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Material based on:



“The top 1% of a population owns 40% of the wealth; the top 2% of Twitter users 

send 60% of the tweets.  These figures are always reported as shocking […] as if 

anything but a bell curve were an aberration, but Pareto distributions pop up all over.  

Regarding them as anomalies prevents us from thinking clearly about the world.”

                        - Clay Shirky in Newsweek (2011)
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ML researchers algorithms



We’re taught the Gaussian is the “Normal distribution”



But, heavy tails are “more normal than the Normal”



In ML/AI, heavy tails are common in inputs to models

& created by core algorithms like SGD.



In ML/AI, heavy tails are common in inputs to models

& created by core algorithms like SGD.

…yet many ML algorithms are designed and analyzed using 

intuition and tools based on light-tailed assumptions.



Heavy-tailed phenomena are typically treated as something 

Mysterious,  Surprising, & Controversial

Our intuition is flawed because intro probability 

classes treat heavy-tails as curiosities

Simple, appealing statistical 

approaches for estimating them 

have BIG problems



An historic example: 

Networking “discovers” heavy tails (early 2000s)





The existence of heavy-tails required rethinking

network design & communication protocols



Example: Scheduling

λ

Load: 𝜌 = 𝜆𝐸 𝑋 < 1

𝑋3 𝑋2 𝑋1

What order should jobs be served in to 

minimize Pr 𝐷𝑒𝑙𝑎𝑦 > 𝑡  for large 𝑡?

Light-tailed Heavy-tailed

FIFO is optimal SRPT is optimal
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Example: The fragility of the internet

Light-tailed Degrees Heavy-tailed Degrees

Hubs are vulnerabilities?
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Hubs are vulnerabilities?



But all was not as it seemed…



There are similar stories in power networks, 

social networks, biology, astronomy, chemistry,…



Many of the controversies are still not resolved…



All of this has happened before.

All of this will happen again. 

                            

- Battlestar Galactica 

    (orig. from Peter Pan by J.M. Barrie)



ML/AI is next!



Heavy-tailed phenomena are typically treated as something 

Mysterious,  Surprising, & Controversial

Our intuition is flawed because intro probability 

classes focus on light-tailed distributions

Simple, appealing statistical 

approaches for estimating them 

have BIG problems



Mysterious,  Surprising, & Controversial

1. Properties 
2. Emergence 

3. Identification 
(We won’t do this one today)

4. Algorithm Design  

Heavy-tailed phenomena are typically treated as something 



Definition:  A random variable is heavy-tailed iff ∀𝑠 > 0,

 lim
𝑥→∞

𝑒𝑠𝑥 Pr 𝑋 > 𝑥 = ∞

Exponential

   (light tailed)

Pareto

(heavy-tailed)

Tail



Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

Pr 𝑋 > 𝑥 = ത𝐹(𝑥) =
𝑥min

𝑥

𝛼

p.d.f:    𝑓(𝑥) =
𝛼𝑥min

𝛼

𝑥𝛼+1

for 𝑥 ≥ 𝑥min

Notice: 𝑉𝑎𝑟 𝑋 = ∞ if 𝛼 < 2! 



Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

Many other examples: LogNormal, Weibull, Zipf,  Cauchy, Student’s t, Frechet, …
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Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

Many other examples: LogNormal, Weibull, Zipf,  Cauchy, Student’s t, Frechet, …

ത𝐹 𝑥 = 𝑒− 𝑥/𝜆 𝑘

𝒌 < 𝟏: 𝑯𝒆𝒂𝒗𝒚 − 𝒕𝒂𝒊𝒍𝒆𝒅
𝑘 = 1: 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

𝑘 = 3.4: 𝐴𝑝𝑝𝑟𝑜𝑥 𝑁𝑜𝑟𝑚𝑎𝑙
𝑘 → ∞: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐



Heavy-tailed distributions have many strange & beautiful properties

• The “Pareto principle” (e.g. 80% of the wealth owned by 20% of the population)

• Infinite variance or even infinite mean

• Outliers that are much larger than the mean happen “frequently”  

….

These are driven by 3 “defining” properties
1) Scale invariance

2) The “catastrophe principle”

3) The residual life ”blows up” (see the book!)



Scale invariance



Scale invariance
𝐹 is scale invariant if there exists an 𝑥0 and a 𝑔 such that 
ത𝐹 𝜆𝑥 = 𝑔 𝜆 ത𝐹(𝑥) for all 𝜆, 𝑥 such that 𝜆𝑥 ≥ 𝑥0.
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Scale invariance
𝐹 is scale invariant if there exists an 𝑥0 and a 𝑔 such that
ത𝐹 𝜆𝑥 = 𝑔 𝜆 ത𝐹(𝑥) for all 𝜆, 𝑥 such that 𝜆𝑥 ≥ 𝑥0.

Example: Pareto distributions

ത𝐹 𝜆𝑥 =
𝑥min

𝜆𝑥

𝛼

= ത𝐹 𝑥
1

𝜆

𝛼

Theorem: A distribution is scale invariant if and only if it is Pareto.
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Example: Regularly varying distributions

 𝐹 is regularly varying if ത𝐹 𝑥 = 𝑥−𝜌𝐿(𝑥), where 𝐿(𝑥) is slowly varying,

 i.e., lim
𝑥→∞

𝐿(𝑥𝑦)

𝐿(𝑥)
= 1 for all 𝑦 > 0.

Theorem: A distribution is asymptotically scale invariant iff it is regularly varying.

Asymptotic scale invariance
𝐹 is asymptotically scale invariant if there exists a continuous, finite 𝑔 such that 

lim
𝑥→∞

ത𝐹 𝜆𝑥

ത𝐹(𝑥)
= 𝑔 𝜆  for all 𝜆.



Example: Regularly varying distributions

 𝐹 is regularly varying if ത𝐹 𝑥 = 𝑥−𝜌𝐿(𝑥), where 𝐿(𝑥) is slowly varying,

 i.e., lim
𝑥→∞

𝐿(𝑥𝑦)

𝐿(𝑥)
= 1 for all 𝑦 > 0.

Regularly varying distributions are extremely easy to work with analytically.  

They behave like Pareto distributions with respect to the tail.

→ “Karamata” theorems

→ “Tauberian” theorems
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• The “Pareto principle” (e.g. 80% of the wealth owned by 20% of the population)

• Infinite variance or even infinite mean

• Outliers that are much larger than the mean happen “frequently”  

….

These are driven by 3 “defining” properties
1) Scale invariance

2) The “catastrophe principle”

3) The residual life ”blows up” (see the book!)



A thought experiment

Suppose that during lecture I polled 50 students about their 

heights and the number of instagram followers they have…

The sum of the heights was ~300 feet.

The sum of the number of instagram followers was 1,025,000

What led to these large values?



A thought experiment

Suppose that during lecture I polled 50 students about their 

heights and the number of instagram followers they have…

The sum of the heights was ~300 feet.

The sum of the number of instagram followers was 1,025,000

614 million followers8’3” (2.5m)



A thought experiment

The sum of the heights was ~300 feet.

The sum of the number of instagram followers was 1,025,000

A bunch of people were probably just over 6’ tall

(Maybe the basketball teams were in the class.)

One person was probably a social media 

celebrity and had  ~1 million followers.

“Catastrophe principle”

“Conspiracy principle”

Suppose that during lecture I polled 50 students about their 

heights and the number of instagram followers they have…



0
10

Exponential
Heavy-tailed Weibull

“Catastrophe principle”

Light-tailed Weibull “Conspiracy principle”

Example
Consider 𝑋1, 𝑋2 i.i.d. Weibull with mean 1.

Given the rare event 𝑋1 + 𝑋2 = 10, what is the marginal density of 𝑋1?



0
200

Exponential
Heavy-tailed Weibull

“Catastrophe principle”

Light-tailed Weibull “Conspiracy principle”

Example
Consider 𝑋1, … , 𝑋20 i.i.d. Weibull with mean 1.

Given the rare event 𝑋1 + ⋯ + 𝑋20 = 200, what is the marginal density of 𝑋1?

10





Extremely useful for analyzing random walks, MDPs, … 

“Principle of a single big jump”



Subexponential distributions

𝐹 is subexponential if for i.i.d.  𝑋𝑖 , Pr 𝑋1 + ⋯ + 𝑋𝑛 > 𝑡 ∼ 𝑛𝑃𝑟(𝑋1 > 𝑡)



Subexponential distributions

𝐹 is subexponential if for i.i.d.  𝑋𝑖 , Pr 𝑋1 + ⋯ + 𝑋𝑛 > 𝑡 ∼ 𝑛𝑃𝑟(𝑋1 > 𝑡)

Pareto

Subexponential

Weibull

LogNormal

Regularly Varying

Heavy-tailed 
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Heavy-tailed phenomena are treated as something 

Mysterious,  Surprising, & Controversial

1. Properties 
2. Emergence 

3. Identification 
(We won’t do this one today)

4. Algorithm Design  



Where do heavy-tails come from in ML/AI applications?

Option 1. They come from the data (and costs) in the applications.

Option 2. They are created by the algorithms we use. 



min
𝑥∈ℝ

𝑓(𝑥)

* This is a very simplistic version.  Later talks/posters in this workshop will give more detailed treatments!

A toy example: SGD*



𝑋𝑘+1 = 𝑋𝑘 − 𝜂(2𝐴𝑘𝑋𝑘 + 𝐵𝑘)

min
𝑥∈ℝ

𝐸[𝐴𝑥2 + 𝐵𝑥]

Assuming 𝐸 𝐴 > 0 and gradients are available, SGD with learning rate 𝜂 follows
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𝑋𝑘+1 = 𝐶𝑘𝑋𝑘 + 𝜂𝐵𝑘
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A toy example: SGD*

This process is both multiplicative and additive.

𝑋𝑘+1 = 𝐶𝑘𝑋𝑘 + 𝐷𝑘

* This is a very simplistic version.  Later talks/posters in this workshop will give more detailed treatments!

min
𝑥∈ℝ

𝐸[𝐴𝑥2 + 𝐵𝑥]

Assuming 𝐸 𝐴 > 0 and gradients are available, SGD with learning rate 𝜂 follows



We’ve all been taught that the Gaussian is “normal” because of the Central limit theorem

But the Central Limit Theorem 

we’re taught in intro probability is not complete!

We know a lot about additive processes!



1

𝑛
σ𝑖=1

𝑛 𝑋𝑖 → 𝐸 𝑋𝑖  𝑎. 𝑠.  when 𝐸 𝑋𝑖 < ∞  

A quick review

Consider i.i.d. 𝑋𝑖 .  How does σ𝑖=1
𝑛 𝑋𝑖  grow?

Law of Large Numbers (LLN):  



A quick review

Consider i.i.d. 𝑋𝑖 .  How does σ𝑖=1
𝑛 𝑋𝑖  grow?

Law of Large Numbers (LLN):  σ𝑖=1
𝑛 𝑋𝑖 = 𝑛𝐸 𝑋𝑖 + 𝑜(𝑛) 

15𝑛

σ
𝑖=

1
𝑛

𝑋
𝑖 



A quick review

Consider i.i.d. 𝑋𝑖 .  How does σ𝑖=1
𝑛 𝑋𝑖  grow?

300

σ
𝑖=

1
𝑛

𝑋
𝑖 

𝑛

Law of Large Numbers (LLN):  σ𝑖=1
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A quick review

Consider i.i.d. 𝑋𝑖 .  How does σ𝑖=1
𝑛 𝑋𝑖  grow?

Central Limit Theorem (CLT):

where 𝑍~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)with Var 𝑋𝑖 = 𝜎2 < ∞.

σ𝑖=1
𝑛 𝑋𝑖 = 𝑛𝐸 𝑋𝑖 + 𝑛𝑍 + 𝑜( 𝑛) 

Law of Large Numbers (LLN):  σ𝑖=1
𝑛 𝑋𝑖 = 𝑛𝐸 𝑋𝑖 + 𝑜(𝑛) 
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−
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𝐸
[𝑋

𝑖]
 

𝑛300

σ
𝑖=

1
𝑛

𝑋
𝑖 

𝑛

What if 𝑉𝑎𝑟 𝑋𝑖 = ∞?
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𝑽𝒂𝒓 𝑿𝒊 = ∞𝑽𝒂𝒓 𝑿𝒊 < ∞

What if 𝑉𝑎𝑟 𝑋𝑖 = ∞?



A quick review

Consider i.i.d. 𝑋𝑖 .  How does σ𝑖=1
𝑛 𝑋𝑖  grow?

Central Limit Theorem (CLT):

where 𝑍~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)with Var 𝑋𝑖 = 𝜎2 < ∞.

σ𝑖=1
𝑛 𝑋𝑖 = 𝑛𝐸 𝑋𝑖 + 𝑛𝑍 + 𝑜( 𝑛) 

Law of Large Numbers (LLN):  σ𝑖=1
𝑛 𝑋𝑖 = 𝑛𝐸 𝑋𝑖 + 𝑜(𝑛) 

What if 𝑉𝑎𝑟 𝑋𝑖 = ∞?

The Generalized Central Limit Theorem (GCLT):

𝑤ℎ𝑒𝑟𝑒 𝑍
𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)    if 𝑉𝑎𝑟 𝑋𝑖 < ∞

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑙𝑦 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝛼 ∈ (0,2)  else

σ𝑖=1
𝑛 𝑋𝑖 = 𝑛𝐸 𝑋𝑖 + 𝑛1/𝛼𝑍 + 𝑜(𝑛1/𝛼) 



What about multiplicative processes?

Additive processes can lead to heavy-tails, 

depending on the input.



Multiplicative processes almost always lead to heavy tails

An example:

𝑌1, 𝑌2 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜇)

Pr 𝑌1 ⋅ 𝑌2 > 𝑥 ≥ Pr 𝑌1 > 𝑥
2

= 𝑒−2𝜇 𝑥

⇒ 𝑌1 ⋅ 𝑌2 is heavy-tailed!



𝑃𝑛 = 𝑌1 ⋅ 𝑌2 ⋅ … ⋅ 𝑌𝑛

Multiplicative processes almost always lead to heavy tails

log 𝑃𝑛 = log 𝑌1 + log 𝑌2 + ⋯ + log 𝑌𝑛

𝑋𝑛Central Limit Theorem

log 𝑃𝑛 = 𝑛 𝐸 𝑋𝑖 + 𝑛𝑍 + 𝑜 𝑛 , where 𝑍 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)
when Var 𝑋𝑖 = 𝜎2 < ∞.

𝑌1 ⋅ 𝑌2 ⋅ … ⋅ 𝑌𝑛

𝜇

1/ 𝑛

→ 𝑯 ∼ 𝑳𝒐𝒈𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝝈𝟐)
where 𝜇 = 𝑒𝐸[log 𝑌𝑖]

and Var log 𝑌𝑖 = 𝜎2 < ∞.



This process is both multiplicative and additive.

𝑋𝑘+1 = 𝐶𝑘𝑋𝑘 + 𝐷𝑘

min
𝑥∈ℝ

𝐸[𝐴𝑥2 + 𝐵𝑥]

Assuming 𝐸 𝐴 > 0 and gradients are available, SGD with learning rate 𝜂 follows

A toy example: SGD*

* This is a very simplistic version.  Later talks/posters in this workshop will give more detailed treatments!



Under minor technical conditions, 𝑋𝑘 → 𝐹 such that

lim
𝑥→∞

log ത𝐹(𝑥)

log 𝑥
= 𝑠∗ where 𝑠∗ = sup(𝑠 ≥ 0|𝐸 𝑋𝑘

𝑠 ≤ 1)

regularly varying → SGD leads to heavy tails, even when 𝐴 and 𝐵are light tailed!

This process is both multiplicative and additive.

𝑋𝑘+1 = 𝐶𝑘𝑋𝑘 + 𝐷𝑘

A toy example: SGD*

min
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𝐸[𝐴𝑥2 + 𝐵𝑥]

Assuming 𝐸 𝐴 > 0 and gradients are available, SGD with learning rate 𝜂 follows



Under minor technical conditions, 𝑋𝑘 → 𝐹 such that

lim
𝑥→∞

log ത𝐹(𝑥)

log 𝑥
= 𝑠∗ where 𝑠∗ = sup(𝑠 ≥ 0|𝐸 𝑋𝑘

𝑠 ≤ 1)

This process is both multiplicative and additive.

𝑋𝑘+1 = 𝐶𝑘𝑋𝑘 + 𝐷𝑘

A toy example: SGD*

min
𝑥∈ℝ

𝐸[𝐴𝑥2 + 𝐵𝑥]

Assuming 𝐸 𝐴 > 0 and gradients are available, SGD with learning rate 𝜂 follows

regularly varying → SGD leads to heavy tails, even when 𝐴 and 𝐵are light tailed,

                                                        & this leads to better generalization too!



Heavy-tailed phenomena are treated as something 

Mysterious,  Surprising, & Controversial

1. Properties 
2. Emergence 

3. Identification 
(We won’t do this one today)

4. Algorithm Design  



How does one “design” algorithms in the face of heavy tails?

Key: Minimize the impact of catastrophes



λ

Load: 𝜌 = 𝜆𝐸[𝑋]

𝑋3 𝑋2 𝑋1

What order should jobs be served in to 

minimize Pr 𝐷𝑒𝑙𝑎𝑦 > 𝑡  for large 𝑡?

FIFO SRPT

Light-tailed Heavy-tailed

The impact of large jobs 

on small jobs is minimal

Large jobs can delay

lots of smaller jobs (by a lot)

Example: Scheduling



Example: Estimating the mean

Goal: Given i.i.d. samples 𝑋1, … , 𝑋𝑛  with mean 𝜇, develop 

 estimates of the mean that are good with high probability:

Pr  Ƹ𝜇𝑛 − 𝜇 > 𝜀(𝑛, 𝛿) ≤ 𝛿



Example: Estimating the mean

Goal: Given i.i.d. samples 𝑋1, … , 𝑋𝑛  with mean 𝜇, develop 

 estimates of the mean that are good with high probability:

Pr  Ƹ𝜇𝑛 − 𝜇 > 𝜀(𝑛, 𝛿) ≤ 𝛿

Why not just use the sample mean, ഥ𝝁𝒏 = Τσ𝑿𝒊 𝒏 ?

Optimal Bad

Light-tailed Heavy-tailed

𝜀(𝑛, 𝛿) = 𝜎
log Τ1 𝛿

𝑛
𝜀(𝑛, 𝛿) = 𝜎

1

𝑛𝛿



Example: Estimating the mean

Goal: Given i.i.d. samples 𝑋1, … , 𝑋𝑛  with mean 𝜇, develop 

 estimates of the mean that are good with high probability,

Pr  Ƹ𝜇𝑛 − 𝜇 > 𝜀(𝑛, 𝛿) ≤ 𝛿

Key: Minimize the impact of catastrophes

Idea 1: Trim the outliers
[Tukey & McLaughlin 1963], [Bickel 1965], [Stigler 1973]



Example: Estimating the mean

Goal: Given i.i.d. samples 𝑋1, … , 𝑋𝑛  with mean 𝜇, develop 

 estimates of the mean that are good with high probability,

Pr  Ƹ𝜇𝑛 − 𝜇 > 𝜀(𝑛, 𝛿) ≤ 𝛿

Key: Minimize the impact of catastrophes

Idea 1: Trim the outliers

1. Divide data into two equal parts.

2. Use first part to determine truncation points 

 𝛽 = 𝑌(1−𝜀)𝑛
∗  and 𝛼 = 𝑌𝜀𝑛

∗

3. Trim outliers using truncation points 𝑌𝑖 = 𝑋𝑖 𝛼
𝛽

4. Estimate using sample mean of 𝑌𝑖   



Example: Estimating the mean

Goal: Given i.i.d. samples 𝑋1, … , 𝑋𝑛  with mean 𝜇, develop 

 estimates of the mean that are good with high probability,

Pr  Ƹ𝜇𝑛 − 𝜇 > 𝜀(𝑛, 𝛿) ≤ 𝛿

𝜀(𝑛, 𝛿) = 9𝜎
log Τ8 𝛿

𝑛

+ it’s robust to corruption!

Key: Minimize the impact of catastrophes

Idea 1: Trim the outliers

[Lugosi and Mendelson, 2019]



Example: Estimating the mean

Goal: Given i.i.d. samples 𝑋1, … , 𝑋𝑛  with mean 𝜇, develop 

 estimates of the mean that are good with high probability,

Pr  Ƹ𝜇𝑛 − 𝜇 > 𝜀(𝑛, 𝛿) ≤ 𝛿

Idea 2: Median of means

Key: Minimize the impact of catastrophes

Idea 1: Trim the outliers

[Nemirovsky and Yudin 1983], [Jerrum,Valiant, and Vazirani 1986], 

[Alon, Matias, and Szegedy 2002]



Example: Estimating the mean

Goal: Given i.i.d. samples 𝑋1, … , 𝑋𝑛  with mean 𝜇, develop 

 estimates of the mean that are good with high probability,

Pr  Ƹ𝜇𝑛 − 𝜇 > 𝜀(𝑛, 𝛿) ≤ 𝛿

Idea 2: Median of means

1. Divide data into k equal groups.  

2. Compute the sample average of each group.

3. Compute the median of the sample averages.

Key: Minimize the impact of catastrophes

Idea 1: Trim the outliers



Example: Estimating the mean

Goal: Given i.i.d. samples 𝑋1, … , 𝑋𝑛  with mean 𝜇, develop 

 estimates of the mean that are good with high probability,

Pr  Ƹ𝜇𝑛 − 𝜇 > 𝜀(𝑛, 𝛿) ≤ 𝛿

𝜀(𝑛, 𝛿) = 9𝜎
log Τ8 𝛿

𝑛

+ it works even when the variance is infinite!

Idea 2: Median of means

Key: Minimize the impact of catastrophes

Idea 1: Trim the outliers

[Bubeck, Cesa-Bianchi, and Lugosi, 2013]



Example: Estimating the mean

Goal: Given i.i.d. samples 𝑋1, … , 𝑋𝑛  with mean 𝜇, develop 

 estimates of the mean that are good with high probability,

Pr  Ƹ𝜇𝑛 − 𝜇 > 𝜀(𝑛, 𝛿) ≤ 𝛿

Note: Both methods depend on knowing 𝜹 (when 

setting truncation/group sizes).  This is unavoidable.

Idea 2: Median of means

Key: Minimize the impact of catastrophes

Idea 1: Trim the outliers



How does one “design” algorithms in the face of heavy tails?

Prioritization Clipping/Truncation Median of means

These ideas have been applied to SGD, RL, and bandits in recent years,

but there are still many open problems in these and other areas!

Key: Minimize the impact of catastrophes



Mysterious,  Surprising, & Controversial

1. Properties 
2. Emergence 

3. Identification 
(see the book!)

Heavy-tailed phenomena are typically treated as something 



Mysterious,  Surprising, & Controversial

1. Properties 
2. Emergence 

3. Identification 
Pareto

Subexponential

Weibull

LogNormal

Regularly Varying

Heavy-tailed 

Heavy-tailed phenomena are typically treated as something 

(see the book!)



Mysterious,  Surprising, & Controversial

1. Properties 
2. Emergence 

3. Identification 

Heavy-tailed phenomena are typically treated as something 

(see the book!)



Mysterious,  Surprising, & Controversial

1. Properties 
2. Emergence 

3. Identification 

4. Algorithm Design  

Heavy-tailed phenomena are typically treated as something 

Minimize the impact of catastrophes!
Tail events can’t be avoided, so algorithms must 

(see the book!)



An Introduction to Heavy Tails for ML Researchers
Conspiracies, Catastrophes, and the Principle of a Single Big Jump

For details, references, etc., see:
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