
Querying Spatial Databases via Topological InvariantsLuc Segou�n�I.N.R.I.A.B.P. 10578153 Le Chesnay CEDEXFranceLuc.Segou�n@inria.fr
Victor Vianu�CSE 0114U.C. San DiegoLa Jolla, CA 92093-0114U.S.A.vianu@cs.ucsd.eduDecember 7, 1999AbstractThe paper investigates the use of topological annotations (called topological invariants) to answertopological queries in spatial databases. The focus is on the translation of topological queries againstthe spatial database into queries against the topological invariant. The languages considered are �rst-order on the spatial database side, and �xpoint + counting, �xpoint, and �rst-order on the topologicalinvariant side. In particular, it is shown that �xpoint + counting expresses precisely all the ptime querieson topological invariants; if the regions are connected, �xpoint expresses all ptime queries on topologicalinvariants.1 IntroductionSpatial data is an increasingly important part of database systems. It is present in a wide range of applica-tions: geographic information systems, video databases, medical imaging, CAD-CAM, VLSI, robotics, etc.Di�erent applications pose di�erent requirements on query languages and therefore on the kind of spatialinformation that is needed. For example, in some cases the precise distance between points is important,while in other applications only topological relationships are of interest. Such di�erences in scope and em-phasis are crucial, as they a�ect the data model, the query language, and performance. In this paper wefocus on the representation and querying of topological properties of spatial databases.Motivated primarily by geographic information systems, we use a spatial model that speaks about regionsin the two-dimensional plane. Regions are speci�ed by inequalities involving polynomials with rationalcoe�cients, as done in constraint databases (such regions are called semi-algebraic). Topological propertiesof regions are those that are invariant under homeomorphisms of the plane. This means, intuitively, thatcontinuous deformations and reections of the spatial instance do not a�ect satisfaction of the property. Forexample, the property \the intersection of regions P and Q is connected" is a topological property. On theother hand, the property \the point p is North of the point q" is not topological. In previous work [PSV99]it was shown that topological properties of semi-algebraic regions in a spatial database can be completelysummarized by an annotation presented in classical relational database form, called the topological invariantof the database1. Moreover, the topological invariant of a semi-algebraic database can be constructed verye�ciently { in nc.Suppose that a topological query is posed against the spatial database. In principle, the query can beanswered by another query posed against the topological invariant. Since the topological invariant is in mostcases smaller in size than the original database, this strategy is likely to be more e�cient. In order for thisto work, topological queries in the spatial query language need to be e�ectively translated into queries insome query language for topological invariants. There are two components to this question:�This work was partly performed while the �rst author was visiting U.C. San Diego and partly while the second author wasvisiting I.N.R.I.A. V.Vianu was supported in part by the NSF under grant number IRI-9221268.1A similar invariant for isotopy-invariant properties is presented in [KPV95], see related work.1

� What language Linv on topological invariants is needed in order to answer the topological queriesformulated in a given query language Lspatial on spatial databases?� Is there an e�ective, uniform translation of topological queries in Lspatial into queries in Linv? Whatis the complexity of the translation?To answer the �rst question, it is useful to understand the expressiveness of various query languages ontopological invariants. Topological invariants have special structure, so with some luck they might be betterbehaved than arbitrary relational databases. This is fully con�rmed by our �rst result: we show that �xpoint+ counting expresses precisely the ptime queries over topological invariants (�xpoint alone is su�cient if theregions are connected). This should be contrasted with the situation on arbitrary structures, where �xpoint+ counting falls short of capturing ptime (indeed, it is conjectured that there is no language capturingptime). This result is very helpful in answering the �rst question above, since it makes �xpoint + counting(or �xpoint in the case of connected regions) a natural target for the translation of topological queries onspatial databases. In the broader context of the theory of query languages, the result is signi�cant because itidenti�es topological invariants as a class of �nite structures of practical interest which is very well-behavedwith respect to descriptive complexity.With respect to the second question, we focus on the translation problem for �rst-order queries. Acommon language for constraint spatial databases is FO(R; <). We consider primarily this language on thespatial database side. On the topological invariant side, �xpoint + counting is a possible translation target,as suggested by the earlier expressiveness result. Indeed, we show that topological FO(R; <) queries canbe uniformly translated in linear time into �xpoint + counting queries on the invariant. However, anothernatural candidate target for the translation is FO. The translation problem now becomes much harder, andwe solve it in the special case of single-region databases. However, the region can be highly complex, so theresult is fairly general and provides considerable insight into the technical issues involved in the translation.Unfortunately, the translation cannot be extended to the multi-region case [GroSeg99].Interestingly, even when both FO and �xpoint + counting can be used as targets of the translationof topological FO(R; <) queries, there is a signi�cant di�erence in the complexity of the translation: thecomplexity is hyperexponential in the quanti�er depth of the input query when the target is FO, but itgoes down to linear time in the size of the query when the target is �xpoint + counting. This suggests aninteresting trade-o� between the expressive power of the target query language over the topological invariantand the complexity of the translation.Related work. Work in spatial databases has focused on developing models and query languages targetedto various application domains, as well as appropriate data structures and e�cient evaluation techniques.We refer to [Par95] for a survey of the �eld emphasizing geographic information systems.Various topological invariants have been used in geographic information systems in order to speed up theevaluation of queries that make reference to topological properties of regions (e.g. in the ARC/INFO system[Mor85, Mor89]). Among them, the 4-intersection model of topological relationships [FK86, Her91, Wor92]has been widely adopted in geographic information systems and has been used in several spatial querylanguages [Ege94, OV91, SZ91]. The satis�ability problem for 4-intersection relationships is investigated in[GPP95]. The expressiveness of these relationships has been investigated by Egenhofer and Franzosa [EF91],who make the argument that they are natural and cognitively plausible, and observe that they cover allpossibilities that are expressible in the language that includes disjointness of two sets, interior, exterior,boundary, and Boolean connectives. The 4-intersection invariant was further re�ned by Egenhofer andFranzosa, by taking into account additional information, such as the number and dimension of componentsof the boundary intersection of two regions [FE92, Ege93, EF95a]. In particular, the invariant exhibited in[EF95a] is claimed (without proof) to completely characterize two regions (discs) up to homeomorphism.Unlike the above topological invariants, the topological invariants we use are lossless, i.e. they com-pletely characterize the topology of a set of regions. The invariants contain information similar to the PLAmodel proposed by the U.S. Census Bureau, which provides topological properties on points, lines, and areas[Cor79, Par95]. The invariants we use can be viewed as an augmentation of the PLA model. Models usingdecompositions of the space into cell complexes have been used in the geographic information systems com-munity for some time (e.g., see [FK86, Her91, Wor92]). The complexity of computing topological information2

based on cell complexes, similar to the PLA model and to our invariants, has been studied in computationalgeometry [BKR86, KY85]. While a aw has been discovered in the complexity analysis of [BKR86], latermodi�cations recovered, and even improved upon their upper bounds, see Renegar [Ren92].The topological invariant we use is essentially the one introduced in [PSV99]. The invariants proposedin [KPV95] are also close to the topological invariants we consider, but capture isotopy-generic information.Various notions of G-invariance (or G-genericity) for di�erent groups G of permutations are discussedin [Par+94]. They propose a spatial database model that includes spatial and thematic information, andpropose a calculus and an equivalent algebra.Much of the formal work related to spatial databases focuses on constraint databases, consisting ofrelations whose tuples represent semi-algebraic regions, speci�ed by polynomial inequalities. Such databasesand corresponding query languages were �rst considered in [KKR95]. In particular, they investigate thequestion of when the answer of a query on a constraint database is representable as a constraint database.Their results are based on quanti�er elimination in the �rst-order theory of the reals [Tar51].Our result that �xpoint + counting expresses ptime on topological invariants is closely related to anelegant result in �nite-model theory independently obtained by Grohe [Gro98]. It is shown there that�xpoint + counting expresses ptime on planar graphs, and �xpoint alone captures ptime on 3-connectedplanar graphs.The paper is organized as follows. The spatial model used in the paper, as well as topological invariants,several relational and spatial query languages, and Ehrenfeucht-Fraiss�e games, are reviewed in the Prelimi-naries. Section 3 contains the result on the capture of ptime by �xpoint + counting on topological invariants,and related results. Section 4 presents the results on the translation of spatial topological FO(R; <) queriesinto �xpoint + counting and FO queries on topological invariants.2 PreliminariesPractical spatial databases (such as geographic information systems) mix thematic and spatial information.Answers to queries can also be multi-sorted. Since our focus is on the spatial aspect, we adopt a simpli�edmodel where the only thematic information consists of region names. Also, for the sake of simplicity anduniformity, we only consider Boolean queries, de�ning properties of sets of regions. We consider only regionsin the two-dimensional space.We use the following model for spatial databases. We assume given an in�nite set names (consisting ofnames of regions). A spatial database schema is a �nite subset Reg of names. An instance I over a schemaReg is a mapping from Reg to subsets of R2 . For each r 2 Reg, I(r) provides a set of points called theextent of r. We generally refer to a set of points in the plane as a region. In practice, each I(r) is �nitelyspeci�ed, although this may be transparent to the user. In this paper, all regions considered are compact(bounded and closed), and speci�ed by a disjunction of conjunctions of polynomial inequalities with rationalcoe�cients (this later property is usually referred to as semi-algebraic). In this paper, we will call connecteda region which boundary is connected. In the following, the term region will be used in the restricted mannerjust described, unless otherwise speci�ed.As discussed earlier, we are interested here in topological properties of spatial instances. Two instancesI; J over a spatial schema Reg are topologically equivalent i� there exists a bijection � : R2 ! R2 such thatboth � and ��1 are continuous and for each r 2 Reg, �(I(r)) = J(r). A property � of spatial instancesis topological if it is invariant under homeomorphisms, that is for all topologically equivalent instances I; Jover a given schema, I satis�es � i� J satis�es � .Topological invariants In [PSV99] it was shown that one can e�ciently compute from a given semi-algebraic spatial instance I a �nite relational structure top(I) called the topological invariant of I, thatdescribes completely the topological properties of I . The spatial model used in [PSV99] is slightly di�erentfrom the one we use: regions are assumed to be homeomorphic to the unit disk, so are open and havedimension two. In contrast, our regions are closed and may have dimension zero, one, or two (the change ismotivated by geographic information systems, where such regions are common). However, the constructionand results of [PSV99] pertaining to the topological invariant are easily adapted to the model used here. Webriey describe the construction of the invariant and the results.3

The invariant is constructed from a maximum topological cell decomposition of the spatial instance. Atopological cell decomposition of I is a partition of R2 into �nitely many subsets called cells, such that forevery homeomorphism � of R2 , if I is globally invariant by � (�(I) = I) then, for every cell c, �(c) is acell. It can be veri�ed that for each spatial instance I there exists a unique maximal (in terms of numberof cells) topological cell decomposition. The maximum topological cell decomposition can be constructedfrom a semi-algebraic spatial instance in nc, using results2 on cell complexes obtained in [BKR86, KY85].We summarize their approach, slightly adapted to our context. Given a semi-algebraic spatial instance Iover a schema Reg, a sign assignment is a mapping � : Reg ! fo;�; @g, and the sign class of � is the setI� def= Tr2Reg r�(r), where ro is the interior of r, r@ is the boundary, and r� is the exterior. A cell complexfor I is a partition of R2 into �nitely many, non-empty, pairwise disjoint regions, called cells, such that:1. each cell is homeomorphic to R0 ;R1 or R2� fa �nite set of pointsg. The dimension of a cell is de�nedin the obvious manner.2. the closure of each cell is a union of other cells;3. each cell is included in some sign class I� .It is shown in [KY85]3 that a cell complex can be constructed from a given semi-algebraic spatial instancein nc. One can further show that the maximum (see de�nition above) topological cell decomposition can beconstructed from the cell complex obtained in [KY85], and the overall complexity remains nc.The topological invariant for a spatial instance I is built up from the maximum topological cell decompo-sition for I . Cells of dimension 0,1 and 2 are called vertices, edges, and faces, respectively. The topologicalinvariant associated to spatial instances over a schema Reg is a �nite structure consisting of the followingrelations (their meaning is explained intuitively):1. unary relations Vertex, Edge, Face, and Exterior -face providing the cells of dimension 0, 1, 2, and adistinguished face of dimension 2 called the exterior face.2. Edge-Vertex is a binary relation providing endpoint(s) for edges.3. Face-Edge is a binary relation providing, for each face (including the exterior cell), the edges on itsboundary.4. Face-Vertex is a binary relation providing, for each face (including the exterior cell), the verticesadjacent to it.5. for each region name p 2 Reg, a unary relation p providing the set of cells contained in region p.6. Orientation is a 5-ary relation providing the clockwise and counterclockwise orientation of edges in-cident to each vertex. More precisely, (-; v; e1; e2; e3) 2 Orientation i� v is a vertex, e1; e2; e3 areedges of faces incident to v, and e2 lies between e1 and e3 in the clockwise order on the incidents cellsof v, and (,!; v; e1; e2; e3) 2 Orientation i� v is a vertex, e1; e2; e3 are cells incident to v, and e2 liesbetween e1 and e3 in the counterclockwise order on the incident cells of v.Let inv(Reg) denote the above schema and let top denote the mapping associating to each spatial instanceI over Reg its topological invariant over inv(Reg).Remark: The topological invariant of [PSV99] had a slightly di�erent schema and de�nition. The Orien-tation relation was 4-ary instead of 5-ary, and corresponded to the successor relation of the incident cells ofa given vertex v. For technical reasons, in our setting Orientation provides the full cyclic order of the cellsincident to v (without this modi�cation, Theorem 4.9 does not hold). This change does not a�ect the resultson the invariant from [PSV99].The main result on the topological invariant is the following.2As discussed earlier, while a aw has been discovered in the complexity analysis of [BKR86], later modi�cations recovered,and even improved upon their upper bounds, see Renegar [Ren92].3Actually [KY85] need to do a linear change of the coordinate system in order to be able to compute a cell complex. Asthis doesn't a�ect the topological properties this doesn't a�ect the results here. See [BCR98, Cos89] for a discussion on cellcomplex. 4

Theorem 2.1 [PSV99] Let Reg be a spatial database schema.(i) The mapping top associating to each spatial database instance over Reg its topological invariant is com-putable in polynomial time (and nc) with respect to the size of the representation of I.(ii) For all spatial instances I; J over Reg, I and J are topologically equivalent i� top(I) and top(J) areisomorphic.Also useful is the following result, which says that the invariant can be e�ciently inverted. A linearspatial instance is a semi-algebraic instance de�ned by linear inequalities.Theorem 2.2 [PSV99] For each spatial instance I there exists a topologically equivalent linear spatial in-stance J computable in polynomial time from top(I).Some query languages We assume familiarity with classical relational query languages such as FO(relational calculus), Datalog, Datalog:, and the �xpoint and while queries (see [AHV95]). Recall that the�xpoint queries are expressed by various languages such as inationary Datalog: and inationary �xpointlogic FO+�+ [AHV95]. It is well known that �xpoint expresses precisely ptime [Imm86, Var82] and whileexpresses exactly pspace [Var82] on ordered databases. Without order, this is not the case: for example,neither �xpoint nor while can express the parity query on unary relations (this asks if the number of elementsin the relation is even or odd). Queries such as parity can be expressed if a counting mechanism is addedto FO+�+, yielding the �xpoint + counting queries. The counting is provided by counting quanti�ers of theform 9ix '(x) where integer variables i range over an ordered domain of the same size as the input �nitedomain and disjoint from it (see [CFI92, GO93] for details). Unfortunately, �xpoint + counting still fails toexpress ptime [CFI92].Most of the languages previously proposed for spatial databases, including constraint query languages[KKR95, GS99, GST94, Par+95, BDLW98], have �rst-order syntax and use variables ranging over numbers(reals or rationals), or over points. We adapt the classical de�nitions of these languages to our framework.Let Reg be a spatial database schema. By slight abuse of notation we denote also by Reg the �rst-ordersignature consisting of a binary relation for each region name in Reg. The language FO(R; <) is �rst-orderlogic using region names (viewed as binary relations), variables ranging over R, and the binary relation <interpreted as the usual order on R. It was shown in [KKR95] that every FO(R; <) query can be evaluatedin nc (relative to the size of the representation of a given semi-algebraic spatial instance). A useful variationis �rst-order logic where variables range over points in R2 , and where the order < is replaced by two orderrelations <x and <y with the following meaning: p <x q i� the x-coordinate of p < the x-coordinate of q,and similarly for <y. Note also that the schema consists of region names viewed as unary relations ratherthan binary. The point-based language just described is denoted by FO(P; <x; <y). Its complexity is alsonc.What is the connection between FO(R; <) and FO(P; <x; <y)? Clearly, FO(R; <) subsumes FO(P; <x; <y), and can express queries that FO(P; <x; <y) cannot, such as: \does region P intersect the diagonal?" as 9x P (x; x)4 However, it is shown in [PSV99] (and the result easily carries over to our spatial model)that the two languages express precisely the same topological properties of spatial instances. The fragmentsof the two languages expressing topological properties are denoted by FOtop(R; <) and FO top(P; <x; <y),respectively. It is easy to see that these fragments are not e�ective: it is undecidable whether a sentencein FO(R; <) or in FO(P; <x; <y) is topological5. In this paper we assume that queries arising in certainapplications are topological, and we do not deal with the issue of verifying or enforcing this property. Toour knowledge, it is open whether there exist e�ective syntactic subsets of FO(R; <) and FO(P; <x; <y) thatexpress precisely their topological fragments.Ehrenfeucht-Fra��ss�e games Consider �rst-order logic FO over a given vocabulary. Let FOr denote theFO sentences of quanti�er depth r. Recall that the quanti�er depth qd(') is de�ned inductively by qd(') = 04It is shown in [PSV99] that all queries of FO(P;<x;<y) are invariant with respect to the group of monotone isomorphismsM = f� j �((x; y)) = (�1(x); �2(y))g with �1; �2 : R ! R bijective and increasing. Since the query 9x P (x; x) is not invariantwith respect to M, it cannot be expressed in FO(P;<x;<y).5The undecidability is shown by a straighforward reduction of satis�ability for FO(R; <), known to be undecidable [GS99]5

if ' is quanti�er-free, qd(' _) = qd(' ^) = maxfqd('); qd()g, qd(:') = qd(') andqd(9x') = qd(8x') = qd(') + 1:Two structures are FOr-equivalent if they satisfy precisely the same FOr sentences. There is a very usefulcharacterization of FOr-equivalence in terms of the Ehrenfeucht-Fraiss�e game on structures. The game oflength r is played by two players, Spoiler and Duplicator. A round in the game has r moves. In each move,Spoiler picks an element in one of the structures and Duplicator responds by picking an element in theopposite structure. Duplicator wins the round if structures restricted to the chosen elements are isomorphic.We say that Duplicator has a winning strategy for the game of length r if he can win every round of thegame no matter how Spoiler plays. The main result on the Ehrenfeucht-Fraiss�e game of length r (henceforthcalled FOr-game) is that two structures I; J are FOr-equivalent i� Duplicator has a winning strategy forthe FOr-game on I and J . See [EF95b] for more details.As an example, consider the language FO(P; <x; <y) over spatial database schema Reg. Suppose I; Jare spatial instances over Reg and consider a round of the FOr(P; <x; <y)-game where points p1; : : : ; prare picked in I and q1; : : : ; qr are picked in J . Duplicator wins this round i� pi 2 P , qi 2 P for everyP 2 Reg and pi; pj are in the same order relative to <x and <y as qi; qj , for 1 � i; j � r. By the abovecharacterization, Duplicator has a winning strategy for the FOr(P; <x; <y)-game on I; J i� I and J areequivalent with respect to FOr(P; <x; <y).3 Fixpoint queries on topological invariantsAs discussed earlier, the topological invariant of a spatial instance can be viewed as an annotation sum-marizing precisely the topological properties of the spatial instance. Thus, all topological queries can beanswered by queries posed against the invariant rather than on the raw spatial data. This can be much moree�cient, since the invariant is in most cases much smaller than the original spatial instance. The invariant isa classical relational database, so it can be queried by classical relational queries. However, invariants are notarbitrary databases { they have a special structure, which may engender special properties. In this sectionwe show that topological invariants are especially well behaved with respect to descriptive complexity: the�xpoint + counting queries capture precisely ptime over this class of structures. If we restrict our attentionto instances were the regions are connected (i.e. have a connected boundary) then it can be shown that�xpoint queries capture precisely ptime. This positive result should be contrasted with the situation onarbitrary structures, where there is a large gap between �xpoint (+ counting) and ptime (in the absenceof order). Moreover, it is conjectured that there is no language capturing ptime on arbitrary structures[Gur88].Fixpoint on connected regionsWe �rst consider the case when all regions are connected and show that �xpoint expresses ptime on topo-logical invariants of such instances. Then we consider the general case (where regions are not necessarilyconnected) and show that �xpoint + counting expresses ptime on topological invariants.In the remainder of this section we assume all regions are connected, unless otherwise stated. The proofthat �xpoint captures ptime on topological invariants in the connected case is conceptually easy, but requiressome careful development. We use the classical result that �xpoint captures ptime on ordered structures[Imm86, Var82]. Thus, for each ptime query over topological invariants there exists a �xpoint query '(�)which expresses the ptime query given a total order � on the universe of the invariant. The problem ofcourse is that topological invariants are not ordered structures { in fact they are not even rigid { so an order� is not directly available. The key to the proof is to observe that there is a standard way to traverse eachconnected component of the topological invariant, once a constant number of vertices and/or edges have been�xed, together with an orientation (- or ,!). This allows to construct by a �xpoint query a polynomialnumber of orderings, each of which is identi�ed by a tuple of constant arity. Since the number of connectedcomponents is bounded by the number of regions in the schema, we can put together the orders for eachconnected component and obtain a polynomial number of orders of the entire invariant. Lastly, '(�) is \run6

simultaneously" on all of the orderings. Since '(�) is order independent by de�nition, all of the \runs"produce the answer to the query.We now describe the construction in more detail. We break down the construction in several sequentialstages, and for each we outline the construction of a �xpoint query. Since �xpoint is closed under composition,we can then put together the queries for each stage and obtain a �nal �xpoint query that computes the givenptime query on the invariant. Consider a ptime query over the invariant and let '(�) be a �xpoint querythat computes it using a total order � on the universe (vertices, edges, faces, - and ,!) of the invariant.The skeleton of a topological invariant is the graph whose vertices are the elements of the relation Verticeand Edge of the invariant, and whose edges correspond to the relation Edge-Vertex in the invariant. Aconnected component of the topological invariant is a connected component of the skeleton of the invariant.To illustrate this de�nition, the connected components in Figure 1 are c1; � � � ; c7. Since all regions areconnected, each connected component of the invariant consists of the boundaries of a set of regions. Thus,there is a partition � of the set of region names into equivalence classes de�ned by membership of theboundaries into the same connected component. Clearly, for each partition � there exists an FO query ��which veri�es that � is the partition of region names corresponding to the given topological invariant.
f0

c

c

c
c

c

c
1

2

3

4

5

6

f

f

f

2

1

3

c
7 Figure 1: A spatial instance.We will also need a formula de�ning the set of vertices, edges, and faces of each connected component.For vertices and edges this can be easily done by an FO formula. More care is needed for faces, since theboundary of a face may intersect several connected components (this happens when a connected componentis embedded in a face of another connected component). To associate unambiguously a face to a connectedcomponent, one can �rst de�ne a partial order on connected components based on their distance from theexternal face (i.e. the shortest sequence f0; e0; f1; e1; : : : fk; ek such that f0 is the exterior face, ek is in thegiven connected component, and ei is adjacent to fi; 0 � i � k). For instance, in Figure 1, the connectedcomponents c1 and c2 are at distance 0 from fO, c3; c7 at distance 1, and c4; c5 and c6 at distance 2. It iseasily seen that for each face other than the exterior face f0 there exists a unique connected component atminimal distance from f0 intersecting the boundary of the face. We then say that the face belongs to thatconnected component. In Figure 1 the boundary of region f2 touch three connected components, c1; c3; c7,and is therefore associated to c1 because c1 is at distance 0 from f0 while the other two are at distance 1.It is a straightforward exercise to see that the previous construction can be stated by a �xpoint formula. Insummary, one can construct a �xpoint query compi(x) saying that x is a vertex, edge, or face in connectedcomponent i.Consider a connected component of the topological invariant. An edge is called a proper edge if itconnects distinct vertices. We will show that one can construct by a �xpoint query a total order on thevertices, edges, and faces of the connected component, once a vertex, an adjacent proper edge, and anorientation ! 2 f -; ,!g have been �xed. This applies to connected components which have at least oneproper edge (and therefore each vertex is connected by some proper edge to another vertex). The specialcase where there is no proper edge requires special treatment, but presents no di�culty. We can show thefollowing. 7

Lemma 3.1 There exists an FO + �+ formula �(!; v; e; x; y) such that for each orientation !, vertex vand proper edge e adjacent to v, the set�!;v;e (x; y) = fhx; yi j �(!; v; e; x; y)gis a total order on the vertices, edges, and associated faces of the connected component of v.Proof For the moment, suppose that all connected components have at least one proper edge. We de-scribe the construction of the FO+�+ query �(!; v; e; x; y) computing the orders �!;v;e for each connectedcomponent C containing vertex v with an adjacent proper edge e, and �xed orientation !. The query �rstconstructs the set of tuples < !; v; e > where ! 2 f -; ,!g, v is a vertex in C and e is a proper edge adjacentto v (this is an FO query, given C). For each such tuple < !; v; e >, the following is done. First, an order onthe vertices of C is de�ned; simultaneously, to each vertex is associated a particular proper edge adjacent toit. Then the order is extended to the edges and faces of C. The order on vertices is de�ned as follows. The�rst vertex is v. Suppose e1; : : : ; ek are the proper edges adjacent to v in order of the !-orientation, startingfrom e, and let v1; : : : ; vk be their respective endpoints other than v. The �rst iteration computes the partialorder v; v1; : : : ; vk. At the same time, the proper edge associated to vi is de�ned to be ei, 1 � i � k. Thisis iterated starting from the tuples !; vi; ei, eliminating repetitions of vertices. The partial order obtainedfor the pair vi; ei is then inserted between vi and vi+1, for 1 � i < k and that for vk; ek is inserted followingvk. Clearly, this can be achieved by a �xpoint query which produces a total order on all vertices of C, andassociates along the way a proper adjacent edge to each vertex. Now the ordering is extended to edges asfollows. Edges (proper or not) are �rst ordered in lexicographic order of the ranks of their endpoints (theedges are allready ordered). Edges with the same endpoints u � v are ordered in the !-orientation relativeto the proper edge associated with u. Consider two faces f; f 0 in C (recall the earlier de�nition of a facebeing in a connected component). It is easily seen that no two faces in C have the same set of edges in theintersection of their boundary with C. Since edges are already ordered, the faces of C can be ordered usingtheir associated set of edges in C. Thus, vertices, edges and faces of C are ordered. A total order on theuniverse of C is obtained by having all vertices be smaller than all edges which in turn are smaller than allfaces in C.Lastly, we briey discuss the special case of connected components with no proper edges. There are threecases:1. The connected component consists of a single isolated vertex.2. The connected component consists of a single edge e (a loop with no endpoints).3. The connected component consists of a vertex and a set of loops around the vertex.Case (1) is trivial: the order consists of the pair f< v; v >g, where v is the vertex constituting the connectedcomponent. Although the order is uniquely determined without �xing any elements, for the sake of uniformitywe make the order dependent on the pair < !; v; v > (this keeps the result of � 5-ary). Case (2) is similar.For case (3), we consider pairs v; e where v is the unique vertex and e is a loop adjacent to the exterior cell.The order on vertices is simply < v; v >. The order on edges is determined by the !-orientation of edgesstarting from e. There is one di�culty: loops occur twice in !-orientation order. Therefore, the successorof e is ambiguous: however, there is a single loop which follows e in the !-orientation and is also adjacentto the exterior face. This is taken to be the successor of e. Subsequent successors are uniquely determined(each edge is inserted in the ordering only when �rst encountered in the !-orientation). If e is the only looparound v then the order is simply < e; e >. The faces of the connected component are ordered as describedearlier. 2Once the query � is constructed, we can use it to generate a set of total orders on the entire invariantas follows. Basically, we need to put together the orders for the connected components of the invariant insome arbitrary way determined by some �xed order of the region names in the schema, which induces anorder on the connected components. Suppose � is the partition of region names determined by the connectedcomponents of the invariant. The set of total orders on the invariant corresponding to partition � is thenobtained by placing in increasing order: (i) the elements denoting the orientations, (ii) the external face,8

and (iii) the ordered vertices, edges, and faces of each connected component, in increasing order of thecomponents. This is accomplished by the FO+�+ formula:(y) �� (!; v1; e1; : : : ; vk; ek; x; y) = Is-Orientation(!)^V1�i�k vertex-edge(vi; ei)^[(x = !)_(Is-Orientation(x) ^ y 6= !)_(Exterior-face(x) ^ :Is-Orientation(y)W1�i�k �(!; vi; ei; x; y)_W1�i<j�k(compi(x) ^ compj(y))]where Is-Orientation(x) = 9v9e19e29e3Orientation(x; v; e1; e2; e3):Thus, �� has arity 2k + 3 where k is the size of partition �. The last two columns in the result provide atotal order on the invariant, for each �xed tuple over the �rst 2k + 1 columns. Note that k is bounded bythe size of Reg so is a constant.Once �� is constructed, the �xpoint query '(�) can be \run" in parallel on the orders provided by ��.Because the query '(�) is order invariant by de�nition, the answer is the same for all orderings. This yieldsthe main result:Theorem 3.2 Fixpoint expresses exactly the ptime queries on topological invariants of instances with con-nected regions.Proof We have seen that the parameterized orderings �� can be de�ned by a �xpoint query. Let us denoteby �� the parametric variables of �� (all free variables except x and y in the fromula de�ning ��) . With�� available the resulting �xpoint query is obtained by a case analysis over the set of partitions � of Reg:_� 9�� [�� ^ '�(��)]:2The above result can be extended to languages subsuming �xpoint, such as while. A technique similar to theabove allows to show:Corollary 3.3 While expresses exactly the pspace queries on topological invariants of spatial instances withconnected regions.At this point, it may be tempting to believe that descriptive complexity results on ordered structurestransfer uniformly to topological invariants. However, this is far from obvious. For example, it is knownthat semi-positive Datalog, Datalog: with strati�ed semantics, and inationary Datalog: are equivalent onordered structures and express ptime (see [AHV95]). However, it remains open if this holds on topologicalinvariants. Indeed, the �xpoint query constructing the orderings on topological invariants involves carefulbookkeeping which, on the face of it, requires the full power of inationary Datalog: or equivalently FO+�+.In particular, negation is applied recursively in our construction of the orderings. It remains open whetherthe construction can be achieved in a more restrictive language such as strati�able or semi-positive Datalog:.Fixpoint + counting on arbitrary invariantsTheorem 3.2 relies crucially on the assumption that regions are connected. In the case where this is notrequired, each region may have an unbounded number of connected components, and �xpoint cannot expressptime queries such as: Is there an even number of connected components? However, this di�culty can beovercome by adding counting to �xpoint. Indeed, we can show that in this case �xpoint + counting expressesprecisely the ptime queries on topological invariants. The idea of the proof is to construct using �xpoint+ counting an isomorphic copy of the invariant over the auxiliary ordered domain provided by �xpoint +counting, then use the fact that �xpoint expresses ptime on ordered databases [Imm86, Var82].9

Theorem 3.4 Fixpoint + counting expresses exactly the ptime queries on topological invariants.Proof As stated above, we will exhibit a �xpoint + counting query which, given as input a topologicalinvariant I , produces an isomorphic copy of I on the auxiliary ordered domain. Clearly this is su�cient toestablish the theorem, since �xpoint expresses ptime on ordered structures.The proof involves several stages. First recall that, using Lemma 3.1, we can deal with single connectedcomponents: by the lemma, a �xpoint query can de�ne polynomially many orderings of the invariant. Eachordering < is parameterized by a tuple of �xed arity. For each �xed ordering <, the invariant can be viewedas an ordered structure c<. Note however that di�erent orderings produce di�erent ordered structures. Toproduce a single isomorphic copy on the auxiliary ordered domain, it is su�cient to de�ne some standardlexicographic ordering among ordered structures c< and pick the minimum ordered structure cmin withrespect to the lexicographic order. It is now easy to construct an instance isomorphic to cmin over theauxiliary ordered domain.The idea just described can be extended to multiple connected components. First, we de�ne a labeledtree that captures the way connected components are embedded into faces. The nodes of the tree are(conceptually) the connected components of the invariant (except for the root, denoted 1). Each connectedcomponent c is in fact represented in the tree by its set of vertices6 Vc. The edges of the tree are labeledby faces (into which the children connected components are embedded). The tree is de�ned inductively asfollows. The outgoing edges from the root 1 are all labeled f0 (the external face). The children of the rootare all connected components which share boundaries with f0. Now suppose c is a node of the tree. Theoutgoing edges from c are labeled by all faces f that share a boundary with c and do not yet occur as labelsin the tree. There is an edge labeled f from c to each connected component c0 other than c that sharesboundaries with f . It is easy to see that the tree just described can be de�ned by a �xpoint query. Werefer to this tree as the connected component tree of the invariant, denoted T1. For example, the connectedcomponent tree corresponding to the instance in Figure 1 is represented in Figure 2.
f0 f0

f3
f

2 f
2

f1 f1

α

c

c c

c

c c

c

1 2

7 6

54

3

Figure 2: Connected component tree for instance in Figure 1.For each node c in T1, let Tc be the subtree of T1 with root c. Note that each Tc corresponds toan invariant comprising c and the connected components embedded in c, denoted inv(Tc). We show thefollowing:(y) There exists a �xpoint + counting query that de�nes, for each subtree Tc of T1, a structure Vc �invN(Tc)where invN(Tc) is an isomorphic copy of inv(Tc) on the auxiliary ordered domain.In particular, (y) shows that one can de�ne in �xpoint + counting a structure f1g � invN (T1), andtherefore invN (T1). This is an isomorphic copy of the original invariant over the auxiliary ordered domain.To prove (y) we proceed inductively by the depth of the subtree. For the basis, consider a subtree ofdepth zero consisting of a single node c (one connected component). As discussed earlier, this case can be6For simplicity of exposition, we omit the degenerate case of connected components without vertices.10

dealt with using the parameterized orders de�nable in �xpoint by Lemma 3.1. Now consider a subtree Tc ofdepth > 0. By induction, suppose that for each child d of c, a structure Vd � invN (Td) has been de�ned,where Vd is the set of vertices of d and invN(Td) is an isomorphic copy of inv(Td) over the auxiliary ordereddomain. To extend the construction to Tc, we �rst de�ne parameterized orders over inv(c) using the �xpointquery provided by Lemma 3.1. Consider one such order <. The cells of inv(c) are totally ordered by < andso inv(c) can easily be mapped to an isomorphic structure invN (c) over the auxiliary ordered domain. Nowwe wish to extend this mapping to inv(Tc). Note that children of c embedded in distinct faces of c can beordered according to the order on faces induced by <. For children d; d0 of c embedded in the same faceof c there are two cases. First, if invN(Td) 6= invN (Td0), then d and d0 can be ordered in the lexicographicorder of invN(Td) and invN (Td0). If invN (Td) = invN (Td0) then Td and T 0d are isomorphic and cannot beordered. However, this di�culty can be overcome using counting. Indeed, it is easy to see that one cande�ne in �xpoint + counting , for each child d of c, the number n of children of c that are embedded inthe same face as d and are isomorphic to it. Then one can simply produce n disjoint isomorphic copies ofd on the auxiliary ordered domain. In summary, one can de�ne in �xpoint + counting one isomorphic copyinvN (Tc) over the auxiliary ordered domain for each ordering < previously de�ned on inv(c). To producea single copy invN(Tc) is is enough to pick among the copies corresponding to the di�erent orderings thelexicographically minimum one. Lastly, this structure is associated with c by taking the product of Vc withinvN (Tc). This completes the induction and proves (y) and the theorem. 2The above result can also be extended to language subsuming �xpoint, such as while. We denote thenatural extension of the partial �xpoint queries with counting by while + counting.Corollary 3.5 While + counting expresses exactly the pspace queries on topological invariants.Remark Theorems 3.4 and 3.2 crucially rely on the fact that regions are part of the database schema andso are �xed. Now suppose that this is relaxed so that region names are part of the instance rather than theschema. Then �xpoint + counting fails to capture ptime. This is shown by representing arbitrary graphs asspatial instances where each edge is identi�ed by a region name, and using the fact that �xpoint + countingfails to capture ptime on arbitrary graphs [CFI92].PTIME topological queries on spatial instances The capture of ptime by �xpoint + counting ontopological invariants has consequences for the capture of the ptime topological queries on spatial instances(recall that such queries are assumed to be Boolean). Indeed, Theorem 3.2 together with Theorem 2.2 implythat there exists a language expressing precisely the ptime topological queries on spatial instances. Queriesin the language consist simply of a �xpoint + counting query applied to the topological invariant of the givenspatial instance. Clearly, all such queries are topological and are computable in ptime in the size of therepresentation of the spatial instance. To see that the converse is true, let ' be a topological ptime queryon spatial instances. Let inv(') be the query on topological invariants which does the following:1. on input T , compute from T a semi-linear spatial instance J such that top(J) = T . This can be donein ptime by Theorem 2.2.2. compute '(J).Clearly, the query inv(') is in ptime on topological invariants, so it is expressed by some �xpoint + countingquery . Since ' is topological and I and J are topologically equivalent, we have that '(I) = '(J) = (top(I)) for every spatial instance I . Thus, ' is expressed by a query in the language. Note that �xpoint+ counting can be replaced by �xpoint if regions are connected.It is worth noting that the capture of topological ptime on spatial instances is not simply a directconsequence of Theorems 2.1 and 3.2, as one might �rst be tempted to believe. Indeed, this relies crucially onthe fact that topological invariants can be e�ciently inverted (Theorem 2.2). To understand the importanceof this fact, it is useful to make a parallel with invariants for �nite structures undistinguishable by �rst-orderlogic sentences with k variables, called k-invariants. Like topological invariants, k-invariants can be computede�ciently (by a �xpoint query, see [AV95, DLW95]). Furthermore, the k-invariants are ordered structuresso �xpoint captures ptime on k-invariants. Thus, the analogs of Theorems 2.1 and 3.2 hold. However, this11

does not imply the existence of a logic for ptime on arbitrary structures. What is missing is the ability toe�ciently invert k-invariants [Gro97] { the analog of Theorem 2.2.Of course, the language just described for topological ptime is quite arti�cial, but serves the purpose ofshowing that there exists a logic for topological ptime on spatial instances, in the broad sense of Gurevich'sde�nition [Gur84]. It remains open to �nd a more natural language that captures topological ptime onspatial instances { perhaps a recursive extension of FO(R; <). We note that a recursive extension of FO(R; <)expressing all ptime queries on spatial instances is presented in [GK97]. However, the language also expressesnon-topological queries.4 Translating spatial queries into queries on the invariantIn this section we study the problem of translating topological queries against spatial databases into queriesagainst the topological invariant. On the spatial database side, we focus on the language FO(R; <), whichis a commonly used language in constraint databases. On the topological invariant side, a natural candidatetarget for the translation is FO. Most of the results of the section concern the connection between thetwo languages. Before addressing this problem, we note however that the capture of ptime by �xpoint +counting on topological invariants provides for free an e�ective translation of topological FO(R; <) queriesinto �xpoint + counting queries on the invariant (�xpoint su�ces if the regions are connected). Also, thisworks in principle for other spatial languages whose topological fragments are in ptime. Perhaps moreinteresting is the fact that the translation into �xpoint + counting (�xpoint) is quite e�cient (which turnsout not to be the case when the target is FO). We state this result next.Theorem 4.1 Let Reg be a spatial database schema. There exists a mapping inv from FOtop(R; <) sentencesover Reg into �xpoint + counting sentences over inv(Reg), such that:1. for each ' 2 FOtop(R; <) and each spatial instance I over Reg, '(I) = inv(')(top(I)).2. inv(') is computable in linear time in the size of '.Proof Suppose ' is a sentence in FOtop(R; <) over schema Reg. The following procedure computes'(I) on input T = top(I):1. Using a �xpoint + counting query, de�ne an isomorphic copy TN of T on the auxiliary ordered domain(as in the proof of Theorem 3.4).2. Construct from TN a semi-linear instance J over Reg such that top(J) = T .3. Evaluate ' on J and output the result (which recall is Boolean).We claim that (1)-(3) can be simulated by a �xpoint + counting query inv(') constructible from ' in lineartime. First, note that the �xpoint + counting query in (1) is �xed and can be constructed in constant timewith respect to '. Consider (2)-(3). By Theorem 2.2, (2) can be done in ptime, and (3) can be done inptime by [KKR95]. Thus, steps (2) and (3) combined take ptime with respect to TN . Thus, there is aptime Turing machine M' that implements (2) and (3). Essentially, this is a Turing machine that performsstep (2) (this is �xed and independent of '), composed with a universal Turing machine for evaluatingFO(R; <) formulas, to which ' is provided as parameter. Since the universal component is �xed it is clearthat M' can be constructed in time linear with respect to '. Next, since TN is ordered and �xpoint cansimulate all ptime Turing machines on ordered domains, there exists a �xpoint query (M') that simulatesM' on input TN . The standard construction used in the simulation of ptime Turing machines by �xpointproduces a �xpoint formula whose size is linear in the size of the Turing machine (e.g., see [AHV95]). Thus, (M') can be constructed in linear time with respect to M' and therefore with respect to '. Altogether,the composition of the �xpoint + counting query in (1) with the �xpoint query (M') can be constructedin time linear in '. �If the regions are connected we can similarly show:Theorem 4.2 Let Reg be a spatial database schema. There exists a mapping inv from FOtop(R; <) sentencesover Reg into FO+�+ sentences over inv(Reg), such that:12

1. for each ' 2 FOtop(R; <) and each spatial instance I over Reg with connected regions, '(I) =inv(')(top(I)).2. inv(') is computable in linear time in the size of '.Remark 4.3 In the above, it is assumed that the queries in FO(R; <) to be translated are known to betopological. As discussed in Preliminaries, we do not deal here with the issue of verifying or enforcing thatthe input ' to the translation is indeed topological (which is undecidable). Instead, we assume that thisproperty is guaranteed by the nature of the application, by the query interface, or other extraneous reasons.If the input ' is not topological, the result of the translation is no longer equivalent to '. Instead, it isequivalent to the \topological closure" of ', denoted 'top, de�ned as follows:'top = fI j 9J I �H J; J j= 'g:In the remainder of the section we consider the connection between FOtop(R; <) and FOinv . We be-gin with an example that provides some intuition into the di�culties involved in translating FOtop(R; <)sentences into FOinv sentences. Consider the query on schema Reg = fP;Qg:\Regions P and Q intersect only on their boundaries."Clearly, this is a topological property. It can be expressed in FOtop(R; <) by the sentence:(y) 8x8y[(P (x; y) ^Q(x; y))!(boundaryP (x; y) ^ boundaryQ(x; y))]where boundaryP (x; y) (and similarly boundaryQ(x; y)) is the formula7:P (x; y) ^ 8x18y18x28y2[(x1 < x < x2 ^ y1 < y < y2)!9x09y0(x1 < x0 < x2 ^ y1 < y0 < y2 ^ :P (x0; y0)]:Clearly, the same property can be expressed by the FOinv sentence over inv(Reg):(z) 8u[(P (u) ^Q(u))! (V ertex(u) _Edge(u))]:However, how to get from (y) to (z) is mysterious. The di�culty is to algorithmically extract thetopological meaning of an FOtop(R; <) sentence like (y) that uses non-topological statements involving realsand <. We solve the translation problem for the case when Reg contains a single region name; it has beenrecently shown that the translation is not possible with several region names [GroSeg99]. Recall however thatsingle regions can be arbitrarily complicated (as long as they are semi-algebraic and compact), so the resultis fairly general and provides considerable insight into the technical issues involved in the translation. In theremainder of the section, spatial database schemas have a single region name unless otherwise speci�ed.We next develop the technical machinery needed for the translation of FOtop(R; <) queries into FOinvqueries. For technical reasons, it will be useful to �rst translate FOtop(R; <) queries into the point-basedlanguage FOtop(P; <x; <y). By [PSV99], this translation can be done in linear time. Thus, it is su�cientto show how to translate FOtop(P; <x; <y) queries into FOinv queries. We make use of results in [KPV97]concerning the equivalence of spatial instances (with a single region name) with respect to FOtop(R; <). Itis shown there that equivalence of spatial instances with respect to FOtop(R; <) (and therefore FOtop(P; <x; <y), see Preliminaries) is completely characterized by the cone type of the instances, that is the multisetconsisting of all vertices (cells of dimension zero) and the cyclic list of their adjacent edges and faces (labeledby whether or not they belong to the region). Furthermore, [KPV97] provides a normal form constructingfrom each instance I an instance cones(I) consisting essentially of the cones of I . For example, given theinstance I in Figure 3, the instance cones(I) is represented in Figure 4.Remark 4.4 The normal form of [KPV97] is introduced as a technical tool in the proof of their Proposition10. It is referred to as an instance with owers and stems. The normal form is not unique: di�erent instancesin normal form have the same owers but these can be conected in di�erent ways by the stems. Since thedi�erences are irrelevant for our purpose, we denote with cones(I), by abuse of notation, one of the possibleinstances in normal form constructed from I. 13

p1

p2

p3

p4

p5 p6

Figure 3: An instance I
p1 p2 p4

p3
p6p5

Figure 4: An instance cones(I)Thus, I and cones(I) satisfy the same FOtop(P; <x; <y) sentences and cones(I) is generally much simplerthan I . In terms of the invariant, the relevant information about cones(I) can be represented as a set ofcolored cycles: to each cone corresponds two cycles representing the list of edges and faces adjacent to thevertex of the cone in clockwise, resp. counterclockwise order. More precisely, consider the structure cycles(I)consisting of the following relations:� the 4-ary relation Between such that Between(!,x,y,z) holds if x, y and z are cells adjacent to somevertex, and y lies between x and z in the orientation !.� the restriction of relations Edge and Face of top(I) to elements occurring in relation Between.Clearly, the structure cycles(I) is essentially a set of 2-colored cycles (the nodes are colored according towhether they are a face or an edge). For example, cycles(I) for the instance I in Figure 3 is represented inFigure 5. In the �gure, a dark node represents a face in the region, an empty node represents an edge.
p1

p2 p4 p3
p5 p6

Figure 5: cycles(I), clockwise orientation7With slight abuse of notation. 14

Lemma 4.5 The structure cycles(I) can be de�ned by �rst-order means from top(I). Let �cycles be anFOinv formula de�ning cycles(I) from top(I).The proof of this lemma is rather straightforward. Each element of Vertex in top(I) de�nes a cycle incycle(I) which element are its neighborhoods de�ned by the relation Edge-Vertex and Face-Edge, orderedusing the Orientation predicate.The key observation in the translation provides a condition on cycles(I) and cycles(J) that ensuresFOrtop(P; <x; <y)-equivalence of cones(I) and cones(J). We �rst consider the case when cycles(I) andcycles(J) consist of single cycles (in the two orientations), then consider the case of multiple cycles. We �rstprove the following.Lemma 4.6 Let cones(I); cones(J) be spatial instances consisting of a single cone. If cycles(I) and cycles(J)are equivalent with respect to FOr+2 then cones(I) and cones(J) are equivalent with respect to FOrtop(P; <x; <y).Proof Suppose cones(I); cones(J) consist of single cones and cycles(I) and cycles(J) are equivalent withrespect to FOr+2. Note that each of cycles(I) and cycles(J) consists of a single cycle (in the two orientations).We wish to prove that cones(I) and cones(J) are equivalent with respect to FOrtop(P; <x; <y). The di�cultyis that cones(I) and cones(J) are generally not equivalent with respect to FOr(P; <x; <y). To show theirequivalence with respect to FOrtop(P; <x; <y), we construct instances nice(cones(I)) and nice(cones(J)) suchthat:� nice(cones(I)) is equivalent to cones(I) with respect to FOrtop(P; <x; <y);� nice(cones(J)) is equivalent to cones(J) with respect to FOrtop(P; <x; <y); and,� nice(cones(I)) and nice(cones(J)) are equivalent with respect to FOr(P; <x; <y).To construct nice(cones(I)) from cones(I) (and similarly for J) we modify cones(I) in two stages. First,we apply a homeomorphism to cones(I). In the second stage we replace the resulting instance with aninstance equivalent to it with respect to FOtop(P; <x; <y). Since both transformations preserve equivalencewith respect to FOrtop(P; <x; <y), nice(cones(I)) is equivalent to cones(I) with respect to FOrtop(P; <x; <y).Lastly, we show that nice(cones(I)) and nice(cones(J)) are equivalent with respect to FOr(P; <x; <y) (andtherefore with respect to FOrtop(P; <x; <y)). The above sequence of equivalences shows that cones(I) andcones(J) are equivalent with respect to FOrtop(P; <x; <y).We now describe the two stages in the construction of nice(cones(I)) and nice(cones(J)). One subtletyis that the constructions for I and J are not independent, as will become clear shortly. The purpose of the�rst stage in the construction of nice(cones(I)) and nice(cones(J)) is to lie out the lines and petals (faces)of the two cones in a very regular manner, which will eventually facilitate playing an FOr(P; <x; <y)-gameon the modi�ed instances. In the �rst stage, the vertex of each cone is placed at the origin, and all petalsare placed in the second quadrant so that their minimum points relative to <y are lined up parallel to thex-axis (see Zone A in Figure 6). Consider a bounding box that includes all the petals of the cone. The linesare pushed away to a region that lies to the lower right of the bounding box, and the connections betweenthe lines are drawn there (Zone B in Figure 6).Let us focus on Zone B of the instances constructed so far. Note that the pattern of connections in ZoneB can be quite complex. However, the connections can be drastically simpli�ed as illustrated in Figure 7:lines are simply connected in consecutive pairs (there is always a even number of lines because each lineenters and leaves the zone exactly once). Consider the subinstance consisting of a bounding box around ZoneB, where the connections occur. Each line intersects the left edge of the box at a point, and connectionsbetween the lines can be viewed as connections between the corresponding points. Since the cones aroundthese points remain unchanged by the above simpli�cation, the instance with simpli�ed Zone B is equivalentto the original with respect to FOtop(P; <x; <y) by [KPV97].The constructions of nice(cones(I)) and nice(cones(J)) outlined so far have been independent of eachother. However, we glossed over two technical subtleties:15

����
����
����
����
����

����
����
����
����
����

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

Zone B

zone A Figure 6: nice(cones(I))
Zone BZone B Figure 7: Zone B of nice(i) It may be necessary to perform a reection on one of the instances in order to make them equivalentwith respect to the FOr(P; <x; <y)-game.(ii) The construction of the instances in the �rst stage must make a choice of a �rst line or petal (theclosest to the positive x-axis).The information needed to deal with (i) and (ii) is provided by the winning strategy of the Duplicator inthe FOr+2-game on cycles(I) and cycles(J). Consider (i). To see if a reection must be applied to one ofthe instances, consider the winning strategy of the Duplicator for the game where the Spoiler �rst picks anorientation in the structure cycles(I). Duplicator responds by picking an orientation in cycles(J). If theorientations are the same, no reection is needed. Otherwise, a reection is applied to one of the instances.Now consider (ii). Continuing with the game, suppose Spoiler picks a node nI in cycles(I) and Duplicatorresponds by picking a node nJ in cycles(J). Then in the construction of nice(cones(I)) the �rst line or petalis chosen to be the one represented in the invariant by nI , and the �rst line or petal in nice(cones(J)) ischosen to be the one corresponding to nJ . The construction of nice(cones(I)) and nice(cones(J)) is nowcomplete.We next show that nice(cones(I)) and nice(cones(J)) are equivalent with respect to FOr(P; <x; <y),i.e. the Duplicator has a winning strategy for the FOr(P; <x; <y)-game on the two instances. This is doneby combining winning strategies from two games. The �rst is used to guide the game within Zone A, andthe second provides a strategy for Zone B. It is easy to see that the game in the two zones are independentof each other.We begin by describing Duplicator's winning strategy for Zone A. The strategy mimics Duplicator'swinning strategy for the r remaining moves of the (r + 2)-game on cycles(I) and cycles(J) (recall that the�rst two moves are used in the construction of nice(cones(I)) and nice(cones(J))). Suppose Spoiler picksa pebble p in Zone A in, say, instance nice(cones(I)). If p is in the region, it belongs to an edge or facerepresented by a node c in cycles(I). Suppose Duplicator's response in the game on cycles(I) and cycles(J) isto pick a node c0 in cycles(J). In the FOr(P; <x; <y)-game on nice(cones(I)) and nice(cones(J)) Duplicatorpicks a point p0 on the edge or face corresponding to c0. Furthermore, due to the similar shapes of the twocones, p0 can be picked so that it sits in the desired order relative to previously picked points. If the point16

p lies outside the region, it can be associated with the point in the region immediately above it, and thestrategy is similar.Duplicator's winning strategy for Zone B is much simpler. Essentially, Zone B can be viewed as a totalorder (whose elements correspond to the pairs of connected lines). It is well-known that total orders areequivalent with respect to the FOr-game i� they have at least 2r�1 elements (e.g., see [Ros82]). From theexistence of the winning strategy for the FOr+2-game on cycles(I) and cycles(J) it follows immediately thatboth structures have exactly the same number of edges (in this case, the strategy for the FOr(P; <x; <y)-game on Zone B is the identity) or at least 2r edges, yielding total orders of size 2r�1 (pairs of connectedlines). The winning strategy for the FOr-game on total orders of size at least 2r�1 can be easily mimickedin the FOr(P; <x; <y)-game on Zone B of nice(cones(I)) and nice(cones(J)).Lastly, the game in the intermediate zone between Zones A and B is very similar to the game in Zone B.In conclusion, nice(cones(I)) and nice(cones(J)) are equivalent with respect to FOr(P; <x; <y), andcones(I) and cones(J) are equivalent with respect to FOrtop(P; <x; <y), which completes the proof. �We next consider instances with several cones. Let I and J be two spatial instances, and cycles(I) andcycles(J) be de�ned as earlier. Given r > 0, the r-type of a �nite structure is the set of FOr sentencesit satis�es. Note that the FOr sentences satis�ed by each r-type can be used to order the r-types. Alsorecall that for each r there are �nitely many r-types (the same as the number of equivalence classes of �nitestructures with respect to the FOr-game). Let us now de�ne the equivalence relation 'r on the structurescycles(I) as follows: cycles(I) 'r cycles(J) i� for each (r + 2)-type � cycles(I) and cycles(J) contain thesame number of single cycles of (r + 2)-type � , or both contain more than 2r single cycles of type � .We can now extend Lemma 4.6 to the case of multiple cycles as follows:Lemma 4.7 Let I and J be spatial instances. If cycles(I) 'r cycles(J) then I and J are equivalent withrespect to FOrtop(P; <x; <y).Proof Recall that by [KPV97], I is equivalent to cones(I) with respect to FOtop(P; <x; <y), andsimilarly for J and cones(J). Thus, it is enough to show that cones(I) and cones(J) are equivalent withrespect to FOrtop(P; <x; <y). We use Ehrenfeucht-Fraiss�e games.We assume given an arbitrary order on (r+2)-types. For each (r+2)-type � let a� be a �xed (r+2)-typeof a node of cycle of r-type � .Similarly to Lemma 4.6, we construct instances nice(cones(I)) and nice(cones(J)) that are equivalentto cones(I) and cones(J) with respect to FOrtop(P; <x; <y) and will be shown equivalent to each other withrespect to FOr(P; <x; <y). Basically, the construction for multiple cycles replicates the construction forindividual cycles (see Figure 8). In particular, Zones A and B are the same for each cycle. Additionally, allcones are lined up in the order of their r-types, and the �rst edge or face in a cycle of (r+2)-type � is chosenso that its corresponding node in cycles(I) (resp. cycles(J)) has the (r + 2)-type a� previously �xed.
����
����
����
����
����

����
����
����
����
����

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

Zone B

zone A Figure 8: nice(cones(I))The FOr(P; <x; <y) game on nice(cones(I)) and nice(cones(J)) is now played as in Lemma 4.6, withthe additional complication of having to choose a cone at each move. However, this is easy: if Spoiler plays17

in the k-th cone of type � of which there are fewer than 2r cones, Duplicator responds in the k-th cone of thesame type � (recall that by the de�nition of 'r, cycles(I) and cycles(J) have in this case the same numberof cycles of type �). If there are more than 2r cones of type � , then Duplicator picks a cone according tothe winning strategy for the FOr game on orders of length 2r (the order of cones of type � with respect to<x). With the cone properly selected, the winning strategy is the same as in the single cone case describedin Lemma 4.6. �Lemma 4.7 suggests a way to translate FOrtop(P; <x; <y) sentences into FOinv sentences. Indeed, itfollows from the lemma that the set of invariants of instances satisfying an FOrtop(P; <x; <y) sentence 'is a union of equivalence classes of 'r on their cycles. Note that there are �nitely many such equivalenceclasses and each can be de�ned by an FOinv formula. For each equivalence class � of 'r let � be theFOinv formula de�ning � , i.e. cycles(I) j= � i� cycles(I) belongs to � . If I j= ' for each I such thatcycles(I) 2 � , we say that � satis�es '. Let T be the set of equivalence classes of 'r satisfying '. Thetranslation of ' into FOinv is the sentence(?) inv(') = _�2T � (�cycles):(Recall from Lemma 4.5 that �cycles is the FOinv formula de�ning cycles(I) from top(I)). From the earlierremarks it follows that '(I) = inv(')(top(I))for every spatial instance I .The above shows that each FOrtop(P; <x; <y) sentence ' has a corresponding sentence inv(') in FOinv .In order to e�ectively compute inv(') one needs to compute the set T of equivalence classes of 'r satisfying'. To this end, it su�ces to do the following for each equivalence class � :(i) construct a cone instance I� such that cycles(I�) is in � ;(ii) check whether I� j= '.If the answer to (ii) is positive, then � 2 T . Clearly, verifying (ii) presents no problem once I� is constructed.The following lemma addresses (i), which is less simple.Lemma 4.8 Given a class � of 'r one can e�ectively construct a cone instance I� such that cycles(I�) isin � .Proof Recall that each equivalence class of 'r is characterized by the multiset of (r + 2)-types of theindividual cycles, with the multiplicity truncated to 2r. Since a cone instance I� such that cycles(I�) is in �is essentially a union of cone instances of single cycles of appropriate (r+2)-types, it is su�cient to show howto construct I� when � is an (r + 2)-type of a single cycle. Furthermore, because an (r + 2)-type describesa cycle and its image obtained by reversing the orientation, we can assume that the orientation is �xed andconstruct an instance for the corresponding (r + 1)-type.Thus, let � be an (r + 1)-type of a single colored cycle. To construct a cycle of type � (if such exists), itis useful to notice a strong connection between (r + 1)-types of colored cycles and r-types of words over thealphabet consisting of the two colors. Indeed, following the choice of the �rst nodes in an (r+1)-game on twocolored cycles, the remainder r-game is essentially played on the words obtained by going around the cyclesstarting from the nodes picked in the �rst move. Given a colored cycle with an orientation, let us say that aword on the alphabet of colors is compatible with the cycle if it is obtained by walking around the cycle inthe given orientation, starting from some node. For a cycle c, let L(c) be the set of words compatible withc, and for a class of cycles � , let L(�) = Sc2� L(c). Clearly, there exists a cycle of type � i� L(�) 6= ;. Wewill show that L(�) is regular and provide a way to compute a regular expression for it. Then it is possibleto test non-emptiness of L(�), and if L(�) 6= ; produce a word in L(�) (which yields a cycle of type �).Note that an (r + 1)-type of colored cycles determines the set of r-types of words compatible with suchcycles. It well known that there are �nitely many r-types of words over a �xed alphabet, and the r-equivalenceclasses are precisely the regular star-free languages of dot-depth r [RS97]. Furthermore, the number of such18

languages is hyperexponential in r and the regular expressions de�ning the languages of dot-depth r can bee�ectively computed [Wil]. Let L� denote the regular language consisting of words of r-type �. Also, let Rconsist of the set of r-types � such that L� \ L(�) 6= ; and �R consist of the remaining r-types. Note that R(and so �R) is e�ectively computable from � [EF95b]. Furthermore, it turns out that L(�) can be computedfrom R. To see this, let us denote by ~L the closure of a language L under conjugate, i.e. ~L = fvu j uv 2 Lg.(It is easily seen that if L is regular then ~L is also regular.) We claim that(y) L(�) = \�2R ~L� � [�2 �R ~L�Let LR denote the right hand side of (y), and observe that LR is a regular language whose regularexpression is e�ectively computable from R. To prove (y), consider �rst the inclusion L(�) � LR. Supposec is of (r + 1)-type � . Clearly, L(c) \ L� 6= ; for each � 2 R. Since L(c) is generated by the conjugates ofany word it contains, it follows that L(c) � ~L� for every � 2 R. For similar reasons L(c) \ ~L� = ; for every� 2 �R. It follows that L(�) � LR.Conversely, consider LR � L(�). Let w 2 LR and cw be the cycle corresponding to w. We wish toshow that cw has (r + 1)-type � . Let c be a cycle of (r + 1)-type � . It is su�cient to show that there is awinning strategy for the (r + 1)-game on cw and c. Suppose Spoiler begins by picking a node in c, yieldinga corresponding word u of r-type �. Clearly, � 2 R and since w 2 T�2R ~L�, some conjugate w0 of w hasr-type �. Duplicator then picks the node in cw yielding w0. In the remainder r moves, Duplicator mimicsthe winning strategy of the r-game on w0 and u. Now suppose Spoiler's �rst move is to pick a node in cw,yielding a conjugate w00 of w. Since w 62 S�2 �R ~L� it follows that w00 has r-type � for some � 2 R. Since c hastype � , there must exist a node yielding a word u of type �, which Duplicator picks. Again, the remainderof the game mimics the winning strategy in the r-game on w00 and u. Thus, c has (r + 1)-type � and sow 2 L(�), which completes the proof of (y).In summary, using (y), one can compute as follows a cycle of type � , if such exists:� compute a regular expression for LR;� if LR = ; then there is no cycle of type � ;� if LR 6= ; �nd a word w 2 LR and build the corresponding cycle.Finally, it is straightforward to construct from the cycle a corresponding cone instance I� .Note that the complexity of the above procedure is hyperexponential in r because there are hyperexpo-nentially many r-types of words, and therefore the size of the regular expression for LR is hyperexponentialin r. �The above development leads to the main result on the translation.Theorem 4.9 There exists a mapping inv from FOtop(R; <) sentences over Reg to FOinv sentences overinv(Reg) such that:1. for each instance I over Reg, and ' 2 FOtop(R; <),'(I) = inv(')(top(I)):2. inv(') is computable from '.Proof The FOinv sentence inv(') is the sentence described in (?) above. This is �rst-order by Lemma4.7. The computability follows from Lemma 4.8. �Remarks (i) Recall that the topological invariant, as de�ned in the present paper, contains the relationBetween providing the full cyclic order on the elements adjacent to a given vertex. Other presentations ofthe invariant (including the one in [PSV99]) only provides the successor on the element adjacent to each19

vertex. The distinction is relevant to the results in this section. (They do not a�ect the results of Section 3,since �xpoint can compute the cyclic order from the successor.) Indeed, the availability of the cyclic orderis used in a crucial way in the proof of Theorem 4.9. Speci�cally, it allows to de�ne cycles(I) from top(I)by �rst-order means. It turns out that Theorem 4.9 is no longer true if only the successor is provided. Tosee this, consider instances having only a single cone. Consider the two sets of such instances illustrated inFigure 9 : on the left side the cone consists of a face followed by several lines then two faces followed bya large number of lines, then again a face followed by lines, and �nally two faces followed by lines; on theright side the single faces are consecutive, as are the two pairs of faces, again with a large number of lines inbetween. It is possible to �nd a FOtop(R; <) sentence distinguishing the two sets. However, their topologicalinvariants (where successor rather than cyclic order is provided) are indistinguishable by FOinv sentences.This follows from the fact that for each d > 0 if there are su�ciently many lines the two instances have thesame neighborhood types of size d. Then it follows from [FSV95] that the two sets cannot be distinguishedby an FOinv sentence. Thus, not all FOtop(R; <) sentences can be translated into FOinv sentences on theinvariant if the cyclic order is not provided.
Figure 9: Instances that are distinguishable by FOtop(R; <), but not by FOinv(ii) Theorems 4.2 and 4.9 suggest an interesting trade-o� between the expressive power of the targetquery language over the topological invariant and the complexity of the translation of FOtop(R; <) queriesinto the target language. Although all FOtop(R; <) queries can be uniformly translated into FOinv queries,the complexity of the translation goes down from hyperexponential to linear time if the target language isthe more powerful FO + �+ instead of FOinv .(iii) We have shown that all FOtop(R; <) sentences can be translated into FOinv queries. One mightnaturally wonder if FOinv and FOtop(R; <) express precisely the same topological properties. It is easily seenthat this is not the case. For example, consider the instances in Figure 10. Clearly, FOinv can distinguishbetween the two instances; it follows from [KPV97] that FOtop(R; <) cannot.

I JFigure 10: Instances I and J are distinguishable by FOinv but not by FOtop(R; <)(iv) In considering the translation issue, we focused on the topological fragment of FO(R; <) on the spatialdatabase side. It is natural to wonder whether the results can be extended to more powerful languages, suchas FO(R; <;+; �). However, there seem to be some di�culties involved. For the language FO(R; <;+; �),the use of Ehrenfeucht-Fraiss�e games becomes extremely complicated, and it is not clear how to �nd the niceinstances topologically equivalent to the input that we used in our proof to facilitate Duplicator's strategy.Incidentally, note that it is open whether the topological fragments of FO(R; <;+; �) and FO(R; <) coincide.This question is similar to the collapse of order-generic queries for �nite database (see [BDLW98]).20

Practical considerations In what circumstances is translation a viable option? Suppose we have toevaluate an FOtop(R; <) query ' on a spatial instance I (over a single region name). We have to comparethe following evaluation strategies:(i) evaluate ' on I using classical quanti�er elimination techniques; the complexity is ptime in I and2-exptime in the quanti�er depth of '.(ii) translate ' into inv(') 2 FOinv and evaluate inv(') on top(I). The complexity is ptime in top(I)and hyperexponential in the quanti�er depth of '.(iii) translate ' into inv(') 2 FO + �+ and evaluate inv(') on top(I). The complexity is ptime in top(I)and pspace in '.Clearly, the above information is not conclusive. How direct evaluation compares to translation into FOinv orFO+�+ followed by evaluation on the invariant depends critically on how much smaller top(I) is comparedto I . The gap can be arbitrarily large, so in principle translation can win, although (ii) is likely to beprohibitively expensive due to the hyperexponential complexity in the quanti�er depth. At this point itbecomes useful to examine real data, in order to gauge how top(I) compares to I in realistic settings.To this end, we examined cartographic data from the Sequoia 2000 project [Seq] and the French NationalGeographical Institute [IGN]. A �rst set from Sequoia 2000 contains cartographic data on ground occupancyin California (agricultural land, range land, forests, lakes, bays, estuaries, wetlands, beaches and tundra).The original data is represented by 31,778 polygons stored as a list of 2,557,071 points taking 20 bytes each.The corresponding topological invariant has 190,045 cells taking 3 bytes each, which is 1/90 of the originaldata. A second set from Sequoia 2000 contains data on rivers, lakes and estuaries and contains 3410 polygonswith 135,527 points at 20 bytes each. The invariant has 4,570 cells at 2 bytes each, which is 1/300 of theraw data. Data from the French National Geographical Institute contains cartographic data on the city ofOrange (France) and surroundings. It consists of 145 polygons with 11,916 points at 18 bytes each. Thetopological invariant has 1,487 cells at 2 bytes each (1/72 of the original data).As it turns out, other characteristics of data may also make translation viable. In cartographic data, it isreasonable to assume that there is a constant bound on the number of lines intersecting at the same point.In the data sets mentioned above, the average number of lines intersecting at a point is 4.5 for both, withmaxima of 12 for Sequoia 2000 and 8 for the French National Geographical Institute data. If a constantbound is assumed, then the overall complexity of option (ii) (evaluation via translation to FOinv) goes downto polynomial in top(I) and 2-exptime in the quanti�er depth of '. This wins over direct evaluation, whichis polynomial in I rather than top(I). The same complexity is obtained in the case of fully two-dimensional8regions. These are regions equal to the closure of their interior; in other words, the only edges and verticesoccur on boundaries of faces.We examined two possibilities for the targets of the translation of FOtop(R; <) queries: (ii) FOinv and(iii) FO + �+. On the face of it, the complexity of the translation and overall query evaluation seems tofavor (iii). However, there is a caveat: the stated complexities of the translation and evaluation hide largeconstants. Nonetheless, (iii) seems likely to win over (ii), assuming that a recursive query evaluation engineevaluating the �xpoint queries on the invariant is available.Lastly, another option of practical interest is to avoid query translation altogether by using the followingstrategy for evaluating ' on input I :(iv) construct a standard linear instance I 0 such that top(I 0) = top(I) and evaluate ' on I 0.The instance I 0 can be evaluated from top(I) in ptime, by Theorem 2.2. Altogether, I 0 can be constructedfrom I in ptime. Note that the size of I 0 is roughly the same as the size of top(I). Thus, maintaining thesimpli�ed linear instance I 0 as an annotation instead of top(I) combines the advantage of avoiding querytranslation with evaluation on a smaller input. Note however that the only algorithm known at this pointfor constructing I 0 is via the topological invariant. We plan to evaluate option (iv) experimentally in futurework.8Term introduced by B. Kuijpers and J. Van Den Bussche.21

5 ConclusionsWe examined the use of topological annotations to evaluate topological queries against a spatial database.The �rst main result, showing that �xpoint expresses exactly the ptime queries on topological invariants,shows that topological invariants are especially well-behaved with respect to descriptive complexity, andprovides an appealing target language for the translation of spatial queries into queries against the invariant.If recursion is not supported, FOtop(R; <) queries can be translated into FOinv queries in the case of one-region schemas. Unfortunately, this cannot be extended to the general case of multiple regions [GroSeg99].The complexity of the translation into FOinv is prohibitively high, even for one-region schemas. However, itbecomes more reasonable in several special cases of practical interest, such as the existence of a small boundon number of lines intersecting at one point. In all cases, the cost of the translation has to be balancedagainst the potential savings due to the di�erence in size between spatial databases and their topologicalinvariants. Finally, another appealing option is to use as annotation a linear embedding of the topologicalinvariant, which circumvents the need for query translation.It is natural to wonder if these techniques can be extended beyond dimension two. This question is exam-ined in [Seg], and the picture is largely negative. The existence of a topological invariant for 3-dimensionalsemi-algebraic databases implies a positive answer to an open problem in Knot Theory: the existence of aninvariant for topologically equivalent knots [Cro63]. In dimension four (and higher), it is shown in [Seg] thatthere is no �nite topological invariant, because topological equivalence itself is undecidable. This is shownby adapting the proof of an undecidability result on topological equivalence of manifolds [Mar58]. The latterproof is by reduction of the word problem for �nitely generated groups to isomorphism of the fundamentalgroups of two topological spaces, which in turn is equivalent to their being homeomorphic.References[AHV95] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.[AV95] S. Abiteboul and V. Vianu. Computing with �rst-order logic. Journal of Computer and SystemSciences 50(2):309{335, 1995.[BCR98] J. Bochnak, M. Coste, M.-F. Roy. Real Algebraic Geometry. Springer Verlag, 1998.[BDLW98] M. Benedikt, G. Dong, L. Libkin and L. Wong. Relational expressive power of constraint querylanguages. In Journal of the ACM, 45(1):1{34, 1998.[BKR86] M. Ben-Or,D. Kozen, and J. Reif. The complexity of elementary algebra and geometry. In Journalof Computer and System Sciences, 32(2):251{264, 1986.[CFI92] J. Cai, M. F�urer, and N. Immerman. An optimal lower bound onb the number of variables for graphidenti�cation. Combinatorica 12:389{410, 1992.[Cor79] J.P. Corbett. Topological principles in cartography. Technical Paper 48, US Bureau of the Census,Washington D.C., 1979.[Cos89] M. Coste. E�ective Semialgebraic Geometry. in Geometry and Robotics, LNCS 391, Springer-Verlag,1989, pp 1-27.[Cro63] R. Crowell and R. Fox. Introduction to knot theory. Springer-Verlag, GTM vol. 57, 1963.[DLW95] A. Dawar, S. Lindell, and S. Weinstein. In�nitary logic and inductive de�nability over �nitestructures. Information and Computation 119(2):160{175, 1995.[Ege93] M. Egenhofer. A Model for Detailed Binary Topological Relationships. Geomatica, 47(3-4): 261-273,1993.[EF91] M.J. Egenhofer and R. Franzosa. Point-set topological spatial relations. Int. J. Geo. Info. Sys.,5(2):161{174, 1991. 22

[EF95a] M. Egenhofer and R. Franzosa. On the Equivalence of Topological Relations. Int'l J. of GeographicalInformation Systems, 9(2):133-152, 1995.[EF95b] H-D Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.[FE92] R. Franzosa and M. Egenhofer. Topological Spatial Relations Based on Components and Dimensionsof Set Intersections. In Proc. SPIE's OE/Technology '92-Vision Geometry, R. Melter and A. Wu,eds., Boston, MA, 1992, pp. 236-246.[Ege94] M. Egenhofer. Spatial SQL: A Query and Presentation Language. IEEE Transactions on Knowledgeand Data Engineering, 6(1):86-95, 1994.[FK86] A. Frank and W. Kuhn. Cell Graph: A Provable Correct Method for the Storage of Geometry. InProc. Second International Symposium on Spatial Data Handling, D. Marble, ed., Seattle, WA, 1986,pp. 411-436.[FSV95] R. Fagin, L. Stockmeyer and M. Vardi. On Monadic NP vs. Monadic co-NP. In Inf. and Compu-tation, 120(1):78-92, 1995.[GO93] E. Gr�adel and M. Otto. Inductive de�nability with counting on �nite structures. In E. B�orger etal., editors, Computer Science Logic, CSL'92 Selected Papers, LNCS vol.702, pp. 231{247, Springer-Verlag, 1993.[GPP95] M. Grigni, D. Papadias and C.H. Papadimitriou. Topological Inference. IJCAI, 1995.[Gro97] M. Grohe. Large Finite Structures with Few Lk-Types. In Proc. Symp. on Logic in ComputerScience, 216{227, 1997.[Gro98] M. Grohe. Fixed-point logics on planar graphs. In Proc. Symp. on Logic in Computer Science, 6{15,1998.[GroSeg99] M. Grohe and L. Segou�n. Personal communication, 1999.[GK97] S. Grumbach and G. Kuper. Tractable recursion over geometric data. In Proc. Int'l. Conf. onConstraint Programming, 450{462, 1997.[GS97] S. Grumbach and J. Su. Queries with Arithmetical Constraints. Theoretical Computer Science,173(1):151-181, 1997.[GS99] S. Grumbach and J. Su. Finitely representable databases. Journal of Computer and System Sciences,55(2):273{298, 1997.[GST94] S. Grumbach, J. Su and C. Tollu. Linear constraint databases. In Proc.Logic and ComplexityWorkshop, D. Leivant ed., Indiana, 1994.[Gur84] Y. Gurevich. Toward logic tailored for computational complexity. In M. M. Ricther et al., editor,Computation and Proof Theory, Lecture Notes in Mathematics 1104, 175{216. Springer-Verlag, 1984.[Gur88] Y. Gurevich, Logic and the challenge of computer science, Trends in Theoretical Computer Science(E. Borger, ed.), Computer Science Press, 1{57, 1988.[Her91] J. Herring. TIGRIS: A Data Model for an Object-Oriented Geographic Information System. Com-puters and Geosciences, 18(4):443{452, 1991.[IGN] La Base de Donn�ees Topographiques de l'I.G.N. (The Cartographical Database of the NationalGeographic Institute, in French.) Bulletin d'Information de l'I.G.N., No. 59, 1991.[Imm86] N. Immerman. Relational queries computable in polynomial time. In Information and Control,68(1-3):86{104, 1986. 23

[Imm87] N. Immerman. Expressibility as a complexity measure: results and directions. In Proc. 2ndStructure in Complexity Conference, 194{202, 1987.[KKR95] P.C. Kanellakis, G.M. Kuper and P.Z. Revesz. Constraint query languages. In Journal of Computerand System Sciences, 51(1):26{52, 1995.[KY85] D. Kozen and C-K. Yap. Algebraic Cell Decomposition in NC . In Proc. IEEE Symp. on Foundationsof Computer Science, 1985, 515-521.[KPV95] B. Kuijpers, J. Paredaens and J. Van den Bussche. Lossless Representation of Topological SpatialData. In Proc. Fourth Int'l. Symp. on Large Spatial Databases, 1{13, 1995.[KPV97] B. Kuijpers, J. Paredaens and J. Van den Bussche. On topological elementary equivalence of spatialdatabases. In Proc. Int'l. Conf. on database Theory, 1997, 432{446.[Mor85] S. Morehouse. ARC/INFO: A Geo-Relational Model for Spatial Information. In Proc. Int'l. Symp.on Computer Assisted Cartography (Auto-Carto 7), 388-397, 1985.[Mor89] S. Morehouse. The Architecture of ARC/INFO. In Proc. Int'l. Symp. on Computer AssistedCartography (Auto-Carto 9), 266-277, 1989.[Mar58] A.A. Markov. Unsolvability of the problem of homeomorphy. In Proc. Int'l Congress of Mathematics,1958, 300-306. In Russian.[OV91] P. van Oosterom and T. Vijlbrief. Building a GIS on Top of the Open DBMS Postgres. EGIS '91,Brussels, Belgium, 1991, 775-787.[PSV99] C.H. Papadimitriou, D. Suciu and V. Vianu. Topological Queries in Spatial Databases. In Journalof Computer and System Sciences 58(1): 29-53, 1999.[Par+94] J. Paredaens, J. Van Den Bussche and D. Van Gucht. Towards a theory of spatial databasequeries. In Proc. ACM Symp. on Principles of Database Systems, 1994, 279{288.[Par95] J. Paredaens. Spatial Databases, the Final Frontier. In Proc. 5th Int'l. Conf. on Database Theory,1995, 14{32.[Par+95] J. Paredaens, J. Van Den Bussche and D. Van Gucht. First-order queries on �nite structures overthe reals. In Proc. IEEE Conf. on Logic in Computer Science, 79{87, 1995.[Ren92] J. Renegar. On the computational complexity and geometry of the �rst-order theory of the reals.in J. of Symbolic Computation, 13(3), 1992, pp. 255-300.[Ros82] J. G. Rosenstein. Linear Orderings. Academic Press, 1982.[RS97] G. Rozenberg and A. Salomaa. Handbook of formal languages. Volume 3, chapter 7, by WolfgangThomas. Springer, 1997.[Seg] L. Segou�n. Manipulation de donn�ees spatiales et topologiques. PhD Thesis, Universit�e d'Orsay,january 1999.[Seq] M. Stonebraker, J. Frew, K. Gardels and J. Meredith. The Sequoia 2000 Storage Benchmark. InProc. ACM SIGMOD Int'l. Conf. on the Management of Data, 2{11, 1993 .[SZ91] P. Svensson and H. Zhexue. Geo-SAL: A Query Language for Spatial Data Analysis. In Proc. Advancesin Spatial Databases-Second Symposium, SSD '91, O. G�unther and H.-J. Schek, eds., Lecture Notesin Computer Science, vol. 525, Springer-Verlag, New York, NY, 1991, pp. 119-140.[Tar51] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California Press,1951.[Wil] Thomas Wilke. Personal communication, 1998.24

[Var82] M.Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM Symp. on Theory ofComputing, 1982, 137-146.[Wor92] M. Worboys. A Geometric Model for Planar Geographical Objects. Int'l. J. of Geographical Infor-mation Systems, 6(5):353{372, 1992.

25

