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ABSTRACT. We consider the dichotomy conjecture for consistent query answering under

primary key constraints. It states that, for every fixed boolean conjunctive query ¢, testing

whether ¢ is certain (i.e. whether it evaluates to true over all repairs of a given inconsistent
database) is either polynomial time or CONP-complete. This conjecture has been verified
for self-join-free and path queries.

We propose a simple inflationary fixpoint algorithm for consistent query answering
which, for a given database, naively computes a set A of subsets of facts of the database of
size at most k, where k is the size of the query ¢. The algorithm runs in polynomial time
and can be formally defined as:

(1) Initialize A with all sets S of at most k facts such that S |= gq.

(2) Add any set S of at most k facts to A if there exists a block B (i.e., a maximal set of
facts sharing the same key) such that for every fact a € B there is a set S’ C SU {a}
such that S’ € A.

For an input database D, the algorithm answers “q is certain” iff A eventually contains

the empty set. The algorithm correctly computes certainty when the query ¢ falls in the

polynomial time cases of the known dichotomies for self-join-free queries and path queries.

For arbitrary boolean conjunctive queries, the algorithm is an under-approximation: the

query is guaranteed to be certain if the algorithm claims so. However, there are polynomial

time certain queries (with self-joins) which are not identified as such by the algorithm.
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1. INTRODUCTION

A database often comes with integrity constraints. Such constraints are helpful in many
ways, for instance in order to help optimizing query evaluation. When the database violates
its integrity constraints we are faced with several possibilities. A first possibility is to
clean the data until all integrity constraints are satisfied. This task is not easy as it is
inherently non-deterministic: there could be many equally good ways to “repair” a database.
A repair can be understood as a minimal way to change the database in order to satisfy the
constraints.

Another possibility is to keep the database in its inconsistent state, postponing the
problem until a query is issued. In order to evaluate the query on the inconsistent database
D, the classical solution is to consider all possible repairs of D and return all the answers
which are “certain”, i.e., the answers that are returned by the query when evaluated on every
repair of D [ABC99]. However, this method usually has an impact on the complexity of the
query evaluation problem. The impact will of course depend on the type of the integrity
constraints and on the definition of a repair, but most often the worst case complexity
increases at least by a factor which is exponential in the size of the database, since there
could be exponentially many ways to repair a database.

Depending on the type of integrity constraints, what should be considered as a “good”
notion of repair may be controversial. In this paper we consider primary key constraints,
which are arguably the most common kind of integrity constraints in databases. For primary



A SIMPLE ALGORITHM FOR CONSISTENT QUERY ANSWERING UNDER PRIMARY KEYS 3

keys, there is a unanimously accepted notion of repair. Primary key constraints identify,
for each relation, a set of attributes which are considered to be the key of this relation. An
inconsistent database is therefore a database that has distinct tuples sharing the same key
within a relation. For such constraints, the standard notion of a repair is any maximal subset
of the database satisfying all the primary key constraints. This amounts to keeping exactly
one tuple for each group of tuples having the same key, in each relation. A simple analysis
shows that there can be exponentially many repairs of a given database, and therefore a
naive evaluation algorithm would have to evaluate the query on each of these exponentially
many repairs.

As query language, we consider boolean conjunctive queries, which can be evaluated in
polynomial time in data complexity. With the certain answer semantics described above,
a query is “certain” on an inconsistent database if it is true on all its repairs. The data
complexity of certain answers for conjunctive queries over inconsistent databases in the
presence of primary key constraints is therefore in CONP. Indeed, in order to test whether
the query is not certain, it is enough to guess a subset of the database which is a repair
and which makes the query false. Further, it has been observed that for some conjunctive
queries the certain query answering problem is CONP-hard [FMO07] while, for other queries,
it can be solved in polynomial time. The main conjecture for inconsistent databases in the
presence of primary key constraints is that there are no intermediate cases: for any boolean
conjunctive query, the certain answering problem is either solvable in polynomial time or it
is CONP-complete.

The conjecture has been proved for self-join-free boolean conjunctive queries [KW17] and
for path queries [KOW21]|. However, the conjecture remains open for arbitrary conjunctive
queries (with self-joins). In this paper we revisit the two cases above where the conjecture is
known to hold: self-join-free queries and path queries.

1.1. Contributions. Our main contribution is the design of a simple fixpoint algorithm
for computing certain answers of boolean conjunctive queries over inconsistent databases in
the presence of primary key constraints. For every k > 1, we describe a fixpoint algorithm
parameterized by k. The algorithm is always an under-approximation of the certain answers:
on boolean queries, if it outputs ‘yes’ then the query is certain, i.e. it is true on all repairs
of the database. But there could be “false negatives”, that is, queries which are certain but
on which the algorithm outputs ‘no’.

In this paper we investigate the expressive power of our fixpoint algorithm, trying to
understand when it solves the certain answering problem.

Our first result shows that in the case of self-join-free queries and path boolean queries,
we can characterize the cases when our fixpoint algorithm computes the certain answers
via a semantic condition. In other words, when the condition holds there exists k (namely,
the number of atoms of the query) such that the corresponding fixpoint algorithm correctly
computes the certain answer (taking k as parameter); and conversely when the condition
does not hold, for every k there exists a database instance D such that the fixpoint algorithm
parameterized by k outputs a false negative on D.

We then show that when our algorithm fails to compute the certain answers, i.e.
when our semantic condition fails, the certain answering problem is actually cONP-hard.
Hence, for self-join-free queries and path queries and assuming PTIME # CONP, our simple
fixpoint algorithm solves the certain answering problem in all the cases where it is solvable in
polynomial time. The current approaches for PTIME solvable queries for these two classes are
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mutually orthogonal and our result provides a uniform algorithm to solve all the polynomial
time solvable queries known in the literature.

A natural question is then to wonder whether our algorithm always correctly computes
the certain answering problem on all queries for which this problem is polynomial time
computable. Our second result answers negatively to this question. There is a simple
two-atom query, named q4 in the paper, with self-joins, whose certain answering problem is
equivalent to bipartite matching under LOGSPACE reductions, and cannot be solved with our
fixpoint algorithms. Recall that the bipartite matching problem can be solved in polynomial
time and is NL-hard. This shows that in the presence of self-joins, the classification of the
complexity of the certain answering problem is richer than in the self-join free case when it
is either in LOGSPACE or CONP-complete [KW21] .

Our fixpoint algorithm is based on a function that is expressible in first-order logic (FO).
Hence, when the fixpoint is bounded, the certain answering problem is expressible in FO.
Our last result shows that for self-join-free and path queries the converse is true: whenever
the certain answering problem is expressible in FO, the fixpoint algorithm is bounded and
the certain answering problem is expressible by some bounded unfolding of the fixpoint
algorithm.

Though our greedy fixpoint computation algorithm is simple, the proof of correctness
when the semantic condition holds is non-trivial. In the case of self-join-free queries satisfying
our semantic condition, to prove that the algorithm always computes the correct answer,
we proceed by contradiction: if the algorithm fails to give the correct answer, we use the
fixpoint definition of the algorithm in order to produce an infinite sequence of distinct facts
of the database, contradicting its finiteness.

The situation is a bit simpler in the case of path queries, where we show that our
fixpoint algorithm can simulate the polynomial time algorithm of [KOW21] for computing
certain answers for a path query ¢, assuming that certain answering for ¢ is polynomial time
solvable.

For the lower bounds, we first show that our fixpoint algorithm fails to compute the
certain answering problem for q4 by constructing for every number k, a database such that
all its repairs satisfy q4 but the algorithm outputs ‘no’. In the second step we reduce this
query g4 to all queries that falsify the semantic condition: if the fixpoint algorithm would
work for such queries, it would also work for qs. The reduction relies on the (syntactic)
condition of [KW17] characterizing the class of queries having a CONP-complete certain
answering problem.

1.2. Related work. Our work is inspired by the results of Koutris and Wijsen [KW21,
KW17]. For self-join-free queries, the authors prove the polynomial-time case via a long
sequence of reductions eventually producing a simple query whose certain answers can
be solved efficiently. When unfolding the sequence of reductions this gives a complicated
polynomial time algorithm with a complex proof of correctness. We have basically simplified
the algorithm and pushed all the difficulty into the proof of correctness. Our algorithm
is simple, but the proof of correctness is arguably as complex as theirs. Further, our
algorithm does not give, a priori, the optimal LOGSPACE complexity result of [KW21]
as we know that some of the path queries that can be solved with our algorithm are
PTIME complete [KOW21]. The semantic condition that we provide for characterizing the
polynomial case in the self-join-free case can be effectively tested, but not efficiently, unlike
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the simple syntactic characterization of [KW17] based on the so-called “attack graph” of
the query.

In the case of path queries, [KOW21] also provides a simple fixpoint algorithm for
solving the polynomial cases. Though it seems that their algorithm is different in spirit from
ours, the two algorithms have some similarities that we use in order to “simulate” their
fixpoint computation using ours.

For both self-join-free and path queries the cases where the certain answering problem is
expressible in FO is also characterized in [KOW21, KW17]. In fact, our boundedness results
use their characterizations.

Recently, the dichotomy conjecture has been proved for queries with two atoms [PSS24]
and for “rooted tree-queries” [KOW23]. Certain answers for two-atom queries in the
polynomial time cases is computed using a combination of our fixpoint algorithm and
bipartite matching. Bipartite matching hardness has also been obtained for the consistent
query answering problem in the presence of key constraints [KW20, Lemma 6.4] or in the
presence of negated atoms [KW18].

1.3. Conference paper. The current article is based on the conference paper [FPSS23].
While the main results are essentially the same, though with improved explanations and
figures, we have also added new material:

e We have added the complete characterization of the cases where our fixpoint algorithm
works (Section 5.4 and Section 6.2).

o We show the link between boundedness of our algorithm and expressibility in FO of the
certain answering problem (Section 7).

2. PRELIMINARIES

A relational signature is a finite set of relation symbols associated with an arity. A finite
relational structure D over a relational signature ¢ is composed of: a finite set, the domain
adom(D) of D, and a function associating to each symbol R of ¢ a relation R(D) of the
appropriate arity over adom(D). A database is a finite relational structure.

An R-fact of a database D over a relational signature o is a term of the form R(a) where
R is a symbol of o and a a tuple in R(D). A fact u is an R-fact for some R if u = R(a)
where R is the symbol associated to the fact u and a the tuple associated to u. A database
can then be viewed as a finite collection of facts. The size of a database is the number of
facts it contains. Assuming o is fixed (which we will implicitly do in this paper) this is
equivalent to the usual notion of size for a database, up to some polynomial function.

A key constraint over a relational signature o specifies for every relation symbol R of o
a certain set of indices (columns) of R as a key. A database satisfies the key constraint if
for every relation R over o, whenever two R-facts agree on the key indices they must be
equal. A set of primary key constraints has, for each relation of ¢, a unique key constraint.
Notice that if the primary key constraint associated to the relation symbol R contains all
the columns of R, then it induces no constraints on R. As all the sets of constraints we
consider are primary key constraints we will henceforth omit the ‘primary’ prefix. We use
the letter I' to denote the corresponding set of key constraints.

Given two facts u and v and a set I of key constraints, we say that u and v are
I'-equivalent, denoted by u ~rp v, if u and v have the same associated symbol R and agree on
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the key of R as specified by I'. I'-equivalence is an equivalence relation and the equivalence
classes are called I'-blocks. We will omit I' in our notations whenever it is clear from the
context. A database is then a finite collection of blocks, each block being a finite collection
of maximal equivalent facts. When writing a query ¢ we will always underline in an atom
R(z) the positions that are part of the key of R as specified by I'. This will avoid explicitly
describing I". For instance R(x y) says that the first position is the key for the binary
relational symbol R; and R/(yz y) says that the first two positions form the key for the
ternary relational symbol R'.

If a database D satisfies the key constraints I', denoted by D |=T', then each block of D
has size one. If not, then a repair of D is a subset of the facts of D such that each block of
D has exactly one representative in the repair. In particular a repair always satisfies the key
constraints. Notice that there could be exponentially many repairs of a given database D.

A boolean conjunctive query over a relational signature o is a collection of atoms where
an atom is a term R(Z) where R is a relation symbol from ¢ and 7 is a tuple of variables
of the appropriate arity. The query being boolean, all variables are implicitly existentially
quantified. We will consider atoms of a conjunctive query to appear in an arbitrary but
fixed order. In this paper a “query” is always a boolean conjunctive query. A database D
satisfies a query ¢ having atoms Ay, ..., Ay, denoted by D = g, if there is a mapping p from
the variables of ¢ to the elements of the domain of D such that the fact p(A4;) € D for all i.
In this case the sequence (u(A1), ..., u(Ag)) of (not necessarily distinct) facts of D is called
a solution to ¢ in D. Different mappings yield different solutions. The set of solutions to ¢
in D is denoted by ¢(D). We will also write D = ¢(u) to denote that the sequence of facts
@ is a solution to ¢ in D. If © = (uq,...,ux) is a solution to ¢ we also say that u; matches
A; in this solution, and that any subsequence w;,,...,u; matches A;,,..., A;,.

Let r be a repair of D. By |q(r)| we denote the number of solutions to ¢ in r, i.e. the
cardinality of ¢(r). We say that a repair r is minimal if there is no repair s such that
la(s)] < la(r)].

We say that a query g is certain for a database D if all repairs of D satisfy ¢q. We study
the complexity of determining whether a query is certain for a database D. We adopt the
data complexity point of view. For each query ¢ and set of key constraints I', we denote
by certainp(q) (or simply certain(g) when T' is understood from the context) the problem
of determining, given a database D, whether ¢ is certain for D. Clearly the problem is in
CONP as one can guess a (polynomial sized) repair and test whether it does not satisfy ¢. It
is known that for some queries ¢ the problem certain(g) is CONP-complete [FM07]. However,
there are queries ¢ for which certain(q) is in PTIME or even expressible in first-order logic
(denoted by FO in the sequel) [KP12, Wij10]. In this context, the following dichotomy has
been conjectured (cf [FMO07, AK09]):

Conjecture 2.1 (Dichotomy conjecture). For each boolean conjunctive query ¢, the problem
certain(q) is either in PTIME or CONP-complete.

The conjecture has been proved in the case of self-join-free queries [KW17] and of path
queries [KOW?21]; however, it remains open in the general case. A boolean conjunctive query
is self-join-free if all its atoms involve different relational symbols, otherwise, it is a self-join
query. A path query is a boolean conjunctive query with n + 1 distinct variables xg, 1, - - - Tp
and n atoms Aj --- A, such that each atom A; = R;(x;—1 x;) for some symbol R; of o of
arity two. The path query may contain self-joins, in other words it may be the case that
R; = R; for some i # j.
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Example 2.2. Consider the following example queries taken from [KP12, KOW21] (recall
that all variables are implicitly existentially quantified). For the self-join-free boolean query

a1 = Ri(z y) AN Ra(y 2)
it is easy to see that the problem certain(qi) can be solved in polynomial time [KP12]. In
fact, the first-order formula ¢ := Jzyz <R1 (zy) A Ra(yz) AVY (Ri(zy') — Hz’Rg(y’z’))> is

such that for every database instance D, q; is certain for D iff D | ¢.
For the self-join-free query and the path query

a2 = Ri(z y) A Ra(y )

d = R(zy w9) A X (22 w3) A R(z3 24) NY (24 25) A R(z5 26) AY (26 27)
it has been shown, in [Wij10] and [KOW21] respectively, that certain(qz) and certain(qo’) can
be solved in polynomial time but cannot be expressed in first-order logic, unlike certain(qz).
The polynomial time algorithm described in the next section computes certain for qi, g2 and

a5 (see also Example 3.4).
Finally, for the self-join-free query and the path query

93 = Ri(z y) A Ro(2 )
a3 = R(zy 22) A X (22 w3) A R(z3 24) A X (24 25) A
R(xs x6) NY (26 x7) A R(z7 28) NY (28 79)
both certain(q3) and certain(q}) are known to be CONP-complete [FM07, KOW21]. A

>

3. POLYNOMIAL-TIME ALGORITHM

To solve certain(q), we describe a family of algorithms Certy(q), where k > 1 is a parameter.
For a fixed k and query ¢, Certy(q) takes a database as input and runs in time polynomial
in the size of the database, in such a way that Certy(q) is always an under-approximation of
certain(q), i.e. whenever Certy(q) says ‘yes’ then ¢ is certain for the input database. However,
Cert(q) could give false negative answers.

In Section 4 and Section 5 we will show that for self-join-free queries either Certy(q)
computes certain(q) (where k is the number of atoms occurring in ¢) or certain(gq) is CONP-
complete in which case Certy(q) fails to compute certain(q) for every k > 1. In Section 6 we
show an analogous result for path queries.

The algorithm inductively computes sets of facts maintaining the invariant that every
repair containing one of these sets makes the query true. The algorithm returns ‘yes’ if the
empty set is eventually derived (since all repairs contain the empty set).

We now describe the algorithm. Assume ¢,I" and k are fixed. Let D be a database. A
k-set over D is a set S of facts of D of size at most k. We denote by Certy(g) the Algorithm 1
below. On a database input D, the algorithm Cert(¢q) inductively computes a set Ay(q, D)
of k-sets over D while maintaining the following invariant:

For every repair v of D and every S € Ax(q, D), if S Cr then r = q. (Inv)

Initially Ag(g, D) contains all k-sets S such that S |= ¢. In other words, we start with
all solutions to ¢ in all repairs of D. Clearly, this satisfies the invariant (INV). Now we
iteratively add a k-set S to Ag(q, D) if there exists a block B of D such that for every fact
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Algorithm 1 Certy(q)

1: Input: database D
2: initialize Ay (g, D) with all k-sets S of D such that S = ¢
while there is a k-set S ¢ Ag(q, D) and a block B of D such that for every fact u € B
there exists S” C S U {u} where S’ € Ag(¢, D) do
update Ag(q, D) < Ag(q, D) U {S}
end while
if ) € Ap(q,D) then
return YES
else
return NO
10: end if

w

u € B there exists S’ C S U {u} such that S’ € Ax(q, D). Again, it is immediate to verify
that the invariant (INV) is maintained.

This is an inflationary fixpoint algorithm and notice that the initial and induction steps
can be expressed in FO (because all sets of facts S computed by the fixpoint have size at
most k and each set can be represented by a tuple of k elements. A relation of arity k can
then encode Ay). The initial condition adds any k-set that contains a solution to ¢, and the
induction step again adds only k-sets. Thus, if n is the number of facts of D, the fixpoint
is reached in O(n*) steps. In the end, Certy(q) returns ‘yes’ iff the empty set belongs to
Ak(q, D). Equivalently, Certy(q) returns ‘yes’ if there is a block B of D such that for all
facts u of B the set {u} belongs to Ag(q, D). We write D |= Certy(q) or D € Certy(q) to
denote that Certy(q) returns ‘yes’ upon input D.

The following properties are now immediate.

Proposition 3.1. For all q,T', k, Certy(q) runs in time polynomial in the size of its input
database D and, if D |= Certy(q) then D = certain(q).

Proposition 3.2. For all ¢, T, k, k' if K" > k then for every database D, if D = Certy(q)
then D = Certy (q).

In order to simplify the notations, as we will mostly consider the case where k is the
number of atoms in ¢, we write A(g, D) and Cert(q) to denote Ax(q,D) and Certy(q)
respectively, where k is the number of atoms of q. Also, for a fact u, we sometimes write
u € Ag(g, D) instead of {u} € Ar(q, D). We denote A(q, D, i) to be the set it step of
the computation of Ay (g, D). The following proposition is immediate from the definitions.

Proposition 3.3. For all q,T,k,i if S € Arp(q,T,i) and S" D S such that |S’| < k then
S e Ak(q,I‘,i).

Example 3.4. Consider again the query q» : Ri(z y) A Ro(y x) from Example 2.2. Let
k = 2 and consider the execution of Certs(qp). For a given input database D, initially
A(q2, D) contains all pairs of facts {Ri(ab), R2(ba)} such that both R;(ab) and Ra(ba) are
in D. The first iterative step adds to A(qo, D) (i) all singletons {R;(ab)} such that Ra(ba)
is a fact of D whose block contains only Rs(ba), and (ii) analogously all { R2(ab)} such that
the block of Ry(ba) is a singleton.

In subsequent steps, the empty set is added to A(qp, D) if at some point, there is some
block B such that for every fact u € B we have u € A(qp, D). At this point the algorithm
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outputs ‘yes’ and if A(qp, D) saturates without the empty set as its member, then the
algorithm outputs ‘no’.

We show that Certa(qo) computes certain(qz). In other words, D |= certain(qp) iff
D ): Certg(qg).

Observe that, for every repair r and fact « therein, there is at most one other fact o/ in
r such that {a, '} = qo. This is because in any repair the first atom of q, determines the
second atom and vice-versa. This “mutual determinacy” is, in fact, what makes Certa(q2) a
complete procedure, as we shall see next.

In view of Proposition 3.3, it remains to show that if gy is certain for D then A(q, D)
contains the empty set. Towards this we use the following observation about qp.

Claim 3.5. If r is a minimal repair and both facts Rj(ab) and Ry(ba) are in r then
Ry (ab) S A(qz, D)

Assume that the claim is true. Now suppose qp is certain for D, then for any minimal
repair r, we must have r |= ¢ and this is witnessed by two facts Ry (ab) and Ra(ba) of r. Let
B be the block of Rj(ab). Let us show that all facts of B are in A(qp, D) as singleton sets
and hence () € A(qp, D). Let Ry(ab’) be such a fact and consider the repair 7’ obtained by
replacing Rj(ab) with R;(ab’). As r is minimal it follows immediately that 7’ is minimal and
must contain Ry(V'a) (again, this is ensured by the mutual determinacy of q2). From the
claim it follows that Ry(ab’) € A(qa, D), as desired. Thus it remains to prove the Claim 3.5.

Proof of Claim 3.5. Assume that 7 is a minimal repair containing both R;(ab) and Rz(ba).
Towards a contradiction, suppose Ri(ab) € A(qz, D) then we shall construct an infinite
sequence ui, Uz, ... of distinct facts of D, contradicting the finiteness of D. Towards this we
additionally construct an infinite sequence vy, vo, ... of facts of D and an infinite sequence
of minimal repairs 71,79, ... maintaining the following invariants for every :

(1) the wu;’s are pairwise distinct;

(3) if u; = Ry(cd) then v; = Ry(de) and if u; = Ra(cd) then v; = Ry(de);
(4) wit1 ~ v; and wiy1 # vs;

(5) r; is minimal and contains v; and each u; for all j < 4.

Initially r1 = 7, u; = R1(ab) and v; = Ra(ba) and all the invariant conditions are met:
(1) is trivial, (2) and (5) follow from the assumption, (3) is true by construction and (4)
does not apply.

Consider step i. Consider the block B; of v;. As {u;} ¢ A(qa, D) it means that we
cannot use any block B as a witness to add u; to A(qa, D) (i.e. for every block B there
is some fact w € B such that {u;,w} € A(q2, D)). Hence, in particular, B; must contain
an element u;11 such that both u; 11 & A(qz, D) and {u;, uit1} € A(qz, D). In particular
Uiyl ~ v; but w1 # v; and items (2) and (4) of our induction hypothesis are met. Towards
the first item of our induction hypothesis, if u;11 = u; for some j < then by item (5) the
repair 7; would contain two equivalent facts, v; and u;11 = uj, which is not possible since
we have already established that u;11 # v;.

Consider the repair ;11 resulting from replacing v; with u;41. Let v; 11 be the dual fact
of u;11 as required by the third item of the invariant. As w;v; forms a solution to ¢ in r;
and r; is minimal, we must have v; 1 € ;41 (otherwise r;;1 has strictly fewer solutions than
r;). Finally, notice that r;;; is minimal as its solutions to ¢ are exactly the same as for 7;
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except for u;v; that has been removed and u;4+1v;+1 that has been added (by the mutual
determinacy of the atoms of qp).

Here is a depiction of how the u;’s and v;’s are defined, where the full and hollow arrows
correspond to Ry and Ry respectively.

U V2 U3 V4 Us
U1 U2 V3 Uyg Us

This concludes the construction of the infinite sequence, showing that R;(ab) € A(qz2, D)
for any minimal repair containing both R;(ab) and Ry(ba) which proves claim. A

This concludes our example. A

Certy does not always compute the certain answers. For instance, the query qs from
Example 2.2 is so that certain(qs) is CONP-complete, and hence Certy(q3) must have false
negatives for all k, under the hypothesis that CONP # PTIME. Proving this without relying
on complexity theoretic assumptions is the goal of Section 5 for self-join-free queries and
Section 6.2 for path queries.

4. TRACTABLE SELF-JOIN-FREE QUERIES

In this section we consider the case of self-join-free queries. We exhibit a condition named
PCond (for Polynomial-time Condition) and show that any self-join-free query ¢ satisfying
PCond is such that Cert; computes certain(q), where k is the number of atoms in g. When
PCond fails, we will see that for all values of k, Cert, fails to compute certain(q) and
moreover, certain(q) is CONP-hard.

We start by defining PCond, which will require some extra definitions. Fix, for the rest
of this section, a set I' of primary key constraints. Let D be a database and r a repair of D.
For a fact u of r, and for an equivalent fact v ~ u from D, we denote by r[u — v] the repair
obtained from r by replacing the fact u with v.

Consider a self-join-free query ¢ with k atoms. Recall that we write D |= ¢(u) when @ is
a solution to ¢ in D. As q is self-join-free, for each fact a in a solution u there is a unique
atom of ¢ that a can match, namely the only fact of ¢ having the same relation symbol as a.
Hence, the order on both @ and the atoms of ¢ are not relevant. With some abuse of notation
we will therefore often treat a solution #, or the sequence of atoms of ¢, as a set rather than
a sequence; we will often use different orders among the facts of a solution, placing up front
the most relevant facts. Also we shall write, for a tuple @ of facts, u € Ak(q, D) to denote
that the set formed by the facts of @ is a k-set and belongs to Ag(g, D).

Let A be an atom of ¢ whose associated symbol is R. We denote by wvars(A) the set
of variables of A and by key(A) the set of variables of A occurring in a position belonging
to the primary key of R. For instance key(R(z y)) is {z}, key(R'(yz z)) is {y,z} and
key(R"(zzzy)) is {z, 2}.

Given a set X of variables of ¢ and a sequence A; ... A, of atoms of ¢, we say that
X Aqy... A, is a I'-derivation from X to A, in q if for each 1 <7 < n we have that

key(A;) C X U U vars(A;).
1<j<i
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If X = vars(Ap), for some atom Ag of g, we say that the I'-derivation is from Ay to A,,
and write it as AgA; ... A,. We say that an atom A’ is I'-determined by the atom A if there
exists a I'-derivation from A to A’. Moreover, A and A’ are mutually I'-determined if A’ is
I'-determined by A and A is I'-determined by A’. This is an equivalence relation among
atoms. A set S of atoms of ¢ is called stable if every two distinct facts of S are mutually
I'-determined. Note that if an atom A is in a stable set S then S need not contain all the
atoms that are mutually I'-determined by A. So a partition of the atoms of into stable sets
is a refinement of the partition induced by mutual I'-determinacy. Notice also that if two
atoms A and B are in a stable set .S, we do not require that S contains the atoms witnessing
their mutual determinacy. As usual, we will omit I" when it is clear from the context.

The main intuition on how we will use I'-derivations is the following. Suppose there is a
query g with atoms Ay, ..., A, which has solutions in two repairs r, 7’ of a database, witnessed
by valuations p, /. If there is a (one-step) derivation “X A;”, this means that key(A4;) C X,
so if p, ' agree on X in particular they agree on key(A;) (that is, the corresponding atoms
wu(Aq) and p/(Ay) are I'-equivalent). Further, if p(A;) € v/, we can actually say that p, p/
agree on all the variables in wvars(A;), since the repairs must necessarily have the same
Aj-fact under the key p(key(Aq)) = p'(key(A1)). Now if we were to add another step in
the derivation “X A; Ay”, we further have key(As) C X U vars(Ay). Since p, i’ agree on
X Uwars(Ay), we now have p(Asz) and p/(Asg) are I'-equivalent. This key property relating
I'-derivations and query solutions (and extended to arbitrary length derivations) is formally
stated in the lemma below.

Lemma 4.1. Let q be a self-join-free query. Let D be a database instance and r,rv’' be two
repairs of D. Let X be a set of variables of ¢ and let X Ai...A, be a I'-derivation from
X to Ay in q. Let q(r) contain a solution witnessed by a valuation p of variables of q, and
q(r") contain a solution witnessed by a valuation p'. If p and ' agree on X and p(A4;) € r/
for all i < n, then:

1) w(A;) = i/ (A;) for each i <n and

2) u(Ap) ~ p/'(An) (and therefore p(Ay,) = ' (Ay) if moreover u(A,) € r').

Proof. The proof is by induction on n. For n = 1 the statement trivially holds since
key(Ar) C X thus u(Ar) ~ p'(Ar).

Now consider a sequence X Ay ... A,, n > 1 satisfying the hypotheses. The induction
hypothesis applied to the sequence X A; ... A,,_1 implies u(A;) = p/(4;), forall1 <i <n-—1.
Then p and p' agree on vars(Ay) U---Uvars(A,_1).

Since X A; ... A, is a I-derivation sequence, we have key(4,) C X Uvars(A;)U---U
vars(An—1); hence p and p' agree on key(A,), or in other words u(A,) ~ u/'(Ay). ]

Corollary 4.2. Let q be a self-join-free query and S be a stable set of atoms of q. Let D be
a database instance and r be a repair of D. Assume r = q(@afB) and r = q(@’a@’'8'), where a
and @' match S. Ifana # 0 thena=a'.

Proof. The statement follows directly from Lemma 4.1 using r = /. Take a; as any fact in
ana’, Ay being the atom matched by a1, X being vars(A;) and Ay ... Ay being a I'-derivation
sequence containing all S (which exists by stability). []

We are now ready to define PCond. A T'-sequence T of ¢ is a sequence 7 = S159--- S,
where each \S; is a stable set of atoms of ¢, and the .S;’s form a partition of ¢. In this context,
we denote by S<; the set Uj<i S;. We define Sy to be the empty set.
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Let 7= 5152 -+ S, be a I'-sequence of ¢q. Let 1 <1i < n and let A be an atom of S;;1.
We say that the query ¢ satisfies PCond,(A) and write ¢ = PCond,(A) if the following is
true for all databases D, all repairs r of D and all solutions auf and &'/’ to ¢ in D such
that & and @ match S<; and v and «' match A:

r = qlaupB),
If {u~a, and then r = q(a@'ud) for some sequence of facts 4.
rlu— ] = q(a@'u'B)
Note that, by symmetry, we also have r[u — u'] E g(au’d’) for some sequence of facts &'
We write ¢ = PCond (i) if ¢ satisfies PCond(A) for all A of S;;1, and we write ¢ = PCond-
if ¢ satisfies PCond, (i) for all 1 <47 < n. Since the condition is restricted to indices i < n,
PCond; trivially holds for any 7 having only one stable set. Finally, we write ¢ = PCond if
there is a I'-sequence 7 of ¢ such that ¢ = PCond,. Again, if ¢ has only one I'-determinacy

class (for instance the query g, of Example 3.4) then ¢ = PCond in a trivial way.
We illustrate the definition of PCond with the following examples.

Example 4.3. We recall the three queries from Example 2.2. The query g2 = Ri(z y) A
Ry (y z) satisfies PCond since it has only one maximal stable set.

‘The query q; = Ry(z y) A Ra(y 2) has two stable sets: Ry (x y) determines Ro(y z) but
the converse is false. For 7 = {Ry(y 2)}{Ri(z y)} we have ¢ = PCond, because we have
the solutions q1(Rz2(bc)R1(ab)) and q1(Ra(b'c)R1(ab’)) but not q1(Re(be)R;(ab’)). However
for 7 = {R1(z y) }{Ra(y 2)} it is easy to verify that q; = PCond,. Hence, q; = PCond.

The query q3 = Ri(z y) A Rz(z y) has also two stable sets, but no possible sequence
7 makes PCond, true. This is because (i) q3(R1(ab) Ra(cb)) and q3(R1(a’d’) Ra(cb')) hold,
but not qz(Ri(ab) Ra(cb')), and (ii) q3(R2(ab) Ri(cb)) and q3(Ra(a'b’) Ri(cb')) hold, but
not qz(Ra(ab) Ri(cb’)). Therefore, q3 = PCond. A

Our goal for the remaining part of this section is to show that ¢ = PCond implies that
Cert(g) computes certain(q) (Recall that Cert(q) denotes Certy(q) where k is the number of
atoms in ¢) which is given by Theorem 4.4. In Section 5 we will see that when ¢ = PCond
then certain(q) cannot be computed by Cert; for any choice of k and that certain(q) is
actually cONP-hard.

Theorem 4.4. Let q be a self-join-free query with k atoms. If ¢ = PCond, then Certy(q)
computes certain(q).

Suppose ¢ has k atoms. Let 7 = Sy ---S,, be a I'-sequence of ¢ such that ¢ = PCond.
We show that Certy(g) computes precisely certain(q).

If ¢ has only one stable set (and thus it trivially satisfies PCond), the proof is similar
to the proof of Example 3.4, starting with a minimal repair and exploiting the mutual
determinacy of the atoms of ¢. If ¢ has more stable sets, then the condition of minimality
needs to be more fine-grained and we proceed by induction on the index of the stable sets,
in the order described by 7.

We start with some extra notations. Recall that ¢(r) denotes the set of solutions to ¢ in
a repair r; we additionally denote by ¢<;(r) the projection of ¢(r) on the first i stable sets
of 7. More precisely

g<i(r) ={v | Ju € q(r) s.t. v is the subset of u matching S<;},



A SIMPLE ALGORITHM FOR CONSISTENT QUERY ANSWERING UNDER PRIMARY KEYS 13

and if v € g<;(r) we write equivalently r = g<;(v). Let D be a database and r a repair of D.
We say that r is i-minimal if there is no repair 1’ such that ¢<;(r") C g<i(r). We say that a
fact u of a database D is i-compatible, if it matches some atom of S5;. We will need the limit
case when ¢ = 0. In that case both Sy as well as S< are empty sets (and hence PCond,(0)
is always true), g<o(r) contains only the empty sequence ¢ for all r, and therefore all repairs
are 0-minimal. The proof of the theorem makes use of an induction based on the following
invariant property of the database, for each 0 <14 < n:

IND; = For all i-minimal repairs s and facts @ s.t. s = g<;(u), we have u € Ag(q, D).

Lemma 4.5. Given q, D and a I'-sequence T for q, for every 0 < i < n, if IND;y1 and
PCond, (i), then IND;.

We first show how this statement already implies Theorem 4.4.

Proof of Theorem 4.4. From Proposition 3.3, we know that if D is a database such that
D = Certy(q) then all repairs of D satisfy ¢. It remains to show the converse.

Assume all repairs satisfy ¢ and that ¢ = PCond, for some sequence 7 of length n,
which means that PCond(7) holds for all i. Observe that IND,, holds true by the base
case definition of Ag(q, D). Hence by n repeated applications of Lemma 4.5 we obtain that
INDg holds true. Now take any repair r. By definition r is O-minimal and by hypothesis it
satisfies the query ¢. By INDg it follows that the empty set (denoted by the empty tuple) is
in Ag(q, D), and hence D |= Certy(q). []

We are now left with the proof of Lemma 4.5, which is the main technical content of
the section. Towards this, we define a stronger version of i-minimality. For 1 < i < n,
we say that an i-minimal repair s is strong i-minimal if there exists no repair s’ such that
q<i(s") = q<i(s) and |g<i+1(s")| < |g<i+1(s)|. Note that if g<i+1(s") € g<i+1(s) then either
q<i(8") € g<i(s) or g<i(s") = g<i(s) but |g<i+1(s")| < |g<i+1(s)|- In particular, every strong
i-minimal repair is (7 4+ 1)-minimal.

Claim 4.6. If there exists an i-minimal repair s such that s = g<;(u), then there exists a
strong ¢-minimal repair s’ such that s’ = g<;(a).

Proof. Among all repairs s” having g<;(s”) = g<i(s), choose s' as having minimal |g<;11(s")]
In other words, s’ is a repair having g<;(s’) = g<i(s) and for every repair s” with g<;(s") =
q<i(s) we have |g<i+1(s")| < |g<i+1(s")|. Hence, ¢’ is strong i-minimal. ]

For a given database D, for a repair r of D, we denote by 7|,,; the set of facts of r
which are not (7 4+ 1)-compatible. A sequence p of facts of the database is connected with
respect to D' C D if for every repair r containing p and D’, and for every two consecutive
facts ab of p, if r = q(@aB) for some @, B, then b € @B. Note that if p is the empty tuple
(or a tuple of size 1), then p is trivially connected with respect to every D' C D.

Proof of Lemma 4.5. By contradiction, suppose the statement of the lemma is false. Then,
there is some 4 such that IND;;; and PCond,(7) holds, but for some i-minimal repair s and
tuple u we have

s |= g<i(u) but w & Ag(g, D). (h1)

From Claim 4.6, we can assume that s is strong i-minimal. We will build an infinite
sequence of pairwise distinct facts p1,pa,... from D, contradicting the finiteness of D. We
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also maintain another sequence of repairs r1,79,.... We set 1o = s. For all [ > 0, we define

D1 = p1,-.-..,p with pg as the empty fact sequence.
The sequence is constructed by induction with the following invariant for every [ > 0,

assuming p = p; and r = r:

(a) p contains only (i + 1)-compatible facts of D;

(b) the elements of p are pairwise distinct;

(c) p is connected with respect to 7|, 1;

(d) r is strong i-minimal, r = g<;(@) and, if p is not empty and v is the last fact of p, then
r = q(uwvé), for some &;

(e) uc & Ap(q, D), where ¢ is the maximal suffix of p satisfying 7’ |= q(a¢f) for some 3 and
strong i-minimal repair 7’ containing p and Tlit1-

Base case. When | = 0, we have 79 = s and p is the empty sequence. Hence (a), (b) and (c)
are trivially true by emptiness of p; (d) holds since s = ¢<;(@) (note that we have assumed
s to be strong i-minimal); finally (e) holds with empty ¢ since @ ¢ Ag(q, D) by (hl).

Induction step. Assume we have r = r;_y and p;_1 = p1,...,p—1 (possibly empty) satisfying
the five properties above (for the rest of the proof we denote p;_1 as p for brevity). Consider
the maximal suffix ¢ concerned by property (e). That is, for some 3 and strong i-minimal
repair 7’ containing p and Ti+1 We have:

uc ¢ A(g, D) and 7’ |= q(acp) (h2)

First let 8 = dids, . ..d;. Since ué € Ak(q, D), by definition of A(q, D) there exists some
d} ~ dy such that acd| & Ag(g, D). This again implies that there exists some dj, ~ da such
that ucd|d, & Ag(q, D). Since k is the number of atoms in ¢, we can continue this to obtain
B = d|d...d, where d, ~ d; but ucB’ contains no k-set in Ag(q, D).

We now show that ¢ cannot match the entire set S;+1. Suppose, by means of contradiction,
that ' |= g<;41(ac). As 7’ is strong é-minimal, it is (¢ + 1)-minimal. Hence by (h1), since
IND;4+1 holds by hypothesis, a¢ € Ag(g, D), which is in contradiction with (h2). Then,

' | —g<iga (a0). (h3)

This means that, since 7 |= q(a¢B) by (h2), and ¢ matches a subset of S;; 1, there must
be an atom C' of S;;; that is not matched by any fact of ¢. Consider the atom A of S
matching the last element of ¢. If instead ¢ is empty, choose A as an arbitrary atom of S;1;.

Since A and C' are both in S;; 1, which is stable, there exists a I'-derivation ¢ from A to
C. (Notice that o may contain atoms outside S;;;1.) Consider the first atom B of ¢ which
is in S;11 and which is not matched by any fact of ¢. The following depiction may help to
see the situation:

In the picture directed edges connecting atoms of the query represent the successor
relation in the I'-derivation from A to C.
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Let b be the fact of 8 matching B and b ~ b be the corresponding fact in 3. We show
that

b&p. (h4)
Suppose b is in p. By construction, b is not in ¢, thus it must occur before ¢ in p and hence
the suffix b of p starting with b strictly contains é. By connectedness of p with respect to
Tiiy1, a8 b € 3 is part of the solution uc¢3, we must have r’ |= g(uby) for some 7. This
contradicts the maximality of ¢ imposed by (e), thus proving that (h4) holds. Note that this
also implies b’ € p, otherwise if ' € p, we have that b’ ~ b are both in r/, thus b = V' € p,
contradicting (h4).
Assign p; = b/, so we have p' = p- p; and let r; = 7'[b — V/]. (To avoid many subscripts,
let 7, = §’). Observe that

s’ contains p’ and Tt (h5)

In fact s’ contains p, as observed earlier, and s’ contains b’ by construction; moreover s’
contains 7"7 1 which contains r; 1 by (e). We now show that p’ and s’ have all the desired
properties.

(a) By construction b’ is (i + 1)-compatible.

(b) The elements of p’ are pairwise distinct, as ' & p.

(c) By our choice of b we show that p’ is connected with respect to 5\/1‘ ;- Without loss of
generality assume that p’ has at least size 2 (otherwise it is trivially connected). Therefore,
P is not empty. Since s"i ., contains rj; 1 by (h5), the connectedness property of p with
respect to 7;,; implies that for every repair containing p’ and sil. 1
consecutive facts a b in p, every solution in s’ containing a also contains b.

It remains to show the same property for the last fact a of p. Consider a repair t

containing p’ and STZ- .1 and suppose t = q(7ad) for some 4 and 5. We have to show b’ € 74.

and for every pair of

Let o4p be the prefix of the I'-derivation ¢ going from A to B in the I'-derivation from A

to C. (Notice that, since p is not empty we have A # B.) By property (d) of p, since p

is not empty, a is the last fact in & Recall that by (h2) 7’ |= ¢(@B); thus in this solution

the atom A is matched by a. So we can apply Lemma 4.1 to 7’ and ¢ with solutions (1165)

and (Jad) respectively, and I'-derivation vars(A) oap. The hypotheses of Lemma 4.1 are

satisfied since:

e in both solutions A is matched by a;

e by construction of B, for each atom D strictly preceding B in o4p, the fact matching
D in (uep) is either in ¢ or in 7 both contained in ¢ (in fact t 2 o' 2 p O ¢ and
tOs

\/z‘+17
Tz‘+1 2 7'|/z'+1)'
We conclude, by Lemma 4.1, that the facts matching B in the two solutions are equivalent,
i.e., the fact matching B in (jaé) is equivalent to b (which is the fact matching B in @efB).
In ¢ the unique fact equivalent to b is b’ (since ' € p’ C t), thus the fact matching B in
(7ad) is . We have thus proved that any solution in ¢ containing the last fact a of p also
contains b'.
(d) The following claim, together with strong i-minimality of 7’ and 7’ |= g(@b¥) for some
7, shows that

(I) &' is also strong i-minimal,

(IT) s' = g<i(u), and
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(III) &' |= q(ab's) for some 0.

Claim 4.7. Assume PCond, (7). Let s be a strong i-minimal repair such that s = ¢(aa3)
where @ matches S<; and a is (i + 1)-compatible. Then for any a’ ~ a we have that
s’ = s[la + d'] is strong i-minimal and s’ |= g(@a’d) for some 6.

Proof. Notice that s and s’ agree on all their solutions to ¢ that contain neither a nor
a’. Hence, if @’ is in no solution for ¢ in s/, we have g<;11(s’) C g<;+1(s) and therefore
lg<it1(s")] < lg<iv1(s)] and g<i(s") € g<i(s). The latter implies g<i(s') = g<i(s) by i-
minimality of s. This contradicts strong i-minimality of s. Hence s’ = ¢(@’a’f’), for some
&', 3. By PCond, (i) this implies that s’ = g(aa’s) for some 4.

It remains to prove that s’ is strong 4-minimal. To this end, we exhibit a bijection from
q<i+1(8) to g<it+1(s") preserving the (SyU---U.S;)-projection of the solutions. The existence
of such bijection implies g<;(s) = ¢<i(s) and |g<i+1(s)| = |g<i+1(s")|, thus showing that s’
is strong i-minimal, provided s is too.

The mapping is the identity for the solutions that do not contain the fact a.

It remains to map bijectively solutions in s containing the fact a to solutions in s’
containing the fact a’. Let @ (resp. @) be the facts matching S;;1 in @af (resp. &a'B’).
By Corollary 4.2 in all solutions of s containing a, S;+; is matched by a. Similarly in all
solutions of s’ containing a’, S;y1 is matched by @’

Moreover, by PCond. (i) for each @, ua € g<;+1(s) iff ua’ € q<;41(s"). Hence mapping
each @a € q<;+1(s) to ua’ € g<;+1(s") forms a bijection. ]

(e) Let € be the maximal suffix of p’ such that, for a strong i-minimal repair ¢ containing p’
and s, we have ¢ |= q(ued) for some §. Since s’ = g(ub'd’) for some &' by Item (III) above,

€ cannot be empty. Then let & = di/, where d is a suffix of p.
Since 5"i 1 contains ;1 by (hb), in particular ¢ is a strong i-minimal repair containing
p and rj;;;. Then, by maximality of ¢, d must be a suffix of ¢, implying that adV is a
subset of @éf’. Since by definition 4¢3’ does not contain any k-set in Ag(g, D), we have
udb ¢ Ar(q, D) as needed.

This completes the proof of Lemma 4.5. []

5. LOWER BOUNDS

Now we turn to the lower bounds. In particular, we consider the self-join-free queries g not
satisfying PCond and show that for such queries, certain(q) is CONP-hard. Towards proving
this we also obtain other results of independent interest. The results can be summarized as
follows.

(1) We first consider the query with self-join
qs = R(zyz) A R(zzy).

We first show, in Theorem 5.1, via a combinatorial argument, that there is no k such
that certain(qs) can be computed using Certy(qs) (i.e. for every k there exists a database
D such that D |= certain(q) but Certy(qs) ouputs a false negative for D).
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On the other hand we prove, in Theorem 5.9, that certain(qs) is equivalent (modulo
LOGSPACE reductions) to a matching problem whose precise complexity is a long-
standing open problem. This confirms the difficulty to obtain a complete complexity
classification of certain(q) for self-join queries ¢ even on two atoms.?

(2) In Section 5.2 we show that for the self-join-free query

95 = Ri(zy) A Si(yz ),

certain(gs) cannot be computed using Certy(qs) for any choice of k. This is shown by
reducing the case of gs to the case of q4.

(3) In Section 5.3 we describe some of the techniques developed in [KW17] and show that
they imply that for self-join-free queries g, certain(q) is CONP-hard when PCond fails
for ¢q. In particular, assuming PTIME # CONP, this implies that when ¢ = =PCond,
certain(q) cannot be solved using Certy(q), for any choice of k.

(4) Finally, in Section 5.4 we prove, without any complexity theoretic hypothesis, that for
any self-join-free query ¢ such that g = =PCond, that certain(q) cannot be computed
using Certy(q) for any choice of k by reducing the case of gs to such query gq.

5.1. The case of q4. Note that the query qs is not a self-join-free query. In particular, we
can have D |= qa(aa) for some fact a € D. We call such solutions self-loops.

To prove that Certy(qs) does not compute certain(qs) for any choice of k, we actually
prove a stronger statement: not even an extension “Cert} (qs)” of Certj(qs) can capture
certain(qs). This stronger form will be needed later for reducing qs to qa.

Let us first explain the extension, which is tailored to two-atom queries (thus, strictly
speaking, it ‘extends’ Certy(qa) only in this context). Recall that the definition of Certy(q)
iteratively adds a k-set S to Ak(q, D) if there exists a block B of D such that for every fact
u € B there exists S’ C S U {u} such that S” € Ay(q, D). This rule is henceforth called the
first derivation rule.

The algorithm Cert‘};(q) initializes the set A‘g (g, D) of k-sets as in Certy(q), and inherits
the aforementioned derivation rule of Certg(gq), but it also contains the following second
derivation rule. A k-set S is also added to A}: (g, D) if there exists a fact a of D which is
not a self-loop and for every fact u € {b € D : D = g(ab) V q(ba) V a = b} there exists
S C SU{u} such that S" € Al (g, D). As before, we define Cert} (¢) to accept if the empty
set is eventually derived and denote it by D € CertZ(q).

Note that, like Certy(q), CertJ,g(q) also runs in polynomial time but it no longer satisfies
the inductive property (INV) and may therefore give false positive answers. However, since
the first derivation rule is present in both Certy(¢) and Cert} (q), whenever () € Certy(q) we
also have ) € Cert} (q) i.e.if D € Cert] (g) then D € Certy(g). We now formally state the
first result of this subsection:

Theorem 5.1. For every choice of k, there exists a database D such that D = certain(qa)
but D ¢ Cert} (qa) (and hence D & Certy(qa)).

Before proving Theorem 5.1 we discuss some special properties of the query q4. Note
that q4 is a self-join two-atom query. We define the solution graph of D, denoted by Gp,
to be an undirected graph whose vertices are the facts of D and it contains an edge {a, b}

2The dichotomy for two-atom queries has recently been proved in [PSS24]. Remarkably, the polynomial
cases are solved via a combination of the Certy algorithm and the bipartite matching algorithm.
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FI1GURE 1. Solution graph for database D,. Black dots denote facts, rectan-
gles denote blocks, and three-pointed edges denote triangles (i.e., 3-cliques)
in the solution graph Qf D,,. There are n — 1 facts in each block B; and two
facts in each block EY.

whenever D = qa(ab) holds. In the context of solution graphs, a triangle is just a clique on
three vertices (without self-loops).

Remark 5.2. We first state some key properties of q4 for any database D and facts

a,b,c € D, which are easy to verify:

(1) if D |= qa(ab) A ga(ac) then b = ¢,

(2) if D = qa(ba) A qa(ca) then b = ¢,

(3) if D [= qa(ab) A qa(be) then D |= qa(ca),

(4) hence, every connected component of Gp is either a triangle, a 2-clique (without self-
loops), or a single vertex (with or without a self-loop).

Towards proving Theorem 5.1, for every n > 4 we exhibit a database D,, such that
e D, |= certain(qs) (Proposition 5.3), and
e D, ¢ Cert! ,(qs) (Proposition 5.4).
Intuitively, the database D,, has two kinds of blocks. The first kind has n blocks denoted by
B, -+, B, where each B; consists of n — 1 facts denoted bll, e ,b?_l. The second kind has
(n —1)(n — 3) blocks denoted by El] forevery 1 < j<n-—1and1<![<n— 3, where each
El] has two facts denoted by u{ and Ulj . The solution graph of D,, is depicted in Figure 1.

Definition of D,,. We now formally define the facts of the database D,,. Fix some n > 4.
Define n blocks of the form By, -, By, in D, where each B; consists of n — 1 facts denoted
b, bt and (n — 1)(n — 3) blocks of the form EJ for 1 < j <n—1,1<1<n -3,
where each Elj have two facts denoted by u{ and Ulj . All facts in D,, are R-facts, and for
this reason we shall henceforth drop the R from facts R(¢) and simply write ¢.

Let ay,--- ,a, and eg where 1 < 7 <n-—1,1 <7 <n-—3 be fresh active domain elements.
The facts of D,, are defined as follows.
o b = (a1 azeq), by = (az ejar);

for every 3 <i <n—2: bl = (a; e yel |);

b1 = (an—1 €,_3an) and b, = (an an-1€)_3);

ujl = (ZJI ala2) and 'Ui_g = (@ ananfl);
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FIGURE 2. Triangles in the database D,,.

o forevery 1 <l <n-—3: vlj = (i e{+1al+2) and ug_H = (e{_s_1 alHe{).

As shown in Figure 2, it can be verified that for every 1 < j < n — 1 we have the
triangles {bjl,b%,u{} and {b)_,,b%,v] 4} and for every 1 <[ < n — 3 we have a triangle
{vlj,u{H, b{+2}. Thus we get the solution graph described in Figure 1. Notice that D,, is
defined in such a way that every fact of D,, is part of a triangle.

Proposition 5.3. For every n >4, D,, |= certain(qa).

Proof. Fix some n > 4 and consider the database D,,. Let By,... B, be the blocks of D,,.
Now for every 1 < j < n — 1 if a repair r contains two indices ,7' such that i # i’ and
bl,bl, € r then it is easy to verify that r |= ¢ (cf. Figure 1).

Now since each B; contains exactly n— 1 facts of the form b}, ..., b?_l, by the pigeonhole

principle, every repair r must contain two #,7’ such that i # i’ and b{, bz, € r. Hence, every
repair r of D, verifies r = q. []

It remains to prove the following:
Proposition 5.4. Let k > 2. Dy o & Cert} (qa).

For showing this, we first need to set up some definitions and prove some useful properties.

When D, is clear from the context, we denote B = {Bj,... By} and, for every 1 < j <n—1,

we denote EJ = {El] | 1 <1< mn—3} where the B;’s and Elj’s are the blocks of D,, defined
above.

If X={Xy,..., Xk} is a set of blocks of D,,, a set of facts W = {wy,...wy} is called a
partial repair of X if w; € X; for every 1 < i < k. We denote by W[E’] to be the set of facts
from W in the blocks X NE’ (for 1 < j <n —1), and W[B] to be the set of facts from W in
the blocks X N B.

Recall that for every 3 <1 <n —2and every 1 < j <n —1 we have bl7 € Bj and the
triangle {b{,u{_l, vlj_2}. For each such j and [ we define U(j,1) = {ufC |1<k<Il-2}and
V(j,l) = {vi |l —1 <k <n— 3}, which are depicted in Figure 3.

Intuitively, U(j,1) and V(j,1) represent the facts that need to be picked in blocks of [’
if one wants to construct a repair of D,, containing b{ and having no query solutions. In
fact note that U(j,1) UV (4,1) picks exactly one fact for every block in E/. But uf_l, vlj_2 Z

U(j,1)UV(4,1). Consequently, there are no solutions in the set of facts U(j,1) UV (4,1) U{b{}
(Figure 3).

In the same spirit, recall that for every 1 < j < n — 1, D,, contains the triangle

{b{, b%, ujl}, so if a repair contains either bjl or b; and contains no solution to q4, this repair
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FIGURE 3. Depiction of U(j,1) as green solid discs, and V' (7,1) as blue solid discs.

must pick no uZ fact in the blocks of E/. Thus, we define U(j,1) = U(j,2) = 0 and
V(j,1)=V(4,2) = {vljC | 1 <k <n—3}, so that there are no solutions in the set of facts
U, 1) UV (5,1) U{bl}, for I € {1,2}.

Dually, {bfl_l,b%,vfl_:s} forms a triangle, so define U(j,n) = U(j,n — 1) = {ufC | 1<
k<n-—3}and V(j,n) =V(j,n—1) = 0. Again there are no solutions in the set of facts
U, ) UV (G, U{bl}, for L € {n —1,n}.

Overall, for every 1 <1 <n and every 1 < j <n — 1 we have:

U, )uVv(jl)u {b{} forms a partial repair over the blocks {B;} U E’, and
U(j,HuVv(j,u {b{} contains no solution.

A set of facts W of size k is called a k-obstruction set if W is a partial repair of some
X ={X1,... Xp} and if XNB = {B;,, Bj, ... B, } for some | < k with W[B] = {b],0] ... b]'},
then the following conditions hold:
(1) 41,72, ... are pairwise distinct.
(Informally: elements of W in B are in different ‘rows’ in Figure 1.)
(2) For every 1 <m <1 we have W[E'™] C U(jm,im) UV (G, im)-
(Informally: if W contains an element at row j,, connected to the block B;  then it
must be painted green or blue in Figure 3, under the renaming j — j,,, and [ — i,,.)
(3) For every 1 < j <n — 1 there exists 1 <[ < n such that W[E/] C U(4,1) UV (j,1).
(Informally: all the elements of W at a row j must be painted green or blue in Figure 3,
for some choice of indices.)

Lemma 5.5. Ifb is a fact in Dy4o then there always exists a k-obstruction set that contains b.

Proof. Let B be the block such that b € B. Now if B is of the form B; then let b = b‘g and

we can choose the £ — 1 other blocks of the form B; and pick bz from B; and pick bf,l from
each chosen Bjs such that Item 1 is satisfied which forms a k-obstruction set (this is always
possible since each B; has k + 1 facts).

Suppose B is of the form Ef thenif b = uf then we can pick V' (j,1—-1)UU(4,1— l)U{b{;l}
that forms an obstruction set for {B;} UE’. If b = vg then we can pick V(5,1 +1)UU(j,1 +
1) U{b/,,} that again forms an obstruction set for {B;} UE/. []

Lemma 5.6. If W is a k-obstruction set, then there are no solutions to the query q4 within
w.
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Proof. Let W be a partial repair of X = {X7,... Xj}. By Condition (3), for every 1 < j <
n — 1 there are no solutions within W[E’]. By construction, it is also not possible to have
solutions involving one fact from W[E’] and another from W[Ej/} for j # j' (¢f. Figure 1).

So if a solution exists, it has to involve some fact of the form b € W[B]. By construction

of D,, this solution must involve either u{_l or vlj_z. But by Condition (2) none of them are
in W. ]

We are now in shape to prove Proposition 5.4, which is a consequence of the following
two claims.

Claim 5.7. For every set of k blocks X = {X7,... Xy} of Dy o, there exists a partial repair
W of X such that W is a k-obstruction set.

Claim 5.8. For every set of facts W, if W is a k-obstruction set, then W ¢ A‘,t(q4, Diyo9).

Proof of Proposition 5.4. Assuming that the two claims are true, they together imply that
for every set of blocks {X1,..., Xy} of Djyo there exists a partial repair W for {X,..., Xi}
such that W & A (qa, Dy2)-

Suppose () € AJIQ (9, Dy.12) was obtained by using the first derivation rule. Then, there
is some block B such that for every fact a € B we have {a} € A} (qs, Dj12). Let X be an
arbitrary set of blocks of size k such that B € X (such X can always be picked since Dy
has sufficiently many blocks). By Claim 5.7 there exists a k-obstruction set W which is a
partial repair of X and by Claim 5.8 W ¢ AJ,Q(qz;, Dy.y2). This is a contradiction for the fact
a € BNW. Thus, Dj.o = Cert] (qa).

If, on the other hand, () € AZ(q;;, Dy.+2) was obtained by using the second derivation rule,
then there is a fact a such that for every a’ € A = {b € Dj42: Dj12 = q(ab) V q(ba) vV a = b}
we have {a’} € Al (qs, Di12). But from Lemma 5.5 there is a k-obstruction set W such
that a € W. Moreover, from the two rules to compute A‘};(q4, Dij.y2), it follows that if S €
A} (s, Dy12) and S C " where |S'| < k then S’ € A} (qa, Dy12). Hence, W € A} (qa, Dy12)
which contradicts Claim 5.8. ]

Hence, we are only left with the proofs of Claims 5.7 and 5.8.

Proof of Claim 5.7. Recall that D5 has k + 2 blocks of the form B; and each B; has k+ 1
facts. Further, for every 1 < j < k + 1 we have the sets of blocks of the from FY .. .E]J%l.

First let XNB = {B;,,... B;,, } for some m < k and i1,43...40,, < k+ 2. We let W to
contain {b}l,b%, . b;”n} Moreover for every 1 < j < m we add to W the partial repair
induced by U(j,i;) UV (j,i;). Formally, we add (U(j,4;) UV (j,i;)) N UX to W (i.e., all
facts of U(j,i;) UV (4,4;) that are in a block of X). This ensures that conditions (1) and (2)
are satisfied.

Now for all m < 7 < k+ 1 we add to W the partial repair induced by V' (j,1) (i.e.,

V(j,1) NUX). Hence, condition (3) is also satisfied and W is a k-obstruction set. ]

Proof of Claim 5.8. Let A‘E(q4, Dy 9,1) be the set computed by the algorithm of Cert'};(qz;)
at step 7 of the fixpoint computation.

Suppose the claim is false, and let n be the least index such that W € AJIQ (94, D42,m)
for some k-obstruction set W over the blocks X = {X7,..., Xi}.

Note that n = 0 is not possible since W does not contain any solution (cf. Lemma 5.6);
hence n > 0. By definition of AZ(qz;, Dy 9,n), this implies that there exists a set of facts A
such that either
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e (first derivation rule) A is a block in Dy 9, or
e (second derivation rule) for some fact a we have D B~ g(aa) and A = {a} U{b| D =

q(ab) U a(ba)},

and for all ' € A there is a subset W C W U {a’} of size at most k such that W' €
A} (94, Dy12,n — 1) and further W' is not a k-obstruction set, nor a subset thereof.

Let XNB = {B;,,...B;,} for some m < k and W[B] = {b}},b),...b;"}. So there
exists k + 1 —m many distinct indices j that are not in {ji,...,Jm}. Let jmi1,- -, Jks Jht+1
be those indices. Since X is of size k, among those indices there can be at most kK — m
many indices s such that X NE® # (). Thus, there exists at least one index s such that
s € {j1,---Jm} and XNE* = ().

Now we consider various candidates for A and show that each case leads to a contradic-
tion.

o If A= B for some 1 <1 < k+ 2 then consider bj € B;. Observe that every k-set of size k
over W U {bj'} forms a k-obstruction set since condition (2) holds vacuously for s. Hence,
there must exist a k-obstruction set inside AZ (94, Dyy2,m — 1), which is in contradiction
with the minimality of n.

e If, otherwise, A = E[\ for some 1 <A< k-+1and1<[<k-—1, there are three cases to
consider depending on where A lies in relation to X (see Figure 4):

a) If A € {j1,...jm}, say A = jy, then by condition (2) W[E*] C U(j,4¢) UV (ji, 4¢). Let w
be the fact in E picked by U (4, it) UV (ji,i¢). Then every k-sized subset of W U {w} is
a k-obstruction set (all conditions follow since W is already a k-obstruction set). This
is in contradiction with the minimality of n.

b) If A & {j1,...5m} but XNE” # @ then by condition (3), W[E C UX,N) U V(A N)
for some 1 < X < k + 2. Let w be the fact in E} picked by U(\, \) UV (A, X'). Then,
again every k-size subset of W U {w} is a k-obstruction set (all conditions follow since
W is already a k-obstruction set). This is a contradiction.
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c¢) Otherwise, A & {j1,...jm} and XNE* = . In this case, pick v[\ € ElA for some arbitrary
I. We have {v}'} C U(X, 1) UV/(A,1). Hence, it can be verified that every k-sized subset
of W U {v}'} is a k-obstruction set, which again is a contradiction.

o Otherwise A={be€ D : D = q(ab) V q(ba) V a = b} for some fact a € Djo which implies
that A is of the form {b}",u |, v} o} or {b3,83,us} or {b}_;, b}, v} _3}. We only prove the
case where A = {b, ul)\—l’ vl)‘72} and the other two cases are analogous. The argument is
similar to the previous case.

a) If X € {J1,...Jm}, say A = ji, then by condition (2) W[EA C U (j¢, i) UV (ji, ir). Let w
be the fact in A picked by U(ji,4t) UV (jit,i¢). Then every k-sized subset of W U {w} is
a k-obstruction set (all conditions follow since W is already a k-obstruction set). This
is in contradiction with the minimality of n.

b) If X & {j1,...jm} but XNE" # () then by condition (3), W[E C U(X,N)U V(A N)
for some 1 < X < k+ 2. Let w be the fact in A picked by U(A, X)) UV (A, X). Then,
again every k-size subset of W U {w} is a k-obstruction set (all conditions follow since
W is already a k-obstruction set). This is a contradiction.

c¢) Otherwise, A € {ji,...jm} and XN E* = (). In this case, pick vl’\_Q € A. We have
{v} ,} € U\ 1)U V(A 1). Hence, it can be verified that every k-sized subset of
W U {v}'} is a k-obstruction set, which again is a contradiction. []

As we have seen, certain(qs) cannot be computed using our fixpoint algorithm. We will
next show that certain(qs) is complete for the Saturating Bipartite Matching problem (or
SBM problem for short). This is the problem of, given bipartite graph (V; U Vi, E), whether
there is an injective function f : V4 — V5 such that (v, f(v)) € E for every v € V;. The SBM
problem? is known to be in PTiME [HK73], hence certain(qs) can be solved in polynomial
time, although its precise complexity class is open.

Theorem 5.9. certain(qs) is complete for the (complement of the) SBM problem under
LOGSPACE-reductions. In particular certain(qa) is in PTIME.

Proof. First we prove that there is a LOGSPACE-reduction from certain(qs) to the (comple-
ment of the) SBM problem. Fix an input database D. We reduce certain(qa, D) to the SBM
problem.

First we check for self-loops in D. If there is a fact a € D such that D = g(aa) then we
first check if a is a singleton block. If so, then D |= certain(qs). Otherwise, D = certain(qa)
iff D\ {a} [= certain(qa), so we can consider a smaller database and repeat the argument.
Moreover this pre-processing can be performed in LOGSPACE. So assume that there is no
fact a € D such that D = qa(aa).

Now consider the bipartite graph G = (V4 U Va, E) where Vj is the set of all blocks of D
and V5 is the set of all maximal cliques in the solution graph Gp. Note that, by property (4)
(in page 18), V5 forms a partition of D, namely the set of all maximal connected components
of Gp. Let (v1,v2) € E if the block v; contains a fact which is in the clique vs.

Suppose that there is a Vi-saturating matching, that is, an injective function f : V3 — V5
such that (v1, f(v1)) € E for every v1 € Vi. We construct a repair r where for every block B
of D, we pick the fact (or one of the facts, if there are more than one) which is in f(B). In
this way, no two chosen facts will be in the same clique, and also since there is no solution
of the form q4(aa) in D, no two chosen facts will form a solution to q4. Thus, r - qa.

3In turn, the SBM problem is equivalent to the Bipartite Perfect Matching problem under LOGSPACE
reductions, which corresponds to the restriction to instances in which |Vi| = |Va|.
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Conversely, if g4 is not certain in D, let 7 be a repair such that r [~ q4. For each block
B of D let r(B) be the fact of B belonging to r. Note that, since V3 is a partition of D,
each 7(B) belongs to a unique clique in V5. Define f : V) — V3 such that each block B € V;
is mapped to the clique in Vo where r(B) lies. To verify that f is a witness function of a
Vi-saturating matching for G, note that for every B € V; we have (B, f(B)) € E, as B and
f(B) both contain r(B). Moreover, f is injective, otherwise if f maps two distinct blocks to
the same clique, this clique must contain at least two facts a,b from r. These two facts are
neighbors in Gp, and then r |= q4(ab) or r |= q4(ba), contradicting the hypothesis r £~ qa.

Thus, to check if D € certain(qa), it is sufficient to check if there is a Vj-saturating
matching for Gp.

For the other direction, given a bipartite graph G = (V4 U Vo, E), let Vi = {s1,...5,}
and Vo = {t1,...t;}. We will define a database D¢ such that there exists a Vj-saturating
matching in G iff q4 is not certain in Dg.

For all s; € V; let N(s;) C V5 denote the neighbours of s; and similarly for all t; € V5
let N(t;) C Vi denote the neighbours of ¢;.

First note that if there is some s; € V; such that N(s;) = (), then clearly there cannot
be a Vj-saturating matching. Similarly, if there is some ¢; € V5, such that N(¢;) = 0, then ¢;
does not contribute to any matching and hence can be removed from the input. Further,
suppose there is some t; € V5 such that |N(t;)| = 1, let s; be the single neighbour of ¢;. In
this case, in every Vi-saturating matching maps s; to ;. So we can remove the vertices
sj and ¢; from the input graph and conside a smaller instance. Note that all these checks
can be done in LOGSPACE. Hence we assume that for every u € V4 U Vo, N(u) # () and
|N(s;)] > 1 for all s; € Vi and |N(t;)| > 2 for all t; € V5.

Now we define the database Dg. Note that this construction is very similar to the
construction of D,, that we used to prove Theorem 5.1.

e Lor every vertex in s; € Vj create a block B; in Dg.

e For every s; € Vi and t; € Va, if t; € N(s;) then there is a fact denoted by b; in the block
B;. By assumption N(s;) > 1 and hence every block Bj is non-empty.

e For every t; € Vo if [N(t;)| = [ then let s;,,...s; € Vi be the neighbours of ¢. By the
above construction, for every j <, there is a fact of the form bﬁj in B;; that corresponds
to the vertex t¢;.

Now if [ = 2 then define b§1 and bfg such that they form a solution to q4. Otherwise, if

I = 3 then define b , b}, and b}, such that they pair-wise form a solution to qs (the three

facts form a triangle).

If [ > 4 then create [ — 3 new blocks denoted by Ei, . Eli_3 where each E]z contains

7

J

D, earlier (cf. Figures 1 and 2), define the facts appropriately such that {bﬁl,b%, ut} and

exactly two facts u®% and v; Moreover, in the same way as described in the definition of

{béli1 , bél ,vj_3} form triangles and for every 1 < j < I—3 we have a triangle {v}, u§-+1, biiot-

The reader can verify that this is exactly the construction used to define D,,. Again, this
construction is in LOGSPACE. For each such j and [ define the analogous U (i,1) = {ul | 1 <
k<l-2}and V(i,l) = {vi |l -1<k<Il-3}

Now suppose there is a V;-saturating matching then let us show that q4 is not certain
for D¢g. Consider the repair r where for each block B; we pick b;- if s; is matched with ¢;.
Further, pick U(i,1) UV (i,1) which gives a partial repair over Ej ... Ej.
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If some t; € V5 is not matched with any vertex in V; then pick U(4,1) UV (i,1) which
gives a partial repair over E{ . E} It can be verified that the obtained repair does not
contain any solution.

Conversely, suppose there is a repair r of D¢ that falsifies q4, and let us show that there
is a Vi-saturating matching in G. For any such repair r, note that if b; is picked in block B;
then for all other blocks Bj/, the fact b;, cannot be in r since that would make q4 true. Also
b;- € Bj only if there is an edge between s; and ¢;. Hence, we can define the Vi-saturating
matching that maps every s; € V4 to t; € Vo, where bé- is the fact in  from the block B;. []

5.2. The case of gs.
We now show that certain(qs) cannot be computed by Certy(qs). This is shown by
reduction to the case of q4 based on the following construction:

Proposition 5.10. For every database D over the signature of qq we can construct a
database D' over the signature of qs such that:

(1) if D [= certain(qa) then D’ |= certain(qgs);
(2) for every k > 2, if D' |= Certy(qs) then D = Certy (qa).

Proof. Let D be a database over the signature of q4. Consider the solution graph Gp of D.
Recall that by property (4), every connected component in Gp is always a clique of size at
most 3. Thus, every fact of D can be part of exactly one maximal clique.

Let B1, Bsy...B,, be the set of all blocks of D and C1,C5...C; be the set of cliques in
Gp. Let ey, ea...em, f1, f2... fi be fresh and pairwise distinct domain elements. Define D’
as follows:

e For every fact u occurring in a block B; of D and in the clique C), add the fact ur, =
Ri(e; fn) to D'. Notice that there could be two distinct facts occurring in the same block
of D and in the same clique. They are then both associated to the same fact of D’.

e For every two facts u, v from a clique C), such that D | q4(uv) and u, v are in two distinct
blocks B; and Bj, create two new facts in D as ug = S1(fng €i) and v§ = S1(fng €;),
where g is a fresh element depending only on v and v.

e For every fact u from a clique C,, and a block B; such that D = qs4(uu) add a fact in D’
as ug =51 (fng €i), where g is a fresh element depending only on wu.

See Figure 5 for an example.

Notice that for any two facts u,v € D if D | qa(uv) and u,v are in two distinct
blocks, then ug ~ vg , D' = qs(ug,ug,) A ds(vr,vg ), and the block containing ug ,vg
in D' does not contain any other fact. Moreover if for some fact uw € D, D |= q4(uu) then
D' = qs(ur,u$, ) and the block containing u$ in D" does not contain any other fact. Finally,
the only solutions in D’ for gs are of the form qs(up, ugl) for some facts u,v € D such that
D = qa(uv) and u # v or u = v. Now we prove both claims of the statement.

(1) Suppose D [ certain(qa). To verify that D’ |= certain(qs), pick any repair ' of D’. By
construction, every Rj-fact a of 1 is of the form up, for some fact u in D. Recall that there
could be two such facts u. We arbitrarily select one of them that we denote by fr(a), and
we consider the set r = {u | Ja € ' u = fr(a)}.

First, we prove that r is a repair of D, that is: (i) it contains no two distinct facts u ~ v,
and (ii) it contains at least one fact for each block B;.
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FIGURE 5. Example of construction of D’ from D in the proof of Proposi-
tion 5.10. The symbols “x” stand for the necessary constants “g” used in
order to obtain the depicted blocks. D has 4 blocks and 5 cliques. Observe
that neither the edge-less singleton clique C5 nor the clique Cy —which is
internal to the block B4— intervene in the relation S;. Light gray edges

depict the pairs of facts from D’ which form a solution to gs.

(i) By means of contradiction, suppose r contains two facts u,v € r such that u ~ v. By

definition of r, u = fr(a) and v = fr(b) for some facts a,b of r’. By construction of

D', it follows from u ~ v that a ~ b and therefore a = b since we assumed r to be a
repair. Hence, u = v.

(ii) Further, for every block B; in D there is a Ry-block in D" whose facts have primary

key e; and one of those facts is selected in 7/, which gives rise (via fg) to a fact of B;.

Since D = certain(qa) by hypothesis, there are u,v € r such that D }= qa(uv), let us

show that this implies ' = gs:

e If u = v then, by definition of r, we have ugr, € r’. Since u$, belongs to a singleton
Si-block of D', it is in every repair of D', and thus 7’ = qs(ug,u$, ) as desired.

e If u # v then, by definition of r, we have ug,,vg, € r/, and {ugl,vgl} form a Si-block of
D'. Hence, r’ contains one of {ug ,vg }. If ug €1’ we have 7' |= qs(ug,ug, ); otherwise,
if v§ €', we have ' |= qs(vg, v§, )

This concludes the proof for item (1).

(2) Fix some k > 2. Let A} (qa, D,i) and Ay(qs, D', i) be the sets computed at step i of
Cert] (q4) and Certy(qs) respectively. First we prove the following claim.

Claim 5.11. Let u, v, w be facts of D in the same clique of the solution graph Gp. Possibly
v~ w or v=w but we assume u ¢ v and u # w. In particular D = qa(uv) V q4(vu). Then
for every k-set S over D' if SU{ug } € Ax(qs, D', i) then SU{vg,} € Ay(qs, D', i+ 1) and
SU{wg,} € Ai(gs,D’,i+ 1).
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FIGURE 6. Schema for proof of Claim 5.11.

Note that in the case where vp, € S the claim implies S € Ak(qs, D’,i + 1). Similarly
for wg, .

Proof of Claim 5.11. We assume that D = q4(uv), since the case where D = qa(vu) is

symmetric. To facilitate the understanding of the following proof, refer to Figure 6.
Assume S U {uy, } € Ag(qs, D',1). If S € Ag(gs, D', i) then the conclusion is immediate

since SU{u} € Ak(gs, D', i) for every fact u such that S U {u} is a k-set. So, let us assume

S & Ag(qs, D', ).

e The base case i = 0 implies SU{ug } € Ag(qs, D’,0) and S & Ag(qs, D’,0). This can only
happen if ug, € S, since {u$ ,ug,} is the only gs-solution of D' involving uy . Let B be
the block B = {u$ ,vg }. Since {ug,,ug } and {vg ,vR, } are gs-solutions (cf. Figure 6), a
simple analysis shows that the block B is a witness for SU{vg, } € Ax(qs, D', 1). Similarly
the block B' = {u¥ ,w§ } witnesses the fact that S U {wg, } € Ax(qs, D', 1).

e For the induction step, suppose S U {ug } € Ar(qs, D’,i) and i > 0. As i >0, let B be
the block of D’ used as the witness. By definition, for all fact b € B, there is a subset S}, of
S such that Sp U {ug ,b} € Ax(as, D’,i—1). By induction this implies that for all b € B,
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SyU{vg,,b} € Ar(gs, D', i). Hence B witnesses the fact that SU{vg,} € Ax(qs, D',i+1),
as desired. The proof that S U {wg,} € Ak(qgs, D’,i + 1) is similar.

[

With Claim 5.11 in place, assume that D’ = Certy(qgs) and let us show D = Cert] (qa4).
Let S be a k-set of D'. Let S be any k-set of D containing every fact u such that either
uR, € S orvg €S for some fact v.

We will prove, by induction on 7, that if S € Ag(qgs, D', i) then S e AJ;g(CM,d,i +1)
(hence, in particular, D" = Certy(qs) implies D = Cert‘};(q4), concluding the proof of (2)).
e For the base case i = 0, if S € Ay(qgs, D’,0) then it contains a solution to gs of the

form upg, ug, for some facts u,v of D. By construction D = qs(uv) and u,v € S. Hence
S € Al (q4,d,0).
e For the induction step, assume S € Ag(qgs, D', i) as witnessed by a block B’ of D’.
— If B’ is an Ry-block then the block B = {u | ug, € B'} is a witness for S € Al (qa, D, ).
— If B’ is an S1-block of the form {ugl,vgl}. Set w to the third fact in the clique of u,v
in the solution graph Gp (set w = v if the clique has size two). From Claim 5.11 we

get that each of SU{ug,}, SU{vg,}, SU{wg,} contains a k-set in Ag(qs, D’,i — 1).

Hence, by induction each of SU {u}, SU {v}, SU{w} contains a k-set in Af(qa, D, ).

Hence, by A} ’s second derivation rule on the fact u, S e AZ(CM, D,i+1).

— It remains to consider the case where B’ is an Si-block of the form {u% }. But then u
is a self-loop and is contained in S. By definition we then have S € A—;;(qlh D,0). [

Theorem 5.12. certain(qs) cannot be computed by Certy(qs), for any choice of k.

Proof. By means of contradiction, assume that certain(qs) is equivalent to Certy(qs) for some
k > 2. We show that this implies that certain(qs) is equivalent to Cert} (qs), contradicting
Theorem 5.1.
It is enough to show that if a database D is such that D |= certain(qs) then D =
Cert} (q4). To this end, assume D is a database such that D [ certain(qs). Let D’
be the database constructed from D given by Proposition 5.10. As D |= certain(qs), we
get from Proposition 5.10-(1) that D’ |= certain(qgs). From our hypothesis it follows that
D' |= Certy(qs). By Proposition 5.10-(2) this implies that D |= Cert} (q4) as desired. [

5.3. The case of all self-join-free queries not satisfying PCond: coNP-hardness.
We describe in this section techniques from [KW17], together with their immediate
consequence: certain(q) is CONP-hard as soon as ¢ = -PCond. We build on the dichotomy
result of [KW17] based on their notion of an “attack graph”. First we recall this notion
using our notation.
Let ¢ be a query, let T be a set of primary key constraints. Given an atom A of ¢ let

AT = {B atom of ¢ | there exists a I'-derivation X B;...B,
where X = key(A), B, = B, and for all i, B; # A}

Let vars(A") = Upgea+ vars(B). Given two atoms A and B of ¢ we say that A attacks
B if there exists a sequence Fy, F1, ..., F, of atoms of ¢ and x1, xo, ..., x, of variables not

in vars(A™) such that A = Fy, B = F), and for all i > 0, x; is a variable occurring both in
F;_1 and F;. The attack from A to B is said to be weak if B is I'-determined by A. The
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attack graph of ¢ and I' is the graph whose vertices are the atoms of ¢ and whose edges are
the attacks. A cycle in this graph is weak if all the attacks involved are weak, otherwise it is
a strong cycle.

The dichotomy result of [KW17] can be stated as:

Theorem 5.13. [KW17, Theorem 3.2] Let g be a self-join-free query and T' a set of primary
key constraints. If every cycle in the attack graph of ¢ and T' is weak, then certain(q) can be
computed in polynomial time; otherwise certain(q) is CONP-complete.

We prove that if the attack graph of ¢ and I' contains only weak cycles, then PCond
holds. It then follows from Theorem 5.13 then whenever g = —=PCond then certain(q) is
CONP-hard as desired:

Theorem 5.14. Assume q is a self-join-free query and I' a set of primary key constraints.
If ¢ = =PCond, then certain(q) is CONP-hard.

In view of Theorem 5.13, the proof of Theorem 5.14 is an immediate consequence of the
following lemma.

Lemma 5.15. Assume q is a self-join-free query and I' a set of primary key constraints. If
the attack graph of ¢ and I' contains only weak cycles then q = PCond.

Proof. Let X be the set of all the strongly connected components of the attack graph of ¢
and I'. We define the core graph of ¢ and I' as the directed graph whose vertices are the
elements of X’ and there is an edge from S to S’ if S contains an atom A attacking an atom
B of S’. Note that, by definition, a core graph is always acyclic. Let 7 be any topological
ordering of this graph, that is, 7 = S1,...,Sy, is an ordering on X, and for every i, j, if
there is an edge from S; to S; in the core graph, then i < j. Note that since the attack
graph contains only weak cycles, any two facts belonging to the same strongly connected
component are mutually I'-determined. Hence, every S € X is a stable set. In particular 7
is a I'-sequence. We claim that ¢ = PCond..

To prove g = PCond,, we need to show that ¢ = PCond, (i) for every i < n. So, fix
some ¢ and consider an arbitrary atom A of S;11. Let D be some database with repair r
such that r |= g(@af), where a matches A and & matches S<;. Let u be the valuation of
the variables of ¢ witnessing the solution @a/. By abuse of notation, for each atom B of g,
we write u(B) to denote the fact of the database witnessing the solution for the relation
symbol of B. In particular, a = p(A).

Let a' ~ a, ' = r[a — d/], and assume that ' |= q(@'a’B’) as witnessed by the valuation
1. We need to show that 7' |= g(@a’d) for some 6. Notice that the hypotheses of Lemma 4.1
are satisfied by r, 7', p, g’ and there is a I'-derivation from X = key(A) to every atom in
A", Hence, from Lemma 4.1 it follows that

for any variable x € vars(A™) we have u(z) = u' (). (1)

To show 7' |= q(ad’s), we define a satisfying valuation v as follows: If z is a variable
occurring in an atom B # A that is not attacked by A, then set v(x) = p(z); otherwise, set
v(z) = p'(x). We show that v witnesses the solution &a’s in 7.

For this it suffices to show that for all atom B of ¢, v(B) is a fact of /. If B is different
from A and not attacked by A then this is clear as v(B) = u(B) and u(B) belongs to both
r and 7’. If B is A or attacked by A then we show that v(B) = u/(B). To see this consider
a variable z occurring in B such that v(z) = p(z). By definition of v, this is because x
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also belongs to some atom C' that is not attacked by A. Hence, by definition of attack, this
implies that « € vars(A™). By (1) this implies that u(z) = p/(z) as desired. ]

5.4. The case of all self-join-free queries not satisfying PCond: Cert; fails.

We finally reduce the case of g5 to any arbitrary query not verifying PCond. Let ¢ be a
self-join-free query such that ¢ F =PCond. We show that for all k, if certain(q) is equivalent
to Certy(q) then certain(qs) is equivalent to Certy(qs), a contradiction with Theorem 5.12.
The following is the analog of Proposition 5.10.

Proposition 5.16. For every database D over the signature of qs we can construct a
database D' over the signature of q such that:

(1) if D = certain(qs) then D' = certain(q);
(2) For every k > 2, if D' |= Certy(q) then D = Certy(qs).

Proof. The construction of D’ from D is actually taken from [KW17, proof of Theorem 6.1].
Since ¢ = —PCond, it follows from Theorem 5.14 that the attack graph of ¢ contains a
strong cycle. Then the following result follows from [KW17, proof of Theorem 6.1].

Claim 5.17. [KW17, proof of Theorem 6.1] Let ¢ be a self-join-free query such that the
attack graph of ¢ contains a strong cycle. Then ¢ contains two atoms A; and A such that
for every database D over the signature of qs there is a database D’ over the signature of ¢
and functions f and g such that:
(i) If D [= certain(qgs), then D’ |= certain(q).
(ii) f is a bijection from the Rj-facts of D to the A;j-facts of D' such that u ~ v iff
F(u) ~ f(0).
(iii) ¢ is a function that maps a pair of the form (C,u) where C is an atom of ¢ such that
C # Ay and u is an Si-fact of D to a C-fact of D’ such that:
(a) {u+ v | g(A2,u) = v} is a bijection from Si-facts to As-facts such that u ~ v iff
g(A27u) ~ g(As, U);
(b) for every atom C' ¢ {A;, A2} and Si-fact w in D the block of g(C,u) contains
only one fact in D’'.
(iv) If f(u) and g(Asg,v) are part of a solution to ¢ in D’ then D |= qs(uv).

Given a database D over the signature of gs, let D’ be the database constructed in
Claim 5.17. Note that Claim 5.17-(i) already proves our first item (1). It remains to show
that if D" = Certy(q) then D = Certy(qs).

For any k-set S, let S = {u | f(u) € S}U{v | g(Az,v) € S}. We show that if
S € Ak(q, D', i) then S e Ak(gs, D, 1), by induction on i.

For i = 0, S contains necessarily a solution to ¢ and therefore an A;-fact v’ and an
Ap-fact v'. Let u and v be such that v/ = g(As,v) and «’ = f(u). By construction of S,
both u and v are in S. By Claim 5.17-(iv) this implies that D = gs(uv) and therefore
S € Aw(gs, D, 0).

For the induction step, let B’ be the block witnessing the membership of S into
Ak(q, D/7 Z)

e Assume first that B’ is a Aj-block. Let B = {u | f(u) € B'}. By Claim 5.17-(ii) B
is a block of D. Moreover, it witnesses the membership of S in Ak(qgs, D, ). Indeed,
consider an element b € B. Let b’ = f(b). By hypothesis, S U {b'} contains a k-set T



A SIMPLE ALGORITHM FOR CONSISTENT QUERY ANSWERING UNDER PRIMARY KEYS 31

in Ap(¢q,D’,i—1). By induction T' € Ay (qgs, D,i — 1) and T is a subset of S U {b}. The
result follows.

e Assume now that B’ is a As-block. We conclude as above using B = {v | g(As,v) € B’}
and Claim 5.17-(iii)-(a).

e Finally, if B’ is a C-block for some atom C ¢ {A1, A3}, then B’ contains only one element
by Claim 5.17-(iii)-(b). Therefore, S was actually in Ag(g, D’,i — 1) and we can conclude
by induction hypothesis. L]

Theorem 5.18. Let q be a self-join-free query such that ¢ = —PCond. Then certain(q)
cannot be computed by Certy(q), for any choice of k.

The proof of Theorem 5.18 is identical to the proof of Theorem 5.12 using Proposition 5.16
instead of Proposition 5.10.

6. PATH QUERIES

The dichotomy conjecture has also been shown to hold for path queries [KOW21]. In this
section we show that the Cert; algorithm works for PTIME solvable path queries and if
Certy, does not compute certain(q) for k = |g| then the problem is CONP-hard.

For this section, assume that the relational signature o contains only symbols of arity
two and that the set I' of constraints assigns to each symbol R of ¢ its first component
as the primary key. Recall that a path query is a Boolean conjunctive query of the form
Ri(zq x2) N Ro(29 x3) AN R3(2324) A\ -+ - A Ry (2,2n41) that may contain self-join i.e. R; = R;
for some i # j. Note that a path query can be described by a word over the alphabet
of relation names of o (e.g., the word describing ¢ as Ry --- R, ). For simplicity, we will
henceforth blur the distinction between path queries and words over o.

Following [KOW21| we define the language £ (q) as the regular language defined by
the following finite state automaton A7 with e-transitions? (we use s,t, ... to denote words
over o). The set of states of A7 is the set of all prefixes of ¢, including the empty prefix ¢,
which is the initial state. There is only one accepting state, which is ¢q. There is a transition
reading R from state s to the state sR. Moreover, there is an e-transition in A9 from any
state sR to any state tR such that tR is a prefix of s.

We say that the query ¢ satisfies FactorCond and write g = FactorCond if ¢ is a factor
of all the words in the language £ (q).

The dichotomy result of [KOW21] can be formulated as follows®:

Theorem 6.1. [KOW21, Theorem 3.2] Let q be a path query. If q = FactorCond, then
certain(q) can be evaluated in PTIME; otherwise, certain(q) is CONP-complete.

Thus, certain(q5) and certain(q}) for the queries described in Example 2.2 are in PTIME
and CONP-complete respectively (refer to [KOW21] for detailed explanation). As in the
self-join-free case we will show that, for path queries, there is some k such that Certy(q)
captures certain(q) iff ¢ = FactorCond. In view of Theorem 6.1 this implies that when
Certy(q) fails to capture certain(gq), then certain(gq) is CONP-complete.

4An e-transition in an automata makes a transition from one state to the other without reading any
symbol.

5[KOVV21] provides a much finer ‘tetrachotomy’ between FO, NL-complete, PTIME-complete and CONP-
complete. In this section we restrict our attention to the dichotomy between PTIME and CONP-complete.
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6.1. Tractable path queries. In this section we show the first part of our result: if the
path query ¢ satisfies FactorCond, then certain(q) can be computed via Certy,.

Theorem 6.2. Let q be a path query of length k. If ¢ = FactorCond, then certain(q) =
Certy(q).

The rest of this section is devoted to the proof of Theorem 6.2. We will make use of the
following fixpoint computation introduced by [KOW21, Fig. 5]. For a fixed path query ¢
and database D, let N(q, D) be the set of pairs of the form (c, s), where ¢ € adom(D) and s
is a prefix of ¢, computed via the following fixpoint algorithm.

Initialization Step: N(q, D) < {{c,q) | ¢ € adom(D)}
Iterative Step: If s is a prefix of ¢, add (c, s) to N(q, D) if one of the following holds:
(1) sR is a prefix of ¢ and there is a fact R(c a) of D such that for every fact R(c b)
of D we have (b,sR) € N(q, D);
(2) There is an e-transition from s to ¢ in A9 and there is a fact R(c a) of D such
that for every fact R(c b) of D we have (b,tR) € N(q, D).

Let N(q) be the set of all databases D such that there exists ¢ € adom(D) with
{c;€) € N(g, D).

Lemma 6.3. [KOW21, (proof of) Lemma 6.4] For every path query q, if q = FactorCond,
then certain(q) = N(q).

In view of Lemma 6.3, Theorem 6.2 is a direct consequence of the following proposition.

Proposition 6.4. For every path query q of length k such that q = FactorCond, we have
N(q) = Certy(q).

Note that Certy(q) € N(q) follows from Certy(q) C certain(g) (Proposition 3.3) combined
with certain(¢) = N(q) (Lemma 6.3). So we are left with proving N(q) C Certy(q). Let
D € N(q). We will prove that D € Certy(q).

For all [ > 0 let s; be the prefix of ¢ of length [ (i.e., sp = ¢ and s = ¢q). For
every database D and fact v = R(a b) in D, let us define trace(u) = R, key(u) = a, and
last(u) = b. For a sequence of (possibly repeating) facts IT = uq, ..., u; of a database D, we
define trace(Il) = trace(uy) - - - trace(u;) € o* and, if IT is not the empty sequence, we define
last(IT) = last(u;). Also we let St = {u1,...,u;} be the set of facts in the sequence. Further,
II is called a walid path if the following conditions hold:

(i) St is a partial repair of D,
(ii) for all i <! we have last(u;) = key(u;+1), and
(iii) trace(II) is a prefix of q.
In particular, for any valid path II of length I, we have trace(Il) = s;. Moreover, for any
prefix sy, of ¢ we write trace(Il) ~ s, if there exists a run of the automaton A% on trace(II)
ending in state sy.

For any D € N(q), let N(q, D,i) and Ag(q, D, ) be the fixpoint computations of N (g, D)
and Ag(q, D) at step i respectively. To prove that D € Certy(q), we will use the following
claim:

Claim 6.5. For all i > 0, For ¢ € adom(D) and for all non-empty prefix s; of ¢ if
(c,s1) € N(q,D,1) then for all non-empty valid path IT where last(II) = ¢ and trace(Il) =~ s,
we have Spip € Ag(q, D, 1).
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Let us show that the claim implies D € Certy(q). As D € N(q), there exists ¢ € adom(D)
such that (c,e) € N(q, D,m) for some step m. But note that (c,e) € N(g, D,m) can only
be produced by application of Rule 1 in the [Iteration step (Rule 2 is not possible since
e-transitions do not start at the state €). This implies that if R is the first relation occurring
in ¢ then there exists a fact of the form R(c a) and for all facts of the form R(c b) in D we
have (b, R) € N(q, D,m — 1). For each such b we can apply the claim with the valid path
IT = R(c b), obtaining R(c b) € Ak(q, D,m — 1) for every R(c b). Hence, 0 € Ax(q,D,m)
which implies D € Cert(q).

The proof of the claim will make use of the following consequence of ¢ = FactorCond.

Lemma 6.6. Let q be a path query such that q = FactorCond. Then for any prefix of
q of the form siPRsaPR' where s1,s9 € * and R # R', we have that s1P is a suffiz of
SlpRSQP.

Proof. Assume ¢ = s1PRsoPR't and consider the word w = s PRsys PRsoPR't. A simple
observation shows that w € £ (q). Hence, by hypothesis, w contains ¢ as factor. Let w(7)
denote the symbol of o occurring at the i-th position of w, for any 1 < ¢ < |w|. Note that
by definition of w, for all positions [ such that |si| <1 <|si|+ |s2| + 3 we have:

w(l) = w(l + |s2| + 2) (%)

Let w(i),w(i + 1),...,w(i +n — 1) be the factor of w that matches ¢, and observe that
1 <i<|w|—|q|+1 = |s2]+3. If ¢ is a suffix of w, it follows that s P is a suffix of s; PRsy P and
we are done. If ¢ is not a suffix of w, then i < |sg| +3. Observe that w((i —1)+|s1PR|) = R
and w((i — 1) + |s1PRs2 PR'|) = R'. Hence, setting | = (i — 1) + |s1 PR| < |s1] + |s2| + 3,
we have w(l) = R and w(l + |s2| +2) = R’. But then by (x) we would obtain R = R', which
is in contradiction with our hypothesis. L]

Proof of Claim 6.5. The proof is by induction on 7. For the base case i = 0, we have
N(q,D,0) ={(c,q) : ¢ € adom(D)}. Note that A? has no e-transitions from a prefix of ¢ to
g. Hence, for any valid path II = uy, ..., u; such that trace(Il) ~ ¢ we must have k = [ and
trace(Il) = q. In this case (uq,...,u;) forms a solution to ¢ and hence Sy € Ax(q, D,0).

For the induction step, let IT = wuq,...,u; be any valid path such that trace(Il) ~ sy,
and last(u;) = ¢. Assuming (c,sr) € N(q,D,i+ 1), we will prove Si; € Ag(q, D,i+ 1). If
(c,sr) € N(q,D,1i) then by induction hypothesis we have Sy € Ag(q, D, i) and we are done
since Ak(q, D,i) € Ak(q, D,i+1). So assume that (c, sz) is newly added into N(q, D,i+1).

By definition of the iterative step (regardless of which rule is applied), there is a state
s', a partial run of A? from state sy, to state s’ reading R € o, and a fact R(c a) of D such
that for every fact R(c b) of D we have (b,s') € N(q, D,1).

Let s; = trace(II). Since II =~ sy, there is a run of A9 on trace(Il) that ends at s;,. We
consider three cases depending on the successor of s; in q.

(1) Case s; = g. This case is similar to the base case. Since (ui,...,u;) forms a solution to
q, we have Si1 € Ak(q,D,0) C Ak(q,D,i+1).
(2) Case s;11 = siR.
Note that if there is already a fact of the form w; = R(c b) in II then the new path

Il = wuy, ug, ..., u;,u; is also a valid path where last(Il') = b. Otherwise, for every fact
w; in ITif trace(u;) = R then key(u;) # c. Take any arbitrary fact of the form v = R(c b)
of D. The new path II' = uy,us,...,u;,v is also a valid path.

So in both cases we have last(Il') = b. Also, since there is a run of A7 on trace(IT)
that ends at sz, there is a run of A? on trace(Il') that ends at s’. Hence, trace(Il') ~ s'.
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Thus, by induction hypothesis, if there is already a fact of the form u; = R(c b) in II
then St € Ak(q, D, 7). But since u; is already present in II, we obtain Sy = Sy, and
therefore St € Ap(q, D,i) C Ak(q,D,i+1).

Otherwise, by induction hypothesis we have Sy = Sp U{R(c b)} € Ai(g, D, ). Since
this holds for any fact of the form R(c b) we obtain, by definition of Ay(g, D), that
St € Ar(g, D,i+1).

(3) Case s;41 = s; R’ for some R’ # R.

Since trace(Il) = s;, there is a run of A7 on s; that ends in state sz. Let P be the last
symbol of sy, (since sz, is non-empty by assumption). Observe that, by definition of A7,
a run on a word cannot end at s;, unless the word also ends with P; therefore, s; has to

f—i%
end with P. Altogether we have s;,1 = @Rw’P R’ for some w,w’ € 0* and R # R.
sL
Applying Lemma 6.6, we obtain that sy, is a suffix of s;. Let II' = w;_41,...,u; be the
suffix of II such that trace(Il') = sz. Note that IT' is a valid path and Sy C Spy. Hence,
it is sufficient to prove that Sy € Ag(q, D,i + 1). We are then in the situation of the
already treated Case 2 above, since sp41 = sy R. Hence, Sty € Ap(q, D,i+ 1). ]

6.2. Inexpressiblity results for path queries. In this section we show our second main
result for path queries: if there exists a word w € £ (q) such that ¢ is not a factor of w,
then for all k, Certy, fails to capture certain(g).

Together with Theorem 6.2 this gives a complete characterization of when our fixpoint
algorithm computes certain(q) for path queries q. Note that from Theorem 6.1 we already
know that for such queries, certain(q) is CONP-complete. So assuming PTIME # CONP no
polynomial time algorithm can compute certain(g). Our result is unconditional but only
applies for the Certj algorithm.

Theorem 6.7. Let g be a path query such that q [~ FactorCond. Then for all k, certain(q)
is not computed by Certy(q).

From the existence of a word in £%(¢) that does not have ¢ as a factor, it follows that g
is of the form vTvTw but ¢ is not a factor of uTvT'vTw [KOW21, Lemma 5.4]. The proof
of Theorem 6.7 is again a reduction to the case of the query q4 (refer to Theorem 5.1) using
the following proposition.

Proposition 6.8. Let g be a path query of the form uTvTw and q is not a factor of
uTvTvTw. For every database D over the signature of q4 we can construct a database D’
over the signature of q such that:

(1) If D = certain(qa) then D' |= certain(q).

(2) For every k > 2, if D' |= Certy(q) then D |= Cert; (qa).

Before we prove the proposition we show why it implies Theorem 6.7.

Proof of Theorem 6.7. Recall that, since ¢ is not a factor of every word in £ (¢), we have
that ¢ is of the form uTvT'w but ¢ is not a factor of uTvTvTw [KOW21, Lemma 5.4].
Assume towards a contradiction that there is a k such that certain(q) = Certy(q). We
then show that certain(qs) = CertJ]g(q4), contradicting Theorem 5.1. To prove this it is
enough to show that if a database D is such that D |= certain(qs) then D |= Cert] (qa).
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Consider such a database D and let D’ be the database constructed by Proposition 6.8.
From our hypothesis on D and the first item of Proposition 6.8, it follows that D’ |
certain(g). From our hypothesis on ¢ it follows that D’ |= Certy(g). From the second item
of Proposition 6.8, it follows that D |= Cert'};(qz;), and the desired contradiction. ]

We now turn to the proof of Proposition 6.8.

Proof of Proposition 6.8. From the hypotheses we have that u # ¢ (otherwise ¢ = TvTw is
a factor of TvTvTw). So let u = Apu’ and let us denote ¢ as

Aoz 1) ' T(y yo) v T(z z0) w, where = Ay(yo y) AT (Y1 v2) - - - Ai(y; 2),
z )

A (2 211),
and v/, v, w are possibly empty. Note that if v = ¢ then yy = z.

Let D be a database for q4. Consider the solution graph Gp of D. Recall that every
connected component in Gp is always a clique of size less than or equal to 3 and that every
fact of D can be part of exactly one maximal clique (c¢f. Remark 5.2).

Let By, B> ... B,, be the set of all blocks of D and C7,C5...C) be the set of maximal
cliques in the solution graph Gp. Notice that a clique may contain two facts in the same
block. For instance the facts R(aba) and R(aab) form a solution to q4. Recall that a clique
Cy is called self-loop if it contains only one fact h such that D = qa(hh).

Define D’ as follows:

If the block B of D contains a fact in a non-self-loop clique C; then we add the following
facts to D', (all domain elements are fresh):

Aol o) Ailaf! af)) ... Aiag! 5

ul

T(B* 651) Ap(B5L BT AL (B B) - AL(BS 2

T(o" 65) Q38! 551 AL (57 ) . A8 )

T(n™ ") Ag(ng" m)AY (i’ m3") - - ARk’ i)

w

If the block By of D contains a fact in the self-loop clique C; then then we add the
following facts to D’.

Aofa® aff) Ax(a’ ag) . Aot B T8 B31) Ab(B BDALBE B3 GBS )

u’ v

T(y™ ") Ag (36 MDAT(" 75 - AR )

w

Further, for every maximal clique C} containing at least two facts in different blocks, and
for every facts h, g € C; where h, g are in blocks By, , Bs,, with s; # s2, add the following
facts to D’:
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FIGURE 7. Illustration of the reduction from q4 to q. The black arrows
starting from the same node correspond to a block of the first kind. The
red arrows and the green arrows correspond to the blocks of the second and
third kind respectively. Some domain elements are represented twice (with
the same name, like #7!) to declutter the figure.

Ap(@er2t 0711) An(07 63) . A8 ™)

u/

Ty %) A" M) AT (M %) - AL vt

w

Ap(@2r2t 077") Ay(07' 657 .. A8 ™)

u/

T(r 2 A2t 1) AL 257 - AL 23

w

This concludes the constructions of D', we refer to Figure 7 for an illustration. Notice
that most blocks of D’ have size one except for three kinds. The first kind are Agp-blocks
with key a® for some block B of D. These blocks are in one-to-one correspondence with the
blocks of D and contain as many facts as there are cliques in D intersecting the block. The
second kind are T-blocks whose key is 7! for some block B, and maximal clique C; where
C} is not a self-loop. These blocks contain at most two facts, one that starts a path TvTw
and one that starts a path Tw. The third and last kind are Ag-blocks whose key is §5152¢
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where two facts from B, and Bs,, s1 # S2, form a solution and belong to the non-self-loop
clique Cy. These blocks have two facts, each of them starting a path u reaching a block of
the second kind. The blocks of size one play no role in the rest of this proof.

(1)

We now prove that D’ has the desired properties.

Suppose D [= certain(qs). Now pick any repair 7’ of D’. Define the following repair r on
D:

For any Agp-block in D’ of the first kind, pick a corresponding fact in D. i.e. if
Ao(a® a5t) € r’ then choose R(a be) for r, where R(a be) is any fact in block B, that
belongs to the maximal clique C}.

Now 7 is a repair of D since every R-block By in D corresponds to an Agp-block of the
first kind. By assumption r |= q4 hence there exists facts h, g that belong to blocks B,
and Bs, and also belong to the same clique C; such that h,g € .

Assume first that h = g, hence s; = s9 and C} is a self-loop. By construction of r
this implies that Ag(as ') belongs to 7’ and by construction of D', as Cy is a self-loop
all repairs of D containing Ag(a;s @f') have a solution to g.

Assume now that h % g. As r is a repair this implies s1 # so. This implies that
both Ag(a® o5') and Ag(a®® af?') are in 7. Consider now the block of the third kind
whose key is 6%1%2t. The repair 7’ must contain a fact from this block. Without loss of
generality we assume that it is the fact that starts a path u reaching 7', the key of
a block of the second kind. The repair ' must contain a fact from this block, either
starting a path Tw or a path TwTw. In the first case the query ¢ is true because of the
path starting with Ag(a’t oz‘;lt); in the second case the query ¢ is true because of the
path starting with the Ag-fact of key @151¢,

Assume that for some k, D’ = Certy(g). We show that D = Cert} (qa).

~

In order to show this, for every k-set S of facts of D’ we relate k-set S of D such that
the following conditions hold:
(a) If Ap(a®as?) € S then S contains a fact h that belongs to both the block B, and
the clique Cf%.
(b) If T(v*'65") € S then S contains a fact h that belongs to both the block By and

the clique C.
(¢) ET(y*'~§") € S and h is the fact that belongs to both the block B, and the clique C;

then S contains one fact g that belongs the clique Cy such that D = q4(gh)V qa(hg).
By construction this is always possible.

(d) If Ap(@%152105%) € S. Recall that this can only happen if s; # sy and s = s; or
s = s2. Let hy be one fact that belongs to both the block By, and the clique Cy,
and ho be one fact that belongs to both the block By, and the clique C;. Then S
contains hy if s = s9 and hy if s = s7. R

Note that for every k-set S of facts of D’ there may be several k-set S of D that
satisfy the conditions.

We claim that if S € Ag(q, D’) then all associated S are in A,i’(q;;, D). In particular, as

D' |= Cert(q) then by definition the empty set is in Ak (g, D), and therefore it is also in
A (a4, D), hence D | Cert] (qa) as desired.

The proof of the claim is by induction on the iteration where S is added to Ag(q, D').
The base case is when S € Ag(g, D’,0). Then S contains a solution in ¢(D’). By

construction, as ¢ is not a factor of uTvTvTw, this can only happen if S contains both
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Ao(afes?) and T(y"'4§") or S contains both Ag(0°1%2'05") and T'(y**65"). In the first case

any associated S by definition contains two facts h and g (possibly equal) of D such that h
is in the block By and clique C; and g also belongs to the clique C; and D |= q4(hg) V q4(gh)
(by properties (a) and (c)). In either case, we have S € A (a4, D,0).

In the second case, by definition, all associated S contain two distinct facts h and g
of D such that h is in the block By, and clique C} and g belongs to the “block” B, and
also to the clique C; (using properties (b) and (d)). In particular D = q4(hg) V qa(gh) and
S € Af(qa, D,0).

Assume now that S € Ag(q, D', i) for some i > 0. By definition this is because there
exists a block B" of D’ such that for all b € B’M} contains a k-set in Ag(q, D’,i —1).
By induction, this implies that for all ¥ € B’, S U {V/} contains a k-set in A} (qs, D,i — 1).
We do a case analysis depending on B’.

(1) B’ is a block of the first kind: it contains all elements Ag(afast) for some block B = Bs.

Then B can be used to show that S belongs to Ag(m,D,i). Indeed consider b € B,

let t be such that b € C; and consider b’ = Ap(aaj!). From the fact that S U {¥'}
contains a k-set in Ag(qs, D, i — 1) it follows by induction that S U {b} contains a k-set
in A;(qz;, D,i—1). Hence, S e Alj(q4, D, i) as desired.

(2) B'is a block of the second kind: it contains T'(y5'~§t) and T'(v5'6§'). Let h be a fact of D
in block By and clique C; and let g, p be the other facts in C’ti(possibly g = p, but as Cy
cannot be a self-loop we assume g and h to be in distinct blocks). Notice that by definition

{T(v*'~§")} is associated to both {g} and {p} while {T'(v*'65")} is associated to {h}. Now
since SU{T(v*'7§")} € Ak(g, D, i — 1) we have by induction, SU {9} € A;(q4, D,i—1)
and S U {p} € A;:(qz;, D,i—1). Further, SU{T(v*'6§")} € Ar(q, D, i — 1) implies that
Su{h} e Af(qs,D,i —1). Thus the clique C; is a witness for Se Af (a4, D, i) by
application of the new rule.

(3) B’ is a block of the third kind: it contains Ag(85152¢051) and Ag(01°2!05>"). Let h, g and
p be the facts that are in clique C} and respectively in the blocks By, and B, and B,
(possibly g = p). Notice that by definition {Ag(0°1%2!05'")} is associated to both g and
p, while {Ag(8°1°2102")} is associated to h and p. As in the previous case, we obtain by
induction that S U {z} € Ak(qq,D’) for all x € {h,g,p}. Therefore, the clique Ciis a

witness for S € A; (94, D, 1) by application of the new rule.

(4) B’ is a block of size one, i.e. containing one fact ¥’'. By induction hypothesis S U {0}
contains a k-set in Ag(qs, D). Moreover, by construction SU{¥'} = 5. Hence S €
Ag(qa, D) as desired.

This concludes the induction step, hence the proof. []

7. FIRST ORDER DEFINABILITY

Let g be a query. We say that certain(q) is in FO if there is a first-order sentence ¢ such
that for all database D, D [ certain(q) iff D |= . For instance, the query certain(qi) is in
FO where q; is described in Example 2.2.

The goal of this section is to provide a characterization of queries whose certainty can
be expressed in FO in terms of the Cert; algorithm, assuming ¢ is either self-join-free or a
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path query. Notice that if certain(q) is in FO then in particular it can be solved in ACy and
therefore cannot be CONP-hard. It then follows from our results that it can be solved by
our fixpoint algorithm Certy(q) for some k.

Recall the definition of Certy(g). It computes in an inflationary way a set Ap(g, D) of
k-sets satisfying a certain property, where the property can be specified in first-order logic.
Starting from the solutions to ¢ in D, at each step it adds to Ag(q, D) a new set of k-sets
satisfying a first-order property. Let Ag(q, D, ) be the set of k-sets computed this way after
i iterations. Hence Aj(q, D,0) the set of solutions to ¢ in D and |J; Ax(g, D, 1) is the set of
k-sets obtained when the fixpoint is reached. By definition, Certy(q) returns ‘yes’ if this set
contains the empty set.

As every step can be defined in first-order logic, each set Ax(g, D, %) can be defined using
a first-order formula. Let ¢; ;(q) be the first-order sentence such that D |= v; 1(¢) if and
only if Ay(g, D, i) contains the empty set. It is clearly an under-approximation of Certy(q)
and therefore of certain(q). Whenever Certy(q) is equivalent to ; ;(¢q) for some ¢ depending
only on g and k, we say that Certy(q) is bounded.® We show that whenever certain(q) is in
FO then Certy(q), with & the number of atoms of ¢, is bounded and computes certain(q).

Example 7.1. Recall the query qi = Ri(z y) A Ra(y z) from Example 2.2. We showed
there that certain(qi) can be expressed in FO. We verify that for & = 2, for any database D,
if D = certain(q1) then 0 € Ay(q1, D, 2).

First note that As(q1, D, 0) contains sets of the form {R;(a b), R2(b ¢)} which are the
solutions to q;. Notice that if {Ri(a b), Ra(bc)} € As(q1, D, 0) then for all Re(b ') ~ Ra(bc)
we have {R1(a b), Ra(b )} € As(q1, D,0). Hence for every {R1(a b), Ra(bc)} € As(qr, D, 0)
we have {Ri(a b)} € As(q1,D,1).

In particular for every minimal repair r if r = g(uv) then u € As(q1, D, 1). Now since r
is minimal, for every u' ~ u there exists some v’ € r such that r[u — «'] = ¢(u/v"). This
implies that for every «’' ~ u we have u’ € Ay(q1, D, 1). Hence 0 € As(q1, D,2) as required.

A

7.1. Self-join-free case. In this case we make use of the following characterization of [KW17]
based on the notion of attack graph.

Theorem 7.2. [KW17, Theorem 3.2] Let g be a self-join-free query and I a set of primary
key constraints. The attack graph of ¢ and I" is acyclic iff certain(q) is in FO.

We obtain the following:

Proposition 7.3. Let q be a self-join-free query and I' a set of primary key constraints.
Let k be the number of atoms of q. The following are equivalent:

(1) The attack graph of ¢ and T" is acyclic.
(2) Certy(q) is bounded and Certy(q) = certain(q).
(3) certain(q) is in FO.

Proof. (2) = (3) This is an immediate consequence of boundedness.
(3) = (1) This follows from Theorem 7.2.

6This notion is sometimes referred to in the literature as “goal bounded”.
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(1) = (2) Assume that the attack graph of ¢ and I' is acyclic. Let 7 = Ay,..., A; be
any topological ordering of the atoms of ¢, i.e., if there is an attack from A; to A; then
i < j. As argued in the proof of Theorem 5.14, 7 is a I'-sequence and ¢ |= PCond, therefore
Certy(q) = certain(q). Notice that 7 is a I-sequence where all stable sets have size one.
We show that whenever we have such a I'-sequence then Cert(q) is bounded. In order to
show this, we revisit the proof of Theorem 4.4. The key property that we used to prove
Theorem 4.4 was Lemma 4.5 showing that if IND;;1 and PCond, (i) holds, then IND; also
holds, where

IND; = For all ¢-minimal repair s and facts @ s.t. s = g<;(u), we have u € Ag(q, D).

When all stable sets in the I'-sequence have size one, we can have a stronger version of
the induction step where IND; becomes

IND;” = For all i-minimal repair s and facts @ s.t. s = q<;(u), we have 4 € Ag(q, D,k — i)
(recall that k is the number of atoms in ¢), and Lemma 4.5 becomes:

Claim 7.4. Given ¢, D and a I'-sequence 7 for ¢ such that all stable sets of 7 have size one.
Then for every 0 < i < k, if IND/, | and PCond, (i), then IND; .

Proof of claim. The proof is similar to the proof of Lemma 4.5, but simpler.

By means of contradiction, assume that INDZT'Zr1 and PCond, (i) hold but IND;" fails.
By definition, there is a ¢-minimal repair s and a tuple u such that s = g<;(a) but
u & Ap(q,D,k —i). From Claim 4.6, we can assume that s is strong i-minimal. As
s = g<i(u), there is a fact a matching S;y; such that s = g<;41(ua).

Asu & Ay(q, D, k—1) there is by definition a fact @’ ~ a such that ua’ & A(q, D, k—i—1).
By Claim 4.7 the repair 8’ = s[a — a'] is strong i-minimal and s’ |= q(ua’B3) for some tuple 3.
By assumption, the stable set S;;1 of 7 contains only one atom hence @’ matches ;1 hence
s' = q<iy1(ua’). By IND/, | this implies that ua’ € Ay(q, D,k —i— 1), a contradiction. <

Therefore, by Claim 7.4 we conclude that IND(T holds. This immediately implies that
whenever the empty set is derived, it is derived within k-steps. Then Certy(q) is equivalent
to ¢, 1(¢) and is therefore bounded; this proves Item (2). []

7.2. Path queries. For path queries we rely on the following result of [KOW21].

Theorem 7.5. [KOW21, Theorem 3.2 & Lemma 7.1] Let q be a path query. If q is a prefix
of all the words in the language LT (q), then certain(q) is in FO. Otherwise, certain(q) is
NL-hard under FO reductions.

We obtain the following:

Proposition 7.6. Let q be a path query of length k. The following are equivalent.

(1) q is a prefix of all the words in the language L7 (q)
(2) Certy(q) is bounded and Certy(q) = certain(q).
(3) certain(q) is in FO.

To prove the proposition, we use the following result, which is a restatement of [KOW21,
Corollary 5.9] in the case where Item 1 holds.”

"In fact, the condition assumed in Corollary 5.9 in [KOW21] is implied by Item 1.
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Proposition 7.7 ([KOW21, Corollary 5.9]). Let q be a path query such that q is a prefix of
all the words in LY (q). The following are equivalent for all database D.

e D = certain(q)
e there exists a block B such that for all repair v of D, there exists a sequence of facts v of
r such that v = q(av), where a is the fact of r in B.

Proof of Proposition 7.6. Ttem 2 = Item 3 This is a consequence of boundedness.

Item 3 = Item 1 Follows from Theorem 7.5.

Item 1 = Item 2 . Assume Item 1 and assume that D |= certain(q), we show that () €
Ak(q, D, k). This is a consequence of the following lemma that we show by induction on i.
Let B be the block of D given by Proposition 7.7. For a sequence of fact v we denote by v;
the first ¢ facts of the sequence and v[i| denotes the i-th fact of v:

Lemma 7.8. For alli € [0,k — 1], for all repair v and for all v if r = q(av) with a € B
then av; € Ap(q, D,k —1i—1).

Proof. For i = k—1, this is clear (since ¢(av) holds and v = vj_1). Assume now the property
shown for ¢ + 1. We show it for i.

Consider a repair r. Let a = BN r. Let v be such that r |= ¢(av). Let b = 0[i + 1]. Let
b ~band 1’ = r[b — b']. By Proposition 7.7 there exists ¢’ such that ' = q(a?’). As ¢ is a
path query we have v, = v;. By induction we get that av;b’ € Ap(q, D,k —i—2). As b is
arbitrary, the block of b witnesses the fact that av; € Ag(q, D,k —i —1). []

Consider now an arbitrary fact a € B and any repair r containing a. By Proposition 7.7,
since D |= certain(q), there exists v such that r |= ¢(av). From Lemma 7.8, applied with
i =0, we get that a € Ag(q, D,k — 1). This implies that ) € Ax(q, D, k) as desired.

We have proved that D |= certain(q) implies ) € Ag(q, D,k). On the other hand
0 € Ag(q,D,k) implies ) € Ak(q, D) which in turn implies D | certain(q). Then we
have D = certain(q) iff 0 € Ap(q, D) iff § € Ax(q,D,k); the first equivalence implies
certain(q) = Certi(q), the second implies that Cert;(q) is equivalent to ¢y 1(q), and is
therefore bounded. []

8. CONCLUSION

We have presented a simple polynomial time algorithm for certain query answering over
inconsistent databases under primary key constraints. The query is always certain when
the algorithm outputs “yes”, but it may produce false negative answers. For path queries
and self-join-free queries we have characterized the cases when our algorithm computes all
certain answers. In particular, when certainty is in polynomial time, the algorithm correctly
computes the answer. We have also shown that our fixpoint algorithm is bounded if, and
only if, the certainty of the query can be expressed in first-order logic.

Throughout the paper we have only considered boolean queries. The algorithm can be
extended to the non-boolean setting as follows: if Z are the free variables of ¢, we compute
A(q, D,a) as for A(g, D) but always assigning Z to a. The algorithm returns a if A(q, D, a)
eventually contains the empty set and if this happens a is a certain answer. This still takes
polynomial time in data complexity. In the presence of constants we can use a similar
technique where the interpretation of the constants ¢ are fixed to a (and we only need
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one iteration if there are no free variables). Thus, the algorithm can be adapted to the
non-boolean setting as well.

Even though recent progress has been made, the Dichotomy Conjecture remains a
challenging problem. We add to the list of challenges a (decidable) characterization of
when our fixpoint algorithm correctly computes the certain answers. We believe this is an
interesting problem.

It is interesting to note that a similar fixpoint algorithm can be obtained for other kinds
of constraints. For instance for key constraints or “denial constraints” as defined in [CMO05]
one can define a “conflict hypergraph” where each hyperedge is a minimal set of facts making
the constraint false. A “repair” in this context is a maximal independent set of the conflict
hypergraph and certainty can be computed in CONP. Notice that in the case of primary key
constraints, the conflict hypergraph is just a graph connecting any two facts that share the
same key. The connected components of this graph are then cliques, which correspond to
blocks. The inductive rule of the fixpoint then produces a new k-set S if there is a connected
component C' of the conflict hypergraph such that for all facts b of C', S U {b} contains a
previously produced k-set. This clearly generalizes the current definition. However, the
properties of this algorithm under non-primary key constraints are yet to be studied.

It would also be interesting to see if the simplicity of our algorithm can be combined
with an optimal computational cost. For instance, for self-join-free queries satisfying PCond,
it is known that the complexity of the certain answering problem is in LOGSPACE. However
our fixpoint algorithm — which works for arbitrary queries, with or without self-joins — cannot
be evaluated in LOGSPACE. It is however plausible that, assuming self-join-freeness, simpler
rules can be used, providing a lower evaluation complexity. This is left for future work.
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