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ABSTRACT

This paper investigates the on-line validation of stream-
ing XML documents with respect to a DTD, under
memory constraints. We first consider validation us-
ing constant memory, formalized by a finite-state au-
tomaton (FsA). We examine two flavors of the problem,
depending on whether or not the XML document is as-
sumed to be well-formed. The main results of the paper
provide conditions on the DTDs under which validation
of either flavor can be done using an FsAa. For DTDs
that cannot be validated by an FSA, we investigate two
alternatives. The first relaxes the constant memory re-
quirement by allowing a stack bounded in the depth of
the XML document, while maintaining the determinis-
tic, one-pass requirement. The second approach consists
in refining the DTD to provide additional information
that allows validation by an FSA.

1. INTRODUCTION

The Extended Markup Language (XML) is emerging
as the standard for data exchange on the Web. Many
applications, ranging from e-commerce and B2B to sci-
entific applications monitoring sensor or satellite data,
increasingly require on-line processing of large amounts
of data in XML format using limited memory. Such
processing includes querying XML documents, comput-
ing running aggregates of streams of numerical data,
and validating XML documents against given Document
Type Definitions (DTDs).

In this paper we take a first step towards a formal in-
vestigation of processing streaming XML documents, by
studying the validation question. This is an important
practical problem, which is already being tackled in in-
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dustry, with some commercial products developed (see
related work below).

In its most restrictive form, the problem of validating
streaming XML is to verify that an XML document
is valid with respect to a given DTD in a single pass
and using a fixed amount of memory, depending on the
DTD but not on the size of the XML document. In
other words, validation is done by a finite-state automa-
ton (FsA) performing a pass on the XML document as
it streams through the network, with constant mem-
ory. The problem comes in two flavors, depending on
whether or not validation includes checking that the in-
put is a well-formed XML document. Validation that
includes checking well-formedness is referred to as strong
validation. Checking satisfaction of the DTD under the
assumption that the input is a well-formed XML doc-
ument is referred to simply as validation. It is easy to
see that validation of either flavor is not possible for all
DTDs using an FSA. DTDs for which (strong) validation
can be done using an FsA are referred to as (strongly)
recognizable DTDs.

The main results of the paper provide conditions on
DTDs under which they are (strongly) recognizable.
The characterization of strongly recognizable DTDs is
straightforward: the DTD has to be non-recursive. Char-
acterizing recognizable DTDs is much more intricate
and technically difficult. To put the problem in per-
spective, note that validation with respect to a DTD
amounts to checking membership of the tree associated
with the XML document in a regular tree language,
while validation by an FSA amounts to acceptance of
the tree by a restricted form of tree-walking automa-
ton. Thus, the connection between rsA and DTDs can
be viewed as a variant (albeit simpler) of the connec-
tion between tree-walking automata and regular tree
languages, a long-standing open problem [8, 9]. We ob-
tain several kinds of results. First, we precisely char-
acterize recognizable DTDs when the DTDs are ”fully
recursive”, i.e. all element tags that lead to recursive
tags are mutually recursive. The condition we provide
can be tested in EXPTIME with respect to the size of
the DTD, and in polynomial time for DTDs using 1-
unambiguous regular expressions, as required by XML-
Schema [4]. As a side effect, we obtain an algorithm for



constructing from a fully recursive DTD a standard FSA
that (i) always accepts only documents valid w.r.t. the
DTD (but possibly more), and (ii) accepts precisely the
documents valid w.r.t. the DTD, whenever the DTD is
recognizable. The standard FSA can be constructed in
time exponential in the DTD.

For DTDs that are not fully recursive, a precise charac-
terization of recognizability remains an open question.
We provide a set of necessary conditions for recogniz-
ability, as well as an extension yielding a sufficient con-
dition. Furthermore, the construction of the standard
FSA can be extended from the fully recursive case to ar-
bitrary DTDs. It turns out that the sufficient condition
is a characterization of the DTDs for which the standard
FSA accepts precisely the documents valid with respect
to the DTD.

For the case when validation using an FSA is not pos-
sible, we consider several alternatives. First, we relax
the constant memory requirement and allow as auxiliary
memory a stack of depth linear in the depth of the XML
document. This is often reasonable in practice, since
XML documents are typically fairly shallow, although
they may be very large. We show that every DTD can
be validated by a deterministic pushdown automaton
whose stack is linear in the depth of the input document.
Moreover, this holds even for DTDs extended with spe-
cialization, a form of element subtyping present in re-
cent proposals such as XML-Schema. An orthogonal
approach is to explore whether non-recognizable DTDs
can be tweaked in reasonable ways so as to become rec-
ognizable. We show that for every DTD one can find
a specialization of it which is recognizable. Intuitively,
this is obtained by refining the tags of the original DTD
to include more information useful for quick validation.
This provides a trade-off between “accuracy” of the tags
and the ability to perform efficient streaming validation.

Although limited to validation, this paper provides nec-
essary groundwork for further investigating the prob-
lem of querying streaming XML documents. Indeed,
the technical machinery developed here is likely to be
useful for the more complex querying problem.

Related work

As far as we know, there is no formal work on vali-
dating or querying streaming XML. Heuristics for the
evaluation of regular path queries in streaming XML
documents are considered in [12]. This is part of a
larger prototype, called Tukwila, designed for process-
ing streaming XML documents currently developed in
the University of Washington [13].

The Streaming XML Validator is a commercial prod-
uct from TIBCO that performs validation of streaming

XML with respect to a DTD (see http://www.tibco.com).

To our understanding, their approach is based on tradi-
tional parsing techniques enhanced with heuristics geared
towards streaming inputs.

A lot of work has been done on continuous queries over
the Internet [6, 3] and on query subscription [16, 14]. In
this scenario the query is fixed and outputs a stream of
data produced on-line from an incoming stream of data.
The emphasis is on filtering and incremental mainte-
nance of views, including aggregate functions. Another
large body of work focuses on numerical data streams
such as sensor data.

The paper is organized as follows. Our abstraction of
XML documents and DTDs, as well as basic notions on
tree automata are reviewed in the Preliminaries. Sec-
tion 3 concerns strongly recognizable DTDs. Section
4 presents the results on recognizable DTDs. Alterna-
tive approaches to validation are described in Section 5.
Finally, brief conclusions are provided in Section 6.

2. PRELIMINARIES

We introduce here the basic formalism used throughout
the paper, including our abstraction of XML documents
and DTDs. We also recall informally some basic notions
related to tree automata and languages.

Let X be a finite alphabet.

Tree document

We abstract XML documents by “tree documents” cap-
turing the nesting structure of elements in the docu-
ment. A tree document t over ¥ is a finite unranked
tree with labels in ¥ and an order on the children of
each node. The following represents a simple tree doc-
ument.

a/r\a
ANEEVAN
ll) c b ¢

C

String representation

XML documents are a string representation of trees us-
ing opening and closing tags for each element. A stream-
ing XML processor sees the sequence of opening and
closing tags in the order in which they appear in the doc-
ument. It is therefore useful to consider explicitly this
string representation of an XML document. For each
a € ¥ let a itself represent the opening tag and a rep-
resent the closing tag for a. Let & = {@ | a € X}. With
this notation, the string associated to the tree document
above is rabcebecaabbecar. More generally, we associate
to each tree document ¢ a string representation denoted
[t] and defined inductively as follows: if ¢ is a single root
labeled a, then [t] = aa; if ¢ consists of a root labeled
a and subtrees t1...t, then [t] = a[t1]...[tr]a. Note
that ¥ and & can be viewed as opening and closing mul-
tisorted parenthesis, and for each tree document ¢ the
string [t] is a well-balanced string over YU correspond-
ing to a depth-first traversal of ¢. If T is a set of tree



documents, we denote by £(T') the language consisting
of the string representations of the tree documents in 7'

Tree types and DTDs

DTDs and their variants provide a typing mechanism for
XML documents. We will use several notions of types
for trees. The first corresponds closely to the DTDs pro-
posed for XML documents, and we therefore (by slight
abuse) continue to use the same term. A DTD con-
sists of an extended context-free grammar’ over alpha-
bet ¥ (we make no distinction between terminal and
non-terminal symbols). A tree document over ¥ satis-
fies a DTD d (or is valid w.r.t. d) if it is a derivation
tree of the grammar. For example, the tree document
r—a*
a — bc
b—c’
C— €
lar expressions are closed under union, we can assume
w.l.o.g. that each DTD has a unique rule a — R, for
each symbol @ € ¥. In the following R, will denote
both the regular expression and the corresponding reg-
ular language. The set of tree documents satisfying a
DTD d is denoted by SAT(d). We also denote by £(d)
the language over £ U ¥ consisting of the string rep-
resentations of all tree documents in SAT(d), that is
{[t] | t € SAT(d)}. Clearly, £(d) is a context-free lan-
guage for every DTD d. In fact, such languages of well-
balanced strings of multisorted parenthesis have been
studied in formal language theory under the name of
Dyck languages [10].

above is valid w.r.t. the DTD?: . Since regu-

The most recent DTD proposal, called XML-Schema,
imposes a restriction on the regular expressions asso-
ciated with each symbol: the expressions have to be
1-unambiguous. This property guarantees that the de-
terministic FSA for the regular expression is polynomial
in the expression. Such regular expressions and other
variants are studied formally in [4].

We next consider an extension of basic DTDs, also present
in XML-Schema. This is motivated by a severe limita-
tion of DTDs: their definition of the type of a given tag
depends only on the tag itself and not on the context
in which it occurs. For example, this means that the
singleton tree document represented above cannot be
described by a DTD, because the “type” of the first b
differs from that of the second b. This naturally leads
to an extension of DTDs with specialization (also called
decoupled types) which, intuitively, allows defining the
type of a tag by several “cases” depending on the con-
text. Specialized DTDs have been studied in [17] and
are equivalent to formalisms proposed in [2, 7]. They
are present in a restricted form in XML-Schema.

Formally, we have:

In an extended CFG, the right-hand sides of produc-
tions are regular expressions over the terminals and non-
terminals.

2¢" is an abbreviation for (c|e).

DEFINITION 2.1. A specialized DTD over X is a tuple
d=(%,%,d,u) where

e X and X' are finite alphabets;
o d' is a DTD over ¥'; and
e 1 s a mapping from ¥’ to T.

A tree document t over X satisfies a spectalized DTD d,
ift € p(SAT(d")).

Intuitively, X' provides for some a’s in ¥ a set of special-
izations of a, namely those a' € ¥’ for which u(a') = a.
We also denote by p the homomorphism induced on
strings and trees by p, extended whenever needed to
symbols in &' by u(a') = u(a’).

Tree automata

We assume familiarity with basic notions of language
theory, including (nondeterministic) finite-state automata
((N)FsA), context-free grammar (CFG) and language (CFL),
and (deterministic) push-down automaton ((D)PDA) (e.g.,
see [11]).

We also use results on regular tree languages and tree
automata. Regular tree languages are natural exten-
sions to trees of the familiar string regular languages,
and are classically defined for binary trees. A non-
deterministic top-down regular tree automaton over ¥
has a finite set @ of states, including a distinguished
initial state go and an accepting state gs. In a compu-
tation, the automaton labels the nodes of the tree with
states, according to a set of rules, called transitions. An
internal node transition is of the form (a,q) — (¢',q"),
for a € ¥. It says that, if an internal node has symbol
a and is labeled by state g, then its left and right chil-
dren may be labeled by ¢' and ¢, respectively. A leaf
transition is of the form (a,q) — g5 for a € X. It allows
changing the label of a leaf with symbol a from g to the
accepting state gy. Each computation starts by label-
ing the root with the start state go, and proceeds by
labeling the nodes of the trees non-deterministically ac-
cording to the transitions. The input tree is accepted if
some computation results in labeling all leaves by gr. A
set of complete binary trees is regular iff it is accepted by
some top-down tree automaton. Regular languages of
finite binary trees are surveyed in [18]. The extension to
the unranked case is discussed in [5]. Regular tree lan-
guages have similar closure properties to regular string
languages, in both the ranked and unranked cases. It
is worth noting that regular tree languages can be de-
fined by many other equivalent formalisms, including
bottom-up (non)deterministic automata and Monadic
Second-Order logic (MSO) on the standard structures
associated to trees. Interestingly, it turns out that spe-
cialized DTDs are precisely equivalent to top-down non-
deterministic tree automata over unranked trees [5, 17].
Thus, they define precisely the regular tree languages.



This is more evidence that specialized DTDs are a ro-
bust and natural specification mechanism.

Another useful kind of automata on trees are the tree-
walking autornata (defined by [1] for the ranked case).
These are more sequential in nature than the automata
described earlier: there is a head that resides at any
time at a single given node. In the unranked version,
transitions depend on the current label and the state,
and consist of moving the head up, down (on the left-
most child), or horizontally to the left or right neighbor.
It is easily seen that trees accepted by tree-walking au-
tomata can be defined in MSO, so are regular tree lan-
guages. Conversely, it is conjectured that tree-walking
automata can only define a strict subset of the regular
tree languages [8, 9].

3. STRONG VALIDATION OF XML DOC-
UMENTS

We begin with the strong validation problem for stream-

ing tree documents. Recall that checking well-formedness
of the XML document is now part of the validation prob-

lem. More formally, let d be a DTD (possibly special-

ized) over ¥ and consider the associated string language

L(d) over ¥ U Y. We wish to characterize the DTDs d

for which £(d) can be recognized by an Fsa, i.e. £(d)

is regular. Such DTDs are called strongly recognizable.

We first illustrate the problem with two examples.

rT—a

ExaMmPLE 3.1. : Consider the DTD d :

”
a—a
which defines the trees with root r containing a single
branch of arbitrary length of nodes labeled a. Thus,
L(d) = {ra™a"7 | n € N} which is not regular. So,
d cannot be strongly validated by an FsSA and is not
strongly recognizable.

r—a”

a — blc
Now £(d) = 7(a(bb|c)a)*F which is regular. So, d is
strongly recognizable.

ExAmpPLE 3.2. : Consider the DTD d :

We provide a complete characterization of the strongly
recognizable (specialized) DTDs: they are precisely the
non-recursive ones, defined next together with other re-
lated notions used throughout the paper.

DEFINITION 3.1. Let d be a DTD over X and G4 the
graph constructed as follows: its set of vertices is X,
and for each rule a — R, in d there is an edge from a
to b for each b occurring in some word in Rq,. We call
G4 the dependency graph of d. Two labels a and b are
mutually recursive if they belong to some cycle of G4,
and a is recursive if it 1s mutually recursive with itself.
The DTD d is non-recursive iff Gq s acyclic. Similarly,
a specialized DTD d = (X,%',d', 1) is non-recursive iff
the DTD d' over ¥’ is non-recursive. Finally, a DTD d

is fully recursive if all labels from which recursive labels
are reachable in G4 are mutually recursive.

We can now show:

THEOREM 3.1. : A specialized DTD is strongly rec-
ognizable iff it is non-recursive.

Proof: Let d = (%,%,d’,u) be a specialized DTD.
Suppose first that d is strongly recognizable, i.e. L(d)
is regular®. Then there exists an FSA A recognizing ex-
actly £(d). Suppose towards a contradiction that d' is
recursive and let a € X' be a recursive label in d'. Hence
there exists a tree t in SAT(d") where a repeats along
one path. The string [t] is of the form ruiaviawavsaus7
where wiu» and wvivy are well-balanced words corre-
sponding to subtrees (or forests) of ¢. By iterating the
recursive part of the derivation from a to a, we obtain
that [t], = ru1(avi)"awa(v2a@) usT is also in L£(d') for
each n > 0. Thus, all words p([t.]) are accepted by
the FsA A. A simple pumping argument then shows
that p(rui(av:) ™ awa(vea)™ us7) is also accepted by
A for some k > 0. This is a contradiction, since the
string is not well-balanced.

Assume now that d is non-recursive. We can assume
wlog that & N X' = 0. For each b € ¥’ construct an
FSA A, recognizing p(b)Ryu(b), where Ry is the regular
expression associated to b in d’. An FSA A recognizing
L(d) is constructed inductively as follows. Let Ao be A,
where r is the root label. For ¢ > 0, A;4+1 is obtained by
modifying A; as follows. For each transition e = (p, b, q)
of A;, where b€ X':

1. add a copy Ac of A,

2. add the transitions (p,€,i.) where i is the start
state of A., and (fe,€,q) for each accepting state
fe of A

3. remove e.

Because d is non-recursive this process is sure to ter-
minate. Note that the resulting FSA is over alphabet
¥ U X. It is easy to verify that the FSA recognizes

L£(d). O

To conclude the section, we consider a somewhat sur-
prising converse to Theorem 3.1. One might legitimately
wonder if there are type systems other than specialized
DTDs that define families T of trees that can be strongly
validated by an FsSA. Interestingly, the answer turns out
to be negative, as shown next.

THEOREM 3.2. : Let T be a set of trees over ¥. The
language L(T') is regular iff there exists a non-recursive
specialized DTD d such that T = SAT(d).

3Recall that £(d) is a language over ¥ U X.




Proof: The “if” part follows from Theorem 3.1. For
the “only if” part, suppose £(T') is regular so is recog-
nized by some FSA A. From A we can easily construct a
tree-walking automaton A' that performs a depth-first
traversal of its input, simulating at each step the cor-
responding move in A and recognizing T'. Since tree-
walking automata define regular tree languages, and
since specialized DTDs define all regular tree languages
(see Preliminaries), there exists a specialized DTD d
such that T = SAT(d). By Theorem 3.1, d is non-
recursive. O

4. VALIDATING WELL-FORMED XML

DOCUMENTS

We now consider the problem of validating an XML doc-
ument with respect to a given DTD d, assuming that
the XML document is well formed. As before, we would
like to perform the validation using an FSA. The previ-
ous requirement that £(d) be regular is now too strong,
because the FSA only needs to work correctly on well-
balanced strings representing trees. The problem can be
formalized as follows. Let £(Tree) denote the language
consisting of all string representations of trees over X.
The DTD d can be validated by an FsA iff there exists
some regular language R such that £(d) = £(Tree) N R.
Such DTDs are called recognizable. The characteriza-
tion of recognizable DTDs turns out to be a non-trivial
problem. In order to develop some intuition, we start
with several examples.

ExAMPLE 4.1. : Let us revisit the DTD d of Example

31 a? . Recall that d is not strongly recogniz-
a—a

able. However, it is recognizable. Indeed, if the input

is known to be well balanced, it is sufficient for an FSA

to check that the string is of the form ra*a"7. In other

words, £(d) = L(Tree) N ra™a*7.

We provide two more examples of recognizable DTDs.

r—a’
ExAmPLE 4.2. : Consider the DTD a — b
b—a’
with root 7, which defines trees that are vertical alter-
nations of @ and b under root r. This DTD can be
validated because £(d) = L£(Tree) N r(ab)*(bla|r)*.

ExaMPLE 4.3. : Consider the DTD = b*
b—a

This can be validated by the following Fsa that only
allows the valid transitions ab, ba, ab, ba, aa, bb, aa, bb
rejecting all the others.

a
@) )
a
al [z af |b
b
o) o)
b

We next provide an example of a DTD that is not rec-
ognizable.

a— (ab | ca | €)
EXAMPLE 4.4. : Let dbethe DTD: b — €

CcC— €

This DTD defines trees of the form:

a

/N
a/a\b
/N
c C/a\a

b

This DTD is not recognizable. Intuitively, even if the
document is assumed to be well balanced, an FSA cannot
store enough information to recall, when it reads an
a, whether the corresponding node had a left sibling
labeled ¢ (in which b is not allowed to its right). The
formal proof follows from Lemma 4.2, see Example 4.5.

Also by way of technical warm-up, it is worth noting
that conventional wisdom relating to FSA does not nec-
essarily apply when inputs are restricted to well-balanced
strings. Basic issues such as equivalence or minimization
are quite different in this setting. To illustrate, consider
again Example 4.2. The minimal deterministic FSA cor-
responding to the regular expression r(ab)*(b|a|F)* has
five states, and it is easily seen that this is minimal
among all FsA validating the DTD. However, it is by
no means unique — another deterministic FSA with five
states equivalent to the first on well-balanced strings
but non-isomorphic to it is the minimal one for the reg-
ular expression r(a|b)*(ba7*)*. Both FSA have the same
number of states and agree on the well-balanced strings.
However, the two FSA disagree on the non well-balanced
words. For instance, the regular expression of Example
4.2 accepts rabb while the one above does not. Thus
there is no unique minimal FSA on well-balanced in-
puts, unlike in the classical setting. In particular, it
is not clear how to minimize an FSA validating a given
recognizable DTD. However, equivalence of FSA on well-
balanced inputs is decidable in EXPTIME (by a reduction
to equivalence of top-down tree automata). It is open
whether this can be improved.



Before proceeding, we make the following useful obser-
vation.

LEMMA 4.1. : Let T be a set of tree documents over
alphabet X. If £(T) = L(Tree) N R for some regular
language R, then T = SAT(d) for some specialized DTD
d computable in PTIME from the FsaA for R.

Proof The construction of d is similar to the classi-
cal construction of a CFG for the intersection of an-
other CrG with a regular language, used to show clo-
sure of CFL’s under intersection with regular languages
[10]. The specialized alphabet consists of triples (p, a, q)
where ¢ € ¥ and p,q are states of the FsA Agr for
R. The specializations of the root r are of the form
(go,7,q5) where qo is the start state and g; an accept-
ing state of Ar. The regular language associated to
(p,a,q) is {(q1,01,q2)(q2,a2,43) ... (qk, ak, qe+1) | k >
0,a1...ar € Ra,q; are states of Ag, (p,a,q1) and

(qk+1,a,q) are transitions in Ar} U{e | € € R, and
(p,aa,q) is a transition in Ag}. m|

We now attempt to characterize recognizable DTDs.
Our basic roadmap is the following. We already know
from the previous section that non-recursive DTDs are
recognizable, since they are strongly recognizable. We
manage to obtain a precise characterization of recog-
nizable DTDs in the case of fully recursive DTDs. The
characterization in the general case remains open. How-
ever, we make partial progress by providing necessary
conditions and then extending them to sufficient con-
ditions for recognizability. Our conjecture is that the
necessary conditions we provide are actually also suffi-
cient.

We begin with a first necessary condition in order for a
DTD to be recognizable. As will be seen shortly, this
condition is not sufficient in general. However, we show
in Theorem 4.1 that the condition becomes sufficient in
the special case of fully recursive DTDs.

LEMMA 4.2. : Let d be a recognizable DTD. Then
the following hold, where «, 3, u, v, w are words over X
while z,y,z (possibly subscripted) are individual sym-
bols:

Let k be a positive integer and x;,z;, 1 <¢ < k be mu-
tually recursive symbols of d (not necessarily distinct).
If ar18 € R.,, &'z,3 € R., and wiz;_1viz;w; € R,
for 1 < i <k, then aziv2zs - - - v 3 must be in R.,.

The proof of the lemma relies on a rather involved pump-
ing argument and is sketched below. We first provide
some intuition and examples. The condition relates to
the inability of an FSA to enforce non-trivial horizontal
constraints on the structure of trees when they concern
mutually recursive symbols. This stems from the inabil-
ity to remember the depth of elements, and therefore to

determine when nodes are siblings. Very roughly, the
rule states that what is allowed at some depth must
also be allowed at any depth, modulo limited local con-
straints that can be enforced. More specifically, if x;
and zj, are allowed to occur at the same level (under
z1) and z;—1 can be “connected” to z; via v; at some
horizontal level for 1 < ¢ < k, then x; may be “con-
nected” to zp via the path xivax2...vpx, at the same
level under z;.

Remark:

Note that the condition above can be formulated as
follows for k = 1. If x and z are mutually recursive,
arfB € R, and o'z3 € R., then arB must also be in
R..

We next consider a few examples.

ExAaMPLE 4.5. : Recall the DTD of Example 4.4. It
is not recognizable because it does not satisfy the condi-
tion in the above lemma for k£ = 1. Indeed, a is recursive
in the DTD, R, contains ab and ca, but it does not con-
tain cab as required by Lemma 4.2.

a—alb
b— (ab)’
This is not recognizable because it does not satisfy con-
dition of Lemma 4.2 for k = 2. Indeed, a and b are
mutually recursive, R, contains a and b, R; contains ab
but R, does not contain ab as required.

ExAMPLE 4.6. : Consider the DTD

Proof of Lemma 4.2 (sketch). Suppose d is validated
by an FSA A with p states. For each a € ¥ we fix a tree
a rooted at a and valid wrt d. For simplicity, when the
context is clear, we also denote by a the string [d]. If o
is a word of a1 ---am of X%, & denotes the sequence of
trees a1 - - am.-

We will need the following fact, whose proof is a straight-
forward application of the pumping lemma for regular
languages.

Fact 1. : Let A be a deterministic FSA over X, u €
¥, and p the number of states of A. Let q be the state
of A reached after reading u*, k > p starting from some
state s. Then the same state q is reached after reading
ub P starting from state s.

We can assume wlog that z; is the root of the documents
accepted by d.

The proof has two steps. We first construct a tree T’
in SAT(d), assuming the hypothesis of the condition of
the lemma. Then we modify 7" and obtain another tree
T' that is also accepted by A and where the pattern
required in the conclusion occurs under a node labeled
z1. The construction of 7' is somewhat tricky, as we



have to ensure that a pumping-like argument can be
made to show that T is also accepted.

We start by giving some intuition for the construction.
Recall that for each a € ¥, a denotes a fixed tree rooted
at a and valid for d, as well as its string representation.

We first define some ”pieces” used in the construction
of T'. Since x; and z; are mutually recursive, there is a
derivation in d with a path containing z; followed by z;
and followed again by z;. Let :%f! be the tree depicted
bellow which consists of p! iterations of the derivation
of z; from z; via z;.

Figure 1: The trees i’

Next, note that each z; can be used to ”connect” if!
to z‘fil by expanding z; into ﬁixi,ﬁiif!ﬁ)i and further
expanding z;_1 into ifl_l. Also, xf! can connect to z‘il
by expanding z; into &' z3'. This allows to define by
induction the trees ¢;, depicted in Figure 2. Let T be
t1. Thus, T is obtained by expanding ¢; with ¢, which
in turn is expanded with t;_1, etc. The iteration ends
. . ]
by expanding t» with .

Next, let 7' be the tree depicted in Figure 3.

Figure 3: The tree t'

As we will prove formally, the FsAa A (which has p states)
cannot distinguish 7 from T’. The basic intuition is as
follows. Consider the computation of A on T and T'.
The computation can be broken down into two phases:

a descending phase from the root consuming all left sub-
trees along a specified path in each tree, followed by an
ascending phase back to the root. In T the path is the
one going through the roots of the subtrees t,. In T’
it is the one going through the root of if!. The Fsa
A reaches the same state after its descending phase in
both T and T'. This is a consequence of Fact 1, and
is shown formally below. For the ascending phase, it is
enough to show that A must be in the same state after
reading the substrings corresponding to :%f! inT" and t;
in T. The argument is inductive. The basis holds be-
cause the same state is reached in the descending phase.
Suppose next that A is in the same state ¢; after read-
ing the substrings corresponding to ﬁ:f’_l in 7" and t;_1
in T. Next, A reads ?; in both trees. This is followed
in T' by &', and in T" by &' followed by an additional
ascending portion to the root of ¢;. However, the extra
ascending string leaves the A in the same state, again
as a consequence of Fact 1. This argument can be iter-
ated to show that A returns to the root of T and T" in
the same state, so T and T" are not distinguished. The
formal proof is omitted. O

We next show a converse of Lemma 4.2: the necessary
condition stated there in order for a DTD to be recog-
nizable is also sufficient when the DTD is fully recur-
sive. To do this, we first show how to construct, from
any given DTD d, a standard FSA A, that accepts all
words in £(d) (and possibly more). We then show that
for fully recursive DTD’s d satisfying the conditions of
Lemma 4.2, Ay accepts precisely the words in £(d).

Although we are primarily interested for the time being
in fully recursive DTDs, we provide for later use the
construction of A4 for arbitrary DTD’s.

Construction of the standaticia

We now outline the construction of the FsA Ay. The
construction extends the simpler one involved in the
proof of Theorem 3.1. Let d be an arbitrary DTD over
alphabet ¥. We will use the dependency graph G4 of d.
Consider the equivalence relation = on ¥ whose equiva-
lence classes are the strongly connected components of
G4. Let < be the partial order on the classes of = where
A < B iff for some a € A and b € B there is an edge
from a to b in G4. Note that < has a minimum element:
the class of the root label. There are generally several
maximal elements. We construct A4 by induction on <
starting from the maximal elements.

Let C' be a maximal element of <. This means that
for every ¢ € C, R. = {e} or words in R. contain only
symbols that are mutually recursive with c¢. Let A.
be an FSA corresponding to the regular expression R..
Since A. is non-deterministic, we can assume wlog that
Ac has no ”sink states”, i.e. some accepting state is
reachable from every state. We can also assume that
the sets of states of the FSAs A. are disjoint for different
¢’s. Let Ac be the FsA whose set of states is the union
of the sets of states of the Fsas A. for ¢ € C. We do
not need to specify at this point initial and final states



T i T2
1"\ "\ 1"\
/\ / o\ /\
/I o\ /I \ /I o\
N N N
/I 2z \ Iz N\ !l 22 \
/ | \ / | \ / | \
/ \ / / \
/ L1 \ / Li / T2 \
/ ) \ / ) / ) \
/ \ / / : \
/ \ / / \
/ | \ / | / | \
———— - ————z-— - ——— =z ———-
tr U; ti—1 Vs w; Uo ﬁlf' Vo i’g' Wo
Figure 2: The trees t;
for Ac, but we mark the initial and final states of each and

of the participating Fsas A. (the initial state for A. is
g5 and the final states ff, f5,...). The transitions are
defined as follows. For each transition (g, b,q') of A. we
add to Ac the transitions (q,b,q0) and (f,b,q") for the
initial state ¢} and for each final state f? of A,.

Now suppose that C'is a class of = for which all FsA Ap
corresponding to classes D such that C' < D are already
constructed. We construct Ac as follows. Again, for
each ¢ € C, let A. be an FsA corresponding to R. (with
disjoint states for distinct ¢’s). The set of states of Ac
is the union of the sets of states of the Fsas A. for c €
C, similarly for the final states, and the initial state is
again left unspecified. The transitions of A¢ are defined
as follows. As in the base case, for each b € C and
transition (q,b,q’) in A. we add to Ac the transitions
(q,b,q0) and (f, b, ¢') for the initial state go and for each
final state f of A,. Unlike the base case, we now have
to take care of symbols b belonging to some class B for
which C < B. For each such b we add to A¢c a new
disjoint copy of the already constructed Ap, together
with the transitions (g,b,qo) and (f,b,q’) for the copy
of the initial state go and for the copies of each final
state f of Ay.

This induction allows us to construct an FSA Ac for
the minimum class C' containing the root label r. The
final FSA A, is obtained by adding a new start state s
and final state g together with transitions (s, r,qo) and
(f,7,g) for the start state go and each final state f of
A,

We illustrate the construction of A; with some exam-
ples.

ExaMpLE 4.7. : Consider the DTDd ' *7 .The
a—a
dependency graph Gy has the edges (r,a) and (a,a).
The classes of = are {r},{a}, and {r} < {a}. The rsa
A, and A, are:

a
O
a
)—@

Thus the FsA associated to the equivalence class {a}
is: a a
« (O——O)°

This yields the Fsa A, depicted in Figure 4.

Notice that A4 recognizes all the well-balanced words
of £(d). But it also recognizes additional well-balanced
words such as raaaaaar. It turns out that this is un-
avoidable: there is no automaton that recognizes the
above DTD. This will be shown in Lemma 4.4 will show.

ExAMPLE 4.8. : Revisit now the DTD d of Example
a— b
4.3: b— a*

This induces one equivalence class of symbols: {a,b}.
The FSA A, and A, are:

; C@ and . C@

Thus, the FSA associated to the equivalence class {a, b}
is:

ba

0, f* a0, f*
0> 0>

b,a

If a is assumed to be the root, this yields the Fsa Ag4:

a a’7b

@) O
a a,b

Note that Ay is equivalent to the FsA of Example 4.3

©)




Figure 4: Ay

and the only well-balanced strings it accepts are those

in £(d).

As expected, we can easily show, by construction, the
following property of A,.

LEMMA 4.3. : For each DTD d, let A; be the au-
tomaton constructed above. We have:
(i) every word in £(d) is accepted by Ag4.
(ii) Ag can be constructed from d in exponential time.

The construction of Ay in the general case takes time
O(|d|'=!) where |d| is the maximum size of an FsA for a
regular expression of d, and | < | is the depth of the par-
tial order <. The exponential is due to the replication
of FSA’s carried out in the construction.

Remark

The construction of the FSA A4 can be straightforwardly
extended to specialized DTDs. Note also that Ay is
non-deterministic even if the FSA’s A, associated to R
are deterministic. The non-determinism stems from the
fact that a closing tag @ may lead to several states.

We can now prove a converse of Lemma 4.2, which yields
a precise characterization of recognizable fully recursive
DTDs.

THEOREM 4.1. : The following are equivalent for each
fully recursive DTD d:

(i) d is recognizable,
(ii) d satisfies the conditions of Lemma 4.2, and

(ii1) the set of well-balanced strings accepted by the FSA
Aq s precisely L(d).

As a consequence of Theorem 4.1, we can show that it
is decidable whether a fully recursive DTD d is recog-
nizable, and therefore whether the standard associated
FSA Ag4 can be used to validate it.

THEOREM 4.2. : Given a specialized fully recursive
DTD d over fized alphabet X, it is decidable in EXPTIME
whether d is recognizable.

Remark:

The exponential complexity above is due to the con-
struction of deterministic FSA for the regular expressions
used by the DTD. If the DTD only uses 1-unambiguous
regular expressions, such as required by XML schema
[4], the complexity goes down to PTIME.

Let us now consider DTDs that are not fully recursive.
Consider again the DTD of Example 4.7. Intuitively,
the DTD cannot be recognized because an FSA cannot
keep track of the depth in the tree and thus might allow
the transition from @ to a at depth different than 1.
The next lemma formalizes this intuition and provides
a second necessary condition for recognizability.

LEMMA 4.4. : Let d be a recognizable DTD. Then
the following holds, where «, 3, u, v, w are words over ¥
while z,y,z (possibly subscripted) are individual sym-
bols:

Let x1, x2,y, z be symbols such that x1, 2 and z are mu-
tually recursive in d. If uzivzsw € Ry and v'z1v' z2w’ €
R. then uz1v'zow must be in R, and v'z1vzow’ must
bein R..

Remark:

The condition of Lemma 4.4 can be formulated as fol-
lows in the special case when x1 = z2: (i) Suppose the
occurrences of z; and x2 below z are identical. Let z
and z be mutually recursive in d. If uzvzw € R, and
u'zw' € R, then v'zvrzw' € R. and urw € Ry. (i)
Suppose the occurrences of x1 and z2 below y are iden-
tical. If uzw € Ry, u'zv'zw’ € R. then uzv'zw € R,
and v'zw’ € R..

ExAMPLE 4.9.
r— aa . . . .
7 . This DTD is not recognizable because it
a—a
does not satisfy the condition of Lemma 4.4. Indeed,
a is recursive, R, contains aa, R, contains a but Ry
does not contain aa. This violates the condition of the
lemma.

: Consider the DTD of Example 4.7

r— ab

ExaMPLE 4.10. : Consider the DTD a — b*
b—a”

DTD is not recognizable because it does not satisfy the

. This



condition of Lemma 4.4. Indeed, a and b are mutually
recursive, R, contains ab, R, contains aa but R, does
not contain aab.

Note that, if we replace the first rule by r — a™b",
conditions of Lemmas 4.2 and Lemma 4.4 are satisfied
and the resulting DTD is recognized by Ag4.

We conjecture that the necessary conditions provided
by Lemmas 4.2 and 4.4 are a in fact a precise character-
ization for DTD recognizability. However, this remains
open.

Short of a complete characterization of recognizable DTDs,

we provide of characterization of when a DTD d is vali-
dated by the standard Fsa A;. The conditions are those
of Lemmas 4.2 and 4.4, together with an additional con-
dition stated next:

(*) Let «, 8, u,v,w be words over ¥ and z,y, z (possi-
bly subscripted) be individual symbols. Let k and
k' be positive integers. Let (z:)i<i<k, (2i)2<i<k,
(w;)lgigk/, (Z£)2Sigk/, and Yy be symbols of ¥ such
that 1 = 1, Tr = =z}, and all the z;,x}, z;, 2}
are mutually recursive in d (not necessarily dis-
tinct). If uzivi@s - vk—12rw € R, and for each
2 < i < k we have {a;z;,_13;, iz 8} C R., and
for each 2 < ¢ < k we have ulz;_1viz;w: € R.
then wz!v] - - zj,w must be in R, and, for each
2 <i<k, ;zi_1v;_17;3 must bein R.,.

The next result provides a precise characterization of
the DTDs d that are validated by the standard FsA A,.

THEOREM 4.3. : Let d be a DTD. The following are
equivalent:

(i) d satisfies (*) and the conditions of Lemmas 4.2
and 4.4, and

(ii) the set of well-balanced strings accepted by the FSA
Aq s precisely L(d).

We note that the conditions of Theorem 4.3 can be ver-
ified in time doubly exponential with respect to d. This
is done by checking directly that Ag4 validates d, as fol-
lows. We first build a specialized DTD d’' such that
SAT(d') consists of the trees accepted by A4. This can
be done in EXPTIME by Lemma 4.1. Next, the equiv-
alence of d and d’ can be checked in EXPTIME using a
tree automata equivalence test.

To understand why the conditions in Theorem 4.3 are
not a complete characterization of recognizable DTDs,
consider the following example, that provides a recog-
nizable DTD d violating (*). For this DTD, we will
exhibit an FSA different from the standard A,4, that val-
idates it.

r — aabfc

a — adle
ExAMPLE 4.11. : Consider the DTD d: d — dcle

b — alble

¢ — b|cle

First notice that Ay does not recognize this DTD be-
cause d violates (*). Indeed the DTD satisfies the premise
of (*) but not its conclusion. For example, adc is not in
R, as required. However, consider the FsA that works
like A4, but additionally counts the number of transi-
tions ad and da modulo 2 and accepts only if the two
are equal. It can be verified that this FsA validates d.

In summary, the conditions of Lemmas 4.2 and 4.4 are
necessary in order for a DTD to be recognizable. The
conditions of Theorem 4.3 are sufficient, and in par-
ticular provide a precise characterization of when the
standard FsA works. The complete characterization of
recognizable DTDs remains open.

5. ALTERNATIVE APPROACHES TO
VALIDATION

We next consider two alternative approaches for validat-
ing DTDs that are not recognizable. The first is to relax
the constant memory requirement. The second consists
in refining the original DTD by adding information al-
lowing it to be validated by an FsA.

Validation with bounded stack

We begin with relaxing the memory requirement. Specif-
ically, we allow as auxiliary memory a stack whose depth
is bounded in the depth of the XML document. The
requirement that validation be done in a single, deter-
ministic pass is maintained. This approach is appealing
in practice, because many XML documents tend to be
shallow even if their DTDs are recursive. We start with
a simple example.

ExAMPLE 5.1.
T a? which is not recognizable. However, a de-
a—a
terministic PDA can validate the DTD by allowing only
transitions aa and aa and remembering the current depth
using the stack. In addition, the PDA allows a single
transition aa and only at depth one. Note that this PDA
is deterministic and its stack never exceeds the depth of

the tree represented by the well-balanced input string.

: Consider the DTD of Example 4.7

Rather surprisingly, we can show that every specialized
DTD can be strongly validated by a deterministic PDA.
When the input string is well-balanced, the stack of the
PDA is bounded in the depth of the tree represented by
the input string.

THEOREM 5.1. : Let d be a specialized DTD. There
exists a deterministic PDA that accepts precisely L£(d)



using a stack of depth bounded by the mazimum number
of unmatched open tags occurring as the input is read
from left to right. In particular, if the input string is
well-balanced, the depth of the stack is bounded by the
depth of the tree represented by the input string.

Proof: Letd = (X,%',d', ). Recall that d’ is a DTD
over X' and p is the associated specialization mapping.
We wish to check whether a string w over ¥ U £ rep-
resents a tree satisfying d. The stack is used to check
that the string represents a tree and to keep informa-
tion about the path from the root to the currently vis-
ited node in the tree. For each node along the path,
the stack keeps a set of candidate specializations for the
node label, compatible with the information seen so far.
Intuitively, a candidate specialization a is acceptable if
there are acceptable specializations of its children whose
sequence forms a word in the regular language R, asso-
ciated to a by d’. The PDA must verify this recursively,
and accept the input if the root is left with at least
one acceptable specialization. To achieve this, the PDA
simulates the run of the FSA for R, on the children of a
given node with candidate specialization a. This is done
by keeping on the stack, together with each such a, the
set of states reached in the FsA for R. after reading
the sequence of children seen so far, with their respec-
tive allowed specializations. This can be done because
the stack symbol containing this information for a given
node becomes the top of the stack every time one of its
subtrees has been completely read. After reading the
entire sequence of its children with their allowed spe-
cializations, a candidate specialization a for the node is
discounted unless the associated set of states contains
some accept state in the FsA for R,.

We now describe the PDA in more detail. For eacha € ¥’
let A, be the standard non-deterministic FSA for R,
with start state ¢2. Let @ be the disjoint union of the
sets of states of the FSA’s A,. The stack alphabet of the
PDA, denoted V, consists of symbols of the form (a, S)
where a € I, and S is a set of elements (a', H) such
that a' € ¥', p(a') = a, and H is a subset of the states

Q. Thus, V is a subset of ¥ x 2% %2% " The transi-
tions work as follows. When a € ¥ is read, the symbol
(a, {2, {¢%}) | @' € %',a = p(a")}) of V is pushed
on the stack. When a symbol @ € ¥ is read, the PDA
pops the current stack symbol. If the input string is
well balanced, the top of the stack must be of the form
(a, S); otherwise the input is rejected. Note that, since
the subtree rooted at a has been completely processed,
we now know which of the candidate specializations of
a are acceptable: they are the a' such that (o', H) € S
and H contains some accepting state of A,,. At this
point the new top of the stack symbol, say (b, T), needs
to be updated. The symbol is popped and replaced at
the top of the stack by (b, new(T")) where new(T") con-
tains, for each (b', B') € T the pair (b', new(B')) where
new(B') contains the states ¢’ such that (¢,a’,q’) is a
transition of the FSA Ay for some ¢ € B’ and some al-
lowed specialization a' of a occurring in S. Finally, the

PDA accepts if the root node labeled r has at least one
acceptable specialization r’. This information is avail-
able in the last symbol popped from the stack before it
becomes empty.

It is straightforward to check that the above PDA accepts
L(d). |

Refining the DTD

We finally consider an approach to validation orthogo-
nal to the ones examined so far. It consists of refining
the given DTD by providing in the tags additional infor-
mation that can be used for validation. The refinement
is formalized by a specialization of the original DTD.
More precisely, we can show the following.

THEOREM 5.2. : For every DTD d over X there ex-
ists an equivalent specialized DTD d = (X,%',d’, 1) of
size quadratic in d such that d' is recognizable.

Proof: For each a € X, let A, be a standard non-
deterministic FSA for the regular language R, speci-
fied for @ by the DTD d. The idea for constructing
the specialized DTD d is straightforward: keep track
in the tags of the children of a node a of the state
of A, in an accepting computation on the sequence
of children tags. More precisely, let @ be the disjoint
union of the sets of states of the Fsa’s A, and let &' =
Y X Q. The DTD d' associates to each symbol (a,q)
in ¥’ the regular language consisting of all words of the
form (a1,q1)(a2,q2)...(ar,qr) such that aiaz...ar €
R, and (gi—1, as,q;) are valid transitions in 4., 1 <: <
k, where qo is the start state and ¢r an accept state for
A,. Clearly, the specialized DTD d is equivalent to d.
An FsA can validate well-balanced input strings wrt the
DTD d' by allowing only the following transitions:

1. (a,q)(a1,q1) where (o, a1,q1) is a transition in A,
and qo is the start state of Ag;

2. (a,q)(b,p) where (q,b,p) is a transition in the FsSA
to which g belongs.

w
—

a,q) (b,p) where ¢ is an accepting state in the
FSA to which it belongs. m|

ExXAMPLE 5.2. : Revisit the DTD of Example 4.7

T — aa S .
? which is not recognizable. However the fol-
a—a
T — aiaz
lowing DTD a1 — a] is recognizable (by the regular
az — a;

expression rajajasa,7) and defines a similar family of
tree documents.

6. CONCLUSIONS

This paper provides a first step towards the formal in-
vestigation of processing streaming XML. We focused



on the problem of on-line validation of streaming XML
documents with respect to a DTD, under memory con-
straints. The main results provide conditions under
which validation can be done in a single pass and con-
stant memory, using an FSA. We also considered al-
ternative approaches by relaxing the constant memory
requirement or by enriching the DTD with additional
information that can be used in validation.

Several questions remain open. Mainly, a precise char-
acterization of recognizable DTDs is not yet available,
except in the fully recursive case. For the general case,
we conjecture that (i) the necessary conditions we pro-
vided for a DTD to be recognizable are also sufficient,
and (ii) whenever a DTD d is recognizable it can be val-
idated by the standard FSA A, augmented with count-
ing certain patterns modulo 2, as discussed in Example
4.11.

Another interesting open problem concerns characteriz-
ing the specialized DTDs that are recognizable. It can
be seen that the conditions we provided for recognizable
DTDs no longer work when specialization is allowed.
Indeed, the problem seems considerably harder in this
case. Note that, since every recognizable family of trees
is necessarily definable by a specialized DTD (Lemma
4.1), characterizing the recognizable specialized DTDs
would essentially close the problem of understanding
which families of trees can be validated by FsA.

Finally, it would be useful to exhibit natural classes of
DTDs that can always be validated by an FSA, by pro-
viding restricted specification languages for document
structure that are powerful enough for a wide range of
applications of practical interest.

Beyond the immediate focus on validation, we expect
that the techniques developed here will also be useful
in investigating the more complex problem of querying
streaming XML documents.
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