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Abstract. We study fragments of first-order logic and of least fixed point logic that
allow only unary negation: negation of formulas with at most one free variable. These
logics generalize many interesting known formalisms, including modal logic and the µ-
calculus, as well as conjunctive queries and monadic Datalog. We show that satisfiability
and finite satisfiability are decidable for both fragments, and we pinpoint the complexity of
satisfiability, finite satisfiability, and model checking. We also show that the unary negation
fragment of first-order logic is model-theoretically very well behaved. In particular, it
enjoys Craig Interpolation and the Projective Beth Property.

1. Introduction

Vardi [46] raised the question “why is modal logic so robustly decidable?”. His explanation
centers around the fact that modal logic has the tree-model property. More precisely,
modal logic enjoys a combination of three properties, namely (i) the tree-model property (if
a sentence has a model, it has a model that is a tree), (ii) translatability into tree automata
(each formula can be transformed into a tree automaton, or equivalently, an MSO formula,
recognizing its tree models), and (iii) the finite model property (if a formula has a model,
it also has a finite model). These three properties form a powerful explanation for the
decidability of the satisfiability problem, and the finite satisfiability problem, for modal
logic and many of its extensions such as the modal µ-calculus. The guarded fragment of
first-order logic (GFO) was proposed by Andréka, van Benthem and Németi [1] as a large
fragment of first-order logic that generalizes modal logic while essentially retaining these
properties. It consists of FO formulas in which all quantifiers are “guarded” by atomic
formulas. GFO has the tree-like model property (if a sentence has a model, it has a model
of bounded tree width), it can be translated into tree automata (each formula can be
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transformed into a tree automaton recognizing the tree decompositions of its models of
bounded tree width) and it has the finite model property [1, 26].

In this paper we provide another, orthogonal generalization of modal logic that enjoys
the same nice properties. We introduce UNFO, a fragment of FO in which negation is
restricted to formulas having only one free variable. UNFO is incomparable in terms of
expressive power to GFO. It generalizes modal logic, as well as other formalisms, such as
conjunctive queries, that are not contained in GFO. We show that UNFO has the tree-like
model property, is translatable into tree-like automata (in the sense described above), and
has the finite model property. Hence UNFO, too, is robustly decidable.

We also introduce UNFP, which extends UNFO with least and greatest monadic fix-
points, in the same way that the µ-calculus extends modal logic [32], and guarded fixpoint
logic (GFP) extends GFO [28]. UNFP generalizes the µ-calculus but also monadic Datalog
and remains incomparable with GFP. It still has the tree-like model property and can be
translated into MSO, but it no longer has the finite model property. Nevertheless, we show
that finite satisfiability for UNFP is decidable (note that the decidability of the analogous
problem for GFP was only recently solved in [4]). More precisely, the satisfiability prob-
lem is 2ExpTime-complete, both for UNFO and for UNFP, both on arbitrary and finite
structures.

We also study the model checking problem. In contrast with GFO, whose model check-

ing problem is PTime-complete [9], we show that for UNFO it is complete for PNP[O(log2 n)],
providing one of the few natural complete problems for that complexity class. For UNFP,
model checking is hard for PNP and contained in NPNP∩coNPNP. The gap between the up-
per bound and the lower bound reflects a similar open problem for GFP and the µ-calculus
where the model checking problem lies between PTime and NP ∩ coNP [9].

UNFO is not only computationally but also model-theoretically very well behaved. We
characterize the expressive power of UNFO in terms of an appropriate notion of invariance,
and we show that UNFO has Craig Interpolation as well as the Projective Beth Property.
Note that Craig Interpolation fails for GFO [30]. On trees, UNFO and UNFP correspond
to well-known existing formalisms.

Outline of the paper. In Section 2, we formally introduce UNFO and UNFP, and
we review relevant background material on modal logics and computational complexity. In
Section 3 we develop the model theory of UNFO and UNFP: we introduce an appropriate
notion of bisimulations, we state a finite model property and a tree-like model property,
we obtain model theoretic characterizations, and we prove Craig Interpolation and the
Projective Beth Property for UNFO. In Section 4, we show that the satisfiability problem
for UNFO, and for UNFP, is 2ExpTime-complete, both on arbitrary structures and on finite
structures. In Section 5, we map out the complexity of the model checking problem, that
is, the problem of evaluating a formula in a given finite structure. In Section 6, we study
the expressive power of UNFO and UNFP on tree structures. We conclude in Section 7
with a comparison with other work, in particular on guarded negation logics.

This paper is the journal version of [17]. It contains new and simpler proofs for many
of the results as well as new results, such as the characterization theorem in the finite case,
cf. Theorem 3.8.
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2. Preliminaries

We consider relational structures. A relational schema is a finite set of relation symbols
fixing an arity to each relation. A model, or structure, M over a relational schema σ is a set
dom(M), the domain of M , together with an interpretation RM to each relation symbol
R of σ as a relation over the domain of the arity given by the schema. A model is said to
be finite if its domain is finite. We assume familiarity with first-order logic, FO, and least
fixpoint logic, LFP, over relational structures. We use classical syntax and semantics for
FO and LFP. In particular we write M |= φ(u) or (M,u) |= φ(x) for the fact that the tuple
u of elements of the model M makes the FO-formula, or LFP-formula, φ(x) true on M .

Given a structure M and a set X ⊆ dom(M) we denote by M |X the substructure of
M induced by X.

2.1. UNFO and UNFP. We define the unary-negation fragment of first-order logic (UNFO),
as the fragment of FO given by the following grammar (where R is an arbitrary relation
name from the underlying schema):

φ ::= R(x) | x = y | φ ∧ φ | φ ∨ φ | ∃xφ | ¬φ(x)

where, in the last clause, φ has no free variables besides (possibly) x. Throughout this
paper, we will keep using the notation φ(x) to indicate that a formula has at most one free
variable. In other words, UNFO is the restriction of FO where negation is only allowed
if the subformula has at most one free variable. In particular x 6= y is not expressible in
UNFO.

We say that a formula of UNFO is in UN-normal form if, in the syntax tree of the
formula, every existential quantifier (except for the root of the syntax tree) is either directly
below another existential quantification, or the subformula starting with that quantifier has
at most one free variable. In other words, formulas in UN-normal form are existential
positive formulas in prenex normal form where each atom is either a positive atom over
the underlying schema or a possibly negated formula with at most one free variable in
UN-normal form.

For instance the formula ∃x∃y(R(x, y)∧∃zS(x, y, z)) is not in UN-normal form. However
the equivalent formula ∃x∃y∃z (R(x, y) ∧ S(x, y, z)) is in UN-normal form. Similarly the
formula

∃x(R(x) ∧ ∃y(R(y) ∧ ∃z(R(z) ∧ (∃xS(x, y, z)))))

is not in UN-normal form, but each of the equivalent formulas

∃x∃y∃z∃x′R(x) ∧R(y) ∧R(z) ∧ S(x′, y, z)

and
∃x(R(x) ∧ ∃y∃z∃x(R(y) ∧R(z) ∧ S(x, y, z))

is.
Every formula of UNFO can be transformed into an equivalent formula in UN-normal

form in linear time by “pulling out existential quantifiers” as soon as the corresponding
subformula has more than one free variable, using the following two rewrite rules:

φ ∧ ∃xψ ≡ ∃x(φ ∧ ψ) provided that x does not occur free in φ

φ ∨ ∃xψ ≡ ∃x(φ ∨ ψ) provided that x does not occur free in φ
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(together with safe renaming of variables where needed). For instance, starting with

∃x(R(x) ∧ ∃y(R(y) ∧ ∃z(R(z) ∧ (∃xS(x, y, z)))))

one could obtain:

∃x(R(x) ∧ ∃y∃z∃x(R(y) ∧R(z) ∧ S(x, y, z)))

Bringing a UNFO formula into UN-normal form may increase the number of variables
occurring in the formula, because applying the above rewrite rules may require renaming
bound variables. A formula of UNFO is said to be of width k if it can be put in UN-normal
form using the above rules in such a way that the resulting formula uses at most k variables.
The width of the above formula is therefore 3. We denote by UNFOk the set of all UNFO
formulas of width k.

In order to define unary-negation fixpoint logic (UNFP) we introduce extra unary pred-
icates that will serve for computing unary fixpoints. We denote the unary predicates given
by the relational schema using the letters P,Q . . . and the unary predicates serving for com-
puting the fixpoints by X,Y . . .. By UNFO(X) we mean UNFO defined over the schema
extended with the unary predicates X. In particular it allows formulas of the form ¬φ(x,X).
UNFP is the extension of UNFO(X) by means of the following least fixpoint construction:

[LFPX,x φ(X,X, x)](y)

where X occurs only positively in φ. An analogous greatest fixed point operator is definable
by dualization. Note that no first-order parameters (i.e., free variables in the body of φ
other than x) are permitted.

Note that UNFP is a syntactic fragment of least fixpoint logic (LFP), i.e., the extension
of full first-order logic with the least fixpoint operator. Therefore, we can simply refer to
the literature on LFP for the semantics of these formulas (cf. for example [33]). However,
we will discuss the semantics of the least fixpoint operator here in some detail, because our
arguments later on will refer to it. Consider any UNFP formula of the form

[LFPX,x φ(X,X, x)](y)

and any structure (M,S), where S is a collection of subsets of the domain of M that form
the interpretation for X. Since X occurs in φ only positively, φ(X,X, x)](y) induces a
monotone operation Oφ on subsets of the domain of M , where Oφ(A) = {a ∈ dom(M) |
(M, ~S,A) |= φ(a)}. By the Knaster-Tarski fixpoint theorem, this monotone operation
has a unique least-fixpoint. By definition, an element b ∈ dom(M) satisfies the formula

[LFPX,x φ(X,X, x)](y) in (M, ~S) if and only if b belongs to this least fixpoint. The least
fixpoint of the monotone operation Oφ is known to be the intersection of all its pre-fixed
points, i.e.,

⋂
{A ⊆ dom(M) | A ⊇ Oφ(A)}, and it can be equivalently characterized as

Oφκ(∅), where κ = |dom(M)|, Oφ0(∅) = ∅; for all successor ordinals λ + 1, Oφλ+1(∅) =

Oφ(Oφλ(∅)); and for all limit ordinals λ ≤ κ, Oφλ(∅) =
⋃
λ′<λOφ

λ′(∅).
The same definition of the UN-normal form applies to UNFP. As in the case of UNFO,

we say that a UNFP formula has width k if, when put in UN-normal form, it uses at most k
first-order variables. In other words, a formula of UNFP has width k if all the “UNFO(X)-
parts” of its subformulas have width k. We denote by UNFPk the set of all UNFP formulas
of width k.

The negation depth of a UNFO or UNFP formula will also be an important parameter.
It is the maximal nesting depth of negations in its syntax tree.
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Example 2.1. Two examples of UNFO formulas are ∃yzu(R(x, y) ∧ R(y, z) ∧ R(z, u) ∧
R(u, x)), which expresses the fact that x lies on a directed R-cycle of length 4, and its
negation ¬∃yzu(R(x, y)∧R(y, z)∧R(z, u)∧R(u, x)). It follows from known results [1] that
neither can be expressed in the guarded fragment, and therefore, these examples show that
UNFO can express properties that are not definable in the guarded fragment. On the other
hand, we will see in Section 3.1 that the guarded-fragment formula ∀xy(R(x, y)→ S(x, y))
has no equivalent in UNFO, and therefore, the two logics are incomparable in expressive
power.

A conjunctive query (CQ) is query defined by a first-order formula of the form ∃x1 · · ·xn τ1∧
· · ·∧ τl, where each τi is a (positive) atomic formula. A union of conjunctive queries (UCQ)
is a query defined by a finite disjunction of first-order formulas of the above form. Clearly,
every UCQ is definable in UNFO. In fact, UNFO can naturally be viewed as the extension of
the language of UCQs with unary negation. It is also worth noting that, in a similar way, all
monadic datalog queries (i.e., datalog queries in which all IDB relations are unary [20]) are
definable in UNFP. It was shown in [20] that query containment is decidable in 2ExpTime
for monadic datalog. As the containment of two unary Datalog programs can be expressed
in UNFP, the decidability of UNFP in 2ExpTime, cf. Theorem 4.5, generalizes this result.
We also mention that the query containment problem was recently shown to be hard for
2Exptime [6], hence the lower bound of Theorem 4.5 also follows from this fact.

2.2. Modal logic and bisimulation. UNFO and UNFP can be viewed as extensions of
modal logic and the µ-calculus, and, actually, of their global two-way extensions. As several
of our proofs will make reductions to the modal logic case, we now review relevant definitions
and results regarding global two-way modal logic and the global two-way µ-calculus.

We view a Kripke structure as a relational structure over a schema consisting of unary
and binary relations. Modal logics are languages for describing properties of nodes in Kripke
structures. Intuitively, modal formulas can navigate Kripke structures by traversing edges
in a forward or backward direction.

We will use ML to denote the modal language with forward and backward modalities,
and with the global modality, as defined by the following grammar.

φ ::= P | φ ∧ φ | ¬φ | 〈R〉φ | 〈R−1〉φ | Sφ
where P is a unary relation symbol (also called proposition letter in this setting), and R is
a binary relation symbol (also called an accessibility relation in this context). Disjunction
and the “box operators” [R] and [R−1] are definable as duals of conjunction, 〈R〉 and 〈R−1〉,
respectively (for instance [R]φ is ¬〈R〉¬φ).

The semantics of ML can be given via a translation into UNFO: For each ML formula
φ we construct by induction, as explained in Figure 1, a UNFO formula φ∗(x) such that for
each Kripke structure M and node a we have M |= φ∗(a) iff a has the property φ on M .

We refer to ML as global two-way modal logic, because it includes the global modal
operator S and the inverse modal operators 〈R−1〉 (and their duals). Traditionally, the
basic modal logic is defined without those features and can only navigate by traversing an
edge in the forward direction.

The global two-way µ-calculus , which we denote by MLµ, is obtained by adding fixpoint
variables and a least fixpoint operator to the language of ML: fixpoint variables are admitted
as atomic formulas, and whenever φ is a formula of MLµ in which a fixpoint variable X
occurs only positively (under an even number of negations), then µXφ is again a valid
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(P )∗(x) = P (x)
(φ ∧ ψ)∗(x) = φ∗(x) ∧ ψ∗(x)
(¬φ)∗(x) = ¬φ∗(x)
(〈R〉φ)∗(x) = ∃y R(x, y) ∧ φ∗(y)
(〈R−1〉φ)∗(x) = ∃y R(y, x) ∧ φ∗(y)
(Sφ)∗(x) = ∃y φ∗(y)

Figure 1: Inductive translation of an ML-formula φ to an equivalent UNFO-formula φ∗(x)

formula of MLµ, and it denotes the fixpoint of the monotone operation on sets defined by
φ(X). An analogous greatest fixpoint operator is definable as the dual of the least fixpoint
operator. Adding the rule

(µXφ)∗(x) = [LFPX,y φ
∗(y)](x)

to the table of Figure 1 shows that MLµ can be seen as a fragment of UNFP.
We know from [21, 47] that the satisfiability problem for ML and for MLµ, on arbitrary

Kripke structures, is ExpTime-complete. Although ML has the finite model property [21],
that is, every satisfiable ML-formula is satisfied in some finite Kripke structure, the same
does not hold for MLµ, and therefore the satisfiability problem for MLµ on finite structures
is not the same problem as the satisfiability problem for MLµ on arbitrary structures.
Nevertheless, it was shown in [11] that the satisfiability problem for MLµ on finite Kripke
structures is ExpTime-complete.

Theorem 2.2. [47, 11] Testing whether a formula of MLµ is satisfiable is ExpTime-
complete, both on arbitrary Kripke structures and on finite structures.

We note that, while the two-way modal µ-calculus as defined in [47, 11] does not include
the global modality S, the results from [11] immediately extend to full MLµ.

Modal formulas are invariant for bisimulation [8]. Here, due to the backward modal
operators and the global modal operator, we need global two-way bisimulations (see for
example [38]). Given two Kripke structures M and N a global two-way bisimulation between
M and N is a binary relation Z ⊆ M × N such that the following hold for every pair
(a, b) ∈ Z and every relation symbol R:

• a ∈ PM if and only if b ∈ PN , for all unary relation symbols P .
• for every a′ with (a, a′) ∈ RM there is a b′ such that (b, b′) ∈ RN and (a′, b′) ∈ Z,
• for every b′ with (b, b′) ∈ RN there is an a′ such that (a, a′) ∈ RM and (a′, b′) ∈ Z,
• for every a′ with (a′, a) ∈ RM there is a b′ such that (b′, b) ∈ RN and (a′, b′) ∈ Z,
• for every b′ with (b′, b) ∈ RN there is an a′ such that (a′, a) ∈ RM and (a′, b′) ∈ Z,
• for every node a′ of M there is a node b′ of N such that (a′, b′) ∈ Z,
• for every node b′ of N there is a node a′ of M such that (a′, b′) ∈ Z,

We write M ≈ N if there is a global two-way bisimulation between M and N , and we
write (M,a) ≈ (N, b) if the pair (a, b) belongs to a global two-way bisimulation between
M and N . Recall that a homomorphism h : M → N is a map from the domain of M
to the domain of N such that for all relation symbols R and tuples (a1, . . . , an) ∈ RM ,
we have that (h(a1), . . . , h(an)) ∈ RN . We say that M is a ≈-cover of N if there is a
homomorphism h : M → N such that (M,a) ≈ (N,h(a)) for every element a of M . In
addition, for h(a′) = a, we say that (M,a′) is a ≈-cover of (N, a).
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One can equivalently view bisimulations as strategies for a player in a two-player game.
In this game, the two players, called Abelard en Elöıse, maintain a pair (a, b) of elements,
one in each structure. Intuitively, one can think of a pebble lying on each of these two
selected nodes. At any time during the game, the pebbled nodes must satisfy the same
unary predicates in the two structures. A move of Abelard consists of choosing one of
the two pebbles (i.e., one of the two structures), and either sliding the pebble forward or
backward along an edge belonging to some binary relation R, or moving it to an arbitrary
position. Then Elöıse must respond in the other structure with a move mimicking Abelard’s
move, that is, either sliding her pebble along an edge belonging to the same relation R
(and in the same direction), or moving it to an arbitrary position, depending on Abelard’s
move. If Elöıse cannot respond with a valid move, Abelard wins. It is easy to see that
(M,a) ≈ (N, b) if and only if, starting in (a, b), Elöıse has a strategy that allows her to play
forever without letting Abelard win. We also write (M,a) ≈l (N, b) if, starting in (a, b),
Elöıse has a strategy that avoids losing in the first l rounds.

It is well known that MLµ-formulas are invariant for global two-way bisimulations: if
(M,a) ≈ (N, b) and if φ is a formula of MLµ, then (M,a) |= φ if and only if (N, b) |= φ. This
basic fact of MLµ has an important consequence: if a µ-calculus formula has a model, then
it has a, possibly infinite, acyclic model, obtained by “unraveling” the original model along
its paths while preserving bisimulation equivalence. If we restrict attention to finite Kripke
structures, then, in general, acyclicity may not be achievable. For example, the one-element
structure consisting in a self-loop is not bisimilar to any finite acyclic structure. However,
over finite structures, a weaker form of acyclicity can be achieved. For a natural number l,
a Kripke structure is called l-acyclic if its underlying graph contains no cycle of length less
than l. We will make use of the following important result:

Theorem 2.3. [38] For all l ∈ N, every finite Kripke structure has a finite l-acyclic ≈-cover.

This was used to show the following property, which is relevant for us as well. We write
(M,a) ≡FOq (N, b) if (M,a) and (N, b) satisfy the same first-order formulas of quantifier
depth q.

Theorem 2.4. [38, Proposition 33] For each q ∈ N there is a l ∈ N such that whenever
(M,a) ≈l (N, b), then (M,a) and (N, b) have ≈-covers (M ′, a′) and (N ′, b′), respectively,
such that (M ′, a′) ≡FOq (N ′, b′). Moreover, if M and N are finite then M ′ and N ′ can be
chosen to be finite as well.

2.3. Overview of relevant oracle complexity classes. We briefly review a number of
complexity classes involving restricted access to an oracle, which turn out to be relevant
for our present investigation, and may not be very well known. The reader interested to
learn more about these classes would benefit from reading the literature cited below, as well
as [42] and [22] that inspired us a lot.

The first class we use is denoted PNP, also known as ∆p
2. It consists of all problems that

are computable by a Turing machine running in time polynomial in the size of its input,
where the Turing machine, at any point during its computation, can ask yes/no queries
to an NP oracle, and take the answers of the oracle into account in subsequent steps of
the computation (including subsequent queries to the NP oracle). Analogously, one can
define the classes NPNP and coNPNP, which are also known as Σp

2 and Πp
2, respectively. An

example of a PNP-complete problem is LEX(SAT), which takes as input a Boolean formula



8 BALDER TEN CATE AND LUC SEGOUFIN

φ(x1, . . . xn) and asks what is the value of xn in the lexicographically maximal solution
(where xn is treated as the least significant bit in the ordering) [48].

A subclass of PNP is PNP[O(logn)]. It is defined in the same way as PNP, except that
the number of yes/no queries that can be asked to the NP oracle is bounded by O(log(n)),
where n is the size of the input. There is an equivalent characterization of this class, denoted
PNP
|| in [13]. It consists of all problems computable using a Turing machine running in time

polynomial in the size of its input, where the Turing machine can call the oracle only once
(or a constant number of times, as this turns out not to make a difference), but in doing
so it may ask the oracle several (polynomially many) yes/no questions in parallel [13]. In
other words, the answer to a query cannot be used by the Turing machine in choosing which
subsequent queries to ask to the oracle. A third equivalent characterization of PNP[O(logn)]

is as the class of problems that are PTime truth-table reducible to NP [13], that is, problems
for which there is a PTime algorithm that, given an instance of the problem, produces a
set y1, · · · , yn of inputs to some NP oracle, together with a Boolean formula φ(x1, · · · , xn),
such that the input is a yes-instance iff φ evaluates to true after replacing each xi by 1 if
yi is accepted by the NP oracle and 0 otherwise. An example of a PNP[O(logn)]-complete
problem is the problem whether two graphs have the same chromatic number [48].

Finally, in between PNP[O(logn)] and PNP lies a hierarchy of classes PNP[O(logi n)] with i >
1. They are defined in the same way as PNP[O(logn)] except that the number of queries to the

oracle is bounded by O(logi(n)). Each class PNP[O(logi n)] can be equivalently characterized
as the class of problems that can be solved in polynomial time allowing O(logi−1(n)) many
rounds of parallel queries to an NP oracle [14].

There are few known natural complete problems for the classes PNP[O(logi n)]. We intro-
duce here a complete problem LEXi(SAT) that we will make use of later on in our lower
bound proofs. Recall that LEX(SAT) is the problem to decide, given a Boolean formula
φ(x1, . . . , xn), whether the value of xn is 1 in the lexicographically maximal solution. Here,
x1 is treated as the most significant bit and xn as the least significant bit in the ordering.
Similarly, for i ≥ 1, we define LEXi(SAT) to be the problem of testing, given a Boolean
formula φ(x1, . . . , xn) and a number k ≤ logi(n), whether the value of xk is 1 in the lexico-
graphically maximal solution.

Theorem 2.5. LEXi(SAT) is PNP[O(logi n)]-complete.

Proof. The upper bound proof is immediate. In order to test whether the value of x1 is 1 in
the lexicographically maximal solution it is enough to ask the oracle whether the Boolean
formula φ(1, x2, . . . , xn) has a solution or not. Depending on the result we continue with
φ(1, x2, . . . , xn) or φ(0, x2, . . . , xn) and with j calls to the oracle we learn this way the value
of x1, . . . , xj in the lexicographically maximal solution.

The lower bound proof is a straightforward adaptation of the proof in [48] that LEX(SAT)

is PNP-complete. LetA be any problem in PNP[O(logi n)], letM be a deterministic polynomial-
time Turing machine accepting A using an oracle for a problem B ∈ NP, and let M ′ be a
non-deterministic polynomial-time Turing machine accepting B. Let f(n) = O(logi(n)) be
a function bounding the number of oracle queries asked by M on an input of size n.

Recall the textbook proof of NP-hardness of propositional satisfiability (cf., for example,
[49]), which is based on efficiently constructing a Boolean formula describing runs of a
given non-deterministic polynomial-time Turing machine. By the same construction, we
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can efficiently compute a Boolean formula

Hn(x, u, v1, . . . , vf(n), z1, . . . , zf(n), z)

(in fact, a conjunction of clauses with 3 literals per clause), parametrized by a natural
number n, whose satisfying assignments describe the runs of M on input words of length
n, where

(1) x describes an input word of length at most n
(2) u describes the sequence of configurations of M during the run (including tape

content, head position and state in each configuration),
(3) vj describes the j-th query asked to the oracle,
(4) zj describes the answer of the j-th query asked to the oracle (where z = 0 means

“no” and z = 1 means “yes”),
(5) z describes the result of the entire computation of M (where z = 0 means “reject”

and z = 1 means “accept”).

The formula Hn(x, u, v1, . . . , vf(n), z1, . . . , zf(n), z) does not enforce that each zj is the cor-
rect answer to the oracle query vj . Thus, the formula may have several satisfying assign-
ments with the same values of x (one for each possible sequence of answers that the oracle
may give).

In the same way, we can efficiently compute a Boolean formula

Gn(v, y, z′)

(in fact, a conjunction of clauses with 3 literals per clause), whose satisfying assignments
describe all (not necessarily accepting) runs of M ′ on input words of length n, where

(1) v describes an input word of length at most n
(2) y describes the sequence of configurations of M ′ during the run (including tape

content, head position and state in each configuration),
(3) z′ describes the result of the entire computation of M (where z = 0 means “reject”

and z = 1 means “accept”).

Since M ′ is non-deterministic, the formula Gn(v, y, z′) may have many satisfying assign-
ments with the same values of v.

Finally, for each input word w given as a bitstring of length n, we define φw to be the
Boolean formula

φw = Hn(w, u, v1, . . . , vf(n), z1, . . . , zf(n), z) ∧
∧

j=1...f(n)

Gn(vj , yj , zj)

Observe that φw only asserts that the zj is the result of some run of the non-deterministic
Turing machine M ′ on input vj . It does not require that zj = 1 when M ′ has an accepting
run on input vj . Consequently, not every satisfying assignment of φw describes the correct
computation of M on input x. However, it is easy to see that the lexicographically maximal
satisfying assignment does describe the correct computation, due to the fact that it makes
zj = 1 whenever possible (given the already obtained values for z` for ` < j). Thus, we
have z = 1 in the lexicographically maximal solution of φw if and only if w ∈ A.

We order the variables in the formula φw so that z1, . . . , zf(n), z come first (and in this
order). By construction, z is then the f(n)+1st variable of φw. Let m be the total number of
variables occurring in φn (which is bounded by some polynomial in n). If f(n)+1 ≤ logim,
then (φw,m) is a valid input for the LEXi(SAT) problem, and we are done. Otherwise, we
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extend φw with additional dummy variables, which serve no role other than making sure
that f(n) + 1 ≤ logim. It is easy to see that this can always be done.

3. Model theory

In this section we give many key definitions, we show results about the expressive power
of UNFO and UNFP, and we show that UNFO has Craig Interpolation and the Projective
Beth Property.

3.1. UN-bisimulations, the finite model property, and the tree-like model prop-
erty. We define a game that captures model indistinguishability, and we use it to charac-
terize the expressive power of UNFO and UNFP. The game is as follows: the two players
maintain a single pair (a, b) of elements from the two structures. A move of Abelard con-
sists of choosing a set X of points in one of the two structures. Then Eloise responds with
a homomorphism h from the set X into a set of points in the other structure, where the
homomorphism maps a to b (respectively b to a) if a (respectively b) belongs to the set
X. Finally, Abelard picks a pair (u, h(u)) (respectively (h(u), u)) and the players continue
with that pair. The game is parametrized by the size of the sets chosen by Abelard in each
round.

Equivalently, we can present the game in terms of a back-and-forth system:

Definition 3.1. Let M,N be two structures. A UN-bisimulation (resp. a UN-bisimulation
of width k ≥ 1) is a binary relation Z ⊆M ×N such that the following hold for every pair
(a, b) ∈ Z:

• [Forward property] For every finite set X ⊆ dom(M) (resp. with |X| ≤ k) there
is a partial homomorphism h : M → N whose domain is X, such that h(a) = b if
a ∈ X, and such that every pair (a′, b′) ∈ h belongs to Z.
• [Backward property] Likewise in the other direction, where X ⊆ dom(N).

We write M ≈UN N if there is a non-empty UN-bisimulation between M and N , and we
write M ≈UNk N if there is a non-empty UN-bisimulation of width k between M and N .

It is not difficult to see that the existence of a UN-bisimulation implies indistinguisha-
bility by UNFP sentences, and that the (weaker) existence of a UN-bisimulation of width k
implies indistinguishability in UNFPk.

Proposition 3.1. For any k ≥ 1, if M ≈UNk N then M and N satisfy the same sentences

of UNFPk. In particular, if M ≈UN N then M and N satisfy the same sentences of UNFP.

Proof. The second claim follows immediately from the first one, because M ≈UN N implies
M ≈UNk N for all k ≥ 1.

The proof of the first claim is by induction on the nesting of fixpoints and existen-
tial quantification in the formula. We assume without loss of generality that all formulas
are in UN-normal form. It is convenient to state the induction hypothesis for UNFOk-
formulas φ(x) in one free first-order variable and several free monadic second-order vari-
ables. The induction hypothesis then becomes: for all formulas φ(x, Y ) of width k, for all
UN-bisimulations Z of width k between (M,P ) and (N,Q), and for all pairs (a, b) ∈ Z, we
have (M,P , a) |= φ iff (N,Q, b) |= φ. We show only the important cases of the inductive
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step. Let M,N be two structures, Z be a UN-bisimulation of width k between M and N ,
P and Q be valuations of Y respectively on M and N , and (a, b) ∈ Z.

• φ(x, Y ) starts with an existential quantifier. Then, by definition of UN-normal
form, φ starts with a block of existential quantifications, followed by a Boolean
combination of atomic formulas or formulas with at most one free first-order variable,
i.e. again of the form ψ(y, Y ). Let x1, . . . , xn be the initial existentially quantified
variables of φ. In particular n ≤ k.

First, suppose (M,P , a) |= φ. Let X = {a1, . . . , an} be the quantified elements
of M witnessing the truth of φ. By the definition of UN-bisimulation, there is
a homomorphism h : M |X → N such that h(a) = b (if a is in the domain of
h) and such that {(ai, h(ai)) | i ≤ n} ⊆ Z. By induction hypothesis, a subformula
ψ(y, Y ) of φ is true on (M,P , ai) iff it is true on (N,Q, h(ai)). Hence the assignment
that sends x1, . . . , xn to h(a1), . . . , h(an) makes φ true on (N,Q, b). The opposite
direction, from (N,Q, b) |= φ to (M,P , a) |= φ, is symmetric.
• φ(x, Y ) is any Boolean combination of formulas of the form ψ(y, Y ), the result is

immediate from the induction hypothesis.
• φ(x, Y ) is of the form [LFPX,y ψ(X,Y , y)](x). We proceed by induction on the the

fixpoint iterations. Let Oφ,(M,P ) and Oφ,(N,Q) be be the monotone set-operations in-

duced by φ on subsets of the domain of (M,P ) and (N,Q), respectively, and let κ =
max{|M |, |N |}. Recall that the least fixpoint of Oφ,(M,P ) is equal to Oφ,(M,P )

κ(∅),
and similarly for the least fixpoint of Oφ,(N,Q). A straightforward transfinite induc-

tion shows that, for all ordinals λ, and for all (a, b) ∈ Z, a ∈ Oφ,(M,P )
λ(∅) if and

only if b ∈ Oφ,(N,Q)
λ(∅). We conclude that (M,P , a) |= [LFPX,y ψ(X,Y , y)](x) if

and only if (N,Q, b) |= [LFPX,y ψ(X,Y , y)](x).

Note that it is crucial, here, that we have defined width in terms of the UN-normal form.
For example, if R is a binary relation, then the existence of a cyclic directed R-path of length
k (i.e., a sequence of not necessarily distinct nodes a1, . . . , ak with R(ai, ai+1) and R(ak, a1))
can be expressed in UNFO using only 3 variables, by means of a careful reuse of variables,
but the formula in question would not be in UN-normal form. Indeed, the existence of
a cyclic directed R-path of length k, for k > 3, is not preserved by UN-bisimulations of
width k − 1.

A similar invariance property holds for formulas with free variables. For simplicity, we
only state a version of the result without reference to the width of formulas.

Definition 3.2. LetM andN be structures with the same signature. A UN-homomorphism
h : M → N is a homomorphism with the property that (M,a) ≈UN (N,h(a)) for all
a ∈ dom(M). We write (M,a) →UN (N, b) if there is a UN-homomorphism h : M → N
such that h(a) = b.

Proposition 3.2. If (M,a) →UN (N, b) and M |= φ(a) then N |= φ(b), for all UNFP-
formulas φ(x).

Proof. Follows from Proposition 3.1, together with the fact that positive existential formulas
are preserved by homomorphisms (note that every UNFP-formula φ(x) can be viewed as
a positive existential formula built from atomic formulas and from UNFP-formulas in one
free variable).
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From the invariance for UN-bisimulation it follows by a standard infinite unraveling
argument that UNFP has the tree-like model property. A more involved partial unraveling,
using back-edges in order to keep the structure finite, can also be used to show that UNFO
has the finite model property. We only state the results without giving the details of these
constructions, as it turns out that both results will follow from the material presented in
Section 4.

Theorem 3.3. Every satisfiable UNFO formula has a finite model.

Theorem 3.4. Every satisfiable UNFP formula of width k has a model of tree-width k−1.

Note, that UNFP does not have the finite model property. This follows from the
fact that UNFP contains the two-way µ-calculus which is known to lack the finite model
property [44]. Indeed, if max(x) is shorthand for ¬∃y E(x, y), then the formula

∃xmax(x) ∨ ∃x¬[LFPX,y ¬∃z(E(z, y) ∧ ¬X(z))](x)

expresses the property that either there exists a maximal element or there is an infinite
backward path. This formula is therefore obviously false in the infinite structure (N, suc).
However it holds on any finite structure as if a finite structure has no maximal elements, it
must contain a cycle, and hence an infinite backward path. The negation of this sentence
is satisfiable, by (N, suc), but has no finite model.

3.2. Characterizations. We have seen in Proposition 3.1 that UNFO sentences are first-
order formulas that are preserved under ≈UN-equivalence. It turns out that the converse
is also true. Indeed, in the same way that bisimulation-invariance characterizes modal
logic [8, 41] and guarded bisimulation-invariance characterizes the guarded fragment of
FO [1, 39], we will see that ≈UN-invariance characterizes UNFO. We show two variants of
this result depending on whether we consider finite or infinite structures. It turns out that
the proof for the finite case also works for the infinite case. However we give an independent
proof for the infinite case as it is simpler and introduces techniques that will be useful later
when considering Craig Interpolation.

We say that a FO sentence is ≈UN-invariant if for all structures M and N such that
M ≈UN N , we have M |= φ iff N |= φ. The notion of ≈UNk -invariance is defined similarly.

Theorem 3.5. A sentence of FO is equivalent to a formula of UNFO iff it is ≈UN-invariant.
For all k ≥ 1, a sentence of FO is equivalent to a formula of UNFOk iff it is ≈UNk -

invariant.

Before proving Theorem 3.5 we state and prove the following useful lemma. We write
(M,a) ≡UNFO (N, b) if (M,a) and (N, b) satisfy the same UNFO-formulas. We define
(M,a) ≡UNFOk (N, b) similarly. This lemma makes use of the classical notion of ω-
saturation. The actual definition is not needed here and the interested reader is referred
to [29]. For our purpose it is enough to know the following two key properties.

(1) If a (possibly infinite) set of first-order formulas is satisfiable, then it is satisfied by
a model that is ω-saturated.

(2) Let M be ω-saturated, let a1, . . . , am ∈ dom(M), and let T (x1, . . . , xn) is an infinite
set of first-order formulas with free variables x1, . . . , xn and using a1, . . . , am as
parameters. If every finite subset T ′ of T is realized in M (meaning that (M, b, a) |=
T (x) for some b = b1, . . . , bn ∈ dom(M)), then the entire set T is realized in M .
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Lemma 3.6. For all ω-saturated structures M and N with elements a and b, respectively,
the following hold.

(1) The relation {(a, b) | (M,a) ≡UNFO (N, b)} is a UN-bisimulation.
(2) The relation {(a, b) | (M,a) ≡UNFOk (N, b)} is a UN-bisimulation of width k (k ≥ 1).

Proof. We prove the second claim. The proof of the first claim is similar. Let Z = {(a, b) |
(M,a) ≡UNFOk (N, b)}. We show that Z satisfies the forward property, the proof of the
backward property is analogous.

Suppose (c, d) ∈ Z and let X ⊆ dom(M) with |X| ≤ k. We can distinguish two cases:
either c ∈ X or c 6∈ X. We will consider the first case (the second case is simpler). Thus,
let X = {c, c1, . . . , cn} (n < k). Let T [x1, . . . , xn] be the set of all formulas φ(x, x1, . . . , xn)
that are positive Boolean combinations of atomic formulas or unary formulas of UNFOk

and that are true in (M, c, c1, . . . , cn). We view T as an n-type with one parameter.
Notice that by construction of T , for each finite subset T ′ of T the formula ∃x1 . . . xn(

∧
T ′)

is in UNFOk and is satisfied by (M, c). By hypothesis this formula is therefore also satisfied
by (N, d). Since N is ω-saturated (and treating T as an n-type with parameter d), it follows
that the entire set T [x, x1, . . . , xn] is realized in N under an assignment g that sends x to
d. This implies that the function h sending c to d and ci to g(xi) is a homomorphism such
that, for all i, ci and h(ci) satisfy the same formulas of UNFOk and therefore (ci, h(ci)) ∈ Z
by definition of Z.

Proof of Theorem 3.5. One direction follows from Proposition 3.1. For the other direction,
we only give the proof for the case of UNFOk, the argument for full UNFO being identical.

Let φ be any ≈UNk -invariant FO sentence. We want to show that φ is equivalent to a

UNFOk-sentence.
We first show that whenever two structures agree on all sentences of UNFOk, they agree

on φ. Suppose M and N satisfy the same sentences of UNFOk. Without loss of generality
we can assume that M and N are ω-saturated. Define Z ⊆ M × N as the set of all pairs
(a, b) such that (M,a) and (N, b) satisfy the same UNFOk-formulas. By Lemma 3.6, Z is a
UN-bisimulation of width k. We claim that Z is non-empty. Let a be any element of M , and
let Σ(x) be the set of all UNFOk-formulas with one free variable, true for a on M . Notice
that for every finite subset Σ′ of Σ, the formula ∃x

∧
Σ′ is a sentence of UNFOk that is

satisfied by M . Hence, by hypothesis, it is also satisfied in N . Therefore, by ω-saturation,
the entire set Σ(x) is realized by an element b in N , and hence (a, b) ∈ Z, which implies
that Z is non-empty. This implies that M ≈UNk N . Assume now that M |= φ. As φ is
≈UNk -invariant and M ≈UNk N , this implies that N |= φ. By symmetry we get M |= φ iff
N |= φ as desired.

The rest of the proof is a well known argument using Compactness: If φ is not satisfiable
then φ is equivalent to the UNFO1 sentence “false”. Otherwise let M |= φ and let Θ be the
set of all UNFOk sentences θ such that M |= θ. We show that Θ |= φ (i.e. any model of Θ is
a model of φ). If this were not the case then we have a structure N such that N |= Θ∧¬φ.
But because Θ contains each UNFOk sentence or its negation we have M ≈UNk N and
M,N disagree on φ. This contradict the claim of the previous paragraph.

By compactness, there is a finite subset Θ′ of Θ such that Θ′ |= φ. By construction,
this implies that φ is equivalent to the conjunction of all the sentences in Θ′.
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Before we turn to the finite variant of Theorem 3.5, we remark that a similar character-
ization can be obtained for formulas with free variables, using UN-homomorphisms instead
of UN-bisimulations.

Theorem 3.7. A formula of FO with free variables is equivalent to a formula of UNFO iff
it is preserved under UN-homomorphisms.

Proof. One direction is provided by Proposition 3.2. For the other direction, let φ(x) be a
FO formula preserved under UN-homomorphisms. As for the proof of Theorem 3.5, using
a standard Compactness argument (cf. [18, Lemma 3.2.1]), it is enough to show that, for
structures M,N with tuples a, b, if every UNFO-formula true in (M,a) is true in (N, b),
then also M |= φ(a) implies N |= φ(b). Without loss of generality we may assume that M
and N are ω-saturated. As φ is preserved under UN-homomorphisms, the result is now a
direct consequence of the following claim.

If M,N are ω-saturated structures, and a, b tuples of elements such that
every UNFO-formula true in (M,a) is true in (N, b), then there is a UN-
homomorphism from an elementary substructure of (M,a) to an elementary
substructure of (N, b) that maps a to b.

In what follows, we prove the above claim. First of all, note that every equality statement
satisfied in a is satisfied in b, which makes it meaningful to speak about functions mapping
a to b.

We need the notion of a potential homomorphism from a structure M to a structure
N . It is a non-empty collection F of finite partial homomorphisms f : M → N , which
satisfies the following extension property: for all f ∈ F and for all a ∈ dom(M), there is an
f ′ ∈ F which extends f and whose domain includes a. By a potential UN-homomorphism we
will mean a potential homomorphism whose finite partial homomorphisms preserve the UN-
bisimilarity type of each node. It is not hard to see that if M,N are countable structures and
F is a potential homomorphism from M to N , then there is a homomorphism h : M → N ,
which can be defined as the limit of a sequence of finite partial homomorphisms belonging
to F . In particular, if F is a potential UN-homomorphism, then h is a UN-homomorphism.

Now, let M and N be structures as described by the statement of the Lemma. A
straightforward variation of the proof of Lemma 3.6 shows that there is a potential UN-
homomorphism F from M to N mapping a to b.

Next, we take the model pair (M,N, a, b) expanded with the maximal UN-bisimulation
relation Z between M and N (i.e., the binary relation containing all pairs (a′, b′) such that
(M,a′) ≈UN (N, b′)), plus infinitely many additional relations that represent the potential
UN-homomorphism F (for each k ≤ 1, we use a new 2k-ary relation Rk to represent
all finite partial homomorphisms defined on k elements). We then apply to downward
Löwenheim-Skolem theorem to obtain a similar situation (M ′, N ′, a, b, . . .), but where M ′

and N ′ are countable elementary substructures of M and N . Since we added the Z and
Rk relations before applying the Löwenheim-Skolem theorem, we still have a potential UN-
homomorphism from M ′ to N ′ mapping a to b. It then follows by the earlier remark that
there is a UN-homomorphism from M ′ to N ′ mapping a to b.

Finally, we consider the case of finite structures. We say that a FO sentence is ≈UN-
invariant on finite structures if for all finite structures M and N such that M ≈UN N , we
have M |= φ iff N |= φ. The notion of ≈UNk-invariance on finite structure is defined in

the same way. We prove that UNFOk is also the ≈UNk -invariant fragment of FO on finite
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structures. The proof of this result constitutes, at the same time, also an alternative proof
of the second part of Theorem 3.5. However it relies in a crucial way on the parameter k
and therefore does not yield a characterization of UNFO in terms of ≈UN-invariance. In
particular, it remains open whether UNFO is the ≈UN-invariant fragment of FO on finite
structures. For simplicity, we state the result for formula with at most one free variable.

Theorem 3.8. Fix a finite schema σ, and let m be the maximal arity of the relations in
σ. For all k ≥ m, a formula of FO with at most one free variable is equivalent over finite
σ-structures to a sentence of UNFOk iff it is ≈UNk -invariant on finite σ-structures.

Proof. Recall that we write (M,a) ≡FOq (N, b) if M and N satisfy the same FO sentences
of quantifier depth q. Recall the definition of UN-normal form, and observe that, in UNFO
formulas that are in UN-normal form and that have at most one free variable, every exis-
tential quantifier must be either directly below another existential quantifier, or, otherwise,
the subformula starting with that quantifier has at most one free variable. In the latter
case, we call the existential quantifier in question a leading existential quantifier. We say
that a formula of UNFOk in UN-normal form with at most one free variable has block depth
q if the nesting depth of its leading quantifiers is less than q. We denote by UNFOk

q the

fragment of UNFOk consisting of formulas in UN-normal form with at most one free vari-
able that have block depth q, and we will write (M,a) ≡UNFOkq

(N, b) if M and N satisfy

the same formulas of UNFOk
q . One can show by a straightforward induction on k that, for

every fixed finite schema, ≡UNFOkq
is an equivalence relation of finite index (that is, there

are only finitely many equivalence classes) and, consequently, each equivalence class can be
described using a single UNFOk

q -formula.
The basic proof strategy is as follows: we will show that for every q ≥ 0 there exists a

l ≥ 0 such that whenever (M,a) ≡UNFOkl
(N, b), then there exist structures (M∗, a∗) and

(N∗, b∗) such that (M,a) ≈UNk (M∗, a∗), (M∗, a∗) ≡FOq (N∗, b∗), and (N∗, b∗) ≈UNk (N, b).
In other words, using the terminology of [38], “the equivalence relation ≡UNFOkl

can be lifted

to ≡FOq modulo ≈UNk”. This implies the theorem: starting with a ≈UNk -invariant FO
formula φ in one free variable of quantifier depth q, we obtain that φ is ≡UNFOkl

-invariant.

Therefore φ is equivalent to the disjunction of all (finitely many, up to equivalence) formulas
describing an equivalence class of ≡UNFOkl

containing a model of φ.

The construction of (M∗, a∗) and (N∗, b∗) makes use of Theorem 2.4. We first need to
introduce some auxiliary definitions that will allow us to construct a Kripke structure from
an arbitrary structure, and vice versa.

Let M be any structure over a signature σ. In what follows, by a k-neighborhood of
M , we will mean a pair (K,h), where K is a structure with domain {1, . . . , k} over σ and
h is a homomorphism from K to M . Intuitively, one can think of a k-neighborhood as
a realization in M of some positive existential description of size k. From σ and k we
construct the signature σk containing a unary predicate PK for each structure K over σ
with domain {1, . . . , k} and a binary relation Ri for each 1 ≤ i ≤ k. Given a structure M
over σ, we associate to it a structure GM , called the graph of M , over σk, as follows. The
nodes of GM are the elements of M plus the k-neighborhoods of M . Each node of GM that
is a k-neighborhood (K,h) is labeled by the unary predicate PK . There is an Ri-edge in
GM from a k-neighborhood (K,h) of M to an element a ∈M if and only if h(i) = a.

Conversely, we can transform a structure G over the signature σk into a structure Ĝ

over σ as follows. The universe of Ĝ consists of the nodes of G that do not satisfy any unary
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predicate. A tuple of such elements a = a1 . . . an (with n ≤ m ≤ k) belongs to R iff there
is a node u of G satisfying PK , for some K, and a tuple b = b1 . . . bn of elements of K such
that K |= R(b) and such that for each i ≤ n, G contains the edge Rbi(u, ai).

We start by establishing a useful property linking M to its graph GM .

Claim 1. For all structures (M,a) and (N, b) and for all l ∈ N, if (M,a) ≡UNFOkl
(N, b)

then (GM , a) ≈l (GN , b).

Proof. Let Z0 be the set of all pairs of elements (a, b) such that (M,a) ≡UNFOk0
(N, b), and,

for ` > 0, let Z` be the set of all pairs of elements (a, b) such that (M,a) ≡UNFOk`
(N, b),

together with the set of all pairs ((K,h), (K, g)) such that, for all i ≤ k, (M,h(i)) ≡UNFOk`−1

(N, g(i)). We show, by induction on `, that from a pair (u, v) in Z`, Elöıse can survive ` steps
of the global two-way bisimulation game. Therefore, if (a, b) is such that (M,a) ≡UNFOkl

(N, b), Zl witnesses the fact that (GM , a) ≈l (GN , b) and the lemma is proved.
The base of the induction, where ` = 0, is trivial. For the induction step, recall that

Abelard can choose a structure, and subsequently, play one of three types of moves: moving
the pebble forward along an edge, moving the pebble backward along an edge, and moving
the pebble to an arbitrary node. We will assume that Abelard chooses GM (the case where
Abelard chooses GN is symmetric) and that Abelard either (i) moves the pebble (forward
or backward) along an edge, or (ii) moves the pebble to an arbitrary node. We treat the
two cases separately.

As a convenient notation, for each structure K over σ with universe {1, . . . , k}, we
define αK(x1, . . . , xk) to be the quantifier-free formula that is the conjunction of all atomic
formulas true in K, using free variables x1, . . . , xk for the elements 1, . . . , k. Moreover we
say that τ is the UNFOk

` -type of an element a of M if it is the conjunction of all the UNFOk
`

formula ϕ(x) such that M |= ϕ(a). Modulo logical equivalence there are only finitely many
formulas in UNFOk

` hence each UNFOk
` -type is equivalent to a formula of UNFOk

` .
(i) Let (u, v) ∈ Z`. By construction, (u, v) is either of the form (a, b) with a ∈ dom(M)

and b ∈ dom(N), or it is of the form ((K,h), (K, g)). First, suppose that (u, v) = (a, b),
where a ∈ M and b ∈ N . Let u′ be a node of GM reachable from a by an edge. By
construction of GM , u′ must be of the form (K,h) and is connected with an edge of label
i to a, i.e. h(i) = a. For all i, let τi be the UNFOk

`−1-type of h(i). By definition, the

formula β(xi) defined as ∃x1 . . . xi−1xi+1 . . . xk αK ∧
∧
j 6=i τj(xj) is a formula of UNFOk

` and

by construction we have (M,a) |= β(xi). Therefore (N, b) |= β(xi). Let g be the valuation
corresponding to the initial block of existential quantifications. By construction g is a
homomorphism from K to N and, for each i, (h(i), g(i)) ∈ Z`−1. Hence ((K,h), (K, g)) ∈
Z`−1.

Next, suppose (u, v) = ((K,h), (K, g)) and a there is a node u′ connected to u via an
edge. By construction u′ must be an element a of GM connected with an edge of label i to
(K,h), i.e. h(i) = a. By definition, for b = g(i) we have (a, b) ∈ Z`−1.

(ii) Let (u, v) ∈ Z` and let u′ be any element of GM . First, consider the case where u′

is an element of M , and let τ(x) be its UNFOk
`−1-type. Since (M,a) ≡UNFOk`

(N, b) and

(M,a) |= ∃x τ(x), we have that (N, b) |= ∃x τ(x). Let v′ be the witnessing element of N .
Then (N, u) ≡UNFOk`−1

(N, v), and hence, (u′, v′) ∈ Z`−1.

Next, suppose that u′ was of the form (K,h). For each i ≤ k, let τi(x) be the UNFOk
`−1-

type of h(i). By definition, the formula β defined as ∃x1 . . . xk αK ∧
∧
i τi(xi) is a formula
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of UNFOk
` and by construction we have (M,a) |= β. Therefore (N, b) |= β. Let g be

the valuation corresponding to the initial block of existential quantifications in β. By
construction g is a homomorphism from K to N and, for each i, (h(i), g(i)) ∈ Z`−1. Hence
((K,h), (K, g)) ∈ Z`−1.

Fix some q ∈ N and let l be the number given by Theorem 2.4 for q+1. Let now (M,a)
and (N, b) be such that (M,a) ≡UNFOkl

(N, b). By Claim 1 we have (GM , a) ≈l (GN , b). By

Theorem 2.4 there exists (G′M , a
′) and (G′N , b

′) such that (G′M , a
′) ≈ (GM , a), (G′N , b

′) ≈
(GN , b) and (G′M , a) ≡FOq+1 (G′N , b). Let M∗ be Ĝ′M and N∗ be Ĝ′N . The following two
claims show that (M∗, a′) and (N∗, b′) have the desired properties.

Claim 2. (M∗, a′) ≡FOq (N∗, b′).

Proof. We simply lift the winning strategy in the Ehrenfeucht-Fräıssé game given by (G′M , a
′) ≡FOq+1

(G′N , b
′) to a winning strategy for the Ehrenfeucht-Fräıssé game (M∗, a′) ≡FOq (N∗, b′):

When, at stage i of the game, Spoiler chooses an element ai in M∗ Duplicator responds
with the element bi provided by his strategy in the game between G′M and G′N , and vice
versa if Spoiler chooses an element in N∗. We show that M∗ |= R(ai1 · · · aiκ) implies
N∗ |= R(bi1 · · · biκ). Let (K,h) be any k-neighborhood of M such that R(ai1 , . . . , aiκ) is
the h-image of an atomic fact of K. Assuming the node u = (K,h) is played in the game
between G′M and G′N , the extra move in the winning strategy of Duplicator guarantees the

existence of v = (K, g) in G′M that is linked to b the same way u is linked to a. This implies
the desired property.

Claim 3. (M∗, a′) ≈UNk (M,a) and (N∗, b′) ≈UNk (N, b).

Proof. We only treat the case for M , the other being identical.
By Theorem 2.4, we have that (G′M , a

′) is a ≈-cover of (GM , a). That is, there is a
homomorphism h : G′M → GM such that h(a′) = a and such that (G′M , c) ≈ (GM , h(c)) for
all c ∈ dom(G′M ).

Let Z = {(c, h(c)) | c ∈ dom(M∗)}. Note that, for all c ∈ dom(M∗) we have that
h(c) ∈ dom(M), due to the fact that c and h(c) agree on all unary predicates. We will
show that, in fact, Z is a UN-bisimulation of width k between M∗ and M . Note also that
(a′, a) ∈ Z.

We first prove that Z is the graph of a homomorphism. Let a be such that M∗ |= R(a).
By construction of M∗, this implies that there is a node u in G′M of label PK and elements
b1, . . . , bl in K such that K |= R(b1, . . . , bl) and G′M |= Rbj (u, aj) for all j. As h is a
homomorphism, h(u) has the same label as u and is connected to h(a) the same way u is
connected to a. By construction of GM , this implies M |= R(h(a)).

Since we have just shown that Z is the graph of a homomorphism, it remains only to
show that Z satisfies the backward property of the definition of UN-bisimulations.

Consider (c, d) ∈ Z, that is, d = h(c). Let Y be a subset of elements of M of size less
than k. We assume that d ∈ Y . The case where d 6∈ Y is handled in the same way. Let
K be the structure with universe {1, . . . , k} which is isomorphic to the restriction of M
to Y and let g be the corresponding isomorphism. Without loss of generality we assume
that g(1) = b. By definition of GM there is a node v = (K, g) that is connected to all
the elements of Y via edges of appropriate label. Since (G′M , c) ≈ (GM , d), we can find a
node u, whose label correspond to K, connected to c via an edge of label 1, and such that
h(u) = v. Since (G′M , u) ≈ (GM , v), we can further find in G′M a set of nodes X, connected
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to u in the same way that Y are connected to v, such that h(X) = Y . It follows by the
construction of M∗ that the map from Y to X is a partial homomorphism from M to M∗.

This concludes the proof of Theorem 3.8: it follows from Claim 2 and Claim 3 that every
≈UNk -invariant FO formula φ in one free variable of quantifier depth q, is ≡UNFOkl

-invariant

for suitably large l, and, therefore (as explained earlier), is equivalent to a UNFOk
l -formula.

The analogous result for sentences follows immediately.

3.3. Craig Interpolation and Beth Property. We conclude the list of nice model-
theoretic properties of UNFO by showing that it has Craig Interpolation and the Projective
Beth Property. In fact, we can show strong versions of these results, which take into account
also the width of formulas. This is remarkable, given that both Craig Interpolation and the
Beth Property fail for the k-variable fragment of first-order logic, for all k > 1. Moreover, the
results presented in this section hold both on arbitrary structures and on finite structures.
Model-theoretic proofs of Craig Interpolation typically use amalgamation constructions [18],
and the proof we give here is essentially based on an amalgamation construction called
zigzag-products that was introduced, in the context of modal logic, in [36].

For all UNFO-formulas φ(x), ψ(x), we write φ |= ψ to express that the first-order
formula ∀x(φ → ψ) (which is not necessarily a UNFO-formula) is valid, i.e. holds on all
models.

It turns out that it is enough to consider finite models for testing whether φ |= ψ. This
is a consequence of the following remark and Theorem 3.3:

Remark 3.9. For all UNFO-formulas φ(x), ψ(x), φ |= ψ holds (resp. holds on finite
structures) if and only if the UNFO sentence

∃x(φ ∧
∧

1≤i≤n
Pi(xi)) ∧ ¬∃x(ψ ∧

∧
1≤i≤n

Pi(xi))

is not satisfiable (resp. does not have a finite model), where x = x1, . . . , xn and P1, . . . , Pn
are fresh unary predicates.

Remark 3.9 implies that all the results we prove for sentences apply to entailment
between formulas with free variables as well. In particular, since UNFO has the finite
model property by Theorem 3.3, we have that φ |= ψ holds on arbitrary structures if and
only if holds on finite structures. Consequently, Craig Interpolation, and therefore also Beth
Property, hold on arbitrary structures if and only if they hold over finite structures. In the
remaining part of this section we only state the results for arbitrary structures, but, as we
have just argued, they also hold over finite structures.

Theorem 3.10. UNFOk has Craig Interpolation: for all k ≥ 1 and for every pair of UNFOk-
formulas φ(x), ψ(x) in the same free variables such that φ |= ψ, there is a UNFOk-formula
χ(x) over the common vocabulary of φ and ψ such that φ |= χ and χ |= ψ.

Proof. The proof is by contradiction. Suppose that there is no interpolant in UNFOk. We
will show that (the first-order formula) φ ∧ ¬ψ is satisfiable.

Let σ be the vocabulary of φ, and τ the vocabulary of ψ, and let x = x1 . . . xn. By
(M,a) ≡σ

UNFOk
(N, b) we will mean that the tuple a in M and the tuple b in N satisfy the

same UNFOk-formulas using only relation symbols in σ, and by (M,a) Vσ
UNFOk

(N, b) we
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will mean that every UNFOk-formula using only relation symbols in σ that is satisfied by
the tuple a of M is satisfied also by the tuple b of N .

Claim 4. There are (M,a) |= φ and (N, b) |= ¬ψ such that (M,a)Vσ∩τ
UNFOk

(N, b).

Proof of Claim 4: A classic argument involving two applications of Compactness (cf. [18,
Lemma 3.2.1]). Let Φ(x) be the set of all UNFOk-formulas in the joint vocabulary that are
valid consequences of φ(x). The first-order theory Φ(x) ∪ {¬ψ(x)} is consistent, because,
if this were not the case, then by Compactness, some finite conjunction of formulas in Φ
would be an interpolant, which we have assumed is not the case. Hence, let (N, b) |=
Φ(x) ∪ {¬ψ(x)}.

Next, let Γ(x) be the set of all UNFOk-formulas in the joint vocabulary that are false in
(N, b). Then the first-order theory {¬γ | γ ∈ Γ(x)}∪{φ(x)} is consistent, for, if it were not,
then by Compactness, there would be γ1, . . . , γm ∈ Γ such that

∧
i ¬γi |= ¬φ(x) and hence∨

i γi ∈ Φ(x), which contradicts (N, b) |= Φ(x). Let (M,a) |= {¬γ | γ ∈ Γ(x)} ∪ {φ(x)}.
By construction, all UNFOk formulas in σ ∩ τ true of a in M are true of b in N . In other
words, (M,a)Vσ∩τ

UNFOk
(N, b).

The following Claim 5 is a strengthening of Claim 4. Recall the definition of UN-
homomorphisms. Just as we parametrized UN-bisimulations by a width k and a signa-
ture, we can parametrize UN-homomorphisms by a width and a signature. We write
(M,x) ≈σ∩τ

UNk
(N, y) if there is a UN-bisimulation of width k, with respect to the sig-

nature σ ∩ τ , between (M,x) and (N, y). We write (M,a) →σ∩τ
UNk

(N, b) if, for every set

X ⊆ M with |X| ≤ k, there is a partial homomorphism (with respect to the signature
σ ∩ τ) h : M → N with domain X, such that (i) h(ai) = bi for all ai ∈ a ∩ X, and (ii)
(M,x) ≈σ∩τ

UNk
(N,h(x)) for all x ∈ X. In particular this implies that (M,a)Vσ∩τ

UNFOk
(N, b).

Claim 5. There are (M,a) |= φ and (N, b) |= ¬ψ such that (M,a) →σ∩τ
UNk

(N, b).

Proof of Claim 5: We may assume without loss of generality that the models M and N
provided by Claim 4 are ω-saturated, and therefore, by Lemma 3.6 we have that, whenever
(M,a) ≡σ∩τ

UNFOk
(N, b), then (M,a) ≈σ∩τ

UNk
(N, b).

Consider now a set X = {u1, . . . , uκ} ⊆ M with κ ≤ k. We assume that X contains
no element of a. If this were not the case we simply remove those elements and proceed as
below. Let Y = X ∪ a. We view Y as the sequence (v1, . . . , v`) where for j ≤ κ, vj = uj
and for j > κ, vj = aj . For each element ui of X, let Ti be the set of UNFOk formulas
ψ(x) such that M |= ψ(ui). Let α be the conjunction of all atoms R(xi1 , . . . , xil) such that
M |= R(vi1 , . . . , vil). For each finite subset T ′i of Ti, the formula ∃x1, . . . xκ α ∧

∧
i T
′
i (xi) is

in UNFOk and is satisfied by (M,a). Because (M,a) Vσ∩τ
UNFOk

(N, b) it is also satisfied by

(N, b). By ω-saturation, this implies that {α(x1, . . . , xi)} ∪
⋃
i≤κ Ti(xi) is realized in (N, b).

The witnessing tuple c provides the desired homomorphism from X to N .
Altogether this shows that (M,a) →σ∩τ

UNk
(N, b).

We now construct a new σ∪τ -structure K out of the σ-structure M and the τ -structure
N provided by Claim 5. This new structure K will contain a tuple satisfying φ ∧ ¬ψ.
Essentially, K will be the substructure of the cartesian product of M and N containing pairs
of elements that are UN-bisimilar in the joint language. Relations in the joint vocabulary
are interpreted as usual in cartesian products, while relations outside of the joint vocabulary
are copied from the respective structure. The precise definition of K is as follows:
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• The domain of K is the set of all pairs (a, b) ∈M×N such that (M,a) ≈σ∩τ
UNk

(N, b).

• For each R ∈ σ ∩ τ of arity m, RK contains all tuples (〈a1, b1〉, . . . , 〈am, bm〉) in the
domain of K such that (a1, . . . , am) ∈ RM and (b1, . . . , bm) ∈ RN .
• For each R ∈ σ \ τ of arity m RK contains all tuples (〈a1, b1〉, . . . , 〈am, bm〉) in the

domain of K such that (a1, . . . , am) ∈ RM .
• Analogously for all relation symbols R ∈ τ \ σ.

Claim 6. For all elements 〈a, b〉 ofK, we have (K, 〈a, b〉) ≈σ
UNk

(M,a) and (K, 〈a, b〉) ≈τ
UNk

(N, b).

Proof of Claim 6: We will show that (K, 〈a, b〉) ≈σ
UNk

(M,a). The proof of the other half
of the claim is analogous.

Let Z be the graph of the natural projection from K onto M , i.e., Z = {(〈u, v〉, u) |
〈u, v〉 ∈ K}. Clearly, (〈a, b〉, a) ∈ Z. Therefore, it suffices to show that Z is a UN-
bisimulation of width k for the signature σ.

Consider any pair (〈u, v〉, u) ∈ Z, and let X be any subset of the domain of K, with
|X| ≤ k. Let h be the natural projection from K onto M , restricted to X. It is clear
from the definition of K that h is a partial homomorphism with respect to all relations in
σ (those that belong to σ ∩ τ as well as those that belong to σ \ τ). Furthermore, it is
clear that h(〈a, b〉) = a if 〈a, b〉 ∈ X. Therefore, the forward property of the definition of
UN-bisimulations is satisfied.

Next, consider any pair (〈u, v〉, u) ∈ Z, and letX be any subset of the domain ofM , with
|X| ≤ k. Since (M,u) ≈σ∩τ

UNk
(N, v), there is a partial homomorphism f : M → N whose

domain is X, such that (M,x) ≈σ∩τ
UNk

(N,h(x)) for all x ∈ X, and such that h(u) = v if

u ∈ X. Now, define h : M → K to be the map that sends every x ∈ X to 〈x, f(x)〉. Clearly,
this is a well-defined partial map from M to K, with domain X, having the property that
h(u) = (u, v) if u ∈ X. Therefore, it only remains to show that h is a partial homomorphism.
That h preserves all relations in σ\τ is immediate from the definition of K. That h preserves
all relations in σ ∩ τ follows from the construction of h and of K: if (x1, . . . , xm) ∈ RM ,
then, since f is a partial homomorphism, we have that (f(x1), . . . , f(xm)) ∈ RN . Hence,
by the definition of K, we have that (h(x1), . . . , h(xm)) ∈ RK .

We will use the notation 〈a, b〉 as a convenient shorthand for (〈a1, b1〉, . . . , 〈an, bn〉).

Claim 7. (K, 〈a, b〉) |= φ ∧ ¬ψ

Proof of Claim 7: We may assume that φ is in UN-normal form. Let φ be of the form ∃zφ′,
where φ′ is built up from atomic formulas, equalities and formulas in one free variable, using
conjunction and disjunction. Since (M,a) |= φ, there is a tuple a′ witnessing (M,a′) |= φ′

(where a and a′ are appropriately related, depending on which variables are quantified in
φ). The fact that (M,a) →σ∩τ

UNk
(N, b) gives us that there is a partial homomorphism

h : M → N whose domain is a′, such that h(ai) = bi for all ai ∈ a ∩ a′, and such that

(M,x) ≈σ∩τ
UNk

(N,h(x)) for all x ∈ a′. Now, let us use 〈a′, b′〉 again as a convenient shorthand

for the pairwise product of a′ and b
′
. Then it follows from the definition of K that all atomic

formulas in signature τ that are true of a′ in M are true of 〈a′, b′〉 in K (for relations in
τ \σ, this is immediate, and for relations in σ∩ τ , this follows from the fact that the atomic

formula in question is true also of b
′

in N). Hence (by induction on the conjunctions and

disjunction in φ′), we have that (K, 〈a′, b′〉) |= φ′. In fact, it can be seen that 〈a′, b′〉 provides
a witness showing that (K, 〈a, b〉) |= φ.
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Next, consider ψ. We may again assume that ψ is in UN-normal form. Recall that the
definition of K implies that the natural projections from K onto N is a homomorphism
preserving all relations in τ (both those in σ ∩ τ and those in τ \ σ). It follows by a
straightforward induction that if (K, 〈a, b〉) |= ψ, then also (N, a) |= ψ, which is not the
case.

To summarize: on the basis of the assumption that there is no Craig interpolant for φ
and ψ, we were able to show that φ ∧ ¬ψ is satisfiable, and hence, φ → ψ is not a valid
implication. This concludes the proof of our Craig interpolation theorem.

As usual, Craig Interpolation implies Beth Property. Let Σ be a UNFO-theory in a
signature σ and let R ∈ σ and τ ⊆ σ. We say that Σ implicitly defines R in terms of τ
if for all τ -structures M and for all σ-expansions M1,M2 of M satisfying Σ, we have that
RM1 = RM2 . We say that a formula φ(x) in signature τ is an explicit definition of R relative
to Σ if Σ |= ∀x (Rx↔ φ(x)). Note that the formula ∀x (Rx↔ φ(x)) is itself not necessarily
a UNFO-formula, but this is irrelevant.

Theorem 3.11. UNFO has the Projective Beth Property: whenever a UNFO-theory Σ in
a signature σ implicitly defines a k-relation R in terms of a signature τ ⊆ σ, then there is a
UNFO-formula in signature τ that is an explicit definition of R relative to Σ. Moreover, if
Σ belongs to UNFOk (k ≥ 1), then the explicit definition can be found in UNFOk as well.

Proof. The argument is standard from Craig Interpolation. We give it here for the sake of
completeness. Suppose Σ implicitly defines R in terms of τ . We may assume R 6∈ τ because
otherwise it is trivial. Furthermore, by Compactness, we may assume Σ to be finite. Let
Σ′ be a copy of Σ in which all relations S outside of τ (including R) have been replaced by
new disjoint copies S′. Then the fact that Σ implicitly defines R in terms of τ implies that
following first-order implication is valid:∧

Σ ∧
∧

Σ′ |= ∀x(Rx→ R′x)

We can rewrite this into an equivalent implication of UNFO-formulas:∧
Σ ∧Rx |=

∧
Σ′ → Rx

Let χ(x) be the interpolant given by Theorem 3.10 for this UNFO-implication. It is
now straightforward to verify that χ is indeed an explicit definition of R relative to Σ.

4. Satisfiability

In this section, we show that the satisfiability problem for UNFP and for UNFO is 2ExpTime-
complete, both on arbitrary structures and on finite structures. The lower bound holds
already over structures with relations of bounded arity, and, in particular, over finite trees.
Note that this is in contrast with GFO whose complexity drops from 2ExpTime-complete
to ExpTime-complete when the arity of relations is bounded [27]. The upper bound is ob-
tained by a reduction to the two-way modal µ-calculus and Theorem 2.2. Given a formula
ϕ of UNFP we construct in exponential time a formula ϕ∗ in the µ-calculus such that ϕ
has a (finite) model iff ϕ∗ has a (finite) model. The correctness of the construction in the
finite case builds on Theorem 2.3. The same reduction to the two-way modal µ-calculus



22 BALDER TEN CATE AND LUC SEGOUFIN

allows us to prove the finite model property of UNFO and the tree-like model property of
UNFP, i.e., Theorem 3.3 and Theorem 3.4.

We describe the reduction from ϕ to ϕ∗ in two parts. In the first one we consider only
a special case of UNFP formulas that we call simple. Those are, intuitively, formulas of
the global two-way µ-calculus with navigation through arbitrary relations instead of just
binary relations. The construction of ϕ∗ is then polynomial. In a second part we show how
the general case reduces to this one (with an exponential blow-up).

4.1. Simple UNFP formulas. We first consider a fragment of UNFP, which we call simple
and denote it by sUNFP. It is a common fragment of UNFP and GFP, which embeds the
global two-way µ-calculus. The syntax of sUNFP is given by the following grammar (recall
that we use the notation φ(x) to indicate that a formula has no free first-order variables
besides possibly x, but may contain some monadic second-order free variables):

φ(x) ::= P (x) | X(x) | φ(x) ∧ φ(x) | φ(x) ∨ φ(x) | ¬φ(x) | [LFPX,yφ(y)](x) |

∃y1 . . . yn(R(y1 . . . yn) ∧ yi = x ∧
∧

j∈{1...n}\{i}

φ(yj)) | ∃xφ(x)

Note that all formulas generated by this inductive definition have at most one free
(first-order) variable. We denote by sUNFO the first-order (that is, fixpoint-free) fragment
of sUNFP.

We need the following notions. A fact of a structure M is an expression R(a1, . . . , an)
where (a1, . . . , an) ∈ RM . The incidence graph inc(M) of a structure M is the bi-partite
graph containing facts of M and elements of M , and with an edge between a fact and an
element if the element occurs in the fact. We say that a structure M is l-acyclic, for l ≥ 1,
if (i) inc(M) has no cycle of length less than 2l, and (ii) no element of M occurs twice in
the same fact. We call a structure acyclic, if it is l-acyclic for all l (i.e., the incidence graph
is acyclic and no element occurs in the same fact twice).

Based on a simple coding of relations of arbitrary arity using binary relations we can
transform a simple formula into a formula of the µ-calculus and, using the results of Sec-
tion 2.2, obtain:

Proposition 4.1.

(1) The satisfiability problem for sUNFP is ExpTime-complete, both on arbitrary struc-
tures and on finite structures.

(2) If a sUNFP formula has a model, it has an acyclic model
(3) If a sUNFP formula has a finite model, then it has a l-acyclic finite model, ∀l ≥ 1.
(4) sUNFO has the finite model property.

Proof. (1) The ExpTime lower bound for sUNFP follows immediately from the fact that
sUNFP subsumes the two-way modal µ-calculus MLµ whose satisfiability problem is Exp-
Time-hard (cf. Theorem 2.2). For the ExpTime upper bounds, we give a polynomial time
translation from sUNFP to MLµ, which preserves (un)satisfiability on arbitrary structures
and on finite structures.

Let φ be any sUNFP formula. Let l be the maximal arity of the relation symbols
occurring in φ, and let p1, . . . , pl be fresh proposition letters. For each unary predicate
P , we introduce a fresh proposition letter pP . Furthermore, we associate to each relation
symbol R a proposition letter pR. Intuitively, the idea of the translation is that, in our
Kripke models, we will encode an R-tuple by a “gadget” consisting of a node satisfying
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pR that has n successors (where n is the arity of the relation R) satisfying p1, . . . , pn,
respectively, each of which has as a successor the corresponding element of the R-tuple.
This is spelled out below in more detail. The syntactic translation [·]∗ from sUNFP to MLµ
is then as follows:

[P (x)]∗ = pP

[X(x)]∗ = X

[φ(x) ∧ ψ(x)]∗ = [φ(x)]∗ ∧ [ψ(x)]∗

[φ(x) ∨ ψ(x)]∗ = [φ(x)]∗ ∨ [ψ(x)]∗

[¬φ(x)]∗ = ¬[φ(x)]∗

[[LFPX,yφ(y)](x)]∗ = µX [φ(y)]∗

[∃y1 . . . yn(R(y1 . . . yn) ∧ yi = x ∧
∧
j 6=i

φj(yj))]
∗ = ♦−(pi ∧ ♦−(pR ∧

∧
j 6=i
♦(pj ∧ ♦[φj(yj)]

∗)))

[∃xφ(x)]∗ = S[φ(x)]∗

For any structure M , we denote by M∗ the Kripke model obtained as follows: every atomic
fact R(a1 . . . an) of M gets replaced by a substructure consisting of a node labeled pR which
has n children, labeled p1, . . . pn, each of which has as its single child ai. Then it is clear
from the construction that (M,a) |= φ(x) if and only if (M∗, a) |= [φ(x)]∗. Conversely,
for every Kripke model M , we define a structure M∗ as follows: the elements of M∗ are
the elements of M . A fact R(a1, . . . , an) is inserted in M∗ whenever in M there is a node
labeled pR and n (not necessarily distinct) children of pR, labeled p1, . . . pn, each of which
has ai as a child.

It is clear from the construction that (M,a) |= [φ(x)]∗ if and only if (M∗, a) |= φ(x).
Altogether this shows that the translation [·]∗ preserves (un)satisfiability, both on ar-

bitrary structures and on finite structures.
(3) If φ has a finite model then by the construction above [φ]∗ has a finite Kripke model.

By Theorem 2.3 this implies that [φ]∗ has a model that is 4l-acyclic. Now notice that the
transformation of M into M∗ described above preserves l-acyclicity up to a factor of 4, and
therefore, φ has a model that is is l-acyclic.

(2) is proved in the same way as (3), using the fact that if [φ]∗ has a model then it has
an acyclic one and that the transformation of M into M∗ preserves acyclicity.

(4) For a sUNFO formula φ, [φ]∗ does not contain any fixpoint and is therefore in ML.
Recall from Section 2.2 that ML has the finite model property. This implies that UNFO also
has the finite model property as the transformation of M into M∗ preserves finiteness.

4.2. Arbitrary UNFP-formulas. We now attack the satisfiability problem for arbitrary
UNFP formulas. We say that a disjunction ψ1 ∨ ψ2 is unary if ψ1 ∨ ψ2 has at most one
free variable. We remind the reader that we use the notation ψ(y) to express that ψ has at
most one free first-order variable y.

Lemma 4.1. Every UNFP sentence is equivalent to a UNFP sentence in UN-normal form
that uses only unary disjunction, and, more precisely, a sentence generated by the following
grammar:

χ(y) ::= ∃z ψ(y, z) | ¬χ(y) | χ1(y) ∨ χ2(y) | [LFPX,z χ(z)](y) (4.1)

where ψ(y, z) is of the form:
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∃z
(
τ(z) ∧ zi = y ∧

∧
j∈{1...n}\{i}

φj(zj)
)

or ∃z
(
τ(z) ∧

∧
j∈{1...n}

φj(zj)
)

(4.2)

where z = z1 . . . zn, i ≤ n, and τ(z) is a conjunction of relational atomic formulas with no
equalities, and φj is generated by the grammar (4.1).

Proof. Concerning (4.1). Clearly we may assume that φ is a sentence as all free variables
can be existentially quantified without affecting the satisfiability and the fact that φ is in
UN-normal form. It is also easy to see that non-unary occurrences of disjunction can be
eliminated at the cost of a possible exponential blowup, using the fact that disjunction
commutes with conjunction and with the existential quantifiers. This is an exponential
transformation, reminiscent of the transformation of propositional formula into disjunctive
normal form, and it does not affect the width of the formula, nor the size of other parameters
that we will define later. This remark will be important during the complexity analysis as the
width will appear in the exponent of the complexity of some forthcoming transformations.

The form (4.2) is straightforward to obtain by eliminating equalities by identifying the
respective quantified variables.

In what follows let φ be any UNFP formula of the form described in Lemma 4.1, for
which we want to test satisfiability.

We denote by subfφ the set of all subformulas ψ(y) of φ that have one free first-order
variable. For any subformula of φ of the form

∃z(τ(z) ∧ zi = y ∧
∧

j∈{1...n}\{i}

φj(zj)) or ∃z(τ(z) ∧
∧

j∈{1...n}

φj(zj)) ,

we call τ(z) a neighborhood type. We denote the set of neighborhood types in φ by ntypesφ.
In the sequel we will sometime view a neighborhood type τ(z) as a structure whose universe
is the set of variables of z and whose relations are the atoms of τ .

We now consider structures that are “stitched together” from copies of the neighborhood
types in ntypesφ.

Definition 4.2. Consider the signature that contains, for each neighborhood type τ(z1, . . . , zn) ∈
ntypesφ an n-ary relation symbol Rτ . A structure in this new signature is called a stitch
diagram. Each stitch diagram M gives rise to a stitching Mx, which is the structure (with
the same domain of M) in the original signature obtained by replacing each Rτ -tuple with
a copy of the neighborhood type τ (viewed as a structure) for all τ ∈ ntypesφ.

At this point, our basic strategy for reducing UNFP to sUNFP should be clear: we will
produce an sUNFP sentence to describe stitch diagrams whose stitchings satisfy the desired
UNFP sentence. In the rest of this section, we work out the details of this strategy.

It is important to realize that, even if a stitch diagram M does not contain an atomic
fact Rτ (a), it may still be the case that Mx |= τ(a). In this case we say that the fact Rτ (a)
is implicit in M . For example, this could happen if M |= Rτ ′(a) and τ is contained in
τ ′. The following claim gives us a handle on when this phenomenon may occur. For any
τ ∈ ntypesφ, we denote by |τ | the number of atomic formulas in τ . We write N ⊆M if N
is a not-necessarily-induced substructure of M .

Lemma 4.3. If Rτ (a) is implicit in a stitch diagram M then there is an N ⊆M containing
at most |τ | many facts, such that Rτ (a) is already implicit in N . Moreover N is connected
whenever τ is.
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Proof. We need at most one fact of M to account for each atom in τ(a).

Let l = maxτ∈ntypesφ |τ |. We will restrict attention to stitch diagrams M that are
l-acyclic. By Item (3) of Proposition 4.1 this is without loss of generality. This implies that
every N ⊆ M containing at most l facts is acyclic. The importance of the above claim,
then, shows in two facts: (i) intuitively, there are finitely many reasons why a fact may
be implicit in M , and (ii) each of these reasons is acyclic, and hence can be described in
sUNFP as we will see.

Lemma 4.4. Let ψ(y,X) be any subformula of φ with at most one free first-order variable.
By induction on the structure of ψ(y) we can construct a sUNFP formula ψ′(y) such that,
for all l-acyclic stitch diagrams M , all a ∈M , and all sets S of elements of M , M |= ψ′(a, S)
iff Mx |= ψ(a, S).

Proof. The inductive translation commutes with all Boolean operators and with the LFP op-
erator. Fix now any τ(z) ∈ ntypesφ with z = z1, . . . , zn, fix an i ≤ n, and fix a sequence
of formulas ψ1, . . . , ψi−1, ψi+1, . . . , ψn ∈ subfφ and assume ψ is of the form:

ψ(y) := ∃z(τ ∧ zi = y ∧
∧

j∈{1...n}\{i}

ψj(zj)) .

(the argument if ψ is of the form ∃z(τ ∧
∧
j∈{i...n} ψj(zj)) is similar. Note that these

two cases also account for the base of the induction, if we let n = 1).
By induction we already have constructed sUNFP formulas ψ′1, . . . , ψ

′
i−1, ψ

′
i+1, . . . , ψ

′
n

corresponding to ψ1, . . . , ψi−1, ψi+1, . . . , ψn.
We are interested in detecting in M how a node in Mx may come to satisfy ψ. We will

construct a sUNFP formula that lists all the cases in M that make this happen. It clearly
suffices to consider one connected component of τ at a time. Hence by Lemma 4.3 it only
depends on a small neighborhood of x in M . The formula will then be essentially a long
disjunction, where each disjunct corresponds to the description of a small neighborhood of
M in which τ is implicitly satisfied by a tuple of nodes satisfying in addition the formulas
ψj . Note that since we assume M to be l-acyclic, these small substructures are all acyclic,
which will make it possible to describe them by an (existential) formula of sUNFP.

More precisely, consider any connected acyclic stitch diagram N containing at most l
facts, and any homomorphism h : τ → Nx. We now construct an sUNFP formula χψ,N,h(y)
that describes N (existentially positively) from the point of view of h(zi), and expressing
also that each h(zj) satisfies ψj .

We shall make use of the following property of acyclic structures. If N is acyclic, i.e.
inc(N) is acyclic, then there is a tree T (N) such that each of its nodes is labeled with a
fact of N satisfying the following properties: (i) each atom of N is the label of exactly one
node of T (N), (ii) if a node u of T (N) is the parent in T (N) of a node v then their label
share at most one element of N , (iii) if two nodes u and v of T (N) share an element then
either they are siblings of one is the parent of the other. In other words, we view N as a
tree T (N) rooted with an atom containing h(zi) and the formula describes that tree from
top to bottom. We construct the desired sUNFP formula by induction on the number of
nodes in T (N).
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When T (N) contains only one node, whose label is Rτ (a1, · · · , am) and, assuming
h(zi) = ai0 , the desired formula is then

∃y Rτ (y) ∧ yi0 = y ∧
∧

j 6=i,h(zj)=aαj

ψ′j(yαj ).

Assume now that T (N) is a tree whose root element is u = Rτ (a1, · · · , am) and with
several subtrees T (N1), T (N2) · · · . By property (ii) of T (N), for all j > 0, the label of u and
the elements of Nj share at most one element, say aβj . For j > 0, let hj be the restriction
of h to the elements of Nj . Finally assume that h(zi) = ai0 . The desired formula χψ,N,h(y)
is then:

∃y
(
Rτ (y) ∧ yi0 = y ∧

∧
j 6=i,h(zj)=aαj

ψ′j(yαj ) ∧
∧
j

χψ,Nj ,hj (yβj )
)

Finally ψ′(y) is the disjunction, for each N and h as above, of the formulas χψ,N,h(y).
It follows from the construction that, for all l-acyclic stitch diagrams M , M |= ψ′ if

and only if Mx |= ψ.

It follows from Lemma 4.4 that if the constructed sUNFO formula ψ′ is satisfiable (in
the finite or in the infinite), by Theorem 2.3 it has a l-acyclic model (in the infinite this
model is actually acyclic) and therefore ψ is satisfiable. Conversely, it is easy to construct,
from a (finite) model M of ψ, a (finite) model M ′ of ψ′. Take for M ′ the structure whose
domain is the domain of M and whose relation Rτ contains all the tuples of M satisfying
τ . Altogether this shows that ψ is satisfiable (on finite structures) if and only if ψ′ is. By
Proposition 4.1 this implies that UNFP is decidable. A careful analysis of the complexity
of the above translation actually yields:

Theorem 4.5. The satisfiability problem for UNFP is in 2ExpTime, both on arbitrary
structures and on finite structures.

Proof. Assume first that the input UNFP formula φ satisfies the simplifying assumptions of
Step 1. Recall that we denote by l the maximal number of conjuncts in neighborhood types,
and by k the width of the formula. Note that the formula χψ,N,h(y) is only polynomially
long in the length of ψ, but for any given ψ, the number of possible structures N and
homomorphisms h can be exponential. More precisely, each structureN to be considered has
at most l facts and domain size at most k·l. Moreover the number of possible atomic relations
is |ntypesφ| = O(|φ|) and each relation has arity at most k and cannot contain twice the

same element. There are at most |φ|O(k·l) many such structures, up to isomorphism. For
each such structure N , since the domain size is at most l ·k, the number of homomorphisms
h : τ → Nx is at most (l · k)k = |φ|O(k). All in all, the number of disjuncts occurring in

ψ′ is bounded by |φ|O(k·l). Lets now consider the size of one such disjunct: as it contains
formulas of the form ψ′i for smaller formulas, we obtain by induction that the size of the

sUNFP formula φ′ is bounded by |φ|O(r·k·l) where r is the nesting depth of existential blocks.
Consider now the general case of a UNFP formula θ. Putting θ in UN-normal form is

linear time. The transformation of θ into a formula φ satisfying the simplifying assumption is
exponential in time but produces a formula whose parameters k, l and r are only polynomial
(actually linear) in the size of θ. Hence, from the previous paragraph, it follows that the

size of the resulting sUNFP formula ψ′ can be bounded by (2|θ|)|θ|
c

for some constant c,
that is exponential in |θ|.
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Hence, we obtain by Proposition 4.1 that the satisfiability problem is in 2-ExpTime,
both on arbitrary structures and on finite structures.

We conclude this section by proving Theorem 3.3 (Finite Model Property of UNFO)
and Theorem 3.4 (Tree-like Model Property of UNFP) using the reductions described above.

Proof of Theorem 3.3. Recall the construction of a sUNFP formula from a UNFP formula
described above, and observe that, when starting with a formula of UNFO, we actually
obtain a formula of sUNFO. Consider now a satisfiable UNFO formula φ. By construction
the resulting sUNFO formula φ′ is satisfiable. By Item (4) of Proposition 4.1 φ′ has a finite
model N . By construction Nx is a finite model of φ.

Proof of Theorem 3.4. Similarly, consider a satisfiable UNFP formula φ. By construction
the resulting sUNFP formula φ′ is satisfiable. By Item (2) of Proposition 4.1 φ′ has an
acyclic model N . By construction this implies that Nx is a model of φ that has tree-width
at most k − 1, where k is the width of φ′.

4.3. Lower bounds and restricted fragments. The complexity result of Theorem 4.5
is tight:

Proposition 4.2. There is a fixed finite signature such that the satisfiability problem for
UNFO is 2 ExpTime-hard, both on arbitrary structures and on finite structures.

Proof. Fix an alternating 2n-space bounded Turing machine M whose word problem is 2-
ExpTime-hard. We may assume that the Turing machine runs in double exponential time
(e.g., by maintaining a counter). Let w be a word in the input alphabet of M . We construct
a formula φw that is satisfiable if and only if M accepts w. Moreover, if φw is satisfiable,
then in fact it is satisfied in some finite tree structure. In this way, we show that the lower
bound holds not only for arbitrary structures, but also for finite trees and for any class
in-between. The formula φw describes an (alternating) run of M starting in the initial state
with w on the tape, and ending in a final configuration.

The run is encoded as a finite tree whose nodes labeled by a unary predicate C represent
configurations of the Turing machine, and where a child-edge between two C-nodes indicates
that the second node represents a successor configuration of the first. Each C-node is
also labeled by a unary predicate Qi indicating the state of the Turing machine in that
configuration. In addition, each C-node is the root of a subtree uniformly of height n, in
which each non-leaf node has a child satisfying P0 and a child satisfying P1 (and no children
satisfying both). We can associate to every leaf node of this subtree a number between 0
and 2n, determined by whether each of its n ancestors (the node itself included) satisfies
P0 or P1. Thus, each leaf node of the subtree represents a tape cell, and, using further
unary predicates, we can encode at each tape cell the current content of that tape cell, and
whether the head is currently located there. See Figure 2. All in all, the schema of the
structure consists of a binary relation R, unary relations C,P0, P1, a unary relation Qi for
each state of the Turing machine, a unary relation for each element of the alphabet, and a
unary relation H to represent the head position.

The construction of the formula φw is based on the above encoding of runs as structures.
More precisely, φw is the conjunction of
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Figure 2: Encoding of a run of the alternating Turing machine

• A formula φ1 expressing that the root node is labeled C, and that each C-node is
the root of a subtree uniformly of height n in which every non-leaf node has a child
satisfying P0 and a child satisfying P1 (and no children satisfying both).
• A formula φ2 expressing that, whenever two leaf nodes represent the same tape cell

in the same configuration, then they agree on all unary predicates (note that, in
UNFO, we cannot force that there is only one node representing each tape cell in a
given configuration, because we cannot express inequality).
• A formula φ3 expressing that, whenever two leaf nodes represent the same tape cell

in the successor configuration, and this tape cell is not the head position, then the
two nodes agree on all unary predicates.
• A formula φ4 encoding the transition function of the Turing machine (i.e., whenever,

in some configuration, the Turing machine is in a ∃-state (∀-state), and its head
reading a particular letter, then for some (respectively, for every) possible transition
there exists a corresponding successor configuration).
• A formula φ5 expressing that, in the initial (root) configuration, the tape content

is w and the Turing machine is in the initial head position and state; and all final
configurations (i.e., C-nodes without C-successors) are accepting configurations.

We omit a detailed definition of the formulas in question, which is tedious but not
difficult. For example, if we use x ↑n↓m y as a shorthand for a UNFO formula stating that
there is a path going n steps up in a tree from x and then m steps down reaching y, if we

use leaf(x) as a shorthand for ¬∃yR(x, y), and if we use P ↑i1 (x) as a shorthand for a UNFO
formula that x has an i step ancestor satisfying P1, then φ2 can be expressed as follows (for
every unary predicate A):

¬∃xy(leaf(x) ∧ leaf(y) ∧ x ↑n↓n y ∧
∧

i=0...n−1

(P ↑i1 (x)↔ P ↑i1 (y)) ∧A(x) ∧ ¬A(y))

For φ3 and φ4 we make use of the following UNFO formula expressing the fact that x and
y denote the same tape position in successive configurations:

leaf(x) ∧ leaf(y) ∧ (x ↑n+1↓n+2 y) ∧
∧
i

(P ↑i1 (x)↔ P ↑i1 (y))

The rest of the construction is straightforward.
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The above proof actually established the lower bound for arbitrary structures, for finite
trees, and on any class in-between. Moreover, the proof only uses formulas that have
negation depth 2. For formulas of negation depth 1, the satisfiability problem turns out to
have a lower complexity.

Theorem 4.3. The satisfiability problem for UNFO formulas of negation depth 1 is NPNP-
complete (even for formulas containing unary predicates only).

The proof of Theorem 4.3 is postponed until Section 5 as it makes use of results re-
garding the complexity of model checking which are obtained there.

5. Model Checking

In this section we study the complexity of the model-checking problem for UNFO and
UNFP. The model-checking problem takes as input a structure M and a sentence φ, and
it asks whether φ is true in M . We focus here on the combined complexity of the model-
checking problem, where the input consists of a sentence and a structure. It was already
observed in [16] that the model checking problem for UNFO (there called CRA(mon¬)) is in

PNP. Here, we show that the problem is in fact PNP[O(log2 n)]-complete, and that the model
checking problem for UNFP is in NPNP ∩ coNPNP. We refer to the reader to Section 2.3
for the definition of the relevant complexity classes.

5.1. Model checking for UNFO. We start by showing that the model checking problem

for UNFO is PNP[O(log2 n)]-complete. We then show that bounding the nesting of nega-
tions lowers the complexity to PNP[O(logn)]-complete and that allowing subformula-sharing
increases the complexity to PNP-complete.

In order to give a better intuition about the upper bound algorithms we start by
presenting a naive evaluation algorithm. Recall that the negation depth of a UNFO formula
is the maximal nesting depth of negations in its syntactic tree. Let φ(x) be a formula of
UNFO of negation depth l and M a model. Testing for an element u ∈ dom(M), whether
M |= φ(u), can be done by induction on l using the following bottom-up strategy.

If l = 0 then φ is existential and we can test whether φ holds using one call to an
NP-oracle (the oracle guesses witnesses fror the existentially quantified variables and then
checks whether the remaining quantifier-free part of the formula holds).

If l 6= 0, then, for all elements v of M , and all maximal subformulas ψ(y) of φ that
have negation depth l − 1, we test whether M |= ψ(v) using the induction on l. All these
tests can be performed independently of each other, and hence (by induction hypothesis)
we need only l − 1 parallel calls to the NP-oracle. Based on the outcomes of these calls,
we compute a new structure M ′ by expanding M with new unary predicates recording for
each element of M which of the maximal subformulas ψ(y) of negation depth l − 1 hold
at that element. We also transform φ into φ′ replacing ¬ψ(y) with the appropriate newly
introduced unary predicate. It remains to evaluate φ′ on M ′ using the same algorithm as
in the base case where l = 0.

Altogether this yields an algorithm that makes l parallel calls to an NP-oracle. When
l is constant this implies that the total process can be made in PNP[O(logn)] and this gives
the upper bound of Theorem 5.2 below. When l is at most log |φ| this implies that the total

process can be made in PNP[O(log2 n)] (recall the discussion in Section 2.3) and the upper
bound of Theorem 5.1 essentially reduces the general case to this case.
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Theorem 5.1. The model checking problem for UNFO is PNP[O(log2 n)]-complete.

Proof. For the lower bound, we give a reduction from LEX2(SAT): given a Boolean for-
mula φ(x1....xn), is xdlog2(n)e true in the lexicographically maximal satisfying assignment?

Let φ(x1, . . . , xn) be a given Boolean formula, and let d = log(n) (we may assume that n
is a power of 2). We are interested in knowing whether xd2 is set to 1 in the lexicographically
maximal satisfying assignment of φ. For this we construct, in time polynomial in n, a model
Mn and a formula θn such that Mn |= θn iff xd2 is set to 1 in the lexicographically maximal
satisfying assignment of φ.

Let Mn be the structure containing n elements, a1, . . . , an, together with two elements,
1, 0. The elements 1, 0 represents truth and falsity and are distinguished from the elements
a1, . . . , an using a unary predicate Q that holds only for 0, 1. Each of the elements a1, . . . , an
of Mn represents a bit-string of length d encoded using d unary predicates, P1, · · · , Pd, with
the intended meaning that Pi(aj) holds in Mn iff the i-th bit of the bit-string represented
by aj is true. Mn is such that a1, · · · , an code all possible bit-strings of length d.

Below, as a suggestive notation, we will write xi for variables intended to range over
truth and falsity, and yi for variables intended to range over the n elements of Mn that
represent length-d bit-strings. Hence ∃x ψ should be understood as ∃x Q(x) ∧ ψ and ∃y ψ
as ∃y ¬Q(y) ∧ ψ.

By φ̂ we denote the UNFO formula obtained from φ by replacing, for k ≤ d and

j ≤ d, the variable x(k−1)d+j by Pj(yk). Note that the free variables of φ̂ are y1, . . . , yd and
xd2+1, . . . , xn. As y1, . . . , yd will range over bit strings of length d, we are interested in the
last bit of yd, i.e. Pd(yd).

We define, by induction on i, a formula χi(y) that is true for an element aj if the
length-d bit-string represented by aj describes the bits x(i−1)d+1 · · ·x(i−1)d+d of the lexico-
graphically maximal satisfying assignment of φ. It is convenient to define simultaneously
another formula, ψi(y), which is true for an element aj if the length-d bit-string represented
by aj describes the bits x(j−1)d+1 · · ·x(j−1)d+d in the some satisfying assignment whose
prefix up to x(j−1)d is the same as the lexicographically maximal satisfying assignment of
φ.

ψi(y) = ∃y1 . . . yd xd2+1 . . . xn
(
φ̂ ∧ yi = y ∧

∧
j<i

χj(yj)
)

χi(y) = ψi(y) ∧ ¬∃y′(y′ > y ∧ ψi(y′))
where y′ > y is shorthand for a formula expressing that the bit-string denoted by y′ is
lexicographically greater than the bit-string denoted by y:∨

i<d

(
(
∧
j<i

Pj(y)↔ Pj(y
′)) ∧ ¬Pi(y) ∧ Pi(y′)

)
.

Finally, take

θn = ∃y1 . . . yd xd2+1 . . . xn (φ̂ ∧
∧
i≤d

(χi(yi)) ∧ Pd(yd)).

Then θn is true inMn if and only if xd2 is true in the lexicographically maximal satisfying
assignment of φ as required. Moreover θn is indeed a formula of UNFO. Finally notice that
each χi has a size exponential in i but they are used only for i ≤ d = log n. Hence θn has
polynomial size and can be computed in time polynomial in n.
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Figure 3: A block in a TB-tree with n children

We now turn to the upper bound. Recall the algorithm presented in the preamble
of this section. If the syntactic tree of the formula would be a balanced binary tree then
its negation depth l would be bounded by the log of the size of the formula and we would
be done. The idea is to evaluate the formula by first making its syntactic tree balanced.
This trick has already been applied in the context of branching time model checking using
“Tree Block Satisfaction” [42]. Instead of redoing the trick, we reduce the model checking
problem of UNFO to this one.

We first present “Tree Block Satisfaction”, called TB(SAT)1×M in [42]. In fact, for
present purposes, it suffices to consider a restricted version of the problem TB(SAT)1×M ,
which we will refer to simply as TB(SAT) in what follows. We will describe here this
restricted version. A TB-tree of width k ≥ 1 is a tree consisting of blocks, where each block
is, intuitively, a kind of Boolean circuit having k output gates and having k input gates for
each of its children. See Figure 3. The ith output of a block is defined in terms of the input
gates by means of an existentially quantified Boolean formula χi of the form

∃b1c1 . . . bmcmd
(
c1 = inputi1(b1) ∧ · · · ∧ cm = inputim(bm)) ∧ ψ

)
where each bj is a tuple of log k Boolean variables, encoding a number [[bj ]] from 1 to k,

and inputij (bj) represents the value of the [[bj ]]-th output bit of the ij-th child block (which

is denoted by y
(ij)

[[bj ]]
in Figure 3) and ψ is a Boolean formula using any of the existentially

quantified Boolean variables.
TB(SAT) is then the problem, given a TB-tree and a truth assignment for all inputs

of the blocks that are leaves of the TB-tree, whether the first output bit of the root block
evaluates to true. It was shown in [42, corollary 3.4] that TB(SAT) can be decided in

PNP[O(log2 n)].
Given a formula φ of UNFO and a structure N , we construct in polynomial time a

TB-tree that is a yes instance of TB(SAT) iff N |= φ. The reduction is simple and reflects
the naive evaluation of φ on N .

The construction of the TB-tree is by induction on φ. The width k of the TB-tree is
the size of the domain of N . At each step of the induction the block of the root of the
TB-tree is associated to a subformula of φ having one free variable, and is such that its
output gate i is set to 1 iff the i-th element of N makes the associated subformula true.
Altogether the shape of the TB-tree resemble the one of the syntactic tree of the formula. In
the QBF formulas constructed below we denote by b a vector of log k variables and [[b]] = i
is a shorthand for the Boolean formula stating that b represents the binary encoding of i.
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Let φ(x) be any formula in one free variable.

Case 1: φ(x) is of the form ¬ψ(x). By induction hypothesis, we have a TB-tree for ψ(x)
such that the outputs from the root block indicate which elements of N satisfy ψ(x). We
extend this TB-tree with one extra block on top, in which the i-th output gate is defined
by the formula

∃b, c (c = input(b) ∧ [[b]] = i ∧ c = 0).

This formula sets its output to 1 iff its input i is set to 0, hence preserves the inductive
hypothesis as required.

Case 2: φ(x) is built up from atomic formulas and formulas in one free variable us-
ing conjunction and disjunction and existential quantification. Let y1, . . . , yn be the set
of all existentially quantified variables in φ. Let ψ1(z1) . . . , ψm(zm) be the maximal sub-
formulas in one free variable occurring in φ, where z1 . . . zm are among x, y1, . . . , yn. We
may assume without loss of generality that z1, . . . , zm are the first m variables from the
sequence y1, . . . , yn (in particular that z1, . . . , zm are distinct variables) because if not, one
can always introduce another existentially quantifier variable yn+1 and replace ψj(zj) by
(ψj(yn+1)∧ yn+1 = zj). By induction, we have a TB-block Tj for each ψj(yj) such that the
outputs from the root block of Tj indicate which elements of N satisfy ψj(yj). The TB-tree
for φ will consist of a new root block whose children are the roots of each of the Tj . The
definition of the i-th output gate is

∃b1, c1, . . . , bm, cm, bm+1, . . . , bn
( ∧
j≤m

(cj = inputj(bj)) ∧ χN
)

where χN is obtained from φ by replacing each subformula of the form ψl(yl) by cl, each
subformula of the form x = yl by bl = i, each subformula of the form yl = yl′ by bl = bl′
and each subformula of the form R(yl1 , . . . , ylκ) by a Boolean formula listing all tuples in
the relation RN : ∨

([[d1]],...,[[dκ]])∈RN
(bl1 = d1 ∧ . . . ∧ blκ = dκ)

Note that Case 2 covers the base case when φ(x) has no subformula with one free
variable.

It is now easy to check that the TB-tree constructed by the above induction has the
desired property and can be computed in polynomial time. This concludes the proof of the
Theorem.

As mentioned earlier, restricting the nesting of negations gives a lower complexity.

Theorem 5.2. For all l > 0, the complexity of the model-checking problem for UNFO
formula of negation depth bounded by l is PNP[O(logn)]-complete. The lower bound holds
even for a fixed structure.

Proof. For the lower bound we use the equivalent characterization of PNP[O(logn)] as the
class of problems that are PTime truth-table reducible to NP. As 3-colorability is NP-
complete, every problem in PNP[O(logn)] is PTime truth-table reducible to 3-colorability.
Recall from Section 2.3 that a PTime truth-table reduction from a given problem to 3-
colorability is a PTime algorithm that, given an instance of the problem, produces a set
y1, · · · , yn of inputs to 3-colorability, together with a Boolean formula φ(x1, · · · , xn), such
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that the input is a yes-instance iff φ evaluates to true after replacing each xi by 1 if yi is
3-colorable and 0 otherwise.

We show that we can reduce any problem that is PTime truth-table reducible to 3-
colorability to the model checking problem for UNFO formula of negation depth 1. For
this, fix a problem P that is PTime truth-table reducible to 3-colorability. Let w be an
input string for P . We construct from w, in time polynomial in |w|, an instance M and a
formula φw such that M |= φw iff w ∈ P . As M will be independent of w and φw will be in

UNFO and with nesting depth 1, this will show PNP[O(logn)]-hardness.
By assumption, there is a polynomial time algorithm that produces from w a tuple

〈G1, · · · , Gn, C(x1, . . . , xn)〉 such that w ∈ P iff C(x1, . . . , xn) evaluates to 1 after replacing
each of the xi by 1 iff Gi is 3 colorable.

For each graph G, let qG be the canonical conjunctive query of G, that is, the existen-
tially quantified conjunction of relational atoms, where there is an existentially quantified
variable for each node of G, and a relational atom for each edge of G. Note that, since qG
does not use negation, it belongs to UNFO. Let M be the structure representing a clique of
size 3. It is well known that M |= qG iff G is 3-colorable. Let φw be the formula constructed
from C by replacing each occurrence of xi with the sentence qGi . It is immediate to verify
that the resulting formula is in UNFO, has negation depth 1 and satisfies the properties
required for the reduction. Moreover φw can be computed in time polynomial in |w| as this
was the case for 〈G1, · · · , Gn, C(x1, . . . , xn)〉. This completes the proof for the lower-bound.

The upper bound is obtained using the naive evaluation of the formula presented in
the preamble of this section as l is treated as a constant.

We now consider formalism equivalent in expressive power to UNFO but with a more
succinct syntax that allows the sharing of subformulas. Let us denote by UNFO(let) the
extension of UNFO with Boolean variables b1, b2, . . . (ranging over truth values) that can
be used as atomic formulas, and with a new construct let b = φ in ψ, where b is a Boolean
variable, φ is a sentence, i.e., a formula without free first-order variables but possibly with
free Boolean variables (excluding b itself), and ψ is a formula that may use all the Boolean
variables, including b. We only consider UNFO(let) formulas without free Boolean variables,
i.e., in which each occurring Boolean variable is bound by a let operator. The semantics of
UNFO(let) formulas is as expected: when the valuation of the Boolean free variables of φ
is known, we can derive a valuation for b using b = φ and then we can evaluate ψ.

Example 5.3. A typical formula of UNFO(let) looks like this:

let b = ψ in ∃x1, . . . xn
(
b = 0 ∧ ψ1(x)

)
∨
(
b = 1 ∧ ψ2(x)

)
It is equivalent to the UNFO formula:

∃x1, . . . xn
(
¬ψ ∧ ψ1(x)

)
∨
(
ψ ∧ ψ2(x)

)
The UNFO(let) model checking problem is the problem of evaluating a given UNFO(let)

formula without free Boolean variables in a given structure.

Theorem 5.4. The UNFO(let) model-checking problem is PNP-complete. The lower bound
holds even for a fixed structure.

Proof. For the upper bound, we use a simple bottom-up evaluation strategy. Let φ be any
UNFO(let) formula. We may assume without loss of generality that each let-operator in φ
binds a different Boolean variable. We assign a rank to each Boolean variable occurring in
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φ: a Boolean variable b has rank 0 if its definition (i.e., the sentence to which it is bound by
its let-operator in φ) does not contain any Boolean variables (free or bound), and b has rank
k+ 1 if its definition only contains Boolean variables of rank at most k. Using Theorem 5.1
repeatedly as an oracle, we can compute in polynomial time a truth value for each Boolean
variable. Finally, by replacing all Boolean variables in φ by their truth value and applying
Theorem 5.1 once more, we find out whether φ is true in the structure. Altogether this
yields a PNP algorithm.

For the lower bound, we make use of the problem LEX(SAT): given a satisfiable
Boolean formula φ(x1, . . . , xn), test if the value of xn is 1 in the lexicographically maximal
solution (cf. Section 2.3). Given a satisfiable Boolean formula φ(x1, . . . , xn) we construct
in time polynomial in n a model M and a UNFO(let) formula ψ such that M |= ψ iff xn is
1 in the lexicographically maximal solution of φ.

The idea of the reduction will be to construct the lexicographically maximal solution
B1 · · ·Bn of φ bit by bit from B1 to Bn using the following algorithm: B1 is true iff
φ(>, x1, . . . , xn) is satisfiable and if B1 · · ·Bi have already been computed then Bi+1 is true
iff φ(B1, · · · , Bi,>, xi+1, · · · , xn) is satisfiable.

Specifically, our reduction uses a fixed structure M with two elements, one of which
is labeled by a unary predicate T and intuitively represents true while the other element

represents falsity. We let φ̂ be the UNFO formula obtained from φ by replacing each positive
occurrence of the variable xi in φ by the formula T (xi) and each occurrence of ¬xi in φ by
the formula ¬T (xi).

We construct by induction sentences ψ1, . . . , ψn, where each ψi is true in M if and only
if Bi is 1. By definition B1 = 1 iff φ has an satisfiable assignment setting x1 to true. This
can be expressed using the formula:

ψ1 := ∃x1 . . . xn (φ̂(x1, . . . .xn) ∧ T (x1)) ,

By definition the following UNFO formula, obtained by induction, expresses that Bi is 1:

ψi := ∃x1 . . . xn (φ̂(x1, . . . , xn) ∧ (
∧
j<i

T (xj)↔ ψj) ∧ T (xi)).

Notice that the size of ψi is exponential in i and therefore, even though ψn does express the
truth value of Bn, this would not give a polynomial time reduction. However, using the let
construction of UNFO(let) we can derive the same formulas more succinctly.

Let ψ′i be the formula (with b1, . . . , bi−1 as free Boolean variables):

∃x1, . . . xn(φ̂(x1, . . . , xn) ∧ (
∧
j<i

T (xj)↔ bj) ∧ T (xi)) .

Then we set ψ be the UNFO(let) formula:

ψ := let b1 = ψ′1 in

let b2 = ψ′2 in

. . .

let bn−1 = ψ′n−1 in ψ′n

Then notice that ψ has all the desired properties: it is in UNFO(let), it can be computed
in time polynomial in n and it verifies that M |= ψ iff Bn = 1. This concludes the proof.
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Satisfiability for UNFO formulas of negation depth 1. We are now also in a position to
give the proof of Theorem 4.3, which states that testing satisfiability for UNFO formulas of
negation depth 1 is NPNP-complete.

Proof of Theorem 4.3. Let ψ be any UNFO formula of negation depth 1, and let χ be the
first-order formula obtained by bringing φ into prenex normal form. Note that χ is, in
general, no longer a UNFO formula. Since ψ does not contain nested negations or universal
quantifiers, χ is of the form ∃x∀yχ′, where χ′ is a quantifier-free formula, which we may
assume to be in negation-normal form. In addition, we know that the variables y can only
occur in negative atomic subformulas of χ. In other words, all positive atomic subformulas
of χ use only variables in x. We claim that χ, and hence, ψ, has a “polynomial size model
property”: suppose M |= ∀yφ(a, y). Let M ′ be the submodel of M containing only the
elements a and containing only the (polynomially many) facts about a that occur positively
in φ(a, y). It is easy to see that M ′ still satisfies ∀yφ(a, y). The existence of a model of φ
can now be tested by guessing a structure of polynomial size and then applying the model
checking procedure to verify whether it is a model or not. Using Theorem 5.2, this implies
that the satisfiability problem for UNFO-formulas of negation depth 1 is in NPNP.

Hardness is by reduction from the problem of evaluating QBF formulas of the form

φ := ∃x∀yψ
with x = x1 . . . xn and y = y1 . . . ym which is known to be complete for NPNP. We will
construct in PTime a UNFO formula of negation depth 1 that is satisfiable if and only if φ
evaluates to true. Take the vocabulary consisting of unary predicates T and F plus unary
predicates P1, . . . , Pn corresponding to the existentially quantified variable x. The UNFO
formula is defined as the conjunction

∃x.T (x) ∧ ∃x.F (x) ∧ ¬∃x.(T (x) ∧ F (x))

∧
∧
i≤n
∃x(Pi(x) ∧ (T (x) ∨ F (x))) ∧ ¬(∃x.(Pi(x) ∧ T (x)) ∧ ∃x(Pi(x) ∧ F (x)))

∧ ¬∃y(
∧
i

(T (yi) ∨ F (yi)) ∧ −φ)

where −φ is obtained by negating φ, then pushing the negations down to the atoms, and
then replacing yi by T (yi), replacing ¬yi by F (yi), replacing xi by ∃x(Pi(x) ∧ T (x)), and
replacing ¬xi by ∃x(Pi(x) ∧ F (x)).

It is straightforward to verify that this UNFO formula is satisfiable if and only if φ
evaluates to true, and that it has negation depth 1.

5.2. Model checking for UNFP. We now turn to the complexity of the model checking
of UNFP. It is convenient, at this point, to treat the greatest-fixpoint operator (GFP) as
a primitive operator, instead of as a defined connective. This way we can use dualization
in order to assume without loss of generality that all formulas of UNFP are such that
every occurrence of a fixpoint operator in φ is a positive occurrence (i.e., lies under an
even number of negations). We also assume without loss of generality that each fixpoint
operator binds a different variable, so that we can speak of the fixpoint definition of a
variable X, by which we mean the formula directly below the fixpoint operator binding X.
The dependency graph of fixpoint variables in φ is the directed graph whose nodes are the
fixpoint variables in φ and where there is an edge from X to Y if Y occurs (free or bound)
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inside the fixpoint definition of X. We say that a UNFP formula is alternation free if the
dependency graph does not have a cycle containing both a least fixpoint variable and a
greatest fixpoint variable [37].

We first consider the alternation-free fragment.

Theorem 5.5. The model-checking problem for the alternation-free fragment of UNFP is
PNP-complete.

Proof. Recall that we assume the formulas are such that every occurrence of a fixpoint
operator in φ is a positive occurrence (i.e., lies under an even number of negations).

We first prove the claim for formulas containing only LFP operators (no GFP opera-
tors). Let φ be any UNFP formula containing only least fixpoint operators and M be a
model. Let X = X1, . . . , Xn be the fixpoint variables occurring in φ (we assume each fix-
point operator binds a different variable). Initially, we assign each Xi to be the empty set.
We then repeatedly consider each fixpoint variable Xi and evaluate its fixpoint definition
βi, viewed as a UNFO formula by using the current choice of sets X to interpret the free
set variables of βi as well as the fixpoint subformulas of βi, and check if new elements are
derived that do not already belong to the set Xi. If this is the case, we add the elements
in question to Xi. We repeat this procedure until no new elements are derived. It is well
known that the resulting sets we end up with are the least fixpoint solutions for the fix-
point subformulas of φ. Furthermore, the number of iterations is polynomial, since, in each
iteration, at least one element of M gets added to on of the sets, and each iteration can be

performed in PNP[O(log2 n)] by Theorem 5.1.
By dualization, we get the same result for formulas containing only greatest fixpoint

operators. The result is then easily lifted to the full alternation free fragment by induction
on the alternation rank of the fixpoint variable in question, where the alternation rank is
defined as the (finite) maximal number of fixpoint alternations on an outgoing path from
that variable in the dependency graph: we simply perform a bottom up evaluation based
on the syntactic tree defining φ, coloring each node of M with the fixpoint formulas that it
satisfies using the above algorithms.

For the lower bound, we reduce from LEX(SAT). Let φ(x1, . . . , xn) be any Boolean
formula that is the input of the LEX(SAT) problem. We may assume without loss of
generality that φ is in negation normal form. We construct a structure M , whose domain
is {t1, . . . , tn, f1, . . . , fn}, and with unary predicates T and V1, . . . , Vn, such that TM =
{t1, . . . , tn}, and VM

i = {ti, fi}. Intuitively, each element ti represents the eventuality
that the value of xi in the lexicographically maximal satisfying assignment is 1, while fi
represents the eventuality that the value of xi in the lexicographically maximal satisfying
assignment is 0. Using a fixpoint formula, we will compute the set of all elements that are
actually “true” in the lexicographically maximal satisfying assignment. It then suffices only
to check whether tn belongs to this set.

Let φ′ be obtained from φ by replacing every occurrence of a Boolean variable xi by
T (xi). Let θ be the formula ∃z(Vn(z) ∧ T (z) ∧ [LFPX,xψ](z)) where ψ is the disjunction of
all formulas of the following forms, for all 1 ≤ k ≤ n:

Vk(x) ∧ T (x) ∧ ∃x1, . . . , xn(
∧

i=1...n

Vi(xi) ∧ φ′ ∧X(x1) ∧ · · · ∧X(xk−1) ∧ T (xk))

and

Vk(x) ∧ F (x) ∧ ¬∃x1, . . . , xn(
∧

i=1...n

Vi(xi) ∧ φ′ ∧X(x1) ∧ · · · ∧X(xk−1) ∧ T (xk))
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It is easy to see from the construction that θ is true in M if and only if xn = 1 in the
lexicographically maximal satisfying assignment for φ.

We now turn to the general case.

Theorem 5.6. The UNFP model checking problem is in NPNP ∩ coNPNP and PNP-hard.

Proof. The lower bound is immediate from Theorem 5.5. We prove here the upper bound.
Since UNFP is closed under unary negation, it is enough to show that the model-

checking problem is in NPNP. We show a slightly stronger result proving that, for every
formula in at most one free variable, we can decide in NPNP whether a given element of a
given structure makes the formula true. The algorithm we describe below is inspired by an
idea from [45] to reduce the problem to the case of formulas that only contain least fixpoint
operators (and no greatest fixpoint operators) by guessing a set for each greatest fixpoint
operator.

In the sequel we will only consider formulas φ with one free first-order variable and by
“evaluating” this formula over M , intuitively, we mean computing, non-deterministically, a
set of elements of M making the formula true.

Recall from the beginning of the section that we consider UNFO-formula in which we
allow both LFP and GFP-operators, and we require that all occurrences of fixpoint operators
are positive. Equivalently, we view each UNFP formula as being defined inductively by the
grammar:

φ ::= α(X,ψ, x)

ψ ::= [LFPY,y φ(Y,X, y)](x) | [GFPY,y φ(Y,X, y)](x)

where α is a UNFO formula with one free first-order variable, possibly several monadic
second-order variables, and possibly using as atoms fixpoint subformulas ψ(z) defined by
mutual induction using the above grammar, such that X and ψ occur only positively (under
an even number of negations) in α.

Given a formula of the form α(X,ψ, x) we denote by α̂ the UNFO formula constructed
from α by replacing each nested fixpoint subformula ψ(z) by Y (z) where Y is the variable
defined by ψ. Hence α̂ has x as unique first-order free variable and X and Y as monadic
second-order free variables. The positivity condition stated above implies that α̂ is mono-
tonic with respect to X and Y .

Given a structureM , sets U of elements ofM and a UNFO formula φ(X,x) we denote by
eval(φ, (M,U)) the subset of the domain of M computed by induction on the syntactic rep-
resentation of φ using the following algorithm where, as a convenient notation, we also write
eval(φ, (M,U)) for φ = φ1, . . . , φn, to denote the tuple (eval(φ1, (M,U)), . . . , eval(φn, (M,U))):

eval(φ, (M,U))

• Case φ is of the form α(X,ψ, x)
(1) Compute V := eval(ψ, (M,U)) by induction
(2) Evaluate α̂ on (M,U, V ), using the algorithm of Theorem 5.1

• Case φ is of the form [LFPY,y α(Y,X, ψ, y)](x)
(1) set S := ∅
(2) Compute V := eval(ψ, (M,U, S)) by induction
(3) Compute S′ := eval(α̂, (M,U, V , S)) by induction
(4) If S′ = S return S otherwise go to Step 2 with S := S ∪ S′
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• Case φ is of the form [GFPY,y α(Y,X, ψ, y)](x)
(1) guess T
(2) Compute V := eval(ψ, (M,U, T )) by induction
(3) Compute T ′ := eval(α̂, (M,U, V , T )) by induction
(4) If T ′ = T return T otherwise abort

It should be clear that the algorithm is in NPNP: by monotonicity it makes only poly-
nomially many inductive calls, and the base case corresponds to the evaluation of a UNFO

formula and is therefore in PNP[O(log2 n)] by Theorem 5.1.
It remains to show that this result returns the correct answers. Recall the semantics

of fixpoints as described in Section 2. It is easy to see that the algorithm below computes
exactly the correct results according to this semantics.

eval∗(φ, (M,U))

• Case φ is of the form α(X,ψ, x)
(1) Compute V := eval(ψ, (M,U)) by induction
(2) Evaluate α̂ on (M,U, V )

• Case φ is of the form [LFPY,y α(Y,X, ψ, y)](x)
(1) set S := ∅
(2) Compute V := eval(ψ, (M,U, S)) by induction
(3) Compute S′ := eval(α̂, (M,U, V , S)) by induction
(4) If S′ = S return S otherwise go to Step 2 with S := S ∪ S′

• Case φ is of the form [GFPY,y α(Y,X, ψ, y)](x)
(1) set T = dom(M)
(2) Compute V := eval(ψ, (M,U, T )) by induction
(3) Compute T ′ := eval(α̂, (M,U, V , T )) by induction
(4) If T ′ = T return T otherwise go to Step 2 with T := T ∩ T ′

Let’s denote by eval∗(φ, (M,U)) the set computed by this second algorithm, i.e. the stan-
dard algorithm for fixpoint formulas. Notice that it differs with the previous algorithm
only in the case of greatest fixpoints. The fact that eval(φ, (M,U)) = eval∗(φ, (M,U)) is a
consequence of the following claim.

Claim 8. For all M,U and φ we have eval(φ, (M,U)) ⊆ eval∗(φ, (M,U)). Moreover, if eval
always guess the correct greatest fixpoint then we have quality.

Proof. This is a simple induction on φ. For Case (1) we obtain by induction that V ⊆ V ∗ and
the result follows immediately by the monotonicity assumption on α̂. Similarly, for Case (2),
we obtain that each stage of the computation of the least fixpoint by eval is included in the
same stage by eval∗. The inclusion of the respective least fixpoints follows. For Case (3)

we obtain again by induction that V ⊆ V
∗

and therefore that T ⊆ eval(α̂, (M,U, V
∗
, T ))

by the monotonicity assumption on α̂. If we denote by T ∗ the greatest fixpoint of α̂ on
(M,U, V

∗
), by Knaster-Tarski Theorem, this implies that T ⊆ T ∗ as desired.

The second part of the claim is immediate.

This concludes the proof of Theorem 5.6.
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6. Trees

In this section, we study the expressive power and computational complexity of UNFO
and UNFP on trees. We consider three types of trees: binary trees (with two deterministic
successor relations child1, child2, and any number of unary predicates), unranked trees (with
a single child relation, and any number of unary predicates), and XML trees (that is, trees
in which nodes can have any number of children and the children of each node are ordered,
and where the signature consists of the horizontal and vertical successor and order relations,
and any number of unary predicates). We will consider finite trees, but all proofs generalize
to infinite trees.

On XML trees with all axes, it is known that Core XPath = FO2 for unary queries
while Core XPath = UCQ-over-FO2-unary-predicates for binary queries [35]. It turns out
that UNFO has the same expressive power as Core XPath, both for unary and for binary
queries (cf. [16], where UNFO is called CRA(mon¬)) and therefore UNFO characterizes
Core XPath in a more uniform way. In particular, since the XML tree languages definable
in Core XPath are precisely the ones definable in FO2 [35], this implies that UNFO defines
the same XML tree languages as FO2. The same holds already for UNFO2.

In this section, we further analyze the expressive power and complexity of UNFO and
UNFP on trees.

The following observation will be helpful. We say that two unranked trees are root-to-
root bisimilar if the roots of the two trees are bisimilar.

Lemma 6.1. Two unranked trees are UN-bisimilar if and only if they are root-to-root
bisimilar.

Proof. It is clear that every UN-bisimulation is a root-to-root bisimulation. Conversely
suppose t, t′ are root-to-root bisimilar trees, with roots r and r′. For any node a of t, we
denote by deptht(a) the distance from r to a, and we denote by by ta the subtree of t rooted
at a. Similar notations apply to t′. Let Z consist of all pairs (a, b) of nodes from t and
t′, respectively, such that (i) deptht(a) = deptht′(b) = k ≥ 0, and (ii) for each i ≤ k, the
subtree of t rooted at the i-th ancestor of a and the subtree of t′ rooted at the i-th ancestor
of b are root-to-root bisimilar.

We claim that Z is a UN-bisimulation. Let (a, b) ∈ Z. We show how to construct a
homomorphism h from t to t′ that maps a to b. The other direction is established in the
same way.

The homomorphism h is constructed as follows: first, the root-to-root bisimulation
between ta and t′b induces a homomorphism from ta to t′b. If a = r and b = r′, we are done.
Otherwise, let a′ be the parent of a and let b′ be the parent of b. Then the root-to-root
bisimulation between ta′ and t′b′ induces a homomorphism from ta′ to t′b′ , which, we may
assume, extends the previously constructed homomorphism from ta to t′b. Repeating the
same argument, after k many steps, we obtain a homomorphism from t to t′ that maps a
to b, and we are done.

We start with UNFP. Recall that UNFP is included into MSO. Hence, over all kind
of trees, UNFP sentences only define regular languages (that is, MSO-definable classes of
trees). The converse is also true:

Theorem 6.1. The following hold both over the class of finite trees and over the class of
finite and infinite trees:

(1) On binary trees, UNFP defines the regular languages.
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(2) On XML trees, UNFP defines the regular languages.
(3) On unranked trees, UNFP defines the root-to-root bisimulation invariant regular

languages.

The same hold for UNFP2.

Proof. It is known that all the three statements hold for the µ-calculus [31] (as well as
for monadic Datalog [23]). Hence, as the µ-calculus is a fragment of UNFP this shows
the first two claims and one direction of the third claim. Moreover, as every formula of
the µ-calculus is equivalent to a UNFP2 sentence, UNFP collapses to UNFP2 over trees.
Clearly, UNFP can only define regular languages that are invariant under UN-bisimulation.
Hence the other direction of the third claim follows from Lemma 6.1.

We now turn to UNFO. The k-neighborhood of a node of a tree is the subtree rooted
at that node, up to depth k. A binary tree language is LT (Locally Testable) if membership
into this language is determined by the presence or absence of isomorphism-types of k-
neighborhoods for some k. Similarly, an unranked tree language is ILT (Idempotent Locally
Testable) if membership is determined by the presence of absence of bisimulation-types of
k-neighborhoods, for some k.

Theorem 6.2. The following hold both over the class of finite trees and over the class of
finite and infinite trees:

(1) On binary trees, UNFO defines the LT regular languages.
(2) On unranked trees, UNFO defines the ILT regular languages.

The same hold for UNFO2.

Proof. Since binary trees have bounded degree, there are only finitely many isomorphism
types of k-neighborhoods for any given k. Moreover, each can be completely described by a
UNFO formula. It follows that the LT regular languages can be defined in UNFO (in fact,
in UNFO2). Incidentally, note that the only negation used in this construction is Boolean
negation (i.e., negation applied to sentences), except for expressing the fact that a node is
the root or is a leaf.

For unranked trees, the ILT regular languages are precisely the ones that can be defined
by a global ML formula as defined in Section 2.2 [40]. It is clear that this language is
contained in UNFO, and therefore all ILT regular language are definable by a UNFO-
sentence (in fact, a UNFO2-sentence).

For the other direction, let φ be a sentence of UNFO. Without loss of generality we can
assume that φ is in UN-normal form and satisfies the simplifying assumptions described in
Step 1 of Section 4.2.

We can further assume without loss of generality that the conjuncts τ(z) occurring in
the formulas:

∃z
(
τ(z) ∧ zi = y ∧

∧
j∈{1...n}\{i}

φj(zj)
)

or ∃z
(
τ(z) ∧

∧
j∈{1...n}

φj(zj)
)

are connected when seen as structures. If this were not the case, let I be the set of indices
j such that zj is in the component of y, zI and τI the corresponding fragments of z and τ .
Let J , zJ and τJ be parts containing the remaining indices. Then

∃z
(
τ(z) ∧ zi = y ∧

∧
j∈{1...n}\{i}

φj(zj)
)
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is equivalent to

∃zI
(
τI(zI) ∧ zi = y ∧

∧
j∈I

φj(zj)
)
∧ ∃zJ

(
τJ(zJ) ∧

∧
j∈J

φj(zj)
)

Notice that the right-hand side of the resulting formula is a sentence. Therefore φ is
equivalent to the disjunction of φ1 and φ2 where φ1 is the conjunction of ∃zJ

(
τJ(zJ) ∧∧

j∈J φj(zj)
)

with φ where this right-hand side part was replaced with true, and φ2 is

the conjunction of ¬∃zJ
(
τJ(zJ) ∧

∧
j∈J φj(zj)

)
and φ where this right-hand side part was

replaced by false.
In summary, we can assume that φ is a Boolean combination of sentences in UN-normal

form, satisfying the simplifying assumption, starting with an existential quantifier, and such
that all its neighborhood types are connected. Hence it is enough to consider a single such
sentence.

Let x be the first existentially quantified variable of φ, i.e. φ is ∃xψ(x). By our
assumptions on φ, all quantified variables of ψ can be taken to range over the neighborhood
of x up to distance |φ|. Hence, whether ψ(x) holds or not at a node a of a tree T only
depends on the neighborhood of a up to distance |φ|.

In the binary tree case, there are only finitely many such neighborhoods and each of
them is implied by the existence of the isomorphism-type of a k-neighborhood for k = 2|φ|.
Hence φ describes a language in LT.

In the unranked tree case, there are infinitely many such neighborhoods. But, as UNFO
is invariant under UN-bisimulation, it is enough to consider those neighborhoods up to UN-
bisimulation. Each of the UN-bisimulation classes of these neighborhoods is implied by the
existence of the UN-bisimulation-type of a k-neighborhood for k = 2|φ|. By Lemma 6.1
(and the characterization of ILT on unranked trees in terms of global ML), this implies that
φ describes a language in ILT.

We conclude this section by investigating the complexity of satisfiability.

Theorem 6.3. The satisfiability problem for UNFO and for UNFP is 2ExpTime-complete
on binary trees, on ranked trees, and on XML trees.

Proof. For the lower bound, recall that the proof of Proposition 4.2 was based on an encoding
of Turing machine runs as finite trees. Hence it applies here too.

For the upper bound, we will consider the case of UNFP on XML trees, as all other cases
can be seen as a special case of this one. We will describe an exponential-time translation
to µRegular XPath, the extension of Core XPath [24] with the Kleene star and with the
least fixpoint operator, for which satisfiability on XML trees can decided in ExpTime [15].
We briefly recall the syntax of µRegular XPath (cf. [15] for more details). The language
has two sort of expressions, node expressions φ and path expressions α which are defined
by mutual recursion:

α ::= ↑ | ↓ | ← | → | . | α[φ] | α/β | α ∪ β | α∗

φ ::= Pi | > | ¬φ | φ ∧ φ | 〈α〉 | X | µXφ

where, in node expressions of the form µXφ, the variable X is required to occur only
positively (i.e., under an even number of negations) in φ.
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Let φ be any UNFP-sentence, or, more generally, a UNFP-formula with at most one free
variable. We may assume without loss of generality that φ is in UN-normal form. In other
words, φ is built up from atomic formulas using (i) negation, (ii) fixpoint operators, and (iii)
existential positive formulas. The translation to µRegular XPath is now by induction. The
base case of the induction, as well as the induction step for negation and for the fixpoint
operators, is immediate. Now, suppose that φ is given by an existential positive formula
built from atomic relations and subformulas in one free variable for which we already know
that there exists a translation. Here, we can apply the known result from [25, 7] that,
on XML trees, every positive existential first-order formula in one free variable (over the
given signature) can be translated to a Regular XPath expression (in fact, to a Core XPath
expression) in exponential time. Note that when we apply this translation to a UNFP
formula, we may treat subformulas in one free variable as unary predicates).

7. Discussion

7.1. Logics that are contained in UNFO and UNFP. We have seen that unary nega-
tion logics generalize UCQ, ML, monadic Datalog and µ-calculus. We list here other related
formalisms.

7.1.1. Unary conjunctive view logic. First-order unary-conjunctive-view logic (UCV) was
introduced in [3] as a fragment of FO. A UCV query is an equality-free first-order formula
over a signature consisting of unary predicates only, but where each of these unary predicates
is in fact a view defined by a unary conjunctive query. It is easy to see that every UCV query
can be expressed by a UNFO-formula. Indeed, a quantifier elimination argument (cf. [29])
shows that, over signatures consisting only of monadic relations, every equality-free first-
order formula is equivalent to a UNFO formula). UNFO can be viewed as a generalization
of UCV where views may be defined in terms of each other (but without cyclic dependencies
between view predicates).

7.1.2. The temporal logic CTL∗(X). CTL∗(X) is the fragment of the temporal logic CTL∗

in which only the modal operator X (“next”) is allowed. More precisely, the syntax of
CTL∗(X) can be defined as follows:

State formulas: φ ::= p | Eα | Aα | φ ∧ φ | φ ∨ φ | ¬φ
Path formulas: α ::= φ | Xα | α ∧ α | α ∨ α | ¬α

The semantics is the usual one for CTL∗, and we refer the interested reader to [19]. One
can show that there is a polynomial truth-preserving translation from CTL∗(X) formulas
to UNFO formulas. The model checking problem for CTL∗(X) is known to be complete for

the complexity class PNP[O(log2 n)] [42]. This can be used to provide an alternative proof of

the PNP[O(log2 n)]-hardness of the model checking problem of UNFO, cf. Theorem 5.1.
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7.1.3. Description logics. The basic description logic ALC (which is a notational variant of
the basic multi-modal logic K) can be viewed as a fragment of UNFO. The same holds for a
number of extensions of ALC. Moreover, the query answering problem for these description
logics reduces to the entailment problem for UNFO. Recall that the query answering problem
is the following problem (cf. [2] for basic terminology):

Given a TBox (i.e., set of concept inclusions) T , an ABox (set of atomic formulas
speaking about individuals c1 . . . cn) A, a conjunctive query q(x1, . . . , xk), and a
tuple of individuals (ci1 , . . . , cik), is (ci1 , . . . , cik) an answer to q in every model of
T ∪A?

It is easy to see that this is equivalent to the validity of the UNFO-entailment

φT ∧
∧
A[c1/x1, . . . , cn/xn] |= q(xi1 , . . . , xik)

where φT is the UNFO-translation of T . This (together with Remark 3.9) gives a new proof
of the known result that query answering for ALC is decidable and that it has the finite
model property (cf. [34]). Note that the same argument works not only for ALC but for
any description logic whose TBoxes can be expressed in UNFP. Moreover, the argument
works not only for conjunctive queries, but for any class of queries expressible in UNFP.

7.2. Comparison with guarded logics. We have already seen in Example 2.1 that UNFO
and GFO are incomparable in terms of expressive power: It is easy to show that the GFO
formula ∀xy(R(x, y) → S(x, y)) is not invariant under UN-bisimulations and therefore not
expressible in UNFO. On the other hand a simple argument shows that the UNFO formula
∃yzu(R(x, y)∧R(y, z)∧R(z, u)∧R(u, x)) is not invariant under guarded-bisimulations and
therefore not expressible in GFO.

The decidability and expressibility results obtained in this paper for UNFO and UNFP
have many similarities with those of their modal logic counterparts. Actually several proofs
are reductions to the modal counterparts. This is in contrast with guarded logics that often
require new and difficult arguments. A typical example is the finite model property of GFO
whose proof is based on the Herwig Extension Theorem (cf. [26]). In contrast, we prove the
finite model property for UNFO by reduction to the analogous result for ML (which has a
very simple proof using filtration, cf. [10]).

It is possible to reconcile the unary negation approach and the guarded approach into
one logical formalism called guarded negation logic, where it is possible to negate a formula
if all its free variables are guarded: R(x) ∧ ¬φ(x). The first-order and fixpoint formalisms
obtained this way generalize both the unary negation and guarded approaches and enjoy
all the nice properties of UNFO and UNFP [5].

7.3. Undecidable extensions. Our results show that UNFO and UNFP are well behaved
logics. One may ask if there are extensions that are still well behaved. Inequalities are a
minimal form of negation not supported by UNFO. Unfortunately, extending UNFO with
inequalities leads to undecidability. Let us denote by UNFO6= the extension of UNFO
with inequalities, and by UNFO¬ the extension of UNFO with negative relational atomic
formulas. Recall that a fragment of first-order logic is called a conservative reduction class
if there is a computable map from arbitrary first-order formulas to formulas in the fragment,
which preserves (un)satisfiability as well as finite (un)satisfiability.
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Theorem 7.1. UNFO 6= and UNFO¬ are conservative reduction classes, and hence unde-
cidable for satisfiability on arbitrary structures and on finite structures.

Proof. It is known [12] that FO1 with two unary functions and equality is a conservative
reduction class. We can translate this logic into UNFO 6= with two binary relations (we can
use inequalities to express that the two relations are graphs of functions, as in ¬∃xyz(Rxy∧
Rxz ∧ y 6= z), and atomic formulas such as f(x) = g(x) are expressed by ∃yz(F (x, y) ∧
G(x, z) ∧ y = z)). This shows that UNFO6= is a conservative reduction class.

For UNFO¬, we use a similar argument. Let E,F,G be binary relations. Using negative
atomic formulas, it is possible to express that E is an equivalence relation, as in ¬∃xyz(Exy∧
Eyz∧¬Exz)∧¬∃xy(Exy∧¬Eyx)∧¬∃x¬Exx, and that F,G are graphs of functions defined
on equivalence classes of E, as in ¬∃x¬∃y(Fxy) ∧ ¬∃xx′yy′(Exx′ ∧ Fxy ∧ Fx′y′ ∧ ¬Eyy′),
and similarly for G. We then use the same reduction as in the case of UNFO 6=, except that
E takes the role of the equality relation.

Also, in the fixed point case, one can wonder whether the restriction to monadic least
fixed-points was necessary. Indeed, this question naturally arises since it is known that the
guarded fragment of first-order logic is decidable even when extended with (guarded) fixed
point operators of arbitrary arity. However, adding non-monadic fixpoint operators to our
setting make the logic undecidable.

Theorem 7.2. The extension of UNFP with non-monadic fixed point operators is unde-
cidable for satisfiability on arbitrary structures and on finite structures.

Proof. It was shown in [43] that the containment problem for Datalog is undecidable on
finite structures and on arbitrary structures (the result is only stated in [43] for finite
structures, but the proof applies to any class of structures that contains all encodings of
finite strings, under some encoding).

We reduce this problem to the problem at hand. A containment between two Datalog
queries Π1,Π2 holds precisely if ∃x(φΠ1(x)∧

∧
i Pi(xi))∧¬∃x(φΠ2(x)∧

∧
i Pi(xi)) is unsatis-

fiable, where φΠi is the Datalog query Πi written as a formula of LFP. Note that φΠi does
not contain negation, and therefore belongs to the extension of UNFP with non-monadic
fixed point operators. Incidentally, note that the overall reduction uses only Boolean nega-
tion (i.e., negation applied to sentences).
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