
Associative Memory with Heavy-Tailed Data

Leon Bottou

Meta AI

Alberto Bietti

Flatiron CCM

Vivien Cabannes

Meta AI

Elvis Dohmatob

Meta AI

Hervé Jegou

Kyutai

Context: renewed interest for associative memories in LLM settings

Why it makes sense to think of learning in terms of memory?

Arguably, learning is about discovery and memorization of abstract rules

I.e., find the right hierarchical patterns, and memorize them for future pattern matching

Contribution: A throughout study of a simple associative memory model

This models stems from our paper “Birth of a Transformer” (NeurIPS 2023 Spotlight)

How is it related to transformers?

Those memory blocks can describe induction heads,

which are the foundations of circuits,

believed to explain transformers
 Layer 0

Sequence

Layer 1

Layer 2

pt�1 wE(a) pt wE(b) pT�1 wE(a)

a b a b[· · ·]

⇤ wE(a) w1(a) wE(b) ⇤ wE(a)

⇤ ⇤ ⇤ ⇤ wU (b) wE(a)

Attn1:
P

s
ps�1p>s

W 1
O
W 1

V Residual

Attn2:
P

k
w1(k)wE(k)> W 2

O
W 2

V
:
P

k
wU (k)wE(k)>

Prediction

Setup

Data

Discrete input , discrete output with Zipf law

,

Model

 Embeddings Latent transformation Probability score Input/output rule

Associative memory parametrization

x ∈ ℕ y ∈ ℕ
p(x) ∝ x−α p(y |x) = δf*(x)(y)

ex, uy ∼ 𝒩(0,I) ∈ ℝd W ∈ ℝd×d pW(y |x) ∝ exp(u⊤
y Wex) fW(x) = arg max

y
pW(y |x)

W = ∑
x,y

q(x, y)uye⊤
x (span(uy ⊗ ex)x,y = span(1i ⊗ 1j)ij)

Measure of success

 with

Surrogate training objective: the cross-entropy loss

 with

Training data

 for

ℰ(W) = 𝔼(x,y)∼p[ℓ(fW(x), y)] ℓ(f(x), y) = 1f(x)≠y

ℒ(W) = 𝔼(x,y)∼p[ℓS(W; x, y)] ℓS(W; x, y) = − log pW(y |x)

(xt, yt) ∼ p t = 1,…, T

Statistical Study

Approximation guarantees

When , W = ∑ q(x)uf*(x)e⊤
x 𝔼e,u[ℰ(W)] = p ({x |q(x)d < c∥q∥2

2})

Approximation guarantees

When ,

Proof: Develop the model

Interference between memories

Need to ensure the right score maximizer

With permutation of expectations,

the problem reduces to max of Gaussian deviation

W = ∑ q(x)uf*(x)e⊤
x 𝔼e,u[ℰ(W)] = p ({x |q(x)d < c∥q∥2

2})

fW(r) = arg max⟨uy, q(r)∥er∥2uf*(r)+∑
x≠r

q(x)e⊤
x er ⋅ uf*(x)⟩

fW(x) ≠ y ⟺ q(r)∥er∥2∥uf*(r)∥2 < max
y ∑

x

q(x)e⊤
x er u⊤

f*(x)uy

Approximation guarantees

When ,

Finite-sample complexity

When ,

Proof: Binning samples output according to their empirical frequencies (Csiszár’s type method)

Worse case deviation for is controlled by

Linearity of expectation leads to the summation

W = ∑ q(x)uf*(x)e⊤
x 𝔼e,u[ℰ(W)] = p ({x |q(x)d < c∥q∥2

2})

qT = F(({t |xt = x})x) ℰ(qT) − ℰ(q∞) = ∫ p(x)e−Txdx

q(x) e−Tp(x)

Instantiation for heavy tailed data

𝔼e,u[ℰ(W)] = p ({x |q(x)d > c∥q∥2
2}) + ∫ p(x)e−Txdx p(x) ∝ x−α

Optimization Study

Training dynamics

 with

Each association creates a landscape that pushes towards

Level lines examples with tokens , in dimension on

ℒ(W) = 𝔼(x,y)∼p[ℓS(W; x, y)] ℓS(W; x, y) = − log pW(y |x)

(x, y) W ↦ ℓS(W; x, y) uye⊤
x ∈ ℝd×d

n = 5 x d = 2 Span(eie⊤
i)

Individual train landscape

Training dynamics

 with

Each association creates a landscape that pushes towards

Level lines examples with tokens , in dimension on

ℒ(W) = 𝔼(x,y)∼p[ℓS(W; x, y)] ℓS(W; x, y) = − log pW(y |x)

(x, y) W ↦ ℓS(W; x, y) uye⊤
x ∈ ℝd×d

n = 5 x d = 2 Span(eie⊤
i)

Individual train landscape

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Population train landscape

°0.0

0.2

0.4

0.6

0.8

1.0

Population test landscape

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

Sharpness

Training dynamics

 with

Each association creates a landscape that pushes towards

If is large enough compared to the number of frequent tokens (or the vanishing rates of),

SGD updates take place in quasi-orthogonal direction (negligible memory interference).

In this setting the dynamic can be decoupled on the different in

 with and

ℒ(W) = 𝔼(x,y)∼p[ℓS(W; x, y)] ℓS(W; x, y) = − log pW(y |x)

(x, y) W ↦ ℓS(W; x, y) uye⊤
x ∈ ℝd×d

Wt+1 = Wt − γt ∑
x∈Bt

∇Wℓ(W; x, f*(x))

d α p

q(x) Wt = ∑
x

qt(x)uf*(x)e⊤
x

qT(x) = F(#{t |xt = x}) F(n) = f ∘ f ∘ ⋯ ∘ f

×n

(0) f : x ↦ x +
γ

1 + M−1 exp(x)

p(x) ∝ x−α

Training dynamic

 with and

Approximation matches practice, it can be used to predict the for different learning rates

Wt+1 = Wt − γt ∑
x∈Bt

∇Wℓ(W; x, f*(x)) Wt = ∑
x

qt(x)uf*(x)e⊤
x

qT(x) = F({t |xt = x}) F(n) = f ∘ f ∘ ⋯ ∘ f

×n

(0) f : x ↦ x +
γ

1 + M−1 exp(x)

qT(x)

Training dynamic

 with and

Approximation matches practice, it can be used to predict the for different learning rates

Wt+1 = Wt − γt ∑
x∈Bt

∇Wℓ(W; x, f*(x)) Wt = ∑
x

qt(x)uf*(x)e⊤
x

qT(x) = F({t |xt = x}) F(n) = f ∘ f ∘ ⋯ ∘ f

×n

(0) f : x ↦ x +
γ

1 + M−1 exp(x)

qT(x)

Training dynamic

In this setting, to saturate as fast as possible, we want small batch, large learning rates.qt(x)

Find this paper on ArXiv,

“Scaling Laws for Associative Memories”

As well as its use to understand transformers,

“Birth of a Transformer: A Associative Memory Viewpoint”

Why did you used those tools?

The statistical part seems really ad-hoc, how could I generalized it?

Surrogate calibration inequality + self-consistency of logistic loss + L2-margin conditions

For the optimization part, why haven’t you used convex analysis?

We hope that our understanding in terms of memory could better scale to more complex model.

E.g., “is edge of stability related to memory overflow?”

So “memory machines” does not only apply to transformers?

While processing data, gradient descent provides signals for pattern matching

E.g., is the image of a bike, the label “bike” and the network factorizes as

Imagine that is the pattern of a wheel, and we are enforcing

Signals are stored in the weights, with more frequent signals dominating

E.g., the matching “wheel” to “bike” is stored in , competing with other associations stored in

Associations seen often in the data will erase the other ones

Mid-level signals that explain many high-level signals will be more frequent

If is the concatenation of “wheel” plus noise, the noise will be erased in over time

x y fθ = fθ1
∘ fθ2

fθ2
(x) = x2 fθ1

(x2) → y

θ2 θ2

x2 θ2

I like to mechanistically interpret a model by looking at the weights!?

Large learning rates risk erasing past memories Small learning rates risk being too conservative

Target Association Matrix

that solves for

W
y = x mod . 5

Can you remind us your training dynamics insights?

- Large learning rates is better - saturate memory faster, sporadic erasing is harmless in our model

- Small batch size is better - help saturate faster the memory to store unfrequent associations

- Adam works best - help rescale gradient updates to mimic large learning rates

- Layer norm works well - help for stability, plus add a clipping effect

101 102 103

d

10°1

E
rr

or

∞=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

101 102 103

d

10°1

E
rr

or

SGD, T=1024

|B| = 16, ∞ = 1

|B| = 1024, ∞ = 10

0 50 100

Epoch

10°3

10°1

E
rr

o
r

It is kind of sad that a matrix only store vectors in !?

One can design a model with exponential storage capacity (with respect to the embedding space),

 with and .

Non linearity reduces the noise from competing associations, and improve memory capacity.

This is the basis of modern Hopfield network.

Unclear how to design exponential capacity with respect to the number of parameters?

It has probably been studied in the compression or the neural computation literature.

d × d d ℝd

fW(x) = arg max
y∈[M]

gW(x)y gW(x0)y = u⊤
y ∑

x

q(x)uy ReLU(e⊤
x e0 − η) q : ℕ → ℝ

