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ABSTRACTThis paper investigates the on-line validation of stream-ing XML documents with respect to a DTD, undermemory constraints. We �rst consider validation us-ing constant memory, formalized by a �nite-state au-tomaton (fsa). We examine two 
avors of the problem,depending on whether or not the XML document is as-sumed to be well-formed. The main results of the paperprovide conditions on the DTDs under which validationof either 
avor can be done using an fsa. For DTDsthat cannot be validated by an fsa, we investigate twoalternatives. The �rst relaxes the constant memory re-quirement by allowing a stack bounded in the depth ofthe XML document, while maintaining the determinis-tic, one-pass requirement. The second approach consistsin re�ning the DTD to provide additional informationthat allows validation by an fsa.
1. INTRODUCTIONThe Extended Markup Language (XML) is emergingas the standard for data exchange on the Web. Manyapplications, ranging from e-commerce and B2B to sci-enti�c applications monitoring sensor or satellite data,increasingly require on-line processing of large amountsof data in XML format using limited memory. Suchprocessing includes querying XML documents, comput-ing running aggregates of streams of numerical data,and validating XML documents against given DocumentType De�nitions (DTDs).In this paper we take a �rst step towards a formal in-vestigation of processing streaming XML documents, bystudying the validation question. This is an importantpractical problem, which is already being tackled in in-�This author supported in part by the NSF under grantnumber IIS-9802288.

dustry, with some commercial products developed (seerelated work below).In its most restrictive form, the problem of validatingstreaming XML is to verify that an XML documentis valid with respect to a given DTD in a single passand using a �xed amount of memory, depending on theDTD but not on the size of the XML document. Inother words, validation is done by a �nite-state automa-ton (fsa) performing a pass on the XML document asit streams through the network, with constant mem-ory. The problem comes in two 
avors, depending onwhether or not validation includes checking that the in-put is a well-formed XML document. Validation thatincludes checking well-formedness is referred to as strongvalidation. Checking satisfaction of the DTD under theassumption that the input is a well-formed XML doc-ument is referred to simply as validation. It is easy tosee that validation of either 
avor is not possible for allDTDs using an fsa. DTDs for which (strong) validationcan be done using an fsa are referred to as (strongly)recognizable DTDs.The main results of the paper provide conditions onDTDs under which they are (strongly) recognizable.The characterization of strongly recognizable DTDs isstraightforward: the DTD has to be non-recursive. Char-acterizing recognizable DTDs is much more intricateand technically di�cult. To put the problem in per-spective, note that validation with respect to a DTDamounts to checking membership of the tree associatedwith the XML document in a regular tree language,while validation by an fsa amounts to acceptance ofthe tree by a restricted form of tree-walking automa-ton. Thus, the connection between fsa and DTDs canbe viewed as a variant (albeit simpler) of the connec-tion between tree-walking automata and regular treelanguages, a long-standing open problem [8, 9]. We ob-tain several kinds of results. First, we precisely char-acterize recognizable DTDs when the DTDs are "fullyrecursive", i.e. all element tags that lead to recursivetags are mutually recursive. The condition we providecan be tested in exptime with respect to the size ofthe DTD, and in polynomial time for DTDs using 1-unambiguous regular expressions, as required by XML-Schema [4]. As a side e�ect, we obtain an algorithm for



constructing from a fully recursive DTD a standard fsathat (i) always accepts only documents valid w.r.t. theDTD (but possibly more), and (ii) accepts precisely thedocuments valid w.r.t. the DTD, whenever the DTD isrecognizable. The standard fsa can be constructed intime exponential in the DTD.For DTDs that are not fully recursive, a precise charac-terization of recognizability remains an open question.We provide a set of necessary conditions for recogniz-ability, as well as an extension yielding a su�cient con-dition. Furthermore, the construction of the standardfsa can be extended from the fully recursive case to ar-bitrary DTDs. It turns out that the su�cient conditionis a characterization of the DTDs for which the standardfsa accepts precisely the documents valid with respectto the DTD.For the case when validation using an fsa is not pos-sible, we consider several alternatives. First, we relaxthe constant memory requirement and allow as auxiliarymemory a stack of depth linear in the depth of the XMLdocument. This is often reasonable in practice, sinceXML documents are typically fairly shallow, althoughthey may be very large. We show that every DTD canbe validated by a deterministic pushdown automatonwhose stack is linear in the depth of the input document.Moreover, this holds even for DTDs extended with spe-cialization, a form of element subtyping present in re-cent proposals such as XML-Schema. An orthogonalapproach is to explore whether non-recognizable DTDscan be tweaked in reasonable ways so as to become rec-ognizable. We show that for every DTD one can �nda specialization of it which is recognizable. Intuitively,this is obtained by re�ning the tags of the original DTDto include more information useful for quick validation.This provides a trade-o� between \accuracy" of the tagsand the ability to perform e�cient streaming validation.Although limited to validation, this paper provides nec-essary groundwork for further investigating the prob-lem of querying streaming XML documents. Indeed,the technical machinery developed here is likely to beuseful for the more complex querying problem.
Related workAs far as we know, there is no formal work on vali-dating or querying streaming XML. Heuristics for theevaluation of regular path queries in streaming XMLdocuments are considered in [12]. This is part of alarger prototype, called Tukwila, designed for process-ing streaming XML documents currently developed inthe University of Washington [13].The Streaming XML Validator is a commercial prod-uct from TIBCO that performs validation of streamingXML with respect to a DTD (see http://www.tibco.com).To our understanding, their approach is based on tradi-tional parsing techniques enhanced with heuristics gearedtowards streaming inputs.

A lot of work has been done on continuous queries overthe Internet [6, 3] and on query subscription [16, 14]. Inthis scenario the query is �xed and outputs a stream ofdata produced on-line from an incoming stream of data.The emphasis is on �ltering and incremental mainte-nance of views, including aggregate functions. Anotherlarge body of work focuses on numerical data streamssuch as sensor data.The paper is organized as follows. Our abstraction ofXML documents and DTDs, as well as basic notions ontree automata are reviewed in the Preliminaries. Sec-tion 3 concerns strongly recognizable DTDs. Section4 presents the results on recognizable DTDs. Alterna-tive approaches to validation are described in Section 5.Finally, brief conclusions are provided in Section 6.
2. PRELIMINARIESWe introduce here the basic formalism used throughoutthe paper, including our abstraction of XML documentsand DTDs. We also recall informally some basic notionsrelated to tree automata and languages.Let � be a �nite alphabet.
Tree documentWe abstract XML documents by \tree documents" cap-turing the nesting structure of elements in the docu-ment. A tree document t over � is a �nite unrankedtree with labels in � and an order on the children ofeach node. The following represents a simple tree doc-ument.rabc c ab c
String representationXML documents are a string representation of trees us-ing opening and closing tags for each element. A stream-ing XML processor sees the sequence of opening andclosing tags in the order in which they appear in the doc-ument. It is therefore useful to consider explicitly thisstring representation of an XML document. For eacha 2 � let a itself represent the opening tag and �a rep-resent the closing tag for a. Let �� = f�a j a 2 �g. Withthis notation, the string associated to the tree documentabove is rabc�c�bc�c�aab�bc�c�a�r. More generally, we associateto each tree document t a string representation denoted[t] and de�ned inductively as follows: if t is a single rootlabeled a, then [t] = a�a; if t consists of a root labeleda and subtrees t1 : : : tk then [t] = a[t1] : : : [tk]�a. Notethat � and �� can be viewed as opening and closing mul-tisorted parenthesis, and for each tree document t thestring [t] is a well-balanced string over �[ �� correspond-ing to a depth-�rst traversal of t. If T is a set of tree



documents, we denote by L(T ) the language consistingof the string representations of the tree documents in T .
Tree types and DTDsDTDs and their variants provide a typing mechanism forXML documents. We will use several notions of typesfor trees. The �rst corresponds closely to the DTDs pro-posed for XML documents, and we therefore (by slightabuse) continue to use the same term. A DTD con-sists of an extended context-free grammar1 over alpha-bet � (we make no distinction between terminal andnon-terminal symbols). A tree document over � satis-�es a DTD d (or is valid w.r.t. d) if it is a derivationtree of the grammar. For example, the tree documentabove is valid w.r.t. the DTD2: r ! a�a! bcb! c?c! � . Since regu-lar expressions are closed under union, we can assumew.l.o.g. that each DTD has a unique rule a ! Ra foreach symbol a 2 �. In the following Ra will denoteboth the regular expression and the corresponding reg-ular language. The set of tree documents satisfying aDTD d is denoted by SAT (d). We also denote by L(d)the language over � [ �� consisting of the string rep-resentations of all tree documents in SAT (d), that isf[t] j t 2 SAT (d)g. Clearly, L(d) is a context-free lan-guage for every DTD d. In fact, such languages of well-balanced strings of multisorted parenthesis have beenstudied in formal language theory under the name ofDyck languages [10].The most recent DTD proposal, called XML-Schema,imposes a restriction on the regular expressions asso-ciated with each symbol: the expressions have to be1-unambiguous. This property guarantees that the de-terministic fsa for the regular expression is polynomialin the expression. Such regular expressions and othervariants are studied formally in [4].We next consider an extension of basic DTDs, also presentin XML-Schema. This is motivated by a severe limita-tion of DTDs: their de�nition of the type of a given tagdepends only on the tag itself and not on the contextin which it occurs. For example, this means that thesingleton tree document represented above cannot bedescribed by a DTD, because the \type" of the �rst bdi�ers from that of the second b. This naturally leadsto an extension of DTDs with specialization (also calleddecoupled types) which, intuitively, allows de�ning thetype of a tag by several \cases" depending on the con-text. Specialized DTDs have been studied in [17] andare equivalent to formalisms proposed in [2, 7]. Theyare present in a restricted form in XML-Schema.Formally, we have:1In an extended cfg, the right-hand sides of produc-tions are regular expressions over the terminals and non-terminals.2c? is an abbreviation for (cj�).

Definition 2.1. A specialized DTD over � is a tupled = (�;�0; d0; �) where� � and �0 are �nite alphabets;� d0 is a DTD over �0; and� � is a mapping from �0 to �.A tree document t over � satis�es a specialized DTD d,if t 2 �(SAT (d0)).Intuitively, �0 provides for some a's in � a set of special-izations of a, namely those a0 2 �0 for which �(a0) = a.We also denote by � the homomorphism induced onstrings and trees by �, extended whenever needed tosymbols in ��0 by �(�a0) = �(a0).
Tree automataWe assume familiarity with basic notions of languagetheory, including (nondeterministic) �nite-state automata((n)fsa), context-free grammar (cfg) and language (cfl),and (deterministic) push-down automaton ((d)pda) (e.g.,see [11]).We also use results on regular tree languages and treeautomata. Regular tree languages are natural exten-sions to trees of the familiar string regular languages,and are classically de�ned for binary trees. A non-deterministic top-down regular tree automaton over �has a �nite set Q of states, including a distinguishedinitial state q0 and an accepting state qf . In a compu-tation, the automaton labels the nodes of the tree withstates, according to a set of rules, called transitions. Aninternal node transition is of the form (a; q)! (q0; q00),for a 2 �. It says that, if an internal node has symbola and is labeled by state q, then its left and right chil-dren may be labeled by q0 and q00, respectively. A leaftransition is of the form (a; q)! qf for a 2 �. It allowschanging the label of a leaf with symbol a from q to theaccepting state qf . Each computation starts by label-ing the root with the start state q0, and proceeds bylabeling the nodes of the trees non-deterministically ac-cording to the transitions. The input tree is accepted ifsome computation results in labeling all leaves by qf . Aset of complete binary trees is regular i� it is accepted bysome top-down tree automaton. Regular languages of�nite binary trees are surveyed in [18]. The extension tothe unranked case is discussed in [5]. Regular tree lan-guages have similar closure properties to regular stringlanguages, in both the ranked and unranked cases. Itis worth noting that regular tree languages can be de-�ned by many other equivalent formalisms, includingbottom-up (non)deterministic automata and MonadicSecond-Order logic (MSO) on the standard structuresassociated to trees. Interestingly, it turns out that spe-cialized DTDs are precisely equivalent to top-down non-deterministic tree automata over unranked trees [5, 17].Thus, they de�ne precisely the regular tree languages.



This is more evidence that specialized DTDs are a ro-bust and natural speci�cation mechanism.Another useful kind of automata on trees are the tree-walking automata (de�ned by [1] for the ranked case).These are more sequential in nature than the automatadescribed earlier: there is a head that resides at anytime at a single given node. In the unranked version,transitions depend on the current label and the state,and consist of moving the head up, down (on the left-most child), or horizontally to the left or right neighbor.It is easily seen that trees accepted by tree-walking au-tomata can be de�ned in MSO, so are regular tree lan-guages. Conversely, it is conjectured that tree-walkingautomata can only de�ne a strict subset of the regulartree languages [8, 9].
3. STRONG VALIDATION OF XML DOC-

UMENTSWe begin with the strong validation problem for stream-ing tree documents. Recall that checking well-formednessof the XML document is now part of the validation prob-lem. More formally, let d be a DTD (possibly special-ized) over � and consider the associated string languageL(d) over � [ ��. We wish to characterize the DTDs dfor which L(d) can be recognized by an fsa, i.e. L(d)is regular. Such DTDs are called strongly recognizable.We �rst illustrate the problem with two examples.Example 3.1. : Consider the DTD d : r ! aa! a?which de�nes the trees with root r containing a singlebranch of arbitrary length of nodes labeled a. Thus,L(d) = fran�an�r j n 2 Ng which is not regular. So,d cannot be strongly validated by an fsa and is notstrongly recognizable.Example 3.2. : Consider the DTD d : r ! a�a! bjc .Now L(d) = r(a(b�bjc�c)�a)��r which is regular. So, d isstrongly recognizable.We provide a complete characterization of the stronglyrecognizable (specialized) DTDs: they are precisely thenon-recursive ones, de�ned next together with other re-lated notions used throughout the paper.Definition 3.1. Let d be a DTD over � and Gd thegraph constructed as follows: its set of vertices is �,and for each rule a ! Ra in d there is an edge from ato b for each b occurring in some word in Ra. We callGd the dependency graph of d. Two labels a and b aremutually recursive if they belong to some cycle of Gd,and a is recursive if it is mutually recursive with itself.The DTD d is non-recursive i� Gd is acyclic. Similarly,a specialized DTD d = (�;�0; d0; �) is non-recursive i�the DTD d0 over �0 is non-recursive. Finally, a DTD d

is fully recursive if all labels from which recursive labelsare reachable in Gd are mutually recursive.We can now show:Theorem 3.1. : A specialized DTD is strongly rec-ognizable i� it is non-recursive.Proof: Let d = (�;�0; d0; �) be a specialized DTD.Suppose �rst that d is strongly recognizable, i.e. L(d)is regular3. Then there exists an fsa A recognizing ex-actly L(d). Suppose towards a contradiction that d0 isrecursive and let a 2 �0 be a recursive label in d0. Hencethere exists a tree t in SAT (d0) where a repeats alongone path. The string [t] is of the form ru1av1aw�av2�au2�rwhere u1u2 and v1v2 are well-balanced words corre-sponding to subtrees (or forests) of t. By iterating therecursive part of the derivation from a to a, we obtainthat [t]n = ru1(av1)naw�a(v2�a)nu2�r is also in L(d0) foreach n > 0. Thus, all words �([tn]) are accepted bythe fsa A. A simple pumping argument then showsthat �(ru1(av1)(n+k)aw�a(v2�a)nu2�r) is also accepted byA for some k > 0. This is a contradiction, since thestring is not well-balanced.Assume now that d is non-recursive. We can assumewlog that � \ �0 = ;. For each b 2 �0 construct anfsa Ab recognizing �(b)Rb�(b), where Rb is the regularexpression associated to b in d0. An fsa A recognizingL(d) is constructed inductively as follows. Let A0 be Arwhere r is the root label. For i � 0, Ai+1 is obtained bymodifying Ai as follows. For each transition e = (p; b; q)of Ai, where b 2 �0:1. add a copy Ae of Ab2. add the transitions (p; �; ie) where ie is the startstate of Ae, and (fe; �; q) for each accepting statefe of Ae3. remove e.Because d is non-recursive this process is sure to ter-minate. Note that the resulting fsa is over alphabet� [ ��. It is easy to verify that the fsa recognizesL(d). 2To conclude the section, we consider a somewhat sur-prising converse to Theorem 3.1. One might legitimatelywonder if there are type systems other than specializedDTDs that de�ne families T of trees that can be stronglyvalidated by an fsa. Interestingly, the answer turns outto be negative, as shown next.Theorem 3.2. : Let T be a set of trees over �. Thelanguage L(T ) is regular i� there exists a non-recursivespecialized DTD d such that T = SAT(d).3Recall that L(d) is a language over � [ ��.



Proof: The \if" part follows from Theorem 3.1. Forthe \only if" part, suppose L(T ) is regular so is recog-nized by some fsa A. From A we can easily construct atree-walking automaton A0 that performs a depth-�rsttraversal of its input, simulating at each step the cor-responding move in A and recognizing T . Since tree-walking automata de�ne regular tree languages, andsince specialized DTDs de�ne all regular tree languages(see Preliminaries), there exists a specialized DTD dsuch that T = SAT(d). By Theorem 3.1, d is non-recursive. 2
4. VALIDATING WELL-FORMED XML

DOCUMENTSWe now consider the problem of validating an XML doc-ument with respect to a given DTD d, assuming thatthe XML document is well formed. As before, we wouldlike to perform the validation using an fsa. The previ-ous requirement that L(d) be regular is now too strong,because the fsa only needs to work correctly on well-balanced strings representing trees. The problem can beformalized as follows. Let L(Tree) denote the languageconsisting of all string representations of trees over �.The DTD d can be validated by an fsa i� there existssome regular language R such that L(d) = L(Tree)\R.Such DTDs are called recognizable. The characteriza-tion of recognizable DTDs turns out to be a non-trivialproblem. In order to develop some intuition, we startwith several examples.Example 4.1. : Let us revisit the DTD d of Example3.1: r ! aa! a? . Recall that d is not strongly recogniz-able. However, it is recognizable. Indeed, if the inputis known to be well balanced, it is su�cient for an fsato check that the string is of the form ra��a��r. In otherwords, L(d) = L(Tree) \ ra��a��r.We provide two more examples of recognizable DTDs.Example 4.2. : Consider the DTD r ! a?a! bb! a?with root r, which de�nes trees that are vertical alter-nations of a and b under root r. This DTD can bevalidated because L(d) = L(Tree) \ r(ab)�(�bj�aj�r)�.Example 4.3. : Consider the DTD a! b�b! a�This can be validated by the following fsa that onlyallows the valid transitions ab, ba, �a�b, �b�a, a�a, b�b, �aa, �bbrejecting all the others.

a�a�b�a b�b a bWe next provide an example of a DTD that is not rec-ognizable.Example 4.4. : Let d be the DTD: a! (ab j ca j �)b! �c! �This DTD de�nes trees of the form:aaac ac a b b
This DTD is not recognizable. Intuitively, even if thedocument is assumed to be well balanced, an fsa cannotstore enough information to recall, when it reads an�a, whether the corresponding node had a left siblinglabeled c (in which b is not allowed to its right). Theformal proof follows from Lemma 4.2, see Example 4.5.Also by way of technical warm-up, it is worth notingthat conventional wisdom relating to fsa does not nec-essarily apply when inputs are restricted to well-balancedstrings. Basic issues such as equivalence or minimizationare quite di�erent in this setting. To illustrate, consideragain Example 4.2. The minimal deterministic fsa cor-responding to the regular expression r(ab)�(�bj�aj�r)� has�ve states, and it is easily seen that this is minimalamong all fsa validating the DTD. However, it is byno means unique { another deterministic fsa with �vestates equivalent to the �rst on well-balanced stringsbut non-isomorphic to it is the minimal one for the reg-ular expression r(ajb)�(�b�a�r�)�. Both fsa have the samenumber of states and agree on the well-balanced strings.However, the two fsa disagree on the non well-balancedwords. For instance, the regular expression of Example4.2 accepts rab�b while the one above does not. Thusthere is no unique minimal fsa on well-balanced in-puts, unlike in the classical setting. In particular, itis not clear how to minimize an fsa validating a givenrecognizable DTD. However, equivalence of fsa on well-balanced inputs is decidable in exptime (by a reductionto equivalence of top-down tree automata). It is openwhether this can be improved.



Before proceeding, we make the following useful obser-vation.Lemma 4.1. : Let T be a set of tree documents overalphabet �. If L(T ) = L(Tree) \ R for some regularlanguage R, then T = SAT(d) for some specialized DTDd computable in ptime from the fsa for R.Proof The construction of d is similar to the classi-cal construction of a cfg for the intersection of an-other cfg with a regular language, used to show clo-sure of cfl's under intersection with regular languages[10]. The specialized alphabet consists of triples (p; a; q)where a 2 � and p; q are states of the fsa AR forR. The specializations of the root r are of the form(q0; r; qf ) where q0 is the start state and qf an accept-ing state of AR. The regular language associated to(p; a; q) is f(q1; a1; q2)(q2; a2; q3) : : : (qk; ak; qk+1) j k >0; a1 : : : ak 2 Ra; qi are states of AR, (p; a; q1) and(qk+1; �a; q) are transitions in ARg [f� j � 2 Ra and(p; a�a; q) is a transition in ARg. 2We now attempt to characterize recognizable DTDs.Our basic roadmap is the following. We already knowfrom the previous section that non-recursive DTDs arerecognizable, since they are strongly recognizable. Wemanage to obtain a precise characterization of recog-nizable DTDs in the case of fully recursive DTDs. Thecharacterization in the general case remains open. How-ever, we make partial progress by providing necessaryconditions and then extending them to su�cient con-ditions for recognizability. Our conjecture is that thenecessary conditions we provide are actually also su�-cient.We begin with a �rst necessary condition in order for aDTD to be recognizable. As will be seen shortly, thiscondition is not su�cient in general. However, we showin Theorem 4.1 that the condition becomes su�cient inthe special case of fully recursive DTDs.Lemma 4.2. : Let d be a recognizable DTD. Thenthe following hold, where �; �; u; v; w are words over �while x; y; z (possibly subscripted) are individual sym-bols:Let k be a positive integer and xi; zi, 1 � i � k be mu-tually recursive symbols of d (not necessarily distinct).If �x1� 2 Rz1 , �0xk�0 2 Rz1 and uixi�1vixiwi 2 Rzifor 1 < i � k, then �x1v2x2 � � � vkxk�0 must be in Rz1 .The proof of the lemma relies on a rather involved pump-ing argument and is sketched below. We �rst providesome intuition and examples. The condition relates tothe inability of an fsa to enforce non-trivial horizontalconstraints on the structure of trees when they concernmutually recursive symbols. This stems from the inabil-ity to remember the depth of elements, and therefore to

determine when nodes are siblings. Very roughly, therule states that what is allowed at some depth mustalso be allowed at any depth, modulo limited local con-straints that can be enforced. More speci�cally, if x1and xk are allowed to occur at the same level (underz1) and xi�1 can be \connected" to xi via vi at somehorizontal level for 1 < i � k, then x1 may be \con-nected" to xk via the path x1v2x2 : : : vkxk at the samelevel under z1.
Remark:Note that the condition above can be formulated asfollows for k = 1. If x and z are mutually recursive,�x� 2 Rz and �0x�0 2 Rz, then �x�0 must also be inRz.We next consider a few examples.Example 4.5. : Recall the DTD of Example 4.4. Itis not recognizable because it does not satisfy the condi-tion in the above lemma for k = 1. Indeed, a is recursivein the DTD, Ra contains ab and ca, but it does not con-tain cab as required by Lemma 4.2.Example 4.6. : Consider the DTD a! a j bb! (ab)? .This is not recognizable because it does not satisfy con-dition of Lemma 4.2 for k = 2. Indeed, a and b aremutually recursive, Ra contains a and b, Rb contains abbut Ra does not contain ab as required.Proof of Lemma 4.2 (sketch). Suppose d is validatedby an fsa A with p states. For each a 2 � we �x a treeâ rooted at a and valid wrt d. For simplicity, when thecontext is clear, we also denote by â the string [â]. If �is a word of a1 � � � am of ��, �̂ denotes the sequence oftrees â1 � � � âm.We will need the following fact, whose proof is a straight-forward application of the pumping lemma for regularlanguages.Fact 1. : Let A be a deterministic fsa over �, u 2��, and p the number of states of A. Let q be the stateof A reached after reading uk, k � p starting from somestate s. Then the same state q is reached after readinguk+p! starting from state s.We can assume wlog that z1 is the root of the documentsaccepted by d.The proof has two steps. We �rst construct a tree Tin SAT (d), assuming the hypothesis of the condition ofthe lemma. Then we modify T and obtain another treeT 0 that is also accepted by A and where the patternrequired in the conclusion occurs under a node labeledz1. The construction of T is somewhat tricky, as we



have to ensure that a pumping-like argument can bemade to show that T 0 is also accepted.We start by giving some intuition for the construction.Recall that for each a 2 �, â denotes a �xed tree rootedat a and valid for d, as well as its string representation.We �rst de�ne some "pieces" used in the constructionof T . Since xi and zi are mutually recursive, there is aderivation in d with a path containing xi followed by ziand followed again by xi. Let x̂p!i be the tree depictedbellow which consists of p! iterations of the derivationof xi from xi via zi.xi...zixi...̂ziFigure 1: The trees x̂p!iNext, note that each zi can be used to "connect" x̂p!ito xp!i�1 by expanding zi into ûixi�1v̂ix̂p!i ŵi and furtherexpanding xi�1 into x̂p!i�1. Also, xp!1 can connect to xp!kby expanding z1 into �̂0xk�̂0. This allows to de�ne byinduction the trees ti, depicted in Figure 2. Let T bet1. Thus, T is obtained by expanding t1 with tk, whichin turn is expanded with tk�1, etc. The iteration endsby expanding t2 with xp!1 .Next, let T 0 be the tree depicted in Figure 3.x1...z1x1...z1�̂ x̂p!1 v̂2 x̂p!2 � � � vk x̂p!k �̂0Figure 3: The tree t0As we will prove formally, the fsa A (which has p states)cannot distinguish T from T 0. The basic intuition is asfollows. Consider the computation of A on T and T 0.The computation can be broken down into two phases:

a descending phase from the root consuming all left sub-trees along a speci�ed path in each tree, followed by anascending phase back to the root. In T the path is theone going through the roots of the subtrees tk. In T 0it is the one going through the root of x̂p!1 . The fsaA reaches the same state after its descending phase inboth T and T 0. This is a consequence of Fact 1, andis shown formally below. For the ascending phase, it isenough to show that A must be in the same state afterreading the substrings corresponding to x̂p!i in T 0 and tiin T . The argument is inductive. The basis holds be-cause the same state is reached in the descending phase.Suppose next that A is in the same state qi after read-ing the substrings corresponding to x̂p!i�1 in T 0 and ti�1in T . Next, A reads v̂i in both trees. This is followedin T 0 by x̂p!i , and in T 0 by x̂p!i followed by an additionalascending portion to the root of ti. However, the extraascending string leaves the A in the same state, againas a consequence of Fact 1. This argument can be iter-ated to show that A returns to the root of T and T 0 inthe same state, so T and T 0 are not distinguished. Theformal proof is omitted. 2We next show a converse of Lemma 4.2: the necessarycondition stated there in order for a DTD to be recog-nizable is also su�cient when the DTD is fully recur-sive. To do this, we �rst show how to construct, fromany given DTD d, a standard fsa Ad that accepts allwords in L(d) (and possibly more). We then show thatfor fully recursive DTD's d satisfying the conditions ofLemma 4.2, Ad accepts precisely the words in L(d).Although we are primarily interested for the time beingin fully recursive DTDs, we provide for later use theconstruction of Ad for arbitrary DTD's.
Construction of the standardfsaWe now outline the construction of the fsa Ad. Theconstruction extends the simpler one involved in theproof of Theorem 3.1. Let d be an arbitrary DTD overalphabet �. We will use the dependency graph Gd of d.Consider the equivalence relation � on � whose equiva-lence classes are the strongly connected components ofGd. Let � be the partial order on the classes of � whereA � B i� for some a 2 A and b 2 B there is an edgefrom a to b in Gd. Note that � has a minimum element:the class of the root label. There are generally severalmaximal elements. We construct Ad by induction on �starting from the maximal elements.Let C be a maximal element of �. This means thatfor every c 2 C, Rc = f�g or words in Rc contain onlysymbols that are mutually recursive with c. Let Acbe an fsa corresponding to the regular expression Rc.Since Ac is non-deterministic, we can assume wlog thatAc has no "sink states", i.e. some accepting state isreachable from every state. We can also assume thatthe sets of states of the fsas Ac are disjoint for di�erentc's. Let AC be the fsa whose set of states is the unionof the sets of states of the fsas Ac for c 2 C. We donot need to specify at this point initial and �nal states



x1...z1x1...z1�̂0 tk �̂0
xi...zixi...ziûi ti�1 v̂i x̂p!i ŵi

x2...z2x2...z2û2 x̂p!1 v̂2 x̂p!2 ŵ2Figure 2: The trees tifor AC , but we mark the initial and �nal states of eachof the participating fsas Ac (the initial state for Ac isqc0 and the �nal states fc1 ; fc2 ; : : : ). The transitions arede�ned as follows. For each transition (q; b; q0) of Ac weadd to AC the transitions (q; b; q0) and (f;�b; q0) for theinitial state qb0 and for each �nal state fbi of Ab.Now suppose that C is a class of � for which all fsa ADcorresponding to classes D such that C � D are alreadyconstructed. We construct AC as follows. Again, foreach c 2 C, let Ac be an fsa corresponding to Rc (withdisjoint states for distinct c's). The set of states of ACis the union of the sets of states of the fsas Ac for c 2C, similarly for the �nal states, and the initial state isagain left unspeci�ed. The transitions of AC are de�nedas follows. As in the base case, for each b 2 C andtransition (q; b; q0) in Ac we add to AC the transitions(q; b; q0) and (f;�b; q0) for the initial state q0 and for each�nal state f of Ab. Unlike the base case, we now haveto take care of symbols b belonging to some class B forwhich C � B. For each such b we add to AC a newdisjoint copy of the already constructed AB, togetherwith the transitions (q; b; q0) and (f;�b; q0) for the copyof the initial state q0 and for the copies of each �nalstate f of Ab.This induction allows us to construct an fsa AC forthe minimum class C containing the root label r. The�nal fsa Ad is obtained by adding a new start state sand �nal state g together with transitions (s; r; q0) and(f; �r; g) for the start state q0 and each �nal state f ofAr.We illustrate the construction of Ad with some exam-ples.
Example 4.7. : Consider the DTD d r ! aaa! a? .Thedependency graph Gd has the edges (r; a) and (a; a).The classes of � are frg; fag, and frg � fag. The fsaAr and Aa are :

qr0 fra a andqa0 ; fa1 fa2aThus the fsa associated to the equivalence class fagis: a �a �aThis yields the fsa Ad depicted in Figure 4.Notice that Ad recognizes all the well-balanced wordsof L(d). But it also recognizes additional well-balancedwords such as raa�aa�a�a�r. It turns out that this is un-avoidable: there is no automaton that recognizes theabove DTD. This will be shown in Lemma 4.4 will show.Example 4.8. : Revisit now the DTD d of Example4.3: a! b�b! a� .This induces one equivalence class of symbols: fa; bg.The fsa Aa and Ab are:b and a :Thus, the fsa associated to the equivalence class fa; bgis: qa0 ; fa qb0; fbb; �a�b; aIf a is assumed to be the root, this yields the fsa Ad:a�a �a; ba;�bNote that Ad is equivalent to the fsa of Example 4.3



qr0 frr �ra �aa �a�a�a a �aa �a�a �aFigure 4: Adand the only well-balanced strings it accepts are thosein L(d).As expected, we can easily show, by construction, thefollowing property of Ad.Lemma 4.3. : For each DTD d, let Ad be the au-tomaton constructed above. We have:(i) every word in L(d) is accepted by Ad.(ii) Ad can be constructed from d in exponential time.The construction of Ad in the general case takes timeO(jdjj�j) where jdj is the maximum size of an fsa for aregular expression of d, and j � j is the depth of the par-tial order �. The exponential is due to the replicationof fsa's carried out in the construction.
RemarkThe construction of the fsa Ad can be straightforwardlyextended to specialized DTDs. Note also that Ad isnon-deterministic even if the fsa's Ab associated to Rbare deterministic. The non-determinism stems from thefact that a closing tag �a may lead to several states.We can now prove a converse of Lemma 4.2, which yieldsa precise characterization of recognizable fully recursiveDTDs.Theorem 4.1. : The following are equivalent for eachfully recursive DTD d:(i) d is recognizable,(ii) d satis�es the conditions of Lemma 4.2, and(iii) the set of well-balanced strings accepted by the fsaAd is precisely L(d).As a consequence of Theorem 4.1, we can show that itis decidable whether a fully recursive DTD d is recog-nizable, and therefore whether the standard associatedfsa Ad can be used to validate it.Theorem 4.2. : Given a specialized fully recursiveDTD d over �xed alphabet �, it is decidable in exptimewhether d is recognizable.

Remark:The exponential complexity above is due to the con-struction of deterministic fsa for the regular expressionsused by the DTD. If the DTD only uses 1-unambiguousregular expressions, such as required by XML schema[4], the complexity goes down to ptime.Let us now consider DTDs that are not fully recursive.Consider again the DTD of Example 4.7. Intuitively,the DTD cannot be recognized because an fsa cannotkeep track of the depth in the tree and thus might allowthe transition from �a to a at depth di�erent than 1.The next lemma formalizes this intuition and providesa second necessary condition for recognizability.Lemma 4.4. : Let d be a recognizable DTD. Thenthe following holds, where �; �; u; v; w are words over �while x; y; z (possibly subscripted) are individual sym-bols:Let x1; x2; y; z be symbols such that x1, x2 and z are mu-tually recursive in d. If ux1vx2w 2 Ry and u0x1v0x2w0 2Rz then ux1v0x2w must be in Ry and u0x1vx2w0 mustbe in Rz.
Remark:The condition of Lemma 4.4 can be formulated as fol-lows in the special case when x1 = x2: (i) Suppose theoccurrences of x1 and x2 below z are identical. Let xand z be mutually recursive in d. If uxvxw 2 Ry andu0xw0 2 Rz then u0xvxw0 2 Rz and uxw 2 Ry. (ii)Suppose the occurrences of x1 and x2 below y are iden-tical. If uxw 2 Ry, u0xv0xw0 2 Rz then uxv0xw 2 Ryand u0xw0 2 Rz.Example 4.9. : Consider the DTD of Example 4.7r ! aaa! a? . This DTD is not recognizable because itdoes not satisfy the condition of Lemma 4.4. Indeed,a is recursive, Rr contains aa, Rb contains a but Rbdoes not contain aa. This violates the condition of thelemma.Example 4.10. : Consider the DTD r ! aba! b�b! a� . ThisDTD is not recognizable because it does not satisfy the



condition of Lemma 4.4. Indeed, a and b are mutuallyrecursive, Rr contains ab, Rb contains aa but Rr doesnot contain aab.Note that, if we replace the �rst rule by r ! a�b�,conditions of Lemmas 4.2 and Lemma 4.4 are satis�edand the resulting DTD is recognized by Ad.We conjecture that the necessary conditions providedby Lemmas 4.2 and 4.4 are a in fact a precise character-ization for DTD recognizability. However, this remainsopen.Short of a complete characterization of recognizable DTDs,we provide of characterization of when a DTD d is vali-dated by the standard fsa Ad. The conditions are thoseof Lemmas 4.2 and 4.4, together with an additional con-dition stated next:(*) Let �; �; u; v; w be words over � and x; y; z (possi-bly subscripted) be individual symbols. Let k andk0 be positive integers. Let (xi)1�i�k, (zi)2�i�k,(x0i)1�i�k0 , (z0i)2�i�k0 , and y be symbols of � suchthat x1 = x01, xk = x0k0 , and all the xi; x0i; zi; z0iare mutually recursive in d (not necessarily dis-tinct). If ux1v1x2 � � � vk�1xkw 2 Ry and for each2 � i � k we have f�ixi�1�i; �0ixi�0ig � Rzi andfor each 2 � i � k we have u0ixi�1v0ixiw0i 2 Rz0ithen ux01v01 � � �x0kw must be in Ry and, for each2 � i � k, �ixi�1vi�1xi�0 must be in Rzi .The next result provides a precise characterization ofthe DTDs d that are validated by the standard fsa Ad.Theorem 4.3. : Let d be a DTD. The following areequivalent:(i) d satis�es (*) and the conditions of Lemmas 4.2and 4.4, and(ii) the set of well-balanced strings accepted by the fsaAd is precisely L(d).We note that the conditions of Theorem 4.3 can be ver-i�ed in time doubly exponential with respect to d. Thisis done by checking directly that Ad validates d, as fol-lows. We �rst build a specialized DTD d0 such thatSAT (d0) consists of the trees accepted by Ad. This canbe done in exptime by Lemma 4.1. Next, the equiv-alence of d and d0 can be checked in exptime using atree automata equivalence test.To understand why the conditions in Theorem 4.3 arenot a complete characterization of recognizable DTDs,consider the following example, that provides a recog-nizable DTD d violating (*). For this DTD, we willexhibit an fsa di�erent from the standard Ad, that val-idates it.

Example 4.11. : Consider the DTD d: r ! a�b�ca! adj�d! dcj�b! ajbj�c! bjcj� .First notice that Ad does not recognize this DTD be-cause d violates (*). Indeed the DTD satis�es the premiseof (*) but not its conclusion. For example, adc is not inRr as required. However, consider the fsa that workslike Ad, but additionally counts the number of transi-tions �ad and �d�a modulo 2 and accepts only if the twoare equal. It can be veri�ed that this fsa validates d.In summary, the conditions of Lemmas 4.2 and 4.4 arenecessary in order for a DTD to be recognizable. Theconditions of Theorem 4.3 are su�cient, and in par-ticular provide a precise characterization of when thestandard fsa works. The complete characterization ofrecognizable DTDs remains open.
5. ALTERNATIVE APPROACHES TO

VALIDATIONWe next consider two alternative approaches for validat-ing DTDs that are not recognizable. The �rst is to relaxthe constant memory requirement. The second consistsin re�ning the original DTD by adding information al-lowing it to be validated by an fsa.
Validation with bounded stackWe begin with relaxing the memory requirement. Specif-ically, we allow as auxiliary memory a stack whose depthis bounded in the depth of the XML document. Therequirement that validation be done in a single, deter-ministic pass is maintained. This approach is appealingin practice, because many XML documents tend to beshallow even if their DTDs are recursive. We start witha simple example.Example 5.1. : Consider the DTD of Example 4.7r ! aaa! a? which is not recognizable. However, a de-terministic pda can validate the DTD by allowing onlytransitions aa and �a�a and remembering the current depthusing the stack. In addition, the pda allows a singletransition �aa and only at depth one. Note that this pdais deterministic and its stack never exceeds the depth ofthe tree represented by the well-balanced input string.Rather surprisingly, we can show that every specializedDTD can be strongly validated by a deterministic pda.When the input string is well-balanced, the stack of thepda is bounded in the depth of the tree represented bythe input string.Theorem 5.1. : Let d be a specialized DTD. Thereexists a deterministic pda that accepts precisely L(d)



using a stack of depth bounded by the maximum numberof unmatched open tags occurring as the input is readfrom left to right. In particular, if the input string iswell-balanced, the depth of the stack is bounded by thedepth of the tree represented by the input string.Proof: Let d = (�;�0; d0; �). Recall that d0 is a DTDover �0 and � is the associated specialization mapping.We wish to check whether a string w over � [ �� rep-resents a tree satisfying d. The stack is used to checkthat the string represents a tree and to keep informa-tion about the path from the root to the currently vis-ited node in the tree. For each node along the path,the stack keeps a set of candidate specializations for thenode label, compatible with the information seen so far.Intuitively, a candidate specialization a is acceptable ifthere are acceptable specializations of its children whosesequence forms a word in the regular language Ra asso-ciated to a by d0. The pda must verify this recursively,and accept the input if the root is left with at leastone acceptable specialization. To achieve this, the pdasimulates the run of the fsa for Ra on the children of agiven node with candidate specialization a. This is doneby keeping on the stack, together with each such a, theset of states reached in the fsa for Ra after readingthe sequence of children seen so far, with their respec-tive allowed specializations. This can be done becausethe stack symbol containing this information for a givennode becomes the top of the stack every time one of itssubtrees has been completely read. After reading theentire sequence of its children with their allowed spe-cializations, a candidate specialization a for the node isdiscounted unless the associated set of states containssome accept state in the fsa for Ra.We now describe the pda in more detail. For each a 2 �0let Aa be the standard non-deterministic fsa for Ra,with start state q0a. Let Q be the disjoint union of thesets of states of the fsa's Aa. The stack alphabet of thepda, denoted V , consists of symbols of the form (a; S)where a 2 �, and S is a set of elements ha0; Hi suchthat a0 2 �0, �(a0) = a, and H is a subset of the statesQ. Thus, V is a subset of � � 2�0�2Q . The transi-tions work as follows. When a 2 � is read, the symbol(a; fha0; fq0a0gi j a0 2 �0; a = �(a0)g) of V is pushedon the stack. When a symbol �a 2 �� is read, the pdapops the current stack symbol. If the input string iswell balanced, the top of the stack must be of the form(a; S); otherwise the input is rejected. Note that, sincethe subtree rooted at a has been completely processed,we now know which of the candidate specializations ofa are acceptable: they are the a0 such that ha0; Hi 2 Sand H contains some accepting state of Aa0 . At thispoint the new top of the stack symbol, say (b; T ), needsto be updated. The symbol is popped and replaced atthe top of the stack by (b; new(T )) where new(T ) con-tains, for each hb0; B0i 2 T the pair hb0; new(B0)i wherenew(B0) contains the states q0 such that (q; a0; q0) is atransition of the fsa Ab0 for some q 2 B0 and some al-lowed specialization a0 of a occurring in S. Finally, the

pda accepts if the root node labeled r has at least oneacceptable specialization r0. This information is avail-able in the last symbol popped from the stack before itbecomes empty.It is straightforward to check that the above pda acceptsL(d). 2
Refining the DTDWe �nally consider an approach to validation orthogo-nal to the ones examined so far. It consists of re�ningthe given DTD by providing in the tags additional infor-mation that can be used for validation. The re�nementis formalized by a specialization of the original DTD.More precisely, we can show the following.Theorem 5.2. : For every DTD d over � there ex-ists an equivalent specialized DTD �d = (�;�0; d0; �) ofsize quadratic in d such that d0 is recognizable.Proof: For each a 2 �, let Aa be a standard non-deterministic fsa for the regular language Ra speci-�ed for a by the DTD d. The idea for constructingthe specialized DTD �d is straightforward: keep trackin the tags of the children of a node a of the stateof Aa in an accepting computation on the sequenceof children tags. More precisely, let Q be the disjointunion of the sets of states of the fsa's Aa and let �0 =� � Q. The DTD d0 associates to each symbol (a; q)in �0 the regular language consisting of all words of theform (a1; q1)(a2; q2) : : : (ak; qk) such that a1a2 : : : ak 2Ra and (qi�1; ai; qi) are valid transitions in Aa, 1 � i �k, where q0 is the start state and qk an accept state forAa. Clearly, the specialized DTD �d is equivalent to d.An fsa can validate well-balanced input strings wrt theDTD d0 by allowing only the following transitions:1. (a; q)(a1; q1) where (q0; a1; q1) is a transition in Aaand q0 is the start state of Aa;2. (a; q)(b; p) where (q; b; p) is a transition in the fsato which q belongs.3. (a; q) (b; p) where q is an accepting state in thefsa to which it belongs. 2Example 5.2. : Revisit the DTD of Example 4.7r ! aaa! a? which is not recognizable. However the fol-lowing DTD r ! a1a2a1 ! a?1a2 ! a?2 is recognizable (by the regularexpression ra�1�a�1a�2�a�2�r) and de�nes a similar family oftree documents.
6. CONCLUSIONSThis paper provides a �rst step towards the formal in-vestigation of processing streaming XML. We focused



on the problem of on-line validation of streaming XMLdocuments with respect to a DTD, under memory con-straints. The main results provide conditions underwhich validation can be done in a single pass and con-stant memory, using an fsa. We also considered al-ternative approaches by relaxing the constant memoryrequirement or by enriching the DTD with additionalinformation that can be used in validation.Several questions remain open. Mainly, a precise char-acterization of recognizable DTDs is not yet available,except in the fully recursive case. For the general case,we conjecture that (i) the necessary conditions we pro-vided for a DTD to be recognizable are also su�cient,and (ii) whenever a DTD d is recognizable it can be val-idated by the standard fsa Ad augmented with count-ing certain patterns modulo 2, as discussed in Example4.11.Another interesting open problem concerns characteriz-ing the specialized DTDs that are recognizable. It canbe seen that the conditions we provided for recognizableDTDs no longer work when specialization is allowed.Indeed, the problem seems considerably harder in thiscase. Note that, since every recognizable family of treesis necessarily de�nable by a specialized DTD (Lemma4.1), characterizing the recognizable specialized DTDswould essentially close the problem of understandingwhich families of trees can be validated by fsa.Finally, it would be useful to exhibit natural classes ofDTDs that can always be validated by an fsa, by pro-viding restricted speci�cation languages for documentstructure that are powerful enough for a wide range ofapplications of practical interest.Beyond the immediate focus on validation, we expectthat the techniques developed here will also be usefulin investigating the more complex problem of queryingstreaming XML documents.
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