
∑

k,l

B(k, l)C(k,

α
︷ ︸︸ ︷

d− l, φ, i) (I) (13)

E(φ, d, i) =
∑

k

B(k, d)C(k, φ, i) (II) (14)

The first approach (I) is in the spirit of convolutive models, where

we decompose the excitations as shifted and scaled versions of vec-

tors from a predetermined excitation dictionary B where B(k, l)
denotes the l’th element of k’th basis vector. Here, C(k, α, φ, i) is

a tensor which dictates where the continuous basis functions will be

replicated in time. Note that for each note φ and source i, we con-

volve two sequences to have the corresponding excitation vector in

time but the catalog is shared, reducing significantly the number

of free parameters. The second decomposition (II) is simpler and

is based on a basis spline approach. Here we use a dictionary B
where for each k, the basis vector B(k, :) has the shape of a lo-

cally concentrated triangle: by superposition of these basis vectors

we can model piecewise linear functions with knot points located

at triangle centers. All the extended models and the corresponding

factor graphs are shown in Figure 1. In the next section, we will

illustrate the performance of our models on two audio processing

tasks, namely restoration and source separation.
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Figure 1: Graphical representations of the extended models. a)

NMFD+I b) NMFD+II c) NMF2D+I d) NMF2D+II

Table 4: Evaluation of models on blind source separation

Model SDR SIR SAR

NMF2D 6.10 19.00 7.50
SF-SSNTF [13] ≈ 8.00 ≈ 24.00 ≈ 8.00
NMF2D + I 6.19 19.84 6.84

3. RESULTS

In our restoration experiments, we used a database of 50 short mono

audio examples sampled at 44.1kHz used in [13] (available on-

line). For each example, we compute a spectrogram with frame-

length of 1024 samples with no overlap. Then, we remove ran-

domly blocks of 10 consecutive time frames, corresponding to ap-

prox. 250ms gaps. In total, 20 per cent of each audio file was re-

moved but the gaps are quite long. We compute the signal-to-noise

ratio (SNR) and the mean squared error (MSE) using the true and

predicted magnitude spectrogram coefficients. The performances

of the models on restoration are given in Table 3, we see that our

extensions are effective. For source separation experiment we use

the same database, where we simply sum pairs of examples. For

each mixture, we compute a constant-Q-transform using the tool-

box provided in [16] and iteratively estimate the magnitude spec-

trogram of the sources. For reconstruction, we use the phase spec-

trogram of the mixture for both sources. For performance evalu-

ation, we compute the source-to-distortion ratio (SDR), source-to-

interference ratio (SIR), and source-to-artifact ratio (SAR) which

are defined in [17]. The results are shown in Table 4. In this

case, the extensions seem to be somewhat less effective. The de-

tailed derivations and the evaluation results are available on http:

//www.cmpe.boun.edu.tr/˜umut/pltf_audio.

Conclusion and Future Work: We have introduced PLTF as a

general framework for hierarchical modeling of audio. PLTF com-

bines practical aspects of graphical modeling such as ease of model

construction and systematic development of an inference algorithm.

The approach is particularly handy for the treatment of complicated

tensor factorization models. We have not investigated Bayesian

techniques for incorporating conjugate priors for regularization, as

well as model selection and comparison issues, i.e., questions re-

garding the cardinality of latent indices (such as choosing the num-

ber of spectral templates, the size of the catalog etc.) or comparing

between two alternative tensor factorization models. As the models

get increasingly more complicated, model selection and/or regular-

ization issues become central and we perceive the need for a full

Bayesian treatment. Fortunately, these computations can also be

carried out in a mechanical fashion and this is our current active

research. Other technical issues are automatic inference code gen-

eration from a model specification and parallelization.
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