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Power laws are arising all
over the place in deep
learning, far more often
than with classical models



S
Power Law Paradigm

o Scaling Laws: behavior of
test loss (e.g. LLMSs)
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Kaplan, J. et al. (2020). Scaling laws for neural language models.

Hoffrann, J. et al. (2022). Training compute-optimal large
language models.
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Power Law Paradigm

o Scaling Laws: behavior of
test error (e.g. LLMSs)

o Spectral: power laws
appearing in matrix
eigenspectra



@ The Hessian matrix of second derivatives
of the loss

@ Yao, Z., Gholami, A., Keutzer, K., & Mahoney, M. W. (2020). PyHessian:
Neural networks through the lens of the Hessian. IEEE International
Conference on Big Data (pp. 581-590).

@ Yao, Z., Gholami, A, Lei, Q,, Keutzer, K, & Mahoney, M. W. (2018).
Hessian-based analysis of large batch training and robustness to
adversaries. Advances in Neural Information Processing Systems, 31.

@ The Gram matrix of the NTK JJ ", where J
is the Jacobian matrix of first derivatives of
the loss

@ Fan, Z., & Wang, Z. (2020). Spectra of the conjugate kernel and neural
tangent kernel for linear-width neural networks. Advances in Neural
Information Processing Systems, 33, 7710-7721.

@ Karakida, R., Akaho, S., & Amari, S. . (2021). Pathological spectra of the
Fisher information metric and its variants in deep neural networks.
Neural Computation, 33(8), 2274-2307.



@ Weights of all layers of the network

]
]
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Martin, C. H., Peng, T., & Mahoney, M. W. (2021). Predicting trends in the
quality of state-of-the-art neural networks without access to training or
testing data. Nature Communications, 12(1), 4122.

Martin, C. H., & Mahoney, M. W. (2021). Implicit self-regularization in deep
neural networks: Evidence from random matrix theory and implications
for learning. The Journal of Machine Learning Research, 22(1), 7479-7551.

Mahoney, M., & Martin, C. (2019). Traditional and heavy tailed self
regularization in neural network models. In International Conference on
Machine Learning (pp. 4284-4293). PMLR.

@ Activation functions of the network

Agrawal, K. K., Mondal, A. K., Ghosh, A., & Richards, B. (2022). a-ReQ:
Assessing Representation Quality in Self-Supervised Learning by
measuring eigenspectrum decay. Advances in Neural Information
Processing Systems, 35, 17626-17638.
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Abstract

Random Matrix Theory (RMT) is applied to analyze the weight matrices of Deep Neural
Networks (DNNs), including both production quality, pre-trained models such as AlexNet
and Inception, and smaller models trained from scratch, such as LeNet5 and a miniature-
AlexNet. Empirical and theoretical results clearly indicate that the DNN training process
itself implicitly implements a form of Self-Regularization, implicitly sculpting a more regu-
larized energy or penalty landscape. In particular, the empirical spectral density (ESD) of
DNN layer matrices displays signatures of traditionally-regularized statistical models, even
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Martin, C. H., Peng, T., & Mahoney, M. W. (2021). Predicting trends in the quality
of state-of-the-art neural networks without access to training or testing data.
Nature Communications, 12(1), 4122.
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Power Law Paradigm

o Scaling Laws: behavior of
test error (e.g. LLMSs)

o Spectral: power laws
appearing in matrix
eigenspectra

o Dynamics: heavy-tailed
fluctuations during training



Phases of Training

Exploration Exploitation
large learning rate small learning rate

1.20 1.20

-4 -2 0 2 4

@ Lewkowycz, A, Bahri, Y., Dyer, E., Sohl-Dickstein, J., & Gur-Ari, G.
(2020). The large learning rate phase of deep learning: the
catapult mechanism.




Jumps are heavy-tailed
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Simsekli, U, Sagun, L., & Gurbuzbalaban, M. (2019). A tail-index
analysis of stochastic gradient noise in deep neural networks.
International Conference on Machine Learning (pp. 5827-5837).




Brownian motion Levy flight
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Why might this be
happening?

Heavy-tailed data?

Power laws change with lots of other
factors too.



Heavy-Tailed
Universality
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o Scaling Laws: behavior of
test error (e.g. LLMSs)

o Spectral: power laws
appearing in matrix
eigenspectra

o Dynamics: heavy-tailed
fluctuations during training



(Gurbuzbalaban et al., 2021) (Hodgkinson & Mahoney, 2021)

‘The Heavy-Tail Phenomenon in SGD Multiplicative Noise and Heavy Tails in Stochastic Optimization

Mert Giirbizhalaban Umut Simsekii

Rjiong 7 fam Hodgkinson | Michael W. Mahoney
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Traditionally, stochastic gradient descent
Wi = Wi — Vﬁf(Wk)

was treated as gradient descent with added
noise

Wi = Wy — ’}/Vf(Wk) + €k.

But the covariance is position-dependent, so
it's closer to multiplicative noise

Wil = Wi — ”y(/ + Ek)Vf(Wk) + €k

(Kesten 1973): If f is linear, wy has heavy-tailed
fluctuations
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How does this affect
generalization
performance?

A property at the end of training...



Hausdorff Dimension, Heavy Tails, and
Generalization in Neural Networks

Umut Simgekli?, Ozan Sener?, George Deligiannidis®*, Murat A. Erdogdu’®

LTCL Télécom Paris, Institut Polytechnique de Paris', University of Oxford?, Intel Labs®

The Alan Turing Institute*, University of Toronto®, Vector Institute’

Abstract

Despite its success in a wide range of appli izing the
tion properties of stochastic gradient descent (SGD) in non-convex deep learning
problems is still an important challenge. While modeling the trajectories of SGD
via stochastic differential equations (SDE) under heavy-tailed gradient noise has re-
cently shed light over several peculiar characteristics of SGD, a rigorous treatment
of the generalization properties of such SDEs in a learning theoretical framework
is still missing. Aiming to bridge this gap, in this paper, we prove generalization
bounds for SGD under the assumption that its trajectories can be well-approximated
by a Feller process, which defines a rich class of Markov processes that include
several recent SDE representations (both Brownian or heavy-tailed) as its special
case. We show that the generalization error can be controlled by the Hausdorff
dimension of the trajectories, which is intimately linked to the tail behavior of the
driving process. Our results imply that heavier-tailed processes should achieve
better generalization; hence, the tail-index of the process can be used as a notion of
“capacity metric”. We support our theory with experiments on deep neural networks
illustrating that the proposed capacity metric accurately estimates the generaliza-
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The argument only works with
continuous processes; what
about actual SGD?



An Important Distinction
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An Important Distinction
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There are two kinds of
power laws: lower and

upper.

P(X < x) ~cx® or P(X > x) ~ cx™”



Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers

Liam Hodgkinson! Umut Simsekli?> Rajiv Khanna® Michael W. Mahoney !

Abstract

Despite the ubiquitous use of stochastic opti-
mization algorithms in machine learning, the
precise impact of these algorithms and their dy-
namics on generalization performance in realis-
tic non-convex settings is still poorly understood.
‘While recent work has revealed connections be-
tween generalization and heavy-tailed behavior in
stochastic optimization, this work mainly relied
on continuous-time approximations; and a rigor-
ous treatment for the original discrete-time itera-
tions is yet to be performed. To bridge this gap,
we present novel bounds linking generalization
to the lower tail exponent of the transition ker-
nel associated with the optimizer around a local
minimum, in both discrete- and continuous-time
settings. To achieve this, we first prove a data-
and algorithm-dependent generalization bound in
terms of the celebrated Fernique-Talagrand func-
tional applied to the trajectory of the optimizer.
Then, we specialize this result by exploiting the
Markovian structure of stochastic optimizers, and
derive bounds in terms of their (data-dependent)
transition kernels. We support our theory with em-
pirical results from a variety of neural networks,
showing ions between ization error

Brownian motion
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Figure 1: Discrete sample path approximations of a heavy-
tailed a-stable Lévy process (@ = 1.5), and standard
Brownian motion. Estimates of our normalized Fernique—
Talagrand functional 7} (-) is reported under each figure
(see Section 2.3). Observe this functional is reduced with
smaller tail index and “tighter clustering” of the trajectory.

surprising generalization ability of stochastic gradient de-
scent (SGD) and its various extensions for non-convex prob-
lems — most recently in the context of neural networks
and deep learning. Classical convex optimization-centric
approaches fail to explain this phenomenon.

There has been an increasing number of attempts for de-
veloping generalization bounds for non-convex learning
settings. This work has approached the problem from
different perspectives, such as information theory, com-

and lower tail exponents.

1. Introduction

or implicit (algorith-
mic) regularization (details to be provided in Section 1.2).
Among these approaches, a promising direction has been to
consider optimization trajectories, rather than single point
estimates obtained during (or at the end of) the optimiza-



Theorem

If the optimization steps have a lower power
law with exponent « in the neighbourhood of
an optimum, then

o log N
generalization gap < ca —

V.

ﬁ Sachs, S, van Erven, T., Hodgkinson, L., Khanna, R., & Simsekli, U.
(2023). Generalization Guarantees via Algorithm-dependent
Rademacher Complexity.

Dupuis, B., Deligiannidis, G., & Simsekli, U. (2023). Generalization
bounds with data-dependent fractal dimensions.

Lim, S. H., Wan, Y., & Simsekli, U. (2022). Chaotic regularization
and heavy-tailed limits for deterministic gradient descent.
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And now

for something
completely different...




Overparameterization




S
Overparameterized Models

The most performant models are often
overparameterized.

(log;o scale)
Model Dataset N d Test Accuracy
ResNet18 CIFAR-10 57 7.0 93%
WRN-28-10 SVHN 6.8 7.6 98%
ViT-E ImageNet-1k 9.1 9.6 91%
EFL SNLI 62 86 93%
ResNet34 Chaoyang (noisy) 4.4 7.8 83%
FilLM ETT (noisy) 40 60 —

..and have virtually zero error on training set.
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Double Descent

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
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Nakkiran, Preetum, et al. Deep double descent: Where bigger
models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment 202112 (2021): 124003.



Monotonicity and Double Descent in
Uncertainty Estimation with Gaussian Processes

Liam Hodgkinson' Chris van der Heide? Fred Roosta®*> Michael W. Mahoney °®’

Abstract

Despite their importance for assessing reliability
of predictions, uncertainty quantification (UQ)
measures for machine learning models have only
recently begun to be rigorously characterized.
One prominent issue is the curse of dimensional-
ity: it is commonly believed that the marginal like-
lihood should be reminiscent of cross-validation
metrics and that both should deteriorate with
larger input dimensions. We prove that by tuning
hyperp to maximi inal likelihood
(the empirical Bayes procedure), the performance,
as measured by the marginal likelihood, improves
monotonically with the input dimension. On the
other hand, we prove that cross-validation met-

tion of error and other methods for inverse uncertainty prob-
lems typically apply Monte Carlo methods under a Bayesian
framework (Zhang, 2021). However, the large-scale nature
of many problems of interest results in significant compu-
tational challenges. One of the most successful approaches
for solving inverse uncertainty problems is the use of Gaus-
sian processes (GP) (Rasmussen & Williams, 2006). This
is now frequently used for many predictive tasks, including
time-series analysis (Roberts et al., 2013), regression and
classification (Rasmussen & Williams, 2006; Williams &
Barber, 1998). GPs are also valuable in deep learning the-
ory due to their appearance in the infinite-width limits of
Bayesian neural networks (Jacot et al., 2018; Neal, 1996).

A prominent feature of modern ML tasks is their large num-
ber of attributes: for example, in computer vision and natural

rics exhibit qualitatively di behavior that
is characteristic of double descent. Cold poste-
riors, which have recently attracted interest due
to their improved performance in certain settings,
appear to exacerbate these phenomena. We verify

tasks, input dimensions can easily scale into the
tens of thousands. This is concerning in light of the prevail-
ing theory that GP performance often deteriorates in higher
input dimensions. This curse of dimensionality for GPs has
been rigorously demonstrated through error estimates for
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The Interpolating Information Criterion for
Overparameterized Models

Liam Hodgkinson!, Chris van der Heide?, Robert Salomone®, Fred
Roosta! and Michael W. Mahoney®
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Abstract: The problem of model selection is considered for the setting of interpolating es-
timators, where the number of model parameters exceeds the size of the dataset. Classical
information criteria typically consider the large-data limit, penalizing model size. However,
these criteria are not appropriate in modern settings where overparameterized models tend
to perform well. For any overparameterized model, we show that there exists a dual under-
parameterized model that possesses the same marginal likelihood, thus establishing a form of
Bayesian duality. This enables more classical methods to be used in the overparameterized
setting, revealing the Interpolating Information Criterion, a measure of model quality that
naturally incorporates the choice of prior into the model selection. Our new information crite-
rion accounts for prior misspecification, metric and spectral properties of the model, and
is numerically consistent with known empirical and theoretical behavior in this regim




Interpolating Information Criterion

Theorem

Under mild conditions, if the loss is
o?-subgaussian, the expected test error in a
neighbourhood of the interpolating solution is
bounded above by

¢
2

with probability at least 1 — 9, where IIC is our
Interpolating Information Criterion.

IIC + 0% +n~'log(67') 4 const. + O(n~?),

v
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Interpolating Information Criterion

[§ Hodgkinson, L., Van Der Heide, C., Roosta, F., & Mahoney, M. W.
(2023). Monotonicity and double descent in uncertainty
estimation with Gaussian processes.

ﬁ Hodgkinson, L., van der Heide, C., Salomone, R, Roosta, F., &
Mahoney, M. W. (2023). A PAC-Bayesian Perspective on the
Interpolating Information Criterion.

IIC = log R(¢*) + curvature

1 .
+ Elog det(Gram matrix of NTK).
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Neural Tangent Kernel

The neural tangent kernel is given by
kNTK(Xay) = VQf(X, 9) ’ vef(ya 0)

The NTK matrix as it appears in the lIC is its
corresponding Gram matrix over the training
set
Gram matrix of NTK = (knk(Xi, X))/
=JJ" € RNV,
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The Spectrum Appears!

IIC = log-regularizer + curvature

1 .
+ Elog det(Gram matrix of NTK).

Lemma
If spectrum of A has a lower tall

exponent a, then

log det A x «. )
B —
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The Origin

When overparameterized, the
maximum entropy distribution for
the NTK eigenspectrum that
minimizes the lIC is

pP(\) ~ cA®.

@ Xie, Z., Tang, Q. Y, Cai, Y, Sun, M., & Li, P. (2022). On the
Power-Law Hessian Spectrums in Deep Learning.



The Gram matrix of the
NTK has a lower power law.

Can we get everything
else from here?



@ Scaling laws: As the lower tail of the Gram
matrix becomes heavier, training takes
longer.

@ Velikanov, M., & Yarotsky, D. (2021). Explicit loss
asymptotics in the gradient descent training of neural
networks. Advances in Neural Information Processing
Systems, 34, 2570-2582.

@ Dynamics: If the Gram matrix of the NTK
has lower power law, then so does the
gradient norm.
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Spectrum of Weights

The spectrum of the weights captures much
of the same information.
@ If Gram matrix of the NTK has a lower
power law, it is near-singular.
@ A near-singular Gram matrix implies a
near-singular optimization problem.
@ By implicit function theorem,

AW ~ J'X,

so weights accumulate an upper power
law at the end of training.
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Five phase taxonomy
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Overparameterization
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The Future

Everything is connected.

Two powerful tools for examining heavy tails in
ML:

@ Interpolating Information Criterion
@ Fractal dimension bounds

Gram matrix of NTK is a key object, but there
may be something better...

Exponentially-truncated power laws?



