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What is the dynamical systems view?

▶ Unified view of deterministic and stochastic algorithms as
discrete-time Markov processes

▶ Asymptotic behavior in time is of interest: convergence to
fixed points is only one possibility

▶ Stability of solution manifold/basin of attraction – local stability
described with stable/unstable manifolds

▶ Potential consequences:
▶ reduce model size by exploiting exploration?
▶ dynamics-aware generalization
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Intersections with areas of statistics

Generalization: The performance of a learn-
ing algorithm on unseen data (typically from the same distri-
bution)

C, Loukas, Gatmiry and Jegelka, NeurIPS 2022

Sampling: an algorithm to sample from a target
distribution (e.g., a Bayesian posterior) when it is partially
specified

C, Schäfer and Marzouk, 2023

Forecasting: predicting chaotic timeseries from
data

Park and C, 2023
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More long-term stability in the training algorithm leads
to better generalization
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Non-converging optimization

What happens in training beyond the stopping point?

Courtesy: [Lyu Li Arora 2022]. Recent interest [Kong and Tao 2021,
Cohen et al 2021, Lobacheva et al 2021, Zhang Li Sra Jadbabaie 2022]
in non-converging training algorithms
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Training algorithms as nonlinear dynamical systems

▶ heavy-tailed fluctuations in SGD leads to better generalization
[ Martin and Mahoney 2017, 2019, 2020 ]

▶ generalization linked to fractal dimension of SGD attractor [
Şimşekli et al 2020 ], data-dependent generalization [ Xu and
Raginsky 2017 ] based on Fernique-Talagrand functional [
Hodgkinson et al 2022 ]
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Non-converging optimization

Courtesy: [Lyu Li Arora 2022]. Recent interest [Kong and Tao 2021, Cohen et al 2021, Lobacheva et al 2021, Zhang Li Sra

Jadbabaie 2022] in non-converging training algorithms

(Q1) How can we define and study the generalization properties of
a non-converging learning algorithm?

(Q2) Can the statistical/ergodic properties of the algorithm predict
its generalization performance?
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SGD/GD dynamics on weight space:

wt+1 = wt − η∇̂LS(wt),

where
▶ wt ∈ M are the weights at time t ∈ Z+

▶ S is a set of n training samples z1, · · · , zn iid according to D

▶ LS(w) = (1/n)
∑

z∈S ℓ(z,w) is the sample average of the
loss ℓ(·, ·).

▶ ∇̂LS(wt) is the estimate of the weight space gradient of LS.

In general, deterministic/stochastic nonlinear dynamics on
compact set. No guarantee of convergence to fixed points. There
exist multiple invariant, ergodic distributions on weight space, M.
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Ergodic properties of training

A probability measure µ on M is ergodic for the training dy-
namics if for all continuous functions f : M → R, and µ-a.e.
w0,

(1/T )

T−1∑
t=0

f (wt)→ Ew∼µ[f (w)].

In general, there are many invariant, ergodic measures.
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Convergence of loss time-averages

Assumption 1: For almost every w0 and every z, time-
average of ℓ(z, ·) converges to a constant ⟨ℓz⟩S, independent
of w0.

Orbits of four different initializations of a VGG16 training with SGD.

Assumption allows us to extend algorithmic stability to statistical
algorithmic stability (SAS).
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Statistical Algorithmic Stability

Classical algorithmic stability [Bousquet and Elisseeff 2002]:

β := sup
z

sup
S,S ′

|ℓ(z,w∗
S) − ℓ(z,w∗

S ′)|.

Statistical Algorithmic Stability (SAS): We say an algo-
rithm is SAS with coefficient β if

β := sup
z

sup
S,S ′

|⟨ℓz⟩S − ⟨ℓz⟩S ′ |.

The higher the value of β, the lower the statistical stability. Unlike
classical algorithmic stability, SAS
▶ applies to non-converging learning algorithms
▶ is constant on network function/parameter space
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Numerical approximation of β for SGD on VGG16 model
trained on CIFAR10

Noisy CIFAR10 labels.
Anticlockwise: Sample mean over
45 (S,S ′) pairs, with error bars, of
time-averaged test loss difference.
Lower bound on β with error bars
computed as sample mean. Test
loss vs. time (epoch).
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Observation: more the SAS of training, better
generalization

Lower bound on β

Generalization error
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Generalization of a non-converging algorithm

▶ Training error, R̂S := (1/n)
∑

z∈S⟨ℓz⟩S

▶ Test/generalization error, RS := Ez∼D⟨ℓz⟩S.

Theorem 1 (SAS implies generalization) For an algorithm
with SAS coefficient β and large # of samples n, the gener-
alization gap = RS − R̂S = O(β

√
n) with high probability.

Smaller β ≡ more SAS =⇒ better generalization
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What makes an algorithm statistically stable?

Pointwise approach [ Hardt et al 2016 ] toward algorithmic
stability

wS
t+1 − wS ′

t+1 = wS
t − wS ′

t − η(∇̂LS(wS
t ) − ∇̂LS ′(wS ′

t ))

▶ Uninformative for SAS, which is a time-independent notion

▶ Early stopping based on the upper bound does not apply to
non-converging algorithms

▶ Must take global (operator-theoretic) approach to
SAS-based generalization
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Predicting generalization gap from timeseries data

Theorem 2 (Slower convergence of loss statistics implies
larger β) Let λ be the slowest mixing rate of the transition
operators on loss space. Then, the corresponding training
algorithm with n samples has SAS coefficient

β = O(
1
n

LD

1 − λ
),

where LD = supw Lip(∇ℓ(·,w))

▶ exploit perturbation theory of uniformly ergodic Markov chains
(see e.g. [Mitraphanov 2005])

▶ Under conditions of the above result, β ∼ O(1/n).
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Numerical verification of the connection between speed
of convergence of statistics and SAS, and hence
generalization

Learning algorithms in which loss time-averages converge slower,
e.g., correlations in the loss persist, are less SAS.

SGD with constant step size of 0.01 on ResNet18 model trained on corrupted CIFAR10 dataset.
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More long-term stability in the training algorithm leads
to better generalization
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Goal: Transport-based Bayesian
Inference and Sampling

Today: New transport construction
.

score of a probability distribution with density ρ := ∇ log ρ
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Sampling: an algorithm to sample from a target
distribution (e.g., a Bayesian posterior) when it is partially
specified through samples or a statistical model

Introduce a new transport map construction
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Sampling via measure transport

▶ Target measure: ν with density ρν.

▶ Tractable source measure µ with density ρµ.

▶ supp(µ) = X and supp(ν) = Y.

A transport map T : X → Y is an invertible transformation
such that T♯µ = ν.
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The score operator

Goal: new transport map that exploits availability of scores.

Idea: Define an infinite-dimensional score matching problem

Change of variables/pushforward operation:

ρν =
ρµ ◦ T−1

|det∇T | ◦ T−1

Pushforward operation on scores:

G(s,U) =
(
s(∇U)−1 −∇ log |det∇U |(∇U)−1) ◦ U−1

=
(
s (∇U)−1 − tr

(
(∇U)−1∇2U

)
(∇U)−1) ◦ U−1,

22 / 41



The score operator

Goal: new transport map that exploits availability of scores.

Idea: Define an infinite-dimensional score matching problem

Change of variables/pushforward operation:

ρν =
ρµ ◦ T−1

|det∇T | ◦ T−1

Pushforward operation on scores:

G(s,U) =
(
s(∇U)−1 −∇ log |det∇U |(∇U)−1) ◦ U−1

=
(
s (∇U)−1 − tr

(
(∇U)−1∇2U

)
(∇U)−1) ◦ U−1,

22 / 41



The score operator

Goal: new transport map that exploits availability of scores.

Idea: Define an infinite-dimensional score matching problem

Change of variables/pushforward operation:

ρν =
ρµ ◦ T−1

|det∇T | ◦ T−1

Pushforward operation on scores:

G(s,U) =
(
s(∇U)−1 −∇ log |det∇U |(∇U)−1) ◦ U−1

=
(
s (∇U)−1 − tr

(
(∇U)−1∇2U

)
(∇U)−1) ◦ U−1,

22 / 41



The score operator

Goal: new transport map that exploits availability of scores.

Idea: Define an infinite-dimensional score matching problem

Change of variables/pushforward operation:

ρν =
ρµ ◦ T−1

|det∇T | ◦ T−1

Pushforward operation on scores:

G(s,U) =
(
s(∇U)−1 −∇ log |det∇U |(∇U)−1) ◦ U−1

=
(
s (∇U)−1 − tr

(
(∇U)−1∇2U

)
(∇U)−1) ◦ U−1,

22 / 41



The score operator

Some properties of G
▶ G(s, Id) = s
▶ G(s,U2 ◦ U1) = G(G(s,U1),U2)

Infinite-dimensional score matching problem: Find T such
that

G(p,T ) = q,

where,
p: Source score = ∇ log ρµ

q: Target score = ∇ log ρν.

▶ Want to avoid parameterization
▶ Use Newton-type method
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A zero of the score residual

Infinite-dimensional score matching problem: Find a zero ∈
C2(X,Y) of the score residual operator

R(T ) := G(p,T ) − q

Expand G about (q, Id)

G(p,T ) = G(q, Id) + D1G(q, Id)(p − q) + D2G(q, Id)(T − Id)
+ ∆(p,T )

L(q) v := −D2G(q, Id) v = ∇q v + q ∇v + tr(∇2v).
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The zero of the score residual operator

The linearized score-matching problem: Elliptic PDE system

(p − q) = L v (1)

Newton-type step:

−(q − pn) = L(q)vn = (∇q)vn + q(∇vn) + tr(∇2vn).

Newton-type update:

Tn+1 ← (Id + vn) ◦ Tn

pn+1 ← G(pn, Id + vn).
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Score Operator Newton (SCONE) iteration for transport
maps

Newton-type step:

−(q − pn) = L(q)vn = (∇q)vn + q(∇vn) + tr(∇2vn).

Newton-type update:

Tn+1 ← (Id + vn) ◦ Tn

pn+1 ← G(pn, Id + vn).

▶ Inspired by Kolmogorov-Arnold-Moser iteration in dynamical
systems theory, and Nash-Moser iteration in PDEs.

▶ Conceptually different from empirical, parametric
score-matching [ Koehler et al 2022 ]
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The SCONE construction of transport

▶ Optimize distance functional on
probability measure space

▶ Find an optimal map in an
ansatz space

▶ Triangular transport [ Moselhy
and Marzouk 2012 ],
normalizing flows [
Papamakarios et al 2021 ],
neural ODEs [ Grathwohl et al
2018 ]

▶ Gradient flow of appropriate
distance functional

▶ Transport map implicitly
obtained via particle paths

▶ [ Jordan et al 1998 ], [
Wibisono 2018 ], Stein
Variational Gradient descent [
Liu and Wang 2016 ] and
many variants [ Chewi et al
2020, Duncan et al 2019 ]

SCONE gives an iterative construction as the limit of a se-
quence of compositions. Based on finding zero of a score-
residual operator.
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Existence of a Cr transport and convergence of SCONE
iteration

Theorem [SCONE(informal)] For every ϵ > 0, s ∈ N, there
exists a δ > 0 such that ∥p − q∥s ⩽ ϵ implies ∃ T ∈
Cs+2,·(M) such that (i) G(p,T ) = q and (ii) ∥T − Id∥s+2 ⩽ δ.
Moreover, T = limn→∞ Tn and q = limn→∞ pn in Cs+2,·(Ω̄),
where (Tn)n⩾0 and (pn)n⩾0 are the sequences generated by
the Score Operator Newton iteration.

▶ Contraction mapping principle (Banach fixed point theorem)
applied to

J(v) = L−1(G(q + Lv , Id + v) − q),

▶ Use elliptic regularity for proving continuity of derivative

28 / 41



Existence of a Cr transport and convergence of SCONE
iteration

Theorem [SCONE(informal)] For every ϵ > 0, s ∈ N, there
exists a δ > 0 such that ∥p − q∥s ⩽ ϵ implies ∃ T ∈
Cs+2,·(M) such that (i) G(p,T ) = q and (ii) ∥T − Id∥s+2 ⩽ δ.
Moreover, T = limn→∞ Tn and q = limn→∞ pn in Cs+2,·(Ω̄),
where (Tn)n⩾0 and (pn)n⩾0 are the sequences generated by
the Score Operator Newton iteration.

▶ Contraction mapping principle (Banach fixed point theorem)
applied to

J(v) = L−1(G(q + Lv , Id + v) − q),

▶ Use elliptic regularity for proving continuity of derivative

28 / 41



Numerical validation

29 / 41



Comparison against parametric transport at the same
computational cost

Left: Monotone transport [ Parno et al 2022 ], up to 10th order Hermite
polynomials, Number of parameters x Number of samples to approximate
KL divergence = 11x(512*512/11). Right: SCONE with 512 grid points
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1D comparisons

Left: SVGD [ Liu and Wang 2016 ] with 512 particles, RBF kernel,
gradient descent with step size 0.01
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Convergence of SCONE construction to the increasing
rearrangement in 1D

▶ Global dependence of v helps avoid mode collapse
▶ Tail behavior captured due to score matching
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Score Operator Newton construction: can be used for
sampling, generative modeling, Bayesian inference and
filtering in chaotic systems

▶ A deterministic nonparametric transport method derived with
an operator root-finding principle.

▶ Convergence in Hölder norms using elliptic regularity
▶ Newton-like features: unstable, converges fast
▶ Global nature of elliptic PDE helps i) avoid mode collapse and

ii) capture tails
▶ Next steps: nonparametric PDE solves e.g. particle vortex

methods, smooth particle hydrodynamics, PINNs etc.
▶ Low-rank approximations of elliptic PDE solution?

C, Schäfer, Marzouk 2023 https://arxiv.org/abs/2305.09792
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Learning chaotic dynamics from data

▶ Neural ODE [Chen et al 2018]:

d
dt
φt

h(x) = h(φt
h(x)), x ∈ Rd . (2)

▶ ERM problem to minimize loss of the form
ℓ(x0, h) = ∥φδt

h (x0) − xδt∥2

▶ Training and test errors (for one-step predictions) small, but
does not generalize
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Learning the Lorenz ’63 system

0 2500 5000 7500 10000 12500 15000 17500 20000
Epochs

0.0000

0.0005

0.0010

0.0015
Train Loss
Test Loss

Loss Behavior of MSE Loss

Good “generalization” performance. Three layer feed forward network
trained with AdamW
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Generalization => learning dynamics?

Lyapunov Exponent
True LE ≈ [0.9, 0, -14.5]

Neural ODE [0.8926,−0.0336,−6.0616]

37 / 41



Generalization => learning dynamics?

Lyapunov Exponent
True LE ≈ [0.9, 0, -14.5]

Neural ODE [0.8926,−0.0336,−6.0616]

37 / 41



Statistically accurate Neural ODE models

Lyapunov Exponent
True LE ≈ [0.9, 0, -14.5]

Neural ODE [0.8926,−0.0336,−6.0616]
+Jacobian info [0.9022,−0.0024,−14.4803]

▶ Modified loss:
ℓ(x0, h) = ∥φδt

h (x) − xδt∥2 + λ∥dφδt
h (x) − dxδt(x)∥2

▶ With modified loss, statistical moments (correlations, LEs) are
accurate
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Learning out-of-attractor dynamics

39 / 41



Learning ergodic dynamics from data using Neural ODEs

▶ Can Neural ODEs learn statistics from timeseries data alone?

▶ How should the loss modification depend on the dynamics?
▶ How do we predict bifurcations? [Liu-Schiaffini 2023]
▶ How should generalization error be defined?
▶ Many more problems at the intersection of dynamics and

learning theory!
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Learning: Statistical stability implies generalization

C, Loukas, Gatmiry and Jegelka, NeurIPS 2022

Sampling: Score Operator Newton transport –
root-finding principle for sampling

C, Schäfer and Marzouk, arxiv:2305.09792, 2023

Forecasting: context-dependent generalization
analyses

Park and C, 2023
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