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Context: renewed interest for associative memories in LLM settings 



Why it makes sense to think of learning in terms of memory? 
Arguably, learning is about discovery and memorization of abstract rules 

I.e., find the right hierarchical patterns, and memorize them for future pattern matching 

Contribution: A throughout study of a simple associative memory model 
This models stems from our paper “Birth of a Transformer” (NeurIPS 2023 Spotlight) 

How is it related to transformers? 
Those memory blocks can describe induction heads, 

which are the foundations of circuits, 

believed to explain transformers Layer 0
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Setup



Data 
Discrete input , discrete output  with Zipf law 

,                                   

Model 

      Embeddings              Latent transformation            Probability score                       Input/output rule 

                                                

Associative memory parametrization 

                               

x ∈ ℕ y ∈ ℕ
p(x) ∝ x−α p(y |x) = δf*(x)(y)

ex, uy ∼ 𝒩(0,I) ∈ ℝd W ∈ ℝd×d pW(y |x) ∝ exp(u⊤
y Wex) fW(x) = arg max

y
pW(y |x)

W = ∑
x,y

q(x, y)uye⊤
x (span(uy ⊗ ex)x,y = span(1i ⊗ 1j)ij)



Measure of success 

                   with               

Surrogate training objective: the cross-entropy loss 

               with               

Training data 

                      for                    

ℰ(W ) = 𝔼(x,y)∼p[ℓ( fW(x), y)] ℓ( f(x), y) = 1f(x)≠y

ℒ(W ) = 𝔼(x,y)∼p[ℓS(W; x, y)] ℓS(W; x, y) = − log pW(y |x)

(xt, yt) ∼ p t = 1,…, T



Statistical Study



Approximation guarantees 

When ,                                     W = ∑ q(x)uf*(x)e⊤
x 𝔼e,u[ℰ(W )] = p ({x |q(x)d < c∥q∥2

2})



Approximation guarantees 

When ,                                      

Proof: Develop the model 

 

Interference between memories 

 

Need to ensure the right score maximizer 
With permutation of expectations,  
the problem reduces to max of Gaussian deviation

W = ∑ q(x)uf*(x)e⊤
x 𝔼e,u[ℰ(W )] = p ({x |q(x)d < c∥q∥2

2})

fW(r) = arg max⟨uy, q(r)∥er∥2uf*(r)+∑
x≠r

q(x)e⊤
x er ⋅ uf*(x)⟩

fW(x) ≠ y ⟺ q(r)∥er∥2∥uf*(r)∥2 < max
y ∑

x

q(x)e⊤
x er u⊤

f*(x)uy



Approximation guarantees 

When ,                                      

Finite-sample complexity 

When ,                                   

Proof: Binning  samples output according to their empirical frequencies (Csiszár’s type method) 

Worse case deviation for  is controlled by  

Linearity of expectation leads to the summation

W = ∑ q(x)uf*(x)e⊤
x 𝔼e,u[ℰ(W )] = p ({x |q(x)d < c∥q∥2

2})

qT = F(({t |xt = x})x) ℰ(qT) − ℰ(q∞) = ∫ p(x)e−Txdx

q(x) e−Tp(x)



Instantiation for heavy tailed data 

𝔼e,u[ℰ(W )] = p ({x |q(x)d > c∥q∥2
2}) + ∫ p(x)e−Txdx p(x) ∝ x−α



Optimization Study



Training dynamics 

               with               

Each association  creates a landscape  that pushes towards  

Level lines examples with  tokens , in dimension  on  

ℒ(W ) = 𝔼(x,y)∼p[ℓS(W; x, y)] ℓS(W; x, y) = − log pW(y |x)

(x, y) W ↦ ℓS(W; x, y) uye⊤
x ∈ ℝd×d

n = 5 x d = 2 Span(eie⊤
i )

Individual train landscape



Training dynamics 

               with               

Each association  creates a landscape  that pushes towards  

Level lines examples with  tokens , in dimension  on  

ℒ(W ) = 𝔼(x,y)∼p[ℓS(W; x, y)] ℓS(W; x, y) = − log pW(y |x)

(x, y) W ↦ ℓS(W; x, y) uye⊤
x ∈ ℝd×d

n = 5 x d = 2 Span(eie⊤
i )

Individual train landscape
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Training dynamics 

               with               

Each association  creates a landscape  that pushes towards  

 

If  is large enough compared to the number of frequent tokens (or  the vanishing rates of ), 

SGD updates take place in quasi-orthogonal direction (negligible memory interference). 

In this setting the dynamic can be decoupled on the different  in  

        with               and          

ℒ(W ) = 𝔼(x,y)∼p[ℓS(W; x, y)] ℓS(W; x, y) = − log pW(y |x)

(x, y) W ↦ ℓS(W; x, y) uye⊤
x ∈ ℝd×d

Wt+1 = Wt − γt ∑
x∈Bt

∇Wℓ(W; x, f*(x))

d α p

q(x) Wt = ∑
x

qt(x)uf*(x)e⊤
x

qT(x) = F(#{t |xt = x}) F(n) = f ∘ f ∘ ⋯ ∘ f

×n

(0) f : x ↦ x +
γ

1 + M−1 exp(x)

p(x) ∝ x−α



Training dynamic 

                               

        with               and           

Approximation matches practice, it can be used to predict the  for different learning rates

Wt+1 = Wt − γt ∑
x∈Bt

∇Wℓ(W; x, f*(x)) Wt = ∑
x

qt(x)uf*(x)e⊤
x

qT(x) = F({t |xt = x}) F(n) = f ∘ f ∘ ⋯ ∘ f

×n

(0) f : x ↦ x +
γ

1 + M−1 exp(x)

qT(x)



Training dynamic 

                               

        with               and           

Approximation matches practice, it can be used to predict the  for different learning rates

Wt+1 = Wt − γt ∑
x∈Bt

∇Wℓ(W; x, f*(x)) Wt = ∑
x

qt(x)uf*(x)e⊤
x

qT(x) = F({t |xt = x}) F(n) = f ∘ f ∘ ⋯ ∘ f

×n

(0) f : x ↦ x +
γ

1 + M−1 exp(x)

qT(x)



Training dynamic 

In this setting, to saturate  as fast as possible, we want small batch, large learning rates.qt(x)



Find this paper on ArXiv, 
“Scaling Laws for Associative Memories” 

As well as its use to understand transformers, 
“Birth of a Transformer: A Associative Memory Viewpoint”



Why did you used those tools? 

The statistical part seems really ad-hoc, how could I generalized it? 
Surrogate calibration inequality + self-consistency of logistic loss + L2-margin conditions 

For the optimization part, why haven’t you used convex analysis? 
We hope that our understanding in terms of memory could better scale to more complex model. 
E.g., “is edge of stability related to memory overflow?”



So “memory machines” does not only apply to transformers? 

While processing data, gradient descent provides signals for pattern matching 
E.g.,  is the image of a bike,  the label “bike” and the network factorizes as   

Imagine that   is the pattern of a wheel, and we are enforcing  

Signals are stored in the weights, with more frequent signals dominating 
E.g., the matching “wheel” to “bike” is stored in , competing with other associations stored in  

Associations seen often in the data will erase the other ones 

Mid-level signals that explain many high-level signals will be more frequent 
If  is the concatenation of “wheel” plus noise, the noise will be erased in  over time

x y fθ = fθ1
∘ fθ2

fθ2
(x) = x2 fθ1

(x2) → y

θ2 θ2

x2 θ2



I like to mechanistically interpret a model by looking at the weights!? 

Large learning rates risk erasing past memories Small learning rates risk being too conservative

Target Association Matrix  
that solves for 

W
y = x mod . 5



Can you remind us your training dynamics insights? 

- Large learning rates is better - saturate memory faster, sporadic erasing is harmless in our model 

- Small batch size is better - help saturate faster the memory to store unfrequent associations 

- Adam works best - help rescale gradient updates to mimic large learning rates 

- Layer norm works well - help for stability, plus add a clipping effect 
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It is kind of sad that a  matrix only store  vectors in  !? 

One can design a model with exponential storage capacity (with respect to the embedding space), 

      with          and     . 

Non linearity reduces the noise from competing associations, and improve memory capacity. 

This is the basis of modern Hopfield network. 

Unclear how to design exponential capacity with respect to the number of parameters? 

It has probably been studied in the compression or the neural computation literature.

d × d d ℝd

fW(x) = arg max
y∈[M]

gW(x)y gW(x0)y = u⊤
y ∑

x

q(x)uy ReLU(e⊤
x e0 − η) q : ℕ → ℝ


