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> Asymptotic behavior in time is of interest: convergence to
fixed points is only one possibility

> Stability of solution manifold/basin of attraction — local stability
described with stable/unstable manifolds

» Potential consequences:

» reduce model size by exploiting exploration?
» dynamics-aware generalization
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Forecasti NJ: predicting chaotic timeseries from

data

Park and C, 2023
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More long-term stability in the training algorithm leads
to better generalization
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Non-converging optimization

What happens in training beyond the stopping point?
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Courtesy: [Lyu Li Arora 2022]. Recent interest [Kong and Tao 2021,
Cohen et al 2021, Lobacheva et al 2021, Zhang Li Sra Jadbabaie 2022]
in non-converging training algorithms
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Training algorithms as nonlinear dynamical systems
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> heavy-tailed fluctuations in SGD leads to better generalization
[ Martin and Mahoney 2017, 2019, 2020 ]

> generalization linked to fractal dimension of SGD attractor [
Simsekli et al 2020 ], data-dependent generalization [ Xu and
Raginsky 2017 ] based on Fernique-Talagrand functional [
Hodgkinson et al 2022 ]
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Non-converging optimization
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Non-converging optimization

train acc

train loss
test acc
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Courtesy: [Lyu Li Arora 2022]. Recent interest [Kong and Tao 2021, Cohen et al 2021, Lobacheva et al 2021, Zhang Li Sra

Jadbabaie 2022] in non-converging training algorithms

(Q1) How can we define and study the generalization properties of
a non-converging learning algorithm?

(Q2) Can the statistical/ergodic properties of the algorithm predict
its generalization performance?
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SGD/GD dynamics on weight space:

Wi = Wt — T]@Ls( 738

where
» w; € M are the weights attime t € Z*

> Sis a set of ntraining samples zy, - - - , z, iid according to D
> Ls(w) = (1/n) Y ,cst(z, w)is the sample average of the
loss £(-, -).

> ?Ls(wt) is the estimate of the weight space gradient of Lg.

In general, deterministic/stochastic nonlinear dynamics on
compact set. No guarantee of convergence to fixed points. There
exist multiple invariant, ergodic distributions on weight space, M.
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Ergodic properties of training

A probability measure 1 on M is ergodic for the training dy-
namics if for all continuous functions f : M — R, and u-a.e.
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Convergence of loss time-averages

Assumption 1: For almost every wy and every z, time-
average of {(z, -) converges to a constant (£,) s, independent

of wg.
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Orbits of four different initializations of a VGG16 training with SGD.
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Orbits of four different initializations of a VGG16 training with SGD.

Assumption allows us to extend algorithmic stability to statistical
algorithmic stability (SAS).
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Classical algorithmic stability [Bousquet and Elisseeff 2002]:

B :=supsup [{(z, wg) — U(z, wg/)l.
z 88

Statistical Algorithmic Stability (SAS): We say an algo-
rithm is SAS with coefficient {3 if

3 := supsup |<€z>8 - <€z>8’|-
z S8

. J

The higher the value of 3, the lower the statistical stability. Unlike
classical algorithmic stability, SAS

> applies to non-converging learning algorithms
> is constant on network function/parameter space
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Numerical approximation of 3 for SGD on VGG16 model

trained

on CIFAR10

Diff in Test loss statistic b/w S and S’
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45 (S, 8’) pairs, with error bars, of
time-averaged test loss difference.
Lower bound on 3 with error bars
computed as sample mean. Test
loss vs. time (epoch).
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Observation: more the SAS of training, better
generalization
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Observation: more the SAS of training, better
generalization
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What makes an algorithm statistically stable?

Pointwise approach [ Hardt et al 2016 | toward algorithmic
stability

Wi — Wiy = w —wf —n(VLs(wf) — Vig/(w))

» Uninformative for SAS, which is a time-independent notion

> Early stopping based on the upper bound does not apply to
non-converging algorithms

> Must take global (operator-theoretic) approach to
SAS-based generalization
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Predicting generalization gap from timeseries data

Theorem 2 (Slower convergence of loss statistics implies
larger (3) Let A be the slowest mixing rate of the transition
operators on loss space. Then, the corresponding training
algorithm with n samples has SAS coefficient
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Predicting generalization gap from timeseries data

Theorem 2 (Slower convergence of loss statistics implies
larger (3) Let A be the slowest mixing rate of the transition
operators on loss space. Then, the corresponding training
algorithm with n samples has SAS coefficient

where Lp = sup,, Lip(VE(-, w))

> exploit perturbation theory of uniformly ergodic Markov chains
(see e.g. [Mitraphanov 2005])

» Under conditions of the above result, 3 ~ O(1/n).
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Numerical verification of the connection between speed
of convergence of statistics and SAS, and hence
generalization

Learning algorithms in which loss time-averages converge slower,
e.g., correlations in the loss persist, are less SAS.
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Numerical verification of the connection between speed
of convergence of statistics and SAS, and hence
generalization

Test loss autocorrelation

Learning algorithms in which loss time-averages converge slower,
e.g., correlations in the loss persist, are less SAS.

SGD with constant step size of 0.01 on ResNet18 model trained on corrupted CIFAR10 dataset.
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More long-term stability in the training algorithm leads
to better generalization
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Goal: Transport-based Bayesian
Inference and Sampling

Today: New transport construction

score of a probability distribution with density p := V log p

19/41



Sampllng: an algorithm to sample from a target
distribution (e.g., a Bayesian posterior) when it is partially
specified through samples or a statistical model
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Sampllng: an algorithm to sample from a target
distribution (e.g., a Bayesian posterior) when it is partially

specified through samples or a statistical model

Score Operator Newton Transport

Input: po(src score), q(tar score) = L"(py— q):

|
Output: Target samples /_ Solve PDE___}

Maps Scores
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Sampllng: an algorithm to sample from a target
distribution (e.g., a Bayesian posterior) when it is partially
specified through samples or a statistical model

Score Operator Newton Transport

Input: po(src score), q(tar score) =L (p— q)i
Output: Target samples /L Solve PDE___}
Maps Scores

¥ srcscore, py L
o . \\xi :ﬁxmgq . tarscore, ¢
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Introduce a new transport map construction
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Sampling via measure transport

» Target measure: v with density p".
> Tractable source measure p with density p*.
» supp(n) = X and supp(v) =Y.
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Sampling via measure transport

» Target measure: v with density p".
> Tractable source measure p with density p*.
» supp(p) = X and supp(v) =Y.

A transport map T : X — Y is an invertible transformation
such that Ty = v.
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The score operator

Some properties of §
> G(s,Id) =s
» G(s, Uz 0 Uy) = G(S(s, U1), U2)

Infinite-dimensional score matching problem: Find T such
that

Sp, T)=aq,
where,

p: Source score = V log p*
q: Target score = Vlog p".

» Want to avoid parameterization
» Use Newton-type method

23/41



A zero of the score residual

Infinite-dimensional score matching problem: Find a zero €
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A zero of the score residual

Infinite-dimensional score matching problem: Find a zero €

C2(X,Y) of

the score residual operator

R(T)==8G(p,T)—q

Expand G about (g, Id)

S(p, T) = 9(q.1d) + D1S(q,1d)(p — q) + D25(q, 1d)(T —1d)
+A(p, T)

L(q)v:

=—D,5(q,1d) v=Vq Vv +q Vv +tr(V3v).
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The zero of the score residual operator

The linearized score-matching problem: Elliptic PDE system

(p—q)=Lv (1)

Newton-type step:

—(q— pn) = £(q)Va = (VQ)Va + q(VVp) + tr(VZvy).




The zero of the score residual operator

The linearized score-matching problem: Elliptic PDE system

(p—q)=Lv (1)

Newton-type step:
—(g—pn) = £(q)Vn = (V@)Va + q(VVa) + tr(VZ V).
Newton-type update:

Tne1 < (Id+vp) o Th
Pr+1 < G(Pn, Id + vp).
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Score Operator Newton (SCONE) iteration for transport
maps

7

Newton-type step:

—(g—pn) = L(@)Va = (VQ)Va + q(V V) + tr(VZV,).

» Inspired by Kolmogorov-Arnold-Moser iteration in dynamical
systems theory, and Nash-Moser iteration in PDEs.

> Conceptually different from empirical, parametric
score-matching [ Koehler et al 2022 ]
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The SCONE construction of transport
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The SCONE construction of transport

>

>

Optimize distance functional on
probability measure space

Find an optimal map in an
ansatz space

Triangular transport [ Moselhy
and Marzouk 2012 ],
normalizing flows [
Papamakarios et al 2021 ],
neural ODEs [ Grathwohl et al
2018 ]

>

>

Gradient flow of appropriate
distance functional

Transport map implicitly
obtained via particle paths

[ Jordan et al 1998 |, |
Wibisono 2018 ], Stein
Variational Gradient descent [
Liu and Wang 2016 ] and
many variants [ Chewi et al
2020, Duncan et al 2019 ]
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The SCONE construction of transport

» Optimize distance functional on » Gradient flow of appropriate
probability measure space distance functional

» Find an optimal map in an » Transport map implicitly
ansatz space obtained via particle paths

» Triangular transport [ Moselhy > [Jordan et al 1998 ], [
and Marzouk 2012 ], Wibisono 2018 ], Stein
normalizing flows [ Variational Gradient descent [
Papamakarios et al 2021 ], Liu and Wang 2016 ] and
neural ODEs [ Grathwohl et al many variants [ Chewi et al
2018 ] 2020, Duncan et al 2019 ]

SCONE gives an iterative construction as the limit of a se-
quence of compositions. Based on finding zero of a score-
residual operator.
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Existence of a " transport and convergence of SCONE
iteration

Theorem [SCONE(informal)] For every € > 0,s € N, there
exists a & > 0 such that ||p — q||s < € implies 3 T €
@s+2- (M) such that (i) G(p, T) = g and (i) || T —Id||s42 < 5.
Moreover, T = limy_00 Tp @and g = limp_se0 pn in €512 (Q),
where (T,)n>0 and (pn)n>o are the sequences generated by
the Score Operator Newton iteration.
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iteration

Theorem [SCONE(informal)] For every € > 0,s € N, there
exists a & > 0 such that ||p — q||s < € implies 3 T €
@s+2- (M) such that (i) G(p, T) = g and (i) || T —Id||s42 < 5.
Moreover, T = limy_00 Tp @and g = limp_se0 pn in €512 (Q),
where (T,)n>0 and (pn)n>o are the sequences generated by
the Score Operator Newton iteration.

» Contraction mapping principle (Banach fixed point theorem)
applied to

J(v) =L7(S(q+ Lv,1d+v) —q),

» Use elliptic regularity for proving continuity of derivative
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Numerical validation

After 5 iteration(s)

3 ps
0.2 target
0.1
00— 0 5

v b
-9 ° tar score, ¢

—10 0 10
X
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Comparison against parametric transport at the same
computational cost

[ param trans, iter = 5 SCONE, iter =5
0.25 param trans, iter = 500 SCONE. iter = 15

target

0.2 target

0.1

0.0

—5 0 5

Left: Monotone transport [ Parno et al 2022 ], up to 10th order Hermite
polynomials, Number of parameters x Number of samples to approximate
KL divergence = 11x(512*512/11). Right: SCONE with 512 grid points
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1D comparisons

0.5 SVGD, iter=5 i B
SVGD, iter=500 SCONE, iter = 5
0.4 — SVGD, iter=1000 SCONE, iter = 15

target ‘ 0.2 target

0.0 0.0

Left: SVGD [ Liu and Wang 2016 ] with 512 particles, RBF kernel,
gradient descent with step size 0.01
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Convergence of SCONE construction to the increasing
rearrangement in 1D

After 15 iteration(s)

L 4
+
500 T 1] —+ ol
Id
by
01 10!
:.\1-
i
0 e
=5 / 0 *\*\'"‘**
——_
+\‘"1\+
-5 0 5) P ; =
123456789101112131415
X Iteration number

» Global dependence of v helps avoid mode collapse
> Tail behavior captured due to score matching
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Score Operator Newton Transport

Input: po(src score), q(tar score) v =L"(po—q)
Output: Target samples

. — i SolvePDE___!

Maps
° T

Id+ v

Scores
src score, py \y P
tar score, ¢
©  tarscore, q
———— \F~
G(po, Id+ v) \

source, py
target

Densities Y

target

(Id + v)y

)
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Score Operator Newton construction: can be used for
sampling, generative modeling, Bayesian inference and
filtering in chaotic systems

> A deterministic nonparametric transport method derived with
an operator root-finding principle.
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Score Operator Newton construction: can be used for
sampling, generative modeling, Bayesian inference and
filtering in chaotic systems

> A deterministic nonparametric transport method derived with
an operator root-finding principle.

» Convergence in Hélder norms using elliptic regularity

v

Newton-like features: unstable, converges fast

» Global nature of elliptic PDE helps i) avoid mode collapse and
ii) capture tails

> Next steps: nonparametric PDE solves e.g. particle vortex
methods, smooth particle hydrodynamics, PINNs etc.

> Low-rank approximations of elliptic PDE solution?

C, Schafer, Marzouk 2023 https://arxiv.org/abs/2305.09792 ]
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Learning chaotic dynamics from data

» Neural ODE [Chen et al 2018]:

Coob(x) = hlohx), xR, @

35/41



Learning chaotic dynamics from data

» Neural ODE [Chen et al 2018]:

d
S Ph(x) = hle(x), xR’ )
> ERM problem to minimize loss of the form

U(x0, h) = [0} (x0) — x5¢1?
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Learning chaotic dynamics from data

» Neural ODE [Chen et al 2018]:

Coob(x) = hlohx), xR, @

> ERM problem to minimize loss of the form
U(x0, h) = [[@pt(x0) — Xs¢l12

» Training and test errors (for one-step predictions) small, but
does not generalize
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Learning the Lorenz ‘63 system

Loss Behavior of MSE Loss

Train Loss
0.0015 —— Test Loss
0.0010 |
0.0005
0.0000

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

Good “generalization” performance. Three layer feed forward network
trained with Adamw
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Generalization => learning dynamics?

Lyapunov Exponent
True LE ~ [0.9, 0, -14.5]
Neural ODE | [0.8926, —0.0336, —6.0616]

37/41



Generalization => learning dynamics?

Lyapunov Exponent

True LE

~[0.9, 0, -14.5]

Neural ODE

(0.8926, —0.0336, —6.0616]
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Statistically accurate Neural ODE models

| Lyapunov Exponent

True LE

| ~[0.9,0,-14.5]

Neural ODE
+Jacobian info

[0.8926, —0.0336, —6.0616]
[0.9022, —0.0024, —14.4803]

» Modified loss:

(X0, h) = [l@p(x) — xstl[* + Alld@p! (x) — dxse(x) |2
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Statistically accurate Neural ODE models

| Lyapunov Exponent |
True LE | ~[0.9, 0, -14.5] |
Neural ODE [0.8926, —0.0336, —6.0616]
+Jacobian info | [0.9022, —0.0024, —14.4803]

> Modified loss:
Ux0, h) = [l@p!(x) — Xs¢ll® + Alld e}t (x) — dxse(x) 12

> With modified loss, statistical moments (correlations, LEs) are
accurate
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Learning out-of-attractor dynamics
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Learning ergodic dynamics from data using Neural ODEs

» Can Neural ODEs learn statistics from timeseries data alone?
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Learning ergodic dynamics from data using Neural ODEs

» Can Neural ODEs learn statistics from timeseries data alone?
» How should the loss modification depend on the dynamics?
» How do we predict bifurcations? [Liu-Schiaffini 2023]

» How should generalization error be defined?

>

Many more problems at the intersection of dynamics and
learning theory!
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Learn | ng : Statistical stability implies generalization

C, Loukas, Gatmiry and Jegelka, NeurlPS 2022

Sampling: Score Operator Newton transport —

root-finding principle for sampling

. J

C, Schafer and Marzouk, arxiv:2305.09792, 2023

FO recaSti ng: context-dependent generalization

analyses

Park and C, 2023
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