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Optimization dynamics

• This talk is about the dynamics of optimization in deep learning:


• how the optimizer moves around the weight space,


• and how this depends on (a) loss landscape, and (b) hyperparameters



Why do we care?

• Consider these goals:


• Design new optimizers for deep learning


• Design optimal strategy for setting hyperparameters


• Understand why different optimizers behave differently


• Understand what the optimizer hyperparameters do 

• Need to understand dynamics of optimization first!



Always start simple

• Always understand simple things before more complicated things


• Understand deterministic (full-batch) training, before stochastic training


• Understand gradient descent, before Adam / adaptive methods



Gradient descent

• What path does gradient descent take?


• What does the learning rate parameter  do?η

wt+1 = wt − η∇L(wt)



Experiment: train CNN using GD with η = 0.01

• Let sharpness = largest eigenvalue of loss Hessian


• On quadratic functions: if sharpness >    GD blows up2/η ⇒



Experiment: train CNN using GD with η = 0.01

• Let sharpness = largest eigenvalue of loss Hessian


• On quadratic functions: if sharpness >    blowup2/η ⇒

What happens next?

Stability threshold of 2/η



Run gradient descent for a few more steps

As expected, the optimizer starts to diverge along the sharpest direction



Run gradient descent for a few more steps

The oscillations are growing exponentially in magnitude



Run gradient descent for a few more steps

Eventually, the oscillations get big enough that the objective goes up 😧

What happens next?



What happens next?

As if by magic, the sharpness drops below  2/η = 200
Subsequently, the optimizer oscillates back inward



Full training trajectory of the CNN on CIFAR-10

Whenever the sharpness rises above , it somehow gets pushed back down2/η
Training happens at the “edge of stability”
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“Self-stabilization”

• Damian et al [2022] explained why the sharpness goes down.


• They showed that this behavior is not specific to the structure of neural net 
objectives, but is a generic property of gradient descent.

Alex Damian*, Eshaan Nichani*, Jason Lee. “Self-stabilization: the implicit bias of 
gradient descent at the edge of stability.”  ICLR 2022.



The main idea

• Damian et al [2022] showed that after starting to diverge, the loss gradient 
always aligns with the gradient of the sharpness itself.


• To see this, need to take a local cubic Taylor expansion.


• Thus, following the negative loss gradient automatically reduces sharpness!


• Gradient descent has an inbuilt self-regulatory mechanism: if the sharpness is 
too high, gradient descent oscillates … but these oscillations automatically 
push the sharpness back down!



The full training trajectory

Whenever sharpness goes above , gradient descent oscillates … but 
these oscillations automatically push the sharpness back down!

2/η



What path does gradient descent take?

• People often conceive of gradient descent as approximating the gradient 
flow trajectory                                 


• But this does not hold in the EOS regime!

·w(t) = − η∇L(w)



Gradient descent takes a different path than gradient flow

• Experiment: compare gradient flow (in orange) to gradient descent (in blue)

GF takes sharper 
path than GD



A cartoon

• Gradient flow takes one path


• Gradient descent at EOS takes a 
different, oscillatory path


• It oscillates around the EOS flow


• The EOS flow removes the 
oscillations while retaining their 
effect

·w(t) = − η∇L(w)

·w(t) = − η P∇S
⊥[∇L(w)]



The EOS flow

• The EOS flow matches the trajectory of gradient descent, 
whereas gradient flow takes a different path.

In EOS flow, the sharpness 
flatlines; in gradient flow it 
increases

The distance between gradient flow and 
GD grows over time; the distance between 
EOS flow and GD doesn’t.



What about adaptive optimizers?

• In practice, many neural nets are trained using adaptive methods (like Adam)


• Let’s start with RMSProp (Adam with no momentum or bias correction):

νt+1 = β2 νt + (1 − β2)∇L(wt)∘2

wt+1 = wt − η diag(νt+1)−1/2 ∇L(wt)



An RMSProp trajectory ( 1e-5)η =

• Sharpness shows no clear pattern, but might a different quantity?



The adaptive edge of stability

• The key is to interpret RMSProp as preconditioned gradient descent with a 
changing preconditioner.


• Preconditioned gradient descent:

wt+1 = wt − η P−1 ∇L(wt)

• This algorithm diverges on quadratics if the “preconditioned sharpness” is too high.

λ1(P−1 H ) > 2/η
largest eigenvalue of preconditioned Hessian



The adaptive edge of stability

• The key: interpret RMSProp as preconditioned gradient descent with a 
changing preconditioner.

νt+1 = β2 νt + (1 − β2)∇L(wt)∘2

wt+1 = wt − η diag(νt+1)−1/2 ∇L(wt)



The adaptive edge of stability

• The key: interpret RMSProp as preconditioned gradient descent with a 
changing preconditioner.

νt+1 = β2 νt + (1 − β2)∇L(wt)∘2

wt+1 = wt − η diag(νt+1)−1/2 ∇L(wt)

= Pt+1



RMSProp with 1e-5η =

• Now plot the preconditioned sharpness λ1(diag(νt)
−1/2 ∇2L(wt))

• The preconditioned sharpness equilibrates right at 2/η



What about Adam?

νt+1 = β2 νt + (1 − β2)∇L(wt)∘2

wt+1 = wt − η diag(νt+1)−1/2 mt+1

mt+1 = β1 mt + (1 − β1)∇L(wt)



What about Adam?

νt+1 = β2 νt + (1 − β2)∇L(wt)∘2

wt+1 = wt − η diag(νt+1)−1/2 mt+1

mt+1 = β1 mt + (1 − β1)∇L(wt)

• Adam can be viewed as 
preconditioned momentum GD with 
a changing preconditioner. 



What about Adam?

νt+1 = β2 νt + (1 − β2)∇L(wt)∘2

wt+1 = wt − η diag(νt+1)−1/2 mt+1

mt+1 = β1 mt + (1 − β1)∇L(wt)

• Adam can be viewed as 
preconditioned momentum GD with 
a changing preconditioner. 


• The analogous momentum algorithm 
diverges on the local quadratic 
Taylor approximation whenever:

λ1(diag(νt)
−1/2 ∇2L(wt)) >

2 + 2β1

1 − β1

1
η



Adam at the edge of stability

As we train using Adam, the largest eigenvalue of the preconditioned Hessian 

 equilibrates at                 , drawn below in dashed lines.diag(νt)
−1/2 ∇2L(wt)

2(1 + β1)
1 − β1

1
η



Understanding the adaptive EOS

• Whereas gradient descent maintains stability only by regularizing sharpness…


• … adaptive optimizers maintain stability both by regularizing sharpness and 
by adapting the preconditioner


• The tradeoff between these two is controlled by the hyperparamers of the 
algorithm


• In ongoing work (coming soon!), Alex Damian and I are making this precise.


• We are deriving an EOS flow for RMSProp which runs through the 
oscillatory trajectory taken by the optimizer.



Preview of ongoing work (coming soon)

• orange = real RMSProp trajectory, blue = EOS flow
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