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Abstract. In this paper we investigate the problem of validating, with constant
memory, streaming XML documents with respect to a DTD. Such constant mem-
ory validations can only be performed for some but not all DTDs. This paper
gives a non trivial interesting step towards characterizing those DTDs for which
a constant-memory on-line algorithm exists.

1 Introduction

The Extended Markup Language (XML) is emerging as the standard for data exchange
on the Web. Many applications require on-line processing of large amounts of data
in XML format using limited memory. Such processing includes querying XML docu-
ments, computing running aggregates of streams of numerical data, and validating XML
documents against given Document Type Definitions (DTDs). For each query, for each
aggregate and for each DTD, one issue is then to see what would be the minimal amount
of memory which is really needed in order to process it on-line.

In this paper we are concerned with those validation problems that can be processed
on-line and using a constant amount of memory. The problem of validating XML doc-
uments against a given DTD is to find out whether the document conforms the specifi-
cation given by the DTD. We consider only simple DTDs that do not have any integrity
constraint, and we want to perform this validation on-line. As we consider only simple
DTDs, data values are not relevant for validation, and we can view our XML docu-
ment as a stream of symbols representing the sequence of opening/closing tags of the
document. Given such a stream, in a single pass and using a fixed amount of mem-
ory, depending on the DTD, but not on the size of the XML document, we want to be
able to tell whether the document conforms the DTD or not. In other words, we are
looking for a finite-state automaton (FSA) performing a pass on the XML document,
as it streams through the network, and testing conformance with the DTD. An easy
observation shows that this is not always possible for all DTDs ([4]).

As pointed out in [4], a FSA can certainly not check that the document is well-
formed. By this we mean that the sequence of opening/closing tags is well balanced.
But even if we take this for granted, and this is what we are going to do in this paper,
many DTDs cannot be validated on-line using a FSA.

In this paper we tackle the question of finding those DTDs that can be validated
on-line using a FSA. We call such DTDs streamable . The main questions we address
are: Which are the streamable DTDs? Is it decidable whether a DTD is streamable? If
a DTD is streamable can we compute a FSA which performs the validation?



We don’t provide a full answer to these questions, but we make a significant step
towards answering them.

A simple observation made in [4] shows that if a DTD is not recursive then it is
streamable. When the DTD is recursive, a FSA gets immediately lost in the depth of the
tree and a first intuition that one could have is that it can only check locally whether two
successive tags are consistent with those appearing in the DTD. This was the approach
taken in [4]. Given a DTD τ , a local-automaton 1 for τ can be constructed which checks
that each two successive letters are consistent with those appearing in τ . The hope was
to prove that a DTD is streamable iff the set of trees accepted by the local-automaton
for τ equals the set of trees valid for τ . In [4] it was shown that this is indeed the case
for so called “fully-recursive” DTDs, but the paper ended with an example of a DTD
showing that doing modulo-2 counting on the number of occurrences of two successive
letters could be necessary to validate it on-line.

We thus generalize the notion of local-automaton by extending it using an arbitrary
finite group operation on the occurrences of two successive letters. In that respect, a
modulo-counting operation corresponds to the case finite groups generated by a single
element. Given any finite group H and any DTD τ we define a notion of H-local-
automaton for τ which extends local-automaton by combining it with computation in
H . We conjecture that H-local-automata capture the notion of streamability: a DTD
τ is streamable iff there exists a finite group H such that the H-local-automaton for
τ defines the same set of trees than τ . We give a necessary and sufficient condition
on a DTD τ to admit a H-local-automaton. This condition is expressed in terms of a
word problem for finite groups. Unfortunately we don’t know yet whether this condition
is decidable or not. Recall that the word problem for finite groups is undecidable in
general [3, 5].

We also provide a decidable necessary and sufficient criterion on the DTDs τ for
which there exists a finite commutative groupH such that the H-local-automaton for τ
defines the same set of trees as τ .

Maybe one of our most interesting contribution lies in the concepts we develop
here in order to obtain our results. We believe that those will eventually be sufficient
for finding the right characterization. We also think that they could be used in other
contexts.

Related work This paper can be seen as a continuation of [4]. In [4] several neces-
sary conditions were given for a DTD to be streamable. We reuse one of them in an
essential way in this paper, while the others will follow from our results. Those condi-
tions were obtained using the notion of local-automaton that is also the starting brick
of our construction here. In [4] a decidable characterization of DTDs streamable by a
local-automaton was also given. Here we extend this result by providing a decidable
characterization of DTDs streamable using a H-local-automaton for some finite com-
mutative group H . The techniques we use in this paper are completely different than
the one used in [4]. We have good hope that these new techniques could be pushed to
eventually obtain the complete characterization of streamable DTDs.

1 This automaton was called “standard automaton” in [4], but we believe that this terminology
is misleading



The work of [4] was also continued in [2]. In this paper some limited amount of
memory was allowed by using restricted pushdown automata instead of FSA.

Testing whether a DTD is streamable can be seen as the problem of deciding which
subclass of regular tree languages a FSA could accept when trees are coded à la XML,
using a well-formed sequence of opening and closing tags. With this coding the string
abb̄cc̄ā codes the tree rooted in a node labeled with a and having two children, the left
one labeled with b and the right one labeled with c. The same question naturally arises
with any other coding for trees. For instance one could use the functional coding which
codes the tree above with the string a(b()c()). Using this coding one could now ask
which are the regular tree languages a FSA could recognize. It is easy to see that this
class is strictly contained in the class of tree languages recognized by a FSA using the
XML coding. The reason is that when reading a closing bracket in the functional coding
the FSA does not know the label of the node this bracket closes, while this is known in
the case of the XML coding. In [1] a decidable characterization of streamable languages
using the functional coding was given. It seems quite difficult to extend their ideas to
the XML coding.

The paper is organized as follows. After introducing the necessary background no-
tations in Section 2, we define in Section 3 the central notions of this paper: Graph of a
DTD and separating group for a DTD. In Section 4 we define, for any finite group H ,
the notion of H-local-automaton for a DTD and show that the existence of a separat-
ing group for a DTD is equivalent to the existence of a H-local-automaton accepting
exactly all the valid trees for this DTD. Finally in Section 5 we give a decidable char-
acterization of those DTDs having a H-local-automaton, for some finite commutative
groupH , which accepts exactly all the valid trees.

2 Notations

We fix a finite set of labels Σ.

Trees. A tree with labels in Σ is a finite unranked ordered tree whose nodes have
labels from Σ. To capture the on-line behavior, we will manipulate trees via string
representations corresponding to a depth-first traversal or, equivalently, to the sequence
of opening/closing tags of the document represented by t. To this end we view Σ as the
set of opening tag symbols while Σ̄ = {ā | a ∈ Σ} is the set of closing tag symbols.
Now the string representation of a tree t is the string, also denoted by t, defined by
induction as: if t has a single node of label a, then t = aā. It t consists of a root labeled
a and subtrees t1 . . . tk then t is the string a t1 . . . tk ā.

For instance the string representation of the tree r

a

b

c

c

a

b c

is the string

rabcc̄b̄cc̄āabb̄cc̄ār̄. We denote by Ltree the set of (string representation of) trees.



DTDs. A DTD consists of an extended context-free grammar where each rule associates
to a label a ∈ Σ a regular expression ra over Σ, together with a distinguished initial
symbol. A tree t is conform to a DTD τ (or t is valid w.r.t τ ) if the label of its root is
the label of the initial symbol of τ and, for each node x ∈ t of label a, the sequence of
labels of the children of x form a word of ra. For instance the tree above is valid for

the DTD2:

r → a∗

a→ bc
b→ c?

c→ ε

. Since regular expressions are closed under union, we can assume

w.l.o.g. that each DTD has a unique rule a → ra for each symbol a ∈ Σ.
Each DTD τ , defines a language of trees, denoted L(τ) consisting of all (string

representation of) trees valid for τ .

Streaming. We are interested in DTDs τ whose membership problem can be solved
using a finite memory device assuming that (the string representation of) the input tree
is well formed (is in Ltree). More formally we say that a DTD τ is streamable if there
exists a regular languageR overΣ such that L(τ) = Ltree ∩R. IfR is such that L(τ) =
Ltree ∩ R we say that R recognizes τ . For instance the DTD τ : r → a, a → a | ε is
streamable as L(τ) = {ranānr̄ | n ∈ N} which is Ltree ∩ ra

∗ā∗r̄. On the other hand it
is not too difficult to show that the DTD r → aa, a → a | ε is not streamable. We
are looking for a decidable characterization of streamable DTDs. In order to do so we
associate in Section 3 a graph to any DTD and show in Section 4 how to construct from
this graph a family of automata that could recognize the corresponding DTD.

3 DTDs, graphs and groups

In this Section we introduce the machinery necessary for stating our results.

Decomposition of a DTD. Given a DTD τ , we define a pre-order ≤τ on Σ as follows.
A label b is a successor of a label a relative to τ if there is a word w of ra containing
the label b. We then simply set ≤τ as the reflexive transitive closure of this successor
relation. This pre-order induces an equivalence relation ∼τ on Σ: a ∼τ b if a ≤τ

b ∧ b ≤τ a. The set Cτ of equivalence classes of ∼τ is now partially ordered by ≤τ .

Example 1. If τ is the following DTD: r → abc a→ c
c→ edc | ε b→ a
d→ ad | ed | eb | ε e→ b

Cτ contains two equivalence classes, {r} and {a, b, c, d, e} and r ≤τ a.

Graph of a DTD. We now define the central notion used in this paper. For each class
c of Cτ , we construct the labelled directed graph Gτ (c), denoted as the graph of c
relative to τ . The intuition is that the graph of c relative to τ codes all the transitions
between two successive letters of c occurring in τ .

2 c? is an abbreviation for (c|ε).



More formally, the set of vertices of Gτ (c) is defined as {â| a ∈ c}∪ {a∞ | a ∈ c}.
The nodes in {â | a ∈ c} are called inner nodes. If v is a node ofGτ (c), l(v) denotes the
label a ∈ c such that v = â or v = a∞. Given three labels a, b, d of c, there is an edge
of label d from â to b̂ in Gτ (c) whenever there is a word w = w1aw2bw3 in rd such
that all the labels occurring in w2 are not in c (by definition they must belong to classes
c’ of Cτ with c <τ c′). Given two labels a, d of c, there is an edge of label d from d∞
to â whenever there is a word w = w1aw2 in rd such that all the labels occurring in
w1 are not in c. Given two labels a, d of c, there is an edge of label d from â to d∞
whenever there is a word w = w1aw2 in rd such that all the labels occurring in w2 are
not in c. Given a label d of c, there is an edge of label d from d∞ to d∞ whenever there
is a word w in rd such that all the labels occurring in w are not in c. No other edges
occurs inGτ (c). We viewGτ (c) as a simple directed graph. That is, whenever there are
several edges, with different labels, going from vertex â to vertex b̂, we replace them
with a single edge whose label is the union of all the previous labels. The graph Gτ is
the disjoint union of all Gτ (c), c ∈ Cτ .

We illustrate this central concept with three examples that will be our running ex-
amples for the paper.

Continuation of Example 1. The graph of this DTD is (ignoring the trivial class con-
taining only r):

b∞ â d̂ ĉ a∞

d∞ ê c∞

b̂ e∞
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Example 2. Consider now the DTD τ : r → abc b→ a
a→ ad | af | sd | sq | bf | bq | ε f → q
q → sdch | sqg | fh | fg | ε g → q
c→ afg h→ q
d→ bfh s→ q

Cτ contains again two equivalence classes, one for {r} and one for the remaining letters
(note that the last 5 rules are only here to make all the symbols but r equivalent accord-
ing to ∼τ , they don’t affect much the graph and are irrelevant for the rest of the paper).
The graph for this DTD looks like this. For the sake of simplicity we have ignored the
nodes a∞, b∞, f∞, g∞, h∞, s∞, q∞ and their corresponding edges which will not be
relevant in the sequel.

â d̂ ĉ ĥ

c∞ ŝ f̂ d∞

ĝ q̂ b̂
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a q q
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c
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Example 3. Our third running example is with the DTD:
r → abc j → m y → j
u→ de | fe | fm | bh | jh | jm | qb | qxn | dn w → y a→ u
z → xn | dn | dw | fw | fm | jm | jy | xy b→ t m→ s
t→ bh | jh | jg | fg | fec h→ u c→ z
v → adw | axy | jy | jg | fg | fw f → g n→ w
s→ ax | qx | qb g → v d→ f
e→ t q → u x→ n
Again Cτ contains two equivalence classes, one with only r and one with all the other
labels. All the last rules are again irrelevant for the rest of the paper, they are only
needed to have a unique class containing all the symbols but r. The graph is depicted
below:

ê
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Paths. Given the graph G of a DTD, a path p is an arbitrary sequence of vertices such
that for any two consecutive vertices of this sequence, there is an edge between them
(not necessarily from the first one to the second one). A path p is directed if it traverses
the edges in the direction induced by it. A path is simple if it traverses a vertex at most
once. A path is a cycle if it starts and ends at the same vertex of G. A path of Gτ is
internal if all its nodes, besides the first and last one, are inner nodes.

Continuation of Example 1. The path b∞âd̂ĉ is simple, internal and directed. The
path d̂êd∞âd̂ is a simple non-directed non-internal cycle.

Languages of internal paths. For each edge of Gτ from vertex â to vertex b̂ we define
Lτ (â, b̂) as the set of words w ∈ Σ∗, such that all letters of w are in a class strictly
higher that the class of a, and there exists a label d of the edge such that w1awbw2 ∈
rd for some arbitrary strings w1 and w2. Similarly we define Lτ (a∞, b̂), Lτ (â, b∞)
and Lτ (a∞, a∞). We extend this notion to any directed internal path p. Assume p is
v1 · · · vn. We set Lτ (p) = Lτ (v1, v2) l(v2) Lτ (v2, v3) l(v3) · · · l(vn−1) Lτ (vn−1, vn).
Finally for each symbol d, let Lτ (d) to be the union over all directed internal paths
p, starting and ending in d∞, of Lτ (p). Note that we take this union over all directed
internal paths, not just the simple ones (the path can go several time through the same
node).



Continuation of Example 1. In this example we have Lτ (d) = {ad, eb, ed, ε} and
Lτ (c) = {edc, ε}.

NECESSARY CONDITION: A DTD τ satisfies condition (∗) if for all d, Lτ (d) = rd.

All the three DTDs given in Example 1,2 and 3 satisfy the condition (∗). On the
other hand, if we replace in the DTD of Example 1 the line d → ad | ed | eb | ε with
d → ad | eb | ε the edges of the underlying graph remain the same (the new graph
differs from the previous one only by the label of edge (ê, d̂) which no longer contains
d) but the DTD no longer satisfies the condition (∗). It follows from Theorem 1 below
that this DTD is not streamable.

The following result is a rephrasing of the first necessary condition for streamability
proved in [4].

Theorem 1. If a DTD τ is streamable then it satisfies (∗).

Based on this result, in the sequel we will represent our DTDs using their graph
representation. We aim at characterizing those graphs that represent streamable DTDs.
In order to do this we use the notions of monochromatic cycles and dangerous cycles
that we introduce now.

Monochromatic cycles and dangerous cycles. The set MCycles(τ) of monochromatic
cycles of τ is the set of all simple directed cycles p ofGτ such that there is a label a ∈ c
which occurs as a label of all edges traversed by p.

A directed path of Gτ (c) from â to b̂, is a source path if it consists of a simple
internal directed path from â to d∞, followed by a simple internal directed path from
d∞ to b̂, for some label d of c. A directed cycle p of Gτ is dangerous if the following
holds:

– p traverses successively vertices ân, · · · , â1 of Gτ by forming a source path from
âj to âj−1, ∀j 1 < j < n + 1, and by forming a simple internal directed path p′

from â1 to ân, where a1, · · · , an is a sequence of labels of some class c such that
all labels in the sequence are distinct, except possibly a1 and an.

– There exists a label d of class c’ <τ c and a word w of rd with
w = w1a1w2 · · ·wnanwn+1, where w1, · · · , wn+1 are arbitrary strings over Σ.

– Either w1a1Lτ (p′)anwn+1 * rd or
for all internal directed paths p1n in Gτ from â1 to ân,
a1w2a2 · · ·wnan /∈ a1Lτ (p1n)an

We denote by DCycles(τ) the set of dangerous cycles of τ .

Continuation of Example 1. In this example the set MCycles(τ) contains the monochro-
matic cycles for d and c: d∞âd̂d∞, d∞êd̂d∞, d∞êb̂d∞, d∞d∞, c∞êd̂ĉc∞, and c∞c∞.
The graph also contains the dangerous cycle d∞âd̂ĉc∞êb̂d∞. This cycle is dangerous
because: 1) r → abc, b̂d∞â and ĉc∞êb̂ are dangerous, and 2) adc /∈ rr.

Continuation of Example 2. In this example some of the monochromatic cycles in the
set MCycles(τ) are: c∞âf̂ ĝc∞, d∞b̂f̂ ĥd∞ and q∞ŝd̂ĉĥq∞. The graph also contains



the dangerous cycle c∞âd̂ĉĥd∞b̂q̂ĝc∞. This cycle is dangerous because: 1) r → abc,
b̂q̂ĝc∞â and ĉĥd∞b̂ are dangerous, and 2) adc /∈ rr .

Continuation of Example 3. In this example some of the the monochromatic cycles in
the set MCycles(τ) are: s∞âx̂s∞ v∞âd̂ŵv∞ u∞f̂ m̂u∞.

The graph has only one dangerous cycle s∞âd̂êĉt∞b̂s∞. This cycle is dangerous
because 1) r → abc, b̂s∞â is dangerous, ĉt∞b̂ is also dangerous, and 2) adec /∈ rr .

Groups versus graphs. Let H be a finite group, G be a directed graph and µ be a
mapping from the set of edges ofG toH . This induces a mapping, which we also denote
by µ, between sequences of edges ofG intoH such that µ(e1e2) = µ(e1) ·µ(e2) where
· is the group operation of H . In particular the mapping µ induces a homomorphism
between the directed paths of G to H : If p = v1 · · · vn is a directed path of G then
µ(p) = µ((v1, v2))µ((v2, v3)) · · ·µ((vn−1, vn)).

Given a DTD τ , a separating group for τ is a finite groupH together with a mapping
µ fromGτ toH such that ∀p ∈ MCycles(τ), µ(p) = 1 and ∀p ∈ DCycles(τ), µ(p) 6=
1 where 1 is the neutral element of H .

Continuation of Example 1. In this example there is no separating group for τ . In-
deed assume there is a finite group H and a mapping µ from Gτ to H such that
∀p ∈ MCycles(τ), µ(p) = 1. Let x bet the edge (ê, d̂). One label of x is d and
by hypothesis all monochromatic cycles of d are mapped to 1 by µ. Simple algebraic
computation shows that then µ(x) = µ(pd) where pd is the path (ê, b̂, d∞, â, d̂). Now c
is also a label of x and similar algebraic computation shows that µ(x)µ(pc) = 1 where
pc is the path (d̂, ĉ, c∞, ê). This implies that µ(p) = 1 where p is the path pd ·pc. But p is
exactly the dangerous cycle of τ ! Therefore any mapping µ sending all monochromatic
cycles to the identity of H will also send a dangerous cycle to 1.

Continuation of Example 2. In this example there is a separating group for τ . Let H be
the group of order 3 generated by one element: H = {1, x, x2} with x3 = 1. Let µ be
the mapping sending all edges to 1 except for the q-labeled edges e1 = (d̂, ĉ), e2 =
(q̂, ĝ), e3 = (q∞, ŝ). For those three edges we set µ(e1) = µ(e2) = x and µ(e3) =
x2 = x−1. Now one can verify that we do have µ(p) = 1 for all p ∈ MCycles(τ)
(this is trivial for all monochromatic cycles of label different than q and can be done
by hand for the others) but that µ(p) = x2 6= 1 for the dangerous cycle p. Moreover,
one can verify that the groupH together with the mapping µ also separates all the other
dangerous cycles of the graph from the monochromatic cycles. In particular it can be
checked that for all dangerous cycles θ of the graph other than p, µ(θ) = x 6= 1.

Continuation of Example 3. In this example also there is a separating group for τ . Let
H be any finite non-commutative group with α and β two elements of H which do
no commute (αβ 6= βα or equivalently α−1β−1αβ 6= 1). Let µ be the mapping that
sends all edges to 1 except for µ((ĵ, m̂)) = µ((d̂, ê)) = µ((ŷ, z∞)) = µ((u∞, f̂)) =

µ((v∞, â)) = α, µ((f̂ , ĝ)) = µ((ĉ, t∞)) = µ((ŵ, v∞)) = β, µ((x̂, ŷ)) = µ((z∞, ĵ)) =

µ((ê, u∞)) = µ((m̂, u∞)) = α−1, µ((v∞, f̂)) = µ((t∞, f̂)) = β−1, and µ((â, d̂)) =
α−1β−1. One can verify that we do have ∀p ∈ MCycles(τ), µ(p) = 1 but that for the
dangerous cycle p we have µ(p) = α−1β−1αβ 6= 1.



The notions of monochromatic and dangerous cycles are motivated by the following
result showing a sufficient condition for a DTD to be streamable. It is possible that this
condition is also necessary, see Section 6.

Theorem 2. If a DTD τ satisfies (∗) and has a separating group, then τ is streamable.

Theorem 2 follows from Theorem 4 below that shows how to construct, from a
separating group for τ , a FSA that recognizes τ . Note that, although Theorem 4 is con-
structive, we do not know yet how to decide the existence of such a separating group
nor whether we can construct it if it exists. In Section 5 we will construct such a sepa-
rating group for a special case of DTDs and in Section 6 we will indicate the difficulty
of testing the existence of a separating group.

4 Groups and automata

Let τ be a DTD verifying (∗). Let H be a finite group and µ be a mapping from edges
of Gτ to H . From τ , H and µ we construct an automaton A(τ,H, µ), called the H-
local-automaton for τ which combines local tests on two consecutive symbols with
operations in H . If H is a separating group for τ we show that A(τ,H, µ) recognizes
τ .

Let 1 be the neutral element of H and · be its group operation. Consider again the
partition Cτ of Σ and its preorder ≤τ . For d ∈ Σ, recall the definition of Lτ (d) given
in Section 3.

For each class c ∈ Cτ and d ∈ c, we define an automaton Aµ(c, d) by induction
on ≤τ as follows. The intuition is that Aµ(c, d) is only concerned with symbols in
classes higher or equal to c relative to ≤τ and that it checks locally consistency with
τ while simulating the product in H for successive pairs of symbols in c: For each
sequence of two successive symbols in c it checks whether this sequence is plausible in
τ (by inspecting Gτ (c)) and, if this is the case, simulates the product in H using this
pair and µ. When a symbol in a higher class is read, local consistency with τ and the
previous symbol read is checked and a subcomputation for the new class is started. Each
subcomputation should start simulating the product in H at its neutral element 1 and
ends only when the current value of this product is 1. In summary only local tests are
performed against the DTD except for the product in H which is the only information
which is carried over the tree.

Checking that any sequence of two successive symbols in c is plausible in τ can be
read from Gτ (c): It amounts to check that, for any a, b ∈ c, if āb occurs then (â, b̂) ∈

Gτ (c), if ab occurs then (a∞, b̂) ∈ Gτ (c), if ab̄ occurs then a = b and (a∞, a∞) ∈
Gτ (c) , and, if āb̄ occurs then (â, b∞) ∈ Gτ (c).

The simulation of the product in H is done as follows. For each class c ∈ Cτ

and d ∈ c, let AH (c, d) be the automaton simulating the product in H for edges in
Gτ (c) while ignoring the symbols not related to c. It is defined formally as follows. Its
states are elements of (Σ ∪ Σ̄) × H . Its initial state is (d, 1). When reading a symbol
δ ∈ (Σ∪ Σ̄), it has a transition from (α, h) to (β, h′) exactly when one of the condition
below is satisfied.



– δ ∈ c, β = δ, α = ȳ for y ∈ c, (ŷ, δ̂) is an edge e of Gτ , and h · µ(e) = h′.
– δ ∈ c, β = δ, α ∈ c, (α∞, δ̂) is an edge e of Gτ , and h · µ(e) = h′.
– δ ∈ c̄, β = δ, α ∈ c, δ = ᾱ, (α∞, α∞) is an edge e of Gτ , and h · µ(e) = h′.
– δ ∈ c̄, β = δ, α ∈ c̄, (ŷ′, x′∞) is an edge e of Gτ where x′ and y′ are such that
δ = x̄′ and α = ȳ′, and h · µ(e) = h′.

– If δ 6∈ (c ∪ c̄), α = β and h = h′ (those letters are ignored).

The set of final states of AH(c, d) are all the states (ā, h), a ∈ c, such that (â, d∞) is
an edge of Gτ (c) such that h · µ((â, d∞)) = 1, together with all the states (d, h), such
that (d∞, d∞) is an edge of Gτ (c) such that h · µ((d∞, d∞)) = 1.

It now remains to perform the local tests on how the class can interleave. This is
also read from Gτ .

Let c be a maximal class of Cτ and let d ∈ c. This is the simple case. Because
the class is maximal, there is no interleaving authorized and Aµ(c, d) needs only to
simulate the product in H . In this case we let Aµ(c, d) = AH(c, d).

Let now c be an arbitrary class and d ∈ c. Assuming the definition of Aµ(c′, d′)
for each class c’ and element d′ ∈ c′ such that c <τ c’, we define Aµ(c, d). In this
case we have to worry about symbols in higher classes and check for local consistency
with τ . This is done as follows. We define next an automata Aτ (c, d) that does this
local consistency tests then we set Aµ(c, d) as the product of Aτ (c, d) with AH (c, d).
For each edge e of Gτ (c), recall the definition of L(e) as given in Section 3. For each
edge e of Gτ (c), let Ae be the deterministic minimal automaton for L(e) and assume
that these automata have pairwise disjoint sets of states. We build on these automata
to construct Aτ (c, d). Aτ (c, d) contains all the states of the Ae together with one state
qx per symbol x ∈ Σ ∪ Σ̄. Let e = (α, β) be an edge of Gτ (c), let qe

0 be the initial
state of Ae and F e be its set of accepting states. For any transition (q, d′, q′) of Ae,
where d′ ∈ c′, we add in Aτ (c, d) a fresh new copy of Aµ(c′, d′) with initial state
q0 and accepting set of states F , and we add in Aτ (c, d) the transitions (q, d′, q0) and
(qf , d̄

′, q′) for any qf ∈ F . Depending on α and β we also add inAτ (c, d) the following
transitions (with a = l(α) and b = l(β)).

– If α and β are inner nodes, we add transitions qā
ε
→ qe

0 and qe
f

b
→ qb for any

qe
f ∈ F e.

– If α is an inner node but β is not, we add transitions qā
ε
→ qe

0 and qe
f

b̄
→ qb̄ for any

qe
f ∈ F e.

– If β is an inner node but α is not, we add transitions qa
ε
→ qe

0 and qe
f

b
→ qb for any

qe
f ∈ F e.

– If both α and β are not inner nodes (then α = β), we add transitions qa
ε
→ qe

0 and

qe
f

b̄
→ qb̄ for any qe

f ∈ F e.

The initial state ofAτ (c, d) is the state qd. The set of accepting states ofAτ (c, d) are all
the accepting states of the automata Ae where e is an edge ending in d∞. This finishes
the construction of Aτ (c, d) and therefore of Aµ(c, d).

Now set A(τ,H, µ) as Aµ(c, r) where r is the initial symbol of the DTD and c is
the class of r. When H is the trivial group with one element, the A(τ,H, µ) is exactly



what was call “standard automaton” in [4]. We are now ready to state the main result of
this paper.

Theorem 3. Assume that τ satisfies (∗). There exists a separating group for τ iff there
exists a finite group H and a mapping µ such that A(τ,H, µ) recognizes τ .

The proof of Theorem 3 is given in two steps. Theorem 4 below shows that if H is
a separating group for τ then A(τ,H, µ) recognizes τ . Next, Theorem 5 shows how to
compute a separating group from a H-local-automaton recognizing τ .

Theorem 4. If τ verifies (∗) and there exists a separating group H for τ via the map-
ping µ, then A(τ,H, µ) recognizes τ .

Proof. The proof of this theorem is very technical and will appear in the full version
of this paper. We only outline it here. One first shows that if H and µ are such that for
each p ∈ MCycles(τ) µ(p) = 1, then all trees valid with respect to τ are accepted
by A(τ,H, µ). This is done by induction on ≤τ by noticing that in a valid tree, any
sequence of labels of the children of a node induces a monochromatic cycle in Gτ .

The other direction, showing that A(τ,H, µ) accepts only valid trees is more com-
plicated and requires that H is a separating group and that τ verifies (∗). The proof is
again done by induction on ≤τ . We only illustrate here the requirement on dangerous
cycles on an example. Assume the DTD has initial symbol r with the rule r → abc
and that a, b, c are symbols in the same class c and that no other classes are in τ . By
construction A(τ,H, µ) performs three successive “calls”, to Aµ(c, a), Aµ(c, b), then
Aµ(c, c). Assume we have shown by induction that all trees accepted by Aµ(c, ai) are
valid for τ , we show that this is the case for Aµ([r], r). Let t be a tree accepted by
A(τ,H, µ). We decompose the string t into s1s2s3 where si is the substring read by
Aµ(c, ai), where a1 = a, a2 = b, a3 = c. Assume moreover that those substrings are
as depicted in Figure 1.

r

a c

ab b c

v1
v2

v3

u1 w3

w1 u2 w2 u3

Fig. 1. Illustration of the run of A(τ, H, µ). We have si = uiviwi, where ui is the substring
containing all the trees in si whose root is either the first symbol of si or one of its siblings, wi is
the substring containing all the trees in si whose root is either the last symbol of si or one of its
siblings and vi is the remaining part of si.



We further decompose si into uiviwi as depicted in Figure 1. Let νi be the se-
quence of tree nodes consisting of the roots of the trees in ui followed by the first node
processed in vi. Similarly let ωi be the sequence of tree nodes consisting of the last
node processed in vi followed by the roots of the trees in wi. As each of si is read
by Aµ(c, ai), for all i, νi and ωi correspond to paths in Gτ (c), which we denote as
αi and βi, respectively. This implies that the path p formed by the path concatenation
β3 · α3 · β2 · α2 · β1 · α1 is a cycle in τ .

By abuse of notations we denote by µ(s) the image by µ of the path induced by the
sequence of symbols of s. We know that µ(s1) = µ(s2) = µ(s3) = 1. This implies –
by denoting as v′i and v′′i the first and the last symbol of vi, respectively – that µ(vi) =
µ(uiv

′

i)
−1µ(v′′i wi)

−1. By induction we know that any tree t′ entirely contained in a si

is valid for τ and therefore is such that µ(t′) = 1. This implies that µ(uiv
′

i) = µ(αi)
and µ(v′′i wi) = µ(βi). Therefore µ(v1)µ(v2)µ(v3) = µ(p)−1. Now notice that there
exist valid forests f1, f2 such that v1f1v2f2v3 is a valid tree rooted in a label of class
c, thus µ(v1f1v2f2v3) = 1. This implies µ(v1)µ(v2)µ(v3) = 1. As H was a separating
group for τ , this shows that p cannot be a dangerous cycle. Therefore (a, b) and (b, c)
must be edges ofGτ (c) and the sequence of labels in the path α1β3 must be valid below
the root. This implies that t is valid for τ . The general case requires more case analysis
but the overall idea is the same. 2

Theorem 5. Assume H and µ are such that A(τ,H, µ) recognizes τ . Then there exists
a finite group H ′, constructible from τ , H and µ, such that H ′ is a separating group
for τ . Moreover if H is commutative then H ′ is also commutative.

Proof. The proof will appear in the full version of this paper. 2

5 Commutative Separating Groups

In this section we provide a necessary and sufficient decidable condition for the ex-
istence of a commutative separating group for a DTD. Note that by Theorem 5 this
implies a necessary and sufficient decidable condition for the existence of a H-local-
automaton,H commutative, that recognizes a given DTD.

Throughout this section we consider a DTD τ satisfying the condition (∗). Let Xτ

be the set of edges of Gτ andm the cardinality of Xτ . Let n be the number of cycles in
MCycles(τ). Let Xτ = {x1, . . . , xm} and MCycles(τ) = {π1, . . . , πn}.
We first fix some more notations on linear algebra. For any r ∈ N, let Zr denote the
set of vectors of integers of size r, and Nr denote the set of vectors of non-negative
integers of size r. For any ȳ ∈ Zr, the i-th component of ȳ will be denoted as ȳ[i].The
maximum absolute value occurring in ȳ is denoted by max ȳ.

For each k ∈ N, and each y, z ∈ N, y ≡k z denotes that y and z agree modulo k
and [y]k is the number between 0 and k− 1 equivalent to y modulo k, and [ȳ]k denotes
its extension to Nr. Moreover, for each k ∈ N, the vector k̄r is the vector of Nr which
has all its components set to k. For each i ≤ r, the vector εri denotes the vector of Nr

having 1 on the i-th component, and 0 everywhere else.
For each path π of Gτ and for each edge xi ∈ Xτ we denote as |π|xi

the number of
times that π traverses xi according to the edge orientation, and by |π|x−

i
the number



of times that π traverses xi in reverse direction. To each path π of Gτ , we associate a
vector π̄ of Zm such that, for each i = 1, . . . ,m, π̄[i] = |π|xi

− |π|x−

i
. Notice that if π

is a directed path, π̄ is a vector of Nm, and if π is a simple path, then π̄ ∈ {−1, 0, 1}.
We denote as MCycles(τ) the subgroup of Zm generated by {π̄1, . . . , π̄n}, that is

MCycles(τ) = {ȳ ∈ Zm | ȳ =
∑n

i=1 αi · π̄i, αi ∈ Z, i = 1, .., n}.
All this notation is motivated by the following result:

Theorem 6. Given a DTD τ satisfying (∗), there exists a commutative separating group
for τ if and only if ∀p ∈ DCycles(τ), p̄ /∈ MCycles(τ).

Proof. We first prove the “only if” part. Let p ∈ DCycles(τ) be such that p̄ =
∑n

i=1 αi ·
π̄i, αi ∈ Z for i = 1, .., n.
Let D be the set of indices i ∈ 1..n such that αi ≥ 0, and R be the set of indices
i ∈ 1..n such that αi < 0, and let γi be the absolute value of αi, for each i = 1, .., n.
Then the following equality holds: p̄+

∑

i∈R γi · π̄i =
∑

i∈D γi · π̄i

Suppose, by contradiction, that there exists a commutative separating groupH with
associated mapping µ from Gτ to H .
By commutativity ofH , µ(p) =

∏m
j=1 µ(xj)

p̄[j] and µ(πi) =
∏m

j=1 µ(xj)
π̄i[j] for each

i = 1, .., n. Let hR be the element of H obtained as hR =
∏

i∈R µ(πi)
γi ; by commu-

tativity of H , hR =
∏m

j=1 µ(xj)
kj , where kj =

∑

i∈R γi · π̄i[j], for j = 1, ..,m.
Similarly, Let hD be the element of H obtained as hD =

∏

i∈D µ(πi)
γi ; by commuta-

tivity of H , hD =
∏m

j=1 µ(xj)
k′

j , where k′j =
∑

i∈D γi · π̄i[j], for j = 1, ..,m.
Together with p̄ +

∑

i∈R γi · π̄i =
∑

i∈D γi · π̄i this immediately implies that
µ(p) = hD · h−1

R . As H is a separating group for τ , we have hR = hD = 1 therefore
µ(p) = 1 which is a contradiction.

We will now prove the “if” part. For each p ∈ DCycles(τ) we show that there exists
a finite commutative group Hp and a homomorphism µp from Gτ to Hp, such that
µp(p) 6= 1 and µp(πi) = 1 for i = 1, . . . , n. The desired commutative separating group
for τ is the product of all Hp, for p ∈ DCycles(τ).

Given p ∈ DCycles(τ) such that p /∈ MCycles(τ) we effectively construct a sepa-
rating commutative group for p.
For each edge xj of Xτ , let Dj be the set of cycles of MCycles(τ) which traverse the
edge xj : Dj = {i ∈ 1..n | π̄i[j] = 1}.

For a vector ȳ = (y1, . . . , ym) over Nm, we define the following formula of Pres-
burger arithmetic:

ψ(ȳ) = ∃α1, . . . , αn

∧m
j=1

(

yj =
∑

i∈Dj
αi

)

By construction,ψ is satisfied by the vector associated to each cycle of MCycles(τ) and
is not satisfied by p̄; We will refer to this property saying that ψ is a separating formula
for p̄.

By Presburger quantifier elimination procedure,ψ can be transformed into an equiv-
alent quantifier free formula ϕ(ȳ) := ϕe(ȳ) ∧ ϕc(ȳ), where, using matrix notation, ϕe

and ϕc are formulas of the form:
ϕe(ȳ) := (Aȳ = Bȳ) ϕc(ȳ) := (Cȳ ≡δ Dȳ)

where A,B ∈ Nme×m and C,D ∈ Nmc×m, for some me, mc ∈ N.
From ϕ we define a new separating formula for p̄, ϕk(ȳ), whose terms use only the

modulo-congruence operator ≡k, for some k ∈ N. We consider two cases:



1. ϕc(p̄) is false. Then ϕk(ȳ) := ϕc(ȳ) and k = δ.
2. ϕe(p̄) is false. We choose k = max(Ap̄−Bp̄)+1 and take ϕk(ȳ) := (Aȳ ≡k Bȳ).

In both cases we have ϕk(ȳ) := (Eȳ ≡k F ȳ), where E, F ∈ Nr×m for some r ∈ N,
and the vector of p does not satisfy the formula while it is satisfied by any cycles in
MCycles(τ). We now construct, from ϕk(ȳ), a commutative finite group Hp and a
homomorphism µp from the paths of Gτ to Hp, such that µp(p) 6= 1 and µp(πi) = 1
for all i = 1 . . . n.

Let K be the commutative finite group whose elements are the pairs (z̄1, z̄2) ∈
Nr × Nr such that z̄1 < k̄r ∧ z̄2 < k̄r, with group composition defined by (z̄1, z̄2) +
(z̄3, z̄4) = ([z̄1 + z̄3]k, [z̄2 + z̄4]k). We define a mapping µK from the set of edges of
Gτ to K as follows: for each edge xi ∈ Xτ , µK(xi) = ([Eεmi ]k, [Fε

m
i ]k).

Let K= be the (normal) subgroup of K, consisting of all elements of the form (z̄, z̄).
Let Hp = K/K=, and set µp as the composition of µK with the quotient morphism.
As [Ep̄]k 6= [F p̄]k, µK(p) = ([Ep̄]k, [F p̄]k) is not in K= thus, µp(p) 6= 1.

Conversely if π is a cycle of MCycles(τ), [Eπ̄]k = [F π̄]k, thus µp(π) = 1. This
concludes the proof of the Theorem. 2

An immediate corollary of Theorem 6 and of the constructiveness of its proof to-
gether with Theorem 4, is the following:

Corollary 1. Given a DTD τ , it is decidable whether there exists a commutative sep-
arating group for τ , and if it exists, the group, and therefore a H-local-automaton
recognizing τ , can be effectively computed.

Continuation of Example 2. In this example a commutative separating group exists. We
have already given an example of such a group. This group could also be obtained from
Theorem 6. Indeed one can verify that the dangerous cycle p = b∞q̂ĝc∞âd̂ĉĥd∞b̂
is not a linear combination of monochromatic cycles as defined in the statement of
Theorem 6.

Continuation of Example 3. This example shows that there exist DTDs for which no
commutative separating group exists, but a separating group does exist. Indeed, the
dangerous cycle p = s∞âd̂êĉt∞b̂s∞ for that DTD τ can be shown to be such that
p̄ ∈ MCycles(τ) as follows. Let θ1, θ2, θ3, θ4, θ5 be the following non-directed cycles:
θ1 = d̂n̂x̂ŷĵm̂f̂ ŵd̂, θ2 = d̂êf̂m̂ĵĥb̂q̂x̂n̂d̂, θ3 = d̂ŵf̂ ĝĵŷx̂âd̂, θ4 = f̂ êĉt∞b̂ĥĵĝf̂ ,
θ5 = x̂q̂b̂s∞âx̂; it’s easy to check that θ̄1 is a linear sum (with weights 1 and −1) of
monochromatic cycles whose labels are all in z, the same holds for θ̄2,θ̄3, θ̄4, θ̄5, using
monochromatic cycles of label u, v, t and s, respectively.
As we alos have p̄ =

∑

i=1..5 θ̄i, p̄ ∈ MCycles(τ), thus no commutative separating
group exists for that DTD.

Unfortunately, we are not yet able to extend Theorem 6 to non-commutative groups.
See Section 6 for more details on this issue.

6 Discussion and conclusion

The next step is obviously to prove whether it is decidable that a DTD has a separating
group or not. We have seen that this is related to the word problem for finite groups.



The word problem for finite groups is whether, given a finite set F of words and a
word w over a finite alphabet of the form A ∪ A−, there exists a finite group H and
a morphism µ : (A ∪ A−)∗ → H interpreting words in F as the identity of H but
such that µ(w) 6= 1H . We are interested in the case where F = MCycles(τ) and
w ∈ DCycles(τ). This problem is undecidable in general [5]. But we are dealing with
a very special case of the word problem as MCycles(τ) and DCycles(τ) have a lot of
similarities being both defined via the same graph. It is thus quite possible that this
special case is decidable. Note that we are not only interested in knowing whether such
a separating group exists but also in constructing it.

It would also be interesting to know whether the notion of streamability coincides
with the existence of a separating group for τ . We think that this might be the case
and would like to argue here in favor of this conjecture. An obvious extension of the
H-local-automaton would be to allow computation in an arbitrary monoid (instead of a
group). We don’t think that this will extend the expressive power. Indeed assume that
a DTD τ is recognized by a H-local-automaton A where H is now just a monoid.
Because we are dealing with DTDs, monoid computation of A on any valid subtrees
should correspond to the identity. This is because neither the context nor the content of
the subtree matters for the rest of the validation, therefore the automaton does not need
to remember anything (besides the fact that the subtree is valid or not). Now, because of
the local tests against the DTD, each time A has partially read a subtree and has not yet
rejected it, there is always a way to complete it so that it is valid for the DTD. In other
words, for any monoid elementm (the current monoid state ofA in the subtree), there is
always a m′ such that m ·m′ = 1: The monoid needs to be right-invertible. The reason
why we took groups instead of right-invertible monoids is more technical and might
not be necessary. It is because we deal with cycles (monochromatic and dangerous) and
therefore work modulo cyclic permutations. This implies that if m · m′ = 1 then the
cyclic permutationm′ ·m of m ·m′ should also be 1. Thus the monoid is a group.

Finally it would be interesting to go beyond the class of DTDs as defined in this
paper, and start with an arbitrary regular language. This would answer an open question
raised in [4, 1] and certainly requires more ideas than those presented here.

Acknowledgment. We thank Victor Vianu for all the interesting discussions we had
with him on this subject.
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