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Abstract

A data tree is an unranked ordered tree where each node carries a label from a finite alphabet and a datum from some
infinite domain. We consider the two variable first order logic FO2(<,+1,∼) over data trees. Here +1 refers to the
child and the next sibling relations while < refers to the descendant and following sibling relations. Moreover, ∼
is a binary predicate testing data equality. We exhibit an automata model, denoted DTA#, that is more expressive
than FO2(<,+1,∼) but such that emptiness of DTA# and satisfiability of FO2(<,+1,∼) are inter-reducible. This
is proved via a model of counter tree automata, denoted EBVASS, that extends Branching Vector Addition Systems
with States (BVASS) with extra features for merging counters. We show that, as decision problems, reachability for
EBVASS, satisfiability of FO2(<,+1,∼) and emptiness of DTA# are equivalent.

Introduction

A data tree is an unranked ordered tree where each node carries a label from a finite alphabet and a datum
from some infinite domain. Together with the special case of data words, they have been considered in the
realm of program verification, as they are suitable to model the behavior of concurrent, communicating or
timed systems, where data can represent e.g., process identifiers or time stamps [1, 6, 7]. Data trees are also
a convenient model for XML documents [4], where data represent attribute values or text contents. There-
fore finding decidable logics for this model is a central problem as it has applications in most reasoning
tasks in databases and in verification.

Several logical formalisms and models of automata over data trees have been proposed. Many of them
were introduced in relation to XPath, the standard formalism to express properties of XML documents.
Although satisfiability of XPath in the presence of data values is undecidable, automata models were intro-
duced for showing decidability of several data-aware fragments [12, 4, 11, 10, 13].

As advocated in [4], the logic FO2(<,+1,∼) can be seen as a relevant fragment of XPath. Here
FO2(<,+1,∼) refers to the two-variable fragment of first order logic over unranked ordered data trees,
with predicates for the child and the next sibling relations (+1), predicates for the descendant and following
sibling relations (<) and a predicate for testing data equality between two nodes (∼). Over data words,
FO2(<,+1,∼) was shown to be decidable by a reduction to Petri Nets or, equivalently, Vector Addition
Systems with States (VASS) [5]. It is also shown in [4] that reachability for Branching Vector Addition
Systems with States, BVASS, reduces to satisfiability of FO2(<,+1,∼) over data trees. The model of
BVASS, extends VASS with a natural branching feature for running on trees, see [15] for a survey of the
various formalisms equivalent to BVASS. As the reachability of BVASS is a long standing open problem,
showing decidability of finite satisfiability for FO2(<,+1,∼) seems unlikely in the near future.

This paper is a continuation of the work of [5, 4]. We introduce a model of counter automata, denoted
EBVASS, and show that satisfiability of FO2(<,+1,∼) is inter-reducible to reachability in EBVASS. This
model extends BVASS by allowing new features for merging counters. In a BVASS the value of a counter
at a node x in a binary tree is the sum of the values of that counter at the children of x, plus or minus some
constant specified by the transition relation. In EBVASS constraints can be added modifying this behavior.
In particular (see Section 3 for a more precise definition) it can enforce the following at node x: one of
the counters of its left child and one of the counters of its right child are decreased by the same arbitrary
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number n, then the sum is performed as for BVASS, and finally, one of the resulting counters is increased
by n.

The reduction from FO2(<,+1,∼) to EBVASS goes via a new model of data tree automata, denoted
DTA#. Our first result (Section 2) shows that languages of data trees definable in FO2(<,+1,∼) are also
recognizable by DTA#. Moreover the construction of the automaton from the formula is effective. Our
automata model is a non-trivial extension from data words to data trees of the Data Automata (DA) model
of [5], chosen with care in order to be powerful enough to capture the logic but also not too powerful in
order to match its computational power. The obvious extensions of DA to data trees are either too weak
to capture FO2(<,+1,∼) or too expressive and undecidable (see Proposition 1). Here we consider the
strongest of these extensions, called DTA, which is undecidable, and restrict it into a model called DTA#

with an associated emptiness problem is equivalent to satisfiability of FO2(<,+1,∼).
Our second result (Section 3) shows that the emptiness problem for DTA# reduces to the reachabil-

ity problem for EBVASS. Finally we show in Section 4 that the latter problem can be reduced to the
satisfiability of FO2(<,+1,∼), closing the loop. Altogether, this implies that showing (un)decidability
of any of these problems would show (un)decidability of the three of them. Although this question of
(un)decidability remains open, the equivalence shown in this paper between the decidability of these three
problems, the definition of the intermediate model DTA# and the techniques used for proving the interre-
ductions provides a better understanding of the three problems, and in particular of the emptiness of the
branching vector addition systems with states.

Related work. There are many other works introducing automata or logical formalism for data words
or data trees. Some of them are shown to be decidable using counter automata, see for instance [9, 13].
The link between counter automata and data automata is not surprising as the latter only compare data
values via equality. Hence they are invariant under permutation of the data domain and therefore, often, it
is enough to count the number of data values satisfying some properties instead of knowing their precise
values.

1 Preliminaries

In this paper A or B denote finite alphabets while D denotes an infinite data domain. We use E or F when
we do not care whether the alphabet is finite or not. We denote by E# the extension of an alphabet E with
a new symbol # that does not occur in E.

Unranked ordered data forests. We work with finite unranked ordered trees and forests over an
alphabet E, defined inductively as follows: for any a ∈ E, a is a tree. If t1, · · · , tk is a finite non-empty
sequence of trees then t1 + · · ·+tk is a forest. If s is a forest and a ∈ E, then a(s) is a tree. The set of trees
and forests over E are respectively denoted Trees(E) and Forests(E). A tree is called unary (resp. binary)
when every node has at most one (resp. two) children. We use standard terminology for trees and forests
defining nodes, roots, leaves, parents, children, ancestors, descendants, following and preceding siblings.

Given a forest t ∈ Forests(E), and a node x of t, we denote by t(x) the label of x in t.
We say that two forests t1 ∈ Forests(E1) and t2 ∈ Forests(E2) have the same domain if there is a

bijection from the nodes of t1 to the nodes of t2 that respects the parent and the next-sibling relations. In
this case we identify the nodes of t1 with the nodes of t2 and the difference between t1 and t2 lies only in
the label associated to each node. Given two forests t1 ∈ Forests(E1), t2 ∈ Forests(E2) having the same
domain, we define t1 ⊗ t2 ∈ Forests(E1 × E2) as the forest over the same domain and such that for all
nodes x, t1 ⊗ t2(x) = 〈t1(x), t2(x)〉.

The set of data forests over a finite alphabet A and an infinite data domain D is defined as Forests(A×D).
Note that every t ∈ Forests(A×D) can be decomposed into a ∈ Forests(A) and d ∈ Forests(D) such that
t = a⊗ d.

Logics on data forests. A data forest of Forests(A×D) can be seen as a relational model for first
order logic. The domain of the model is the set of nodes in the forest. There is a unary relation a(x) for
all a ∈ A containing the nodes of label a. There is a binary relation x ∼ y containing all pairs of nodes
carrying the same data value of D, and binary relations E→(x, y) (y is the sibling immediately next to x),
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E↓(x, y) (x is the parent of y), and E⇒, E� which are the non reflexive transitive closures respectively of
E→ and E↓, minus respectively E→ and E↓ (i.e., they define two or more navigation steps). The reason
for this non-standard definition of E⇒ and E� is that it will be convenient that equality, E→, E↓, E⇒ and
E� are disjoint binary relations. We will often make use of the macro, x<>y, and say that x and y are
incomparable, when none of x = y, E→(x, y), E↓(x, y), E⇒(x, y) and E�(x, y) holds.

Let FO2(<,+1,∼) be the set of first order sentences with two variables built on top of the above
predicates. Typical examples of properties definable in FO2(<,+1,∼) are key constraints (all nodes of
label a have different data values), ∀x∀y a(x) ∧ a(y) ∧ x ∼ y → x = y, and downward inclusion
constraints (every node x of label a has a node y of label b in its subtree with the same data value),
∀x∃y a(x)→

(
b(y) ∧ x ∼ y ∧ (E�(x, y) ∨ E↓(x, y))

)
.

We also consider the extension EMSO2(<,+1,∼) of FO2(<,+1,∼) with existentially quantified
monadic second order variables. Every formula of EMSO2(<,+1,∼) has the form ∃R1 . . . ∃Rn φ where
φ is a FO2(<,+1,∼) formula called the core, involving the variables R1, . . . , Rn as unary predicates. The
extension to full monadic second order logic is denoted MSO(<,+1,∼).

We write MSO(<,+1) for the set of formulas not using the ∼ predicates. These formulas are ignoring
the data values, i.e., they are classical monadic second-order formulas over forests.

Automata models for forests. We will informally refer to automata and transducers for forests and
unranked trees over a finite alphabet. The particular choice of a model of automata is not relevant here
and we refer to [8, Chapters 1,6,8] for a detailed description. A set of forests accepted by an automaton is
called a regular language and regular languages are exactly those definable in MSO(<,+1).

Automata models for data forests. Given a data forest t = b⊗d ∈ Forests(B×D) and a data value
d ∈ D, the class forest t[d] of t associated to the datum d is the forest of Forests(B#) having the same
domain as t and such that t[d](x) = b(x) if d(x) = d and t[d](x) = # otherwise.
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Fig. 1: A forest t followed by its class forests t[1] and t[2]

We now define two models of automata over data trees. The first and most general one is a straight-
forward generalization to forests of the automata model over data words of [5]. The second one adds a
restriction in order to avoid undecidability.

General Data Forest Automata model: DTA. A DTA is a pair (A,B) whereA is a non-deterministic
letter-to-letter transducer taking as input a forest in Forests(A) and returning a forest in Forests(B) with
the same domain, while B is a forest automaton taking as input a forest in Forests(B#). Intuitively a DTA
works as follows on a forest t = a⊗ d: first the transducer A relabels the nodes of a into b and the forest
automaton B has to accept all class forests of b⊗ d.

More formally a data forest t = a⊗ d ∈ Forests(A× D) is accepted by (A,B) iff

1. there exists b ∈ Forests(B) such that b is a possible output of A on a and,

2. for all d ∈ D, the class forest (b⊗ d)[d] ∈ Forests(B#) is accepted by B.

Over data words this model was shown to be decidable [5]. Unfortunately it is undecidable over data trees.

Proposition 1. Emptiness of DTA is undecidable.

Proof. We show that DTA can simulate the Class Automata of [3]. This latter model has an undecidable
emptiness problem, already when restricted to data words, i.e., forests of the form 〈a1, d1〉+. . .+〈am, dm〉.
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It captures indeed the class of languages of words - without data - recognized by counter automata. Like
Data Automata, Class Automata are defined as pairs made of one transducerA and one word automaton B.
However, the B part in the Class Automata model has access to the label of the nodes that are not in the
class, while it sees only # in the Data Automata case. This extra power implies undecidability.

We assume two finite alphabets A and B, writing the latter in extenso as B = {b1, . . . , bn}. A class
automaton over A× D is a pair C = (A,B) where A is a non-deterministic letter-to-letter word transducer
from A into B and B is a word automaton taking as input words over the alphabet B × {0, 1}. In order to
define the acceptance of data words by class automata, we shall use a notion of class word associated to
a data word w = b ⊗ d and a value d ∈ D, denoted wJdK, defined as the word having the same domain
as w and such that, for every node x of w, wJdK(x) = 〈b(x), 1〉 if d(x) = d and wJdK(x) = 〈b(x), 0〉
otherwise. A data word w = a⊗ d is accepted by C iff

1. there exists a word b over B such that b is a possible output of A on a and,

2. for all d ∈ D, the class word (b⊗ d)JdK is accepted by B.

Given a class automaton C = (A,B) over A × D, we construct a DTA C′ such that C accepts a data
word iff C′ accepts a data tree. The idea of the reduction is that we replace each letter bi by a tree of depth
i. Hence, even if bi is replaced by # during the run of C′ (conversion to class word), this label can still be
recovered.

Let O be a new alphabet containing the two symbols b and #. For any symbol s and 1 ≤ i ≤ n,
let si be the unary data tree of depth i defined recursively by: s1 = s and si+1 = s(si). We associate
to a data word w = 〈bi1 , d1〉 + . . . + 〈bim , dm〉 a data forest ŵ ∈ Forests(O × D) defined by ŵ =(
〈b, d1〉i1+1 + . . .+ 〈b, dm〉im+1

)
.

From the word automaton B we can construct a forest automaton B′ accepting exactly the set of class
forests ŵ[d] such that wJdK is accepted by B, for all d ∈ D.

The best way to see this is to use MSO(<,+1) logic. The language recognized by B can be defined by
a formula ϕ of MSO(<,+1). The formula corresponding to B′ is constructed by replacing in ϕ each atom
of the form 〈bi, 1〉 by bi(x) and each atom of the form 〈bi, 0〉 by a formula testing that x has label # and
that the subtree rooted at x has depth i.

From there it is now easy to construct an A′ such that the DTA (A′,B′) accepts a data forest iff the
class automaton C = (A,B) accepts a data word.

Restricted Data Forest Automata model: DTA#. The second data tree automata model we con-
sider is defined as DTA with a restriction on B. The restriction makes sure that B ignores repeated and
contiguous occurrences of # symbols. This ensures that for each class forest t[d], not only the automata
cannot see the label of a node whose data value is not d, but also can not see the shape of subtrees of nodes
whose data value differs from d. In particular it can no longer count the number of # symbols in a subtree
and the undecidability proof of Proposition 1 no longer works.

A set L ⊆ Forests(B) is called #-stuttering iff it is closed under the rules depicted in Figure 2. Intu-
itively these rules should be understood as follows: if a subforest is matched by a left-hand side of a rule
(when the variables x and y are replaced by (possibly empty) forests), then replacing this subforest by the
corresponding right-hand side (with the same variable replacement) yields a forest also in L, and the other
way round.

#

#

x

←→ #

x

#

x

+ # ←→ #

x

# + #

x

←→ #

x

#

x

+ y ←→ y + #

x

Fig. 2: Closure rules for #-stuttering sets. x represents an arbitrary forest.

For instance if L is #-stuttering and contains the trees t[1] and t[2] of Figure 1, then it should also
contain the trees in Figure 3.
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Fig. 3: Closure of {t[1], t[2]} of Figure 1.

Typical examples of #-stuttering languages are those testing that no two nodes of label a occur in t[d]
(key constraint) or that each node of label a has a descendant of label b in t[d] (inclusion constraint). Other
typical #-stuttering languages are those defined by formulas of the form ∀x∀y a(x) ∧ b(y) ∧ x ∼ y →
¬E⇒(x, y). Indeed the #-stuttering rules do not affect the relationship between pairs of nodes not labeled
by #.

Typical examples of languages that are not #-stuttering are those counting the number of nodes of
label #. Note that #-stuttering languages are closed under union and intersection.

We define DTA# as those DTA (A,B) such that the language recognized by B is #-stuttering.

We conclude this section with the following simple lemma whose proof is a straightforward Cartesian
product construction. We use the term letter projection for a relabeling function defined as h : A′ → A,
where A and A′ are alphabets.

Lemma 2. The class of DTA# languages is closed under union, intersection and letter projection.

2 From FO2(<,+1,∼) to DTA#

In this section we show the following result.

Theorem 3. Given a formula φ in FO2(<,+1,∼), there exists a DTA#, effectively computable from φ,
accepting exactly the set of data forests satisfying φ.

The proof works in two steps. In the first step we provide a normal form for sentences of FO2(<,+1,∼)
that is essentially an EMSO2(<,+1,∼) formula whose core is a conjunction of simple formula of FO2(<,+1,∼).
In a second step, we show that each of the conjunct can be translated into a DTA#, and we conclude using
composition of these automata by intersection, see Lemma 2.

2.1 Intermediate Normal Form
We show first that every FO2(<,+1,∼) formula φ can be transformed into an equivalent EMSO2(<,+1,∼)
formula in intermediate normal form:

∃R1 · · · ∃Rk
∧
i

χi

where each χi has one of the following forms:

∀x∀y α(x) ∧ β(y) ∧ δ(x, y)→ γ(x, y) (1)
∀x∃y α(x)→ (β(y) ∧ δ(x, y) ∧ ε(x, y)) (2)

where each of α and β is a type, that is, a conjunction of unary predicates or their negation (these unary
predicates are either from A or from R1, . . . , Rk, i.e., introduced by the existentially quantified variables),
δ(x, y) is either x ∼ y or x 6∼ y, γ(x, y) is one of ¬E⇒(x, y), ¬E�(x, y) or ¬(x<>y), and ε(x, y) is one of
x = y, E→(x, y), E→(y, x), E↓(x, y), E↓(y, x), E⇒(x, y), E⇒(y, x), E�(x, y), E�(y, x), x<>y or false .

This normal form is obtained by simple syntactical manipulation similar to the one given in [5] for the
data words case, and detailed below.
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Scott normal form. We first transform the formula φ into Scott Normal Form obtaining an EMSO2(<,+1,∼)
formula of the form:

ψ = ∃R1 . . . ∃Rm ∀x∀y χ ∧
∧
i

∀x∃y χi

where χ and every χi are quantifier free, and R1, . . . Rm are new unary predicates (called monadic). This
transformation is standard: a new unary predicate Rθ is introduced for each subformula θ(x) with one
free variable for marking the nodes where the subformula holds. The subformula θ(x) is then replaced by
Rθ(x) and a conjunct ∀x

(
Rθ(x)↔ θ(x)

)
is added. This yields a formula in the desired normal form.

From Scott to intermediate normal form. We show next that every conjunct of the core of the formula
ψ in Scott Normal Form can be replaced by an equivalent conjunction of formulas of the form (1) or (2),
possibly by adding new quantifications with unary predicates upfront.

Case ∀x∀y χ. Recall that with our definition, the binary relations E→, E⇒, E↓, E�,<>and = are pairwise
disjoint. Hence we can rewrite ∀x∀y χ into an equivalent FO2(<,+1,∼) formula in the following form,

∀x∀y
(

x = y → ψ=(x, y)
∧ x<>y → ψ<>(x, y)

) ∧ E→(x, y) → ψ→(x, y)
∧ E↓(x, y) → ψ↓(x, y)

∧ E⇒(x, y) → ψ⇒(x, y)
∧ E�(x, y) → ψ�(x, y)

)
where every subformula ψ∗ is quantifier free and only involves the predicate ∼ together with unary pred-
icates. They can be obtained from χ via conjunctive normal form and De Morgan’s law. The resulting
formula is equivalent to the conjunction

∀x∃y
(
x = y ∧ ψ=(x, y)

)
∧ ∀x∃y

(
¬last(x)→ (E→(x, y) ∧ ψ→(x, y))

)
∧ ∀x∃y

(
¬leaf(x)→ (E↓(x, y) ∧ ψ↓(x, y))

)
∧ ∀x∀y E⇒(x, y)→ ψ⇒(x, y)
∧ ∀x∀y E�(x, y)→ ψ�(x, y)
∧ ∀x∀y x<>y → ψ<>(x, y)

where leaf(x) is a new predicate denoting the leaves of the forest and last(x) is also a new predicate
denoting nodes having no right sibling. The predicate leaf is specified by the following formulas, that have
the desired form.

∀x∀y E↓(x, y) ∧ leaf(x)→ false
∀x∃y ¬leaf(x)→ E↓(x, y)

Similar formulas specify the predicate last.
The first three conjuncts, with quantifier prefix ∀x∃y, will be treated later when dealing with the second
case.
For the next three conjuncts, putting ¬ψ⇒, ¬ψ�, ¬ψ<> in disjunctive normal form (with an exponential
blowup), we rewrite ψ⇒, ψ�, ψ<> as a conjunction of formulas of the form ¬(α(x)∧β(y)∧δ(x, y)), where
α, β, and δ are as in (1). By distribution of conjunction over implication, and by contraposition, we obtain
for the 3 cases an equivalent conjunction of formulas of the following form (matching the desired form (1))

∀x∀y α(x) ∧ β(y) ∧ δ(x, y)→ ¬E⇒(x, y)
∀x∀y α(x) ∧ β(y) ∧ δ(x, y)→ ¬E�(x, y)
∀x∀y α(x) ∧ β(y) ∧ δ(x, y)→ ¬(x<>y)

Case ∀x∃y χ. We first transform χ (with an exponential blowup) into an equivalent disjunction of the
form

χ′ =
∨
j

αj(x) ∧ βj(y) ∧ δj(x, y) ∧ εj(x, y)

where αj , βj , δj and εj are as in (2). Next, in order to eliminate the disjunctions, we add a new monadic
second-order variables Rχ,j , that we existentially quantify upfront of the global formula, and transform
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∀x∃y χ′ into the conjunction∧
j

∀x∃y (αj(x) ∧Rχ,j(x))→ (βj(y) ∧ δj(x, y) ∧ εj(x, y)) ∧ ∀x∃y
(∨
j

Rχ,j(x)
)

The first conjuncts express that if Rχ,j(x) holds, then there exists a node y such that the corresponding
conjunct of χ′ holds, and the last conjunct expresses that for all node x, at least one of the Rχ,j(x) must
hold and can be rewritten as ∀x∃y

(∧
¬Rχ,j(x)→ false

)
. Now all the conjuncts are as in (2) and we are

done.

2.2 Case analysis for constructing DTA# from intermediate normal forms
We now show how to transform a formula in intermediate normal form into a DTA#. Let A be the initial
alphabet and let A′ be the new alphabet formed by combining letters of A with the newly quantified unary
predicates R1, . . . , Rk. By closure of DTA# under intersection and letter projection (Lemma 2), it is
enough to construct a DTA# automaton for each simple formula of the form (1) or (2), accepting the data
forests in Forests(A′ × D) satisfying the formula.

We do a case analysis depending on the atoms involved in the formula of the form (1) or (2). For
each case we construct a DTA# (A,B) recognizing the set of data forests satisfying the formula. The
construction borrows several ideas from the data word case [5], but some extra work is needed as the tree
structure is more complicated. In the discussion below, a node whose label satisfies the type α will be
called an α-node. Many of the cases build on generic constructions that we described in the following
remark.

Remark 1. A DTA# (A,B) can be used to distinguish one specific data value, by recoloring, with A, all
the nodes carrying the data value, and checking, with B, the correctness of the recoloring. We will then
say that (A,B) marks a data value using the new color c. This can be done as follows. The transducer A
marks (i.e. relabel the node by adding to its current label an extra color) a node x with this data value
with a specific new color c′. At the same time it guesses all the nodes sharing the same data value as x and
marks each of them with a new color c. Then, the forest automaton B checks, for every data value, that
either none of the nodes are marked with c or c′, or that all nodes not labeled with # are marked with c or
c′ and that c′ occurs exactly once in the same class forest. Note that this defines a #-stuttering language.
It is now clear that for the run to be accepting, A must color exactly one data value and that all the nodes
carrying this data value must be marked with c or c′. The transducer A can then build on this fact for
checking other properties.

A generic example of the usefulness of this remark is given below. Once an arbitrary data value is marked
with a color c, then a property of the form ∀x∀y α(x) ∧ β(y) ∧ x 6∼ y → γ(x, y) is a conjunction of
∀x∀y α(x)∧ c(x)∧β(y)∧¬c(y)→ γ(x, y) with ∀x∀y α(x)∧¬c(x)∧β(y)∧x 6∼ y → γ(x, y). The first
part, ∀x∀y α(x) ∧ c(x) ∧ β(y) ∧ ¬c(y) → γ(x, y) is now a regular property and can therefore be tested
by A. Hence it is enough to consider the case where x does not carry the marked data value. The same
reasoning holds if two data values are marked or if the formula starts with a ∀x∃y quantification. We will
use this fact implicitly in the case analysis below.

Given a data forest, a vertical path is a set of nodes containing exactly one leaf and all its ancestors
and nothing else. A horizontal path is a set of nodes containing one node together with all its siblings and
nothing else.

We start with formulas of the form (1).

Case 1: ∀x∀y α(x) ∧ β(y) ∧ x ∼ y → γ(x, y), where γ(x, y) is as in (1). These formulas express a
property of pairs of nodes with the same data value. We have seen that those are #-stuttering languages
that can be tested by the forest automaton B solely (i.e., by a DTA# with A doing nothing).
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Case 2: ∀x∀y α(x) ∧ β(y) ∧ x 6∼ y → ¬E⇒(x, y). This formula expresses that a data forest cannot
contain an α-node having a β-node with a different data value as a sibling to its right, except if it is the
next-sibling. Let X be an horizontal path in a data forest t containing at least one α-node, and let x be the
leftmost α-node in X . Let d be the data value of x. Consider an α-node x′ and a β-node y′ that make the
formula false within X , in particular we have E⇒(x′, y′). Then, if y′ has a data value different from d we
already have E⇒(x, y′) and the formula is also false for the pair (x, y′). Hence the validity of the formula
within X can be tested over pairs (x′, y′) such that either x′ or y′ has data value d.
With this discussion in mind we construct (A,B) as follows. In every horizontal path X containing one
α-node, the transducer A identify the leftmost occurrence x of an α-node in X , and marks it with a new
color c′, and marks all the nodes of X with the same data value as x with a color c. As in Remark 1, the
forest automaton B checks that the guesses are correct, i.e. it accepts only forests in which every horizontal
path X satisfy one of the following conditions: X contains one occurrence of the color c′ and all other
nodes of X not labeled with # are marked with c, or X contains none of the colors c and c′ at all. All these
properties define regular and #-stuttering languages, and hence can be checked by a forest automaton B.

Assuming this, the transducerA rejects if there are some unmarked β-nodes occurring as a right sibling
(except for the next-sibling) of a marked α-node or there is an unmarked α-node as left sibling, except for
the previous sibling, of a marked β-node. As explained in Remark 1, this is a regular property.

Case 3: ∀x∀y α(x) ∧ β(y) ∧ x 6∼ y → ¬E�(x, y). The property expressed by this formula is similar to
the previous case, replacing the right sibling relationship with the descendant relationship.

Let X be a vertical path in a data forest t containing at least one α-node, and let x be the α-node in X
the closest to the root. Let d be the data value of x. Consider an α-node x′ and a β-node y′ that make the
formula false within X , in particular we have E�(x′, y′). Then, if y′ has a data value different from d we
already have E�(x, y′) and the formula is also false for the pair (x, y′). Hence the validity of the formula
within X can be tested over pairs (x′, y′) such that either x′ or y′ has data value d.
The construction of (A,B) is similar to the previous case, except that different vertical paths may share
some nodes. The transducer A marks all the α-nodes that have no α-node as ancestor, with a new color c′.
Then, for every node x marked c′, A guesses all the nodes inside the subtree rooted at x having the same
data value as x and mark them with a new color c. As in Remark 1, the forest automaton B checks that the
guesses of colors are correct for each vertical path (see also the previous case).

Assuming this, the transducer A rejects if there are an unmarked β-node that is a descendant, but not a
child, of a marked α-node or there is an unmarked α-node as an ancestor, except for the parent, of a marked
β-node. This is a regular property that can be checked by A in conjunction with the marking, following
the principles of Remark 1.

Case 4: ∀x∀y α(x) ∧ β(y) ∧ x 6∼ y → ¬(x<>y). The formula expresses that every two nodes of type
respectively α and β and with different data values cannot be incomparable. Recall that two nodes are
incomparable if they are not ancestors and not siblings.

Subcase 4.1: There exist two α-nodes that are incomparable.
Let x1 and x2 be two incomparable α-nodes and let z be their least common ancestor (see Figure 4).

We can choose x1 and x2 such that none of the α-nodes are incomparable with z or sibling of z, because
if this was not the case then there is an α-node x3 incomparable with z or sibling of z, and therefore x3 is
incomparable with x1, and we can replace x2 with x3, continuing with their least common ancestor, a node
which is strictly higher than z. Let z1 and z2 be the children of z that are respectively ancestors of x1 and
x2. Note that by construction, z1 6= z2. If x1 = z1 and there is an α-node x3 in the subtree of z, different
from x1 and incomparable with z2, then we replace x1 by x3 and proceed. In other words we ensure that if
x1 = z1 then there is no α-node incomparable with z2 in the subtree of z. We proceed similarly to enforce
that if x2 = z2 then there is no α-node incomparable with z1 in the subtree of z. Notice that we cannot
have at the same time x1 = z1 and x2 = z2 because we assumed x1 and x2 to be incomparable. All these
properties can be specified in MSO(<,+1) and therefore can be tested by a forest automaton. Let d1 and
d2 be the respective data values of x1 and x2 (possibly d1 = d2).
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Fig. 4: Subcase 4.1 in the proof of Theorem 3.

Consider now a β-node y whose data value is neither d1 nor d2. If y is incomparable with z or sibling
of z, then the formula cannot be true as it is contradicted by (x1, y). If y is an ancestor of z then, as no
α-node is incomparable with z, none is incomparable with y. Hence the formula can only be true with such
y. Assume now that y is inside the subtree of z. If y = z1 and x2 6= z2, then the formula is contradicted by
(x2, y). If y = z1 and x2 = z2, then, by hypothesis, there is no α-node incomparable with y in the subtree
of z, and there is no α-node incomparable with y outside the subtree of z, hence altogether, the formula
holds for y. If y 6= z1 and y is a descendant of z1, then the formula is contradicted by (x2, y). The cases
where y is descendant of z2 are symmetric: in this case, the formula can only be true if y = z2 and x1 = z1.
In the remaining cases y is in the subtree of z and not in the subtrees of z1 and z2, making the formula false.
Indeed, in each of these cases, either (x1, y) or (x2, y) contradicts the formula. To summarize, the only
cases making the formula true are when y is an ancestor of z, or y = z1 ∧ x2 = z2, or y = z2 ∧ x1 = z1.

With this discussion in mind, this case can be solved as follows: The transducerA guesses the nodes of
x1, x2, z1, z2 and z and checks that they satisfy the appropriate properties. Moreover, A guesses whether
d1 = d2 and marks the data values of x1 and x2 accordingly with one or two new colors. The forest
automaton B will then check that the data values are marked appropriately as in Remark 1.

Moreover A checks that for all marked β-nodes there is no α-node incomparable with it and with a
different data value, a regular property as explained in Remark 1. It now remains for A to check that every
unmarked β-node y behaves according to the discussion above: y is an ancestor of z or y = z1 and x2 = z2
or y = z2 and x1 = z1. This is a regular property testable by A.

Subcase 4.2: There are no two incomparable α-nodes.
Let x be an α-node such that no α-node is a descendant of x. By hypothesis, all α-nodes are either

ancestors or siblings of x. Let d be the data value of x. We distinguish between several subcases depending
on whether there are other α-nodes that are siblings of x or not.

If there is an α-node x′ that is a sibling of x, then let d′ be its data value (possibly d = d′). Consider
now a β-node y whose data value is neither d nor d′. Then, in order to make the formula true, y must be an
ancestor or a sibling of x.

In this case, the transducerA guesses the nodes x and x′ and marks the corresponding data values with
one or two new colors (according to whether d = d′ or not). The forest automaton B will then check
that the data values are marked correctly as explained in Remark 1. For the marked β-nodes, the property
expressed by the formula is regular and can also be checked by A. It remains for A to check that every
unmarked β-nodes is either an ancestor of x or a sibling of x.

Now, if there are no α-nodes that are sibling of x, and y is a β-node whose data value is not d, then
in order to make the formal true, y cannot be incomparable with x, and therefore, y can be an ancestor, a
descendant or a sibling of x.

In this second case, the transducer A guesses the node x, marks its data value using a new color. The
forest automaton B will then check that the data values were marked correctly as explained in Remark 1.
The transducer A checks that all marked β-nodes make the formula true (a regular property), and that all
unmarked β-nodes are not incomparable with x.

We now turn to formulas of the form (2).
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Case 5: ∀x∃y α(x) → (β(y) ∧ x ∼ y ∧ ε(x, y)), where ε(x, y) is as in (2). These formulas express
properties of nodes with the same data value. Moreover they express a regular property over all t[d].
Therefore can be treated by the forest automaton B as for the case 1.

Case 6: ∀x∃y α(x)→ (β(y)∧ x 6∼ y ∧ E→(x, y)). This formula expresses that every α-node has a next
sibling of type β with a different data value. The transducer A marks every α-node x, with a new color c
and checks that the next-sibling of x is a β-node. The forest automaton B accepts only the forests such that
for every node marked with c, its right sibling is labeled with #.

Cases 7, 8, 9: The formulae of form ∀x∃y α(x) → (β(y) ∧ x 6∼ y ∧ ε(x, y)) where ε(x, y) is one of
E→(y, x), E↓(x, y), E↓(y, x) are treated similarly.

Case 10: ∀x∃y α(x) → (β(y) ∧ x 6∼ y ∧ E⇒(x, y)). This formula expresses that every α-node must
have a β-node as a right sibling, but not as its next-sibling, and with a different data value.

Let X be an horizontal path. Let y be the rightmost β-node of X and d be its data value. Consider now
an α-node x of X with a data value different from d. Then either x is at the left of the previous-sibling of
y, and y can serve as the desired witness, or x has no witness and the formula is false.

The transducerA, for each horizontal path X containing an α-node, marks its rightmost β-node y with
a new color c′, guesses all the nodes of X with the same data value as y and marks them with a new color
c. Then it checks that every unmarked α-node of X occurs at the left of the previous-sibling of y. The
forest automaton B checks that the guesses are correct as in Remark 1: for each horizontal paths, either all
elements are marked with c or c′, or none.

Cases 11, 12, 13: The constructions for the formulae ∀x∃y α(x) → (β(y) ∧ x 6∼ y ∧ ε(x, y)) where
ε(x, y) is one of E⇒(y, x)), E�(x, y)), and E�(y, x)) are similar.

Case 14: ∀x∃y α(x)→ (β(y) ∧ x 6∼ y ∧ x<>y). This formula expresses that every α-node must have a
incomparable β-node with a different data value.

Subcase 14.1: There exist two β-nodes that are incomparable.
Let y1 and y2 be two incomparable β-nodes and let z be their least common ancestor. Using the same

reasoning as in subcase 4.1, we can choose y1 and y2 such that none of the β-nodes is incomparable with
z or a sibling of z. Let z1 and z2 be the children of z that are the ancestors of y1 and y2 respectively. By
construction, z1 6= z2. Using the same trick as in subcase 4.1, we can ensure that if y1 = z1 then there is
no β-node incomparable with z2, and if y2 = z2 then there is no β-node incomparable with z1. Moreover,
we cannot have at the same time y1 = z1 and y2 = z2. Recall that all these properties can be tested by a
forest automaton. Let d1 and d2 be the respective data values of y1 and y2 (possibly d1 = d2).

Consider now an α-node x whose data value is neither d1 nor d2. If x is incomparable with z or a
sibling of z, then y1 is a witness for x. If x is an ancestor of z then by hypothesis there is no β-node
incomparable with x and hence the formula is false. Assume now that x is in the subtree rooted at z. If
x = z1 and y2 6= z2, then y2 is a β-node incomparable with x with a different data value, hence a witness
for x in the formula. If x = z1 and y2 = z2, then by hypothesis, there is no β-node incomparable with x
in the subtree of z, and since there are neither β-nodes incomparable with x outside the subtree of z, the
formula must be false. If x 6= z1 and x is a descendant of z1, then y2 is a witness for x. The cases where
x is a descendant of z2 are symmetric. In the remaining cases, x is in the subtree of z and not a descendant
of z1 or z2. In each of these cases, either y1 or y2 is a witness for x.

With this discussion in mind, this case can be solved as follows: The transducerA guesses the nodes of
y1, y2, z1, z2 and z and checks that they satisfy the appropriate properties. Moreover, A guesses whether
d1 = d2 and marks accordingly the data values of z1 and z2 with one or two new colors. The forest
automaton B will then check that the data values are marked appropriately, as in Remark 1. Moreover A
checks that for every marked α-node, there exists a β-node making the formula true. It remains for A to
check the three following properties: no unmarked α-node occurs above z, if y1 = z1 then z2 is not an
unmarked α-node, and if y2 = z2 then z1 is not an unmarked α-node.
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Subcase 14.2: There are no two β-nodes that are incomparable.
Let y be an β-node such that no β-node is a descendant of y. By hypothesis, all β-nodes are either

ancestors or siblings of y. Let d be the data value of y. We distinguish between several subcases depending
on whether there are β-nodes that are siblings of y or not.

If there exists a β-node y′ that is a sibling of y, let d′ be its data value (possibly d = d′). Consider an
α-node x whose data value is neither d nor d′. If x is incomparable with y, then y is a witness for x. If x is
an ancestor or a sibling of y, then the formula cannot be true, because by hypothesis every β-node cannot
be incomparable with x. If x is a descendant of y, then y′ makes the formula true for that x.

Consider now the case where there are no β-node that are sibling of y. Note that y can have β-nodes
among its ancestors. Let x be a α-node that has data value different from d. If x is not incomparable with
y then the formula must be false. Otherwise, y is a witness for x.

The transducer A guesses the β-node y and marks its data value using a new color. Then it checks
whether there is an β-node y′ that is a sibling of y. If yes, it guesses whether the value at y′ is the same as
the value at y or not, and marks the data value of y′ using a new color. The forest automaton B will then
check that the data values are marked appropriately. For marked α-nodes, A checks the regular property
making the formula true. It now remains for A to check, in both cases, that every unmarked α-node x
satisfy the appropriate condition described above, i.e., that x is incomparable with y or a descendant of y
if there exists a sibling y′ and that x is incomparable with y otherwise.

Case 15: ∀x∃y α(x)→ false . It is sufficient to test with A that no α-node is present in the forest.

3 From DTA# to EBVASS

In this section we show that the emptiness problem of DTA# can be reduced to the reachability of a counter
tree automata model that extends BVASS, denoted EBVASS. An EBVASS is a tree automaton equipped
with counters. It runs on binary trees over a finite alphabet. It can increase or decrease its counters but
cannot perform a zero test. For BVASS, when going up in the tree, the new value of each counter is the
sum of its values at the left and right child. An EBVASS can change this behavior using simple arithmetical
constraints.

The general idea of the reduction is as follows. Let (A,B) be a DTA#. We want to construct an
automaton that recognizes exactly the projections of the data forests accepted by (A,B). Because this
automaton does not have access to the data values, the main difficulty is to simulate the runs of B on all
class forests. We will use counters for this purpose. The automaton will maintain the following invariant:
At any node x of the forest, for each state q of B, we have a counter that stores the number of data values d
such that B is in state q at x when running on the class forest associated to d. In order to maintain this
invariant we make sure that the automata model has the appropriate features for manipulating the counters.
In particular, moving up in the tree, in order to simulate B, the automaton has to decide which data value
occurring in the left subtree also appears in the right subtree. At the current node, each data value is
associated to a state of B and, by the invariant property, a counter. In order to maintain the invariant for
data values occurring in both subtrees, for each pair q, q′ of states of B, the automaton guesses a number n
(the number of data values being at the same time in state q in the left subtree and in state q′ in the
right subtree), removes n from both associated counters and adds n to the counter corresponding to the
state resulting from the application of the transition function of B on (q, q′). This preserves the invariant
property and a BVASS cannot do it, so we explicitly add this feature to our model. Once we have done this,
the counters from both sides are added like a BVASS would do. The #-stuttering property of the language
of B will ensure that this last operation is consistent with the behavior of B. This is essentially what we do.
But of course there are some nasty details. In particular DTA# run over unranked forests while EBVASS
run over binary trees.

We start by defining the counter tree automata model and then we present the reduction.
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3.1 Definition of EBVASS
An EBVASS is a tuple (Q,A, q0, k, δ, χ) where A is a finite alphabet,Q is a finite set of states, q0 ∈ Q is the
initial state, k ∈ N is the number of counters, χ is a finite set of constraints of the form Ci1�Ci2 → Ciwith
1 ≤ i1, i2, i ≤ k, and δ is the set of transitions which are of two kinds: ε-transitions (subset denoted δε)
and up-transitions (subset denoted δu).

An ε-transition is an element of (Q × A) × (Q × U) where U = {Ii, Di : 1 ≤ i ≤ k} is the set
of possible counter updates: Di stands for decrement counter i and Ii stands for increment counter i. We
view each element of U as a vector over {−1, 0, 1}k with only one non-zero position. An up-transition is
an element of (Q× A×Q)×Q.

Informally, an ε-transition may change the current state and increment or decrement one of the counters.
An up-transition depends on the label of the current node and, when the current node is an inner node, on
the states reached at its left and right child. It defines a new state and the new value of each counter is the
sum of the values of the corresponding counters of the children. Moreover, the behavior of up-transitions
can be modified by the constraints χ. Informally a constraint of the form Ci1�Ci2 → Ci modifies this
process as follows: before performing the addition of the counters, two positive numbers n1 and n2 are
guessed (possibly of value 0), the counter i1 of the left child and the counter i2 of the right child are
decreased by n1, the counter i2 of the left child and the counter i1 of the right child are decreased by n2
and, once the addition of the counters has been executed, the counter i is increased by n1 + n2. Note that
n1 and n2 must be so that all intermediate values remain positive. This is essentially what is explained
in the sketch above except that we cannot distinguish the left child from the right child. This will be a
property resulting from #-stuttering languages when coding them into binary trees. We now make this
more precise.

A configuration of an EBVASS is a pair (q, v) where q ∈ Q and v is a valuation of the counters, seen
as a vector of Nk. The initial configuration is (q0, v0) where v0 is the function setting all counters to 0.
There is an ε-transition of label a from (q, v) to (q′, v′) if (q, a, q′, u) ∈ δε and v′ = v + u (in particular
this implies that v + u ≥ 0). We write (q, v)

a−→ε (q′, v′), if (q′, v′) can be reached from (q, v) via a finite
sequence of ε-transitions of label a.

Given a binary tree a ∈ Trees(A), a run ρ of a EBVASS is a function from nodes of a to configurations
verifying for all leaf x, ρ(x) = (q0, v0) and for all nodes x, x1, x2 of a with x1 and x2 the left and right
child of x, and ρ(x) = (q, v), ρ(x1) = (q1, v1), ρ(x2) = (q2, v2) there exist (q′1, v

′
1), (q′2, v

′
2) such that:

1. (q1, v1)
a(x1)−−−→ε (q′1, v

′
1), (q2, v2)

a(x2)−−−→ε (q′2, v
′
2),

2. (q′1,a(x), q′2, q) ∈ δu,

3. for each constraint θ ∈ χ of the form Ci1�Ci2 → Ci there are two numbers n1θ and n2θ (they may be
0) and vectors uθ,1, uθ,2, uθ ∈ Nk, having n1θ and n2θ at positions i1, i2 for uθ,1, having n2θ and n1θ at
positions i1, i2 for uθ,2, n1θ + n2θ at position i for uθ and all other positions set to zero,

4. v′′1 = v′1 −
∑
θ∈χ

uθ,1 ≥ 0, and v′′2 = v′2 −
∑
θ∈χ

uθ,2 ≥ 0, and v = v′′1 + v′′2 +
∑
θ∈χ

uθ.

We stress that it will be important for coding the automata into the logic (Section 4) that χ is independent
of the current state of the automaton.

Without the constraints of χ we have the usual notion of BVASS [15]. It does not seem possible in
general to simulate directly a constraint Ci1�Ci2 → Ci with BVASS transitions. One could imagine using
an arbitrary number of ε-transitions decreasing the counters i1 and i2 while increasing counter i, after the
merging operation summing up the counters. However, it is not clear how to do this while preserving the
positiveness of the corresponding decrements before the merge (Step 4 above).

The reachability problem for an EBVASS, on input q ∈ Q, asks whether there is a tree and a run on that
tree reaching the configuration (q, v0) at its root.
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3.2 Reduction from DTA# to EBVASS
Theorem 4. The emptiness problem for DTA# reduces to the reachability problem for EBVASS.

Proof. We first take care of the binary trees versus unranked forest issue. It is well known that forests of
Forests(E) can be transformed into binary trees in Trees(E#) using the first-child/right-sibling encoding,
denoted by fcns , and formally defined as follows (for a ∈ E and s, s′ ∈ Forests(E)):

fcns(a) = a(# + #)
fcns(a(s)) = a(fcns(s) + #)
fcns(a+ s) = a(# + fcns(s))

fcns(a(s) + s′) = a(fcns(s) + fcns(s′)).

This transformation effectively preserves regularity: for each automaton B computing on Forests(E)
there exists an automaton B′ on binary trees of Trees(E#), effectively computable from B, recognizing
exactly the fcns encoding of the forests recognized by B. This automaton B′ is called the fcns view of B.
Note that we use the same # symbol in the fcns construction and for class forests. This simplifies the
technical details of the proof. In particular we can assume that our tree automata start with a single initial
state at the leaves of the tree.

We show that given a DTA# D, one can construct an EBVASS E with a distinguished state q such that
for all a ∈ Forests(A), there is a run of E on fcns(a) reaching (q, v0) at its root iff a⊗ d is accepted by D
for some d.

Before explaining the construction of E we first show the consequences of the fact that the second
component of D recognizes a #-stuttering language on its fcns view B. The fcns view of the rules of
Figure 2 are depicted in Figure 5: One obtains the same result by application of fcns and then of a rule of
Figure 5 than by application of the corresponding rule of Figure 2 and then of fcns . This can be enforced
using the following syntactic restrictions on the fcns view B that will be useful in our proofs. In the
definition of these restrictions, we use the notation (p1, b, p2)→ p for a transition of B from the states p1,
p2 in the left and right child of a node of label b, moving up with state p.

We assume without loss of generality that the states of B permit to distinguish the last symbol read
by B. More precisely, we assume that the set of states of B is split into two kinds: the #-states and the
non-#-states. The states of the first kind are reached by B on nodes labeled with symbol #, while the
states of the second kind are reached by B on nodes with label in B. We say that B is #-stuttering if B
is deterministic and has a specific #-state p# that it must reach on all leaves of label #, and verifies the
following properties:

1. if a transition rule of the form (p1,#, p#) → p2 is applied at a #-node that is the left-child of
another #-node, then p1 = p2

2. if a transition rule of the form (p#,#, p1) → p2 is applied at a #-node that is the right-child of
another #-node, then p1 = p2

3. all transition rules of the form (p#,#, p1)→ p2 with p1 a #-state verify p1 = p2.

4. all transition rules of the form (p1,#, p2) → p are “commutative”, i.e., (p2,#, p1) → p must then
also be a rule.

From these definitions, it is straightforward to see that for a setL ⊆ Forests(B), the following properties
are equivalent

• L is an #-stuttering language,

• fcns(L) is closed under the rules in Figure 5,

• there exists an #-stuttering automaton recognizing fcns(L).
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Fig. 5: fcns view of the #-stuttering closure rules. x and y are arbitrary binary trees.

We now turn to the construction of E . LetA = (QA,A,B, q0A, FA,∆A) andB = (QB,B#, q
0
B, FB,∆B)

be the fcns views of the two components of D. The automaton B is #-stuttering (i.e. there is a distinction
in its states between #-states and non-#-states, and the existence of a #-state p# ∈ QB on which B eval-
uates the tree with a single node labeled with #) and we also assume without loss of generality that it is
deterministic and complete, i.e., for every b ∈ Trees(B#), B evaluates into exactly one state of QB.

Here QA and QB (resp. FA, FB) are the respective state sets (resp. final state sets) ofA and B, A is the
input alphabet of A, B is the output alphabet of A and input alphabet of B (with the symbol #), and ∆A,
∆B are the sets of transitions. We will use the notation (r1, a, r2, r, b), for a transition ofA from the states
r1, r2 in the left and right child of a node of label a, renaming this node with b and moving up with state r.
In the following, we write explicitly the set of states of B as QB = {p#, p1, . . . , pk}.

For any data tree t ∈ Trees(B#×D), and any data value d occurring in t, the state ofQB corresponding
to the evaluation of B on the class forest t[d] is called the B-state associated to d in t. When d is the data
value at the root of t, this state is called the B-state of t. Note that for all t the B-state of t exists and is
unique, since B is assumed to be deterministic and complete, and that it is always a non-#-state.

We now construct the expected EBVASS E = (Q,A, q0, k, δ, χ) with k = |QB| − 1. We set Q =
QA ×QB ×Q0, where Q0 is a finite set of auxiliary control states. The initial state q0 is the tuple formed
with q0A, the initial state of A, q0B, the initial state of B, and a specific state of Q0. The first and second
components of a state q ∈ Q are respectively called the A-state and the B-state of q. The transitions of the
EBVASS E are constructed in order to ensure the following invariant:

(?) E reaches the configuration (q, v) at the root of a tree a ∈ Trees(A) iff there exists a data
tree t = a ⊗ d and a possible output b ∈ Trees(B) of A on a witnessed by a run of A
whose state at the root of a is the A-state of q, and moreover for all i, 1 ≤ i ≤ k, vi is the
number of data values having pi as associated B-state in b⊗ d.

Note that the counters ignore the number of data values having p# as associated B-state (which will always
be infinite). A consequence of (?) is that: (�) there is only one non-#-state pi ∈ QB such that vi 6= 0, and
actually vi = 1. We will refer to this state pi as the B-state of v, and the construction of E will ensure that
pi is also the B-state of q.

If we can achieve the invariant (?) then we are done. Indeed, we can add to E some ε-transitions which,
when reaching a state q containing a final A-state, decrement the counters corresponding to final states of
B (and only those). Then, E reaches a configuration (q, v0) with theA-state of q being a final state ofA iff
there exists a data tree accepted by D.

Notice that the property (?) is invariant under permutations of D. Hence if a tree d witnesses the
property (?), then any tree d′ constructed from d by permuting the data values is also a witness for (?).
This observation will be useful for showing the correctness of the construction of E .

Before defining the transition relation of E we sketch with more details its construction.
The automaton E needs to maintain the invariant (?). One direction will be immediate: if D has an

accepting run on a⊗d then E is constructed so that it has an accepting run on a satisfying (?) as witnessed
by d. For the converse direction, we need to construct from a run of E on a a tree d such that D has a run
on a⊗ d as in (?).

The simulation of A is straightforward as E can simulate any regular tree automaton. The simulation
of A is done using the A-state of the states of E : for every ε-transition (q, a, q′, u) of E , the A-states of
q and q′ must coincide, and for every up-transition (q1, a, q2, q) of E , there exists a transition of A of the
form (r1, a, r2, r, b), for some b ∈ B such that r1, r2 and r are the respective A-states of q1, q2 and q. In
other words, the A-state of E always is the state of A at the current node.
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Let’s now turn to the simulation of B and the invariant (?). This invariant will be shown by induction
in the depth of the tree. Let us assume that E reached the configuration (q, v) at the root x of a tree a.

If x is a leaf node, then by definition of EBVASS, q is the initial state q0 of E and v = v0, hence (?)
holds.

If x is an inner node, then a = a(a1,a2) for some letter a ∈ A. By induction on the depth, we have
trees d1 and d2 such that there is a run of D on a1 ⊗ d1 and a2 ⊗ d2 satisfying (?). From the remark
above on the invariance of (?) under permutations of D, we can assume that d1 and d2 do not share any
data value. We need to set the transitions of E such that from d1, d2, we can construct a tree d such that D
also has a run on a ⊗ d as in (?). The tree d will be of the form d(d′1,d

′
2) for some d ∈ D, where d′1 and

d′2 are constructed from d1 and d2 by permuting the data values. The permutation will identify some data
values of d1 with some data values of d2. The number of data values we identify is given by the n in the
constraints of E as explained in the initial sketch on page 11. This n is therefore given by the run of E and
we will see that it does not matter which data values we actually choose, it is only important that we pick
n of them. The constraints make sure that this is consistent with the runs of B.

For this purpose we define χ as the set of constraints of the form Cj1�Cj2 → Cj such that there exists
a transition (pj1 ,#, pj2) → pj of B where pj1 , pj2 , and pj are #-states in QB \ {p#}. Note that the
commutativity rule in the definition of #-stuttering languages implies that whenever we have a constraint
Cj1�Cj2 → Cj then both (pj1 ,#, pj2)→ pj and (pj2 ,#, pj1)→ pj are transitions of B.

This does maintain (?) assuming that d, the data value expected at x, is not among the data values we
identify (in the transitions used to construct χ the root symbol is #). This data value d has to be treated
separately and we have several cases depending on whether d is completely new (does not occur in d′1
and d′2), or occurs in d′1 but not in d′2, or the other way round, or it occurs in both subtrees. Actually it will
also be necessary to consider separately the cases where d occurs at the root of d′1 or d′2.

This last choice is guessed by E and can therefore be read from the run of E . We can then choose d
consistently with the guess of E . Again the precise value of d is not important. It is only important that its
equality type with the other data values is consistent with the choice made by E . This makes finitely many
cases and we define the transition function of E as the union of corresponding family of transitions. Each
of them involving disjoint intermediate states they don’t interfere between each other. We therefore define
them separately and immediately after prove that they do maintain (?) for their case.

1. E guessed that the data value of the current node is equal to the data value of both its children.
To handle this case, for each transition τ = (pi1 , b, pi2)→ pi of B, where none of pi1 , pi2 , pi are #-states,
E has the following transitions:

ε-transitions:
from a state q1 of B-state pi1 it decreases counter i1 and moves to a state q1τ
from a state q2 of B-state pi2 it decreases counter i2 and moves to state q2τ
from a state qτ it increases counter i and moves to a state q of B-state pi

up-transition: (q1τ , a, q
2
τ , qτ ).

The state q1τ (resp. q2τ , qτ ) differs from q1 (resp. q2, q) only by its third component (in Q0), that contains τ .
We shall use the same convention for the states introduced in the following construction cases.

Correctness. Let us show that if E makes an up-transition (q1τ , a, q
2
τ , qτ ) at the root of a ∈ Trees(A) we

can construct d such that D has a run on a ⊗ d satisfying (?). This up-transition can only occur if we
had ε-transitions from q1 to q1τ in the left subtree and from q2 to q2τ in the right subtree where pi1 and pi2
are the B-states of q1 and q2. Let x be the root of the tree a ⊗ d where this transition occurred. We have
a = a(a1,a2). By induction hypothesis we have trees d1 and d2 and possible outputs b1, b2 ∈ Trees(B) of
A on respectively a1 and a2 such that there is a run ofD on t1 = a1⊗d1 and t2 = a2⊗d2 satisfying (?).

We first apply a bijection on the labels of d1 in order for the data value of its root to match the one of
the root of d2. Let d be this data value.

For each constraint θ = Ck1�Ck2 → Ck ∈ χ we let n1θ and n2θ be the numbers used by the run of E
when using the above up-transition. By induction hypothesis (?), and semantics of the constraints (making
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t′ = b⊗ d = (b, d)

(b1, d) (b2, d)

t′[d] = b(pi)

b1(pi1) b2(pi2)

Fig. 6: Proof of Theorem 4, Case 1. The B-states are displayed in parentheses in the class tree t′[d].

sure the counters are big enough) there are at least n1θ (resp. n2θ) distinct data values different from d
(because the up-transition is applied after we decreased the counter k1 by n1θ) in d1 having pk1 (resp. pk2 )
as associated B-state in t1 = b1 ⊗ d1, and similarly for t2 = b2 ⊗ d2. We pick such data values in each
subtree and call them the data values associated to θ. We do this for all constraints θ and we choose the
associated data values such that they are all distinct. We now apply to d2 a permutation on the data values
such that for all θ the data values associated to θ in d2 are identified with the ones for d1 and such that
all other data values are distinct. In order to simplify the notations we call the resulting tree also d2. We
then set d as d(d1,d2) and t′ = b ⊗ d where b = b(b1, b2) is an output of A on a compatible with the
transition.

Let e be an arbitrary data value occurring in d.
If e = d, the root symbol of the class forest t′[e] is a and the counter i is increased by 1 by the last

ε-transition. By induction hypothesis and its consequence (�), vi = 1 and for all other non-#-states the
corresponding value via v will be 0. Hence pi is the new B-state of v. It is also the B-state of q by
construction.

If e 6= d we consider 3 subcases. If e occurs in both d1 and d2 then the class forest t′[e] has the
form #(s1, s2) for some forests s1 and s2 containing each at least one symbol other than # (not at the
root node). Let pj1 and pj2 be the states reached by B when evaluating s1 and s2. They are the B-states
associated to e in t′1 and t′2, (resp. the left- and right subtrees of t′), and both are #-states inQB \{p#}. By
construction of d, there are at least nθ = n1θ + n2θ such data values e, where θ = Cj1�Cj2 → Cj and pj is
the unique state of B such that (pj1 ,#, pj2)→ pj is a transition of B (and therefore also (pj2 ,#, pj1)→ pj
is also a transition). These nθ data values will contribute to an increase of vj by nθ as expected.

Assume now that e occurs in d1 but not in d2 (the remaining case being symmetrical). Then t′[e] has
the form #(s1, s2) where s1 contains at least one symbol other than # (not at root node), and all nodes
of s2 are labeled #. By the hypothesis that B is #-stuttering, the B-state associated to e in t′ is the same
as the one associated to e in t′1, and the B-state associated to e in t′2 is p#. This is consistent with the
behavior of E that propagates upward the value of the counter corresponding to this state, after applying
the constraints. Altogether this shows that t = a⊗ d verifies (?).

2. E guessed that the data value d1 of the current node is equal to the data value of its left child but
different from the data value d2 of its right child. Moreover E guessed that the B-state associated to d1
in the right subtree is pk2 , and that the data value d2 of the right child also appears in the left subtree,
with pk1 as B-state associated to d2 in this left subtree. Note that both pk1 and pk2 must be #-states in
QB \ {p#}.
To handle this case for all transitions τ = (pi1 , b, pk2)→ pi and τ ′ = (pk1 ,#, pi2)→ pj of B, where none
of pi1 , pi2 , pi are #-states but pj (like pk1 and pk2 ) are #-states, E has the following transitions:

ε-transitions:
from a state q1 of B-state pi1 it decreases the counters i1 and k1 and moves to state q1τ,τ ′

from a state q2 of B-state pi2 it decreases the counters i2 and k2 and moves to state q2τ,τ ′

from a state qτ,τ ′ it increases counters i and j and moves to a state q of B-state pi

up-transition: (q1τ,τ ′ , a, q2τ,τ ′ , qτ,τ ′).

Correctness. We argue as in the previous case with the following modifications. From d1 and d2 we
first apply a bijection making sure that the data values d1 and d2 of their roots are different and that d1 has
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t′ = b⊗ d = (b, d1)

(b1, d1) (b2, d2)

t′[d1] = b(pi)

b1(pi1) #(pk2)

t′[d2] = #(pj)

#(pk1) b2(pi2)

Fig. 7: Proof of Theorem 4, Case 2.

t′ = b⊗ d = (b, d1)

(b1, d1) (b2, d2)

t′[d1] = b(pi)

b1(pi1) #(pk2)

t′[d2] =#(pj)

#(p#) b2(pi2)

Fig. 8: Proof of Theorem 4, Case 3. The node without subtree in the class tree t′[d2] is a leaf.

B-state pk2 in b2 ⊗ d2 and d2 has B-state pk1 in b1 ⊗ d1, where a = a(a1,a2) and b1, b2 ∈ Trees(B) are
possible outputs of A on respectively a1 and a2 from the induction hypothesis.

For each θ ∈ χ we select the associated data values making sure they are neither d1 nor d2. The decre-
ment in the ε-transitions make sure that this is always possible. We then perform the same identification
as in the previous case. The same argument as above shows that the resulting tree d = d1(d1,d2) has the
desired properties.

3. E guessed that the data value d1 of the current node is equal to the data value of its left child but
different from the data value of its right child. Moreover E guessed that d1 also appear in the right subtree
of the current node, with pk2 as associated B-state in this right subtree, and that the data value of the right
child of the current node does not appear in the left subtree. Note that pk2 must be a #-state in QB \{p#}.
To handle this case for all transitions τ = (pi1 , b, pk2)→ pi and τ ′ = (p#,#, pi2)→ pj of B, where none
of pi1 , pi2 , pi are #-states but pk2 and pj are #-states, E has the following transitions:

ε-transitions:
from a state q1 of B-state pi1 it decreases the counter i1 and moves to state q1τ,τ ′

from a state q2 of B-state pi2 it decreases the counter i2 and k2 and moves to state q2τ,τ ′

from a state qτ,τ ′ it increases the counters i and j and moves to a state q of B-state pi

up-transition: (q1τ,τ ′ , a, q2τ,τ ′ , qτ,τ ′).

Correctness. We argue as in the previous cases with the following modifications. From d1 and d2 we
first apply a bijection making sure that the data values d1 and d2 of their roots are different and that d1 has
B-state pk2 in b2 ⊗ d2 and d2 does not appear in d1 (b2 is as in previous cases).

For each θ ∈ χ we select the associated data values making sure they are neither d1 nor d2. The decre-
ment in the ε-transitions make sure that this is always possible. We then perform the same identification as
in the previous case. As before we show that the resulting tree d = d1(d1,d2) has the desired properties.

4. E guessed that the data value d of the current node is different from the ones of its children but appear
in both subtrees, with pk1 and pk2 as associated B-states repectively in left and right subtrees. Moreover E
guessed that the data values of both children of the current node are equal. Note that pk1 and pk2 must be
#-states in QB \ {p#}.
To handle this case for all transitions τ = (pk1 , b, pk2)→ pi and τ ′ = (pi1 ,#, pi2)→ pj of B, where none
of pi1 , pi2 , pi are #-states but pk1 , pk2 and pj are #-states, E has the following transitions:

ε-transitions:
from a state q1 of B-state pi1 it decreases the counters i1 and k1 and moves to state q1τ,τ ′

from a state q2 of B-state pi2 it decreases the counters i2 and k2 and moves to state q2τ,τ ′

from a state qτ,τ ′ it increases the counters i and j and moves to a state q of B-state pi
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t′ = b⊗ d = (b, d)

(b1, d1) (b2, d1)

t′[d] = b(pi)

#(pk1) #(pk2)

t′[d1] =#(pj)

b1(pi1) b2(pi2)

Fig. 9: Proof of Theorem 4, Case 4.

t′ = b⊗ d = (b, d)

(b1, d1) (b2, d2)

t′[d] = b(pi)

#(pk1) #(pk2)

t′[d1] = #(pj1)

b1(pi1) #(p`1)

t′[d2] = #(pj2)

#(p`2) b2(pi2)

Fig. 10: Proof of Theorem 4, Case 5.

up-transition: (q1τ,τ ′ , a, q2τ,τ ′ , qτ,τ ′).

Correctness. We argue as in the previous cases with the following modifications.
From d1 and d2 we first apply a bijection making sure that the data value d1 of their roots are equal

and that d1 and d2 share a common data value d 6= d1 of B-state pk2 in b2⊗d2 and B-state pk1 in b1⊗d1.
For each θ ∈ χ we select the associated data values making sure they are neither d1 nor d. The decre-

ment in the ε-transitions make sure that this is always possible. We then perform the same identification as
in the previous case. The rest of the argument is similar after setting d = d(d1,d2).

5. E guessed that the data value d of the current node is different from the ones of its children but appear in
both subtrees, with pk1 and pk2 as associated B-states in respectively the left and right subtree. Moreover
E guessed that the data values of both children of the current node are distinct but appear in the other
subtree with respective associated B-state p`1 and p`2 . Note that pk1 , pk2 , p`1 , p`2 must be #-states.

To handle this case for all transitions τ = (pk1 , b, pk2) → pi, τ1 = (pi1 ,#, p`1) → pj1 and τ2 =
(p`2 ,#, pi2)→ pj2 of B, where none of pi1 , pi2 , pi are #-states but pk1 , pk2 , p`1 , p`2 , pj1 , pj2 are #-states,
E has the following transitions:

ε-transitions:
from a state q1 of B-state pi1 it decreases the counters i1, k1 and l2 and moves to state q1τ,τ1,τ2
from a state q2 of B-state pi2 it decreases the counters i2, k2 and l1 and moves to state q2τ,τ1,τ2
from a state qτ,τ1,τ2 it increases the counters i, j1 and j2 and moves to a state q of B-state pi

up-transition: (q1τ,τ1 τ2 , a, q
2
τ,τ1,τ2 , qτ,τ1,τ2).

Correctness. We argue as in the previous cases with the following modifications.
From d1 and d2 we first apply a bijection making sure that the data values d1 and d2 of their roots are

distinct and that d1 has B-state p`1 in b2⊗d2 and d2 has B-state p`2 in b1⊗d1. Moreover d1 and d2 share
a common data value d distinct from d1 and d2 of B-state pk2 in d2 and B-state pk1 in d1.

For each θ ∈ χ we select the associated data values making sure that they are neither d, d1 nor d2.
The decrement in the ε-transitions make sure that this is always possible. We then perform the same
identification as in the previous case. The rest of the argument is similar after setting d = d(d1,d2).

6. E guessed that the data value d of the current node is different from the ones of its children but appear
in both subtrees, with pk1 and pk2 as associated B-states in respectively the left and right subtree. Moreover
E guessed that the data value of the right child of the current node appear in its left subtree, with p`1 as
associated B-state in this left subtree, and that the data value of the left child does not appear in the right
subtree. Note that pk1 , pk2 and p`1 must be #-states in QB \ {p#}.
To handle this case for all transitions τ = (pk1 , b, pk2) → pi, τ1 = (pi1 ,#, p#) → pj1 and τ2 =
(p`1 ,#, pi2) → pj2 of B, where none of pi1 , pi2 , pi are #-states but pk1 , pk2 , p`1 , pj1 , pj2 are #-states, E
has the following transitions:
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t′ = b⊗ d = (b, d)

(b1, d1) (b2, d2)

t′[d] = b(pi)

#(pk1) #(pk2)

t′[d1] = #(pj1)

b1(pi1) #(p#)

t′[d2] = #(pj2)

#(p`1) b2(pi2)

Fig. 11: Proof of Theorem 4, Case 6.

t′ = b⊗ d = (b, d)

(b1, d1) (b2, d2)

t′[d] = b(pi)

#(pk1) #(pk2)

t′[d1] = #(pj1)

b1(pi1) #(p#)

t′[d2] = #(pj2)

#(p#) b2(pi2)

Fig. 12: Proof of Theorem 4, Case 7.

ε-transitions:
from a state q1 of B-state pi1 it decreases the counters i1, k1 and l1 and moves to state q1τ,τ1,τ2
from a state q2 of B-state pi2 it decreases the counters i2, k2 and moves to state q2τ,τ1,τ2
from a state qτ,τ1,τ2 it increases the counters i, j1 and j2 and moves to a state q of B-state pi

up-transition: (q1τ,τ1 τ2 , a, q
2
τ,τ1,τ2 , qτ,τ1,τ2).

Correctness. We argue as in the previous cases with the following modifications.
From d1 and d2 we first apply a bijection making sure that the data values d1 and d2 of their roots are

distinct and that d1 does not appear in d2 and d2 has B-state p`1 in b1 ⊗ d1. Moreover d1 and d2 share a
common data value d distinct from d1 and d2 of B-state pk2 in b2 ⊗ d2 and B-state pk1 in b1 ⊗ d1.

For each θ ∈ χ we select the associated data values making sure that they are neither d, d1 nor d2.
The decrement in the ε-transitions make sure that this is always possible. We then perform the same
identification as in the previous case. The rest of the argument is similar after setting d = d(d1,d2).

7. E guessed that the data value d of the current node is different from the ones of its children but appears
in both subtrees with pk1 and pk2 as associated B-states. Moreover it guessed that the data values of both
children of the current node do not appear elsewhere. Note that pk1 , pk2 must be #-states in QB \ {p#}.
To handle this case for all transitions τ = (pk1 , b, pk2) → pi, τ1 = (p#, b, pp2) → pj1 and τ2 =
(pi1 , b, p#)→ pj2 of B, where none of pi1 , pi2 , pi are #-states but pk1 , pk2 , pj1 , pj2 are #-states, E has the
following transitions:

ε-transitions:
from a state q1 of B-state pi1 it decreases the counters i1, k1 and moves to state q1τ,τ1,τ2
from a state q2 of B-state pi2 it decreases the counters i2, k2 and moves to state q2τ,τ1,τ2
from a state qτ,τ1,τ2 it increases the counters i, j1 and j2 and moves to a state q of B-state pi

up-transition: (q1τ,τ1 τ2 , a, q
2
τ,τ1,tau2

, qτ,τ1,τ2).

Correctness. We argue as in the previous cases with the following modifications.
From d1 and d2 we first apply a bijection making sure that the data values d1 and d2 of their roots

are distinct and that d1 does not appear in d2 and d2 does not appear in d1. Moreover d1 and d2 share a
common data value d distinct from d1 and d2 of B-state pk2 in d2 and B-state pk1 in d1.

For each θ ∈ χ we select the associated data values making sure that they are neither d, d1 nor d2.
The decrement in the ε-transitions make sure that this is always possible. We then perform the same
identification as in the previous case. The rest of the argument is similar after setting d = d(d1,d2).
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t′ = b⊗ d = (b, d)

(b1, d1) (b2, d1)

t′[d] = b(pi)

#(p#) #(p#)

t′[d1] = #(pj)

b1(pi1) b2(pi2)

Fig. 13: Proof of Theorem 4, Case 8.

t′ = b⊗ d = (b, d)

(b1, d1) (b2, d2)

t′[d] = b(pi)

#(p#) #(p#)

t′[d1] = #(pj1)

b1(pi1) #(p`1)

t′[d2] = #(pj2)

#(p`2) b2(pi2)

Fig. 14: Proof of Theorem 4, Case 9.

8. E guessed that the data value d of the current node is different from the ones of its children and does
not appear in the subtrees. Moreover E guessed that the data values of both children of the current node
are equal.
To handle this case for all transitions τ = (p#, b, p#) → pi, τ ′ = (pi1 ,#, pi2) → pj of B, where none of
pi1 , pi2 , pi are #-states, E has the following transitions:

ε-transitions:
from a state q1 of B-state pi1 it decreases the counters i1 and moves to state q1τ,τ ′

from a state q2 of B-state pi2 it decreases the counter i2 and moves to state q2τ,τ ′

from a state qτ,τ ′ it increases the counters i, and j and moves to a state q of B-state pi

up-transition: (q1τ,τ ′ , a, q2τ,τ ′ , qτ,τ ′).

Correctness. We argue as in the previous cases with the following modifications.
From d1 and d2 we first apply a bijection making sure that the data values of their roots are equal (let

us call it d1).
For each θ ∈ χ we select the associated data values making sure it is not d1. The decrement in the

ε-transitions make sure that this is always possible. We then perform the same identification as in the
previous case. The rest of the argument is similar after setting d = d(d1,d2), where d is a fresh new value.

9. E guessed that the data value d of the current node is different from the ones of its children and does
not appear in both subtrees. Moreover E guessed that the data values of both children of the current node
(say d1 and d2) are distinct but appear in the other subtree with respective associated B-state p`1 and p`2 .
Note that p`1 , p`2 must be #-states in QB \ {p#}.
This case is treated as before with the expected transitions.

10. E guessed that the data value d of the current node is different from the ones of its children and does
not appear in both subtrees. Moreover E guessed that the data value d2 of the right child in its left subtree
with p`1 as associated B-state in this left subtree and that the data value d1 of the left child does not appear
in the right subtree. Note that p`1 must be a #-states in QB \ {p#}.
This case is treated as before with the expected transitions.

11. We omit the symmetric cases.
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t′ = b⊗ d = (b, d)

(b1, d1) (b2, d2)

t′[d] = b(pi)

#(p#) #(p#)

t′[d1] = #(pj1)

b1(pi1) #(p#)

t′[d2] = #(pj2)

#(p`1) b2(pi2)

Fig. 15: Proof of Theorem 4, Case 10.

4 From EBVASS to FO2(<,+1,∼)

We show in this section that reachability of EBVASS can be expressed as a sentence of FO2(<,+1,∼).
This concludes the loop of reductions, showing that reachability for EBVASS, satisfiability of FO2(<,+1,∼)
and emptiness of DTA# are equivalent as decision problems. The proof essentially mimics the reduction
from BVASS to FO2(<,+1,∼) described in [4] with extra material in order to handle the extra features.

Theorem 5. The reachability problem for EBVASS reduces to the satisfiability problem for FO2(<,+1,∼).

Proof. Given an EBVASS E = (Q,A, q0, k, δ, χ) and a state q ∈ Q, we compute a sentence φ ∈ FO2(<,+1,∼)
such that φ has a model iff the configuration (q, v0) is reachable in some tree (where v0 is the function set-
ting all counters to 0).
We associate to E the following finite alphabet AE = δ ∪ {Di, Ii | 1 ≤ i ≤ k} ∪ {Tθ, Lθ, Rθ | θ ∈ χ}.
Intuitively Di says that the counter i has been decreased, Ii says that the counter i has been increased, δ
encodes the transition relation, and the letters Lθ, Rθ and Tθ will be used to enforce the constraint θ. The
formula φ we construct accept all binary data trees of Trees(AE × D) encoding runs of E . It turns out that
φ accepts more trees but any accepted trees of φ can be transformed into an accepting run of E with simple
transformations.
We start with the encoding of a single transition µ ∈ δ.
If µ is an ε-transition then we encode it with two nodes x, y where y is the unique child of x and the label
of x is µ while the label of y is Di (resp. Ii) if µ was decreasing (resp. increasing) counter i.
If µ is an up-transition, then we encode it as a subtree of the following form:

• The root has label µ,

• below the root there is a (vertical) sequence of nodes of arity one whose labels form a word of∑
θ=Ci1

�Ci2
→Ci∈χ

(IiTθ)
∗, where

∑
denotes concatenation,

• the last node of that sequence has arity two and two branches starts from that node,

• the sequence of labels of the left branch forms a word of
∑

θ=Ci1
�Ci2

→Ci∈χ

(Di1LθDi2Rθ)
∗,

• the sequence of labels of the right branch forms a word of
∑

θ=Ci1�Ci2→Ci∈χ

(Di1RθDi2Lθ)
∗,

• for all θ the number of occurrences of Lθ, Rθ and Tθ are the same.

A tree satisfying all these items, except maybe the last one, is said to be a pseudo-encoding of the up-
transition µ. Notice that pseudo-encodings of up-transitions form a regular tree language.
From there, the encoding of a run is obtained in the obvious way by concatenating encodings of transitions.

The formula φ essentially describes this construction. It first enforces that the tree has the desired
shape:

• The tree is a repetition of a sequence of the form: a pseudo-encoding of one up-transition followed
by the encodings of several ε-transitions,

• the sequencing is valid: if µ and ν are consecutive transitions in the tree then the starting state of one
is the ending state of the other,
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• the initial state q0 can be found at the leaves and the state q is reached at the root.

Note that the above three conditions can be checked by a standard tree automaton over AE , and therefore
can be expressed in EMSO2(<,+1). Therefore, by setting A = Ac × A′ for a suitable A′ matching the
existential part of the EMSO formula, the property above can be expressed in FO2(<,+1).

The formula φ now needs to make sure that no counter ever gets negative and that pseudo-encodings of
up-transitions are actually real encodings. This is where data values are needed: The formula φ enforces
that

1. no two nodes with label Di can have the same data value, for 1 ≤ i ≤ k,

2. no two nodes with label Ii can have the same data value, for 1 ≤ i ≤ k,

3. for all i ∈ [k], every node with label Di has a descendant with label Ii and with the same data value,

4. for all i ∈ [k], every node with label Ii has an ancestor with label Di and with the same data value.

These four conditions enforce that the counters never get negative and that they are all set to 0 at the root.
It remains to enforce that all pseudo-encodings can be transformed into real encodings. This is done with
the following conditions.

5. no two nodes with label Tθ, for θ ∈ χ, can have the same data value,

6. no two nodes with label Lθ, for θ ∈ χ, can have the same data value,

7. no two nodes with label Rθ, for θ ∈ χ, can have the same data value,

8. every node with label Tθ has a descendant with label Lθ and a descendant with label Rθ both with
the same data value,

9. every node with label Lθ or Rθ has an ancestor with label Tθ and with the same data value,

10. two nodes of label Lθ and Rθ with the same data value are not comparable with the ancestor rela-
tionship.

It now remains to show that φ has the desired property.

Lemma 6. φ has a model iff (q, v0) is reachable by E .

Proof. From reachability to models of φ. Assume that (q, v0) is reachable and let ρ be a run of E
witnessing this fact. Let a be the tree constructed from ρ by concatenating the sequences of encodings of
transitions of ρ as explained above. The binary tree a certainly satisfies the “regular” part of φ. We now
assign the data values so that the remaining part of φ is satisfied. This is done in the obvious way: each
time a counter i is decremented, as the resulting value is positive, this means that a matching increment
was performed before. Similarly, each time a constraint θ is used in a transition µ, we assign one distinct
data value per triple Lθ, Rθ, Tθ occurring in the encoding of µ. The formula was constructed to make the
resulting tree a model of φ.

From models of φ to reachability. Assume now that t = a ⊗ d |= φ. Unfortunately, it may happen
that a does not encode a run of E because some section corresponds to a pseudo-encoding of an up-
transition, instead of an expected real encoding. However, we show that from t we can construct another
tree t′ = a′ ⊗ d′ such that t′ |= φ and a′ encodes a real run of E .

To see this, let us consider a node x of t with label Tθ, where θ = Ci1�Ci2 → Ci, and let d = d(x).
Let x1 and x2 be two descendants of x with respective labels Lθ andRθ and such that d = d(x1) = d(x2).
Let z be the least common ancestor of x1 and x2. The existence of x1 and x2 is guaranteed by φ (conditions
5–8). The sentence φ also ensures that x is an ancestor of z (conditions 9–10). By construction the subtree
at z must correspond to a pseudo-encoding of an up-transition µ′.

We now move (down) x and its parent (that must have label Ii) right above z within the coding of µ′.
Similarly we move (up) x1 and its parent (that must have label Di1 ) right below z, and similarly for x2.
The reader can verify that the resulting tree is still a model of φ: the regular conditions remain obviously
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satisfied. Conditions 1–4 are still valid because the node of label Ii1 matching the parent of y was already
below the initial position of y and its new position is upward in the tree. Finally conditions 5–10 remain
valid by construction.

Repeating this argument eventually yields a model t′ = b⊗d′ of φ such that b is a correct sequencing of
encodings of transitions a E . This encoding is actually a real run because conditions 1–4 of φ immediately
enforces that no counter is ever negative.

Theorem 5 is now immediate from Lemma 6.

5 Conclusion

We have seen that satisfiability of FO2(<,+1,∼), emptiness of DTA# and reachability of EBVASS are
equivalent problems in terms of decidability. The main open problem is of course whether they are all
decidable or not.

The use of the EBVASS constraints of the form Ci1�Ci2 → Ci is crucial for the construction of
Section 3. Their semantics cannot be directly simulated with the usual BVASS, but it is not clear whether
EBVASS are strictly more expressive than BVASS, and whether this extension is needed in order to capture
the expressive power of FO2(<,+1,∼) on data trees.

In our definition of EBVASS the constraints of the form Ci1�Ci2 → Ci have a “commutative” se-
mantics. Without commutativity, i.e., the rule modifies only counter i1 on the left child and counter i2
on the right child, the automata model is more powerful. In order to describes its runs as in the proof of
Theorem 5, the logic needs to be able to enforce that a Lθ must be to the left of the Rθ with the same data
value. This can be done by adding the document order predicate into the logic. A close inspection of the
proof of Theorem 3 and Theorem 4 then shows that the extension of FO2(<,+1,∼) with the document
order predicate can be captured by a DTA# without the commutativity rule and that such automata can be
captured by the non-commutative version of EBVASS.

In [2] it was shown that, over data words, the Data Automata model of [5] is more expressive than the
Register Automata of [14]. It is not obvious that our automata model DTA# extends the expressive power
of the straightforward extension of register automata to data trees. This remains to be investigated.
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