Associative Memory with Heavy-Tailed Data

Alberto Bietti Vivien Cabannes Elvis Dohmatob Leon Bottou Hervé Jegou
Flatiron CCM Meta Al Meta Al Meta Al Kyutai N\ Meta Al

Context: renewed interest for associative memories in LLM settings

Augmenting Self-attention with Persistent Memory

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, Armand Joulin
Facebook Al Research
sainbar,egrave,guismay,rvj,ajoulin@fb.com

HOPFIELD NETWORKS IS ALL YOU NEED

Hubert Ramsauer* Bernhard Schiafl* Johannes Lehner* Philipp Seidl*

Michael Widrich* Thomas Adler* Lukas Gruber* Markus Holzleitner*

Milena Pavlovi¢t '8 Geir Kjetil Sandve’ Victor Greiff: David Kreil

Michael Kopp' Giinter Klambauer* Johannes Brandstetter* Sepp Hochreiter*: '

Energy Transformer

Benjamin Hoover* Yuchen Liang* Bao Pham™
IBM Research Department of CS Department of CS
Georgia Tech RPI RPI
benjamin.hoover@ibm. com liangy7@rpi.edu phamb@rpi.edu
Rameswar Panda Hendrik Strobelt Duen Horng Chau
MIT-IBM Watson Al Lab MIT-IBM Watson Al Lab College of Computing
IBM Research IBM Research Georgia Tech
rpanda@ibm.com hendrik.strobelt@ibm.com polo@gatech.edu
Mohammed J. Zaki Dmitry Krotov
Department of CS MIT-IBM Watson Al Lab
RPI IBM Research
zaki@cs.rpi.edu krotov@ibm.com

Why it makes sense to think of learning in terms of memory?

Arguably, learning is about discovery and memorization of abstract rules

l.e., find the right hierarchical patterns, and memorize them for future pattern matching

Contribution: A throughout study of a simple associative memory model
This models stems from our paper “Birth of a Transformer” (NeurlPS 2023 Spotlight)

Layer 2 * * * * wy (b) | wg(a)

How is it related to transformers? A2 S o () o HET S ooyl
Those memory blocks can describe induction heads, oot [+ [us@] [wi@ [ws® + Jws(a)

. . . . WAL, .o o
which are the foundations of circuits, vt] fesidual | Prediction

Layer 0 Pi—1 | wg(a) Pt | wg(b) pr—1 | wg(a)

believed to explain transformers

Sequence a b [] a

Setup

Data
Discrete input x € N, discrete outputy € N with Zipf law

p(x) o x77, p(y[x) = 6¢n(¥)
Model
Embeddings Latent transformation Probability score Input/output rule
€y Uy, ~ N (0,1 € R? W e R Pi(y]x) exp(uyT We,) fi(x) = argmax py(y | x)

Y
Associative memory parametrization

W = Z q(x, e, (span(u, ® e,),., = span(l; ® 1),)
X,y

Measure of success
E(W) = E) pl (fy(x), y)] with C(f(x),y) = Lz,
Surrogate training objective: the cross-entropy loss
Z(W) = E(y)pl (Wi X, y)] with Cs(W;x,y) = —log py(y | x)

Training data

(x,y,) ~p for r=1,....,T

Tokens Embeddings Model Scaling

Vi. = fo(2s,) | emuy €RY | W =3 q(@)us. e, | €(a) =E[Lf, ()45 ()]
te{1,2,...,T} | ez ~N(0,I) | fq(xz)= argmax, u,We, E(q) = FZd,T; q)

Statistical Study

Tokens Embeddings Model Scaling
Vi = [o(2,) | ex,uy ERY | W =37 q(z)up,m)e, | €(@) = E[lf ()£1. ()]
te{1,2,...,T} | ez ~N(0,I) | fq(xz)= argmax, u,We, E(g) = de, T;q)

Approximation guarantees

Tokens Embeddings Model Scaling

vi, = f+(Ti,) ex,uy ERY | W =3 q(z)us. e, | (@) =E[Lf, (x)4s.(a)]
te{1,2,...,T} | ez ~N(0,I) | fq(xz)= argmax, u,We, E(q) = FZd,T; q)

Approximation guarantees

Proof: Develop the model

fin(r) = argmax(uy, g(r)lle | ug .t Y gele, - ug)
XFEr

Interference between memories

fe@ £y = glel ||uﬁ<r>||2<max2q<x>e e, U i,

Need to ensure the right score maximizer

With permutation of expectations,
the problem reduces to max of Gaussian deviation 4 o

Tokens Embeddings Model Scaling

vi, = f+(Ti,) ex,uy ERY | W =3 q(z)us. e, | (@) =E[Lf, (x)4s.(a)]
te{1,2,...,T} | ez ~N(0,I) | fq(xz)= argmax, u,We, E(q) = FZd,T; q)

Approximation guarantees

When W = Z Q(X)uf*(x)e);r, [Ee,u[%(W)] =P ({X | Q(X)d < C“Q”%})

Finite-sample complexity

When ¢, = F(({t]|x, = x}),), E(qr) — 8E(q,,) =

Proof: Binning samples output according to their empirical frequencies (Csiszar’s type method)

Worse case deviation for g(x) is controlled by e ~/P™

Linearity of expectation leads to the summation

Tokens Embeddings Model Scaling
Vi, = fu(@i,) | exyuy €ERT | W =3 q(x)up.mye, | (@) =Ely (2)21. ()]
te{1,2,...,T} | ez ~N(0,I) | fq(xz)= argmax, u,We, E(g) = de, T;q)

Instantiation for heavy tailed data

E, [EV)] = p ({x|90d > cllgll3}) + [p(x)e—“dx @) o X7
Model Error scaling Comment
q(z) = p(x) | d-(e-1/2a L p-ltl/a Found with large batches in one step
q(x) = 1y<q d—otl 4 p-itt/a Optimal scaling with random embeddings

Error

Optimization Study

Training dynamics

Z(W) = [E(x,y)Np[fs(W; X,)]

Each association (x, y) creates a landscape W = £((W; x, y) that pushes towards

Individual train landscape

Tokens Embeddings Model Scaling
Vi = [o(2,) | ex,uy ERY | W =37 q(z)up,m)e, | €(@) = E[lf ()£1. ()]
te{1,2,...,T} | ez ~N(0,I) | fq(xz)= argmax, u,We, E(g) = de, T;q)
with Cs(Wix,y) = —logpy(y|x)

T dxd
ue, €R

Level lines examples with n = 5 tokens x, in dimension d = 2 on Span(ee;')

Tokens Embeddings Model Scaling
Vi, = fu(@i,) | exyuy €ERT | W =3 q(x)up.mye, | (@) =Ely (2)21. ()]
te{1,2,...,T} | ez ~N(0,I) | fq(xz)= argmax, u,We, E(g) = FZd, T;q)
Training dynamics
Z(W) = [E(x,y)Np[fs(W; X,Y)] with Cs(Wix,y) = —logpy(y|x)

Each association (x, y) creates a landscape W = £¢(W; x, y) that pushes towards e] € R

Level lines examples with n = 5 tokens x, in dimension d = 2 on Span(e,

Population train landscape

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

Population test landscape

A

Individual train landscalc

Sharpness

il

.
e.)

0.120
0.105
0.090
0.075
0.060
0.045
0.030
0.015
0.000

Tokens Embeddings Model Scaling

Vio = fo(2i,) | emuy €RY | W =3 q(@)us. e, | €(a) =E[Lf ()45 (x)]
te{1,2,...,T} | ez ~N(0,I) | fq(xz)= argmax, u,We, E(q) = F(d,T; q)

Training dynamics
(W) = [E(x,y)Np[fs(W; x,y)] with Co(W;x,y) = —log py(y| x)

Each association (x, y) creates a landscape W — £(W; x, y) that pushes towards u e € R4

VX
Wi = W=7, 2, Vi (Wi, ()

X€EB,
a

p(x) o x~
If d is large enough compared to the number of frequent tokens (or a the vanishing rates of p),

SGD updates take place in quasi-orthogonal direction (negligible memory interference).

In this setting the dynamic can be decoupled on the different g(x) in W, = Z qt(x)uf*(x)eT

X
X

_ _ - — fofo .o X 4
g (x) = F#{t|x, =x}) with F(n) —f f Y f(O) and f:ixP—x+ [+ M-Texp(n)

Xn

Tokens Embeddings Model Scaling
Yi, = fx(i,) exuy ERY | W =3 q(x)us,m)e, | £(@) =E[ls ()41 (o))
te{1,2,...,T} | e, ~N(0,I) | fs(z) =arg max, u, We, E(q) = FZd,T; q)

Training dynamic

Model

Error scaling

Comment

Q(CIJ) —]-:rgd

q(z) = p(z) | d- @ D/2a L p-1FT/a

d—a+1 + T—1+1/a

Found with large batches in one step
Optimal scaling with random embeddings

W= W,=7,) Vy(Wix, fux)

XEB,

qrx) = F({t|x,=x}) with F(n)=fofo--0of(0) and

Xn

W, = Z qt(x)uf* (x)e);r

fixHx+

Y
1 + M—Texp(x)

Approximation matches practice, it can be used to predict the g(x) for different learning rates

Error
’—I
<
[
|

H - real

=== apProx

0 500
Epochs

1000

Tokens Embeddings Model Scaling

Yi, = fo(Ti,) ez, Uy ERY | W =3 q(x)us.(mye, | @) =E[Ls ()45, ()
te{1,2,...,T} | e ~N(0,I) | fs(x)= arg max, u, We; E(q) = FZd,T; q)

o . Model Error scaling Comment
Trainin g dyna MIC q(z) = p(z) | d-(@~D/2a L T-1+1/a Found with large batches in one step
q(z) = 1,<4 d-otl 4 p-1t+l/e Optimal scaling with random embeddings

Wit = W=, 2 Vi (W; x, f(x)) W, = Z %(x)uﬂ(x)e;-
XEB, X
gr(x) = F{{t|x,=x}) with F(n)=fofe--of(0) and f:x+ x+ Y

1 + M—Texp(x)

Xn

Approximation matches practice, it can be used to predict the g(x) for different learning rates

10° 4 SGD, |B|=64, T=10240
~ 0.15 - ; 1]
=] 10~
= 0.10 - = 5 ” ; \
S 5 - - 1 \\
S 8 10_2 . | t
£ 0.05 - = [—p— A0t — ol T
- - -1 i = v=1.0
17] = ~y=10.0 \
0.00 A 10~2 E . { w— 4=100.0
1 1 1

I"'l

T T —r——
0 50 100 0 50 100 10! 102 103
n T d

Model Error scaling Comment

q(z) = p(z) | d-(@~D/2a L p-1+1/a Found with large batches in one step
q(z) = 1z<qd d—otl y p-itl/e Optimal scaling with random embeddings

Training dynamic

In this setting, to saturate ¢,(x) as fast as possible, we want small batch, large learning rates.

SGD, |B|=64, T=10240 SGD, T'=1024 v=1.0, |B|=1024, T=10240
: 1 w |B| =16,y =1
10~ - \ — |B| = 1024,~ = 10
. 10-—1 -

: \\ \ 101 E \\
102 o = v=0.1 \ :] — SGD

i = 4=1.0 . { = Adam
] = ~=10.0 \] == SGD+LN
] w— 4 =100.0 1 w— Adam+LN
10! 102 103 10! 102 103 10! 102 10°
d d d

Error
Error
Error

.
.
—~
.
-
-
-
-

—

Find this paper on ArXiy,
“Scaling Laws for Associative Memories”

As well as its use to understand transformers,
“Birth of a Transformer: A Associative Memory Viewpoint”

Why did you used those tools?

The statistical part seems really ad-hoc, how could | generalized it?

Surrogate calibration inequality + self-consistency of logistic loss + L2-margin conditions

For the optimization part, why haven’t you used convex analysis?

We hope that our understanding in terms of memory could better scale to more complex model.
E.g., “is edge of stability related to memory overflow?”

So *“memory machines” does not only apply to transformers?

While processing data, gradient descent provides signals for pattern matching

E.g., x is the image of a bike, y the label “bike” and the network factorizes as f, =f91 °]C(92

Imagine that f, (x) = x, is the pattern of a wheel, and we are enforcing f, (x;) — y

Signals are stored in the weights, with more frequent signals dominating

E.g., the matching “wheel” to “bike” is stored in 8,, competing with other associations stored in 6,

Associations seen often in the data will erase the other ones

Mid-level signals that explain many high-level signals will be more frequent

I”

If X, is the concatenation of “wheel” plus noise, the noise will be erased in 6, over time

| like to mechanistically interpret a model by looking at the weights!?

Large learning rates risk erasing past memories Small learning rates risk being too conservative

Target Association Matrix W
that solves fory = x mod . 5

Can you remind us your training dynamics insights?

- Large learning rates is better - saturate memory faster, sporadic erasing is harmless in our model
- Small batch size is better - help saturate faster the memory to store unfrequent associations
- Adam works best - help rescale gradient updates to mimic large learning rates

- Layer norm works well - help for stability, plus add a clipping effect

SGD, T=1024 ~v=1.0, |B|=1024, T=10240

= |B| =16,v =1
|B| = 1024, v = 10

10— 1 4

Adam

l m——— Adam-+LN

101 102 103 0 50 100 1'(31 - 162 - 103
d Epoch d

10— 1 1

Error
Error
Error

It is kind of sad that a d X d matrix only store d vectors in R¢1?

One can design a model with exponential storage capacity (with respect to the embedding space),

fw(x) = arg max gW(x)y with gW(xo)y = uyT Z q(x)uy ReLU(e);r eg—1n) and g:N — R.
ye[M] "

Non linearity reduces the noise from competing associations, and improve memory capacity.

This is the basis of modern Hopfield network.

Unclear how to design exponential capacity with respect to the number of parameters?

It has probably been studied in the compression or the neural computation literature.

