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Abstract

We consider the dichotomy conjecture for consistent query answering under primary key
constraints. It states that, for every fixed Boolean conjunctive query q, testing whether q is
certain (i.e. whether it evaluates to true over all repairs of a given inconsistent database) is
either polynomial time or coNP-complete. This conjecture has been verified for self-join-free
and path queries. We show that it also holds for queries with two atoms.

1 Introduction

A relational database often comes with integrity constraints. With the attempts to harness data
from complex environments like big data, social media etc., where the database is built by programs
that go over a large data dump, more often than not we end up with a database that violates
one or more of the integrity constraints. This is because in such heterogeneous sources, the data
is often incomplete or ambiguous. Inconsistencies in databases also occur while integrating data
from multiple sources.

To deal with this problem, one approach is to clean the database when it is being built and/or
modified. However, this task is not easy as it is inherently non-deterministic: there may be many
equally good candidate tuples to add/delete/update to make the database consistent. In the
absence of additional information (which is often the case), these decisions are arbitrary.

There is another way to cope with this problem: we allow the database to be inconsistent
and the problem is handled during query evaluation. In this approach, we retain the inconsistent
database as it is and we rely on the notion of database repair. Intuitively repairing a database
corresponds to obtaining a consistent database by making minimal changes to the inconsistent one.
A conservative approach to evaluate a query is to evaluate it over every possible repair and retain
only the certain answers, i.e. the query answers which are true on all repairs. This approach is
called consistent query answering [ABC99, Ber19].

This approach for handling inconsistency has an advantage of not loosing any information
and avoids making arbitrary choices to make the database consistent. However, since we need
to evaluate the query on all the repairs, this will affect the complexity of query evaluation. The
impact will of course depend on the type of integrity constraints and on the definition of a repair;
but most often there could be exponentially many ways to repair a database.

For a fixed boolean conjunctive query q, the decision version of the certain query answering
problem is the following: given an inconsistent database D as input, does q evaluate to true on
all the repairs of D?

When we consider primary key constraints, the natural notion of a repair is to pick exactly one
tuple for every primary key. Thus, every repair is a subset of the given inconsistent database. But
there could be exponentially many repairs for the given database. For a fixed boolean conjunctive
query, in the presence of primary key constraints, checking for certain answers is in coNP. This
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is because, to check that the query is not certainly true, it is enough to guess a subset of the
database which forms a repair and verify that it makes the query false. However, there are queries
for which the problem can be solved in PTime and for some queries, the problem is coNP-hard.

The main conjecture for consistent query answering in the presence of primary keys is that
there are no intermediate cases: for a fixed boolean conjunctive query q, the consistent query
answering problem for q is either solvable in PTime or coNP-complete.

The conjecture has been proved for self-join-free Boolean conjunctive queries [KW17] and path
queries [KOW21]. However, the conjecture remains open for arbitrary conjunctive queries, in
particular for queries having self-joins (i.e. having at least two different atoms using the same
relation symbol).

In this paper we show that the conjecture holds for conjunctive queries with two atoms. As the
case of self-join-free queries has already been solved [KP12], we consider only queries consisting of
two atoms over the same relation symbol.

Towards proving the conjecture we start by introducing the notion of 2way-determinacy and we
distinguish two separate cases. The first case proves the dichotomy for all the two-atom queries
with self-joins that are not 2way-determined; these are identified via syntactic conditions. For
these queries coNP-hardness is obtained through a reduction from the self-join-free case with two
atoms [KP12]. On the other hand tractable cases are obtained via the greedy fixpoint algorithm
developed in [FPSS23] for self-join free queries.

For queries that are 2way-determined we use a semantic characterization. To this end we
introduce the notion of tripath, which is a database of a special form, and further classify
tripath into triangle-tripath and fork-tripath. For 2way-determined queries the existence of a
fork-tripath establishes the desired complexity dichotomy. In particular we prove that the certain
answering problem is coNP-hard for queries which admit a fork-tripath while it is in PTime
otherwise. In the latter case the polynomial time algorithm is a combination of the greedy fixpoint
algorithm of [FPSS23] and a bipartite matching-based algorithm (also introduced in [FPSS23]).

Our second result further refines the polynomial time case by identifying classes of queries
for which the greedy fixpoint algorithm correctly computes certain answers (assuming PTime 6=
coNP). The frontier turns out to be the presence of a triangle-tripath. Indeed we show that
for 2way-determined queries which do not admit a tripath at all (neither fork-tripath, nor
triangle-tripath) the greedy fixpoint algorithm alone is correct. Furthermore we also prove that
this algorithm fails to compute the certain answer to 2way-determined queries admitting a triangle-
tripath.

Related work The case of self-join-free conjunctive queries with two atoms was considered
by Kolaitis and Pema [KP12]. Proving the dichotomy in the presence of self-joins requires a
completely different technique. However we use the coNP-complete characterization of [KP12]
for solving a special case in our analysis.

We rely heavily on the polynomial time algorithms developed in [FPSS23]. In this work a simple
greedy fixpoint algorithm, referred to as Certk(q), was introduced and was shown to solve all the
PTime cases of self-join-free conjunctive queries (and also path queries). Moreover [FPSS23] shows
that some two-atom queries with self-join which are in PTime cannot be solved by Certk(q), but
a different algorithm based on bipartite matching will work for them. We essentially show that a
combination of these two algorithms solve all the polynomial time cases of two-atom conjunctive
queries. In essence we show that if the combination of the two algorithms does not work then the
query is coNP-hard.

We do not rely on the notion of attack graph or any other tools used for self-join queries,
developed by Koutris and Wijsen [KW17].

2 Preliminaries

We consider boolean conjunctive queries over relational databases. As our queries will have only
two atoms and because the self-join-free case is already solved, we can assume that these two
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atoms refer to the same relational symbol. Therefore we consider relational schema with only one
relational symbol, associated with a primary key constraint.

A relational schema consist of a relation symbol R with signature [k, l], where k ≥ 1 denotes
the arity of R and the first l (≥ 0) positions form the primary key of R.

We assume an infinite domain of elements and an infinite set of variables. A term is of the
form R(t̄) where t̄ is a tuple of elements or variables of arity k. A term R(t̄) is called a fact if t̄
is a tuple of elements, and R(t̄) is called an atom if t̄ is a tuple of variables. We use a, b, c etc to
denote facts and A,B,C etc to denote atoms.

Given a term R(t̄) we let R(t̄)[i] denote the variable / element at i-th position of t̄. For a
set of positions I we let R(t̄)[I] = {R(t̄)[i] | i ∈ I}. Let S be the set of all k positions of R. If
a is a fact then we write adom(a) for a[S]. Similarly if A is an atom then we write vars(A) for
A[S]. We define the key of R(t̄) to be the tuple key(R(t̄)) consisting of the first l elements of t̄
and let key(R(t̄)) = R(t̄)[K], where K is the set of the first l (key) positions of R. For instance,
if R has signature [5, 3] and A = R(xyx yz), we have key(A) = (x, y, x), key(A) = {x, y} and
vars(A) = {x, y, z}. Two terms R(t̄1) and R(t̄2) are key-equal if key(R(t̄1)) = key(R(t̄2)) and we
denote it by R(t̄1) ∼ R(t̄2).

A database is a finite set of facts. We say that a database D is of size n if there are n facts in
D. A database D is consistent if it does not contain two distinct key-equal facts. A block in D
is a maximal subset of D that contains key-equal facts. A repair of D is a ⊆-maximal consistent
subset of D. Note that D can be partitioned into disjoint blocks and every repair picks exactly
one fact from every block. If r ⊆ D is a repair and a is a fact in D then for any a′ ∼ a we denote
as r[a→ a′] the repair obtained from r by replacing a by a′.

A query q is given by two atoms A and B and it corresponds to the Boolean conjunctive
query ∃ȳ A ∧ B where ȳ is the tuple of all the variables in vars(A) ∪ vars(B). Since every
variable is quantified, we ignore the quantification and write q = AB. For instance, if the query is
q = ∃xyzu R(xyx uz)∧R(yxu zu) then we let A = R(xyx uz), B = R(yxu zu) and write q = AB.

A database D satisfies a query q = AB, denoted by D |= q (sometimes denoted by D |= AB),
if there exists a mapping µ from vars(A)∪ vars(B) to elements such that µ(A), µ(B) ∈ D. In this
case the pair (µ(A), µ(B)) of (not necessarily distinct) facts of D is called a solution to q in D.
We also say that the fact µ(A) matches A and µ(B) matches B. Different mappings give different
solutions. The set of solutions to q in D is denoted by q(D). We will also write D |= q(ab) to
denote that (a, b) is a solution to q in D via some µ. We also write D |= q{ab} to denote D |= q(ab)
or D |= q(ba). If D is clear from the context we simply write q{ab}, q(ba) etc.

A query q is certain for a database D if all repairs of D satisfy q. For a fixed query1 q, we
denote by certain(q) the problem of determining, given a database D, whether q is certain for
D. We write D |= certain(q) or D ∈ certain(q) to denote that q is certain for D. Clearly the
problem is in coNP as one can guess a (polynomial sized) repair r of D and verify that r does
not satisfy q.

We aim at proving the following result:

Theorem 1. For every (2-atom) query q, the problem certain(q) is either in PTime or coNP-
complete.

Note that certain(q) is trivial if q has only one atom. As we deal with data complexity, it is
then also trivial for any query equivalent (over all consistent databases) to a query with one atom.
For a query q = AB this can happen in two cases: (1) there is a homomorphism from A to B or
from B to A ; (2) key(A) = key(B) (the query is then always equivalent over consistent databases,
to a single atom R(C) where C is the most general term that has homomorphism from both A
and B.) Hence, we will assume in the rest of this paper that q = AB is such that key(A) 6= key(B)
and q is not equivalent to any of its atoms.

In the rest of the paper we will often underline the first l positions of an atom or a fact in order
to highlight the primary-key positions. We then write R(xyz uv) to denote an atom involving a
relation of signature [5, 3]. Similarly we write R(αβγ δε) to denote a fact over the same signature.

1Along standard lines, we adopt the data complexity point of view, i.e. the query is fixed and we measure the
complexity as a function on the number n of facts in D.
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3 Dichotomy classification

The decision procedure for deciding whether the certainty of a query is hard or easy to compute
works as follows.
• We first associate to any query a canonical self-join-free query by simply renaming the two

relation symbols. If certainty of the resulting query is hard, and this can be tested using the
syntactic characterization of [KP12], then it is also hard for the initial query. This is shown in
Section 4.
• In Section 6 we give a simple syntactic condition guaranteeing that the greedy polynomial

time fixpoint algorithm of [FPSS23] (presented in Section 5) computes certainty.
The remaining queries, where the two syntactic tests mentioned above fail, are called 2way-

determined. They enjoy some nice semantic properties that are described in Section 7 and that
we exploit to pinpoint their complexity. Towards this, we define in Section 7 a special kind of
database called tripath whose solutions to the query have a particular structure. We distinguish
two variants of tripath, as fork-tripath and triangle-tripath.
• If the query does not admit any tripath (i.e. neither fork tripath nor triangle tripath)

then certainty can be computed using the greedy fixpoint algorithm as show in Section 8.
• If the query admits a fork-tripath, then certainty is coNP-hard as shown in Section 9.
• Finally, for queries that admits a triangle-tripath but no fork-tripath, certainty can be

computed in PTime. This is shown in Section 10. For such queries, we prove that the algorithm
of Section 5 is not expressive enough to compute certainty. However we prove that a combination
of it together with a known bipartite matching-based algorithm (again from [FPSS23]) is correct.

4 First coNP-hard case

Given a query q = AB, we can associate it with a canonical self-join-free query sjf(q) over a schema
with two distinct relational symbols2 R1 and R2 of the same arity as R. The query sjf(q) is defined
by replacing R by R1 in A and R by R2 in B. For instance, if q1 = R(xu xv) ∧ R(vy uy) then
sjf(q1) = R1(xu xv) ∧ R2(vy uy). Intuitively, sjf(q) is the same query as q but with two different
relation names.

We show that computing the certainty of q is always harder than computing the certainty of
sjf(q). This is the only place where we use the assumption that q is not equivalent to a one-atom
query.

Proposition 2. Let q be a query. There is a polynomial time reduction from certain(sjf(q)) to
certain(q).

Proof sketch. Assume q = AB where A and B are atoms using the relational symbol R. Let R1

and R2 be the symbols used in sjf(q). Let D be a database containing R1-facts and R2-facts. We
construct in polynomial time a database D′ containing R-facts such that D |= certain(sjf(q)) iff
D′ |= certain(q).

For every fact a = R1(ū) of D, let µ(a) = R(v̄) be a fact where every position i of v̄ is the pair
〈z, α〉 where z is the variable at position i in A while α is the element at position i in ū. Similarly
if a = R2(ū) then µ(a) = R(v̄) where every position i of v̄ is the pair 〈z, α〉 where z is the variable
at position i in B while α is the element at position i in ū. Let D′ = µ(D). It turns out that D′

has the desired property and this requires that q is not equivalent to a one-atom query.

It follows from Proposition 2 that whenever sjf(q) is coNP-hard then certain(q) is also coNP-
hard. It turns out that we know from [KP12] which self-join-free queries with two atoms are hard.
This yields the following result.

Theorem 3. Let q = AB be such that both the following conditions hold :

2In section 2 we have defined all the notions with respect to a single relation in the vocabulary. In this section,
and only here, we consider two relations. Since the definitions are standard, we will not state them explicitly.
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1. vars(A) ∩ vars(B) 6⊆ key(A) and vars(A) ∩ vars(B) 6⊆ key(B) and key(A) 6⊆ key(B) and
key(B) 6⊆ key(A);

2. key(A) 6⊆ vars(B) or key(B) 6⊆ vars(A).

Then certain(q) is coNP-complete.

For instance we can deduce from Theorem 3 that the query q1 mentioned above is such that
certain(q1) is coNP-complete since u and v are shared variables but u 6∈ key(B), v 6∈ key(A),
moreover key(B) 6⊆ key(A) and x ∈ key(A) but is not in vars(B).

Note that the converse of Proposition 2 is not true. For instance, the query q2 = R(xu xy) ∧
R(uy xz) is such that certain(sjf(q2)) can be solved in polynomial time by the characterization
of [KP12], but as we will see, certain(q2) is coNP-hard.

5 The greedy fixpoint algorithm

In most of the cases where we prove that certain(q) is in PTime, we use the following greedy
fixpoint algorithm which was introduced in [FPSS23]. For a fixed query q and k ≥ 1, we define
the algorithm Certk(q). It takes a database D as input and runs in time O(nk) where n is the size
of D. For a database D, a set S of facts of D is called a k-set if |S| ≤ k and S can be extended
to a repair (i.e. S contains at most one fact from every block of D).

The algorithm inductively computes a set ∆k(q,D) of k-sets while maintaining the invariant
that for every repair r of D and every S ∈ ∆k(q,D) if S ⊆ r then r |= q. The algorithm returns
yes if eventually ∅ ∈ ∆k(q,D). Since all repairs contain the empty set, from the invariant that is
maintained, it follows that D |= certain(q). The set ∆k(q,D) is computed as follows:

Initially ∆k(q,D) contains all k-set S such that S |= q. Clearly, this satisfies the invariant.
Now we iteratively add a k-set S to ∆k(q,D) if there exists a block B of D such that for every
fact u ∈ B there exists S′ ⊆ S ∪ {u} such that S′ ∈ ∆k(q,D). Again, it is immediate to verify
that the invariant is maintained.

This is an inflationary fixpoint algorithm and notice that the initial and inductive steps can
be expressed in FO. If n is the number of facts of D, the fixpoint is reached in at most nk steps.

For a fixed k, we write D |= Certk(q) or D ∈ Certk(q) to denote that Certk(q) returns yes
upon input D. Note that Certk(q) is always an under-approximation of certain(q), i.e. whenever
Certk(q) returns yes then q is certain for the input database. However, Certk(q) could give false
negative answers. In [FPSS23] it is proved that this algorithm captures all polynomial time cases
for self-join-free queries and path queries by choosing k to be the number of atoms in the query.

6 First polynomial time case

In view of Theorem 3, it remains to consider the case where one of the conditions of Theorem 3 is
false. In this section we prove that if the condition (1) is false for q then certain(q) is in PTime.
By symmetry we only consider the case where vars(A) ∩ vars(B) ⊆ key(B) or key(A) 6⊆ key(B).
The other case follows from the fact that q = AB is equivalent to the query BA.

Theorem 4. Let q = AB be such that key(A) ⊆ key(B) or vars(A) ∩ vars(B) ⊆ key(B). Then
certain(q) = Cert2(q), hence certain(q) is in PTime.

From Theorem 4 it follows that the complexity of computing certain answers for queries like
q3 = R(x y) ∧ R(y z) and q4 = R(xx uv) ∧ R(xy ux) is in PTime. In the case of q3 this
is because the only shared variable is y and key(B) = {y}. In the case of q4 this is because
key(A) = {x} ⊆ {xy} = key(B).

In the remaining part of this section we prove Theorem 4. The main consequence of the
assumption on the query is the following zig-zag property. We say that q satisfies the zig-zag
property if for all database D, for all facts a, b, b′, c of D such that a 6∼ c, a 6= b and b ∼ b′, if
D |= q(ab) and D |= q(cb′) then D |= q(ab′).
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Lemma 5. Let q = AB be such that vars(A) ∩ vars(B) ⊆ key(B) or key(A) ⊆ key(B). Then q
satisfies the zig-zag property.

The key to the proof of Theorem 4 is the following lemma.

Lemma 6. Let q = AB be a query satisfying the zig-zag property. For all databases D and for all
repair r of D if r |= q(ab) then {a} ∈ ∆2(q,D) or there exists a repair s of D such that q(s) ( q(r).

Proof sketch. Assume that {a} 6∈ ∆2(q,D). This means that there exists some b′ ∼ b such that
{a, b′} 6∈ ∆2(q,D). Then consider r′ = r[b→ b′]. Notice that the only new solutions in r′ that are
not in r should involve b′. Hence if b′ is not a part of any solution, then r′ is the required repair.
Otherwise note that b′ can only be a part of solutions of the form r′ |= q(b′c) (if r′ |= q(cb′) for
some c then by zig-zag property we we also have r′ |= q(ab′) which is a contradiction). We also
have {b′} 6∈ ∆2(q,D) (otherwise {a, b′} ∈ ∆2(q,D) which is a contradiction) and we can repeat the
construction. This way, we inductively build a sequence of repairs r0, r1, . . . rn such that r0 = r
and rn is the desired repair.

Proof of Theorem 4. Let D |= certain(q). We prove that D |= Cert2(q).
We first show that every repair r of D contains some fact a ∈ r such that {a} ∈ ∆2(q,D). Pick

an arbitrary repair r of D.
Let r′ be a minimal repair having q(r′) ⊆ q(r) (possibly r′ = r). Since all the repairs contain

a solution, there exist facts a, b of r′ such that r′ |= q(ab). By Lemma 5, q satisfies the zig-zag
property, thus we can apply Lemma 6. This implies that {a} ∈ ∆2(q,D), otherwise one can
construct another repair s of D such that q(s) ( q(r′), contradicting minimality of r′. By the
choice of r′, one has also r |= q(ab), thus we have a ∈ r such that {a} ∈ ∆2(q,D).

Now let rmin be a repair of D containing the minimum number of facts a such that {a} ∈
∆2(q,D). Let m be this minimum number. By the property proved above there exists a fact
b ∈ rmin such that {b} ∈ ∆2(q,D). We claim that for all b′ ∼ b, we have {b′} ∈ ∆2(q,D). Suppose
not, then rmin[b→ b′] contains m− 1 facts in ∆2(q,D), contradicting minimality of rmin.

Overall this proves ∅ ∈ ∆2(q,D) and hence D |= Cert2(q).

7 2way-determined queries

From Theorem 3 and Theorem 4 it remains to consider the case where condition (1) of Theorem 3
is true and condition (2) is false. Thus we can assume that the query satisfies the following
conditions3:

key(A) 6⊆ key(B) and key(B) 6⊆ key(A) and

key(A) ⊆ vars(B) and key(B) ⊆ vars(A)

We call such queries 2way-determined. Queries that are 2way-determined have special prop-
erties that we will exploit to pinpoint the complexity of their consistent evaluation problem. They
are summarized in the following lemma.

Lemma 7. Let q be a 2way-determined query. Then for all database D and for all facts a, b, c ∈ D
suppose D |= q(ab) then :

• if D |= q(ac) then c ∼ b

• if D |= q(cb) then c ∼ a

Proof. Assume q = AB and D |= q(ac). As key(B) ⊆ vars(A) it follows that that key(c) = key(b).
The second claim is argued symmetrically using key(A) ⊆ vars(B).

3We can drop the condition vars(A)∩vars(B) 6⊆ key(A) because key(A) 6⊆ key(B) and key(B) ⊆ vars(A) together
imply vars(A) ∩ vars(B) 6⊆ key(A) (and we drop vars(A) ∩ vars(B) 6⊆ key(B) symmetrically).
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In other words, within a repair, a fact can be part of at most two solutions. Moreover, when a
fact e is part of two solutions of the repair, the solutions must be of the form q(de) and q(ef). We
then say that the fact e is branching (with d and f). If in addition q(fd) holds then we say that
def is a triangle, otherwise def is a fork. The facts that can potentially be part of two solutions
in a repair play a crucial role in our proofs.

When q is 2way-determined, the complexity of certain(q) will depend on the existence of a
database, called tripath, whose solutions to q can be arranged into a tree-like shape with one
branching fact as specified next.

Let d, e, f be three facts of a database D such that e is branching with d, f . Depending on the
key inclusion conditions of def , we define ḡ(e) as follows:

if key(d) ⊆ key(e) and key(f) 6⊆ key(e) then ḡ(e) = key(d)

if key(d) 6⊆ key(e) and key(f) ⊆ key(e) then ḡ(e) = key(f)

if key(d) ⊆ key(f) ⊆ key(e) then ḡ(e) = key(d)

if key(f) ⊆ key(d) ⊆ key(e) then ḡ(e) = key(f)

in all remaining cases ḡ(e) = key(e)
Note that ḡ(e) is well-defined because from Lemma 7 it follows that any other triple of the

form d′ef ′ in D such that e is branching with d′, f ′ is such that d′ ∼ d and f ′ ∼ f . If e is not
branching then we define ḡ(e) = key(e). We also denote by g(e) the set of elements occurring in
the tuple ḡ(e). From the definition we always have g(e) ⊆ key(e).

A tripath of q is a database Θ such that each block B of Θ contains at most two facts, and
all the blocks of Θ can be arranged as a rooted tree with exactly two leaf blocks and satisfy the
following properties (see Figure 1a). Let s be the parent function between the blocks of Θ giving
its tree structure: if B is a block of Θ then s(B) denotes the parent block of B. Then:
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<latexit sha1_base64="h4/PbCylfyvXoxW6Fu8b37vcClc=">AAAB6HicbVDLSgNBEOyNrxhfUY+KDAbBU9j1oB6DXjwmYB6QhDA76U3GzM4uM7NCWHL05MWDIl79inyHN7/Bn3DyOGi0oKGo6qa7y48F18Z1P53M0vLK6lp2PbexubW9k9/dq+koUQyrLBKRavhUo+ASq4YbgY1YIQ19gXV/cD3x6/eoNI/krRnG2A5pT/KAM2qsVAk6+YJbdKcgf4k3J4XS4bjy9XA0LnfyH61uxJIQpWGCat303Ni0U6oMZwJHuVaiMaZsQHvYtFTSEHU7nR46IidW6ZIgUrakIVP150RKQ62HoW87Q2r6etGbiP95zcQEl+2UyzgxKNlsUZAIYiIy+Zp0uUJmxNASyhS3txLWp4oyY7PJ2RC8xZf/ktpZ0TsvehWbxhXMkIUDOIZT8OACSnADZagCA4RHeIYX5855cl6dt1lrxpnP7MMvOO/fueiQlw==</latexit>

f

(a) Generic structure of a tripath. The rectangles denote blocks and in every block B, a(B) is denoted by a
red dot and b(B) is denoted by a blue dot. The root block has only a(B) and leaf blocks have only b(B). An
undirected edge between two facts s, t denotes that they form a solution q{st}. A directed edge from s to t denotes
the solution q(st). The unique branching fact of the tripath is denoted by e which forms a solution with the facts
d and e with q(de) ∧ q(ef). def is the center of the tripath. If the green solution q(fd) is present then we call it
a triangle-tripath, otherwise it is a fork-tripath. If the tripath is not nice then there could be extra solutions to
the query not depicted in the figure. The variable inclusion conditions are not depicted in the figure.

<latexit sha1_base64="5RHqkLARWknvLeyjpU4pzVE7SwA=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbymRy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7AVHImcC2ZppjL5VI4oBjN5jcFX53ilKxRDzqWYp+TEaCRYwSbaShbQ8yEaIs4nlA5yQc2nW34S7g/CVeSepQojW0PwdhQrMYhaacKNX33FT7OZGaUY7z2iBTmBI6ISPsGypIjMrPF5fPnTOjhE6USPOEdhbqz0ROYqVmcWAmY6LHatUrxP+8fqajGz9nIs00CrpcFGXc0YlT1OCETCLVfGYIoZKZWx06JpJQbcqqmRK81S//JZ2LhnfV8B4u683bso4qnMApnIMH19CEe2hBGyhM4Qle4NXKrWfrzXpfjlasMnMMv2B9fAMXaJP1</latexit>

bcad
<latexit sha1_base64="3VQnWEcf0sIkUabGq1BaN/KVF8M=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbymRy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7AVHImcC2ZppjL5VI4oBjN5jcFX53ilKxRDzqWYp+TEaCRYwSbaShbQ8yEaIs4jkJ5oQO7brbcBdw/hKvJHUo0Rran4MwoVmMQlNOlOp7bqr9nEjNKMd5bZApTAmdkBH2DRUkRuXni8vnzplRQidKpHlCOwv1ZyInsVKzODCTMdFjteoV4n9eP9PRjZ8zkWYaBV0uijLu6MQpanBCJpFqPjOEUMnMrQ4dE0moNmXVTAne6pf/ks5Fw7tqeA+X9eZtWUcVTuAUzsGDa2jCPbSgDRSm8AQv8Grl1rP1Zr0vRytWmTmGX7A+vgES1ZPy</latexit>

abac
<latexit sha1_base64="MWMQEFXhvxJ+1PJg1aaaZczhePQ=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbys1k0g6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkoW2S8ET2AlSUM0HbmmlOe6mkGAecdoPJXeF3p1QqlohHPUupH+NIsIgR1EYa2vYgEyGVRTzHYI44tOtuw13A+Uu8ktShRGtofw7ChGQxFZpwVKrvuan2c5SaEU7ntUGmaIpkgiPaN1RgTJWfLy6fO2dGCZ0okeYJ7SzUn4kcY6VmcWAmY9RjteoV4n9eP9PRjZ8zkWaaCrJcFGXc0YlT1OCETFKi+cwQJJKZWx0yRolEm7JqpgRv9ct/Seei4V01vIfLevO2rKMKJ3AK5+DBNTThHlrQBgJTeIIXeLVy69l6s96XoxWrzBzDL1gf3w/Nk/A=</latexit>

abaa

<latexit sha1_base64="hWM4QhMOV0hMMytYbeRBTPDGm6s=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbys1k0g6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkoW2S8ET2AlSUM0HbmmlOe6mkGAecdoPJXeF3p1QqlohHPUupH+NIsIgR1EYa2vYgEyGVRTxHnGMwtOtuw13A+Uu8ktShRGtofw7ChGQxFZpwVKrvuan2c5SaEU7ntUGmaIpkgiPaN1RgTJWfLy6fO2dGCZ0okeYJ7SzUn4kcY6VmcWAmY9RjteoV4n9eP9PRjZ8zkWaaCrJcFGXc0YlT1OCETFKi+cwQJJKZWx0yRolEm7JqpgRv9ct/Seei4V01vIfLevO2rKMKJ3AK5+DBNTThHlrQBgJTeIIXeLVy69l6s96XoxWrzBzDL1gf3w/Kk/A=</latexit>

aaab
<latexit sha1_base64="90WaazFK8b34oM7KatLa8xtUV0k=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KomIuiy6cVnBPqAN5WZy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7ASjkTGBbM82xl0qEOODYDSZ3hd+dolQsEY96lqIfw0iwiFHQRhra9iATIcoingPMIRzadbfhLuD8JV5J6qREa2h/DsKEZjEKTTko1ffcVPs5SM0ox3ltkClMgU5ghH1DBcSo/Hxx+dw5M0roRIk0T2hnof5M5BArNYsDMxmDHqtVrxD/8/qZjm78nIk00yjoclGUcUcnTlGDEzKJVPOZIUAlM7c6dAwSqDZl1UwJ3uqX/5LORcO7angPl/XmbVlHlZyQU3JOPHJNmuSetEibUDIlT+SFvFq59Wy9We/L0YpVZo7JL1gf3xLSk/I=</latexit>

aaad
<latexit sha1_base64="BRqrCkmr6FKEMYGciQexFD2mxyk=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KomIuiy6cVnBPqAN5WZy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7ASjkTGBbM82xl0qEOODYDSZ3hd+dolQsEY96lqIfw0iwiFHQRhra9iATIcoinkM4BxzadbfhLuD8JV5J6qREa2h/DsKEZjEKTTko1ffcVPs5SM0ox3ltkClMgU5ghH1DBcSo/Hxx+dw5M0roRIk0T2hnof5M5BArNYsDMxmDHqtVrxD/8/qZjm78nIk00yjoclGUcUcnTlGDEzKJVPOZIUAlM7c6dAwSqDZl1UwJ3uqX/5LORcO7angPl/XmbVlHlZyQU3JOPHJNmuSetEibUDIlT+SFvFq59Wy9We/L0YpVZo7JL1gf3xjrk/Y=</latexit>

adae
<latexit sha1_base64="bv4pzG45D9TCsEsXPoU7UAS9Ytc=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KomIuiy6cVnBPqAN5WZy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7ASjkTGBbM82xl0qEOODYDSZ3hd+dolQsEY96lqIfw0iwiFHQRhra9iATIcoinkM4BxjadbfhLuD8JV5J6qREa2h/DsKEZjEKTTko1ffcVPs5SM0ox3ltkClMgU5ghH1DBcSo/Hxx+dw5M0roRIk0T2hnof5M5BArNYsDMxmDHqtVrxD/8/qZjm78nIk00yjoclGUcUcnTlGDEzKJVPOZIUAlM7c6dAwSqDZl1UwJ3uqX/5LORcO7angPl/XmbVlHlZyQU3JOPHJNmuSetEibUDIlT+SFvFq59Wy9We/L0YpVZo7JL1gf3xLbk/I=</latexit>

adaa
<latexit sha1_base64="My+NEA1HIddhKsGlBki+7oN/Xtk=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KomIuiy6cVnBPqAN5WZy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7ASjkTGBbM82xl0qEOODYDSZ3hd+dolQsEY96lqIfw0iwiFHQRhra9iATIcoinoc4BxjadbfhLuD8JV5J6qREa2h/DsKEZjEKTTko1ffcVPs5SM0ox3ltkClMgU5ghH1DBcSo/Hxx+dw5M0roRIk0T2hnof5M5BArNYsDMxmDHqtVrxD/8/qZjm78nIk00yjoclGUcUcnTlGDEzKJVPOZIUAlM7c6dAwSqDZl1UwJ3uqX/5LORcO7angPl/XmbVlHlZyQU3JOPHJNmuSetEibUDIlT+SFvFq59Wy9We/L0YpVZo7JL1gf3xj6k/Y=</latexit>

deaa

<latexit sha1_base64="qmze8AFdDPJIfJjZPrwr8bm2KNk=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KomIuiy6cVnBPqAN5WZy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7ASjkTGBbM82xl0qEOODYDSZ3hd+dolQsEY96lqIfw0iwiFHQRhra9iATIcoingcwj2Bo192Gu4Dzl3glqZMSraH9OQgTmsUoNOWgVN9zU+3nIDWjHOe1QaYwBTqBEfYNFRCj8vPF5XPnzCihEyXSPKGdhfozkUOs1CwOzGQMeqxWvUL8z+tnOrrxcybSTKOgy0VRxh2dOEUNTsgkUs1nhgCVzNzq0DFIoNqUVTMleKtf/ks6Fw3vquE9XNabt2UdVXJCTsk58cg1aZJ70iJtQsmUPJEX8mrl1rP1Zr0vRytWmTkmv2B9fAMXZ5P1</latexit>

bafa
<latexit sha1_base64="SR7zTGYWQPgCIJd6JKGo/43utoA=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbymRy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7AVHImcC2ZppjL5VI4oBjN5jcFX53ilKxRDzqWYp+TEaCRYwSbaShbQ8yEaIs4nkUzCMytOtuw13A+Uu8ktShRGtofw7ChGYxCk05Uarvuan2cyI1oxzntUGmMCV0QkbYN1SQGJWfLy6fO2dGCZ0okeYJ7SzUn4mcxErN4sBMxkSP1apXiP95/UxHN37ORJppFHS5KMq4oxOnqMEJmUSq+cwQQiUztzp0TCSh2pRVMyV4q1/+SzoXDe+q4T1c1pu3ZR1VOIFTOAcPrqEJ99CCNlCYwhO8wKuVW8/Wm/W+HK1YZeYYfsH6+AYfDpP6</latexit>

fbfa
<latexit sha1_base64="+IqGX5SFfUv86+dk7g9aGDNhxbU=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbys1k0g6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkoW2S8ET2AlSUM0HbmmlOe6mkGAecdoPJXeF3p1QqlohHPUupH+NIsIgR1EYa2vYgEyGVRTwPcI44tOtuw13A+Uu8ktShRGtofw7ChGQxFZpwVKrvuan2c5SaEU7ntUGmaIpkgiPaN1RgTJWfLy6fO2dGCZ0okeYJ7SzUn4kcY6VmcWAmY9RjteoV4n9eP9PRjZ8zkWaaCrJcFGXc0YlT1OCETFKi+cwQJJKZWx0yRolEm7JqpgRv9ct/Seei4V01vIfLevO2rKMKJ3AK5+DBNTThHlrQBgJTeIIXeLVy69l6s96XoxWrzBzDL1gf3w/Ok/A=</latexit>

baaa

(b) An instance of a tripath for the query q = R(xu xy) ∧ R(uy xz). For the center of the given tripath,
g(R(abaa)) = {a}. The facts in the root and leaf blocks do not contain a as a part of key. Note that there are extra
solutions (in red) that are not enforced by the tripath. Hence this is not a nice-tripath.

<latexit sha1_base64="MWMQEFXhvxJ+1PJg1aaaZczhePQ=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbys1k0g6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkoW2S8ET2AlSUM0HbmmlOe6mkGAecdoPJXeF3p1QqlohHPUupH+NIsIgR1EYa2vYgEyGVRTzHYI44tOtuw13A+Uu8ktShRGtofw7ChGQxFZpwVKrvuan2c5SaEU7ntUGmaIpkgiPaN1RgTJWfLy6fO2dGCZ0okeYJ7SzUn4kcY6VmcWAmY9RjteoV4n9eP9PRjZ8zkWaaCrJcFGXc0YlT1OCETFKi+cwQJJKZWx0yRolEm7JqpgRv9ct/Seei4V01vIfLevO2rKMKJ3AK5+DBNTThHlrQBgJTeIIXeLVy69l6s96XoxWrzBzDL1gf3w/Nk/A=</latexit>

abaa

<latexit sha1_base64="hWM4QhMOV0hMMytYbeRBTPDGm6s=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbys1k0g6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkoW2S8ET2AlSUM0HbmmlOe6mkGAecdoPJXeF3p1QqlohHPUupH+NIsIgR1EYa2vYgEyGVRTxHnGMwtOtuw13A+Uu8ktShRGtofw7ChGQxFZpwVKrvuan2c5SaEU7ntUGmaIpkgiPaN1RgTJWfLy6fO2dGCZ0okeYJ7SzUn4kcY6VmcWAmY9RjteoV4n9eP9PRjZ8zkWaaCrJcFGXc0YlT1OCETFKi+cwQJJKZWx0yRolEm7JqpgRv9ct/Seei4V01vIfLevO2rKMKJ3AK5+DBNTThHlrQBgJTeIIXeLVy69l6s96XoxWrzBzDL1gf3w/Kk/A=</latexit>

aaab

<latexit sha1_base64="+IqGX5SFfUv86+dk7g9aGDNhxbU=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbys1k0g6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkoW2S8ET2AlSUM0HbmmlOe6mkGAecdoPJXeF3p1QqlohHPUupH+NIsIgR1EYa2vYgEyGVRTwPcI44tOtuw13A+Uu8ktShRGtofw7ChGQxFZpwVKrvuan2c5SaEU7ntUGmaIpkgiPaN1RgTJWfLy6fO2dGCZ0okeYJ7SzUn4kcY6VmcWAmY9RjteoV4n9eP9PRjZ8zkWaaCrJcFGXc0YlT1OCETFKi+cwQJJKZWx0yRolEm7JqpgRv9ct/Seei4V01vIfLevO2rKMKJ3AK5+DBNTThHlrQBgJTeIIXeLVy69l6s96XoxWrzBzDL1gf3w/Ok/A=</latexit>

baaa

<latexit sha1_base64="U98kqdt5rIWBS0WBOsJLKzOmdjs=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbymRy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7AVHImcC2ZppjL5VI4oBjN5jcFX53ilKxRDzqWYp+TEaCRYwSbaShbQ8yEaIs4jkJ5pQM7brbcBdw/hKvJHUo0Rran4MwoVmMQlNOlOp7bqr9nEjNKMd5bZApTAmdkBH2DRUkRuXni8vnzplRQidKpHlCOwv1ZyInsVKzODCTMdFjteoV4n9eP9PRjZ8zkWYaBV0uijLu6MQpanBCJpFqPjOEUMnMrQ4dE0moNmXVTAne6pf/ks5Fw7tqeA+X9eZtWUcVTuAUzsGDa2jCPbSgDRSm8AQv8Grl1rP1Zr0vRytWmTmGX7A+vgES15Py</latexit>

abca
<latexit sha1_base64="1J/eRzPJx71abIaaHhCB69d28QQ=">AAAB+nicbVDLSgMxFL3js9ZXq0s3wSK4KjMi6rLoxmUF+4B2KJnMbRuayQxJRiljP8WNC0Xc+iXu/BszbRfaeiBwOOce7s0JEsG1cd1vZ2V1bX1js7BV3N7Z3dsvlQ+aOk4VwwaLRazaAdUouMSG4UZgO1FIo0BgKxjd5H7rAZXmsbw34wT9iA4k73NGjZV6pXI3lSGqPJ4xQics6JUqbtWdgiwTb04qMEe9V/rqhjFLI5SGCap1x3MT42dUGc4ETordVGNC2YgOsGOppBFqP5uePiEnVglJP1b2SUOm6u9ERiOtx1FgJyNqhnrRy8X/vE5q+ld+xmWSGpRstqifCmJikvdAQq6QGTG2hDLF7a2EDamizNi2irYEb/HLy6R5VvUuqt7deaV2Pa+jAEdwDKfgwSXU4Bbq0AAGj/AMr/DmPDkvzrvzMRtdceaZQ/gD5/MHcQWUHg==</latexit>

cacb
<latexit sha1_base64="a958VgB8fmlRSEkhb/OBKIqe40M=">AAAB+nicbVDLSgMxFL3js9bXVJdugkVwVWZE1GXRjcsK9gFtKZn0tg3NZIYko5Sxn+LGhSJu/RJ3/o2ZdhbaeiBwOOce7s0JYsG18bxvZ2V1bX1js7BV3N7Z3dt3SwcNHSWKYZ1FIlKtgGoUXGLdcCOwFSukYSCwGYxvMr/5gErzSN6bSYzdkA4lH3BGjZV6bqmTyD6qLJ4yQqcj2nPLXsWbgSwTPydlyFHruV+dfsSSEKVhgm rd9r3YdFOqDGcCp8VOojGmbEyH2LZU0hB1N52dPiUnVumTQaTsk4bM1N+JlIZaT8LATobUjPSil4n/ee3EDK66KZdxYlCy+aJBIoiJSNYD6XOFzIiJJZQpbm8lbEQVZca2VbQl+ItfXiaNs4p/UfHvzsvV67yOAhzBMZyCD5dQhVuoQR0YPMIzvMKb8+S8OO/Ox3x0xckzh/AHzucPdxqUIg==</latexit>

caha
<latexit sha1_base64="9BV3Bb45IccdWbVuQ7oUK0HYAgk=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbymRy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7AVHImcC2ZppjL5VI4oBjN5jcFX53ilKxRDzqWYp+TEaCRYwSbaShbQ8yEaIs4vmYzsdkaNfdhruA85d4JalDidbQ/hyECc1iFJpyolTfc1Pt50RqRjnOa4NMYUrohIywb6ggMSo/X1w+d86MEjpRIs0T2lmoPxM5iZWaxYGZjIkeq1WvEP/z+pmObvyciTTTKOhyUZRxRydOUYMTMolU85khhEpmbnXomEhCtSmrZkrwVr/8l3QuGt5Vw3u4rDdvyzqqcAKncA4eXEMT7qEFbaAwhSd4gVcrt56tN+t9OVqxyswx/IL18Q0mr5P/</latexit>

hcha

<latexit sha1_base64="qmze8AFdDPJIfJjZPrwr8bm2KNk=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KomIuiy6cVnBPqAN5WZy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7ASjkTGBbM82xl0qEOODYDSZ3hd+dolQsEY96lqIfw0iwiFHQRhra9iATIcoingcwj2Bo192Gu4Dzl3glqZMSraH9OQgTmsUoNOWgVN9zU+3nIDWjHOe1QaYwBTqBEfYNFRCj8vPF5XPnzCihEyXSPKGdhfozkUOs1CwOzGQMeqxWvUL8z+tnOrrxcybSTKOgy0VRxh2dOEUNTsgkUs1nhgCVzNzq0DFIoNqUVTMleKtf/ks6Fw3vquE9XNabt2UdVXJCTsk58cg1aZJ70iJtQsmUPJEX8mrl1rP1Zr0vRytWmTkmv2B9fAMXZ5P1</latexit>

bafa
<latexit sha1_base64="SR7zTGYWQPgCIJd6JKGo/43utoA=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdVl047KCfUAbymRy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7AVHImcC2ZppjL5VI4oBjN5jcFX53ilKxRDzqWYp+TEaCRYwSbaShbQ8yEaIs4nkUzCMytOtuw13A+Uu8ktShRGtofw7ChGYxCk05Uarvuan2cyI1oxzntUGmMCV0QkbYN1SQGJWfLy6fO2dGCZ0okeYJ7SzUn4mcxErN4sBMxkSP1apXiP95/UxHN37ORJppFHS5KMq4oxOnqMEJmUSq+cwQQiUztzp0TCSh2pRVMyV4q1/+SzoXDe+q4T1c1pu3ZR1VOIFTOAcPrqEJ99CCNlCYwhO8wKuVW8/Wm/W+HK1YZeYYfsH6+AYfDpP6</latexit>

fbfa

<latexit sha1_base64="bKGKDXeHFzvabY2rkYHl5rSUb2s=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSK4KomIuiy6cVnBPqAN5WZy0w6dTMLMpFBC/8SNC0Xc+ifu/BsnbRZaPTBwOOce7p0TpJwp7bpfVmVtfWNzq7pd29nd2z+wD486KskkxTZNeCJ7ASjkTGBbM82xl0qEOODYDSZ3hd+dolQsEY96lqIfw0iwiFHQRhra9iATIcoingPMQxjadbfhLuD8JV5J6qREa2h/DsKEZjEKTTko1ffcVPs5SM0ox3ltkClMgU5ghH1DBcSo/Hxx+dw5M0roRIk0T2hnof5M5BArNYsDMxmDHqtVrxD/8/qZjm78nIk00yjoclGUcUcnTlGDEzKJVPOZIUAlM7c6dAwSqDZl1UwJ3uqX/5LORcO7angPl/XmbVlHlZyQU3JOPHJNmuSetEibUDIlT+SFvFq59Wy9We/L0YpVZo7JL1gf3xLVk/I=</latexit>

aada
<latexit sha1_base64="ssfsUyZyDgc/tCne/YruDy/rigU=">AAAB+nicbVDLSgMxFM34rPU11aWbYBFclRkRdVl047KCfUA7lDuZ2zY0kxmSjFLGfoobF4q49Uvc+Temj4W2HggczrmHe3PCVHBtPO/bWVldW9/YLGwVt3d29/bd0kFDJ5liWGeJSFQrBI2CS6wbbgS2UoUQhwKb4fBm4jcfUGmeyHszSjGIoS95jzMwVuq6pU4mI1STeB5RGEfQdctexZuCLhN/TspkjlrX/epECctilIYJ0Lrte6kJclCGM4HjYifTmAIbQh/blkqIUQf59PQxPbFKRHuJsk8aOlV/J3KItR7FoZ2MwQz0ojcR//PameldBTmXaWZQstmiXiaoSeikBxpxhcyIkSXAFLe3UjYABczYtoq2BH/xy8ukcVbxLyr+3Xm5ej2vo0COyDE5JT65JFVyS2qkThh5JM/klbw5T86L8+58zEZXnHnmkPyB8/kDco+UHw==</latexit>

dada
<latexit sha1_base64="TrHSIv9HFmQ+sVPUxt3lEOQbl0g=">AAAB+nicbVDLSgMxFL3js9bXVJdugkVwVWZE1GXRjcsK9gHtUDKZ2zY0kxmSjFLGfoobF4q49Uvc+Temj4W2HggczrmHe3PCVHBtPO/bWVldW9/YLGwVt3d29/bd0kFDJ5liWGeJSFQrpBoFl1g33AhspQppHApshsObid98QKV5Iu/NKMUgpn3Je5xRY6WuW+pkMkI1iecRoWOkXbfsVbwpyDLx56QMc9S67lcnSlgWozRMUK3bvpeaIKfKcCZwXOxkGlPKhrSPbUsljVEH+fT0MTmxSkR6ibJPGjJVfydyGms9ikM7GVMz0IveRPzPa2emdxXkXKaZQclmi3qZICYhkx5IxBUyI0aWUKa4vZWwAVWUGdtW0ZbgL355mTTOKv5Fxb87L1ev53UU4AiO4RR8uIQq3EIN6sDgEZ7hFd6cJ+fFeXc+ZqMrzjxzCH/gfP4AdBSUIA==</latexit>

daea
<latexit sha1_base64="M7EirmiHFPcAtFIEnLJWWPpKm8s=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiQi6rLoxmUF+4A2lMnkph06mYSZiVhCfsWNC0Xc+iPu/BsnbRbaemDgcM493DvHTzhT2nG+rcra+sbmVnW7trO7t39gH9a7Kk4lhQ6NeSz7PlHAmYCOZppDP5FAIp9Dz5/eFn7vEaRisXjQswS8iIwFCxkl2kgjuz5MRQCyiGeAA5wDGdkNp+nMgVeJW5IGKtEe2V/DIKZpBEJTTpQauE6ivYxIzSiHvDZMFSSETskYBoYKEoHysvntOT41SoDDWJonNJ6rvxMZiZSaRb6ZjIieqGWvEP/zBqkOr72MiSTVIOhiUZhyrGNcFIEDJoFqPjOEUMnMrZhOiCRUm7pqpgR3+curpHvedC+b7v1Fo3VT1lFFx+gEnSEXXaEWukNt1EEUPaFn9IrerNx6sd6tj8VoxSozR+gPrM8f1buUTg==</latexit>

edea

(c) An instance of a nice-tripath for the query q = R(xu xy) ∧ R(uy xz). We have the same center as in the
previous case and a does not belong to the key of the facts in root and leaf blocks. Note that there are no extra
solutions other than those enforced by the tripath.

Figure 1: Tripath illustrations
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• There is exactly one block called the root block where the parent function s is not defined
and exactly two blocks, the leaf blocks, that have no children. Hence there is a unique block
in Θ, called the branching block, having two children.

• Let B be a block of Θ. If B is the root block, it contains exactly one fact denoted by a(B).
If B is one of the leaf blocks then B contains exactly one fact denoted by b(B). In all other
cases, B contains exactly two facts denoted by a(B) and b(B).

• Assume B = s(B′). Then Θ |= q{a(B) b(B′)}. In particular, for the branching block B we
have e = a(B) which is a branching fact with d = b(B′) and f = b(B′′), where B′ and B′′

are the two blocks whose parent is the branching block B. We call the triple def as the
center of the tripath Θ.

• Let B0, B1, B2 be respectively the root and leaves of Θ and let u0 = a(B0), u1 = b(B1)
and u2 = b(B2). Let B be the center block of Θ and e = a(B). Then g(e) 6⊆ key(u0) and
g(e) 6⊆ key(u1) and g(e) 6⊆ key(u2).

We say that a database D contains a tripath of q if there exists Θ ⊆ D such that Θ is a
tripath. A query q admits a tripath if there is a database instance D of q that contains a
tripath.

A tripath Θ is called a fork-tripath if the center facts def of Θ forms a fork. If def forms
a triangle then Θ is called a triangle-tripath.

The existence (or absence) of tripath turns out to be the key in determining the complexity
of the consistent query answering problem of the 2way-determined queries.

Notice that in the definition of tripath we require the existence of some solutions to q (namely
q{a(B)b(B′)} where B is the parent block of B′) but we do not forbid the presence of other extra
solutions. In order to use the tripath as a gadget for our lower bounds we need to remove those
extra solutions. To this end we introduce a normal form for tripath that in particular requires
no extra solutions and show that if a tripath exists then it exists in normal form.

For a tripath Θ, let B0, B1, B2 be respectively the root and leaves of Θ and let u0 = a(B0),
u1 = b(B1) and u2 = b(B2). We say that Θ is variable-nice if there exists x ∈ key(d), y ∈ key(e)
and z ∈ key(f) such that {x, y, z} ∩

(
key(u0) ∪ key(u1) ∪ key(u2)

)
= ∅. We say that a tripath is

solution-nice if q(Θ) ⊆ {{ab} | a = a(Bi), b = b(Bj), s(Bi) = Bj} ∪ {{fd}}.
The variable-nice property identifies three elements one each from the key of the center facts

def such that the facts in the root and the leaf blocks do not contain these variables. To prove
coNP-hardness, these variables will be used to the encoding. The solution-nice property ensures
that q holds in Θ only where it must hold by definition of being a tripath, but nowhere else with
the only exception of possibly (fd), in which case Θ is a triangle-tripath.

We say that a tripath Θ is nice if the following holds:

• Θ is variable-nice

• Θ is solution-nice

• At least one of the elements of x, y, z (from being variable-nice), appears in the key of all
facts except u0, u1 and u2.

• Each of the keys of u0, u1 and u2 contains an element that does not occur in the key for any
other facts in Θ.

For instance the tripath for q2 depicted in Figure 1b is not nice since it contains some extra
solutions. However Figure 1c depicts a nice tripath for the same query q2. It turns out that
niceness can be assumed without loss of generality:

Proposition 8. Let q be a 2way-determined query. If q admits a fork-tripath (triangle-tripath)
then q admits a nice fork-tripath (triangle-tripath).

8



Proof sketch. Variable-niceness is achieved essentially by extending the branches of the tripath
depending on how g(e) is defined. The construction of a solution-nice tripath is more involved
and is done by induction on the number of extra solutions. Typically, if q(αβ) is an extra solution
we will replace the fact α so that this extra solution is removed and add new blocks to the tripath
so that all other properties are satisfied. This can only work if α is not part of the center of the
tripath. When α is part of the center, it turns out that β can not be part of the center. We then
argue by symmetry using the block of β. The last two conditions are again simple to achieve.

We will show in Section 8 that if a query q does not admit a tripath then certain(q) can be
solved in polynomial time using the greedy fixpoint algorithm of Section 5. If a query q admits a
fork-tripath we will show in Section 9 that certain(q) is coNP-complete. If a query q does not
admit a fork-tripath but admits a triangle-tripath we will show in Section 10 that certain(q)
can be solved in polynomial time, using a combination of the fixpoint algorithm of Section 5 and
bipartite matching.

8 Queries with no tripath and PTime

The main goal of this section is to prove that for every 2way-determined query q, if q does not
admit a tripath then certain(q) is in PTime. There are many 2way-determined queries that
have no tripath. In Appendix E we give several sufficient syntactic conditions that imply this
property. For instance the query q5 = R(x yx)R(y xu) does not admit a tripath and hence
certain(q5) is in PTime which follows from the next theorem.

Theorem 9. Let q be a 2way-determined query. If q does not admit a tripath then certain(q)
is in PTime.

In fact we show that certain(q) can be solved using the greedy fixpoint algorithm Certk(q)
defined in Section 5 for k = 22κ+1 +κ−1 where κ = ll (recall that l is the number of key positions
in the relation R under consideration)4.

Proposition 10. Let q be a 2way-determined query and let k = 22κ+1 + κ − 1 and let D be a
database. If D does not admit a tripath of q then D ∈ certain(q) iff D ∈ Certk(q).

For any database D and repair r of D and a ∈ r let r-key(a, r) = {c | c ∈ r and key(c) ⊆ key(a)}.
To prove Proposition 10 we build on the following lemma which resembles Lemma 6 but requires
a more involved technical proof.

Lemma 11. Let k ≥ κ and q = AB be a query that is 2way-determined. Let D be a database that
does not admit a tripath. Then for every repair r of D such that r |= q{ab}, and for all K ⊆ r
such that r-key(a) ⊆ K and |K| ≤ k, one of the following conditions hold:

1. K ∈ ∆k(q,D)

2. There exists a repair r′ such that K ⊆ r′ and q(r′) ( q(r).

Proof sketch. Assume that D does not admit a tripath. Consider a repair r of D, two facts a, b
of r such that r |= q{ab} and let K be a set of facts containing r-key(a, r). We need to show that
if K is not in ∆k(q,D) then there is a new repair with strictly less solutions. We therefore need
to remove at least one solution from r and we have an obvious candidate as r |= q{ab}. We then
use the definition of the algorithm Certk and from the fact that K 6∈ ∆k(q,D) we know that in
the block of b there is a fact b′ that can not form a k-set when combined with facts from K. In
particular b′ and a do not form a solution to q. Let r′ = r[b→ b′].

Now if b′ is not a part of any solution in r′ then r′ is the desired repair. Otherwise we can
repeat the above argument with the facts that are making q true when combined with b′. There
are at most two such facts and we need to consider them both, one after the other. The goal is to

4Note that the constant k directly results from the proof technique and is not intended to be optimal.
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repeat the process above until all newly created solutions are removed from the working repair.
When doing so we visit blocks of D, selecting two facts in each such block, the one that makes
the query true with a previously selected fact, and the one we obtain from the non-membership
to ∆k(q,D). If we can enforce that we never visit a block twice we are done because the database
being finite, eventually all the selected facts will not participate in a solution to q in the current
repair. In order to do this we keep in memory (the set K initially) all the facts of the current repair
that can potentially form a new solution. This ensures that we will never make the query true
with a fact in a previously visited block. The difficulty is to ensure that the size of the memory
remains bounded by k. This is achieved by requiring key inclusion between two consecutively
selected facts, otherwise we stop and put a flag. If we get two flags we argue that we can extract
a tripath which is a contradiction. If not we can show that the memory remains bounded.

We conclude this section with a sketch of the of proof of Proposition 10. We assume D |=
certain(q) and show that D |= Certk(q). Let r be a repair of D that contains a minimal number
of solutions. For any set of facts K ⊆ r and K ′ ⊆ D, denote K ′ ∼ K if there is a bijection
f : K → K ′ where f(a) ∼ a and let r[K → K ′] be the new repair obtained by replacing the facts
of K in r by the facts of K ′.

Since D |= certain(q) there exists a, b ∈ r such that r |= q{ab}. Let K = r-key(a, r), clearly
|K| ≤ κ. It suffices to show that for all K ′ ∼ K, K ′ ∈ ∆k(q,D). If this is not the case for some
K ′, let r′ = r[K → K ′]. As r is minimal, we can assume there are facts c ∈ K ′ and d ∈ r′ such
that q{cd}.

Notice that r-key(c, r′) ⊆ K ′. As K ′ 6∈ ∆k(q,D), by Lemma 11, there exists a repair r′′ such
that K ′ ⊆ r′′ and q(r′′) ( q(r′). Repeating this argument eventually yields a repair contradicting
the minimality of r.

9 Fork-tripath and coNP-hardness

In this section we prove that if a query that is 2way-determined admits a fork-tripath, then
certain(q) is coNP-hard. We have already seen that the query q2 = R(xu xy) ∧ R(uy xz)
admits a fork-tripath (associated fork-tripath are depicted in Figure 1 part (b) and (c)). In
Appendix G we give several sufficient conditions that imply that a query admits a fork-tripath.
The fact that certain(q2) is coNP-hard is a consequence of the following result.

Theorem 12. Let q be a query that is 2way-determined. If q admits a fork-tripath, then cer-
tain(q) is coNP-complete.

The remaining part of this section is a proof of Theorem 12. In view of Proposition 8 we can
assume that q has a nice fork-tripath Θ. Let x, y, z be the elements of Θ witnessing the variable-
niceness of Θ and let u, v, w be the fresh new elements occurring only in the keys of the head and
tails of Θ. Note that x, y, z need not be distinct. For any elements αx, αy, αz, αu, αvαw, we denote
by Θ[αx, αy, αz, αu, αv, αw] the database constructed from Θ by replacing each of x, y, z, u, v, w
by αx, αy, αz, αu, αv, αw respectively, where αx = αy iff x = y; αy = αz iff y = z and so on.

We use a reduction from 3-SAT where every variable occurs at most 3 times. Let φ be such
a formula. Let V2 be the variables of φ that occur exactly two times and V3 be the variables of
φ that occur exactly three times. Without loss of generality we can assume that each variable p
of φ occur at least once positively and at least once negatively. The construction is illustrated in
Figure 2.

The database. Let l ∈ V3. By our assumption, l (or ¬l) occurs once positively - let C[l] be this
clause - and twice negatively - let C1[l], C2[l] be the two corresponding clauses.

Let D[l] be the database consisting of the union of:
Θl,C = Θ[〈C, l〉x, 〈C, l〉y, 〈C, l〉z, C, 〈C,C2, l〉, 〈C,C1, l〉]
Θl,C1 = Θ[〈C1, l〉x, 〈C1, l〉y, 〈C1, l〉z, C1, 〈C1, C1, l〉, 〈C,C1, l〉] and
Θl,C2

= Θ[〈C2, l〉x, 〈C2, l〉y, 〈C2, l〉z, C2, 〈C,C2, l〉, 〈C2, C2, l〉].
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<latexit sha1_base64="/9/jGZ0vlRZWqdyEx+VyF790KTY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOxF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G9ZnffuLaiFg94iThfkSHSoSCUbTSQ73v9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndV9e4vK7XbPI4inMApnIMH11CDO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC8241x</latexit>

C1

<latexit sha1_base64="iJ1CNi+zU0emWHJW/BQe3hM0Hww=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMdiLx4r2A9oQ9lsp+3S3U3Y3Qgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBLcWNf9dgobm1vbO8Xd0t7+weFR+fikbcJYM2yxUIS6G1CDgitsWW4FdiONVAYCO8G0kfmdJ9SGh+rRziL0JR0rPuKM2kxqDGqlQbniVt0FyDrxclKBHM1B+as/DFksUVkmqDE9z42sn1BtORM4L/VjgxFlUzrGXkoVlWj8ZHHrnFykypCMQp2WsmSh/p5IqDRmJoO0U1I7MateJv7n9WI7uvUTrqLYomLLRaNYEBuS7HEy5BqZFbOUUKZ5eithE6ops2k8WQje6svrpF2retdV7+GqUr/L4yjCGZzDJXhwA3W4hya0gMEEnuEV3hzpvDjvzseyteDkM6fwB87nD/NDjYY=</latexit>

C2

<latexit sha1_base64="DxXheF7CDZMhGNWuCy+AXXpbdck=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0lU1GOxF48VTFtoQ9lsN+3SzSbsboQQ+hu8eFDEqz/Im//GTZuDtj4YeLw3w8y8IOFMacf5tipr6xubW9Vte2d3b/+gdnjUUXEqCfVIzGPZC7CinAnqaaY57SWS4ijgtBtMW4XffaJSsVg86iyhfoTHgoWMYG0krzW8tO1hre40nDnQKnFLUocS7WHtazCKSRpRoQnHSvVdJ9F+jqVmhNOZPUgVTTCZ4jHtGypwRJWfz4+doTOjjFAYS1NCo7n6eyLHkVJZFJjOCOuJWvYK8T+vn+rw1s+ZSFJNBVksClOOdIyKz9GISUo0zwzBRDJzKyITLDHRJp8iBHf55VXSuWi41w334arevCvjqMIJnMI5uHADTbiHNnhAgMEzvMKbJawX6936WLRWrHLmGP7A+vwBKciNmw==</latexit>

C3<latexit sha1_base64="CKelQDYDKhh7QPhou/MAyr1ovwU=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNlJbzJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsPbqd98Qm24kg92lGKY0L7kMWfUOqnRkdgnplsq+xV/BrJMgpyUIUetW/rq9BTLEpSWCWpMO/BTG46ptpwJnBQ7mcGUsiHtY9tRSRM04Xh27YScOqVHYqVdSUtm6u+JMU2MGSWR60yoHZhFbyr+57UzG1+HYy7TzKJk80VxJohVZPo66XGNzIqRI5Rp7m4lbEA1ZdYFVHQhBIsvL5PGeSW4rAT3F+XqTR5HAY7hBM4ggCuowh3UoA4MHuEZXuHNU96L9+59zFtXvHzmCP7A+/wBNtqO5Q==</latexit>¬s

<latexit sha1_base64="fSvAW3EhhzQaAo5lT4zMbmug+6E=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthbbUDbbSbt0swm7G6GE/gsvHhTx6r/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4JvcfnlBpHst7M0nQj+hQ8pAzaqz02JM4JJmeVir9as2tuzOQZeIVpAYFmv3qV28QszRCaZigWnc9NzF+RpXhTOC00ks1JpSN6RC7lkoaofaz2cVTcmKVAQljZUsaMlN/T2Q00noSBbYzomakF71c/M/rpia88jMuk9SgZPNFYSqIiUn+PhlwhcyIiSWUKW5vJWxEFWXGhpSH4C2+vEzaZ3Xvou7dndca10UcZTiCYzgFDy6hAbfQhBYwkPAMr/DmaOfFeXc+5q0lp5g5hD9wPn8AbA2QGQ==</latexit>¬s

<latexit sha1_base64="DwCaNcCddITLxHz+n25UmOp56Ys=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq1hbaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLK6tr6RnmzsrW9s7tX3T941HGqGLZYLGLVCahGwSW2DDcCO4lCGgUC28H4JvfbT6g0j+WDmSToR3QoecgZNVa615V+tebW3RnIMvEKUoMCzX71qzeIWRqhNExQrbuemxg/o8pwJnBa6aUaE8rGdIhdSyWNUPvZ7NIpObHKgISxsiUNmam/JzIaaT2JAtsZUTPSi14u/ud1UxNe+RmXSWpQsvmiMBXExCR/mwy4QmbExBLKFLe3EjaiijJjw8lD8BZfXiaPZ3Xvou7dndca10UcZTiCYzgFDy6hAbfQhBYwCOEZXuHNGTsvzrvzMW8tOcXMIfyB8/kDFSuNEQ==</latexit>s

<latexit sha1_base64="1zl72Czq56gGbnw0wzZF3NT/n8c=">AAAB6HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2J0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzfz2E2gjYvWAkwT8iA2VCAVnaKUG9ssVt+rOQVeJl5MKyVHvl796g5inESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/mhU3pmlQENY21LIZ2rvycyFhkziQLbGTEcmWVvJv7ndVMMb/xMqCRFUHyxKEwlxZjOvqYDoYGjnFjCuBb2VspHTDOONpuSDcFbfnmVtC6q3lXVa1xWard5HEVyQk7JOfHINamRe1InTcIJkGfySt6cR+fFeXc+Fq0FJ585Jn/gfP4A4iGM/g==</latexit>

t

<latexit sha1_base64="k9OxXNv9uJlv+1nWW3d/WChKjbo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUSPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwB46WM/w==</latexit>u

<latexit sha1_base64="ZkL3IxNqCUqDc04ew1slp6k33fM=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNlJbzJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsPbqd98Qm24kg92lGKY0L7kMWfUOqnRkdgntlsq+xV/BrJMgpyUIUetW/rq9BTLEpSWCWpMO/BTG46ptpwJnBQ7mcGUsiHtY9tRSRM04Xh27YScOqVHYqVdSUtm6u+JMU2MGSWR60yoHZhFbyr+57UzG1+HYy7TzKJk80VxJohVZPo66XGNzIqRI5Rp7m4lbEA1ZdYFVHQhBIsvL5PGeSW4rAT3F+XqTR5HAY7hBM4ggCuowh3UoA4MHuEZXuHNU96L9+59zFtXvHzmCP7A+/wBOF6O5g==</latexit>¬t

<latexit sha1_base64="k9OxXNv9uJlv+1nWW3d/WChKjbo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUSPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwB46WM/w==</latexit>u

<latexit sha1_base64="ZkL3IxNqCUqDc04ew1slp6k33fM=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNlJbzJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsPbqd98Qm24kg92lGKY0L7kMWfUOqnRkdgntlsq+xV/BrJMgpyUIUetW/rq9BTLEpSWCWpMO/BTG46ptpwJnBQ7mcGUsiHtY9tRSRM04Xh27YScOqVHYqVdSUtm6u+JMU2MGSWR60yoHZhFbyr+57UzG1+HYy7TzKJk80VxJohVZPo66XGNzIqRI5Rp7m4lbEA1ZdYFVHQhBIsvL5PGeSW4rAT3F+XqTR5HAY7hBM4ggCuowh3UoA4MHuEZXuHNU96L9+59zFtXvHzmCP7A+/wBOF6O5g==</latexit>¬t
<latexit sha1_base64="nn2ZdjjMik65vsSazadGbR4RqE0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0swm7G6GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMGit1+hJHJK0MqjW37s5BVolXkBoUaA6qX/1hzNIIpWGCat3z3MT4GVWGM4GzSj/VmFA2oSPsWSpphNrP5ufOyJlVhiSMlS1pyFz9PZHRSOtpFNjOiJqxXvZy8T+vl5rwxs+4TFKDki0WhakgJib572TIFTIjppZQpri9lbAxVZQZm1Aegrf88ippX9S9q7r3cFlr3BZxlOEETuEcPLiGBtxDE1rAYALP8ApvTuK8OO/Ox6K15BQzx/AHzucPcCOO+w==</latexit>¬u

Figure 2: Consider the SAT formula (¬s∨t∨u)∧(¬s∨¬t∨u)∧(s∨¬t∨¬u). Each clause has a corresponding
block denoted by C1, C2 and C3 respectively. Each such block has three facts corresponding to the literals
of the clause. The figure illustrates the gadget for the variable s. Similar construction is also done for
the variables t and u. Note that because the tripath is solution-nice, if a repair r makes the query false
and picks ¬s from C1 and/or C2 then it cannot have s from C3. Conversely if r contains s from C3 then
it cannot have ¬s from both C1 and C2. The variable-niceness of the tripath provides the necessary
variables to encode the clause and the literals.

A few remarks about D[l]. The right leaf of Θl,C has the same key as the right leaf of Θl,C1

while the left leaf of Θl,C has the same key as the left leaf of Θl,C2
. For the remaining blocks, the

union is a disjoint union (because they contain x, y or z in Θ, hence the element 〈C, l〉x, 〈C, l〉y
or 〈C, l〉z in ΘC,l and so on). In particular all blocks have size two and each fact make the query
true with a fact in a adjacent block.

Let now l ∈ V2. By our assumption, l (or ¬l) occur once positively - let C[l] be this clause -
and once negatively - let C ′[l] be the corresponding clause.

Let D[l] be the database consisting of the union of
Θl,C = Θ[〈C, l〉x, 〈C, l〉y, 〈C, l〉z, C, 〈C,C, l〉, 〈C,C ′, l〉] and
Θl,C′ = Θ[〈C ′, l〉x, 〈C ′, l〉y, 〈C ′, l〉z, C ′, 〈C ′, C ′, l〉, 〈C,C ′, l〉].

For the given 3-SAT formula φ, define the corresponding database instance D[φ] as
⋃
l∈φD[l].

Further, for every block B in D[φ] if B contains only one fact, then add a fresh fact in the block
of B that does not form a solution with any other facts of D[φ] (such a fact can always be defined
for any block).

A few remarks about D[φ]. Notice that by construction, every block of D[φ] has at least two
facts. If l and l′ occur in the same clause C then the roots of Θl,C and Θl′,C have the same keys.
We call these heads the block of C in the sequel. For all other blocks, the union of the D[l] is
a disjoint union of blocks as they all contain an element annotated with l in their key. Consider
now a pair of fact a, b such that D[φ] |= q{ab}. As the key of each element of D[φ] is annotated
by either C or l, a and b must belongs to the same ΘC,l because q is 2way-determined. Hence a, b
must be homomorphic copies of a′, b′ in Θ such that Θ |= q(a′b′). As Θ is solution-nice, a′, b′ must
be in consecutive blocks in Θ.

The following lemma concludes the proof of Theorem 12.

Lemma 13. Let φ be a 3-sat formula where every variable occurs at most three times. φ is
satisfiable iff D[φ] 6|= certain(q).

10 Queries that admit only triangle-tripath

It remains to consider queries that admit at least one triangle-tripath but no fork-tripath.
This is for instance the case for the query q6 = R(x yz) ∧ R(z xy) since q6 does not have a
fork-tripath as all branching facts for q6 form a triangle. However it is easy to construct a
triangle-tripath for q6. A more challenging example is q7 = R(x1x2x3 y1y1y2y3 z1z2z3 z4z4z4z4) ∧
R(x3x1x2 y3y1y1y2 z2z3z4 z1z2z3z4). It is not immediate to construct a triangle-tripath for q7 and
even less immediate to show that q7 admits no fork-tripath. This is left as a useful exercise to
the reader.

We show in this section that for such queries, certain answers can be computed in polynomial
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time. However, the following result shows that the greedy fixpoint algorithm of Section 5 does not
work for such queries.

Theorem 14. Let q be a 2way-determined query admitting a triangle-tripath. Then for all k,
certain(q) 6= Certk(q).

The proof is essentially a reduction to the query q6 for which it is shown in [FPSS23] that
certain(q6) can not be solved using Certk(q6), for all k.

10.1 Bipartite matching algorithm

Since the algorithm Certk(q) does not work, we need a different polynomial time algorithm to
handle these queries. We use an algorithm based on bipartite matching, slightly extending the
one introduced in [FPSS23] for self-join-free queries.

Note that since we only consider queries with two atoms, for every database D, it is convenient
to describe the set of solutions to a query q as a graph. We define the solution graph of D,
denoted by G(D, q) to be an undirected graph whose vertices are the facts of D and there is an
edge between two facts a and b in G(D, q) iff D |= q{ab}. A connected component C of G(D, q)
is called a quasi-clique if for all facts a, b ∈ C such that a 6∼ b, {a, b} is an edge in G(D, q).

For an arbitrary database D, and each fact a of D, clique(a) is defined as follows : if C is the
connected component of G(D, q) containing a and C is a quasi-clique clique(a) = C, otherwise
clique(a) = {a}.

On input D, matching(q) first computes G(D, q) and its connected components, and then
creates a bipartite graph H(D, q) = (V1 ∪ V2, E), where V1 is the set of blocks of D and V2 =
{clique(a) | a ∈ D}. Further (v1, v2) ∈ E iff the block v1 contains a fact a which is in v2 and
such that D 6|= q(a, a). Note that constructing G(D, q) and H(D, q) can be achieved in polynomial
time. Finally the algorithm outputs ‘yes’ iff there is a bipartite matching of H(D, q) that saturates
V1. In this case we write D |= matching(q). This can be checked in PTime [HK73]. We now
show that ¬matching(q) is always an under-approximation of certain(q).

Proposition 15. Let q be a 2way-determined query and D be a database. Then D |= ¬matching(q)
implies D |= certain(q).

A database D is called a clique-database for q if every connected component C of the graph
G(D, q) is a quasi-clique. As soon as the input database is a clique-database for q, ¬matching(q)
correctly computes certain(q) .

Proposition 16. Let q be a 2way-determined query and D be a clique-database for q. Then
D |= ¬matching(q) iff D |= certain(q). Therefore checking whether D |= certain(q) is in
PTime.

This already gives the complexity of certain(q) for some queries that do not admit fork-
tripath (but possibly admit triangle-tripath). A query q is said to be a clique-query if every
database D is a clique-database for q. For instance, the query q6 is a clique-query as the solution
graph of any database is a clique-database. From proposition 16 the following theorem follows.

Theorem 17. Let q be a 2way-determined query. If q is a clique-query then certain(q) =
¬matching(q), and thus certain(q) is in PTime.

10.2 Combining matching-based and greedy fixpoint algorithms

In this section we prove that certain answers to a 2way-determined query q which does not admit
a fork-tripath are computed by a combination of the polynomial time algorithms matching(q)
and Certk(q), thus completing the dichotomy classification (Recall that κ = ll where l is the
number of key positions).
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Theorem 18. Let q be a query that is 2way-determined. If q does not admit a fork-tripath then
certain(q) = Certk(q)∨¬matching(q), for k = 22κ+1 +κ−1. Thus certain(q) is in polynomial
time.

The key to prove this theorem is the following proposition which proves that the database can
be partitioned into components, such that on each component at least one of the two polynomial
time algorithms is correct.

Proposition 19. Let q be a 2way-determined query that does not admit a fork-tripath and let
D be a database. There exists a partition C1, C2, . . . Cn of D having all of the following properties
:

1. for all i, Ci does not contain a tripath or Ci is a clique-database for q.

2. D |= certain(q) iff there exists some i such that Ci |= certain(q).

3. For all k, if Ci |= Certk(q) for some i, then D |= Certk(q).

4. If D |= matching(q) then for all i Ci |= matching(q).

Proof sketch. The partition of the database is obtained using the following equivalence relation.
Two blocks B,B′ of a database D are said to be q-connected if (B,B′) belongs to the reflexive
symmetric transitive closure of {(B1, B2) | ∃a ∈ B1, b ∈ B2 such that D |= q{ab}}. The main
difficulty is to show that each q-connected component satisfies (1) (the remaining properties are
easy to show). If a q-connected component contains both a triangle-tripath and a fork, then from
Theorem 33 in Appendix G.2 it follows that q admits a fork-tripath. Hence each q-connected
component is either a clique-database or contains no tripath.

Proof of Theorem 18. We assume Proposition 19 and prove the theorem. For an input database
D, if D 6|= certain(q) then, by Proposition 15, D |= matching(q); moreover D 6|= Certk(q), as
Certk(q) too is always an under-approximation of certain(q).

Assume now D |= certain(q) and D |= matching(q), we show that D |= Certk(q). Consider
the partition C1, . . . Cn of D given by Proposition 19. Since D |= certain(q) there exists a
Cj such that Cj |= certain(q); moreover Ci |= matching(q) for all i. In particular Cj |=
matching(q) and therefore on Cj the ¬matching(q) algorithm does not compute certain answers.
Then by Proposition 16, Cj is not a clique-database for q. Now by Proposition 19, Cj admits
no tripath, and therefore by Proposition 10, Cj |= Certk(q). Then, again by Proposition 19,
D |= Certk(q).

11 Conclusion

We have proved the dichotomy conjecture on consistent query answering for queries with two
atoms. The conditions we provided for separating the polynomial time case from the coNP-hard
case can be shown to be decidable. Indeed one can show that if a fork-tripath exists then there
exists one of exponential size. However, it is likely that there are more efficient decision procedures
than testing the existence of a tripath.

We also obtained a (decidable) characterization of the two-atom queries whose certain answers
are computable using the greedy fixpoint algorithm of Section 5 (under the standard complexity
theoretic assumption that PTime 6= NP).

The dichotomy conjecture for all conjunctive queries remains a challenging problem. A new
challenge that this paper poses is that of characterizing all conjunctive queries whose certain
answers are computable by the greedy fixpoint algorithm of Section 5. We believe this is a
worthwhile question, given the simplicity of this algorithm.

Work supported by ANR QUID, grant ANR-18-CE40-0031 and Padmanabha is funded by
ANR-19-P3IA-0001 (PRAIRIE 3IA Institute)
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A Proofs for Section 4 (First coNP-hard case)

Proposition 2. Let q be a query. There is a polynomial time reduction from certain(sjf(q)) to
certain(q).

Proof. Note that since q = AB is not equivalent to a one-atom query we have key(A) 6= key(B).
Let D be a database containing R1-facts and R2-facts. We construct in polynomial time a database
D′ containing R-facts such that D |= certain(sjf(q)) iff D′ |= certain(q).

For every R1-fact a of D, let µ(a) be a R-fact where for every position i, µ(a)[i] is the pair
〈A[i], a[i]〉. Similarly if a is a R2-fact then µ(a) is the R-fact such that µ(a)[i] = 〈B[i], a[i]〉. Let
D′ = µ(D). Clearly D′ can be computed in polynomial time. Now we show that D′ has the
desired properties.

Suppose D′ |= certain(q). We show that all repairs of D satisfy sjf(q). Let r be any arbitrary
repair of D. Consider r′ = µ(r). We claim that r′ is a repair of D′. To see this consider two facts
µ(a), µ(b) ∈ r′. Suppose µ(a) ∼ µ(b), since key(A) 6= key(B) this can only happen if a ∼ b. But
since r is a repair, it follows that a = b and therefore µ(a) = µ(b). In order to conclude that r′

is a repair, it remains to show that any block of D′ has a representative in r′. Pick some block
B′ in D′. Let b′ ∈ D such that µ(b′) ∈ B′ and let b ∈ D such that b ∼ b′ and b ∈ r. Then
by construction µ(b) ∈ B′ and we have µ(b) ∈ r′. Now since r′ is a repair of D′, our hypothesis
implies that r′ |= q(µ(a)µ(b)), for some facts a, b of r. If a and b are R1 and R2 facts then
it immediately follows that r |= sjf(q)(ab). If a and b are R2 and R1 facts respectively then it
follows that r |= sjf(q)(ba). Now suppose both a and b are R1 facts then it follows that there is a
homomorphism from AB to AA. This implies that q is equivalent to the one-atom query R(A), a
contradiction. Analogous contradiction is obtained if both a, b are R2 facts.

Suppose D |= certain(sjf(q)). We show that all repairs of D′ satisfy q. Let r′ be a repair of
D′. Define r = {a | µ(a) ∈ r′}. We first prove that r is a repair of D. Towards this, consider two
facts a, b ∈ r such that a ∼ b. Then by construction this implies µ(a) ∼ µ(b). As r′ is a repair
this implies a = b. Now consider a block B of D. Then µ(B) is a block of D′ and therefore has a
representative µ(a) in r′. Hence a is a representative of B in r. As r is a repair of D there exists
a, b ∈ r such that r |= sjf(q)(ab). It is immediate to check that r′ |= q(µ(a)µ(b)).

B Proofs for Section 6 (First polynomial time case)

Lemma 5. Let q = AB be such that vars(A) ∩ vars(B) ⊆ key(B) or key(A) ⊆ key(B). Then q
satisfies the zig-zag property.

Proof. Let D be a database, a, b, b′, c ∈ D such that a 6∼ c, a 6= b and b ∼ b′. It suffices to prove
that there is a homomorphism from AB to ab′. Clearly there is a homomorphism from A to a
and from B to b′. So, to prove that D |= q(ab′) it suffices to show that for any two positions i, j
if A(i) = B(j) then a(i) = b′(j). Pick any positions i, j such that A(i) = B(j). Then we have
a(i) = b(j) and c(i) = b′(j).

If vars(A) ∩ vars(B) ⊆ key(B) then there is a key position j′ such that B(j) = B(j′). This
implies that b′(j) = b′(j′) = b(j′) = b(j) = a(i).

Otherwise assume that key(A) ⊆ key(B). Since a 6∼ c, there is some key position k such that
a(k) 6= c(k). By assumption there is some key position k′ such that A(k) = B(k′). This implies
b(k′) 6= b′(k′) which is a contradiction to b ∼ b′.

Lemma 6. Let q = AB be a query satisfying the zig-zag property. For all databases D and for all
repair r of D if r |= q(ab) then {a} ∈ ∆2(q,D) or there exists a repair s of D such that q(s) ( q(r).

To prove the lemma, we set up some definitions. For a database D, repair r of D and a fact
a ∈ r let Sol(a, r) = { {ab} | r |= q{ab} } and let Sol(a, r) = { {bc} | r |= q{bc} and b, c 6= a }.
Note that Sol(a, r) and Sol(a, r) forms a disjoint partition of q(r). Also we write a ∈ ∆2(q,D) to
mean if the set {a} is in ∆2(q,D).
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Proof. Let D be a database and r be a repair of D. Let a, b ∈ r such that r |= q(ab). Now, assume
that a 6∈ ∆2(q,D). Then we build the repair s that satisfies the required properties. To build s,
we construct two sequences of facts a0, a1, . . . and b1, b2, . . . and a sequence of repairs r0, r1, . . .
(by induction). Further, with Si = {a0, . . . , ai} and Ti = {v ∈ ri | ∃u ∈ Si, ri |= q(uv)}, we also
maintain another sequence of facts w1, w2, . . . (possibly repeating) where each wi ∈ Si−1 such
that the following invariants are satisfied for all i:

(a) Si ⊆ ri
(b) If i > 0 then ∀v ∈ ri we have ri 6|= q(vai)

(c) ∀u, v ∈ Si we have ri 6|= q(uv)

(d) If i > 0 then the set {a,wi, ai} does not contain any 2-set as a subset.

(e) If i > 0 then b 6∈ ri
(f) if i > 0, then bi ∈ Ti−1 and ai ∼ bi and ri−1 |= q(wibi)

(g) {a, ai} 6∈ ∆2(q,D)

(h) if i > 0, Sol(a, ri) ⊆ Sol(a, r) \ {ab}

(i) if i > 0, Sol(a, ri) ⊆ Sol(a, r) ∪ {uv | u ∈ Si, v ∈ Ti and ri |= q(uv)}

(j) a0, . . . , ai are pairwise distinct

In the base case define a0 = a and r0 = r. Clearly (a), (g), (j) holds. Claim (c) holds because
a 6∈ ∆k(q,D). Claims (b), (d), (e), (f), (h), (i) are not applicable.

Inductively assume that the above properties are true for all j ≤ i. Now, we either obtain the
required s or extend the sequences to i+ 1 and show that the invariants are satisfied.

If Ti = ∅ then it implies that i > 0 (since b ∈ T0). Hence, by (h), (i) it follows that ri is the
desired repair .

If Ti 6= ∅, then if i = 0 then choose b1 = b and w1 = a. Otherwise choose some bi+1 ∈ Ti and
let wi+1 ∈ Si be such that ri |= q(wi+1bi+1). Note that bi+1 6∈ Si (otherwise it contradicts (c)).
Now, by (g) we have {a,wi+1} 6∈ ∆2(q,D). Hence there exists ai+1 ∼ bi+1 such that every subset
of {a,wi+1, ai+1} is not a 2-set. Set ri+1 = ri[bi+1 → ai+1].

We show that the inductive properties are satisfied for i+ 1.

(a) This follows by construction since bi+1 6∈ Si and ai+1 ∈ ri+1.

(b) Assume, towards a contradiction, that there is some v ∈ ri+1 such that ri+1 |= q(vai+1).
Since D |= q(wi+1bi+1), by zig-zag we have D |= q(wi+1ai+1). But this implies that
{wi+1, ai+1} ∈ ∆2(q,D) which is a contradiction to the construction.

(d) Immediate by construction.

(c) Observe that for all u, v ∈ Si \ Si+1, the claim follows by induction. So we only need to
consider solutions that involve ai+1. By (b) there is no v ∈ Si+1 such that ri+1 |= q(vai+1).
We hence focus on the converse.

Towards a contradiction, assume that there is some u ∈ Si+1 such that ri+1 |= q(ai+1u). Let
j be an index such that u = aj . Since {a, ai+1} 6∈ ∆2(q,D) and a = a0 ∈ K, we have j > 0.
Hence by (f) there exists bj ∈ Tj−1 such that aj ∼ bj . Also there is some wj ∈ Sj−1 such
that rj−1 |= q(wjbj). By zig-zag property we have rj−1[bj → aj ] |= q(wjaj) but this implies
{wj , aj} is a 2-set which contradicts (d).

(e) If i = 1 then we have w1 = a and b1 = b and construction b 6∈ r1. Otherwise inductively
b 6∈ ri so if b ∈ ri+1 then the only possibility is ai+1 = b but this implies {a, ai+1} ∈ ∆2(q,D)
which is a contradiction.
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(f) Immediate by construction.

(g) Immediate by construction.

(h) Pick some arbitrary {a, c} ∈ Sol(a, ri+1). By (e) it follows that c 6= b.

Also if {a, c} ∈ Sol(a, ri) then inductively we have {a, c} ∈ Sol(a, r). So the only possibility
is c = ai+1 but this implies {a, ai+1} ∈ ∆2(q,D) which is a contradiction.

(i) Pick some arbitrary c′d′ ∈ Sol(a, ri+1) such that ri+1 |= q(c′d′). Suppose c′d′ ∈ Sol(a, r),
then by construction it has to be the case that either c′ ∈ Si+1 or d′ ∈ Si+1 (because all
other facts are common to r and ri+1).

Now, if c′ ∈ Si+1 then by definition d′ ∈ Ti+1 and hence c′d′ ∈ {uv | u ∈ Si+1, v ∈ Ti+1 and
ri+1 |= q(uv)}. Otherwise if d′ ∈ Si+1 then it is a contradiction to (b) (since d′ 6= a).

(j) Suppose not, then let ai+1 = aj for some j ≤ i. By induction aj ∈ ri and bi+1 ∼ ai+1 and
also we have ri |= q(wi+1bi+1). This implies aj = bi+1 and hence ri |= q(wi+1aj) which
implies wi+1 ∈ Si. This is in contradiction with (c).

Thus, all the items hold true for i + 1. Since Si+1 strictly extends Si and the database is finite,
at some point we must arrive at an index j such that Tj = ∅, implying that rj is the required
repair.

C Proofs for Section 7 (2way-determined queries)

Proposition 8. Let q be a 2way-determined query. If q admits a fork-tripath (triangle-tripath)
then q admits a nice fork-tripath (triangle-tripath).

Proof. Since q = AB is 2way-determined, there exist variables xA ∈ key(A) and xB ∈ key(B) such
that xA ∈ vars(B) \ key(B) and xB ∈ vars(A) \ key(A).

Let Θ be the tripath admitted by q centered at def and let ue be the unique fact in the root
block Ue and ud and uf be the two facts in the two leaf blocks Ud and Uf respectively. We will
obtain a new tripath Θ′ such that if Θ is a fork-tripath (triangle-tripath) then Θ′ will be a
nice fork-tripath (nice triangle-tripath).

Note that we have g(e) 6⊆ key(ud), g(e) 6⊆ key(ue) and g(e) 6⊆ (uf ). Assume that these non-
key inclusions hold only at these three facts. So for all facts u ∈ Θ if u 6∈ {ud, ue, uf} we have
g(e) ⊆ key(u). Otherwise we can prune the branches of Θ making sure that this always holds.

We also assume that each of the key of Ud, Ue and Uf contains a unique element that does
not occur as a key for any other facts in the tripath. This can be achieved for Ud (the other
cases are treated similarly) as follows: Consider the block B predecessor of Ud in Θ. Assume that
q(a(B) b(Ud)) holds (the case where we have q(b(Ud)a(B)) is treated symmetrically). Let α be a
fresh new element. Let h be the morphism that maps AB to a(B)b(Ud). Let h′ be the morphism
constructed from h by mapping xB to α. Let a′b′ = h′(AB) and notice that by our choice of xB ,
a′ ∼ a and α ∈ key(b′) does not occur as key in any other facts. Let U ′d be the new block that
contains b′. It can also be verified that key(b′) does not contain all of g(e) (otherwise this would
also be true for key(ud)). Construct the tripath Θ′ where Ud is replaced by U ′d, a(B) is replaced
a′ and s(B) = U ′d.

Let ad ∈ key(ud), ae ∈ key(ue) and af ∈ key(uf ) such that ad, ae, af do not occur in any other
key of any other facts of the tripath Θ. We start by making the tripath Θ variable-nice. We
do a case analysis depending on how g(e) is defined.

1. if key(d) 6⊆ key(e) and key(f) 6⊆ key(e) then g(e) = key(e). Let Be be the block of e.

Hence we have y0, y1, y2 ∈ key(e) such that y0 6∈ key(ud) and y1 6∈ key(ue) and y2 6∈ key(uf ).
Our pruning on Θ implies that the variables y0, y1 and y2 appear in the key of all other facts
of Θ except ud, ue, uf . Let x ∈ key(d) \ key(e) and z ∈ key(f) \ key(e).
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In this case, to obtain variable-nice tripath, the three elements that we pick are x ∈ key(d)
and y = y1 ∈ key(e) and z ∈ key(f).

Note that y 6∈ key(ue). We can also assume that x, z 6∈ key(ue). This is because since
x 6∈ key(e) we can replace x with a fresh new element x′ in all its occurrences in the path of
Θ from Be to Ue, including a(Be) (but excluding e). This does not affect the tripathness of
Θ. We do similarly for z.

Consider now ud. Let Θ1 be the path of Θ going from ud to ue (leaf to the root). Let Θ′1
be the copy of Θ1 after replacing y0 by a fresh new element y′0 and ae with a fresh element
a′e. Let Θ̂1 be the database Θ1 ∪Θ′1 and replace Θ1 in Θ by Θ̂1. This gives a new tripath
with the same Ue, Uf but a new Ûd instead of Ud. As key(ue)∩{x, y, z} = ∅ and ûd is a copy
of ue then key(ûe) ∩ {x, y, z} = ∅. Also, we have ûe 6∼ ûd since we have replaced ae with a
fresh element a′e.

By symmetry we do the same for uf (using y2 instead of y0 and a′′e to substitute ae in the
path from uf to ue) and obtain a tripath that is variable-nice.

2. if key(d) ⊆ key(e) and key(f) 6⊆ key(e) then g(e) = key(d).

Then we have variables x0, x1, x2 ∈ key(d) such that x0 6∈ key(ud) and x1 6∈ key(ue) and
x2 6∈ key(uf ). Note that by assumption we have x0, x1, x2 ∈ key(e) and that they all appear
in all blocks of Θ except for ud, ue, uf . Also, let z ∈ key(f) \ key(e). In this case the three
elements that we pick are x = x0 = y and z.

By construction x 6∈ key(ue) and as in the previous case we can make sure that z 6∈ key(ue).

Consider now ud. The same construction (using x1 and x2 instead of y1 and y2) as in the
previous case shows that we can replace ud with ûd such that {x, z} ∩ key(ûd) = ∅.
The case of uf is treated similarly.

3. if key(d) 6⊆ key(e) and key(f) ⊆ key(e) then g(e) = key(f).

This case is symmetric to the previous case.

4. if key(d) ⊆ key(f) ⊆ key(e) then g(e) = key(d).

Then we have variables x0, x1, x2 ∈ key(d) such that x0 6∈ key(ud) and x1 6∈ key(ue) and
x3 6∈ key(uf ). Note that by assumption we have x0, x1, x2 ∈ key(f) ⊆ key(e). In this case
we use the element x = y = z = x0. The rest of the construction is as above.

5. If key(f) ⊆ key(d) ⊆ key(e) then in this case g(e) = key(f).

This case is symmetric to the previous case.

6. The only remaining case that is not covered before is when key(d), key(f) ⊆ key(e) and
key(d) 6⊆ key(f) and key(f) 6⊆ key(d). So, g(e) = key(e).

In this case we directly construct the variable-nice tripath Θ′ using the fork def without
using any other facts of Θ. Let x ∈ key(d) \ key(f) and z ∈ key(f) \ key(d). By assumption
we have x, z ∈ key(e) and hence z ∈ adom(d) \ key(d) and x ∈ adom(f) \ key(f).

We use the elements x = y ∈ key(e)∩ key(d) and z ∈ key(f) to construct Θ′ and def will be
the center of Θ′. The construction is depicted in Figure 3. We define the other facts of Θ′

as follows:

Let h and h′ be the homomorphisms from AB to de and from AB to ef respectively.

Let Z be the set of variables w of AB such that h(w) = z and let α be a fresh new element
and let h1 be the homomorphism such that h1(w) = α if w ∈ Z and h1(w) = h(w) otherwise.
Let d′b1 = h1(AB). From our choice of z is follows that d′ ∼ d, α is part of the key of b1
and z does not appear in the key of b1. Moreover for every position i, b1[i] 6= e[i] iff e[i] = z
and b1[i] = α. Hence there is a homomorphism from e to b1 (and hence from A to b1).
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Now let β be a fresh new element and let h2 be the homomorphism such that for all w ∈
vars(A) ∪ vars(B) if w = xB then h2(w) = β; if w ∈ Z \ {xB} then h2(w) = α ; otherwise
h2(w) = h′(w). Let a1b2 = h2(AB). From our choice of xB it follows that a1 ∼ b1 and
β is part of the key of b2. From our choice of x it follows that x is not part of the key
of b2 (otherwise it can be argued that x ∈ key(f) which is a contradiction). Altogether
d, d′, a1, b1, b2 form a branch starting from the fact d and ending to a fact b2 that do not
contain x and z in its key as desired.

Symmetrically we construct a branch starting from f and ending to a fact that do not contain
x and z in its key (using X as the set of variables of AB such that h′(w) = x for every w ∈ X
for the first step and using xA instead of xB in the second step).

<latexit sha1_base64="c+yZ2FZ37hFjTUPPlr2WQYzsPUA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPu1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZ9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDvG42S</latexit>a4
<latexit sha1_base64="ZR8MiI9qkyUslomPCMXhxoyvbN4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9A775UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4bWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+y6t1fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AHvHY2S</latexit>

b3
<latexit sha1_base64="Emm5ch6vZgIhBMZV37X6v9E3AaQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSA+2d98oVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZ9e4vKrWbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gDtl42R</latexit>a3

<latexit sha1_base64="1+6LDVdYjTee7JD2bucA57JwiHo=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6wNNeueJW3RnIMvFyUoEc9V75q9uPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZ7NIJObFKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0bdLnCpkRY0soU9zeStiQKsqMDadkQ/AWX14mzfOqd1n17i8qtZs8jiIcwTGcgQdXUIM7qEMDGITwDK/w5oycF+fd+Zi3Fpx85hD+wPn8ASvZjSA=</latexit>

e0 <latexit sha1_base64="E8vRTPNVvaNnwpWuMEUcNZCVWbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUwH654lbdOcgq8XJSgRz1fvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmRD8JZfXiWti6p3VfUal5XabR5HEU7gFM7Bg2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq0FJ585hj9wPn8Ay2WM7w==</latexit>e

<latexit sha1_base64="eA6cC+Yke2w6+xndKmHxhmczT1M=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWw2k3btZhN2N0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hobua3n1BpnsgHM07Rj+lA8ogzaqzUCPvlilt15yCrxMtJBXLU++WvXpiwLEZpmKBadz03Nf6EKsOZwGmpl2lMKRvRAXYtlTRG7U/mh07JmVVCEiXKljRkrv6emNBY63Ec2M6YmqFe9mbif143M9GNP+EyzQxKtlgUZYKYhMy+JiFXyIwYW0KZ4vZWwoZUUWZsNiUbgrf88ippXVS9q6rXuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDyeGM7g==</latexit>

d
<latexit sha1_base64="3vKzMiGAyO6ScRXuTa/Y52MKJTU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66J/2yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZpdOyIlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDglG4K3+PIyaZ5Xvcuqd39Rqd3kcRThCI7hDDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nDypUjR8=</latexit>

d0
<latexit sha1_base64="rst5Nqo0zkxAec+hPoezuRzJEe8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlereveXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDsFY2Q</latexit>

b1
<latexit sha1_base64="oFbcnK5tG4bY//d4inS/vPD3Kec=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9r3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP+qPjY8=</latexit>a1

<latexit sha1_base64="Dni+qwVaIa/d+QJkAYtrw6cC2To=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPRr/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndZ9e4vKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDtmY2R</latexit>

b2

<latexit sha1_base64="ctajA+Ew79AFF9gq5hDForI4aIg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzOmM8A==</latexit>

f
<latexit sha1_base64="EYTpxOZGnkOFHQDsRlLoFXYFkDM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6CE975YpbdWcgy8TLSQVy1Hvlr24/ZmmE0jBBte54bmL8jCrDmcBJqZtqTCgb0QF2LJU0Qu1ns0sn5MQqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rw2s+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpySDcFbfHmZNM+r3mXVu7+o1G7yOIpwBMdwBh5cQQ3uoA4NYBDCM7zCmzNyXpx352PeWnDymUP4A+fzBy1ejSE=</latexit>

f 0

Figure 3: Illustration of the tripath constructed in the special case when key(d), key(f) ⊆ key(e) and
key(d) 6⊆ key(f) and key(f) 6⊆ key(d).

It remains to construct the branch starting from e.

Let δ be a fresh new value and let h3 be the homomorphism defined by h3(w) = δ if w = xB
and h3(w) = h′(w) otherwise. Let e′a3 = h3(AB). From our choice of xB it follows that
e′ ∼ e and that a3 contains δ in its key. It can also be verified that x 6∈ key(a3) (otherwise
we can argue that x ∈ key(f)) but x ∈ adom(a3) (since q is 2way-determined). Let X ′ be
the set of variables of AB such that h3(w) = x for every w ∈ X ′.
Let γ be a fresh new value and let h4 be the homomorphism defined by h4(w) = γ if w ∈ X ′
and h4(w) = h3(w) otherwise. Let a4b3 = h4(AB). Because x does not occur in the key of
a3 we have b3 ∼ a3. Moreover a4 contains γ in its key.

Now we claim that there is a homomorphism from key(e) to key(a4). To see this, pick any two
key positions i, j such that e[i] = e[j]. This implies that e′[i] = e′[j] (since e′ ∼ e). Let i′, j′ be
positions such that A(i) = B(i′) and A(j) = B(j′) and hence a3[i′] = a3[j′]. By construction
this implies that b3[i′] = a3[i′] = a3[j′] = b3[i′]. Hence we have a4[i] = b3[i′] = b3[j′] = a4[j].

Thus there is a homomorphism from key(B) to key(a4). Let h5 be the homomorphism
extending it to any variables of AB by setting a new fresh values to all variables not in the
key of B. Let a5b4 = h5(AB). It can be verified that z is no longer in the key of a5 as
desired (otherwise we can argue that z ∈ key(d)).

This concludes the proof that we can obtain a variable-nice tripath Θ. We now show that we
can further enforce solution-niceness.

We say that a solution q(αβ) is good in the tripath Θ if both α, β ∈ {d, e, f} or {α, β} =
{a(B), b(B′)} for some blocks B,B′ where B is the parent of B′ in Θ. Otherwise, q(αβ) is called
an extra solution. If all solutions of Θ are good then Θ is already a solution-nice. Otherwise we
strictly decrease the number of extra solutions within Θ by transforming it. As the transformation
will preserve variable-niceness, this eventually yields a solution-nice and variable-nice tripath.

Consider an extra solution q(αβ) ∈ q(Θ).
Notice that because α and β are part of a tripath, they must be part of some good solutions.

Let c1 and c2 be the facts of Θ such that q{c1α} and q{c2β} are good solutions. Notice that
because q is 2way-determined, if q(αc1) then c1 ∼ β and if q(c2β) then α ∼ c2 by Lemma 7.

We consider several cases.
Case 1. Assume first that q(αc1) holds (hence c1 ∼ β). Notice that c2 6∼ α otherwise this

would break the tree structure Θ. This implies that q(βc2). Notice that β 6∈ {ef} as q(δβ) (for
any arbitrary fact δ) would imply δ ∼ α and there would be two good edges from the block of α to
the block of β. If β = d (hence c2 = e), notice that α 6∈ {def} and c1 6∈ {def}. Similarly we can
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argue that if c2 ∈ {def} then c2 = e and β = d. We therefore distinguish between two subcases
depending on whether β = d or not.

Subcase 1.1. If β = d then c2 = e. Hence α is not a part of the center of the tripath Θ. So
we can safely replace α and c1 as follows: Let h be the homomorphism from AB to αc1. Let h1
be the one constructed from h by setting xA to a fresh new value x̂A. Set a1c

′
1 = h1(AB). Our

choice of xA implies that c′1 ∼ c1 and a1 is in a fresh new block.
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Figure 4: Illustration of the construction making the tripath solution nice in Case 1.1. The red part are
the new added facts

Let h2 be the homomorphism constructed from h by setting xA to x̂A and xB to a fresh new
value x̂B . Let b1a2 = h2(AB). Our choice of xB implies that b1 ∼ a1 and a2 is in a fresh new
block.

Finally, let h3 be the homomorphism constructed from h by setting xB to x̂B . Let α′b2 =
h2(AB). Our choice of xB implies that b2 ∼ a2 and α ∼ α′.

We construct Θ′ by replacing α by α′, c1 by c′1 and adding the facts a1, b1, a2, b2 with appro-
priate blocks and their successors. By construction def remains the center of Θ′ and Θ remains
variable-nice. We need to argue about the extra solutions. Notice that each of the ai and bi can
not be part of an extra solution because they have a fresh new values in their key that do not
occur in any other fact but the one that already form a good solution with them. Consider α′.
Assume q(α′δ) then δ ∼ c1 so δ = c′1. But then α′ ∼ a1 and this is not true by construction.
Assume now q(δα′). We can argue that this implies q(δα) (since for every position i, if α[i] 6= α′[i]
then α[i] is fresh). Hence such extra solutions are already present in Θ and we do not increase the
number of extra solutions. Finally consider the fact c′1. Assume q(δc′1) then δ ∼ a1 and so δ = b1.
But then c′1 ∼ a2 and this is not true by construction. Assume now q(c′1δ). We can argue that
this implies q(c1δ) and hence we do not increase the number of extra solutions..

The construction is described in Figure 4. Altogether the number of extra solutions has
decreased by one.

Subcase 1.2. Assume now that β 6= d and c2 6= e. As we have seen, this implies that
β, c2 6∈ {def}. We can safely replace β and c2 as follows:

We construct a new tripath Θ′, with the same center def , replacing β and c2 by new facts
β′ and c′2 in their respective blocks and linking them by new solutions to q in order to make sure
that q(αβ′) does not hold. The construction is such that no new extra solution is created.

To achieve this, by Corollary 27 we can assume that the generalized 2-path of q is such that
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key(P1) 6⊆ key(P0) and key(P1) 6⊆ key(P2).
Let i1 be a key position where P1[i1] = y1 6∈ key(P0). This implies that B[i1] 6∈ key(A) and

since q is 2way-determined, there is a non-key position j1 such that B[i1] = A[j1]. Let P ′1[j1] = z
and by construction, z 6∈ vars(P1) and P2[i1] = z ∈ key(P2).
Similarly let i2 be the key position where P1[i2] = y2 6∈ key(P2). This implies that A[i2] 6∈ key(B)
and by definition of the generalized 2 path, P0[i2] = x 6∈ key(P1).

Thus we have variables x, y1, y2, z such that x ∈ key(P0)\key(P1); y1 ∈ key(P1)\key(P0); y2 ∈
key(P1) \ key(P2) and z ∈ key(P2) \ key(P1) where z 6∈ vars(P1) (Recall that key(P1) = key(P ′1)).
We will use these variables to modify the facts of the tripath to remove extra solutions.
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�
<latexit sha1_base64="KcwXgiwQyz2Woep5Ng5vBHqQ1do=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1busevcXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDvH42S</latexit>c2

<latexit sha1_base64="3L6ZGYXJzZcT0pDcJ1EWcQFoHAw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWQnuL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjXmPHg==</latexit>↵<latexit sha1_base64="rzjy3QtB1ztBMUa+TCgycUl0CfU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP+2bjZE=</latexit>c1

<latexit sha1_base64="ipwyEU4HWqxls66hU/IYczXN5eU=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK6Gmamta27ohuXFewD2qFk0kwbm0mGJCOUof/gxoUibv0fd/6NmbaCih64cDjnXu69J4gZVdpxPqzcyura+kZ+s7C1vbO7V9w/aCuRSExaWDAhuwFShFFOWppqRrqxJCgKGOkEk6vM79wTqajgt3oaEz9CI05DipE2UrsfEI1OB8WSY1/Uq965Bx3bcWpeuZoRr1bxytA1SoYSWKI5KL73hwInEeEaM6RUz3Vi7adIaooZmRX6iSIxwhM0Ij1DOYqI8tP5tTN4YpQhDIU0xTWcq98nUhQpNY0C0xkhPVa/vUz8y+slOqz7KeVxognHi0VhwqAWMHsdDqkkWLOpIQhLam6FeIwkwtoEVDAhfH0K/ydtz3artntTKTUul3HkwRE4BmfABTXQANegCVoAgzvwAJ7AsyWsR+vFel205qzlzCH4AevtE4rGjx8=</latexit>

�0

<latexit sha1_base64="c+4wnjJtfbrGlmvBvc7adAWYCpo=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jS2tZb0YvHirYW2lA22027dLMJuxuhlP4ELx4U8eov8ua/cdNWUNEHA4/3ZpiZFyScKe04H1ZuZXVtfSO/Wdja3tndK+4ftFWcSkJbJOax7ARYUc4EbWmmOe0kkuIo4PQuGF9m/t09lYrF4lZPEupHeChYyAjWRrrBfbdfLDn2eb3qnXnIsR2n5pWrGfFqFa+MXKNkKMESzX7xvTeISRpRoQnHSnVdJ9H+FEvNCKezQi9VNMFkjIe0a6jAEVX+dH7qDJ0YZYDCWJoSGs3V7xNTHCk1iQLTGWE9Ur+9TPzL66Y6rPtTJpJUU0EWi8KUIx2j7G80YJISzSeGYCKZuRWREZaYaJNOwYTw9Sn6n7Q9263a7nWl1LhYxpGHIziGU3ChBg24gia0gMAQHuAJni1uPVov1uuiNWctZw7hB6y3T02HjdM=</latexit>a1
<latexit sha1_base64="9ndjPkQ6hz6eQwc55qIMUUN1OJw=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jS2tZb0YvHirYW2lA22027dLMJuxuhlP4ELx4U8eov8ua/cdNWUNEHA4/3ZpiZFyScKe04H1ZuZXVtfSO/Wdja3tndK+4ftFWcSkJbJOax7ARYUc4EbWmmOe0kkuIo4PQuGF9m/t09lYrF4lZPEupHeChYyAjWRroJ+m6/WHLs83rVO/OQYztOzStXM+LVKl4ZuUbJUIIlmv3ie28QkzSiQhOOleq6TqL9KZaaEU5nhV6qaILJGA9p11CBI6r86fzUGToxygCFsTQlNJqr3yemOFJqEgWmM8J6pH57mfiX1011WPenTCSppoIsFoUpRzpG2d9owCQlmk8MwUQycysiIywx0Sadggnh61P0P2l7tlu13etKqXGxjCMPR3AMp+BCDRpwBU1oAYEhPMATPFvcerRerNdFa85azhzCD1hvn08NjdQ=</latexit>

b1

<latexit sha1_base64="9Zmg/Fd+W1ipBBMAyeY/em3p0ac=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jS2tZb0YvHirYW2lA22027dLMJuxuhlP4ELx4U8eov8ua/cdNWUNEHA4/3ZpiZFyScKe04H1ZuZXVtfSO/Wdja3tndK+4ftFWcSkJbJOax7ARYUc4EbWmmOe0kkuIo4PQuGF9m/t09lYrF4lZPEupHeChYyAjWRrrBfa9fLDn2eb3qnXnIsR2n5pWrGfFqFa+MXKNkKMESzX7xvTeISRpRoQnHSnVdJ9H+FEvNCKezQi9VNMFkjIe0a6jAEVX+dH7qDJ0YZYDCWJoSGs3V7xNTHCk1iQLTGWE9Ur+9TPzL66Y6rPtTJpJUU0EWi8KUIx2j7G80YJISzSeGYCKZuRWREZaYaJNOwYTw9Sn6n7Q9263a7nWl1LhYxpGHIziGU3ChBg24gia0gMAQHuAJni1uPVov1uuiNWctZw7hB6y3T08LjdQ=</latexit>a2
<latexit sha1_base64="CxHizKdnwIT5ZcJ7YoaN40m3Bds=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jS2tZb0YvHirYW2lA22027dLMJuxuhlP4ELx4U8eov8ua/cdNWUNEHA4/3ZpiZFyScKe04H1ZuZXVtfSO/Wdja3tndK+4ftFWcSkJbJOax7ARYUc4EbWmmOe0kkuIo4PQuGF9m/t09lYrF4lZPEupHeChYyAjWRroJ+l6/WHLs83rVO/OQYztOzStXM+LVKl4ZuUbJUIIlmv3ie28QkzSiQhOOleq6TqL9KZaaEU5nhV6qaILJGA9p11CBI6r86fzUGToxygCFsTQlNJqr3yemOFJqEgWmM8J6pH57mfiX1011WPenTCSppoIsFoUpRzpG2d9owCQlmk8MwUQycysiIywx0Sadggnh61P0P2l7tlu13etKqXGxjCMPR3AMp+BCDRpwBU1oAYEhPMATPFvcerRerNdFa85azhzCD1hvn1CRjdU=</latexit>

b2

<latexit sha1_base64="cA6RUPFL7txywRrL3c2LKlPW1fQ=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jS2tZb0YvHirYW2lA22227dLMJuxuhhP4ELx4U8eov8ua/cdNWUNEHA4/3ZpiZF8ScKe04H1ZuZXVtfSO/Wdja3tndK+4ftFWUSEJbJOKR7ARYUc4EbWmmOe3EkuIw4PQumFxm/t09lYpF4lZPY+qHeCTYkBGsjXSD++V+seTY5/Wqd+Yhx3acmleuZsSrVbwyco2SoQRLNPvF994gIklIhSYcK9V1nVj7KZaaEU5nhV6iaIzJBI9o11CBQ6r8dH7qDJ0YZYCGkTQlNJqr3ydSHCo1DQPTGWI9Vr+9TPzL6yZ6WPdTJuJEU0EWi4YJRzpC2d9owCQlmk8NwUQycysiYywx0Sadggnh61P0P2l7tlu13etKqXGxjCMPR3AMp+BCDRpwBU1oAYERPMATPFvcerRerNdFa85azhzCD1hvn1CPjdU=</latexit>a3

<latexit sha1_base64="j3g59qufOcQ6JA+t3k4bcGIlMj8=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jS2tZb0YvHirYW2lA22227dLMJuxuhhP4ELx4U8eov8ua/cdNWUNEHA4/3ZpiZF8ScKe04H1ZuZXVtfSO/Wdja3tndK+4ftFWUSEJbJOKR7ARYUc4EbWmmOe3EkuIw4PQumFxm/t09lYpF4lZPY+qHeCTYkBGsjXQT9Mv9Ysmxz+tV78xDju04Na9czYhXq3hl5BolQwmWaPaL771BRJKQCk04VqrrOrH2Uyw1I5zOCr1E0RiTCR7RrqECh1T56fzUGToxygANI2lKaDRXv0+kOFRqGgamM8R6rH57mfiX1030sO6nTMSJpoIsFg0TjnSEsr/RgElKNJ8agolk5lZExlhiok06BRPC16fof9L2bLdqu9eVUuNiGUcejuAYTsGFGjTgCprQAgIjeIAneLa49Wi9WK+L1py1nDmEH7DePgFSFY3W</latexit>

b3
<latexit sha1_base64="k5T+0LpXF7GxLNFgUzczTKGGDoM=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jS2tZb0YvHirYW2lA22027dLMJuxuhlP4ELx4U8eov8ua/cdNWUNEHA4/3ZpiZFyScKe04H1ZuZXVtfSO/Wdja3tndK+4ftFWcSkJbJOax7ARYUc4EbWmmOe0kkuIo4PQuGF9m/t09lYrF4lZPEupHeChYyAjWRrrB/Uq/WHLs83rVO/OQYztOzStXM+LVKl4ZuUbJUIIlmv3ie28QkzSiQhOOleq6TqL9KZaaEU5nhV6qaILJGA9p11CBI6r86fzUGToxygCFsTQlNJqr3yemOFJqEgWmM8J6pH57mfiX1011WPenTCSppoIsFoUpRzpG2d9owCQlmk8MwUQycysiIywx0Sadggnh61P0P2l7tlu13etKqXGxjCMPR3AMp+BCDRpwBU1oAYEhPMATPFvcerRerNdFa85azhzCD1hvn1ITjdY=</latexit>a4

<latexit sha1_base64="fShDQO0Scc+NRs+mmbI0HXh9r8s=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jS2tZb0YvHirYW2lA22027dLMJuxuhlP4ELx4U8eov8ua/cdNWUNEHA4/3ZpiZFyScKe04H1ZuZXVtfSO/Wdja3tndK+4ftFWcSkJbJOax7ARYUc4EbWmmOe0kkuIo4PQuGF9m/t09lYrF4lZPEupHeChYyAjWRroJ+pV+seTY5/Wqd+Yhx3acmleuZsSrVbwyco2SoQRLNPvF994gJmlEhSYcK9V1nUT7Uyw1I5zOCr1U0QSTMR7SrqECR1T50/mpM3RilAEKY2lKaDRXv09McaTUJApMZ4T1SP32MvEvr5vqsO5PmUhSTQVZLApTjnSMsr/RgElKNJ8Ygolk5lZERlhiok06BRPC16fof9L2bLdqu9eVUuNiGUcejuAYTsGFGjTgCprQAgJDeIAneLa49Wi9WK+L1py1nDmEH7DePgFTmY3X</latexit>

b4

<latexit sha1_base64="oMVYByRZhZm50mO+5rXSqGSlGBM=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmYmq7egF48RzQLJEHo6PUmTnoXuHiEM+QQvHhTx6hd582/sSSKo6IOCx3tVVNXzYs6ksqwPI7e2vrG5ld8u7Ozu7R8UD486MkoEoW0S8Uj0PCwpZyFtK6Y47cWC4sDjtOtNrzK/e0+FZFF4p2YxdQM8DpnPCFZausXD6rBYssyLRs2pOsgyLavulGsZceoVp4xsrWQowQqtYfF9MIpIEtBQEY6l7NtWrNwUC8UIp/PCIJE0xmSKx7SvaYgDKt10ceocnWllhPxI6AoVWqjfJ1IcSDkLPN0ZYDWRv71M/MvrJ8pvuCkL40TRkCwX+QlHKkLZ32jEBCWKzzTBRDB9KyITLDBROp2CDuHrU/Q/6TimXTPtm0qpebmKIw8ncArnYEMdmnANLWgDgTE8wBM8G9x4NF6M12VrzljNHMMPGG+fU5eN1w==</latexit>a5

<latexit sha1_base64="E8DuKKJUPxV6DdMm1WmMsHUiX6k=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmYmq7egF48RzQLJEHo6PUmTnoXuHiEM+QQvHhTx6hd582/sSSKo6IOCx3tVVNXzYs6ksqwPI7e2vrG5ld8u7Ozu7R8UD486MkoEoW0S8Uj0PCwpZyFtK6Y47cWC4sDjtOtNrzK/e0+FZFF4p2YxdQM8DpnPCFZauvWG1WGxZJkXjZpTdZBlWlbdKdcy4tQrThnZWslQghVaw+L7YBSRJKChIhxL2betWLkpFooRTueFQSJpjMkUj2lf0xAHVLrp4tQ5OtPKCPmR0BUqtFC/T6Q4kHIWeLozwGoif3uZ+JfXT5TfcFMWxomiIVku8hOOVISyv9GICUoUn2mCiWD6VkQmWGCidDoFHcLXp+h/0nFMu2baN5VS83IVRx5O4BTOwYY6NOEaWtAGAmN4gCd4NrjxaLwYr8vWnLGaOYYfMN4+AVUdjdg=</latexit>

b5

<latexit sha1_base64="BKoEJO5gvZWr5Rrm7RQwW5BO/KU=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jSmtZb0YvHirYW2lA22027dPPB7kYooT/BiwdFvPqLvPlv3LQVVPTBwOO9GWbm+QlnUlnWh1FYWV1b3yhulra2d3b3yvsHHRmngtA2iXksuj6WlLOIthVTnHYTQXHoc3rnTy5z/+6eCsni6FZNE+qFeBSxgBGstHSDB+6gXLHM84brnDnIMi2r7lTdnDj1mlNFtlZyVGCJ1qD83h/GJA1ppAjHUvZsK1FehoVihNNZqZ9KmmAywSPa0zTCIZVeNj91hk60MkRBLHRFCs3V7xMZDqWchr7uDLEay99eLv7l9VIVNLyMRUmqaEQWi4KUIxWj/G80ZIISxaeaYCKYvhWRMRaYKJ1OSYfw9Sn6n3Qc03ZN+7pWaV4s4yjCERzDKdhQhyZcQQvaQGAED/AEzwY3Ho0X43XRWjCWM4fwA8bbJ1Ubjdg=</latexit>a6

<latexit sha1_base64="I0NimgMjt3O46OAXOX8rYjiErlc=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0jSmtZb0YvHirYW2lA22027dPPB7kYooT/BiwdFvPqLvPlv3LQVVPTBwOO9GWbm+QlnUlnWh1FYWV1b3yhulra2d3b3yvsHHRmngtA2iXksuj6WlLOIthVTnHYTQXHoc3rnTy5z/+6eCsni6FZNE+qFeBSxgBGstHTjD9xBuWKZ5w3XOXOQZVpW3am6OXHqNaeKbK3kqMASrUH5vT+MSRrSSBGOpezZVqK8DAvFCKezUj+VNMFkgke0p2mEQyq9bH7qDJ1oZYiCWOiKFJqr3ycyHEo5DX3dGWI1lr+9XPzL66UqaHgZi5JU0YgsFgUpRypG+d9oyAQlik81wUQwfSsiYywwUTqdkg7h61P0P+k4pu2a9nWt0rxYxlGEIziGU7ChDk24gha0gcAIHuAJng1uPBovxuuitWAsZw7hB4y3T1ahjdk=</latexit>

b6

<latexit sha1_base64="eyC1BLZl8scYxeBvoPVfGjEFeAM=">AAAB63icdVBNS8NAEJ3Ur1q/qh69LBbRU0jS2tZb0YvHCrYW2lA22027dDcJuxuhlP4FLx4U8eof8ua/cdNWUNEHA4/3ZpiZFyScKe04H1ZuZXVtfSO/Wdja3tndK+4ftFWcSkJbJOax7ARYUc4i2tJMc9pJJMUi4PQuGF9l/t09lYrF0a2eJNQXeBixkBGsM4n0vdN+seTYF/Wqd+4hx3acmleuZsSrVbwyco2SoQRLNPvF994gJqmgkSYcK9V1nUT7Uyw1I5zOCr1U0QSTMR7SrqERFlT50/mtM3RilAEKY2kq0miufp+YYqHURASmU2A9Ur+9TPzL66Y6rPtTFiWpphFZLApTjnSMssfRgElKNJ8Ygolk5lZERlhiok08BRPC16fof9L2bLdquzeVUuNyGUcejuAYzsCFGjTgGprQAgIjeIAneLaE9Wi9WK+L1py1nDmEH7DePgGzD44H</latexit>

c02

Figure 5: Illustration of the construction making the tripath solution nice in Case 1.2. The red part are
the new added facts

By construction there is a homomorphism h from (P0P1P
′
1P2) to αc1βc2.

Let h1 be the morphism constructed from h by setting x to a fresh element x̂ not occurring in
Θ. Let a1β

′ = h1(P0P1). Notice that by our choice of x, β′ ∼ β (since x 6∈ key(P1)), while a1 is a
fact of a new block B1 (since x ∈ key(P0)).

Let h2 be the morphism constructed from h by setting h2(x) = x̂, h2(y1) = ŷ1 and h2(z) = ẑ,
where ŷ1 and ẑ are fresh new values. Let b1a2b2a3 = h2(P0P1P

′
1P2). By construction we have

ai ∼ bi for i = 1, 2 and a2 and a3 contain a fresh new value in their key.
Let h3 be the morphism constructed from h by setting h3(z) = ẑ, h3(y1) = ŷ1, h3(y2) = ŷ2 and

h3(x) = ẋ where ẋ and ŷ2 are fresh new values. Let a5b4a4b3 = h3(P0P1P
′
1P2). By construction

we have ai ∼ bi for i = 1, 2, 3, 4 and a4 and a5 contain a fresh element in their key.
Finally let h4 be the morphism constructed from h by setting h3(x) = ẋ, h3(y2) = ŷ2 is a fresh

new value. Let b5a6b6c
′
2 = h3(P0P1P

′
1P2). By construction we have ai ∼ bi for i = 1, 2, 3, 4, 5, 6

and a6 contains a fresh new value in their key. Moreover we have c′2 ∼ c2.
Let Θ′ be the database constructed from Θ by replacing β with β′, c2 with c′2 and adding

the facts a1b1a2b2 · · · a6b6 in appropriate blocks between the block of β and the block of c2 and
modifying the successor function for blocks appropriately.

By construction the center of Θ′ is def and hence Θ′ is variable-nice. It is clear that all the
new blocks have size 2, containing ai and bi respectively.

It remains to consider the extra solutions. As above we can argue than none of them can
involve one of the ai or the one of the bi. Consider β′. Assume q(δβ′). Then δ ∼ a1 and therefore
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δ = b1 and we have seen that this is not possible. Assume q(β′δ). Then we can argue that q(βδ),
so such solutions do not increase the number of extra solutions in the tripath. Consider c′2.
Assume q(δc′2). Then δ ∼ b6, so δ = a6 and we have seen that this is can not be the case. Assume
q(c′2δ). Then we can argue that q(c2δ) also hold.

The construction is described in Figure 5. Altogether the number of extra solution has de-
creased by one.

Case 2. The case where q(c2β) is handled as the previous case by symmetry.
Case 3. Assume now q(c1α) and c1, α 6∈ {def}.
We argue as in Case 1.1 for replacing α and c1 with new facts while inserting two new blocks.
Case 4. The case where q(βc2) and c1, α 6∈ {def} is treated similarly as Case 3.
Case 5. It remains to consider the case where q(c1α), q(βc2) and one of c1, α is in {def} and

one of c2, β is in {def}. A simple case analysis shows that this can only happen when α = f and
β = d, but then q(αβ) is not an extra solution. This only means that Θ was a triangle-tripath.

D Proofs for Section 8 (Queries with no tripath and PTime)

Proposition 10. Let q be a 2way-determined query and let k = 22κ+1 + κ − 1 and let D be a
database. If D does not admit a tripath of q then D ∈ certain(q) iff D ∈ Certk(q).

Proof. Let us assume Lemma 11 and prove the proposition. If D ∈ Certk(q) then clearly D ∈
certain(q) since Certk(q) is always an under-approximation of certain(q). So we only need to
prove the other direction. Assume D |= certain(q). We need to prove that D |= Certk(q). Let r
be a repair of D that contains minimal number of solutions.

Since D |= certain(q) there exists a, b ∈ r such that r |= q{ab}. Let K = r-key(a, r), clearly
|K| ≤ κ. Now we claim that for all K ′ ∼ K we have K ′ ∈ ∆k(q,D). Then by the update rule of
the algorithm it follows that ∅ ∈ ∆k(q,D) and we are done.

Suppose the claim is false. Then let K ′ ∼ K such that K ′ 6∈ ∆k(q,D). Let r′ be a repair such
that K ′ ∈ r′. Let a′ ∼ a such that a′ ∈ K ′. Define r0 = r[K → K ′]. Note that r-key(a′, r0) = K ′

and |K ′| = |K| ≤ κ. Let |q(r0)| = l. Then l ≥ |q(r)| because repair r is minimal.
We construct a sequence of repairs r0, r1, . . . rl such that for all i ≤ l we have q(ri) ( q(ri−1).

This implies that |q(rl)| ≤ 0 which is a contradiction to D |= certain(q)). The sequence of repairs
is constructed by induction such that for all i ≤ l the following invariants are maintained:

(a) K ′ ⊆ ri
(b) if i > 0 then q(ri) ( q(ri−1)

We have already defined r0 for which (a) holds by construction.
For the induction step, assume that we have constructed r0, . . . ri for some i < l satisfying the

inductive invariants.
Assume first there are not fact a ∈ K ′ such that there is a fact b ∈ ri such that q{ab} holds.

Then q(ri) ⊆ q(r) \ {(ab)}, a contradiction with the minimality of r.
Therefore there are facts ai, bi such that ai ∈ K ′ and bi ∈ ri such that q{aibi} holds. Since

K ′ ⊆ ri then we have r-key(ai, ri) ⊆ K ′. We also have |K ′| ≤ κ and by assumption K ′ 6∈ ∆k(q,D).
Hence, by lemma 11, there exists a repair ri+1 such that K ′ ⊆ ri+1 and q(ri+1) ( q(ri) as
desired.

Given a set of facts K ′ with K ′ ⊆ D, the active facts of K ′ are all facts c ∈ K ′ such that
D |= q{cc′} for some fact c′ of D such that for all f ∈ K ′, c′ 6∼ f .

Lemma 11. Let k ≥ κ and q = AB be a query that is 2way-determined. Let D be a database that
does not admit a tripath. Then for every repair r of D such that r |= q{ab}, and for all K ⊆ r
such that r-key(a) ⊆ K and |K| ≤ k, one of the following conditions hold:

1. K ∈ ∆k(q,D)
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2. There exists a repair r′ such that K ⊆ r′ and q(r′) ( q(r).

To prove the lemma we will use the following result.

Lemma 20. Let D,K, r, a, b be as described in Lemma 11. If there exists K ′ with K ⊆ K ′ ⊆ D,
such that the facts of K ′ have pairwise distinct keys, q(K ′) is empty and, all active facts of K ′

are in K \ {a}, then there exists a repair r′ of D such that K ⊆ r′ and q(r′) ( q(r).

Proof. Since facts of K ′ have pairwise distinct keys, let K1 ⊆ r such that K1 ∼ K ′. Define
r′ = r[K1 → K ′]. Clearly r′ contains K since K ⊆ K ′. Now we verify that q(r′) ( q(r). Suppose
r′ |= q(fg) for some facts f and g.

If f ∈ K ′, then g ∈ r′\K ′ since q(K ′) = ∅. Thus f is an active fact of K ′ and hence f ∈ K\{a}.
Moreover g ∈ r′ \ K ′ implies g ∈ r and hence r |= q(fg). By symmetry we get the same result
if g ∈ K ′. If neither f nor g are in K ′, then they are both f, g ∈ r and therefore r |= q(fg).
Altogether this shows that q(r′) ⊆ q(r). The inclusion is strict because a is not an active fact and
hence r′ 6|= q{ab}.

To prove Lemma 11, let D be a database such that D does not admit a tripath. Pick a
repair r of D. Let r |= q{ab} and let K ⊆ r where r-key(a, r) ⊆ K and |K| ≤ κ. Assume that
K 6∈ ∆k(q,D); we construct the desired repair r′.

Towards this, from Lemma 20 it suffices to show that a set K ′ as described in Lemma 20 exists.
We construct K ′ by induction, by increasingly adding one new element ai at a time. In order for
the induction to work, the intermediate sets K ∪ {a0, ...an} must satisfy some extra properties
than the ones needed for K ′. These properties are formalised by the following lemma.

Lemma 21. Let D and K be as described in Lemma 11. Assume there exists a sequence of
distinct blocks B0, · · · , Bn of D satisfying the following properties : B0 is the block of a and, for
all j > 0, Bj contains two distinct facts aj , bj and no fact from K. Moreover let a0 = a, let
Kn = {a0, · · · , an} ∪ K, let An = {aj | j ≤ n and aj is an active fact of Kn}, and let An =
{Bj |aj ∈ An}. Additionally assume the following set of properties, denoted by Cn:

(a) B0, · · · , Bn form a binary tree Tn, whose parent function is denoted by sn, and whose root
is B0. Further, whenever Bi = sn(Bj) then D |= q{aibj}.

(b) Let Fn be the set of all Bi having two distinct children in Tn, both having a descendant
belonging to An. Then for each Bl ∈ An ∪ Fn, l > 0, and each Bj which is a non-leaf
descendant of Bl in Tn, one has g(al) ⊆ key(aj).

(c) For each Bi ∈ An ∪ Fn which is not a leaf of Tn, there exists Bj such that ḡ(ai) = key(aj).
Moreover either Bi = Bj or Bi = sn(Bj).

(d) |An ∪K| ≤ k and An ∪K 6∈ ∆k(q,D).

(e) q(Kn) = ∅.

Then there exists a set K ′ with Kn ⊆ K ′ ⊆ D, whose facts have pairwise distinct keys,
containing no solution, and whose only active facts are in K \ {a}.

Note that q(K) = ∅, otherwise K ∈ ∆k(q,D). Hence for the singleton sequence B0, which is
the block of a, satisfies the hypotheses of Lemma 21, with K0 = K, A0 = {a}, A0 = {B0} and
F0 = ∅. So Proposition 10 follows from Lemma 21.

Proof of Lemma 21. First notice that all active fact of Kn are either in An or in K\{a}. Therefore,
whenever An = ∅ one can take K ′ = Kn to obtain the desired properties. Our aim is to extend
Kn until An = ∅.

We prove the lemma by induction on n. The limit case is when n is maximal (given by the
difference between the number of blocks in D and |K|), we have An = ∅ since all the keys of D
occur in Kn. Then, as observed above, K ′ = Kn is the desired set.
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We now assume that the lemma holds for n ≥ 0, we prove it for n + 1. Note that if n = 0
then clearly An 6= ∅. If n ≥ 1 and An = ∅ we take K ′ = Kn and conclude. So assume Cn holds
for a sequence of blocks B0, . . . Bn and An 6= ∅. We show how to find a new block Bn+1 such that
B0, . . . Bn, Bn+1 satisfies Cn+1. Then, by applying the induction hypothesis, one can construct
K ′ with Kn ⊆ Kn+1 ⊆ K ′ ⊆ D whose facts have pairwise distinct keys, containing no solution,
and whose only active facts are in K \ {a}; this will complete the proof.

We will be adding a new block Bn+1 to the sequence as a child of some node Bj∗ of Tn. As
Bj∗ then becomes non-leaf, we have to make sure that the inclusions of Item (b) are satisfied for
Bj∗ . We show that a node Bj∗ with this property must exist. More precisely we prove that :

Claim 22. There exists a block Bj∗ ∈ An such that for all block Bl ∈ An ∪Fn, with l > 0 and Bl
ancestor of Bj∗ in Tn, one has g(al) ⊆ key(aj∗).

Towards proving the claim, we will use the following consequence of the fact that D does not
admit a tripath:

Fact 23. For all blocks Bl ∈ Fn with l > 0, there exists at least one child of Bl in Tn such that
for all blocks Bj in its subtree (including its leaves), g(al) ⊆ key(aj).

To see this, assume that this is not the case for some Bl. Since Bl ∈ Fn, there are two children
on Bl in Tn. So there exists a block Bl1 in the right subtree of Bl and a block Bl2 in its left
subtree with g(al) 6⊆ key(al1), and g(al) 6⊆ key(al2). By Item (c) g(al) = key(aj), for some Bj
descendant of Bl and by hypothesis key(aj) can not be included into key(f) for some fact f ∈ K,
in particular key(aj) 6⊆ key(a) (otherwise aj ∈ K). Hence we also have g(al) 6⊆ key(a0). Therefore
the tree formed by Bl1 , Bl2 and all their ancestors contains a tripath (by keeping only the fact
ai, bi in all blocks Bi of this tree), which is a contradiction.

Now the desired block Bj∗ for Claim 22 is given by the following procedure: Starting from the
root of Tn we follow a path visiting only nodes having a descendant in An, and we stop as soon
as we find a node in An. (notice that the root has a descendant in An since An 6= ∅). While the
current node is not in An it must have a child with a descendant in An. If the current node is the
root or is not in Fn we move to any such child. Otherwise (the current node is in Fn and is not the
root) we move to its child satisfying Fact 23. When we stop, we are on a node Bj∗ ∈ An having no
proper ancestor in An, and such that all its ancestors Bl ∈ En with l > 0 satisfy g(al) ⊆ key(aj∗).
Moreover by definition of the function g, we have g(aj∗) ⊆ key(aj∗), thus Bj∗ is the desired block.

Let Bj∗ be the block given by Claim 22. Since aj∗ ∈ An, there exists a fact c such that
D |= q{aj∗c} and key(c) does not occur in Kn. If there are two facts c with different keys having
this property, and if moreover ḡ(aj∗) 6= key(aj∗), then we choose a c so that key(c) = ḡ(aj∗) (which
must exist by the definition of ḡ). By Item (d) we know that An ∪K 6∈ ∆k(q,D) and therefore
there exists a fact c′ ∼ c such that c′ ∪An ∪K contains no k-sets.

Let bn+1 = c, an+1 = c′ and Bn+1 be the block of c. Let sn+1(Bn+1) = Bj∗ and let sn+1

coincide with sn on B0, . . . Bn (i.e. Tn+1 is obtained by appending Bn+1 as a child of Bj∗).
We claim that the inductive properties are satisfied. First remark that by construction

key(an+1) is distinct from all the keys in Kn; thus B0, . . . Bn+1 are distinct blocks containing
no element of K. Then note that An+1 ⊆ An ∪ {an+1} and therefore An+1 ⊆ An ∪ {Bn+1}; as a
consequence Fn+1 ⊆ Fn ∪ {Bj∗}. We now prove Cn+1.

Cn+1.(a). Tn+1 is a binary tree, in fact Bj∗ has at most one child in Tn. This follows from the
fact that D |= q{aj∗c} with key(c) not occurring in Kn, so by Lemma 7 there can be at
most one Bi, i ≤ n, such that D |= q{aj∗bi}. Further for the only new parent-child pair
Bj∗ = sn+1(Bn+1) we have D |= q{aj∗bn+1}.

Cn+1.(b) Let Bl ∈ An+1∪Fn+1, l > 0, and let Bi be a non-leaf descendant of Bl in Tn+1. Notice
that since Bl is not a leaf of Tn+1, Bl ∈ An ∪ Fn; moreover by construction of Tn+1, Bi is
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either Bj∗ or a non-leaf of Tn. In the latter case Cn.(b) implies g(al) ⊆ key(ai). In the case
Bi = Bj∗ , Claim 22 implies g(al) ⊆ key(ai).

Cn+1.(c) We only need to prove the property for Bj∗ . By construction of Bn+1 it follows that
either ḡ(aj∗) = key(aj∗) or ḡ(aj∗) = key(an+1).

Cn+1.(d) |An+1 ∪K| ≤ k follows from Cn+1. (a), Cn+1. (b) and Cn+1. (c) as follows. Consider
the skeleton tree of Tn+1 connecting the blocks in N := An+1 ∪ Fn+1 i.e. the skeleton has
nodes N , and Bi is the parent of Bj in the skeleton iff Bi is the least proper ancestor of
Bj belonging to N in Tn+1. The skeleton has at most the rank of Tn+1 (i.e. rank two by
Cn+1.(a)) because the set N is closed under least common ancestor. Moreover the height of
the skeleton tree is the maximum number of elements of N which can be found in a branch
from root to leaf of Tn+1 minus 1.

We now prove that this number is bounded. In fact given a branch from the root to a leaf
of Tn+1, let I be the (possibly empty) sequence of elements of N in the branch, excluding
root and leaf. If this sequence is not empty let Bl be its last element in the ancestor-
descendant order. By Cn+1.(b) we have that for all Bi ∈ I, g(ai) ⊆ key(al). This implies
|{ḡ(ai) | Bi ∈ I}| ≤ κ. We now prove that at most two different Bi, Bj ∈ I can have
ḡ(ai) = ḡ(aj).

Let Bi and Bj be such ḡ(ai) = ḡ(aj). By Cn+1. By (c), there exists i′ and j′ such that
ḡ(ai) = key(ai′) and ḡ(aj) = key(aj′). As all blocks are distinct, this implies that i′ = j′.
Moreover (c) implies that Bi = Bi′ or Bi′ is a child of Bi. This implies that Bi is a child of
Bj or vice-versa.

It follows that |I| ≤ 2κ, and the number of elements of N in a branch of Tn+1 is bounded
by 2κ+ 2. Thus the skeleton of Tn+1 is a binary tree of height bounded by 2κ+ 1. Moreover
elements of An+1 must have at most one child in the skeleton; thus |An+1| = |An+1| ≤ 22κ+1.

Since An+1∪K is the disjoint union of An+1 and K\{a}, one has |An+1∪K| ≤ 22κ+1+κ−1 =
k.

Given this bound is now easy to see that An+1 ∪ K 6∈ ∆k(q,D). In fact we have already
observed that An+1 ⊆ An ∪ {an+1} and that An ∪K ∪ {an+1} contains no k-sets.

Cn+1.(e) By construction Kn+1 = Kn ∪ {an+1}. Assume D |= q{ab} for a, b ∈ Kn+1. By Cn · (e)
this implies that a = an+1. So b /∈ An ∪ K ∪ {an+1} otherwise {a, b} would be a k-set in
An ∪K ∪ an+1. Then b = al for some l ≤ n with al /∈ An, and D |= q{al, an+1}). Now recall
that by construction key(an+1) does not occur in Kn, so by definition of An we must have
al ∈ An, which is a contradiction.

This completes the proof of Lemma 21 and hence of Proposition 10.

E Sufficient conditions for the absence of tripath

In this section we give some sufficient syntactic conditions on the queries that imply that the
queries that satisfy these conditions do not admit a tripath. By Theorem 9 it follows that for
these queries, certain(q) is in PTime.

The first case is when the query is non-branching: there is no fact that can be part in two
solutions within a repair. For instance, the reader can verify that this is the case for the query
q5 = R(x yx) R(y xu). For such queries clearly q does not admit a tripath because there can
not be a center. Hence computing certain answers for non-branching queries is in PTime.

We now consider a more involved syntactic condition. Let q = AB be a 2way-determined
query. We define P1 as the most general atom such that there is an homomorphism from key(A)
to key(P1) and also from B to P1. Dually let P ′1 be the most general atom such that there is an
homomorphism from key(B) to key(P ′1) and also from A to P ′1. Notice that P1 ∼ P ′1 and the idea
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is to capture those blocks which can potentially have facts that match A and also facts that can
match B. We also define P0 and P2 are the atoms that match A and B when P1 and P ′1 matches
B and A respectively.

Formally, P0P1 is built as follows: For all x, y ∈ vars(A)∪ vars(B), define x ≡ y if there exists
key positions i, j such that A(i) = A(j) and we have B(i) = x and B(j) = y. For every equivalence
class of variables fix a representative and let h be the mapping that associates every variable x
the representative of the equivalence class to which x belongs. We then let h(AB) = P0P1.

Now by construction, there is a homomorphism h1 : key(A) to key(P1). Consider the mapping
h′1 where for every variable x ∈ vars(A) ∪ vars(B) if x ∈ key(A) then h′1(x) = h1(x); otherwise
h′1(x) = z where z is a fresh variable.

Thus we have defined P0, P1, P
′
1 and P2 such that P1 ∼ P ′1 and there are homomorphsims from

AB to P0P1 and from AB to P ′1P2. For a given query q, we call the corresponding P0, P1, P
′
1 and

P2 as its generalized 2-path. This name is justified by the following observation.

Fact 24. Let q = AB be a 2way-determined query with P0, P1, P
′
1 and P2 as its generalized 2-path.

Then for all database D and for all facts a, b, b′, c ∈ D such that b ∼ b′ and D |= q(ab) ∧ q(b′c),
there is a homomorphism from (P0P1P

′
1P2) to (abb′c).

Consider for instance the query q8 = R(xyzz u) R(zzyu x). The associated generalized 2-path
is P0 = R(xyzz y), P1 = R(zzyy x), P ′1 = R(zzyy x′) and P2 = R(yyzx′ z). The next syntactic
condition that we define depends on the variables occurring in the key of P1. Recall that A[I]
refers to the set of variables that occur in the positions I in A.

Lemma 25. Let q = AB be a 2way-determined query and let I, J be the subset of key positions
such that A[I] = B[J ]. If key(P1) = P0[I] then q does not admit a tripath.

Notice that the condition of the lemma is satisfied by q8, so from Lemma 25 and Theorem 9,
certain(q8) is in PTime. To prove Lemma 25, we set up some definitions. Let D be a database.
A sequence of facts Π = a0b0a1b1, . . . an, bn, an+1 is called an alternating path if for all i ≤ n we
have ai ∼ bi and D |= q{ai+1bi}, and if j 6= i then ai 6∼ aj . An alternating patch is strict if ai 6= bi
for every i. Note that any path of a tripath forms a strict alternating path.

Proof. Let D be an arbitrary database. We will prove that there cannot be a tripath Θ such
that Θ ⊆ D. First note that if D does not contain any branching fact then clearly we cannot have
any tripath in D. So let e be a branching fact in D with D |= q(de) ∧ q(ef). We will prove that
there cannot exist a tripath Θ ⊆ D with def as the center facts of Θ.

Note that there is a homomorphism from (P0P1P
′
1P2) to (deef). Also, by definition of g(e),

we always have g(e) ⊆ key(e). Hence, if there is a tripath Θ in D with def as the center facts
then there exists an alternating path Π = a0b0a1b1 . . . am, bm, am+1 where a0 = d, n ≥ 1 and
g(e) ⊆ key(e) 6⊆ key(am+1) where Π does not intersect the block of e.

To arrive at a contradiction, we show that for any strict alternating path Π = a0b0a1b1 . . . anbnan+1

where a0 = d if Π does not intersect with the block of e then key(e) ⊆ key(ai) for all i ≤ n + 1.
This implies g(e) ⊆ key(an+1), thus contradicting the existence of the tripath.

To prove the claim we verify the following properties for all i ≤ n by induction on i:

(a) If i = 0 then key(e) = ai[I].

(b) If i > 0 and D |= q(biai+1) then key(e) ⊆ ai+1[J ]

(c) If i > 0 and D |= q(ai+1bi) then key(e) ⊆ ai+1[I]

(d) If i > 0 and D |= q(bi−1ai) then D 6|= q(biai+1)

Recall that I, J are subsets of key positions such that A[I] = B[J ]. In the base case when i = 0
note that there is a homomorphism from P0P1 to de and hence key(e) = d[I] = a0[I].

Now assume that the claims hold upto i − 1 ≤ n and we will verify them for i. Recall that
D |= q{bi−1ai} ∧ q{biai+1}. We prove the invariants by considering all possible cases of these
solutions.
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• If D |= q(bi−1ai)∧q(ai+1bi) (in this case Item (c) is to be verified). By induction hypothesis,
key(e) ⊆ ai[J ] and also bi[J ] = ai[J ]. Now since there is a homomorphism from AB to ai+1bi
we have ai+1[I] = bi[J ]. Hence key(e) ⊆ ai+1[I].

• The case D |= q(aibi−1) ∧ q(biai+1) is symmetric to the previous case, where Item (b) can
be verified.

• If D |= q(aibi−1) ∧ q(ai+1bi) (in this case Item (c) is to be verified). By induction hypoth-
esis, key(e) ⊆ ai[I]. Note that in this case, there is a homomorphism from P0P1P

′
1P2 to

(ai+1biaibi−1). Note that P1[I] ⊆ key(P1) = P0[I] = P1[J ] and hence bi[I] ⊆ bi[J ]. Since
ai[I] = bi[I] and ai[J ] = bi[J ] and by induction key(e) ⊆ ai[I], it follows that key(e) ⊆ bi[J ].

Now since there is a homomorphism from AB to ai+1bi we have ai+1[I] = bi[J ]. Hence
key(e) ⊆ ai+1[I].

• If D |= q(bi−1ai) ∧ q(biai+1) (in this case we get a contradiction thus verifying Item (d)).
Suppose this happens then note that there is a homomorphism from key(P1) to key(ai).
Towards contradiction, we will prove that ai ∼ e or ai ∼ aj for some j < i.

Let j < i be the largest index such that D |= q(ajbj−1) ∧ q(aj+1bj). If no such j exists, let
j = 0. Note that by assumption j < i.

By maximality of j and because of Item (d), for all k such that j+2 ≤ k ≤ i if D |= q(bk−1ak)
then D |= q(ak−1bk−2) and if D |= q(akbk−1) then D |= q(bk−2ak−1). If j > 0, a simple
inductive argument shows that this implies ai[J ] = aj [J ] and we set u = aj . If j = 0 the
same argument implies e[J ] = ai[J ] and we set u = e.

Thus, in both cases u[J ] = ai[J ] and there is a homomorphism from key(P1) to both key(ai)
and key(u). We also have key(P1) = P1[J ] and combining this with ai[J ] = u[J ], we get
ai ∼ u, the desired contradiction.

There is also another way to characterize the above syntactic condition.

Lemma 26. Let q = AB be a 2way-determined query and let I, J be the sub-set of key positions
such that A[I] = B[J ]. Then: key(P1) = P0[I] iff key(P1) ⊆ key(P0)

Proof. If key(P1) = P0[I] then the claim follows since P0[I] ⊆ key(P0). For the converse, assume
key(P1) ⊆ key(P0). We verify that key(P1) = P0[I]. Pick any key position i. If i ∈ J then clearly
P1[i] ∈ P0[J ].

Assume i 6∈ J . Note that key(P1) ⊆ key(P0). By construction of P0P1 it implies that there
is some position i′ such that B[i] ≡ A[i′]. But this is possible only if there exists j, j′ such that
B[i] = B[j] and A[i′] = B[j′] and A[j] = A[j′]. Hence, i′ ∈ I and j′ ∈ J and P1[i] = P1[j′] = P0[i′].
Thus, P1[i] ∈ P0[I].

Symmetrically, if we assume that key(P ′1) ⊆ key(P2) then also we can prove an analogous result
as Lemma 25 and Lemma 26. Thus, we have the following corollary.

Corollary 27. Let q = AB be a 2way-determined query with P0, P1, P
′
1 and P2 as the generalized

2-path. If key(P1) ⊆ key(P0) or key(P ′1) ⊆ key(P2) then q does not admit a tripath (and
certain(q) is in PTime).

F Proofs for Section 9 (Fork-tripath and coNP-hardness)

Lemma 13. Let φ be a 3-sat formula where every variable occurs at most three times. φ is
satisfiable iff D[φ] 6|= certain(q).

Before proving the Lemma, note that the following proposition holds for nice fork-tripath.
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Proposition 28. Let q be a 2way-determined query and Θ be a nice fork-tripath of q where Ue
is the root block and Ud, Uf are the leaf blocks with ud, ue and uf as the unique facts in Ud, Ue
and Uf respectively. Let D ⊇ Θ such that for every internal block B of Θ, B is also a block of D
(i.e. D does not contain any extra facts in B). Then:

1. For every repair r of D if ue ∈ r and r |= ¬q then both ud, uf 6∈ r.

2. For every repair r of Θ if r contains a(B) for every block B in Θ then r 6|= q.

3. For every repair r of Θ if r only contains b(B) for every block B in Θ then r 6|= q.

Proof of lemma 13. Assume first that φ is satisfiable. Let h be an assignment of the variables of
φ that makes the query true. For each clause C of φ we set h(C) to be a literal that makes the
clause true as specified by h. We define the falsifying repair denoted by r[h] as follows:

Let l be a variable of φ ∩ V3, such that l (or ¬l) occur once positively - let C[l] be this clause
- and twice negatively - let C1[l], C2[l] be the two corresponding clauses.

If l = h(C) (then ¬l 6= h(C1) and ¬l 6= h(C2) as h is a satisfying assignment) then in each
non-leaf block of B of Θl,C we select the fact a(B) and in each non-head block B of Θl,C1

∪Θl,C2

the fact b(B). After this, if there is a block B in Θl,C for which a fact has not been selected, it is
because B contains a single fact ΘlC ∪Θl,C1 ∪Θl,C2 . By construction we have added a fresh fact
c to B in D[φ] which does not form a solution with any other fact. Select c for the block B.

If ¬l = h(C1) or ¬l = h(C2), (then l 6= h(C) as h is a satisfying assignment) then we select
in each non-head block B of Θl,C the fact b(B) and in each non-leaf block B of Θl,C1

∪Θl,C2
we

select the fact a(B). (In this case we have selected one fact for all blocks of Θ(l, C)∪Θl,C1
∪Θl,C2

)
Otherwise we select select in each non-head block B of Θl,C the fact b(B) and in each non-leaf

and non-head block B of Θl,C1
∪Θl,C2

the fact a(B). (In this case also we have selected one fact
for all blocks of Θ(l, C) ∪Θl,C1

∪Θl,C2
)

The construction is similar if l ∈ V2. The reader can verify that r[h] can not make the query
true because within every Θl,C since we only have a(B) facts or only b(B) facts (c.f proposition 28
(2)) and there are no solutions that involve facts across two distinct copies of tripath in D[φ].

For the converse let r be a repair of D[φ] such that r |= ¬q. Using r we construct a satisfying
assignment h as follows. For each clause C of φ consider the block of C. Note that r has selected
one fact from C. By construction this fact corresponds to a literal l of φ. We set h(l) to true. In
order to show that h is a satisfying assignment it suffices to show that if l is selected by r in a
clause C then ¬l can not be selected by r in a clause C ′. This is a consequence of proposition 28
(1): if r selects the heads of both Θl,C and Θl,C′ , their common leaf has no representative in r, a
contradiction.

G Sufficient conditions for the presence of a fork-tripath

To identify some sufficient conditions where a query admits a fork-tripath, we first set up some
definitions. Let q = AB where q is 2way-determined. Recall that if D |= q(ab) then there is an
homomorphism from AB to ab.

We construct three atoms F0F1F2 such that whenever there are facts a, b, c such that D |=
q(ab) ∧ q(bc) (i.e. whenever abc is a fork) then there is an homomorphism mapping F0F1F2 to
abc.

Formally, F0 and F1 are built as follows: For all x, y ∈ vars(A) ∪ vars(B), define x ≡ y if
there exists positions i, j such that A(i) = A(j) and we have B(i) = x and B(j) = y. For
every equivalence class of variables fix a representative and let h be the mapping associating
every variable x ∈ vars(A) ∪ vars(B) to the representative of the equivalence class to which x
belongs. Define F0F1 be h(AB). By construction there is an homomorphism from AB to F0F1.
To define F2, consider the following mapping h′ where for every variable x ∈ vars(A) ∪ vars(B):
if x ∈ vars(A) then let i be a position where x occurs in A and let y be the variable occurring at
position i in B, then h′(x) = h(y); otherwise if x does not occur in A then let h′(x) be a fresh
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new variable. Notice that by construction of h, the definition of h′ does not depend on the choice
of i and therefore h′ is well defined. Notice also that F1 = h′(A). Define F2 = h′(B).

The triple F0F1F2 is called the fork of q. Note that the triple F0F1F2 depends on the ordering
of the atoms A and B in q. It also has the desired property:

Proposition 29. Let F0F1F2 be the fork of q = AB. Then for all database D and for all facts
a, b, c if D |= q(ab) ∧ q(bc) then there is a homomorphism from F0F1F2 to abc.

Example 30. We now illustrate the different forms that the fork can take (note that all these
queries are 2way-determined)

• Consider the query R(x yx) R(y xu). Then F0F1F2 is R(x yx) R(y xy) R(x yv). So we
have F2 ∼ F0 and hence in any repair every fact will be a part of at most 1 solution, i.e.
there is no branching fact. Thus, for this query the fork does not play any important role.

• Consider now the query R(x yu) R(y yx). In this case F0F1F2 is R(x yu) R(y yx) R(y yy).
Here we have F2 ∼ F1 and hence in this case also every fact in a repair will be a part of at
most 1 solution.

• In the query R(x yz) R(y zx), the fork F0F1F2 is R(x yz) R(y zx) R(z xy). In this case
there is also a homomorphism from AB to F2F0. Hence in all database D and for all
facts a, b, c ∈ D if D |= q(ab) ∧ q(bc) then D |= q(ca). Such queries can be verified to be
clique-queries and hence certain(q) can be computed in polynomial time (cf. Theorem 17).

• Finally, consider the query R(x yz) R(y ux) then F0F1F2 is R(x yz) R(y ux) R(u vy). In
this case F0F1F2 have pair-wise distinct keys and also there is no homomorphism from AB
to F2F1. This is the most general case.

Intuitively a query q can admit a fork-tripath only if there is some fork (i.e. there exists a
database D and facts d, e, f ∈ D such that d, e, f have mutually distinct keys and q(de) ∧ q(ef)
but not q(fd)). This is possible iff F0, F1 and F2 have mutually distinct keys and there is no
homomorphism from AB to F2F0. A 2way-determined query q is called a fork query if the
corresponding fork atoms F0, F1 and F2 have mutually distinct keys and there is no homomorphism
from AB to F2F0.

G.1 Syntactic conditions for a query to admit a fork-tripath

We exhibit a syntactic condition implying that a query admits a fork-tripath. The condition is
about the key (non-)inclusion conditions with respect to F0, F1 and F2.

Lemma 31. Let q be a 2way-determined fork query and F0F1F2 be the fork of q. If key(F0) 6⊆
key(F1), key(F1) 6⊆ key(F0), key(F2) 6⊆ key(F1) and key(F1) 6⊆ key(F2) then q admits a fork-
tripath.

For instance the query q9 = R(xvy zuv) R(vuz xyz). Note that q9 is 2way-determined and
the corresponding fork is given by F0F1F2 = R(xvy uuv) R(vuu xyu) R(uyx vux) which satisfies
the conditions in the lemma and hence admits a fork-tripath (so by theorem 12 certain(q9) is
coNP-hard).

Proof of lemma 31. In this case we will directly build a fork-tripath for q. Let def be the three
facts such that there is an isomorphism from F0F1F2 to def . By the assumptions, def have
pairwise distinct keys and do not form a triangle and def will be the center of the tripath that
we construct. Notice that in this case g(e) = key(e). So the root and the leaves of the tripath
should exclude a variable from key(e).

Because key(d) 6⊆ key(e) and key(e) 6⊆ key(f), we can take as leaves of the tripath the two
blocks containing a single fact, one containing the fact d and one containing the fact f . It remains
to construct the root block and the path from the root block to a block containing the branching
fact e. This is done as follows:
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Let x ∈ key(F0) \ key(F1) and y ∈ key(F1) \ key(F0) and let z ∈ key(F2) \ key(F1). Note that
we have x, z ∈ vars(F1) \ key(F1) (the inclusion into vars(F1) is because q is 2way-determined)
and y ∈ vars(F0) \ key(F1).

Let h be the homomorphism from AB to de. Construct h1 using h where for every variable w if
w 6= x, z then h1(w) = h(w) and h1(x), h1(z) are two fresh domain elements. Let h1(A′B′) = a1e

′.
Since x, z 6∈ key(e), we have e′ ∼ e. Since x ∈ key(A′) we have a1 in a fresh block Ba. Also since
y 6∈ key(A′) we have key(e) 6⊆ key(a1).

Thus, the tripath Θ has the blocks {Ba, Bd, Be, Bf} rooted at Ba with leaf blocks Bd = {d}
and Bf = {f} and branching block Be = {e, e′}. Be is the successor of Ba and both Bd, Bf are
the successor blocks of Be. We also have a(Ba) = a; b(Be) = e′, a(Be) = e; b(Bd) = d and
b(Bf ) = f .

The previous syntactic condition can be turned into a semantic condition. A query is said to
have to have uniform triangles if for all database D and all triangle def in D we have key(e) =
key(d) = key(f). The following result is a simple consequence of Lemma 31 and Theorem 12.

Corollary 32. Let q be a 2way-determined fork query. If q does not have uniform triangles then
q admits a fork-tripath, and thus certain(q) is coNP-hard.

Proof. Consider the fork F0F1F2 of q. We show that the variable non-inclusion conditions of
Lemma 31 hold. In fact assume by contradiction that at least one of those inclusions hold; then
note that, in any database, if abc is a triangle, there is a homomorphism from F0F1F2 to each
of (abc) (bca) and (cab). Hence we will have key(a) = key(b) = key(c). This implies that q has
uniform triangles which is a contradiction. Hence by Lemma 31, q admits a fork-tripath, and
thus certain(q) is coNP-hard, by Theorem 12.

G.2 Triangle-fork connections

In this section we give a second semantic condition implying the existence of a fork-tripath.
We start by giving some new definitions. Two blocks B,B′ of a database D are said to be q-
connected if (B,B′) belongs to the reflexive symmetric transitive closure of {(B1, B2) | ∃a ∈
B1, b ∈ B2 such that D |= q{ab}}. Note that this is an equivalence relation among blocks of a
database. A database D is q-connected if every pair of blocks of D is q-connected.

we now extend this notion to facts : two facts c, d in a database D are said to be q-connected if
the block of c and the block of d are q-connected in D. Note that facts c, d in D are q-connected iff
c ∼ d or there is an alternating path Π = a0b0 . . . anbnan+1 in D such that c ∼ a0 and d ∼ an+1.
Note also that D is q-connected iff all pairs of facts of D are q-connected.

We say that a query q admits a triangle-fork q-connected database if there exists a q-connected
database D and there exists Θ ⊆ D where Θ is a triangle-tripath and D also contains a fork.

For instance consider the query q10 = R(xy1z1 z2y2) R(z1xy2 y1x). For this query there is a
triangle-fork q-connected database D such that Θ ⊆ D is a triangle-tripath and D also contains
a fork. From the next theorem it follows that certain(q10) is coNP-hard.

Theorem 33. Let q be a 2way-determined query. If q admits a triangle-fork q-connected database,
then q also admits a fork-tripath.

The rest of this section is devoted to the proof of Theorem 33. We proceed in two steps. In the
first step we define some syntactic conditions and prove that any query satisfying these conditions
admits a fork-tripath (cf. Proposition 35). In the second step we show that if a query q admits a
triangle-fork q-connected database then the syntactic conditions are satisfied and hence q admits
a fork-tripath (cf. Proposition 36 and Proposition 46).

Recall that an alternating path Π = e0f0e1f1 . . . en is strict if ei 6= fi for all i < n. Note
that any branch in a tripath forms a strict alternating path. We say that a query q admits a
one-sided fork-tripath if there exists a database D, a fork def in D and a strict alternating path
Π from some a0 ∈ {d, e, f} to some b such that (1) g(e) 6⊆ key(b) and (2) Π does not intersect the
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blocks of the other two facts from the fork def which are different from a0. Informally, one-sided
fork-tripath has only one branch out of three for the full tripath.

Let q-fix be the set of pairs of key positions of q computed by the following fix-point algorithm:

q-fix0 ={(i, j) | A[i] = A[j]} ∪ {(i, j) | B[i] = B[j]}
q-fixn+1 =

(
q-fixn

∪ {(i, j) | ∃ (i′, j′) ∈ q-fixn s.t A[i] = B[i′] and A[j] = B[j′]}

∪ {(i, j) | ∃ (i′, j′) ∈ q-fixn s.t B[i] = A[i′] and B[j] = A[j′]}
)∗

q-fix =
⋃
n

q-fixn

Note that q-fix is an equivalence relation over key positions. The following lemma is an impor-
tant property of q-fix.

Lemma 34. Let q be a 2way-determined query. Let D be a database and def be a triangle in D.
Then for all (i, j) ∈ q-fix and a ∈ {d, e, f} we have a[i] = a[j].

The following proposition provides a sufficient condition for extending one-sided fork-tripath
to a full tripath.

Proposition 35. Let q = AB be a query that is 2way-determined. Then q admits a fork-tripath
if all of the following conditions hold:

1. There exists x ∈ key(A) such that for all key position j if A[j] = x then for all (j, k) ∈ q-fix
we have A[k] 6∈ key(B)

2. There exists z ∈ key(B) such that for all key position j if B[j] = z then for all (j, k) ∈ q-fix
we have B[k] 6∈ key(A)

3. q admits one-sided fork-tripath

Proof. Let x and z be two variables given by (1) and (2). Let Vx = {x′ | there exists (j, k) ∈ q-fix
where A[j] = x and A[k] = x′} and let Vz = {z′ | there exists (j, k) ∈ q-fix where B[j] = z and
B[k] = z′}. From (1), Vx ∩ key(B) = ∅ and Vx ∩ key(A) 6= ∅. Similarly from (2), Vz ∩ key(A) = ∅
and Vz ∩ key(B) 6= ∅.

From (3) we get a database D with a fork def and a fact a0 ∈ {d, e, f} such that there is an
alternating path Π from a0 to b such that g(e) 6⊆ key(b) and Π does not intersect the blocks of the
other two facts from def which are different from a0. Assume that a0 = d (the other cases are
treated analogously).

So we have an alternating path Π = a0b0a1b1, . . . an where a0 = d such that g(e) 6⊆ key(an). We
now construct an alternating path Π′ = ee′c0d0c1d1, . . . cn starting at e such that g(e) 6⊆ key(cn).
We construct Π′ by induction where for all i ≤ n we maintain the following invariants:

(a) For every key position j if ci[j] ∈ key(d) ∪ key(e) ∪ key(f) then ai[j] = ci[j].

(b) For every key position j, if ci[j] 6= ai[j] then for all key positions k if (j, k) ∈ q-fix then
ci[j] = ci[k]

(c) If there is a homomorphism from key(A) to key(ai) then there is a homomorphism from
key(A) to key(ci).

(d) If there is a homomorphism from key(B) to key(ai) then there is a homomorphism from
key(B) to key(ci).
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Note that from item (a) and the fact that in Π we have g(e) 6⊆ key(an), it follows g(e) 6⊆ key(cn)
as desired.

In the base case of the induction, let h be the homomorphism from AB to de. Let α be a fresh
domain element. Define h′ constructed from h as follows. Let y be a variable of q. If y ∈ Vx then
set h′(y) = α; otherwise set h′(y) = h(y). Let c0e

′ be h′(AB). Note that h and h′ agree on all
variables in key(B) and hence e ∼ e′; moreover e 6= e′ since α occurs in e′ but not in e. Also we
have α ∈ key(c0) and hence c0 is in a fresh block. Now we verify the invariants.

(a) Holds by construction.

(b) Pick a position j such that c0[j] 6= a0[j]. By construction c0[j] = α and by definition, for all
key positions k if (j, k) ∈ q-fix then c0[k] = α as desired.

(c) Trivially holds by construction.

(d) Assume that there is a homomorphism from key(B) to key(a0). Suppose j, k are two positions
such that B[j] = B[k] then we have a0[j] = a0[k]. Also note that (j, k) ∈ q-fix and hence
either c0[j] = c0[k] = α or c0[j] = a0[j] = a0[k] = c0[k].

For the induction step, assume that we have the sequence ee′c0d0 . . . ci for some i < n. Let α
be a fresh domain element. Since Π is an alternating path, we have either q(ai+1bi) or q(biai+1).
We define di and ci+1 depending on these two cases.

• If there is a homomorphism h from AB to ai+1bi then, as ai ∼ bi, there is a homomorphism
from key(B) to key(ai). This implies by Item (d) that there is a homomorphism h1 from
key(B) to key(ci). Construct h′ as follows. Let y be a variable of q. If y ∈ key(B) then
set h′(y) = h1(y). If y ∈ Vx then set h′(y) = α. If there are key positions k, l such that
(k, l) ∈ q-fix, A[k] = y, A[l] = B[l′] for some key position l′ and ci[l

′] 6= ai[l
′] then set

h′(y) = ci[l
′]; otherwise set h′(y) = h(y). Let ci+1di = h′(AB).

We first argue that h′ is well defined, i.e. h′(y) does not depend on the choice of k, l in the
third case. To see this, assume that there exists (k1, l1) ∈ q-fix such that A[k1] = y where
A[l1] = B[l′1] for some key position l′1 and ci[l

′
1] 6= ai[l

′
1]. Then we should have h′(y) = ci[l

′
1].

Now assume that there exists another (k2, l2) ∈ q-fix such that A[k2] = y where A[l2] = B[l′2]
for some key position l′2. To prove that h′ is well defined, it is sufficient to show that
ci[l
′
1] = ci[l

′
2].

Note that since A[k1] = A[k2] = y we have (k1, k2) ∈ q-fix. By transitivity and symmetry,
we have (l1, l2) ∈ q-fix. But as B[l′1] = A[l1] and B[l′2] = A[l2] we then get (l′1, l

′
2) ∈ q-fix.

Further, since ci[l
′
1] 6= ai[l

′
1] by Item (b) we obtain ci[l

′
1] = ci[l

′
2].

• If there is a homomorphism g from AB to biai+1 then, as ai ∼ bi, there is a homomorphism
from key(A) to key(ai). This implies by Item (c) there is a homomorphism g1 from key(A)
to key(ci). The construction of g′ is then done in the same wasy as h′ above, replacing Vx
by Vz. We set dici+1 as g′(AB).

Note that in both cases of the definition of di and ci+1, we have di ∼ ci with di 6= ci and
α ∈ key(ci+1). Hence ci+1 is in a fresh block. We now verify the invariant. We only do the case
when ci+1di = h′(AB). The case when dici+1 = g′(AB) is done similarly by symmetry.

(a) Let j be a position such that ci+1[j] ∈ key(d) ∪ key(e) ∪ key(f). Let y = A[j]. We have
ci+1[j] = h′(y).

If y = B[j′] for some key position j′ then ci[j
′] = di[j

′] = ci+1[j]. It follows that ci[j
′] ∈

key(d) ∪ key(e) ∪ key(f) and by induction that ai[j
′] = ci[j

′]. This implies bi[j
′] = di[j

′] and
hence ai+1[j] = ci+1[j].

Clearly y can not be in Vx as α is a fresh new value.
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Assume there exists key positions k, l such that (k, l) ∈ q-fix, A[k] = y, A[l] = B[l′] for
some key position l′ and ci[l

′] 6= ai[l
′]. In this case ci+1[j] = ci[l

′]. This implies ci[l
′] ∈

key(d) ∪ key(e) ∪ key(f) and by induction hypothesis ai[l
′] = ci[l

′] which is a contradiction
to the assumption. So this case does not apply.

In the remaining case, by definition we have ci+1[j] = h(y) = ai+1[j] as desired.

(b) Let j be some key position such that ci+1[j] 6= ai+1[j]. Let y = A[j]. Recall that ci+1[j] =
h′(y). We do a case analysis depending on how h(y) is defined.

• If y = B[j′] for some key position j′. Then ci+1[j] = ci[j
′]. Notice that ci[j

′] 6= ai[j
′] =

ai+1[j].

Now pick any position k such that (j, k) ∈ q-fix. By definition of Vx, this implies that
A[k] 6∈ Vx.

Assume first A[k] = B[k′] for some key position k′. By definition (j′, k′) ∈ q-fix. From
Item (b) by induction for j′ we have ci[k

′] = ci[j
′]. Hence ci+1[j] = ci+1[k].

• If y ∈ Vx then by definition for all key position k such that (j, k) ∈ q-fix we have
ci+1[j] = ci+1[k] = α.

• Assume now there are key positions (k, l) ∈ q-fix such that A[k] = y, and A[l] = B[l′]
for some key position l′ and ci[l

′] 6= ai[l
′]. In this case h(y) = ci[l

′] and ci[l
′] 6= ai[l

′].
Now pick any key position k′ such that (j, k′) ∈ q-fix. Set k′′ such that A[k′] = B[k′′].

If k′′ is a key position then by definition (k′′, l′) ∈ q-fix and since ci[l
′] 6= ai[l

′], from
item (b) by induction we have ci[l

′] = ci[k
′′]. Hence ci+1[k′] = di[k

′′] = ci[k
′′] = ci[l

′] =
ci+1[j].

If k′′ is a non-key position then by transitivity (k′, l) ∈ q-fix which implies (k, l) ∈ q-fix.
By definition of h′1, h′1(A[k′]) = ci[l

′] because we are in the second case as witnessed
by the fact that (k′, l) is in q-fix. Hence ci+1[k′] = ci[l

′]. Now ci+1[j] = ci[l
′] = ci[k

′] =
ci+1[k] as desired.

• In the last case we have ci+1[j] = ai+1[j], so this case does not apply.

Similarly if ci+1 = g′1(B) then we can argue that the claim holds.

(c) This is immediate as there is a homomorphism from key(A) to key(ci+1).

(d) Assume there is a homomorphism from key(B) to key(ai+1).Let j, k are two key positions
such that B[j] = B[k]. We need to show that ci+1[j] = ci+1[k]. Notice that we have
ai+1[j] = ai+1[k]. By definition (j, k) ∈ q-fix. The result is then a simple consequence of
Item (b) as either all elements in a q-fix-class are equal or they are equal to the same position
in ai+1.

Now using the alternating path ee′c0d0 . . . cn, we can build the alternating path ff ′e1e′1c
′
0d
′
0 . . . c

′
n

exactly as we did above to construct ee′c0d0 . . . cn from a0b0 . . . an. Let Θ be the result construc-
tion. We claim that Θ is the required tripath. By construction the center is a fork and each
blocks are pairwise distinct as their key contains a fresh new element. Also by construction an
element from g(e) is excluded in the root and in each of the leaves. It remains to verify that for
all facts t ∈ Θ if Θ |= q{et} then t ∈ {d, f}. Note that as q is 2way-determined, if Θ |= q{et}
then t ∼ d or t ∼ f . By hypothesis on Π, if t ∼ d then t = d. Consider the variable x. As q is
2way-determined, x ∈ B. Let i be a key position where x occurs in A and j be a position where
x occurs in B. By hypothesis, e[i] = t[j] but by construction f ′[j] is a fresh new element. Hence
t = f as desired.

Thus, to prove Theorem 33 it is sufficient to show that the three properties of Proposition 35
are satisfied by a query admitting a triangle-fork q-connected database.

We first prove that if a query q admits a triangle-tripath then the first two conditions of
Proposition 35 should hold.
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Proposition 36. Let q = AB be a 2way-determined query. If q admits a triangle-tripath then
both of the following conditions hold:

1. There exists x ∈ key(A) such that for all key position j if A[j] = x then for all (j, k) ∈ q-fix
we have A[k] 6∈ key(B).

2. There exists z ∈ key(B) such that for all key position j if B[j] = z then for all (j, k) ∈ q-fix
we have B[k] 6∈ key(A).

Towards proving this proposition, we need some definitions and observations. Recall that an
alternating path is of the form a0b0a1b1 . . . anbnan+1 where ai ∼ bi and q{biai+1} and if i 6= j
then ai 6∼ aj . We say that π = a0b0a1b1 . . . anbnan+1 is weak alternating path if the last condition
is relaxed. So in a weak alternating path it is possible that for some i 6= j we have ai ∼ aj
or it is also possible that ai = aj , bi = bj or ai = bj etc. We are only concerned with weak
alternating paths in this proof. If Π is a weak alternating path then let Π̄ denote the reverse given
by b′an+1bnanbn−1an−1 . . . b1a1b0 where b′ is some arbitrary but fixed fact such that b′ ∼ an+1.

A weak alternating path Π = a0b0a1b1 . . . anbnan+1 is forward (backward) if for every k ≤ n we
have q(bkak+1) (for every k ≤ n we have q(ak+1bk) respectively). We say that an weak alternating
path Π is unidirectional if Π is either forward or backward. Further, for unidirectional alternating
paths Π = a0b0a1b1 . . . anbnan+1, we define its weight as wt(Π) = n. Note that if Π is forward
with wt(Π) = n then Π̄ is a backward with wt(Π̄) = n and vice-versa.

Given a weak alternating path Π = a0b0a1b1 . . . anbnan+1 we say that 0 < l < n + 1 is a
flip index if q(bl−1al) ∧ q(al+1bl) or q(albl−1 ∧ q(blal+1), i.e. l is a position that falisfies uni-
directionality. Let l1, l2 . . . lk be the flip indices of Π. Then we consider the decomposition
of Π into (Π0,Π1,Π2, . . . ,Πk) where Π0 = a0b0a1b1 . . . al1−1bl1−1al1 , for every i < k: Πi =
alibli . . . ali+1−1bli+1−1ali+1 and Πk = alkblk . . . anbnan+1. Note that each Πi is unidirectional.
Moreover every Πi is forward iff Πi+1 is backward. We define weight of Π as the tuple wt(Π) =
(wt(Π0),wt(Π1), . . . ,wt(Πk)).

We call A0B0A1B1 . . . AnBnAn+1 to be a generalized forward n-path if for every forward
alternating path a0b0 . . . anbnan+1 there is a homomorphism from A0B0A1B1 . . . AnBnAn+1 to
a0b0 . . . anbnan+1. We fix one generalized forward n-path for each n, which we call En. For n = 1,
E1 = A′AB, where A′ ∼ A and every non-key variable in A′ is fresh. For n = 2, E2 = P ′P0P1P

′
1P2

(from the generalized 2-path P0P1P
′
1P2 defined in Appendix E, where P ′ ∼ P and every non-key

variable in P ′ is fresh).
The proof of Proposition 36 goes as follows. From the definition, any branch of a triangle-

tripath of q is an alternating path starting from a fact of the triangle and ending at a fact
excluding an element from the triangle key. We first show that this path can be assumed unidi-
rectional. We then show that any such unidirectional path can not exclude an element from the
key unless (1) and (2) are true.

The first step, transforming an alternating path into an unidirectional one, is based on the
following two lemmas that shorten the path if a change of direction satisfies some properties.

Lemma 37. Let Π = a0b0a1b1 . . . anbnan+1 be a weak alternating path and let α be such that for
all i ≤ n we have α ∈ key(ai) and α 6∈ key(an+1).

If Π is decomposed into (Π0,Π1, . . .Πk−1,Πk), where wt(Πk−1) ≥ wt(Πk), then there exists
Π′ = c0d0c1d1 . . . cmdmcm+1, where c0 = a0 and α 6∈ key(cm+1) such that Π′ has strictly less flip
indices than Π.

Proof. Since wt(Πk−1) ≥ wt(Πk) let Π′k−1 = asbsas+1bs+1 . . . atbtat+1 be the suffix of Πk−1
where wt(Π′k−1) = wt(Πk) = t − s. Assume that Πk−1 (and hence Π′k−1) is forward and Πk

is backward (the other case is symmetric). Hence there is a homomorphism h1 from Et−s =
A′B0A1B1 . . . At−sBt−sAt−s+1 to Π′k−1 and a homomorphism h2 from Et−s to Π̄k. Notice that
h1(At−s+1) ∼ h2(At−s+1), thus h1 and h2 agree on key(At−s+1).

Now define a new homomorphism h where for every x ∈ vars(Et−s) if x ∈ key(B0) then
h(x) = h1(x) and otherwise h(x) is fresh.
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Let h(Et−s) = csdscs+1ds+1 . . . ctdtct+1 which is a forward alternating path. Clearly cs ∼ as.
We define the new weak alternating path Π′ as the one which is decomposed into (Π0,Π1, . . . , Π̂k−1),
where Π̂k−1 is obtained from Πk−1 by replacing bsas+1bs+1 . . . atbtat+1 with dscs+1ds+1 . . . ctdtct+1.
Clearly Π′ has strictly less flip indices than Π; moreover notice that a0 is never replaced, thus by
construction Π′ starts with the fact a0.

It only remains to prove that α 6∈ key(ct+1). Towards this, let X ⊆ key(B0) be the set of
variables such that for every x ∈ X we have h1(x) = α. So if X ∩ key(At−s+1) = ∅ then we are
done. Suppose x ∈ X ∩ key(At−s+1) then h2(x) = α. This implies α ∈ key(an+1) which is a
contradiction.

Lemma 38. Let Π = a0b0a1b1 . . . anbnan+1 be a weak alternating path such that Π is decomposed
into (Π0,Π1, . . .Πk−1,Πk).

If there exists 0 < i < k such that wt(Πi−1) ≥ wt(Πi) and wt(Πi+1) ≥ wt(Πi) then there exists
Π′ = c0d0c1d1 . . . cmdmcm+1 where c0 = a0 and cm+1 ∼ an+1 where Π′ has strictly less flip indices
than Π.

Proof. Let wt(Πi) = k and assume wt(Πi−1) ≥ k and wt(Πi+1) ≥ k. Consider the suffix Π′i−1 of
Πi−1 of weight k and the prefix Π′i+1 of Πi+1 of weight k.

Assume that Πi−1 and Πi+1 are forward while Πi is backward (the other case is symmetric). So
there is a homomorphism h1 from Ek = A′B0A1B1 . . . AkBkAk+1 to Π′i−1 and a homomorphism
h2 from Ek to Π′i+1. There is also a homomorphism h3 from Ek to Π̄i.

Let h1(B0) = b and h1(Ak+1) = a be the starting and ending facts of Π′i−1. Similarly let
h2(B0) = b′ and h1(Ak+1) = a′ be starting and ending facts of Π′i+1. Also let h3(B0) = u and
h3(Ak+1) = v be the starting and ending facts of Πi. This implies by construction that a ∼ v and
b′ ∼ u.

Define a new homomorphism h where for every x ∈ vars(Ek) if x ∈ key(B0) then h(x) = h1(x)
and otherwise h(x) = h2(x). Let h(Ek) = c0d0c1d1 . . . ckdkck+1. Clearly d0 ∼ b.

Now we claim that ck+1 ∼ a′. To see this, let y ∈ key(Ak+1) we prove that h(y) = h2(y). If
y 6∈ key(A0) then the claim follows by definition. Otherwise let i, j be the key positions such that
A0[i] = Ak+1[j] = y. Then we have h(y) = h1(y) = d0[i] = b[i] = a[j] = v[j] = u[i] = b′[i] =
a′[j] = h2(y).

The new alternating path Π′ is obtained from Π by replacing Π′i−1ΠiΠ
′
i+1 by c0d0c1d1 . . . ckdkck+1.

Note that Π′ is an alternating path since c0 and ck+1 are in the intended blocks and Π′ has strictly
less flip indices.

We are now ready to conclude the first step, transforming an alternating path into a unidirec-
tional one.

Lemma 39. Let q be a query that is 2way-determined. If q admits a triangle tripath then we
can construct a unidirectional weak alternating path a0b0 . . . anbnan+1 where a0 ∈ {d, e, f} such
that def is a triangle and key(a0) 6⊆ key(an+1).

Proof. Let Θ be a triangle tripath centered at the triangle def . Let Π = a0b0 . . . anbnan+1 be a
weak alternating path with minimal number of flips where a0 ∈ {d, e, f} and key(a0) 6∈ key(an+1).
Since Θ is a triangle-tripath, there such a Π and hence a minimal one.

Now suppose Π is unidirectional then we are done. Otherwise let Π be decomposed into
(Π0,Π1, . . .Πk) and wt(Π) = (w0, . . . wk) where k ≥ 1.

We claim that for every 0 < i we have wi−1 < wi. Suppose not then i be the largest index
where wi−1 ≥ wi. If i = k then we have wk−1 ≥ wk then by Lemma 37 we can obtain another
alternating path with strictly less flip indices which contradicts the minimality of Π. If i < k
then we have wt(Πi−1) ≥ wt(Πi) and wt(Πi) < wt(Πi+1). In this case, by Lemma 38 we can get
another alternating path with strictly less flips than Π which again contradicts the minimality of
Π. So we have w0 < w1 < . . . < wk.

Assume that Π0 is a forward alternating path (the case where Π0 is backward alternating path
is symmetric) and without loss of generality let a0 = e. Since w0 < w1 let w > 0 such that
w + w0 = w1.
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Now consider the weak alternating path Π′ = e0e0f0f0d0d0e1e1f1f1d1d1 . . . ewewfwfwdwdwa0b0 . . . anbnan+1.
Then the new prefix has the same direction as Π0. Hence Π′ has the same number of flip indices
as Π and Π′ is decomposed into (Π′0,Π1, . . .Πk) with wt(Π′) = (w1, w1, w2 . . . wk) where k ≥ 1.

But then, if k = 1 then wt(Π′) = (w1, w1) so by Lemma 37 we can obtain another alternating
path with strictly less flip indices which contradicts the minimality of Π. If k > 1 then wt(Π′) =
(w1, w1, w2 . . . wk) where w1 < w2. So by Lemma 38 we can get another alternating path with
strictly less flips than Π which again contradicts the minimality of Π.

We now move on to the second step showing that assuming that either (1) or (2) is false then
a an element on the key can not be excluded. The following lemma is a key property of q-fix over
unidirectional path.

Lemma 40. Let q be a query that is 2way-determined and def be a triangle and a0 ∈ {d, e, f}.
Let a0b0 . . . anbnan+1 be a unidirectional weak alternating path such that for some α ∈ key(a0) we
have α 6∈ key(an+1). Then: for all (i, j) ∈ q-fix and for all l ≤ n if al[i] = α then al[j] = α.

Proof. Since the weak alternating path is unidirectional, assume it is forward, i.e. that for all
l < n+ 1 we have q(blal+1). The other case is symmetric.

Now let (i, j) ∈ q-fixk and assume al[i] = α. We need to show that al[j] = α. The case l = 0
is solved by Lemma 34. So assume l > 0. Since α ∈ key(al) we have l < n + 1. So we have
q(bl−1al) ∧ q(blal+1).

We do an induction on k. In the base case (i, j) ∈ q-fix0. Then either A[i] = A[j] or B[i] = B[j].
As q(bl−1al)∧q(blal+1), there is a homomorphism from both key(A) and key(B) to key(al). Hence
al[j] = al[i] = α.

For the induction step let (i, j) ∈ q-fixk+1.
Now we consider various cases depending on (i, j) ∈ q-fixk+1.

• If there exists (i1, j1) ∈ q-fixk such that A[i] = B[i1] and A[j] = B[j1] then al+1[i1] = bl[i] =
al[i] = α. By induction we get that al+1[j1] = α and we conclude because al[j] = bl[j] =
al+1[j1].

• If there exists (i1, j1) ∈ q-fixk such that B[i] = A[i1] and B[j] = A[j1] then al−1[i1] =
bl−1[i1] = α By induction we get that al−1[j1] = α and we conclude because al[j] = bl−1[j1] =
al−1[j1].

• If (i, j) ∈ q-fixk+1 because of transitive closure, then let (i, j) ∈ q-fixk+1 at step s for some
s ≥ 0. We further induct on s. If s = 0 then we are in one of the previous two cases.

Otherwise there exists i′ such that (i, i′) ∈ q-fixk+1 at step s− 1 and (i′, j) ∈ q-fixk+1 at step
0. Since al[i] = α, inductively al[i

′] = α. But now (i′, j) ∈ q-fixk+1 at step 0 and al[i
′] = α.

So by the previous two cases we have al[j] = α.

A sequence of (not necessarily distinct) indices i0j0i1j0, . . . injn is called a fixing sequence if for
all l, (il, jl) ∈ q-fix and A[jl] = B[il+1]. We say I is cyclic if (jn, jn′) ∈ q-fix for some n′ < n. We
will be only interested in cyclic fixing sequences. The next immediate result gives a normalized
way to denote cyclic fixing sequences.

Lemma 41. If I = i0j0i1j1, . . . injn is a cyclic fixing sequence then for every (in, jn′) ∈ q-fix the
sequence I ′ = i0j0i1j1, . . . injn′ (where jn is replaced by jn′) is also a cyclic fixing sequence.
Hence there exists a cyclic fixing sequence I ′ = i0j0, . . . injn and m ≤ n such that we have
imjmim+1jm+1 . . . injn where A[jn] = B[im].

Assume that (1) is false (the case where (2) is false is symmetric). This is equivalent to the
following statement: For every key position i there exists (i, j) ∈ q-fix such that A[j] ∈ key(B).

Hence for every key position i there exists a cyclic fixing sequence I = i0j0 . . . injn. For every
key position i, let Ii denote some cyclic fixing sequence that starts at i. From Lemma 41 we can
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assume that there is a subsequence of Ii called the loop given by Îi = imjmim+1jm+1 . . . injn
where (ik, jk) ∈ q-fix, A[jk] = B[ik+1] and A[jn] = B[im] where m ≤ n.

Lemma 42. Let q be a 2way-determined query. If for every key position i there exists (i, j) ∈ q-fix
such that A[i] = x and A[j] ∈ key(B) then for every database D and triangles def in D and
a ∈ {d, e, f}, for every key position i there exists some s such that in the cyclic fixing sequence
Ii = i0j0 . . . injn with the loop Îi = imjmim+1jm+1 . . . injn such that for some m ≤ s ≤ n we have
a[is] = a[js] = a[i].

Proof. Let a[i] = α. Denote a0 = a, a1 = b ∈ {def} such that q(ab) holds and a2 = {d, e, f} \
{a, a1}. For all t ≤ 3 let at = at

′
where t′ = t mod 3.

Then we have a0[i] = a0[i0] = a0[j0] = α which implies that a1[i1] = a1[j1] = α and so on. In
general we have at[it] = at[jt] = α for t ≤ n and also if at[jn] = α then at+1[im] = α. Hence there
will always be an index m ≤ s ≤ n such that a0[is] = a0[js] = α.

Proof of proposition 36. Assume that (1) is false and there exists a triangle-tripath Θ with
def as the center triangle. Then by Lemma 39 we have a unidirectional weak alternating path
a0b0 . . . anbnan+1 where a0 ∈ {d, e, f} and key(a0) 6⊆ key(an+1). Let i be the key position such
that a0[i] = α 6∈ key(an+1).

We will arrive at a contradiction by proving that α ∈ key(an+1). Let Îi = imjmim+1jm+1 . . . injn
be the loop part of Ii. From Lemma 42 there exists m ≤ s ≤ n such that a0[is] = a0[js] = α.

Now we prove that for every l ≤ n+1 there exists some m ≤ t ≤ n such that al[it] = al[jt] = α.
The proof is by induction on l. When l = 0 we have just shown that t = s does the job.

For the induction step assume that al[it] = al[jt] = α. If l = n+ 1 then we are done.
Otherwise let q(blal+1) (the case q(al+1bl) is symmetric). So we have al+1[it+1] = α where

t+1 = m if t = n. Now from Lemma 40, since al+1[it+1] = α and α 6∈ key(an+1) and (it+1, jt+1) ∈
q-fix, it follows that al+1[jt+1] = α and we are done.

In view of Proposition 35 and Proposition 36, in order to prove Theorem 33 it remains to
show that if there is a q-connected database D containing both a triangle-tripath, and a fork
abc then q admits a one-sided fork-tripath. Note that some of the lemmas in this section use the
assumption that the query has uniform triangles, however this is without loss of generality, since
if this is not the case, by Corollary 32 the conclusion of Theorem 33 immediately follows.

First we consider the special case when the fork and the center of the triangle-tripath in the
database share a block, we will then move to the case where they use mutually distinct blocks.
A fork abc and a triangle-tripath with center def , are said to be q-adjacent if there exists
u ∈ {a, b, c} and v ∈ {d, e, f} with u ∼ v. In this case we use abc together with one branch of the
triangle-tripath to construct the one-sided tripath, as proved in the following lemma.

Lemma 43. Let q = AB be a query that is 2way-determined and has uniform triangles. If there
exists a database containing a fork q-adjacent to a triangle-tripath then q admits a one-sided
fork-tripath.

Proof. Let D be a database containing a triangle-tripath with triangle def as the center which
is q-adjacent to a fork.

Among all forks of D having a block in common with def we chose abc so that the branching
fact b is in a block in common with def and we let u = b, if such a fork exists. Otherwise we chose
an arbitrary fork abc sharing a block with def and we chose u arbitrarily as any fact of the fork
which is in a block of def . In either case let B be the block of the chosen fact u. Also let v and
w the other two facts of abc different from u.

Without loss of generality assume that u ∼ e. Recall that def is a center of a tripath. There
must exist a branch of this tripath that does not intersect the block of v, nor the block of w
(otherwise if each of the three branches intersects the block of either v or w, there must exist two
branches of the tripath intersecting the same block, which contradicts the definition of tripath).
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Let z ∈ {d, e, f} be the starting point of the branch which does not intersect the blocks of v
and w; let zΠ be the strict alternating path formed by this branch. Let uz be the last fact of zΠ.

Since q has uniform triangles key(d) = key(e) = key(f) = g(e), and therefore, by definition of
tripath, there exists x ∈ key(e) \ key(uz).

Let Π′ be a new alternating path connecting u to uz defined as follows :

• Π′ := uΠ if z = e

• Π′ := uezΠ if z 6= e

Note that Π′ is an alternating path. In fact in the first case of its definition u ∼ z, where z is
in the same block as the first fact of Π; in the second case u ∼ e and D |= q{ez}. Moreover all
blocks of Π′ are pairwise distinct : in the first case blocks of Π′ are the same as blocks of zΠ; in
the second case Π′ contains additionally the block of e which, by definition of tripath, does not
intersect with blocks of zΠ.

Moreover Π′ does not intersect the blocks of v and w, because zΠ does not, and the block of
u is distinct from the blocks of v, w (as u, v and w form a fork).

Let b0b1 . . . bn be the sequence of facts of Π′ with b0 = u and bn = uz. Note that b1 ∼ b0, that
n ≥ 2 and D |= q{b1b2}, since Π′ intersects at least two distinct blocks. We now prove that Π′

is strict; we only need to prove that b0 6= b1 since we know that zΠ is strict. This is proved as a
corollary of the following more general claim:

Claim 44. For all i = 1 · · ·n, D 6|= q{bbi}.

Proof of the claim. Assume by contradiction that D |= q{bbi} with i > 0. Assume first that i > 1;
then bi 6∼ u. Moreover bi 6∼ v and bi 6∼ w because β does not intersect the blocks of v and w.
Recall that {u, v, w} = {a, b, c}, then we have D |= q{bbi}, D |= q{ba}, D |= q{bc} with a, c, bi in
three distinct blocks. Since q is 2way-determined, this contradicts Lemma 7.

Assume now i = 1, so D |= q{bb1}, then there are two cases to consider. The first case is that
u = b then b ∼ b1 and so in this case b forms a solution with b1, a and c which are in three distinct
blocks (since they coincide with the blocks of the fork abc). Consider now the second case that
u 6= b, then by the choice of abc and u we conclude that there exists no fork in D whose branching
fact is in a block of def . On the other hand we know D |= q{bb1} and D |= q{b1b2}, with b2 6∼ b,
because b ∈ {v, w} and Π′ does not intersects the blocks of v, w. We then have that bb1b2 is either
a fork or a triangle. If it is triangle we have that D |= q{bb2} and we have already proved that
this leads to a contradiction. If bb1b2 is a fork, we have that D contains a fork whose branching
fact b1 is in a block of def (since b1 ∼ u ∼ e); this contradicts the choice of abc and of u. This
concludes the proof of the claim.

We can now show that b0 6= b1, otherwise if (u =)b0 = b1 we have two cases : if u ∈ a, c then
D |= q{bb1}; if u = b then D |= q{bb2}. Both conclusions contradict Claim 44. We cannot yet
conclude that abc forms a one-sided fork-tripath with branch Π′, as the key inclusion condition
may not be satisfied. We may in fact have g(b) ⊆ key(uz). To obtain a one sided fork-tripath
we then replace abc by a new fork having the same properties as abc w.r.t Π′, and additionally
enjoying the key inclusion condition. To this end let F0F1F2 be the most general fork of q. Assume
without loss of generality that the domain of F0F1F2 and the domain of D are disjoint. Then
there exists a homomorphism hF from F0F1F2 to abc. Let j ∈ {0, 1, 2} such that hF (Fj) = u.

Since there are three forks in the triangle def , there are three homomorphisms from the most
general fork to def ; in particular let hT be the one mapping Fj to e. Note that hF and hT must
agree on key(Fj), because hF (Fj) = u ∼ e = hT (Fj). So let h be the mapping defined as hF (or
equivalently hT ) on key(Fj), and defined as the identity on the rest of the domain of F0F1F2. Let
fi = h(Fi) for i = 0, 1, 2, and denote as D′ = D∪{f0, f1, f2}. Note that fj ∼ u ∼ e ∼ b1, moreover,
since q is preserved under homomorphisms, we have both D′ |= q(f0f1) and D′ |= q(f1, f2).

We now extend the mappings hF and hT to be the identity on all the domain of D′. This way
we have hT (h(Fi)) = hT (Fi), thus hT is also a homomorphism from f0f1f2 to the triangle, with
hT (fj) = e. Similarly hF (h(Fi)) = hF (Fi) for i = 0, 1, 2; thus hF is also a homomorphism from
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f0f1f2 to abc with hF (fj) = u. This implies that f0, f1 and f2 must have pairwise distinct keys,
because so do a, b and c. Moreover D 6|= q{f0f2} otherwise abc would be a triangle. This allows
us to conclude that f0f1f2 is a fork. We now show that {f0, f1, f2} ∪ {b1, . . . bn} is a one-sided
fork-tripath. First of all fjb1 . . . bn forms an alternating path from fj to uz, because fj ∼ b1,
and Π′ = b0, b1 . . . bn is an alternating path to uz. To prove that it is strict we only need to prove
that fj 6= b1 as the other inequalities follow from strictness of Π′. Assume by contradiction that
fj = b1; recall that hF is the identity on the domain of D′ thus hF (fj) = hF (b1) = b1 on the other
hand we have already remarked that hF (fj) = u(= b0), then b1 = b0 this contradicts strictness of
Π′.

We now prove that the alternating path fjb1 . . . bn does not intersect the blocks of the facts in
f0f1f2 other than fj . Assume this is not the case, then there is some bi, i > 1 such that bi ∼ fk
for some k ∈ {0, 1, 2}, k 6= j. Thus, again because hF is the identity on the domain of D′, we must
have hF (fk) ∼ fk ∼ bi. However recall that hF (fk) ∈ {w, v}; this implies that Π′ intersects the
block of w or v, which contradicts the properties of Π′ proved above.

It remains to prove that g(f1) 6⊆ key(uz). Assume by contradiction that g(f1) ⊆ key(uz). Let
k ∈ {0, 1, 2} be such that g(f1) = key(fk). Then key(fk) only contains elements of D. We now use
the fact that hT is a homomorphism from f0f1f2 to the triangle, then hT (fk) ∈ {d, e, f}; moreover
hT is the identity on the domain of D, then hT (fk) ∼ fk. We thus have g(f1) = key(fk) = key(e) =
key(f) = key(d); this contradicts key(e) 6⊆ key(uz).

This proves that {f0, f1, f2} ∪ {b1, . . . bn} is a one-sided fork-tripath and concludes the proof
of the lemma.

In the more general case that q admits a triangle-fork q-connected database, we will use the
connection between the fork and the triangle to obtain a one-sided tripath. Let D be a database
that is q-connected containing a triangle-tripath with center def and let D also contain a fork
abc. Note that since D is q-connected, there is an alternating path connecting abc and def . Using
this alternating path we show that we can construct a one-sided fork-tripath. Towards this we
will define the notion of the most general pattern that has a homomorphism to this alternating
path and show the existence of one-sided fork-tripath using this pattern.

First we need to intuitively normalise this altnernating path between the triangle and fork so
as to be able to use it as a branch of a one-sided tripath (in particular the blocks need to be
pairwise distinct). This is done in the following technical lemma.

Lemma 45. Let q = AB be a query that is 2way-determined. If q admits a triangle-fork q-
connected database where no fork is q-adjacent to a triangle-tripath then there exists a database
containing a triangle def , a fork abc and a strict alternating path Π = a0b0 . . . anbnan+1 satisfying
all of the following conditions :

• there exists v ∈ {d, e, f} such that a0 = v;

• there exists u ∈ {a, b, c} such that an+1 ∼ u and an+1 6= u;

• a, b, c, d, e, f, a1, . . . an are in mutually distinct blocks.

Proof. Let D be a triangle-fork q-connected database. Then D contains a triangle-tripath with
center def , and also contains a fork. Since D is q-connected, each fork of D is connected to def via
an alternating path. Let abc be a fork of D connected to def via an alternating path of shortest
length.

By our hypotheses abc cannot be q-adjacent to the the triangle-tripath; thus a, b, c, d, e, f are
in pairwise distinct blocks. Then the shortest alternating path connecting them is of length > 0
(i.e. it contains at least two blocks). Let Π = a0b0 . . . anbnan+1 be such alternating path, and let
u ∈ {a, b, c} and v ∈ {d, e, f} such that a0 = v and an+1 ∼ u. We claim that

1. a, b, c, d, e, f, a1, . . . an are in pairwise distinct blocks;

2. Π is strict and u 6= an+1.
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(1) By definition of alternating path, a0, . . . an+1 are in pairwise distinct blocks. Now assume
by contradiction that aj ∼ w for some j where 1 ≤ j ≤ n and some w ∈ {a, b, c, d, e, f}. If
w ∈ {d, e, f} then ajbj . . . anbnan+1 forms an alternating path of length shorter than Π connecting
a block of def to a block of abc. Similarly if w ∈ {a, b, c} then a0b0 . . . aj−1bj−1aj forms an
alternating path of length shorter than Π connecting a block of def to a block of abc. In both
cases we reach a contradiction thus a, b, c, d, e, f, a1, . . . an are in pairwise distinct blocks.

(2) Let bn+1 denote u, and an+2 denote an arbitrary element of abc such thatD |= q{bn+1an+2}.
Then it suffices to show that for all i where 0 ≤ i ≤ n + 1 we have ai 6= bi. For i = 0 we must
have a0 6= b0 otherwise a0(= v) forms a solution with facts from three different blocks : a1 and
two distinct facts of the triangle; these are in three different blocks by (1). This would contradict
that q is 2way-determined.

Now assume by contradiction that there exists i, 1 ≤ i ≤ n+ 1 such that ai = bi. Notice that
D |= q{bi−1ai}; but the equality ai = bi implies D |= q{aiai+1}. Since bi−1, ai and ai+1 are in
pairwise distinct blocks they form either a fork or a triangle.

If bi−1aiai+1 forms a fork, then a0b0 . . . ai−1 forms an alternating path of strictly shorter
length than Π, connecting a fact of def to a fork. This contradicts the fact that Π is the shortest
alternating path connecting def to a fork of D.

If bi−1aiai+1 forms a triangle, we first show that that in this case we must have i ≤ n. Let
w be the branching fact in abc, notice that either w = bn+1 of w = an+2. By contradiction if
an+1 = bn+1 and bnan+1an+2 forms a triangle, then both bn+1 and an+2 form a solution with
bn, thus D |= {wbn}; this is a contradiction as q is 2way-determined. Thus 1 ≤ i ≤ n. By
removing the block of aibi from Π we have Π′ = a0b0 . . . ai−1bi−1ai+1bi+1 . . . an+1 which is still an
alternating path connecting def to abc because D |= q{bi−1ai+1}. This is a contradiction since Π′

is strictly shorter than Π. This proves the lemma.

Note that F0F1F2 is the most general fork of the query q = AB. On similar lines we define
T0T1T2 to be the most general triangle of q which is constructed as follows: For all x, y ∈ vars(F0)∪
vars(F1) ∪ vars(F2) define x ≡ y if any of the following holds:

• There exists positions i, j such that A[i] = A[j] and F2[i] = x and F2[j] = y

• There exists positions i, j such that B[i] = B[j] and F0[i] = x and F0[j] = y

• There exists positions i, j such that A[i] = B[j] and F2[i] = x and F0[j] = y

For each equivalence class of variables, pick a representative. Then T0T1T2 = h(F0F1F2) where
for every variable x ∈ vars(F0) ∪ vars(F1) ∪ vars(F2) we have h(x) = x̂ where x̂ denotes the
representative of the equivalence class of x. We call T0T1T2 the triangle of q.

The following is the missing step to the proof of Theorem 33.

Proposition 46. Let q = AB be a query that is 2way-determined and has uniform triangles. If
q admits a triangle-fork q-connected database, then q admits a one-sided fork-tripath.

Proof. Assume that q admits a triangle-fork q-connected database D. If D contains a fork q-
adjacent to a triangle-tripath we conclude using Lemma 43. Otherwise, by Lemma 45, there exists
a database containing a triangle d0d1d2, a fork f0f1, f2 and a strict alternating path connecting
the two. Without loss of generality let d0 and f0 be the facts connected by the alternating path
given by the sequence d0c1e1c2e2 · · · cnen with en ∼ f0; also let e0 := d0 and cn+1 := f0.

By Lemma 45 we have that n > 0, that d0, d1, d2, f0, f1, f2, e1, . . . en−1 are in pairwise distinct
blocks, and that ei 6= ci+1 for all i ≥ 1.

Let O be the database consisting of exclusively the facts {d0, d1, d2, f0, f1, f2}∪{ci, ei|i = 1..n}.
Therefore O |= q(dj , d(j+1) mod 3) for j = 0, 1, 2, and O |= q{ciei} for all i = 1..n.

Note that because {f0, f1, f2} is a fork, there exists exactly one j ∈ {0, 1, 2} such that O 6|=
q(fj , f(j+1) mod 3). Note also that the only equivalences among facts of O are : ei ∼ ci+1 for all
i ≥ 0

We now construct an instance O′ which generalizes O. Let the most general fork of q be
F0F1F2, where atoms are ordered such that F0F1F2 maps homomorphically to f0f1f2. Similarly

40



let T0T1T2 be the most general triangle of q, ordered such that T0T1T2 has a homomorphism to
d0d1d2. Without loss of generality assume that (∪j=0,1,2vars(Tj)) ∩ (∪j=0,1,2vars(Fj)) = ∅.

Moreover for each ci, ei in O, i ≥ 1, we introduce a new fresh copy of AB (using new fresh
variables), we denote this copy by CiEi in such a way that CiEi has a homomorphism to ciei.

Then we define the new instance O′ as the set of atoms {Ti|i = 0, 1, 2} ∪ {Ci, Ei|1 ≤ i ≤
n} ∪ {Fi|i = 0, 1, 2}. For uniformity of notation, we also set E0 := T0 and Cn+1 := F0.

Clearly there exists a homomorphism µ from O′ to O which maps Tj and Fj to dj , fj respec-
tively, for all j = 0, 1, 2 and maps Ci, Ei to ci, ei, for all 1 ≤ i ≤ n. Notice that µ induces a
bijection between facts of O′ and O. Notice that in O′ we do not have Ei ∼ Ci+1.

Recall that R is the relation symbol of both facts A and B of q and that the first k positions
of R forms a key. We introduce a new schema consisting of the relation symbol S with arity(S) =
arity(R) + 1. Intuitively the extra attribute in S (its first attribute) encodes a block identifier,
and the subsequent attributes copy the attributes of R. The relation schema S has an associated
functional dependency Σ = {A0 → A1 . . . Ak} where A0 denotes the first attribute of S, and
A1 . . . Ak denote the next k attributes (which copy the key of R)5.

We encode O of schema R under the new signature S, by associating a unique identifier to
each block of O. For each fact R(ā) of O belonging to the block B of O, we construct the fact
S(l, ā) where l is the identifier of B. The instance thus obtained form O will be denoted by OS .

We also encode O′ under schema S as follows : for each block B of O, of identifier l, we
introduce a new fresh element wl. For each fact L = R(x̄) in O′, let l be the identifier of the block
of µ(L), and let LS be the fact S(wl, x̄). We denote by O′S the instance {LS |L ∈ O′}. Notice
that the only pairs of distinct facts of O′S agreeing on attribute A0 are the pairs ESi , C

S
i+1 for all

0 ≤ i ≤ n.
We extend the mapping µ to the new variables by defining µ(wl) = l. This way µ is a

homomorphism from O′S to OS , and induces a bijection between facts of these two instances.
Note that O′S does not satisfy the functional dependencies Σ defined on S, thus we can apply

the chase procedure to enforce them. The reader is referred to [AHV95] for a definition of the
chase; here we will only use the well known properties of it summarized in the following claim.
This claim rephrases in our terms Lemma 8.4.17 of [AHV95], which relates an arbitrary instance to
the result of its chase using functional dependencies. In particular the following claim results from
the application of Lemma 8.4.17 of [AHV95] to our instance O′S and our functional dependency
Σ.

Claim 47 (from [AHV95], Chapter 8.). Let PS be the result of chasing the instance O′S with
respect to the functional dependencies Σ. Then PS is another instance of schema S having the
following properties:

1. PS satisfies Σ.

2. There exists a homomorphism θ : vars(O′S) → vars(O′S) such that PS = θ(O′S), and θ is
the identity on variables wl, for all block identifier l.

3. If D is any instance of schema S satisfying Σ, and ν is a homomorphism ν : O′S → D then
ν = ν ◦ θ, and therefore ν is also a homomorphism ν : PS → D with ν(PS) = ν(O′S).

Notice that OS satisfies Σ and has a homomorphism µ from O′S , thus applying Claim 47, we
obtain that µ = µ ◦ θ and therefore µ is a homomorphism from PS to OS with µ(P s) = µ(O′S) =
OS .

This implies that, since µ induces a bijection between facts of O′S and OS , so does µ between
PS and OS , as well as θ between O′S and PS . In other words θ cannot collapse any two distinct
atoms of O′S , as well as µ with PS .

5A functional dependency over a relation schema S is an expression of the form X → Y , where X,Y are sets
of attributes of S. An instance D of schema S is said to satisfy the functional dependency X → Y , denoted
D |= X → Y , if whenever D contains facts S(t1) and S(t2), if tuples t1, t2 are identical on attributes X, then they
are also identical on attributes Y .
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Claim 48. Given two facts G,G′ of PS, the following are equivalent:

(a) G,G′ agree on attributes A1, . . . Ak

(b) µ(G), µ(G′) agree on attributes A1, . . . Ak

(c) G,G′ agree on attribute A0

(d) either G = G′ or {G,G′} = {θ(ESi ), θ(CSi+1)} for some 0 ≤ i ≤ n

Proof of the claim. We first prove (a)⇒ (b)⇒(c)⇒(a).
Assume G,G′ agree on attributes A1, . . . Ak, then so do facts µ(G), µ(G′). These are two facts

of OS , thus by construction of OS , we have that µ(G) and µ(G′) agree on attribute A0. Now
recall that µ is injective on block variables wl, thus G and G′ must agree on attribute A0. Using
the fact that PS satisfies Σ, this implies that G,G′ also agree on attributes A1, . . . Ak.

It is easy to see that (c)⇔(d). In fact assume G 6= G′, then G = θ(H) and G′ = θ(H ′),
for some distinct facts H,H ′ of O′S . Since θ is the identity on block variables, G,G′ agree on
attribute A0 iff H,H ′ do. By construction of O′S this happens iff {H,H ′} = {ESi , CSi+1} for some
0 ≤ i ≤ n.

Let P denote the result of projecting out attribute A0 from PS , in the same way as O′ is
obtained from O′S and O from OS . Then P can also be viewed as an instance of schema R.

We now show that P has the same ‘shape’ as O, i.e. it consists of a triangle connected to
a fork via an alternating path. However P is more ‘general’ than O in the sense that it maps
homomorphically to it; we will then show that P has an endomorphism to its triangle.

Because homomorphisms are preserved when projecting out one attribute, we have that µ is a
homomorphism from O′ to O = µ(O′), as well as from P to O = µ(P ), and θ is a homomorphism
from O′ to P = θ(O′); moreover each of these homomorphisms induce a bijection between facts
of the corresponding instances (this is because by construction µ induces a bijection between O′

and O and µ = µ ◦ θ).
By construction P = {θ(Ti)|i = 0, 1, 2} ∪ {θ(Ci), θ(Ei)|1 ≤ i ≤ n} ∪ {θ(Fi)|i = 0, 1, 2}. These

are all pairwise distinct facts by the observation above that θ induces a bijection between facts of
T and P . Moreover using Claim 48 we have the following:

Claim 49. For two distinct facts N,N ′ of P , N ∼ N ′ iff {N,N ′} = {θ(Ei), θ(Ci+1)} for some
0 ≤ i ≤ n.

Proof. Assume {N,N ′} = {θ(Ei), θ(Ci+1)}. These two facts can be obtained by projecting A0 out
from respectively θ(ESi ) and θ(CSi+1), which by Claim 48 agree on attributes A1, . . . , Ak. Thus N
and N ′ agree on the key attributes. If conversely N ∼ N ′ then they are obtained by projecting
out attribute A0 from some distinct facts G,G′ of PS , and G,G′ agree on attributes A1, . . . , Ak.
So by Claim 48 {G,G′} = {θ(ESi ), θ(CSi+1)} for some i. Then {N,N ′} = {θ(Ei), θ(Ci+1)}.

Thus, the blocks of P are {θ(T1)}, {θ(T2)}, {θ(F1)}, {θ(F2)} and {θ(Ei), θ(Ci+1)} for all 0 ≤
i ≤ n (recall that E0 = D0 and Cn+1 = F0).

Now recall thatO′ |= q(Tj , T(j+1) mod 3) for all j = 0, 1, 2, therefore P |= q(θ(Tj), θ(T(j+1) mod 3),
for all j = 0, 1, 2. Thus θ(Tj), j = 0, 1, 2 forms a triangle in P .

Similarly, because there are two values of j in 0, 1, 2 such that O′ |= q(Fj , F(j+1) mod 3),
the same values of j are such that P |= q(θ(Fj), θ(F(j+1) mod 3). For the remaining value of j,
P |= q(θ(Fj), θ(F(j+1) mod 3) is not possible otherwiseO = µ(P ) |= q(fj , f(j+1) mod 3) for the corre-
sponding j and this is a contradiction, since f0f1f2 is not a triangle in O. Hence θ(F0), θ(F1), θ(F2)
forms a fork in P .

Finally, because O′ |= q{CiEi} for all 1 ≤ i ≤ n, we have that P |= q{θ(Ci)θ(Ei)} for all
1 ≤ i ≤ n. Together with Claim 49, this shows that (θ(Ei)θ(Ci+1))0≤i≤n forms a strict alternating
path connecting θ(T0)(= θ(E0)) to θ(F0)(= θ(Cn+1)).
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Let X be the triangle contained in P , i.e. X = {θ(Tj), j = 0, 1, 2}. We now show that P has a
homomorphism h to X and h is the identity on the domain of X. Towards this we again use the
encoding over signature S.

Let XS be the subinstance of PS consisting of the facts {θ(TSj ) | j = 0, 1, 2}.

Claim 50. There exists a homomorphism from O′S to XS which agrees with θ on the domain of
{TSj | j = 0..2}.

Proof. Let Y be the subinstance {Tj | j = 0, 1, 2} of O′, and Y S be subinstance {TSj | j = 0, 1, 2}
of O′S . We show that there exists a homomorphism h from O′S to Y S which is the identity on
the domain of Y S . Since θ is a homomorphism from Y S to XS , the composition θ ◦h satisfies the
desired properties.

Assume wlog that the block variable of TSj is wj for j = 0, 1, 2.

Let O′Si be the subinstance Y S∪{CSl , ESl |1 ≤ l ≤ i} of O′S . We first show that for all 0 ≤ i ≤ n,
O′Si has a homomorphism to Y S which is the identity on the domain of Y S .

This is clearly true for i = 0. Assume now that 0 < i ≤ n and that O′Si−1 has a homomorphism
φ to Y S with φ being the identity on the domain of Y S . We know that φ(ESi−1) ∈ Y S , so let
φ(ESi−1) = TSk0 for some k0 ∈ {0, 1, 2}.

Let wi0 , wi1 be the block variables of respectively ESi−1 (that is the same as for CSi ) and ESi .
Then φ(wi0) = wk0 .

Recall that {CiEi} is isomorphic to {AB}. Then {CiEi} has a homomorphism to the triangle
Y . Indeed, because Y is a triangle, for all j ∈ {0, 1, 2} there exists a homomorphism from {CiEi}
to Y mapping Ci to Tj ; we denote by ψ the homomorphism from {CiEi} to Y mapping Ci to Tk0 ;
we let Tk1 be ψ(Ei).

We extend ψ to block variables by setting ψ(wi0) = wk0 and ψ(wi1) = wk1 . Then ψ is a
homomorphism from CSi E

S
i to TSk0T

S
k1

. We can extend φ with ψ since they agree on wi0 which is
the only common variable in their domains. This extension of φ is then a homomorphism from
O′Si to Y S , and is still the identity on the domain of Y S .

This completes the induction and shows that O′Sn has a homomorphism φ to Y S which is the
identity on the domain of Y S .

A similar argument, detailed next, allows to extend φ to the entire O′S . We know φ(ESn ) ∈ Y S ,
so let φ(ESn ) = TSj0 for some j0 ∈ {0, 1, 2}. Let wp0 , wp1 , wp2 be the block variables of respectively

ESn (as well as FS0 ), FS1 and FS2 . The φ(wp0) = wj0 .
Recall that {F0F1F2} is isomorphic to the fork of q, then {F0F1F2} has a homomorphism to the

triangle Y , and in particular also a homomorphism ρ mapping F0 to Dj0 . We also let Dj1 = ρ(F1)
and Dj2 = ρ(F2).

We extend ρ to block variables by setting ρ(wp0) = wj0 , ρ(wp1) = wj1 and ρ(wp2) = wj2 . Then
ρ is a homomorphism from {FS0 FS1 FS2 } to Y S . We can extend φ with ρ since they agree on wp0
which is the only common variable in their domains. This extension of φ is then a homomorphism
from O′S to Y S , and is the identity on the domain of Y S .

Now notice that XS satisfies the functional dependencies Σ, because it is a subinstance of
PS , and PS |= Σ. Then we can use Claim 47 to conclude that h = h ◦ θ and therefore h is a
homomorphism from PS to XS . Moreover h(θ(TSj )) = h(TSj ) = θ(TSj ) for all j ∈ {0, 1, 2}. This

proves that there exists a homomorphism h from PS to its subinstance XS , and h is the identity
on the domain of XS .

By projecting out attribute A0 we obtain that h is a homomorphism from P to its subinstance
X = {θ(Tj), j ∈ {0, 1, 2}}, and h is the identity on the domain of X.

This can be used to conclude that for each fact L ∈ P , if key(L) is contained in the domain of X,
then L ∈ X ∪{θ(C1)}. In fact if key(L) is contained in the domain of X then h(key(L)) = key(L).
On the other hand h(L) ∈ X, and therefore there exists a fact in X in the same block as L; by
Claim 49, L ∈ X or L = θ(C1).

This is the key property that allows us to prove that P \X is a one-sided fork-tripath.
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First of all notice that P \ X consists of a fork {θ(Fj), j ∈ {0, 1, 2}} and a strict alternating
path θ(F0), θ(En)θ(Cn) . . . θ(E1)θ(C1), which never intersects the blocks of θ(F1), θ(F2).

Observe that if L is in the fork of P , i.e. if L ∈ {θ(Fj), j ∈ {0, 1, 2}} then L /∈ X. Now recall
that we can assume n > 0, then F0 = Cn+1 6= C1 and therefore θ(Fj) 6= θ(C1) for all j ∈ {0, 1, 2}.
Thus key(θ(Fj)) is not contained in the domain of X for all j ∈ {0, 1, 2}. By letting k be such
that θ(Fk) is the branching fact of the fork, we therefore have g(θ(Fk)) 6⊆ key(θ(C1)) (where recall
that θ(C1) is the ending point of the alternating path). This shows that P \ X is a one-sided
fork-tripath.

The proof of Theorem 33 now easily follows. Let q = AB be a query that is 2way-determined
and that admits a triangle-fork q-connected database. Since there exists a database containing a
fork, q is a real fork query. If q does not have uniform triangles then by Corollary 32 q admits
a fork-tripath. If q has uniform triangles then, by Proposition 46, q admits a one-sided fork-
tripath; therefore, by Proposition 35 and Proposition 36, q admits a fork-tripath.

We end the section by noting that there are queries like q7 = R(x1x2x3 y1y1y2y3 z1z2z3 z4z4z4z4)∧
R(x3x1x2 y3y1y1y2 z2z3z4 z1z2z3z4) which admits a triangle-tripath but every q connected database
that contains a triangle-tripath does not contain any fork.

H Proofs for Section 10 (Queries that admit only triangle-
tripath)

Theorem 14. Let q be a 2way-determined query admitting a triangle-tripath. Then for all k,
certain(q) 6= Certk(q).

The proof is essentially a reduction to the query q6 := E(xyz) ∧ E(zxy) for which it is shown
that certain(q6) can not be solved using Certk(q6), for all k [FPSS23].

It is actually known that certain(q6) cannot be solved using a small extension of the algorithm
Certk and we will make use of this fact: we show that if q admit a triangle-tripath and if
certain(q) = Certk(q), then the extension of the algorithm Certk solves certain(q6), which is a
contradiction.

We now present the extension of Certk. Recall that in Certk, we iteratively add a k-set S to
∆k(q,D) if there exists a block B of D such that for every fact u ∈ B there exists S′ ⊆ S ∪ {u}
such that S′ ∈ ∆k(q,D). In the extension, denoted ∆+

k (q,D) we also add a k-set S to ∆+
k (q,D) if

there exists a fact a of D such that for every fact u ∈ D, if u = a or D |= q{au} then there exists
S′ ⊆ S ∪ {u} such that S′ ∈ ∆+

k (q,D). It is easy to verify that the invariant, stating that any
repair containing a set S ∈ ∆+

k (q,D) makes the query true, is maintained. To see this consider
a repair r containing a set S of fact constructed this way. If r contains the fact a or any fact b
making q true with a, then by induction r |= q. Otherwise, let r′ be the repair constructed from r
by selecting a for the block of a. By induction r′ |= q. But by hypothesis this can not be because
of a. Hence r |= q. As usual we accepts if the empty set is eventually derived. The resulting
algorithm is denoted Cert+k (q). As for Certk(q) it runs in polynomial time and may only give false
negative. We recall the result of [FPSS23]:

Proposition 51. [FPSS23] certain(q6) cannot be computed by Cert+k (q6), for any choice of k.

We now turn to the proof of Theorem 14.
Let q be a query admitting a triangle-tripath. We show that certain(q) can not be solved

using Certk(q) no matter what k is.
We show that if certain(q) = Certk(q) then Cert+k (q6) = certain(q6) contradicting Proposi-

tion 51.
Let Θ be a triangle-tripath for q. Let def be the center of Θ. From Proposition 8 we can

assume that Θ is a triangle-nice-tripath. This means that there exists x ∈ key(d), y ∈ key(e) and
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z ∈ key(f) such that {x, y, z}∩
(
key(Br)∪key(Bl1)∪key(Bl2)

)
= ∅ and q(Θ) = {(fd)}∪{{ab} | a =

a(Bi), b = b(Bj), s(Bi) = Bj}.
Also let u ∈ key(Br), v ∈ key(Bl1) and w ∈ key(Bl2) be the elements in the keys that do not

occur in the key of any other blocks in Θ.
For any elements αx, αy, αz, αu, αvαw, we denote by Θ[αx, αy, αz, αu, αv, αw] the database

constructed from Θ by replacing x, y, z by αx, αy, αz and u, v, w by αu, αv, αw respectively (we
will ensure that αx = αy iff x = y etc.)

We now describe the reduction. Let D be a database for q6. We construct from D a database
D′ for q satisfying the following properties: D |= certain(q6) iff D′ |= certain(q) and moreover
D′ |= Certk(q) implies D |= Cert+k (q6). This will conclude the proof of Theorem 14.

For the construction of D′ we split the facts of D into cliques: Consider a fact (u vw) of D. If
both (w uv) and (v wu) are facts of D then those three facts form a clique of size three. If only
one of (w uv) and (v wu) is present then it forms a clique of size two with (u vw). Otherwise
(u vw) forms a clique of size one. It is straightforward to verify that only one of the three cases
applies for every fact and D |= q(ab) iff a and b belong to the same clique.

Let C be a clique ofD. Let (u vw) be a fact of C. Consider Θ[〈u, v, w〉, 〈u, v, w〉, 〈u, v, w〉, u, v, w].
Notice that u, v and w occur only in the key of one of the ending block. Remove from Θ the
branch of v if (v, w, u) 6∈ C. Similarly for w. Denote by θC the resulting database, denoted the
gadget for C in the sequel.

Let D′ be the union of ΘC for all cliques C of D. We claim that D′ has the desired properties.
We start with a few observations. Each fact (u vw) of D is associated to a fact f(u vw) of D′:

this is the fact of the endpoint of the gadget containing (u vw). Notice that the only new element
in the key of f(u vw) is u, and f(u vw) contains at least one non key element 〈u, v, w〉. Hence
each block of D is associated to a block of D′ of the same size. The remaining blocks of D′ are
of size 2 and are inner block of a gadget ΘC for some clique C of D. It is also easy to check that
for each clique C and each end point fact a of ΘC , it is possible to select one fact per inner block
of ΘC such that the partial repair with all these facts together with a does not make the query
true. However this is not possible with 2 endpoints of ΘC . This implies that D contains a repair
falsifying q6 iff D contains a repair falsifying q.

It remains to show that if D′ |= Cert+k (q) then D |= Certk(q6). To this end it is enough to
show that if a set S′ contains only facts of the form f(a) for some fact a of D and S′ ∈ ∆k(q,D′)
then f−1(S′) ∈ ∆+

k (q6, D).
To prove this we need some extra notations. Consider a gadget ΘC for some clique C of

D. It has three specific facts forming a triangle, and at most three ‘branches’ of blocks forming
alternating paths starting from this triangle. Consider one of the branch of ΘC . We give a label 0
to the fact within the triangle and label 1 for the other fact within the same block. By induction,
going block by block starting from the block connected to the triangle to the endpoint fact, we
label 0 a fact connected to a fact of label 1 and label 1 the other fact of the block. Hence the
ending point is labeled 0.

Let a be a fact within an inner block of ΘC . We associate to a via g one or two of the endpoints
of ΘC as follows. If a has label 0 then g(a) contains the endpoint fact of the branch where a is. If
a has label 1 then g(a) contains the two other endpoint facts of ΘC . The key property of g is the
following lemma:

Lemma 52. Let S′ be a set of facts of D′ and a an inner fact of some gadget ΘC . If S′ ∪ {a} ∈
∆k(q,D′) then for any fact b ∈ g(a), S′ ∪ {b} ∈ ∆k(q,D′)

The proof follows by simple induction on the distance of the block from the block of a.
A typical application of Lemma 52 is with one of the initial sets S of ∆k(q,D′). Such a set

contains two inner facts of a gadget making the query true. They have different labels and hence
it follows from the definition of g and Lemma 52 that any pair of endpoints of a gadget ΘC is
eventually in ∆k(q,D′). This is exactly what we expect as they inverse image by f belongs initially
to ∆k(q,D′).

To conclude the proof we assume a normal form in the derivation of the sets in ∆k(q,D′). We
assume that each time a new set S is derived, if S contains a inner fact a then we immediately
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apply the necessary derivation that replace a by any element of g(a) as guaranteed by Lemma 52.
In a sense we view this process as an ε-step in the derivation:, as if the sets involved are inserted
in ∆k(q,D′) at the same time.

The proof is then by induction on the number of steps needed to derive S′. Recall that we
assume S′ = f(S) for some set S of facts of D. We want to show that S ∈ ∆+

k (q6, D). Assume S′

is added to ∆k(q,D′) because of a block B′ of D′. If B′ is associated to a block B of D, then this
block can be used to show that S belongs to ∆+

k (qo, D). Otherwise, B′ is an inner block of some
gadget ΘC . By definition, for any fact a of B′, S′∪{a} contains a set already in ∆k(q,D′). Notice
that the two facts of B′ have different label hence, by Lemma 52, S′ ∪ {b} contains a set already
in ∆k(q,D′) for any endpoint fact b of Θc. By induction this implies that S ∪ f−1(b) contains a
set already in ∆+

k (q6, D). By the new rule of Cert+k , this implies that S ∈ ∆+
k (q6, D) as desired.

This concludes the proof of Theorem 14.

Proposition 15. Let q be a 2way-determined query and D be a database. Then D |= ¬matching(q)
implies D |= certain(q).

Proof. Assume D 6|= certain(q), let r be a repair such that r |= ¬q. For each block B of D let
r(B) be the fact of B belonging to r. The matching(q) algorithm on D constructs G(D, q) and
H(D, q) = (V1∪V2, E). Note that elements of V2 form a partition of D, thus each fact r(B) belongs
to a unique element of V2 which is clique(r(B)). Define f : V1 → V2 such that each block B ∈ V1
is mapped to clique(r(B)). We claim that f is a witness function of a V1-saturating matching for
H(D, q). In fact for every B ∈ V1 we have (B, f(B)) ∈ E, as B and f(B) both contain r(B) and
D 6|= q(r(B), r(B)) (otherwise r would contain a solution). Moreover f is injective, otherwise if
f maps two distinct blocks to the same C ∈ V2, then C contains two distinct elements a, b ∈ r,
where a 6∼ b (one in each block). It follows that C is a quasi-clique (because C is not a singleton)
then we have that q{ab} holds and hence r |= q, a contradiction.

Since f is injective, it is a V1-saturating matching for H(D, q), thus matching(q) outputs
”yes”.

Proposition 16. Let q be a 2way-determined query and D be a clique-database for q. Then
D |= ¬matching(q) iff D |= certain(q). Therefore checking whether D |= certain(q) is in
PTime.

Proof. By Proposition 15 it suffices to prove that D |= matching(q) implies D 6|= certain(q).
So assume that matching(q) outputs ”yes” on D. Then we know that there is a V1-saturating
matching of H(D, q) = (V1∪V2, E), that is, an injective function f : V1 → V2 such that (B, f(B)) ∈
E for every B ∈ V1 (i.e. for every block B of D). By construction of H(D, q) the edge (B, f(B)) ∈
E implies that there exists a fact b ∈ B such that b ∈ f(B) and D 6|= q(b, b). Let r be a repair
where for every block B of D, r contains such fact b of f(B); hence r does not contain solutions
of the form (b, b). Since elements of V2 form a partition of D, the chosen fact b belongs to only
one element of V2, thus f(B) = clique(b). Then injectivity of f implies that for every two distinct
b1, b2 ∈ r, clique(b1) 6= clique(b2).

Now since D is a clique-database, for all a ∈ D we have that clique(a) is the connected com-
ponent of a in G(D, q) (by definition of clique, since this component is a quasi-clique). Therefore
D 6|= q{b1, b2}, otherwise we would have clique(b1) = clique(b2).

This proves that r contains no solution consisting of two distinct facts. Finally by construction
of H(D, q), for all b ∈ r we have r 6|= q(b, b), this proves that r 6|= q.

Proposition 19. Let q be a 2way-determined query that does not admit a fork-tripath and let
D be a database. There exists a partition C1, C2, . . . Cn of D having all of the following properties
:

1. for all i, Ci does not contain a tripath or Ci is a clique-database for q.

2. D |= certain(q) iff there exists some i such that Ci |= certain(q).

3. For all k, if Ci |= Certk(q) for some i, then D |= Certk(q).
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4. If D |= matching(q) then for all i Ci |= matching(q).

Towards proving this, we first set up some definitions. Recall the definition of q-connected
blocks and q-connected database introduced in Section G.2. Note that every database can be
partitioned into disjoint sets of blocks such that each partition is a q-connected database (moreover,
we can obtain such a partition of the database in polynomial time). If the database D is partitioned
into C1∪C2 . . . Cn where each Ci is a q-connected database, we call this the q-connected partition
of D.

We will show that this partition satisfies the properties of Proposition 19. The most difficult
property to prove is (1), on which we concentrate first.

It turns out that for the queries that we are interested in, each q-connected database is of
two possible forms, each allowing certain(q) to be computed efficiently. This is formalized in
the following proposition whose proof relies on Theorem 33, which adresses its main technical
difficulty.

Proposition 53. Let q be a 2way-determined query that does not admit a fork-tripath. Let D
be a q-connected database. Then D contains no tripath or D is a clique-database for q.

Proof. Towards a contradiction, assume that D is a q-connected database that contains a tripath
Θ and D is not a clique-database of q. Since we have assumed that q does not admit a fork-
tripath, it follows that Θ is a triangle-tripath. But now since D is not a clique-database, D
also contains a fork (otherwise D is a clique-database by definition). Thus, D contains a triangle-
tripath and also contains a fork. But then, by Theorem 33 this implies q admits a fork-tripath,
a contradiction.

We are now ready to prove Proposition 19.

Proof. Let C1∪C2 . . . Cn be the the q-connected partition of D. It satisfies property (1) by Propo-
sition 53. We now prove that this partition satisfies all the remaining required properties.

(2) Suppose D 6|= certain(q) then clearly every Ci has a repair that makes the query false and
hence Ci 6|= certain(q) for every i.

Conversely, suppose there is some i such that Ci |= certain(q) then pick any repair r of D,
then r induces a partial repair r′ over Ci and by assumption r′ |= q. Hence r |= q.

(3) Note that for all k, Certk(q) has a form of monotonicity, that is for all databases D1, D2

having no key in common, if D1 |= Certk(q) then D1 ∪ D2 |= Certk(q). This is because
blocks of D1 are still blocks in D1 ∪ D2, and therefore any derivation of Certk(q) in D1 is
also a derivation in D1 ∪D2. Note also that for all i 6= j and all a ∈ Ci and b ∈ Cj we have
a 6∼ b, thus Certk(q) is monotone w.r.t adding components of the partition. In particular if
Ci |= Certk(q) for some i, then D |= Certk(q).

(4) Recall the matching(q) algorithm on input D runs (and outputs the result of) bipartite
matching on the bipartite graph H(D, q) = (V1, V2, E) defined in Section 10.1. We show
that H(D, q) is the disjoint union of H(Ci, q), i=1..n. First notice that each block B ∈ V1,
as well as each component C ∈ V2, is contained in exactly one Cj . Moreover if {B,C} ∈ E
and B ⊆ Ci and C ⊆ Cj then i = j; in fact, since there exists b ∈ B ∩ C, then b ∈ Ci ∩ Cj ,
which implies i = j. Then each {B,C} ∈ E is also an edge in H(Ci, q) for some i.

This shows that H(D, q) is the disjoint union of H(Ci, q), i = 1..n, and therefore bipartite
matching outputs “yes” on H(D, q) iff for all i it outputs “yes” on H(Ci, q).
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