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Power laws are arising all
over the place in deep

learning, far more often
than with classical models



Power Law Paradigm

Scaling Laws: behavior of
test loss (e.g. LLMs)



Kaplan, J. et al. (2020). Scaling laws for neural language models.

Hoffmann, J. et al. (2022). Training compute-optimal large
language models.



Power Law Paradigm

Scaling Laws: behavior of
test error (e.g. LLMs)
Spectral: power laws
appearing in matrix
eigenspectra



The Hessian matrix of second derivatives
of the loss

Yao, Z., Gholami, A., Keutzer, K., & Mahoney, M. W. (2020). PyHessian:
Neural networks through the lens of the Hessian. IEEE International
Conference on Big Data (pp. 581-590).

Yao, Z., Gholami, A., Lei, Q., Keutzer, K., & Mahoney, M. W. (2018).
Hessian-based analysis of large batch training and robustness to
adversaries. Advances in Neural Information Processing Systems, 31.

The Gram matrix of the NTK JJ⊤, where J
is the Jacobian matrix of first derivatives of
the loss

Fan, Z., & Wang, Z. (2020). Spectra of the conjugate kernel and neural
tangent kernel for linear-width neural networks. Advances in Neural
Information Processing Systems, 33, 7710-7721.

Karakida, R., Akaho, S., & Amari, S. I. (2021). Pathological spectra of the
Fisher information metric and its variants in deep neural networks.
Neural Computation, 33(8), 2274-2307.



Weights of all layers of the network
Martin, C. H., Peng, T., & Mahoney, M. W. (2021). Predicting trends in the
quality of state-of-the-art neural networks without access to training or
testing data. Nature Communications, 12(1), 4122.

Martin, C. H., & Mahoney, M. W. (2021). Implicit self-regularization in deep
neural networks: Evidence from random matrix theory and implications
for learning. The Journal of Machine Learning Research, 22(1), 7479-7551.

Mahoney, M., & Martin, C. (2019). Traditional and heavy tailed self
regularization in neural network models. In International Conference on
Machine Learning (pp. 4284-4293). PMLR.

Activation functions of the network
Agrawal, K. K., Mondal, A. K., Ghosh, A., & Richards, B. (2022). α-ReQ:
Assessing Representation Quality in Self-Supervised Learning by
measuring eigenspectrum decay. Advances in Neural Information
Processing Systems, 35, 17626-17638.







Martin, C. H., Peng, T., & Mahoney, M. W. (2021). Predicting trends in the quality
of state-of-the-art neural networks without access to training or testing data.
Nature Communications, 12(1), 4122.



Power Law Paradigm

Scaling Laws: behavior of
test error (e.g. LLMs)
Spectral: power laws
appearing in matrix
eigenspectra
Dynamics: heavy-tailed
fluctuations during training



Phases of Training
Exploration

large learning rate
Exploitation

small learning rate

Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J., & Gur-Ari, G.
(2020). The large learning rate phase of deep learning: the
catapult mechanism.



Jumps are heavy-tailed

Simsekli, U., Sagun, L., & Gurbuzbalaban, M. (2019). A tail-index
analysis of stochastic gradient noise in deep neural networks.
International Conference on Machine Learning (pp. 5827-5837).
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Why might this be
happening?

Heavy-tailed data?

Power laws change with lots of other
factors too.



Heavy-Tailed
Universality





Power Law Paradigm

Scaling Laws: behavior of
test error (e.g. LLMs)
Spectral: power laws
appearing in matrix
eigenspectra
Dynamics: heavy-tailed
fluctuations during training



(Gurbuzbalaban et al., 2021) (Hodgkinson & Mahoney, 2021)

(ICML2021): The Kesten Mechanism



Traditionally, stochastic gradient descent

wk+1 = wk − γ∇̂f (wk)

was treated as gradient descent with added
noise

wk+1 = wk − γ∇f (wk) + ϵk.

But the covariance is position-dependent, so
it’s closer to multiplicative noise

wk+1 = wk − γ(I+ Ek)∇f (wk) + ϵk

(Kesten 1973): If f is linear, wk has heavy-tailed
fluctuations





How does this affect
generalization
performance?

A property at the end of training...
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The argument only works with
continuous processes; what

about actual SGD?



An Important Distinction



An Important Distinction



An Important Distinction



There are two kinds of
power laws: lower and

upper.

P(X < x) ∼ cxα or P(X > x) ∼ cx−β





Theorem
If the optimization steps have a lower power
law with exponent α in the neighbourhood of
an optimum, then

generalization gap ≤ cα
√

logn
n

.

Sachs, S., van Erven, T., Hodgkinson, L., Khanna, R., & Şimşekli, U.
(2023). Generalization Guarantees via Algorithm-dependent
Rademacher Complexity.

Dupuis, B., Deligiannidis, G., & Şimşekli, U. (2023). Generalization
bounds with data-dependent fractal dimensions.

Lim, S. H., Wan, Y., & Simsekli, U. (2022). Chaotic regularization
and heavy-tailed limits for deterministic gradient descent.



Kesten
Mechanism

Spectrum of
the Weights
(upper tail)

Gradient
Norms

(upper tail)

Gradient
Norms

(lower tail)

Generalization
(fractal dimension)









Overparameterization



Overparameterized Models

The most performant models are often
overparameterized.

(log10 scale)
Model Dataset N d Test Accuracy
ResNet18 CIFAR-10 5.7 7.0 93%
WRN-28-10 SVHN 6.8 7.6 98%

ViT-E ImageNet-1k 9.1 9.6 91%
EFL SNLI 6.2 8.6 93%

ResNet34 Chaoyang (noisy) 4.4 7.8 83%
FiLM ETT (noisy) 4.0 6.0 —

...and have virtually zero error on training set.



Double Descent

Nakkiran, Preetum, et al. Deep double descent: Where bigger
models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment 2021.12 (2021): 124003.







Interpolating Information Criterion

Theorem
Under mild conditions, if the loss is
σ2-subgaussian, the expected test error in a
neighbourhood of the interpolating solution is
bounded above by

c
2
IIC+ σ2 + n−1 log(δ−1) + const. +O(n−2),

with probability at least 1 − δ, where IIC is our
Interpolating Information Criterion.



Interpolating Information Criterion

Hodgkinson, L., Van Der Heide, C., Roosta, F., & Mahoney, M. W.
(2023). Monotonicity and double descent in uncertainty
estimation with Gaussian processes.

Hodgkinson, L., van der Heide, C., Salomone, R., Roosta, F., &
Mahoney, M. W. (2023). A PAC-Bayesian Perspective on the
Interpolating Information Criterion.

IIC = logR(θ⋆) + curvature

+
1
n
log det(Gram matrix of NTK).



Neural Tangent Kernel

The neural tangent kernel is given by

kNTK(x, y) = ∇θf (x, θ) · ∇θf (y, θ).

The NTK matrix as it appears in the IIC is its
corresponding Grammatrix over the training
set

Gram matrix of NTK = (kNTK(xi, xj))ni,j=1

= JJ⊤ ∈ RN×N.



The Spectrum Appears!

IIC = log-regularizer + curvature

+
1
n
log det(Gram matrix of NTK).

Lemma
If spectrum of A has a lower tail
exponent α, then

log detA ∝ α.
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The Origin

When overparameterized, the
maximum entropy distribution for
the NTK eigenspectrum that
minimizes the IIC is

p(λ) ∼ cλα.

Xie, Z., Tang, Q. Y., Cai, Y., Sun, M., & Li, P. (2022). On the
Power-Law Hessian Spectrums in Deep Learning.



The Gram matrix of the
NTK has a lower power law.

Can we get everything
else from here?



Scaling laws: As the lower tail of the Gram
matrix becomes heavier, training takes
longer.

Velikanov, M., & Yarotsky, D. (2021). Explicit loss
asymptotics in the gradient descent training of neural
networks. Advances in Neural Information Processing
Systems, 34, 2570-2582.

Dynamics: If the Gram matrix of the NTK
has lower power law, then so does the
gradient norm.



Spectrum of Weights

The spectrum of the weights captures much
of the same information.

If Gram matrix of the NTK has a lower
power law, it is near-singular.
A near-singular Gram matrix implies a
near-singular optimization problem.
By implicit function theorem,

∆W ≈ J†X,

so weights accumulate an upper power
law at the end of training.



Five phase taxonomy
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Neural Scaling Laws

Kesten
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Overparameterization
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Dynamics of
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The Future

Everything is connected.

Two powerful tools for examining heavy tails in
ML:

Interpolating Information Criterion
Fractal dimension bounds

Gram matrix of NTK is a key object, but there
may be something better...

Exponentially-truncated power laws?


