
On First-Order Topological QueriesMartin GroheLaboratory for Foundations of Computer ScienceUniversity of EdinburghEdinburgh EH9 3JZ, Scotland, UKE-mail: grohe@dcs.ed.ac.ukLuc Segou�nINRIA-RocquencourtB.P. 105,Le Chesnay Cedex 78153, FranceE-mail: Luc.Segou�n@inria.frSeptember 25, 2001AbstractOne important class of spatial database queries is the class of topological queries, that is,queries invariant under homeomorphisms.We study topological queries expressible in the standard query language on spatial databases,�rst-order logic with various amounts of arithmetic. Our main technical result is a combinato-rial characterization of the expressive power of topological �rst-order logic on regular spatialdatabases.1 IntroductionThe expressive power of �rst-order logic over �nite relational databases is now well understood [Abiteboul et al.,Ebbinghaus and Flum, Benedikt and Libkin]. Much less is known in spatial databases (also calledconstraint databases), where the relations are no longer �nite but �nitely represented [Kuper et al.].Most of the expressiveness results in the �nite case were obtained by techniques involvinggenericity (invariance under isomorphisms) or locality of �rst-order queries.The notion of genericity, fundamental for the relational database model, can be generalized tospatial databases in various ways [Paredaens et al.]. Given a group G of transformations (trans-lations, a�nities, isometries, similarities, homeomorphisms, etc.), a query Q is G-generic if forall database instances I and each transformation g 2 G, Q(g(I)) = g(Q(I)). By FOG we de-note the set of G-generic �rst-order queries. The genericity of a �rst-order query is undecid-able [Paredaens et al.] for all interesting groups of transformations, but the expressive power ofFOG can be understood via sound and complete (decidable) languages. A language is said to besound for G if it contains only FOG queries. It is complete for G if it expresses all FOG queries.The choice of the group G depends on which information one is interested in. [Gyssens et al.]gives sound and complete languages for several natural groups of transformations (translations,a�nities, isometries, similarities). No sound and complete language is yet known for the group ofhomeomorphisms.Queries invariant under homeomorphisms, which are also called topological queries, are of fun-damental importance in various applications of spatial databases. For example, in geographicaldatabases, queries like \Is region A adjacent to region B?", \Is there a road from A to B?",or \Is A an island?" come up very naturally. Therefore, topological queries have received alot of attention in the literature (e.g. [Kuijpers et al., Papadimitriou et al., Segou�n and Vianu,1



Kuijpers and Van den Bussche]). A basic result known about topological queries is that con-nectivity of a region is not expressible in �rst-order logic [Grumbach and Su, Grumbach and Su,Benedikt et al.]. Thinking of geographical databases again, planar (or 2-dimensional) databaseinstances, where all relations are embedded in the plane R2 , are of particular importance, and allknown results on topological queries concern planar databases.A �rst attempt to understand the expressive power of topological queries is to use topologicalinvariants. In [Papadimitriou et al.] it has been proven that all topological properties of a planarspatial database can be represented in a �nite structure called the topological invariant of theinstance. In [Segou�n and Vianu] it has been shown how this topological invariant can be usedto answer topological queries. In particular, [Segou�n and Vianu] have proven that �rst-ordertopological queries on a spatial database can be automatically translated into �xpoint queries onthe topological invariant. The translation of �rst-order topological queries on the spatial databaseinto �rst-order queries on the topological invariant was proven possible only in the special case ofa single relation representing a closed region. It was left open whether this translation could beextended to the case of several regions. We answer this question negatively.The idea of representing the topological information of a spatial database instance by thetopological invariant has two important drawbacks: In a sense, the topological invariant containstoo much information; ideally we would just want to store the information that is actually ac-cessible by the query language (which is usually FO). Furthermore, the topological invariant hasno straightforward generalization to higher dimensions. The issue of �nding an invariant moresuitable for FO (and computable in any dimension) was �rst raised in [Kuijpers et al.].In the special case of one single relation representing a closed planar region, a cone structurewas given in [Kuijpers et al.] capturing precisely the �rst-order topological information. Intu-itively, the cone structure is a �nite set containing all the possible small neighborhoods of apoint. The results of [Kuijpers et al.] show that, in this context, �rst-order topological queriescould express only local properties, which is a situation known to be true in the �nite case. Oninstances with one closed region that satisfy the additional technical condition of being fully twodimensional, [Kuijpers and Van den Bussche] introduced a cone logic CL and proved that it issound and complete for topological FO. [Kuijpers et al.] asked whether their results generalize todatabase instances with a region that is not necessarily closed or several regions; we give negativeanswers to these questions.[Kuijpers et al.] introduced two local operations on planar database instances that preservethe equivalence under �rst-order topological queries (called topological elementary equivalence).We call two instances 
-equivalent if they can be transformed into instances homeomorphic toeach other by applying the operations of [Kuijpers et al.] �nitely often. Our main technical result,from which all the rest easily follows, is that on especially simple instances that we call regular,
-equivalence and topological �rst-order equivalence coincide.The paper is organized as follows: After recalling a few basic de�nitions on spatial databasesin Section 2, in Section 3 we discuss the topology of planar spatial databases and the topologicalinvariant in detail. In Section 4 we introduce topological �rst-order queries and review someresults of [Kuijpers et al.]. In Section 5, we prove that 
-equivalence is decidable in PSPACE.Our main result on regular instances is proved in Section 6. In Section 7, we derive that not all�rst-order topological queries can be translated to �rst-order queries on the topological invariant,and in Section 8 we briey discuss the problem of �nding a language that is sound and completefor topological FO.
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2 Preliminaries2.1 Spatial databasesWe �x an underlying structure R over the reals; either we let R = R< = (R; <) or R = Rlin =(R; <;+; 0; 1) or R = Rpoly = (R; <;+; �; 0; 1).1 Let �R be the vocabulary of R (i.e. either�R = f<g or �R = f<;+; 0; 1g or �R = f<;+; �; 0; 1g).For a point �a = (a1; : : : ; an) 2 Rn we let jj�ajj = maxfja1j; : : : ; janjg.2 For r 2 R, let Br(�a) :=f�b 2 Rn j jj�a � �bjj < rg be the open ball with radius r around �a, and let Sr(�a) := f�b 2 Rn jjj�a� �bjj = rg be the disk with radius r around �a.A subset S � Rn , for some n � 1, is R-de�nable, if there is a �rst-order formula '(�x) ofvocabulary �R such that S = f�a 2 Rn j R j= '(�a)g.A schema is a �nite collection � of region names. Let n � 1. An n-dimensional spatial databaseinstance I over � associates an R-de�nable set RI � Rn with every R 2 �. The sets RI are calledthe regions of I . Formally, we may interpret the region names as n-ary relation symbols and viewan instance I over � as a �rst-order structure of vocabulary �R [ � obtained by expanding theunderlying structure R by the relations RI , for I 2 �.In this paper, we only consider 2-dimensional (or planar) spatial database instances. Forconvenience, we also assume that all regions are bounded, i.e. that for every instance I over aschema � and for every R 2 � there exists a b 2 R such that jj�ajj � b for all �a 2 RI . Theboundedness assumption is inessential and can easily be removed, but it occasionally simpli�esmatters.2.2 QueriesAn m-ary query (for an m � 0) of schema � is a mapping Q that associates an R-de�nablesubset Q(I) � Rm with every instance I over �. Here we consider R0 as a one point space andlet R0 = True, ; = False; a 0-ary query is usually called Boolean query. When consideringn-dimensional spatial databases, it is reasonable to only admit queries whose arity is a divisibleby n.As our basic query language we take �rst-order logic FO. A �rst-order formula '(x1; : : : ; xm)of vocabulary �R [ � de�nes the m-ary queryI 7! '(I) := f(a1; : : : ; am) 2 Rm j I j= '(a1; : : : ; am)gof schema �.3 The topology of planar instancesR2 is equipped with the usual topology.The interior of a set S � R2 is denoted by int(S), the closure by cl(S), and the boundary bybd(S). We say that a set S � R2 touches a point �a 2 R2 if �a 2 cl(S). Two sets S1; S2 � R2 touchif S2 touches a point �a 2 S1 or vice versa.3.1 Strati�cationsThe existence of strati�cations is the fundamental fact that makes the topology of our instanceseasy to handle.A strati�cation of an instance I over � is a �nite partition S of R2 such that1As a matter of fact, we could let R be any o-minimal structure over the reals, and the main results wouldremain true.2If R = Rpoly we may also let jj�ajj =qa21 + : : :+ a2n, and we will assume we have done so in our �gures | itjust looks better. Since we are only interested in topological queries, this makes no di�erence.3



(1) For all S 2 S, either S is a one point set, or S is homeomorphic to the open interval (0; 1), orS is homeomorphic to the open disk D = f�a 2 R2 j jj�ajj < 1g.(2) For all S; S0 2 S we either have cl(S) \ cl(S0) = ; or cl(S) \ cl(S0) is the union of elements ofS.(3) For all R 2 � and S 2 S we either have S � RI or S \RI = ;.The following lemma follows from the fact that all regions of an instance are R-de�nable. Aproof can be found in [van den Dries].Lemma 3.1 For every instance I there exists a strati�cation of I.3.2 Colors and conesLet I be an instance over �. The pre-color of a point �a 2 R2 is the mapping �(�a) : � !fint; bdi; bde; extg de�ned by�(�a)(R) =8>>><>>>:int if �a 2 int(RI);bdi if �a 2 bd(RI) \ RI ;bde if �a 2 bd(RI) nRI ;ext if �a 2 R2 n cl(RI):A pre-cell is a maximal connected set of points of the same pre-color. The cone of a point �a 2 R2 ,denoted by cone(�a), is the (�nite) clockwise circular list of the pre-colors of all pre-cells touching�a. Lemma 3.1 implies that cones are well-de�ned and that there are only �nitely many distinctcones in each instance. A point �a 2 R2 is regular if for every neighborhood U of �a there is a point�a0 2 U such that cone(�a) = cone(�a0). Otherwise �a is singular. It follows from Lemma 3.1 that aninstance has only �nitely many singular points. We call an instance regular if it has no singularpoints. The cones of regular (singular) points are also called regular (singular, resp.) (cf. Figure
Figure 1: Two singular and two regular cones1). The cone-type of I , denoted by ct(I), is a (�nite) list of all cones appearing in I . Furthermore,for every singular cone this list also records how often it occurs.The color  of a point �a 2 R2 is the pair (�a) = ��(�a); cone(�a)�.3.3 CellsA cell of color  of I is a maximal connected set of points of color . The color of a cell C isdenoted by (C). Lemma 3.1 implies that there are only �nitely many cells. Our assumptionthat all regions are bounded implies that there is precisely one unbounded cell, which we call theexterior of I . Lemma 3.1 implies that every cell has a well de�ned dimension, which is either 0,1, or 2. The 0-dimensional cells are precisely the sets f�ag, where �a is a singular point.Let CI be the set of all cells of an instance I . We de�ne a binary adjacency relation EI onCI by letting two cells be adjacent if, and only if, they touch. We call the graph GI = (CI ; EI )the cell graph of I . We can partition CI into three subsets CI0 , CI1 , and CI2 consisting of the 0,1, and 2-dimensional cells, respectively. Observe that the graph GI is tri-partite with partition(CI0 ; CI1 ; CI2 ) (i.e. EI \ (CIi � CIi ) = ; for each i 2 f0; 1; 2g). Moreover, GI is connected and planar.4



Lemma 3.2 Let I be an instance and C 2 CI .(1) If C 2 CI2 , then either C is homeomorphic to the open disk D = B1((0; 0)), or there existsan m � 1 such that C is homeomorphic to the open disk Dm with m holes. To be de�nite,we let Dm := D n [0�i�m�1 cl�B1=3m�� im ; 0���:(2) If C 2 CI1 , then C is homeomorphic to the sphere S1((0; 0)) or to the open interval (0; 1).Proof: This follows easily from Lemma 3.1. 2The skeleton SI of an instance I is the set of all 0-dimensional cells and all 1-dimensional cellshomeomorphic to (0; 1). Note that the skeleton of a regular instance is empty.Lemma 3.3 Let I be an instance. Then every connected component of the graph GI nSI is a tree.In particular, if I is regular then GI is a tree.Proof: Follows from the Jordan Curve Theorem and Lemma 3.2. 2Figure 2 illustrates a typical connected component of an instance I after removing the skeleton.Note that every connected component of the graph GI n SI has a unique \exterior" cell which we
Figure 2:may consider as the root of the tree. Having the tree directed by �xing this root, we may speakof the parent and the children of a node.The following observation, which is a consequence of the fact that the color of a 1-dimensionalcell contains the colors of its 2-dimensional neighbors, will be useful later.Lemma 3.4 Let I; I 0 be instances and C 2 CI1 ; C 0 2 CI01 such that (C) = (C 0). Then for everyB 2 CI2 that is adjacent to C there exists a B0 2 CI02 that is adjacent to C 0 such that (B) = (B0).3.4 The topological invariantTwo instances I; J over a schema � are homeomorphic if there is a homeomorphism h : R2 ! R2such that for all �a 2 R2 and each R 2 � we have �a 2 RI () h(�a) 2 RJ .The topological invariant of an instance I over � is an expansion YI of the cell graph thatcarries enough information to characterize an instance up to homeomorphism. The vocabularyof YI is �̂ := fE;O; dim0; dim1; dim2; Xg [ fR̂ j R 2 �g, where E is binary, O is 8-ary, anddim0; dim1; dim2; X and R̂ for R 2 � are unary. The restriction of YI to fEg is the cell graphGI of I . dimi consists of the i-dimensional cells, for i = 0; 1; 2. X only contains the exterior of I(the unique unbounded cell). For every R 2 �, the unary relation R̂ consists of all cells that aresubsets of RI .O gives the orientation. It is an equivalence relation on the quadruples(C;B;B0; B00), where C is 0-dimensional and B;B0; B00 are adjacent to C. Two such quadruples5



(C1; B1; B01; B001 ), (C2; B2; B02; B002 ) are equivalent if either B0i appears between Bi and B00i in theclockwise order of the cells adjacent to Ci for both i 2 f1; 2g or B0i appears between Bi and B00i inthe anti-clockwise order of the cells adjacent to Ci for both i 2 f1; 2g .3 Note that O is empty inregular instances.It is proven in [Papadimitriou et al.] that I and J are homeomorphic if, and only if, YI andYJ are isomorphic and that YI is computable from I in time polynomial in the size of I . SinceGI is a planar graph and canonization of planar graphs is in PTIME (see, e.g., [Grohe]), we canactually assume that YI is canonical in the sense that for homeomorphic instances I and J wehave YI = YJ .44 Topological queries and topological elementary equiva-lence4.1 Topological queriesA query is topological if for every homeomorphism h of R2 and for all instances I we haveQ(h(I)) =h(Q(I)). FOtop denotes the set of all �rst-order formulas de�ning a topological query.It is well-known (and easy to see) that the set FOtop is not decidable.The following lemma collects a few basic FO-queries. Its proof is an easy exercise.Lemma 4.1 (1) For every color  there is a �rst-order formula '(�x) such that for every in-stance I and for every �a 2 R2 we have I j= '(�a) () (�a) = .(2) For every  (�y) 2 FO there is a formula 'bd( )(�x) 2 FO such that for every instance I wehave 'bd( )(I) = bd( (I)).(3) There is a formula '1(�x) 2 FO such that for every instance I we have'1(I) = �(a1; a2) 2 R2 j 8R 2 � 8(b1; b2) 2 RI : ja1j > jb1j and ja2j > jb2j	:Note that for every color  the formula ' is in FOtop. Moreover, for  2 FOtop the formula'bd( ) is in FOtop. In particular, this is the case for  (�y) = R(�y) for an R 2 �. On the otherhand, the formula '1 is not in FOtop.In [Segou�n and Vianu] it is proven that FOtop-queries over I can be translated in linear timeinto �xpoint+counting queries over the topological invariant YI . Furthermore, if R = R< thenFOtop-queries over I can be translated to FO-queries over YI on instances with just one closedregion. (More precisely, this means that there is a recursive mapping that associates with every' 2 FOtop of vocabulary f<;Rg a '0 2 FO of vocabulary dfRg such that for all instances I overfRg, where RI is a closed set, we have I j= ' () YI j= '0.)The question was left open whether this result extends to instances with one arbitrary regionor with several regions. In Section 6, we give a negative answer to this question.4.2 Topological elementary equivalenceTwo instances I; J are (topologically) elementary equivalent (denoted I �t J) if they satisfy thesame topological �rst-order sentences.It is proven in [Kuijpers et al.] that if � = fRg then for all instances I; J in which RI , RJ areclosed sets we have: I �t J () ct(I) = ct(J): (4.1)3There are various ways to de�ne the orientation, ours is equivalent to [Segou�n and Vianu].4More precisely, there is a PTIME algorithm that, given an instance I, computes YI and a one-to-one mapping�I : CI ! f1; : : : ; jCI jg (a canonical numbering) such that for homeomorphic instances I; J the mapping (�J )�1 ��I : CI ! CJ is an isomorphism from YI to YJ . 6



We will see in Section 6 that this equivalence cannot be extended to instances with one arbitraryregion or with several regions.To prove this result, [Kuijpers et al.] introduced two simple local operations transforming aninstance into an elementary equivalent one. Their straightforward extension to several regions isdepicted in Figure 3, which is to be read as follows: Suppose we have an instance I that contains
ω

ω2

1

Figure 3: Operations preserving �t.an open subset homeomorphic to one of the left hand sides of Figure 3. The di�erent shades ofgrey display di�erent colors. Then it can be replaced by the corresponding subset on the righthand side (cf. [Kuijpers et al.] for details). Note that both operations are symmetric, we can gofrom the right to the left by applying the same operation again.Let !1 denote the �rst and !2 the second of the two operations in Figure 3. For instances Iand J we write I  !!i J if I can be transformed into an instance homeomorphic to J by anapplication of !i (for i 2 f1; 2g). We write I �
 J if I and J can be transformed into each otherby a �nite sequence of operations  !!1 and  !!2 .Then the proof of [Kuijpers et al.] easily yields:Lemma 4.2 For all instances I, J we have: I �
 J =) I �t J .It is an open question whether the converse of Lemma 4.2 holds. In particular, this is interestingbecause is not known whether �t is decidable or not, whereas �
 is decidable in PSPACE (thisis Proposition 5.5 in the next section). [Kuijpers et al.] have shown that �t and �
 coincideon instances with only one closed region. We can extend their result to several regions, but oninstances with only regular cones.5 Minimal instancesIntuitively a instance is minimal if its number of cells cannot be reduced by applying !1 or !2.More formally we have:De�nition 5.1 An instance I is minimal if it satis�es the following two conditions:(M1) If C 2 CI1 is homeomorphic to S1 and B;B0 2 CI2 are adjacent to C and homeomorphic toDm, for some m � 1, then (B) 6= (B0).(M2) If B 2 CI2 and C;C 0 2 CI1 are adjacent to B and homeomorphic to S1((0; 0)), then (C) 6=(C 0).Lemma 5.2 There is a PTIME algorithm that associates with every instance I a minimal instanceM(I) such that I �
 M(I).This can be done in such a way that for homeomorphic instances I; J we have M(I) =M(J).7



Proof: Suppose �rst that I does not satisfy (M1). We show that I can be transformed to instanceJ with fewer cells violating (M1), by two applications of !1.Let C be a 1-dimensional cell homeomorphic to S1 such that both neighbors B1; B2 of C havethe same color, but neither is homeomorphic to D. Then instance I locally looks like Figure 4(1).We apply !1 twice (to the dashed boxes) and obtain an instance that locally looks like Figure4(3). Note that the 1-dimensional cell in Figure 4(3) does not violate condition (M1), because itsinterior does not have any holes and thus is not homeomorphic to Dm for an m � 1. We haveobviously reduced the number of cells violating (M1).
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C (1) (2) (3)Figure 4:Suppose now that I does not satisfy (M2), then it can be transformed to an instance J withfewer cells violating (M2) by an application of !2 without increasing the number of cells violating(M1).To see this, let B be a 2-dimensional cell in I that is adjacent to the cells C1; C2 homeomorphicto S1 of the same color. A cell homeomorphic to S1 is adjacent to two 2-dimensional cells. LetB1; B2 be the other neighbors of C1; C2, respectively. Then by Lemma 3.4, B1; B2 also have thesame color. We have to distinguish between two cases:Case 1: Both C1 and C2 are children of B. Then we can reduce the number of violations of(M2) by an application of !2 (cf. Figure 5).
B1 B2

B B

(1) (2)Figure 5:Case 2: C1 is the parent of B and C2 its child. Figure 6 shows how to proceed.
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B(1) (2)Figure 6:A PTIME algorithm transforming a given instance I to a minimal instanceM(I) may proceedas follows: Given I , the algorithm �rst computes the invariant YI ; this is possible in PTIME8



[Papadimitriou et al.]. The operations !1 and !2 translate to simple local operations on YI . Ouralgorithm �rst applies pairs of !1 until (M1) holds (as in �gure 4), and then !2 until (M2) holds.This can be done by a simple greedy strategy. The result is a structure Y that is the topologicalinvariant of a minimal instanceM(I). It is shown in [Papadimitriou et al.] that, given an invariantY , an instance J such that YJ = Y can be computed in polynomial time.Because YI is canonical (cf. Page 6), this algorithm also guarantees that for homeomorphicinstances I; J we have M(I) =M(J). 25.1 The language of an instanceA fundamental curve is anR-de�nable continuous mapping f : R ! R2 such that lima!�1 jjf(a)jj =1 and lima!1 jjf(a)jj = 1. We take f to be R-de�nable and not arbitrary because then forevery 2-dimensional cell C the set f�1(C) is a �nite union of open intervals (one of which maybe of the form (�1; a) or of the form (b;1)), and for every 0- and 1-dimensional cell C the setf�1(C) is a �nite union of closed intervals (some of which may just be single points).We are interested in the �nite sequence of colors appearing on a fundamental curve, i.e. in a�nite word W (f; I) over the alphabet �I consisting of all colors occurring in I . We say that aword W 2 ��I is realized in I if there is a fundamental curve f such that W (f; I) =W . From theremark above we know that W (f; I) is a �nite word. The language L(I) is the set of all wordsrealized by I .Example 5.3 Let � = fRg and I be the instance with RI := f�a 2 R2 j (1=2) < jj�ajj � 1g.I has �ve cells C1 := f�a 2 R2 j jj�ajj > 1g, C2 := f�a 2 R2 j jj�ajj = 1g, C3 := f�a 2 R2 j (1=2) <jj�ajj < 1g, C4 = f�a 2 R2 j jj�ajj = (1=2)g, and C5 = f�a 2 R2 j jj�ajj < (1=2)g. Let �; �; ; � be thecolors of C1; : : : ; C4, respectively, and note that C5 has the same color � as C1.
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γFigure 8:Then for example the words ������� and ������ are realized in I (cf. Figure 7). It isnot hard to see that L(I) can be described by the �nite automaton displayed in Figure 8.From this example it is easy to see that for every I the language L(I) is regular; it is acceptedby an automaton that is essentially the cell graph.More formally, let I be an instance. We de�ne a �nite automatonAI = (S;�; s0; F ) as follows:� S := CI [ f1g (where 1 is a new symbol that does not denote a cell).� � := f(C; (D); D) j C touches Dg[f(1; (EXT);EXT)g, where EXT denotes the exterior.� F := fEXTg and s0 :=1. 9



Note that the graph underlying AI is the cell graph GI extended by one additional vertex1 thatis only adjacent to the exterior. The proof of the following lemma is straightforward:Lemma 5.4 For every instance I, the automaton AI accepts L(I). Thus L(I) is a regular lan-guage.A walk in a graph G = (V;E) is a sequence �w := w1 : : : wn 2 V n, for some n � 1, such that(wi; wi+1) 2 E for 1 � i < n. For a mapping f : V ! � we let f( �w) := f(w1) : : : f(wn) 2 ��.Then it is almost immediate that for every instance I we haveL(I) = f ( �w) j �w = w1 : : : wn walk in GIwith w1 = wn = EXTg; (5.1)where as usual EXT denotes the exterior.We are now ready to prove the main result of this section.Proposition 5.5 �
 is decidable in PSPACE.Proof: Given two instances I and J , we want to check in PSPACE whether it is possible to gofrom I to J using only homeomorphisms of the plane and operations in 
. In order to obtain acombinatorial equivalent to homeomorphic transformations we are going to work over the topolog-ical invariant of the instances I and J . The operations in 
 have a straightforward equivalent overthe structure of the topological invariant that we still call 
. As proven in [Papadimitriou et al.],I and J are homeomorphic if, and only if, YI and YJ are isomorphic. Because topological in-variants are essentially planar graphs it is possible to decide in PTIME whether two topologicalinvariants are isomorphic. Given an instance I it is possible to compute its invariant YI in PTIME[Papadimitriou et al.].From the paragraph above we can conclude that the problem of testing �
 equivalence forinstances I and J in PSPACE reduces to checking in PSPACE whether YJ can be derived fromYI using operations from 
.There are at most polynomially many di�erent ways to apply one operator from 
 to YI (onejust has to consider tuples of at most 5 cells and check if an !i can be applied to this tuple). Let
(I) be the set of invariants that can be obtained from YI by applying one operation from 
.The previous remarks show that 
(I) contains at most polynomially many elements and can becomputed in PTIME. It is therefore possible to enumerate all topological invariants that can bederived from YI by applying operations in 
, and check at each step whether it is isomorphic toYJ or not. The latter can be done in PTIME, because it reduces to deciding whether two planargraphs are isomorphic [Hopcroft and Tarjan]. In order to get the PSPACE complexity we showthat it is su�cient to consider topological invariants whose size is bounded polynomially in thesize of YI and YJ .It is easy to see that operations in 
 do not change the cones of the instances involved.Therefore I �
 J implies that I and J have the same cone-type (cf. Page 4) and the sameorientation relation O. This can be checked in PTIME. As the cones determine the number of1-dimensional cells homeomorphic to (0; 1), this implies that all instances J such that I �
 J aresuch that their respective skeletons satisfy jSI j = jSJ j.We may view the skeletons SI and SJ as embedded planar graphs with the 0-dimensionalcells as vertices and the 1-dimensional cells homeomorphic to (0; 1) as edges. Let F I and F J ,respectively, denote the faces of these embedded graphs. Note that these faces correspond preciselyto the connected components of GI n SI and GJ n SJ , respectively. The number of connectedcomponents of SJ is bounded by cI < jI j, the number of cones of I . Therefore the number offaces of SJ is given by the Euler formula, we have jF J j = e� v+1+�, where � is the number ofconnected components of SJ , and e; v its number of edges and vertices. As � is bounded by jI j,so is jF J j. This gives a linear (in jI j) bound on the number of connected components of GJ n SJ .It would be su�cient to derive the PSPACE complexity to also bound the size of each connectedcomponent of GJ n SJ (or equivalently the number of 1-dimensional cells homeomorphic to S1).10



Unfortunately, repeated application of the operations !1 and !2 may produce arbitrary large suchcomponents. Nevertheless we are going to show that it is su�cient to consider those that have asize polynomially bounded.Let K and K 0 be topological invariants and i be an isomorphism such that SK0 = i(SK). Wesay that K �i
 K 0 if K 0 can be obtained from K using operation of 
 such that all intermediatestructure K 00 satisfy SK00 = i(SK).We are going to proceed as follows: First we will generate in PSPACE all topological invariantsK and isomorphisms i such that YI �
 K and SJ = i(SK). Then for each such K and i we willcheck in PTIME whether K �i
 YJ .Let us �rst show that �i
 can be checked in PTIME.Claim. Equivalence for �i
 can be decided in PTIME.Proof. Let K and K 0 be topological invariants and i be a isomorphism such that SK0 =i(SK).By Lemma 5.2 K and K 0 can be assumed to be minimal.Recall that every face f of the skeleton FK of K (f 2 FK0), corresponds to a connectedcomponent Tf of GK n SK (GK0 n SK0 , respectively). By Lemma 3.3, Tf is a tree with a canonicalroot Ef , its exterior cell.To �nd out whether K �i
 K 0 we check, for each face f of FK , whether Tf can be transformedinto Ti(f) using operations in 
 that do not a�ect the skeleton SK and the other faces.Before going on we need the following de�nitions. A branch of a tree T is a minimal walk inT going from the root of T to one of its leaves. A walk in GI is said to be regular if it never goesthrough a singular cell. Let � be the set of colors of I and J . For a word W 2 ��, we de�neM(W ) as the word of �� computed using rules in the same spirit as in Lemma 5.2. More preciselythis means rewriting the word W using the rules ���! � for all colors �; �.Fact 1. Let f be a face in FK and �x be a regular walk in GK which starts in Ef . Then it ispossible to transform K into K 00 �i
 K in such a way that Tf contains a branch t�x, such that(t�x) = (�x) and such that all other faces of FK remain unchanged.This can be proved by a single loop on the length of �x = x1 � � �xn starting from the end.Without loss of generality we can assume that xn is a 2-dimensional cell. We start by constructingin xn�2 a new ball vn�1vn of color (xn�1xn). This is easily done by applying !1 or !2 once.Assume next that we have constructed a subinstance vi+1 � � � vn whose cell graph is a path attachedto xi. Again we apply !1 or !2 once in order to get vi�1vi in xi�2 surrounding vi+1 � � � vn.The same kind of induction (but starting from the beginning of the word this time) shows thatthe converse also holds:Fact 2. Let f be a face of FK . If it is possible to construct a K 00 �i
 K which adds a new brancht in Tf then there exists a walk �xt in GI starting from Ef such that M((�xt)) =M((t)).We say that a walk �x realizes a word W in I if M((�x)) = M(W ). Now we can prove theclaim. We �rst modify K as follows. For each face f of FK we do the following. For each brancht of Ti(f) starting from Ei(f), let Wt = (t) and check whether there is a walk �x0 that realizes Wt(this can be done in PTIME). If this is not the case, Fact 2 shows that K 0 6�i
 K. If it is the case,use Fact 1 to construct the corresponding branch in K.Next we do the same transformation starting from K 0 and reversing the role of K and K 0.It is clear that if the algorithm does not �nd out that K 6�i
 K 0 on its way, after minimizingthe resulting instances we have Tf = Ti(f) for all f 2 FK . As operations in 
 are reversible wecan conclude that K �i
 K 0.This proves the claim as all steps above are done in time polynomial in the size of K and K 0.To conclude the proof we will show that in PSPACE we can derive all reachable (by 
 trans-formations) isomorphism types of the skeleton.We distinguish between two types of 
 transformations. Type (i) are those that change theskeleton. Type (ii) are those that modify the tree Tf for some face f of the skeleton.11



We are now interested in type (i) transformations. They do not change the size of the topolog-ical invariant much: if only type (i) transformations are done, the size of the topological invariantcannot increase or decrease more than the possible number of connected components of the skele-ton, which in turn is bounded by the number of cones, which is �xed once for all as mentioned inthe beginning of this proof.Type (ii) transformations can change arbitrarily the size of the topological invariant. Noticethat in order to get all possible isomorphism types for the skeleton we need to ensure that connectedcomponents of the skeleton interact as much as possible. Two connected components of theskeleton can interact only if they are children of the same node of a tree Tf for some face f of theskeleton. Increasing the size of a tree Tf can thus only limit the possible interactions and restrictthe investigation of isomorphism types. They can thus be eliminated.To �nish the proof we need the following fact. Let f be a face of the skeleton such that Tf hastwo nodes corresponding to connected components S1 and S2 of the skeleton.Fact 3. It can be checked in PTIME whether Tf can be transformed in such a way that S1 andS2 can interact (that is to say they appear as children of the same node).Assuming Tf is minimized (if not this can be done in PTIME by Lemma 5.2), the fact is provenby an easy induction on the path from S1 to S2 in Tf .It is now clear how to proceed in the �rst step. After minimization, Fact 3 is used in orderto make connected components of the skeleton interact as much as possible and then all possibleisomorphism type are computed in PSPACE.This concludes the proof of the proposition. 2In the next section, it will be convenient to work with a slight simpli�cation of the cell graph.We call a 2-dimensional cell B 6= EXT of an instance I inessential if B is homeomorphic to a diskD (and thus has precisely one neighbor in GI ), and the neighbor C of B in GI has another neighborB0 6= B with (B0) = (B). Let HI be the graph obtained from GI by deleting all vertices thatare inessential cells. We call HI the reduced cell graph of I . Then (5.1) actually holds with HIinstead of GI : L(I) = f ( �w) j �w = w1 : : : wn walk in HIwith w1 = wn = EXTg: (5.2)6 Regular instancesRecall that an instance I is regular if all points �a 2 R2 are regular. The main result of this sectionis that �
 and �t coincide on regular instances. As a corollary, we will see that the equivalence(4.1) does not extend beyond instances with one closed region.To illustrate where the problems are, let us start with a simple example:Example 6.1 Let � = fR;Sg and consider the two instances I; J with RI := f�a 2 R2 j 13 �jj�ajj � 23g, SI := f�a 2 R2 j 23 � jj�ajj � 1g, RJ := SI , and SJ := RI (cf. Figure 9). Obviously, Iand J have the same cone-type.
Figure 9:Let us try to �nd a sentence ' 2 FOtop such that I j= ' and J 6j= '. At �rst glance this lookseasy, just take the sentence saying \every horizontal line that intersects region R intersects region12



S before". Then every instance homeomorphic to I satis�es ', and every instance homeomorphicto J does not satisfy '.Unfortunately, ' 62 FOtop. Figure 10 shows why: All three instances displayed are homeomor-phic, but only the last one satis�es '.
Figure 10:We will see later that there is a sentence ' 2 FOtop that distinguishes I from J , but such a 'is quite complicated. For now, let us just note that I 6�
 J .Recall the de�nition of the minimal instanceM(I) associated with an instance I . An inspectionthe proof of Lemma 5.2 shows that for a regular instance I we haveL(I) � L(M(I)): (6.1)Recall that by Lemma 3.3, the cell graph GI of a regular instance I is a tree. We think ofthis tree as being directed with the exterior as its root. The leaves are the 2-dimensional cellshomeomorphic to the disk D. Recall the de�nition of the reduced cell graph HI of I . It isalso a tree, which is obtained from GI by removing those leaves having the same color as theirgrandparent. Immediately from De�nition 5.1 and the fact that cell graphs of regular instancesare trees, for minimal regular instances M we get the following:If C is a vertex of HM , then all neighbors ofC in HM have di�erent colors. (6.2)For instances I; J we write HI � HJ if there is an (one-to-one) embedding h of HI into HJ thatpreserves . We de�ne �= , � accordingly.Lemma 6.2 For all regular instances I; J we have HI �= HJ if, and only if, I and J are home-omorphic.Proof: The backward direction is trivial. For the forward direction, let I and J be regularinstances with HI �= HJ . Then GI �= GJ . Since for regular instances the orientation O isempty, this implies YI �= YJ . Thus I and J are homeomorphic by [Papadimitriou et al.]. 2Lemma 6.3 Let M;N be minimal regular instances. ThenL(M) � L(N) () HM � HNProof: This is an easy consequence of (5.2) and (6.2). Indeed take a walk �w = w1 � � �wn in HMgoing through all its nodes. By (5.2) this walk de�nes a word in L(M) which is by hypothesis alsoin L(N). By (5.2) this implies that there is a walk �w0 = w01 � � �w0n in HN corresponding to thesame word. By (6.2) the function h : wi ! w0i is an embedding of HM into HN preserving . 2Recall that a regular language L � �� is aperiodic if there exists an n 2 N such that for allu; v; w 2 �� such that uvnw 2 L we also have uvn+1w 2 L. By a well-known theorem of Mc-Naughton, Papert [McNaughton and Papert] and Sch�utzenberger [Sch�utzenberger], the aperiodiclanguages are precisely the languages that are de�nable in �rst-order logic.55Furthermore, these are precisely the star-free regular languages.13



The following lemmas will be useful later. They are all based on (6.2) and the fact that thereduced cell graphs of regular instances are trees.This �rst lemma states that the language of a minimal instance is aperiodic. This is crucialbecause we want to capture it by �rst-order means.Lemma 6.4 Let M be a minimal regular instance. Then L(M) is aperiodic.Proof:Let M be a minimal regular instance.The crucial step is to prove the following claim:Let l; n � 1, v 2 �l, and �y = y1 : : : ynl+1 a walk in HM suchthat y1 = ynl+1 and (yil+1 : : : y(i+1)l) = v for 0 � i � n�1.Then y1 = yl+1. (6.3)Suppose for contradiction that (6.3) is wrong. Choose l minimal such that there is a v = v1 : : : vl 2�l, an n � 2, and a walk y1 : : : ynl+1 in HM with y1 = ynl+1 and (yil+1 : : : y(i+1)l) = v for0 � i � n� 1, but y1 6= yl+1.Since adjacent vertices in a cell graph (and thus in a reduced cell graph) have di�erent colorsand (y1) = (yl+1), we have l � 2.For notational convenience, we let y0 = ynl, ynl+1 = y1, v0 = vl, and v1 = vl+1. We choose ani 2 f1; : : : ; nlg such that there is no j 2 f1; : : : ; nlg such that yj is in the subtree below yi. Thenyi�1 = yi+1 is the parent of yi.Let � := (yi), � := (yi�1), and j = i (mod l). Then vj�1vjvj+1 = ���. Let v0 :=v1 : : : vj�1vj+2 : : : vl. Then for 0 � k � n we have (ykl+j�1) = �; (ykl+j) = �; (ykl+j+1) = �.By (6.2), this implies ykl+j�1 = ykl+j+1. If l = 2, this implies y1 = yl+1, a contradiction. If l � 3we can de�ne a walk �y0 from �y by deleting ykl+j and ykl+j+1, for 0 � k � n� 1. Then (6.3) holdswith n, l � 2, v0, and �y0, in contradiction to the minimality of l.This proves (6.3).Now let n > jHM j and u; v; w 2 �� such that uvnw 2 L(M). We shall prove that uvn+1w 2L(M). Let k; l;m be the length of u; v; w, respectively, and �x := x1 : : : xk+nl+m a walk in HMwith (�x) = uvnw.Since n > jHM j there exist i; j with 1 � i < j � n such that xk+il+1 = xk+jl+1. Applying(6.3) to the walk �y := xk+il+1 : : : xk+jl+1 we infer xk+il+1 = xk+(i+1)l+1 . But then�x0 := x1 : : : xk+(i+1)lxk+il+1 : : : xk+(i+1)lxk+(i+1)l+1 : : : xk+nl+mis a walk with (�x0) = uvn+1w. 2Lemma 6.5 Let M be a minimal regular instance and J; J 0 instances such that J �
 J 0 andL(J) � L(M). Then L(J 0) � L(M).Proof: Recall the de�nitions of the operations !1 and !2 from Figure 3. It su�ces to prove thestatement for instances J; J 0 with J  !!1 J 0 or J  !!2 J 0.To show that L(J 0) � L(M), let W 0 2 L(J 0). Then there is a word W 2 L(J) obtained fromW 0 by replacing some letters � by subwords ��� (if J  !!1 J 0) or ���� (if J  !!1 J 0).Since L(J) � L(M), we have W 2 L(M). Thus there is a walk �x in HM such that (�x) =W .Let W = �1 : : : �n and �x = x1 : : : xn. By (6.2), whenever �i�i+1�i+2 = ���, we have xi = xi+2.Hence �x0 = x1 : : : xi�1xixi+3 : : : xn is a walk in HM with (�x0) = �1 : : : �i�1��i+3 : : : �n 2 L(M).Similarly, if �i : : : �i+4 = ����, we have xi = xi+4, which implies that �1 : : : �i�1��i+5 : : : �n 2L(M). Thus W 0 2 L(M). 2This next lemma shows that it is enough to consider horizontal curves. This is importantbecause horizontal curves are de�nable in �rst-order.14



Lemma 6.6 Let M be a minimal regular instance and J a regular instance with L(J) 6� L(M).Then there is a b 2 R such that for the curve fb : x 7! (x; b) we have W (fb; J) 62 L(M).Proof: We assume that J and M are instances over the same schema. Then, denoting by EXTand EXT0 the exterior of J , M , respectively, we have (EXT) = (EXT0).For every walk �x = x1 : : : xn in HJ with x1 = EXT we de�ne a sequence �x0 = x01 : : : x0n asfollows: We let x01 := EXT0. For 2 � i � n we let x0i be the (by (6.2) unique) neighbor of x0i�1 inHM that has the same color as xi, if x0i�1 6= ? and such a neighbor exists, and x0i := ? otherwise.Since HJ is a tree and HM satis�es (6.2) for 1 � i < j � m we havexi = xj =) x0i = x0j or x0j = ?: (6.4)It follows that for any walk �y = y1 : : : yl in HJ with y1 = EXT and 1 � i � n; 1 � j � lwith xi = yj we either have x0i = ? or y0j = ? or x0i = y0j . To see this, just consider the walk�x0 = x1 : : : xixi�1 : : : x1y2 : : : yj and apply (6.4).Note that actually the sequence �x0 only depends on the word (�x). This if xn = EXT (andthus (�x) 2 L(J)), then (�x0) 2 L(M) if, and only if, x0n 6= ?.Now suppose that (�x) 2 L(J) n L(M). Let m be maximal with x0m 6= ?. Then m < n.Observe that xm+1 must be a child of xm in the tree HJ , because if xm+1 was the parent of xm, itwould have appeared on the path before entering xm for the �rst time, say as xi, with xi+1 = xm.Then by (6.4), x0i+1 = x0m, and we could let x0m+1 be the parent of x0m.Choose b 2 R such that the curve fb intersects the cell xm+1. Let �y = y1 : : : yl be a walk in HJthat corresponds to the curve fb and let j < l be minimal such that yj+1 = xm+1. Then yj = xm,because xm+1 is a child of xm. Then either y0j = ?, or y0j = x0m. In both case we have y0j+1 = ?.Thus W (fb; J) = (�y) 62 L(M). 2Theorem 6.7 Let I be a regular instance of schema �. Then there is a sentence 'I 2 FOtopof vocabulary f<g [ � such that an instance J of the same schema � satis�es 'I if, and only if,J �
 I.Proof: Let � be the set of colors that may appear in instances of schema �. For every aperiodiclanguage L � �� there is a formula �L(y) 2 FO of vocabulary f<g [ � such that a regularinstance I satis�es �L(b) for a b 2 R if, any only if, W (fb; I) 2 L. This is an easy consequence ofthe theorem of McNaughton, Papert and Sch�utzenberger that the aperiodic languages are preciselythe �rst-order de�nable languages.Let M :=M(I) and L := L(M). By Lemma 6.4, L is aperiodic. Let M := 8y�L(y):Clearly, M satis�es  M .We claim that for all instances J we have:J j=  M () M(J) j=  M : (6.5)To prove this claim, note �rst that every instance satisfying  M realizes the same cones as I andthus is regular.Let J be a regular instance. Assume �rst that J j=  M . Then by Lemma 6.6, L(J) � L(M).Because J �
 M(J), by Lemma 6.5 we have L(M(J)) � L(M). Thus M(J) j=  M .Conversely, if M(J) j=  M , then by Lemma 6.6, L(M(J)) � L(M). By (6.1), it followsL(J) � L(M) and thus J j=  M .This proves (6.5).It follows easily that  M 2 FOtop. Indeed, assume that J satis�es  M . For every J 0 homeo-morphic to J we have M(J 0) =M(J). Thus J j=  M i� M(J) j=  M i� J 0 j=  M .15



We let 'I :=  M ^ ^N minimal regular instancewith HN�HM: N :Then 'I 2 FOtop.We shall prove that for any instance J of schema � we haveJ j= 'I () J �
 I:Suppose that J j= 'I . Then inM(J) j= 'I by (6.5). By Lemma 6.6, this implies L(M(J)) � L(M)and L(M(J)) 6� L(N) for any minimal regular N with HN � HM . By Lemma 6.3, this impliesHM(J) �= HM . By Lemma 6.2, it follows that M and M(J) are homeomorphic. Thus J �
 I .Conversely, suppose that J �
 I . Then by Lemma 4.2, J �t I . Thus J j= 'I , because'I 2 FOtop and I j= 'I (the later follows easily from the previous paragraph and (6.5)). 2Corollary 6.8 For all regular instances I; J we have I �
 J () I �t J .Finally, we are ready to prove that the equivalence (4.1) does not extend beyond instanceswith one closed region.Corollary 6.9 The two instances of Example 6.1 are not elementary equivalent. Neither are theinstances I; J over fRg de�ned by:RI := f�a 2 R2 j 12 < jj�ajj � 1g;RJ := f�a 2 R2 j 12 � jj�ajj < 1gProof: Both instances I and J are regular minimal instances. It is easy to see that the trees GIand GJ are not isomorphic and thus by Lemma 6.3 the languages L(I) and L(J) are di�erent andby Lemma 6.5 I 6�
 J . Therefore by Corollary 6.8 they are not elementary equivalent. 27 Translating sentences to the topological invariantRecall that it is proven in [Segou�n and Vianu] that there is a recursive mapping that associateswith every ' 2 FO of vocabulary f<;Rg a '0 2 FO of vocabulary fR̂g such that for all instancesI over fRg, where RI is a closed set, we have I j= ' () YI j= '0.The purpose of this section is to prove that this does not extend to arbitrary instances.Proposition 7.1 There is a sentence ' 2 FOtop of vocabulary f<;Rg such that for every sentence'0 2 FO of vocabulary fR̂g there is an instance I such that I j= ' and YI 6j= '0.Proof: Let I0; J0 be the instances de�ned byRI0 := f�a j 1 � jj�ajj < 2g;RJ0 := f�a j 1 < jj�ajj � 2g:For n � 1, let In; Jn be de�ned byRIn := RI0 [ n[i=1Si=n+1((0; 0)) [ n[i=1S2+i=n+1((0; 0));RJn := RJ0 [ n[i=1Si=n+1((0; 0)) [ n[i=1S2+i=n+1((0; 0));16



Figure 11: The instances I3 and J3.where Sr(�a) := f�b j jj�b� �ajj = rg for all r 2 R; �a 2 R2 (cf. Figure 11).Note that for all n;m � 1 we have In �
 Im and Jn �
 Jm, but In 6�
 Jn (see the proof ofCorollary 6.9). Corollary 6.8 implies that there is a sentence ' 2 FOtop such that for all n � 1 wehave In j= ' but it can be checked that Jn 6j= '.Let n � 1. The graph GIn is just a path with 5 + 4n vertices, say, C1; : : : ; C4n+5. Denotingthe colors by �; : : : ; ", the colors on this path form the following sequence:��� : : : ��| {z }n times �" �� : : : ��| {z }n times �:GJn is the same, except that (C2n+2) = " and (C2n+4) = . The other relations of the topologicalinvariant are identical in YIn and YJn . dim0 is empty, dim1 consists of all Ci with even i, anddim2 consists of the Ci with odd i. The orientation O is empty. Finally, X = fC1g.Standard Ehrenfeucht-Fra��ss�e techniques show that for every sentence '0 2 FO there is ann � 1 such that YIn j= '0 if, and only if, YJn j= '0.The statement of the proposition follows. 28 On completeness of languagesAn open problem that we have not considered so far is to �nd a (recursive) language that expressesprecisely the �rst-order topological queries. Although this is certainly an interesting question, wedoubt that, even if theoretically such a language exists, it would be a natural language that mayserve as a practical query language. Our results show that �rst-order topological queries are notlocal; on the other hand, it is known that �rst-order logic fails to express the most natural non-localtopological queries such as connectivity of a region.[Kuijpers and Van den Bussche] have introduced a topological query language, the cone-logicCL, only expressing local properties. This language is a two tier language that allows to build�rst-order expressions whose atoms are again �rst-order expressions talking about the cones andcolors of points. [Kuijpers and Van den Bussche] have proven that CL captures precisely the �rst-order topological properties of instances with only one closed region that is \fully 2-dimensional".If the underlying structure is R<, it follows from [Segou�n and Vianu] that the condition of beingfull 2-dimensional is not needed. Corollary 6.9 shows that this result does not extend to instanceswith several closed regions or one arbitrary region.We propose to extend CL by a path operator, as it has been introduced in [Benedikt et al.].Let us call the resulting topological query language PCL. The results of [Benedikt et al.] showthat this language has the basic properties expected from a reasonable spatial database querylanguage. In addition, it admits e�cient query evaluation (the cost of evaluating a PCL-query isnot substantially higher than the cost of evaluating a �rst-order query).An example of a PCL-query not expressible in FO is connectivity of regions. We conjecture thatconversely every FOtop-query is expressible in PCL. The idea behind this conjecture is that localproperties (expressible in CL) together with the language of an instance, which can be describedby the path-operator, seem to capture the �rst-order topological properties of an instance. As a�rst step towards proving this conjecture, let us remark that Corollary 6.8 implies that on regularinstances every FOtop-sentence is equivalent to a set of PCL-sentences.17



9 ConclusionsThe results of this paper give a good understanding of �rst-order topological queries on regularinstances. Of course one may argue that regular instances are completely irrelevant | look at anymap and you will �nd singular points. However, we could use our results to answer several openquestions concerning topological queries on arbitrary instances.As a matter of fact, we have shown that the previous understanding of �rst-order topologicalqueries, viewing them as "local" in the sense that they can only speak about the colors of points,is insu�cient; this may be our main contribution.The problem of a characterization of topological elementary equivalence on arbitrary planarinstances remains open. We conjecture that Corollary 6.8 generalizes, i.e. that �t is the same as�
 on arbitrary instances. If this was true, by Proposition 5.5 topological elementary equivalencewould be decidable in PSPACE. Let us remark that we do not believe that the PSPACE-boundof Proposition 5.5 is optimal, we see no reason why �
 should not be decidable in NP or evenPTIME.References[Abiteboul et al.] Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases.Addison-Wesley.[Benedikt et al.] Benedikt, M., Dong, G., Libkin, L., and Wong, L. 1998. Relational ex-pressive power of constraint query languages. Journal of the ACM 45, 1{34.[Benedikt et al.] Benedikt, M., Grohe, M., Libkin, L., and Segoufin, L. 2000. Reachabilityand connectivity queries in constraint databases. In Proceedings of the 19th ACM Symposiumon Principles of Database Systems. 104{115.[Benedikt and Libkin] Benedikt, M. and Libkin, L. 2000. Expressive power: The �nite case. InConstraint Databases, G. Kuper, L. Libkin, and J. Paredaens, Eds. Springer-Verlag, Chapter 3,55{88.[Ebbinghaus and Flum] Ebbinghaus, H.-D. and Flum, J. 1995. Finite Model Theory , seconded. Springer-Verlag.[Grohe] Grohe, M. 1998. Fixed-point logics on planar graphs. In Proceedings of the 13th AnnualIEEE Symposium on Logic in Computer Science.[Grumbach and Su] Grumbach, S. and Su, J. 1997a. Finitely representable databases. Journalof Computer and System Sciences 55, 273{298.[Grumbach and Su] Grumbach, S. and Su, J. 1997b. Queries with arithmetical constraints.Theoretical Computer Science 173, 151{181.[Gyssens et al.] Gyssens, M., Van den Bussche, J., and Van Gucht, D. 1997. Completegeometrical query languages. Journal of Computer and System Sciences 58, 483{511.[Hopcroft and Tarjan] Hopcroft, J.E. and Tarjan, R. 1972. Isomorphism of planar graphs.In Complexity of Computer Computations. Plenum Press.[Kuijpers et al.] Kuijpers, B., Paredaens, J., and Van den Bussche, J. 2000. Topologicalelementary equivalence of closed semi-algebraic sets in the real plane. In The Journal of SymbolicLogic, 65: (4), 1530-1555,[Kuijpers and Van den Bussche] Kuijpers, B. and Van den Bussche, J. 1999. On capturing�rst-order topological properties of planar spatial databases. In Proceedings of the 7th Inter-national Conference on Database Theory, C. Beeri and P. Buneman, Eds. Lecture Notes inComputer Science, vol. 1540. Springer-Verlag, 187{198.18
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