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Material based on:




“The top 1% of a population owns 40% of the wealth; the top 2% of Twitter users
send 60% of the tweets. These figures are always reported as shocking [...] as if
anything but a bell curve were an aberration, but Pareto distributions pop up all over.
Regarding them as anomalies prevents us from thinRing clearly about the world.”

- (lay Shirky in Newsweek (2011)



“The top 1% of a population owns 40% of the wealth; the top 2% of Twitter users
send 60% of the tweets. These figures are always reported as shocking [...] as if
anything but a bell curve were an aberration, but Pareto distributions pop up all over.

Regarding them as anomalies prevents < from thinking clearly about fiE=werdd,”
ML researchers algorithms

- (lay Shirky in Newsweek (2011)



/\

We're taught the Gaussian is the “Normal distribution”
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But, heavy tails are “more normal than the Normal”
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In ML/AI, heavy tails are common in inputs to models
& created by core algorithms like SGD.
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In ML/AI, heavy tails are common in inputs to models
& created by core algorithms like SGD.

..yet many ML algorithms are designed and analyzed using
intuition and tools based on light-tailed assumptions.



Heavy-tailed phenomena are typically treated as something
MYSTERIOUS, Sorprising, §&§ Controversial

Simple, appealing statistical
approaches for estimating them

Our intuition is flawed because intro probability have BIG problems
classes treat heavy-tails as curiosities



An historic example;
Networking “discovers” heavy tails (early 2000s)
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Power-Law Distribution of the
World Wide Web

Barabasi and Albert (/) propose an im-
proved version of the Erdds-Reényi (ER) the-
andom networks to account for the

g of systems,

de Weh

from other sites, and found that the distribu-
tion of links followed a power law (Fig. 1A).
Next, we queried the InterNIC database (us-
ing the WHOIS search tool at www.
alutions.com) for the date on which

gistered. Whereas

t older sites have

and oather links at

y Distributions

123

data, we can illustrate the same procedure for
the network of movie actors that we dis-
cussed (/). When the connectivity of the in-
dividual actors is plotted as a function of the
release year of their first movie (Fig. 1A), the
results are very similar to those shown in fig.
IB of Adamic and Huberman’s comment.
The only difference is that the movie industry
had its boom not 4 years ago, as did the
WWW, but rather at the beginning of the
century; thus, the apparently structureless re-
gime persists much longer. When the connec-
tivity of the actors that debuted in the same
vear is averaged. however. the average con-




The existence of heavy-tails required rethinRing
network design & communication protocols



Example: Scheduling

A
3 X;3|| X2 X1<>. >

load: p = AE[X]

What order should jobs be served in to
minimize Pr(Delay > t) for large t?

Light-taile/ kﬁvy-tailed

FIFO is optimal ~ SRPT is optimal
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Example: 3  eduling

A
é
X3X2 X1<> )

load: p = AE[X]

W.ha.|t order should jobs be served in to
minimize Pr(Delay > t) for large t?

Home > Operations Research > Vol. 60, No. 5 >
Is Tail-Optimal Scheduling Possible?

Adam Wierman, Bert Zwart

Published Online: 9 Oct 2012 | https: J/doi.org/10. 1287/opre.1120.1086




Hubs are vulnerabilities?
Heavy-tailed Degrees

Example: The fragility of the internet

Light-tailed Degrees




Example: The fragility of the internet

Hubs are vulnerabilities?
&
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Heavy-tailed Degrees
Light-tailed Degrees



But all was not as it seemed...
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Many of '
y of the controversies are still not resolved

Scale-free networks are rare
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All of this has happened before.
All of this will happen again.

- Battlestar Galactica
(orig. from Peter Pan by J.M. Barrie)
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Heavy-tailed phenomena are typically treated as something
MYSTERIOUS, Sorprising, §&§ Controversial

Simple, appealing statistical
approaches for estimating them

Our intuition is flawed because intro probability have BIG problems
classes focus on light-tailed distributions



Heavy-tailed phenomena are typically treated as something
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Definition: A random variable is heavy-tailed iff Vs > 0,
lim es* Pr(X > x) = o

X— 00

Pareto |\ Exponential
(heavy-tailed) |\ (light tailed)




Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

_ Xmin \&
Pr(X >x) =F(x) = ( r;m) forx = xXmin

ax®

pdfe f(x) = Zmin

Notice: Var|X] = woifa < 2!



Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution
Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student’s t, Frechet, ...



Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution
Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student’s t, Frechet, ...

X: logX ~ Normal
Var|X] = (e“z — 1) g2uto’



Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution
Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student’s t, Frechet, ...

F(x) = e~ (/D"

k < 1:Heavy — tailed
k = 1: Exponential
k = 3.4: Approx Normal
k — oco: Deterministic



Heavy-tailed distributions have many strange & beautiful properties

» The “Pareto principle” (e.g. 80% of the wealth owned by 20% of the population)
* Infinite variance or even infinite mean
* Qutliers that are much larger than the mean happen “frequently”

These are driven by 3 “defining” properties
1) Scaleinvariance

2) The “catastrophe principle”

3) Theresidual life "blows up” (see the book!)



Scale invariance
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Scale invariance

F(Ix) = g(DF (x

)

Exponential

Pareto

g(1000)F (x)

existsan x and a g such that
orall A, x such that Ax > x,,.

Exponential

Pareto

1000

>



Scale invariance

F is scale invariant if there exists an x and a g such that
F(Ax) = g(A)F (x) forall A, x such that Ax > x,.

Example: Pareto distributions
F(/l ) B (Xmin)a - F( ) 1 *
e\ ) T2




Scale invariance

F is scale invariant if there exists an x and a g such that
F(Ax) = g(A)F (x) forall A, x such that Ax > x,.

Asymptotic scale invariance
F is asymptotically scale invariant if there exists a continuous, finite g such that

lim 2% — (2) forall 1.

x—oo F(x)




Example: Regularly varying distributions
F is regularly varying if F (x) = x~PL(x), where L(x) is slowly varying,
Le, lim Loy) 1forally > 0.

x—oo L(X)

Theorem: A distribution is asymptotically scale invariant iff it is regularly varying.

Asymptotic scale invariance
F is asymptotically scale invariant if there exists a continuous, finite g such that

lim 2% — (2) forall 1.

x—oo F(x)




Example: Regularly varying distributions
s regularly varying if F (x) = x~PL(x), where L(x) is slowly varying,
e, lim 222 = 1 forally > 0.

x—oo L(X)

Regularly varying distributions are extremely easy to work with analytically.
They behave like Pareto distributions with respect to the tail.

—> “Karamata” theorems

—> “Tauberian” theorems



Heavy-tailed distributions have many strange & beautiful properties

» The “Pareto principle” (e.g. 80% of the wealth owned by 20% of the population)
* Infinite variance or even infinite mean
* Qutliers that are much larger than the mean happen “frequently”

These are driven by 3 “defining” properties
1) Scaleinvariance

2) The “catastrophe principle”

3) Theresidual life "blows up” (see the book!)



A thought experiment

Suppose that during lecture | polled 50 students about their
heights and the number of instagram followers they have...

The sum of the heights was ~300 feet.
The sum of the number of irgfgpgram followers was 1,025,000

What led to these large values?



A thought experiment

Suppose that during lecture | polled 50 students about their
heights and the number of instagram followers they have...

The sum of the heights was ~300 feet.
The sum of the number of instagram followers was 1,025,000

614 million followers



A thought experiment

Suppose that during lecture | polled 50 students about their
heights and the number of instagram followers they have...

The sum of the heights was ~300 feet.
The sum of the number of instagram followers was 1,025,000

A bunch of people were probably just over 6' tall
(Maybe the basketball teams were in the class.)

[(/ v PR /4
6”’“?”‘“} //"//(0{0/9 One person was probably a social media
celebrity and had ~1 million followers.

'gata@tm/oie privejple i



Example
Consider X, X, i...d. Weibull with mean 1.
Given the rare event X; + X, = 10, what is the marginal density of X, ?

Light-tailed Weibull _e ”&/{ ‘V/mf /0/"//(0// /& )

Heavy-tailed Weibull —1

0 10 ”gataa’tfa/k /of/}(a{a/e i

Exponential




Example
Consider X1, ..., X, i..d. Weibull with mean 1.
Given therareevent X; + --- + X, = 200, what is the marginal density of X, ?

nLight-taiIed Weibull _e ”&/{ ‘V/mf /0/"//(0// /& Y,

, Heavy-tailed Weibull
Exponential

0 10 200 ”gataa’tfa/k /of/}(a{a/e g




”ﬁafa&fm}oée /ﬁ/)(a;'o/e N

Pr(maX(Xl, v Xp) > t) ~Pr(X; + ... T Xn>0)

= Pr(max(x,, o Xn) >t X, + .. X, >t) 51

”
, '0/'/& ot Xy > 1))
%gﬂ&}ﬂ”‘aafé"”( /X ) > t) = O(Pr(Xl T T n

Pr(max(&y, - 4n




fa&‘a@f/‘qoée /ﬁ/k&;b/e !
Pr(max(x,, v Xp) > t)
= Pr(max(Xl, .

I

Extremely useful for analyzing random walks, MDPs, ...

-, "

M\
S ';Dﬂira;b/a of a singte by pamp !

~Pr(X; + ... +X, > )
.-;Xn) > t'Xl + ...+Xn > t) N 1
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Pr(max(x,,.. x )
)y Ay > t) ~Pr(X + ..
= Pr(max(x,, .. | T >0)

.,Xn) > t,Xl + .....,_Xn > t) - 1

Subexponential distributions
F is subexponential if fori.i.d. X;,Pr(X; + -+ X,, > t) ~ nPr(X; > t)




Heavy-tailed

Weibull

o
Pareto
Regularly Varying

, ‘LogNormaI
Subexponential

Subexponential distributions
F is subexponential if fori.i.d. X;, Pr(X; + -+ X,, > t) ~nPr(X; > t)



Heavy-tailed distributions have many strange & beautiful properties

» The “Pareto principle” (e.g. 80% of the wealth owned by 20% of the population)
* Infinite variance or even infinite mean
* Qutliers that are much larger than the mean happen “frequently”

These are driven by 3 “defining” properties
1) Scaleinvariance

2) The “catastrophe principle”

3) Theresidual life "blows up” (see the book!)



Heavy-tailed phenomena are treated as something
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Where do heavy-tails come from in ML/Al applications?

Option 1. They come from the data (and costs) in the applications.

Option 2. They are created by the algorithms we use.



A toy example: SGD*

min f(x)

*This is a very simplistic version. Later talks/posters in this workshop will give more detailed treatments!



A toy example: SGD*

min E[Ax? + Bx]
x€R

Assuming E'[A] > 0 and gradients are available, SGD with learning rate 1 follows
Xk+1 = Xxg —N(24x Xy + By)

*This is a very simplistic version. Later talks/posters in this workshop will give more detailed treatments!
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A toy example: SGD*

min E[Ax? + Bx]
x€R

Assuming E'[A] > 0 and gradients are available, SGD with learning rate 1 follows
Xk+1 = Cp X + 1By

!

Dy

*This is a very simplistic version. Later talks/posters in this workshop will give more detailed treatments!



A toy example: SGD*
min E[Ax? + Bx]

XER

Assuming E'[A] > 0 and gradients are available, SGD with learning rate 1 follows
Xk+1 = Cp X + Dy

This process is both multiplicative and additive.

*This is a very simplistic version. Later talks/posters in this workshop will give more detailed treatments!



We Rnow a lot about additive processes!

We've all been taught that the Gaussian is “normal” because of the Central limit theorem

But the Central Limit Theorem
we re taught in intro probability is not complete!



A quick review
Consideri.i.d. X;. How does )7, X; grow?

Law of Large Numbers (LLN): ~X7, X; - E[X,] a.s. when E[X;] < oo
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A quick review
Consider i.id. X;. How does X7 What if Var| X;| = oo?

Law of Large Numbers (LLN): Y7, X; = nE[X;] + o)

Central Limit Theorem (CLT): "7 . X; = nE[X;] + /1,2 w=erfs
where Z~Normal (0, o?)wi

Dieq Xi
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Central Limit Theorem (CLT): "7 . X; = nE[X;] + /1,2 w=erfs
where Z~Normal (0, o?)wi

Dieq Xi
Dieq Xi

<— catastrophe

300 n 300

Var|X;] < o Var[X;] = o



A quick review
Consider i.id. X;. How does X7 What if Var| X;| = oo?

Law of Large Numbers (LLN): Y7, X; = nE[X;] + o)

Central Limit Theorem (CLT): Y™ . X; = nE[X;] + V1

' where Z~Normal (0, o?)wil@Var[X;] = 02 < oo,

The Generalized Central Limit Theorem (GCLT):
i=1X; = nk Loz o afal/ay

Finitfe variance > Light-tailed (Normal)
Infinite variance > Heavy-tailed (power law) [se
\




Additive processes can lead to heavy-tails,
depending on the input.

What about multiplicative processes?



Multiplicative processes almost always lead to heavy tails

An example:
Y;, Y, ~ Exponential(u)

Pr(Y; - Y, > x) = Pr(¥; > yx)
— e—zﬂ\/}

= Y; - Y, is heavy-tailed!



Multiplicative processes almost always lead to heavy tails

Pn:Y]_’Yz'...'Yn

logP, =logY; +logY, + -+ logV,
W—/
‘ Central Limit Theorem Xn

logP, =nE[X;] +VnZ + o(ﬁ),whereZ ~ Normal(0,0%)
whenVar[X;] = 02 < .

— H ~ LogNormal(0, 6%)
where u = efllogYil
andVar[logY;] = 02 < oo.

<Y1 Yy Yn)wﬁ
u



A toy example: SGD*
min E[Ax? + Bx]

XER

Assuming E'[A] > 0 and gradients are available, SGD with learning rate 1 follows
Xk+1 = Cp X + Dy

This process is both multiplicative and additive.

*This is a very simplistic version. Later talks/posters in this workshop will give more detailed treatments!



A toy example: SGD*

min E[Ax? + Bx]
x€R

Assuming E'[A] > 0 and gradients are available, SGD with learning rate 1 follows
Xk+1 = Cp X + Dy

This process is both multiplicative and additive.

gnditions, X;, — F such that

lim 287 _ o \fhere s* = sup(s = 0|E[X;] < 1)

X—00 logx

regularly varying = SGD leads to heavy tails. even when A and Bare light tailed!



A toy example: SGD*

min E[Ax? + Bx]
x€R

Assuming E'[A] > 0 and gradients are available, SGD with learning rate 1 follows
Xk+1 = Cp X + Dy

This process is both multiplicative and additive.

gnditions, X;, — F such that

lim 287 _ o \fhere s* = sup(s = 0|E[X;] < 1)

X—00 logx

regularly varying = SGD leads to heavy tails. even when A and Bare light tailed.
& this leads to better generalization too!



Heavy-tailed phenomena are treated as something
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How does one “design” algorithms in the face of heavy tails?

Key: Minimize the impact of catastrophes



Example: Scheduling

A
e

%

X1

()~

Load: p = AE[X]

What order should jobs be served in to
minimize Pr(Delay > t) for large t?

Light-taiy kj}vy-tailed

FIFO

Large jobs can delay
lots of smaller jobs (by alot)  on small jobs is minimal

SRPT

The impact of large jobs



Example: Estimating the mean

Goal: Given i.i.d. samples X, ..., X,, with mean 1, develop
estimates of the mean that are good with high probability:
Pr(| i, —ul >e(m,6)) <6



Example: Estimating the mean

Goal: Given i.i.d. samples X, ..., X,, with mean 1, develop
estimates of the mean that are good with high probability:
Pr(| g, —u|l >en,d) <6

Why not just use the sample mean, 1z,, = > X;/n?

Light-taiy %vy-tailed

Optimal Bad

log1/6 5) = i
e(n,8) = o |— &(n,0) 0/715




Example: Estimating the mean

Goal: Given i.i.d. samples X, ..., X,, with mean 1, develop
estimates of the mean that are good with high probability,
Pr(| g, —u|l >en,d) <6

Key: Minimize the impact of catastrophes

Idea 1: Trim the outliers
[Tukey & McLaughlin 1963], [Bickel 1965], [Stigler 1973]



Example: Estimating the mean

Goal: Given i.i.d. samples X, ..., X,, with mean 1, develop
estimates of the mean that are good with high probability,
Pr(| g, —u|l >en,d) <6

Key: Minimize the impact of catastrophes

|dea 1: Trim the outliers

1. Divide data into two equal parts.
2. Use first part to determine truncation points
p = Y(’_fl—e)n anda =Yg,
3. Trim outliers using truncation points Y; = [ X i]ﬁ
4. Estimate using sample mean of Y;




Example: Estimating the mean

Goal: Given i.i.d. samples X, ..., X,, with mean 1, develop
estimates of the mean that are good with high probability,
Pr(| g, —u|l >en,d) <6

Key: Minimize the impact of catastrophes

|dea 1: Trim the outliers

log8/6

5) =9
e(n, o) o -

+it's robust to corruption!
[Lugosi and Mendelson, 2019]



Example: Estimating the mean

Goal: Given i.i.d. samples X, ..., X,, with mean 1, develop
estimates of the mean that are good with high probability,
Pr(| g, —u|l >en,d) <6

Key: Minimize the impact of catastrophes

|dea 1: Trim the outliers

|dea 2: Median of means

[Nemirovsky and Yudin 1983], [Jerrum,Valiant, and Vazirani 1986],
[Alon, Matias, and Szegedy 2002]



Example: Estimating the mean

Goal: Given i.i.d. samples X, ..., X,, with mean 1, develop
estimates of the mean that are good with high probability,
Pr(| g, —u|l >en,d) <6

Key: Minimize the impact of catastrophes

Idea 1: Trim the outliers

|dea 2: Median of means

1. Divide data into R equal groups.
2. Compute the sample average of each group.
3. Compute the median of the sample averages.




Example: Estimating the mean

Goal: Given i.i.d. samples X, ..., X,, with mean 1, develop
estimates of the mean that are good with high probability,
Pr(| g, —u|l >en,d) <6

Key: Minimize the impact of catastrophes

|dea 1: Trim the outliers

|dea 2: Median of means

log8/6

,0)=9
e(n, o) 7 -

+ it works even when the variance is infinite!
[Bubeck, Cesa-Bianchi, and Lugosi, 2013]



Example: Estimating the mean

Goal: Given i.i.d. samples X, ..., X,, with mean 1, develop
estimates of the mean that are good with high probability,
Pr(| g, —u|l >en,d) <6

Key: Minimize the impact of catastrophes

|dea 1: Trim the outliers

|dea 2: Median of means

Note: Both methods depend on knowing & (when
setting truncation/group sizes). This is unavoidable.



How does one “design” algorithms in the face of heavy tails?

Key: Minimize the impact of catastrophes

/N

Prioritization Clipping/Truncation Median of means

These ideas have been applied to SGD, RL, and bandits in recent years,
but there are still many open problems in these and other areas!




Heavy-tailed phenomena are typically treated as something
@zﬂm § (Sesrrves=ta
7, pm,&wt/é&
2 &e/yzma

3, [dentifisation
(see the book!)



{

7. P roperties

Heavy-tailed 2, 5”«/7&4&&
‘Wb" i
Pareto 3, ldentyfrcation
Regularly Varying (see thoZbooh!)

Subexponential L0§N0fmal

Heavy-tailed distributions have many beautiful & strange properties
1) Scale Invariance =2 Regularly varying distributions

2) The “catastrophe principle” = Subexponentidl distributions




' ethin
Heavy-tailed phenomena are typically trea.ted as som& g
7, Pm/o&ﬁt/é@
2 ﬂe/yawe

3, [dentyfication
(see the book!)

We've all been taught that the Normal is “norma”
e e lld]L
because of the Central Limit Theorem, BUT

Ay~ Lails are wops rormal “thar the Normal/




Heavy-tailed phenomena are typically treated as something

MY STERISUS STERristnT. § (Srsrovessinl

{

7, Pm/o&ﬁt/é@

2, f;w/yeme

3, [dentifisation
(see the book!)

¢ #{Mﬂ'b‘én ﬂe@/}l

Tail events can't be avoided, so algorithms must

Mivimize the /,'yaat of aab‘a&tm/k&/




An Introduction to Heavy Tails for ML Researchers
Conspiracies, (atastrophes, and the Principle of a Single Big Jump

For details, references, etc., see:




	Slide 1: An Introduction to Heavy Tails for ML Researchers Conspiracies, Catastrophes, and the Principle of a Single Big Jump
	Slide 2: An Introduction to Heavy Tails for ML Researchers Conspiracies, Catastrophes, and the Principle of a Single Big Jump
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: An Introduction to Heavy Tails for ML Researchers Conspiracies, Catastrophes, and the Principle of a Single Big Jump

