The Optimization Dynamics of Adaptive Gradient Methods

NeurIPS 2023 Heavy Tails Workshop

Jeremy Cohen // Carnegie Mellon University

Based in part on work at Google
Optimization dynamics

• This talk is about the *dynamics of optimization* in deep learning:
 • how the optimizer moves around the weight space,
 • and how this depends on (a) loss landscape, and (b) hyperparameters
Why do we care?

• Consider these goals:
 • Design new optimizers for deep learning
 • Design optimal strategy for setting hyperparameters
 • Understand why different optimizers behave differently
 • Understand what the optimizer hyperparameters do
 • Need to understand dynamics of optimization first!
Always start simple

- Always understand simple things before more complicated things
- Understand deterministic (full-batch) training, before stochastic training
- Understand gradient descent, before Adam / adaptive methods
Gradient descent

\[w_{t+1} = w_t - \eta \nabla L(w_t) \]

- What path does gradient descent take?
- What does the learning rate parameter \(\eta \) do?
Experiment: train CNN using GD with $\eta = 0.01$

- Let sharpness = largest eigenvalue of loss Hessian
- On quadratic functions: if sharpness $> 2/\eta \Rightarrow$ GD blows up
Experiment: train CNN using GD with $\eta = 0.01$

- Let sharpness = largest eigenvalue of loss Hessian
- On quadratic functions: if sharpness > $2/\eta$ \Rightarrow blowup

What happens next?
Run gradient descent for a few more steps

As expected, the optimizer starts to diverge along the sharpest direction
Run gradient descent for a few more steps

The oscillations are growing exponentially in magnitude
Run gradient descent for a few more steps

Eventually, the oscillations get big enough that the objective goes up 😞

What happens next?
What happens next?

As if by magic, the sharpness drops below $2/\eta = 200$

Subsequently, the optimizer oscillates back inward
Whenever the sharpness rises above $2/\eta$, it somehow gets pushed back down.

Training happens at the “edge of stability”.
Relevant publications

“Self-stabilization”

- Damian et al [2022] explained why the sharpness goes down.
- They showed that this behavior is *not* specific to the structure of neural net objectives, but is a generic property of gradient descent.

The main idea

• Damian et al [2022] showed that after starting to diverge, the loss gradient always aligns with *the gradient of the sharpness itself*.

• To see this, need to take a local *cubic* Taylor expansion.

• Thus, following the negative loss gradient *automatically* reduces sharpness!

• Gradient descent has an inbuilt self-regulatory mechanism: if the sharpness is too high, gradient descent oscillates … but these oscillations automatically push the sharpness back down!
Whenever sharpness goes above $2/\eta$, gradient descent oscillates ... but these oscillations automatically push the sharpness back down!
What path does gradient descent take?

- People often conceive of gradient descent as approximating the gradient flow trajectory $\dot{w}(t) = -\eta \nabla L(w)$

- But this does not hold in the EOS regime!
Gradient descent takes a different path than gradient flow

- Experiment: compare gradient flow (in orange) to gradient descent (in blue)
A cartoon

- **Gradient flow** takes one path
- **Gradient descent** at EOS takes a different, oscillatory path
- It oscillates around the **EOS flow**
- The **EOS flow** removes the oscillations while retaining their effect

\[\dot{w}(t) = -\eta P_{\nabla S}^{\perp} [\nabla L(w)] \]

\[\dot{w}(t) = -\eta \nabla L(w) \]
The EOS flow

- The **EOS flow** matches the trajectory of **gradient descent**, whereas **gradient flow** takes a different path.
What about adaptive optimizers?

- In practice, many neural nets are trained using adaptive methods (like Adam)
- Let’s start with RMSProp (Adam with no momentum or bias correction):

\[
\nu_{t+1} = \beta_2 \nu_t + (1 - \beta_2) \nabla L(w_t)^2
\]

\[
w_{t+1} = w_t - \eta \text{ diag}(\nu_{t+1})^{-1/2} \nabla L(w_t)
\]
An RMSProp trajectory ($\eta = 1e-5$)

- Sharpness shows no clear pattern, but might a different quantity?
The adaptive edge of stability

- The key is to interpret RMSProp as preconditioned gradient descent with a changing preconditioner.

- Preconditioned gradient descent:

\[w_{t+1} = w_t - \eta P^{-1} \nabla L(w_t) \]

- This algorithm diverges on quadratics if the “preconditioned sharpness” is too high.

\[\lambda_1(P^{-1}H) > 2/\eta \]

largest eigenvalue of preconditioned Hessian
The adaptive edge of stability

• The key: interpret RMSProp as preconditioned gradient descent with a changing preconditioner.

\[
\nu_{t+1} = \beta_2 \nu_t + (1 - \beta_2) \nabla L(w_t)^2
\]

\[
w_{t+1} = w_t - \eta \text{diag}(\nu_{t+1})^{-1/2} \nabla L(w_t)
\]
The adaptive edge of stability

- The key: interpret RMSProp as preconditioned gradient descent with a changing preconditioner.

\[\nu_{t+1} = \beta_2 \nu_t + (1 - \beta_2) \nabla L(w_t)^2 \]

\[w_{t+1} = w_t - \eta \text{diag}(\nu_{t+1})^{-1/2} \nabla L(w_t) = P_{t+1} \]
RMSProp with $\eta = 1e-5$

- Now plot the *preconditioned sharpness* $\lambda_1(\text{diag}(\nu_t)^{-1/2} \nabla^2 L(w_t))$

- The preconditioned sharpness equilibrates right at $2/\eta$
What about Adam?

\[\nu_{t+1} = \beta_2 \nu_t + (1 - \beta_2) \nabla L(w_t)^2 \]

\[m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla L(w_t) \]

\[w_{t+1} = w_t - \eta \text{diag}(\nu_{t+1})^{-1/2} m_{t+1} \]
What about Adam?

- Adam can be viewed as preconditioned *momentum* GD with a changing preconditioner.

\[
\begin{align*}
\nu_{t+1} &= \beta_2 \nu_t + (1 - \beta_2) \nabla L(w_t)^2 \\
\mathbf{m}_{t+1} &= \beta_1 \mathbf{m}_t + (1 - \beta_1) \nabla L(w_t) \\
\mathbf{w}_{t+1} &= \mathbf{w}_t - \eta \text{diag}(\nu_{t+1})^{-1/2} \mathbf{m}_{t+1}
\end{align*}
\]
What about Adam?

- Adam can be viewed as preconditioned *momentum* GD with a changing preconditioner.
- The analogous momentum algorithm diverges on the local quadratic Taylor approximation whenever:

\[
\nu_{t+1} = \beta_2 \nu_t + (1 - \beta_2) \nabla L(w_t)^2
\]

\[
m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla L(w_t)
\]

\[
w_{t+1} = w_t - \eta \text{diag}(\nu_{t+1})^{-1/2} m_{t+1}
\]

\[
\lambda_1(\text{diag}(\nu_t)^{-1/2} \nabla^2 L(w_t)) > \frac{2 + 2\beta_1}{1 - \beta_1} \frac{1}{\eta}
\]
Adam at the edge of stability

As we train using Adam, the largest eigenvalue of the preconditioned Hessian $\text{diag}(\nu_t)^{-1/2} \nabla^2 L(w_t)$ equilibrates at $\frac{2(1 + \beta_1)}{1 - \beta_1} \frac{1}{\eta}$, drawn below in dashed lines.
Understanding the adaptive EOS

- Whereas gradient descent maintains stability only by regularizing sharpness...

- … adaptive optimizers maintain stability both by regularizing sharpness and by adapting the preconditioner

- The tradeoff between these two is controlled by the hyperparameters of the algorithm

- In ongoing work (coming soon!), Alex Damian and I are making this precise.
 - We are deriving an EOS flow for RMSProp which runs through the oscillatory trajectory taken by the optimizer.
Preview of ongoing work (coming soon)

- orange = real RMSProp trajectory, blue = EOS flow
Some relevant papers
