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Abstract

It is known that standard query languages for constraint databases lack the power to express
connectivity properties. Such properties are important in the context of geographical databases,
where one naturally wishes to ask queries about connectivity (what are the connected compo-
nents of a given set?) or reachability (is there a path from A to B that lies entirely in a given
region?). No existing constraint query languages that allow closed form evaluation can express
these properties.

In the first part of the paper, we show that in principle there is no obstacle to getting
closed languages that can express connectivity and reachability queries. In fact, we show that
adding any topological property to standard languages like FO+Lin and FO+Poly results in
a closed language. In the second part of the paper, we look for tractable closed languages
for expressing reachability and connectivity queries. We introduce path logic, which allows
one to state properties of paths with respect to given regions. We show that it is closed, has
polynomial time data complexity for linear and polynomial constraints, and can express a large
number of reachability properties beyond simple connectivity. Query evaluation in the logic
involves obtaining a discrete abstraction of a continuous path, and model-checking of temporal
formulae on the discrete structure.

1 Introduction

Several recent data models generalize the relational model by allowing direct modeling of structured
database objects beyond the traditional flat tuple. Examples of the additional structure that can
be modeled include nesting of tuples within other tuples, and the modeling of pointers and other
datatypes in the object-oriented database model. We will deal in this paper with another such
extension, the constraint database model [20, 25], in which database relations need not be simple
finite collections of tuples, but can instead be constraint-definable collections, finite or infinite. The
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constraint model is appropriate for a variety of domains in which application data is naturally
represented as solutions to constraints, such as geographic data and temporal data. Constraint
databases allow queries to symbolically manipulate infinite collections of data, using both relational
operators and the algebraic operations appropriate to the application domain.

We refer to the constraint model as the polynomial constraint model or the linear constraint model,
depending on whether database objects are represented using general polynomial constraints or
only linear constraints over the reals. More generally, we can parameterize the constraint model by
any first-order structure M admitting a quantifier-elimination algorithm. In this general setting
the ‘constraint sets’ that define database relations are simply the quantifier-free definable sets of
M. In this paper we consider only structures over the real field R.

Relational Calculus generalizes in an elegant and simple way to the constraint model. The analogous
query languages use first-order logic (FO) over the vocabulary consisting of the schema relations
supplemented with the operations ofM (e.g., addition, multiplication). The implementation of the
calculus reduces to constraint-solving, or in the general case, quantifier-elimination. Many of the
results and techniques of classical relational calculus, including complexity and expressivity bounds,
carry over to these first-order constraint query languages [25]. However, first-order constraint
queries are limited in much the same way as that Relational Calculus is limited. Natural recursive
queries, such as the transitive closure of a graph, remain inexpressible in first-order constraint query
languages. Even more importantly, geometric analogs of these queries that are crucial for spatial
database applications are inexpressible as well. The query

CONNECTED(S)

that tells whether a database relation S is topologically connected, is inexpressible. The query

CONNECTS-TO(x, y, S)

that tells whether there is a path from point x to point y within relation S is also inexpressible.
Both of these results follow from [4]. The inability to express connectedness is a crucial obstacle
in applying these languages to geographic databases. Although connectivity is perhaps the most
natural geometric property that is absent from first-order constraint query languages, there are
many other geometric properties which are conceptually (and even algorithmically) simple that are
inexpressible as well: the query asking whether a planar region is simply connected, to take just
one example. In fact, results of [22, 24] show, roughly, that the only purely topological facts of
a single region expressible in first-order queries are ‘local’ – they merely assert the existence or
nonexistence of points with a given topological type.

In this paper, we consider extensions of first-order constraint query languages that can express the
reachability queries mentioned above, as well as other important non-local topological properties.
Of course, in the context of the relational model, it is fairly well-understood how to add graph
reachability as well as other tractable recursive queries to a first-order language; there are numerous
results mapping out the query languages that result from such extensions, cf. [1]. What are the
difficulties in extending beyond first-order logic in the constraint context?

When designing a query language one faces two major difficulties: achieving closure and tractability.
A key idea behind constraint query languages is closed-form evaluation: if we start with databases
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definable over some structureM and apply an FO query, the result is again definable overM. In
other words, the solution of a set of inequalities can be represented again as a set of inequalities.
This closure property enables the use of a variety of inductive query-evaluation algorithms. We also
want languages that are computationally tractable. The usual first-order constraint query languages
have polynomial data complexity, as do standard languages for recursive querying of traditional
relational databases.

Adding a traditional relational recursion mechanisms such as fixed points or while loops to first-
order constraint query languages does not give this closure property, see [20]. In fact, the interaction
of arithmetic with recursion can produce output databases that are not even computable, much
less definable with constraints. In fact, queries for topological connectivity have been handled only
through query languages that are both non-closed and computationally intractable [23, 12, 13].

In contrast, our first main result shows that there is a way to add reachability and a vast number of
other topological queries while retaining closure. In fact, for any set T of topological properties, we
present a language, FO+T that can define T, and that is still closed. Moreover for the polynomial
and linear constraint model we can prove that the complexity of evaluating queries in FO + T is
polynomial in the complexity of checking the properties from T. This implies a PTIME complexity
for the extension of CONNECTED. The language FO + T demonstrates that the closure problem by
itself is no obstacle to admitting spatial reachability queries into constraint query languages.

Our second main result identifies a powerful logic, Path Logic – denoted LPATH – which can
define CONNECTED, CONNECTS-TO and other reachability queries, and which also admits effective,
tractable query evaluation over linear and polynomial constraint databases. Path Logic has syntax
and semantics that are reminiscent of traditional temporal logics used in the verification of reactive
programs. Not only can query evaluation be done in polynomial data complexity, but we show
that query evaluation reduces to a combination of cell-decomposition algorithms from real analytic
geometry, followed by model-checking of a discrete system. In the model-checking phase, techniques
from verification of discrete transition systems can be applied.

We will show positive results about both the tractability and expressivity of Path Logic, making
the case that it is sufficiently expressive to capture the recursive queries that are most important to
spatial database applications. Path Logic can thus be seen as a constraint database language that
generalizes many recursive extensions of first-order logic, as well as a spatial analog of temporal
logics such as CTL and CTL∗.

Related work Most work on Datalog extensions for the constraint model deal with highly re-
strictive classes of constraints over integers [31], as over linear and polynomial constraints Datalog
is not closed. Topological connectivity for 2-dimensional polynomial constraint databases of de-
gree 2 was shown to be definable in a language called Spatial Datalog [23]; later [12] extended
this to arbitrary polynomial constraint databases. However, it is likely that Spatial Datalog is
computationally complete, and thus does not admit efficient evaluation [13]. Results in compu-
tational algebraic geometry show that many connectivity and reachability queries (e.g., find the
connected components of a set) are in PTIME if the dimension is fixed (see, e.g., [17]). However,
languages capturing complexity classes over constraint databases are scarce (natural languages ex-
ist for databases definable with order constraints only [15]; also, rather complicated languages were

3



given for linear constraints [16, 21]). Besides, this approach can only work for those queries applied
as top level operators (i.e., outputs cannot be reused by other queries). There exists extensive
literature on first-order definable topological properties of constraint databases [28, 22, 24, 33] and
it is well known that connectivity and reachability are not first-order [4]. Our results on application
to hybrid systems are directly inspired by [26, 27].

Organization We introduce notations in Section 2. In Section 3, we deal with closure under
topological properties. We first prove a number of general decomposition results for sets definable
in various structures. We then use them to show closure of FO+Lin and FO+Poly under adding
tests for topological properties, and tractability, assuming topological properties can be tested in
polynomial time. We also study the special case of finding connected components.

In Section 4, we introduce Path Logic LPATH for expressing reachability and connectivity queries
in a unified framework. We give examples, analyze expressive power, and prove closure. For linear
and polynomial constraints we show tractability as well. We conclude in Section 5 by giving an
application to verification of hybrid systems.

2 Notations

Structures, databases, queries Most notations are fairly standard in the literature on con-
straint databases, cf. [4, 5, 25, 29]. LetM = 〈U ,Ω〉 be an infinite structure, where U is an infinite
set, called a universe (in the database literature often called the domain), and Ω is a set of inter-
preted functions, constants, and predicates. A set X ⊆ Un is definable inM if there is a formula
α(x1, . . . , xn) in the language ofM such that X = {~a ∈ Un | M |= α(~a)}.

In this paper, we will always have U = R, the set of real numbers.

Examples of signatures (and corresponding classes of constraints) that have been considered are:

Dense Order Constraints: 〈R, <〉;
Linear Constraints: Rlin = 〈R,+,−, 0, 1, <〉;

Polynomial Constraints: R = 〈R,+, ·, 0, 1, <〉.

A (relational) database schema SC is a nonempty collection of relation names {S1, . . . , Sl} with
associated arities p1, . . . , pl > 0. We shall consider finitely representable, or definable instances. A
definable database instance of SC overM is a family of definable sets {X1, . . . , Xl}, with Xi ⊆ U

pi ,
such that for each Xi there exists a formula αi(x1, . . . , xpi) in the language ofM with Xi = {~a ∈
Upi | M |= αi(~a)}. Most applications of constraint databases consider definable instances over Rlin

(called semi-linear sets) or over R (called semi-algebraic sets). These are sets definable by Boolean
combinations of linear (resp., polynomial) inequalities.

As our basic query language, we consider relational calculus, or first-order logic, FO, over the
underlying structure and the database schema. We use the notation FO+Ω to denote the class of
all first-order formulae built up from the atomic SC and Ω formulae by using Boolean connectives
∨,∧,¬ and quantifiers ∀, ∃. When Ω is (+,−, 0, 1, <), we use the notation FO+Lin (first-order with
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linear constraints), and when Ω is (+, ·, 0, 1, <), we denote the language by FO+Poly (first-order
with polynomial constraints).

Given ϕ(~x, ~y) and ~a, we write ϕ(~a,D) for {~b | D |= ϕ(~a,~b)}; in the absence of ~x we just write ϕ(D)
for the output of ϕ on D. We say that a language FO + Ω is closed, if for any schema SC, any
definable SC-database (over 〈R,Ω〉) and every FO + Ω query ϕ(~y) on SC-databases, the output
ϕ(D) is a definable set.

Languages FO+Lin, FO+Poly, as well as FO with dense order constraints are closed; this is a
consequence of quantifier-elimination for Rlin, R and 〈R, <〉 [25].

O-minimality, cell decomposition Many results that we prove extend beyond linear and poly-
nomial constraints. To state them in greater generality, we use o-minimality [35], which plays an
important role in the study of constraint query languages (cf. [4, 5, 25]).

A structureM = 〈R,Ω〉 is o-minimal, if every definable subset of R is a finite union of points and
open intervals (a, b) = {x | a < x < b}, (−∞, a) = {x | x < a}, and (a,∞) = {x | x > a} (we
assume that < is in Ω). All the structures on the reals we mentioned so far – Rlin, R, 〈R, <〉 –
are o-minimal (this is implied by quantifier elimination and the fundamental theorem of algebra,
for the case of R.) There are a number of known o-minimal expansions of R, most notably, the
exponential field 〈R,+, ·, ex〉 [37].

A key property of o-minimal structures is cell decomposition. A cell in Rk is a subset homeomorphic
to Rk′ , k′ ≤ k (by convention, R0 is a point). We now fix a structureM = 〈R,Ω〉 and defineM-cells
by induction on dimension. AnM-cell in R0 is just R0. M-cells in R are singletons {a}, or open
intervals (a, b), (−∞, a), (a,∞), where a, b are definable constants. Assume that C ⊆ Rn−1 is a cell,
and f, g : C → R are continuous definable function on C, with f(~x) < g(~x) for all ~x ∈ C. Then the
sets {(~x, f(~x)) | ~x ∈ C} and {(~x, r) | ~x ∈ C, f(~x) < r < g(~x)} are cells in Rn. In the latter case, we
allow f to be −∞ and/or g to be ∞.

A cell decomposition of Rn (with respect to M) is a partition of Rn into a finite union of M-
cells. Again, it is defined inductively on n. A decomposition of R is the collection of M-cells
of the form {(−∞, a1), {a1}, (a1, a2), {a2}, . . . , {ak}, (ak,∞)}. A decomposition of Rn is a family
C = {C1, . . . , Cl} ofM-cells that partition Rn such that for the natural projection π : Rn → Rn−1

given by π(~x, t) = ~x for ~x ∈ Rn, t ∈ R, the collection π(C) = {π(C1), . . . , π(Cl)} is a decomposition
of Rn−1.

In particular, if C is a decomposition of Rn+m and π : Rn+m → Rn is the projection on the first
n coordinates, then π(C) is a decomposition of Rn, and for every cell C ∈ C there exists a unique
cell C0 ∈ π(C) such that C ⊆ C0 ×R

m. This property, especially in the context of the real field, is
referred to as being a cylindric decomposition.

Fact 1 [35] LetM = 〈R,Ω〉 be o-minimal. Assume that S1, . . . , Sm are definable sets in Rn. Then
there exists a cell decomposition C of Rn such that each Si is a union of some cells of C. ✷

Let X ⊆ Rn+m and ~a ∈ Rn. Then X~a denotes the fiber {~b ∈ Rm | (~a,~b) ∈ X}. Let C be
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a decomposition of Rn+m and ~a ∈ Rn. By C~a we denote the collection of all nonempty sets
{C~a | C ∈ C}. It is known [35] that C~a is a cell decomposition of Rm.

In the case whenM is Rlin or R, we can get more information about cell decompositions. Namely,
given any finite collection f1(~x), . . . , fk(~x) of polynomials (resp., linear functions) in n variables
with coefficients from Q, one can find a cell decomposition C of Rn such that on each cell Ci,
none of the functions fj changes its sign. Furthermore, this decomposition can be found in time
O((kd)h(n)), where d is the maximal degree of a polynomial among fjs, and h is some function
(typically, h(n) = O(2n)) [10, 8]. It is important to notice that for a fixed dimension, the cell
decomposition algorithm is thus in PTIME (in fact, in NC [6]).

We will need stronger notions of decomposition into cells. A decomposition C of Rn+m is called
trivial over Rn if it is cylindric over Rn and for any cell C ′ of the induced decomposition π(C) of
Rn, and for any ~a,~b ∈ C ′, there exists a homeomorphism h : Rm → Rm such that h(C~a) = C~b

for
every cell C ∈ C.

Let cl(·) denote the closure of a set (in the usual topology of R). A decomposition C is called adja-
cency preserving over Rn if it is cylindric over Rn and for any cell C ′ of the induced decomposition
π(C), for any ~a,~b ∈ C ′, and for all cells A1, A2, A3 ∈ C, cl(A1

~a) ∩ A
2
~a 6= ∅ iff cl(A1

~b
) ∩ A2

~b
6= ∅ and

cl(A1
~a)∩ cl(A

2
~a)∩A

3
~a 6= ∅ iff cl(A1

~b
)∩ cl(A2

~b
)∩A3

~b
6= ∅. Note that a trivial decomposition is adjacency

preserving.

3 Topological properties and closure

The goal of this section is to show that adding topological properties to languages like FO + Lin

and FO+Poly results in closed query languages. In particular, one can add the connectivity test,
or an operator computing connected components of a set, and still remain within semi-linear or
semi-algebraic databases.

In Subsection 3.1, we prove a general decomposition result for definable sets that is key to the
closure theorems of this section and next. Our starting point is the Local Triviality Theorem in
real algebraic geometry, which implies, for example, that for a semi-algebraic set S ⊆ Rn+m, the
number of topological types of sets S~a ⊆ R

m is finite, as ~a ranges over Rn [3, 7]. For R, the known
Local Triviality theorem gives the decompositions necessary for our results. In Rlin, however, the
Local Triviality Theorem fails, so we prove a weakening of it that is sufficient for the needs of the
paper.

Once the decomposition lemma is proved, the general closure result for adding tests of topological
properties follows easily. We treat it in Subsection 3.2, and then in Subsection 3.3 analyze more
general topological operators, in particular, one for computing connected components of a set. We
derive closure for FO+Poly and FO+Lin, although in very different ways: for FO+Poly it is an
easy consequence of Local Triviality for semi-algebraic functions, while for FO+Lin the proof relies
on the special form of decompositions. Notice that the Local Triviality Theorem does not hold in
the semi-linear case as the homeomorphisms defined by this theorem could be non semi-linear.
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3.1 Decomposition Lemma

The key lemma for our results is the following :

Lemma 2 a) Let S1, . . . , Sk be a collection of semi-linear sets in Rn+m and let f1, . . . , fp be
all the (degree 1) polynomials used in the representation of S1, . . . , Sk. Then there exists a
decomposition C of Rn+m into semi-linear sets which is trivial over Rn, and such that the
sign of each fi is constant on every cell of C. In particular, every Sj is a union of cells of C.
Moreover, for n and m fixed, C can be found in time polynomial in the size of the descriptions
of f1, . . . , fp.

b) The statement a) holds if one replaces semi-linear with semi-algebraic.

c) Let M = 〈R,Ω〉 be o-minimal, and let S1, . . . , Sk be a collection of definable sets in Rn+m.
Then there exists a decomposition C of Rn+m which is adjacency preserving over Rn such that
each set Si is a union of cells of C. Moreover, if M is decidable, then C can be effectively
computed.

d) If M = 〈R,Ω〉 is an o-minimal expansion of the real field R, and S1, . . . , Sk is a collection
of definable sets in Rn+m, then there exists a decomposition C of Rn+m which is trivial and
such that each set Si is a union of cells of C.

Proof: In the proofs of a) and b) and d), we will use the definition of stratification [3, 7]. A
stratification of Rn is a decomposition {A1, . . . , Ak} of R

n such that Ai ∩ cl(Aj) = ∅ iff Ai ⊆ cl(Aj)
for all i 6= j, and the following property holds. There exist a family of polynomials (of degree 1, for
the linear case) {p1(~x), . . . , pm(~x)} in n variables such that A1, . . . , Ak are exactly the nonempty
sets among

m
⋂

i=1

{~a ∈ Rn | pi(~a) σ(i) 0}

where σ ranges over the functions from {1, . . . ,m} to {<,=, >}, and the closure of each Aj is
obtained by relaxing the inequalities involved in the above representation; that is, changing < to
≤ and > to ≥. Notice that a stratification is not necessarily a cylindrical decomposition.

We start the proof with b), as it is an easy consequence of the Local Triviality Theorem in algebraic
geometry [3, 7]. Let f1, . . . , fp be all the polynomials used in a given representation of the Sis, and
let X1, . . . , Xs be a cylindric decomposition of Rn+m with respect to f1, . . . , fp. That is, for each i,
Xi is a semi-algebraic set homeomorphic to Rk′ for some k′ ≤ n +m, and the polynomials fjs do
not change sign on Xi. Let Π : Rn+m → Rn be the natural projection on the first n coordinates.
The Local Triviality Theorem, applied to Π and X1, . . . , Xs states that there exists a stratification
Z1, . . . , Zα of Rn and, for each 1 ≤ i ≤ α, a semi-algebraic set Fi ⊂ R

m, a semi-algebraic partition
{Fi1, . . . , Fis} of Fi and a semi-algebraic homeomorphism hi : Zi × R

m → Zi × Fi such that

• Π = Π ◦ hi on Zi × R
m, and

• hi((Zi × R
m) ∩Xj) = Zi × Fij .
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In particular, for any ~a ∈ Zi and any ~y ∈ Rm, we have hi(~a, ~y) = (~a, ~z) for some ~z ∈ Fi. Thus, for
every ~a ∈ Zi, h

~a
i : Rm → Fi that sends ~y to ~z is a homeomorphism, and is onto (since Xjs partition

Rn+m and Fijs partition Fi).

We now fix ~a,~b in Zi. Our goal is to find a homeomorphism h
~a,~b

: Rm → Rm such that h
~a,~b

((Xj)~a) =

(Xj)~b for each Xj . First, define id
~a,~b

: {~a} × Fi → {~b} × Fi to be the natural mapping that is the
identity on Fi. Then we let h

~a,~b
: Rm → Rm be defined as

π ◦ h−1
i ◦ id~a,~b ◦ hi ◦ ({~a} × id).

Here π is the projection the last m coordinates. That is, given ~y1 ∈ R
m, apply hi to (~a, ~y1)

to obtain (~a, ~z) ∈ Zi × Fi. Then h
~a,~b

(~y1) = ~y2 such that hi(~b, ~y2) = (~b, ~z). It is clear that

h
~a,~b

is a homeomorphism. We next note that hi(({~a} × R
m) ∩ Xj) = {(~a, ~z) | ~z ∈ Fij} and

hi(({~b} × R
m) ∩Xj) = {(~b, ~z) | ~z ∈ Fij}, which therefore implies h

~a,~b
((Xj)~a) = (Xj)~b.

We now look at the decomposition of Rn given by the nonempty sets among Π(X1), . . . ,Π(Xs) and
find a decomposition V1, . . . , Vl such that each Vi is a subset of a unique Π(Xk) and a unique Zr.
Given such a decomposition, we construct a decomposition C consisting of nonempty sets among
(Vi × R

m) ∩Xj . Since we took Xjs to be a cylindric decomposition, and each Vi is contained in a
projection of some cell from that decomposition, we obtain that C itself is a cylindric decomposition
over Rn. Furthermore, since each Vi is subset of some Zl, we obtain from the paragraph above that
C is trivial over Rn.

It remains to show polynomial time complexity, assuming that n andm are fixed. First, the cylindric
decomposition X1, . . . , Xs can be found in polynomial time [8, 10]. To see that the stratification
Z1, . . . , Zα can be found in polynomial time, one analyzes the proof of the Local Triviality Theorem
in [3, 7] to see that it is essentially constructing a decomposition except that at each inductive step,
one may have to make a linear change of coordinates. Again, this can be done in polynomial time if
the dimension is fixed. Finally, to find the Vis, one computes all possible intersections Zl ∩Π(Xj),
and this is again polynomial for a fixed dimension. This completes the proof of b).

The proof of d) is identical, except for the last step, as the Local Triviality Theorem is known
to hold in any o-minimal expansion of the real field [35]; clearly, nothing can be said about the
complexity in this case.

We now move to the proof of a). First note that we cannot apply the proof above as the Local
Triviality Theorem does not hold over Rlin (see, for example, in [35]). However, we can recover
enough of it to prove a).

Let f1(~x, ~y), . . . , fp(~x, ~y) be all the linear functions involved in the representation of S1, . . . , Sk. We
assume that included in this collection are the n+m functions xi (for each variable xi; this is done
to ensure that none of the cells contains a line). Let us use the standard cylindric cell decomposition
algorithm for linear functions, thus obtaining a cell decomposition C of Rn+m such that on every
cell of C, the sign of each fi remains constant. In particular, each Sj is then a union of cells. We
claim that C satisfies the condition of the theorem.

First, the fact that it can be computed in time polynomial in the representation of all the fis (for
n and m fixed) is derived from the standard bounds on cell decomposition [10]. Second, analyzing

8



the proof of the existence of stratifications for semi-algebraic sets (see, for example, [3, 7]), one
obtains that C is actually a stratification. This is because the only step in the proof of the existence
of stratifications in the semi-algebraic case that deviates from the standard cell decomposition
is a linear change of coordinates to ensure that certain products of variables do not appear in
polynomials. However, since we deal with linear functions, and multiplication is not allowed, no
linear change of variables is necessary.

We now fix a cell C ′ ∈ π(C) and ~a,~b ∈ C ′ ⊆ Rn. Let C ∈ C be a cell in C ′×Rm. We first note that
since dim(C) = dim(C ′)+dim(C~c) for an arbitrary ~c ∈ C ′ [35], we obtain that dim(C~a) = dim(C~b

).

We next fix two cells B,C ∈ C in C ′×Rm and show that the following four conditions are equivalent:

1. C~a ∩ cl(B~a) 6= ∅;

2. C ∩ cl(B) 6= ∅;

3. C ⊆ cl(B);

4. C~a ⊆ cl(B~a).

Note that 4 → 1 is immediate, and 2 → 3 follows from the fact that C is a stratification. Both
1 → 2 and 3 → 4 follow from the fact that for any cell C in C ′ × Rm, and any ~a ∈ C ′, we have
{~a} × cl(C~a) = cl(C) ∩ ({~a} × Rm). To prove this, assume that C 6= ∅ is given by a conjunction
of strict inequalities g1(~x, ~y) > 0, . . . , gp(~x, ~y) > 0 and equalities v1(~x, ~y) = 0, . . . , vs(~x, ~y) = 0,
where either s or p can be zero, and gis and vis are linear functions. The case of p = 0 is
immediate, so we assume p 6= 0. Since C defines a stratification of Rn+m, we obtain that cl(C)
is given by the conjunction of gi(~x, ~y) ≥ 0, i = 1, . . . , p, and vj(~x, ~y) = 0, j = 1, . . . , s. Let

G~a
i = {~c | gi(~a,~c) > 0}, G

~a

i = {~c | gi(~a,~c) ≥ 0}, and V ~a
j = {~c | vj(~a,~c) = 0}. We have

cl(G~a
i ) = G

~a

i and ri(G
~a

i ) = G~a
i , where ri(·) is the relative interior. Since

⋂

iG
~a
i 6= ∅, we have

cl(
⋂

iG
~a
i ) = cl(

⋂

i ri(G
~a
i )) =

⋂

i cl(ri(G
~a
i )) =

⋂

iG
~a
i (see, e.g., [32]). Let V ~a =

⋂

j V
~a
j . Then

V ~a is a closed set, and it intersects the open set
⋂

iG
~a
i . Hence, ri(V ~a) ∩

⋂

iG
~a
i 6= ∅, and thus

cl(V ~a ∩
⋂

iG
~a
i ) = cl(V ~a)∩ cl(

⋂

iG
~a
i ) = V ~a ∩

⋂

iG
~a

i . Thus, cl(C~a) = {~c | gi(~a,~c) ≥ 0, vj(~a,~c) = 0, i =
1, . . . , p, j = 1, . . . , s}, which proves {~a}× cl(C~a) = cl(C)∩ ({~a}×Rm), and hence the equivalences
above.

The equivalences above show that the adjacency structures of C~a and C~b are the same for any ~a

and ~b in C ′, and, moreover, the boundary of C~a in Rm is the union of cells of the form B~a, B ∈ C,
and likewise for ~b. Furthermore, the proof shows that cl(C~a) is a convex polyhedron, which does
not contain a line in Rm (since all variables have the same sign in every cell, by inclusion of all
the functions xis before computing the decomposition). Furthermore, since cl(C~a) = cl(C)~a, we
obtain from convex analysis (see [32]) that each face of cl(C~a) is a union of cells of the form B~a,
B ∈ C. Thus, each vertex of cl(C~a) is a cell of the above form, each segment face is a union of a
bounded one-dimensional cell of the form B~a and two vertices, and each ray face is a union of an
unbounded one-dimensional cell and a vertex. The same statements hold for cl(C~b

) in view of the
above equivalences.
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We next show that for any cell B ∈ C, B~a is bounded iff B~b
is bounded. Indeed, B~a is bounded iff

cl(B~a) is bounded. By a simple induction on dimension, cl(B~a) of dimension > 0 is bounded iff all
its one dimensional faces are segments, which in turn happens iff every one dimensional cell of the
form A~a contained in cl(B~a) is adjacent to two vertices (0-dimensional cells). Since the adjacency
structures of C~a and C~b are the same, we obtain from here that in cl(B~b

) every 1-dimensional face
is bounded, and thus B~b

is bounded.

Next, we need the following observation. Let P1 and P2 be two convex polyhedra in Rk, with
dim(P1) = dim(P2). Assume that P1 and P2 are homeomorphic, and none contains a line. Since
boundary is a topological invariant of a convex set [34], this in particular implies that bd(P1) is
homeomorphic to bd(P2). Fix any homeomorphism g : bd(P1)→ bd(P2). We claim that g can be
extended to a homeomorphism G : P1 → P2.

To prove this claim, assume without loss of generality that dim(P1) = k (if not, one works in
its affine hull). It also suffices to show that the statement above is true for some convex set X
such that both P1 and P2 are homeomorphic to X. Indeed, let h1 : P1 → X and h2 : P2 → X
be homeomorphisms (in particular, bd(X) = h1(bd(P1)) = h2(bd(P2))). Consider a map v from
bd(X) to itself given by h2 ◦ g ◦ h

−1
1 . Clearly, it is a homeomorphism, so by assumption we can

extend it to a homeomorphism V : X → X. But now G = h−1
2 ◦ V ◦ h1 is a homeomorphism

P1 → P2 that extends g.

Now the claim about the extension of a homeomorphism from the boundary to the whole polyhedron
follows from the fact that a polyhedron not containing a line in Rk is homeomorphic to either the
unit ball Bk = {~x | ‖ ~x ‖≤ 1} (if it is bounded) or to Dk = [0, 1)k (if it unbounded), see [34]. In the
first case, a homeomorphism g : bd(Bk)→ bd(Bk) is extended as follows. The origin is mapped to
itself. Given ~x ∈ Bk, let the ray from the origin in the direction of ~x intersect bd(Bk) at ~y. Then
G(~x) is the point ~x0 on the segment between the origin and g(~y) such that ‖ ~x ‖=‖ ~x0 ‖. In the
second case, consider any ~x in the interior of Dk. Let 1 stand for (1, . . . , 1). Let the ray originating
in 1 and passing through ~x intersect bd(Dk) at ~y. Consider a point ~x0 on the segment between 1
and g(~y) such that

d(~x0,1)

d(g(~y),1)
=

d(~x,1)

d(~y,1)

(where d(·, ·) is the usual Euclidean distance), and let G(~x) = x0. It is routine to verify that in
both cases G is a homeomorphism extending g.

Let now Ck~a be the union of cells C~a whose dimension is at most k, and likewise for Ck~b
. Since for

each cell C~a, cl(C~a) is the union of lower-dimensional cells in C~a, we obtain that Ck~a and Ck~b
are

closed. We now conclude the proof of a) by induction, by showing that for every k, there is a
homeomorphism hk : Ck~a → C

k
~b
such that hk(B~a) = B~b

for any cell B with dim(B~a) ≤ k. For k = 0,

the statement follows from the fact that dim(B~a) = dim(B~b
) for every B ∈ C; thus, h0 maps every

0-dimensional cell (point) of the form B~a to the point B~b
.

For the induction step, assume we have already constructed hk. Consider any cell B ∈ C such that
dim(B~a) = dim(B~b

) = k + 1. Consider cl(B~a) = B~a ∪ bd(B~a). We know that bd(B~a) is a subset

of Ck~a and moreover a union of cells. We thus have a mapping gB which is a restriction of hk on
bd(B~a) and therefore a homeomorphism bd(B~a)→ bd(B~b

) (because bd(B~b
) is a union of cells too,

and the adjacency structures of C~a and C~b are the same). Note that cl(B~a) and cl(B~b
) are both
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k + 1-dimensional polyhedra, none containing a line, and cl(B~a) is bounded iff cl(B~b
) is. Applying

the claim above, we extend gB to a homeomorphism GB : cl(B~a)→ cl(B~b
); note that GB(B~a) = B~b

as GB(bd(B~a)) = bd(B~b
).

Let B1, . . . , Bs be all the cells with dim(Bi
~a) = k+1. Then Ck+1

~a
=

⋃

i cl(B
i
~a) and C

k+1
~b

=
⋃

i cl(B
i
~b
).

We have homeomorphisms GBi
: cl(Bi

~a) → cl(Bi
~b
) for each i. Note that Bis are pairwise disjoint,

and for any x ∈ cl(Bi
~a) ∩ cl(Bj

~a
) it is the case that x ∈ Ck~a and GBi

(x) = GBj
(x) = hk(x). We

thus can define hk+1 as the union of all GBi
. Clearly, it extends hk and hk+1(B

i
~a) = Bi

~b
for all i.

Elementary topology shows that if one has a 1-1 function f : X → Y on two topological spaces such
that X = X1∪. . .∪Xt and Y = Y1∪. . .∪Yt, where all Xis and Yis are closed and the restriction of f
to each Xi is a homeomorphism between Xi and Yi, then f is a homeomorphism between X and Y
(continuity of f follows since if a sequence 〈aj〉 in X converges, then a subsequence ajk lying within
one Xi converges, and hence f(ajk) converges by continuity of the restriction. Applying the same
argument to f−1 gives that f is a homeomorphism). This implies that hk+1 is a homeomorphism
Ck+1
~a
→ Ck+1

~b
, thus completing the induction case.

We now finally take h to be hm; it is a homeomorphism Rm → Rm (since every element is in some
cell) with the property that h(C~a) = C~b

for every cell C ∈ C. This completes the proof of a).

We finally prove c). Start with a cell decomposition C of Rn+m such that each Si is a union of cells,
and π(C) is a cell decomposition of Rn (recall that π here is the natural projection onto the first n
coordinates). It is known that each cell is definable in the structure 〈R, <, S1, . . . , Sk〉 [35]. To see
what is needed in order to obtain formulae defining each cell, one can check all the steps in the proof
of cell decomposition for o-minimal structures (see, e.g., [30, 35]) and observe that the only step
that is needed to ensure effectiveness is the calculation of uniform bounds. That is, for a formula
α(x, ~y), one should be able to calculate a number K such that for each ~a, the set {c | M |= α(c,~a)}
is composed of fewer than K intervals. This can be done using the decidability of M. For each
number i, we can write a sentence Φi

α stating that the set {c | M |= α(c,~a)} is composed of fewer
than i intervals for all i, and then check ifM |= Φi

α. The uniform bounds theorem [30] says that
there is a number K such thatM |= ΦK

α , and thus it can be found sinceM is decidable.

Now we have a decomposition of Rn+m into, say, s cells. We consider a cell C ′ ∈ π(C) (note that the
decomposition π(C) is also computable). Let t ≤ s be the number of cells in the cylinder C ′ ×Rm;
denote them by A1, . . . , At. For two mappings

σ : {1, . . . , t} × {1, . . . , t} → {=, 6=},

θ : {1, . . . , t} × {1, . . . , t} × {1, . . . , t} → {=, 6=},

let C ′
σ,θ be the set of all ~a ∈ C ′ such that for every 1 ≤ i, j, k ≤ t,

(Ai
~a ∩ cl(Aj

~a
)) σ(i, j) ∅

and
(Ai

~a ∩ cl(Aj
~a
) ∩ cl(Ak

~a)) θ(i, j, k) ∅.

Since the closure of a definable set is definable in any o-minimal structure on R [35], we obtain that
C ′
σ,θ is definable by a formula βσ,θ(~x). We now consider the collection F of all the 2t

2+t3 formulae
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βσ,θ, as σ and θ range over the maps as above. Note that F can be effectively found from the

representation of S1, . . . , Sk. We next do a cell decomposition Ĉ of Rn so that every cell in π(C) and
every set definable by βσ,θ is a union of cells. By the same argument as in the previous paragraph,

ifM is decidable we can effectively construct formulae defining the cells of Ĉ.

Let C̃ be the collection of all nonempty subsets of Rn+m of the form C ∩ (A×Rm) where C ranges
over C and A ranges over Ĉ. Clearly, C̃ is a decomposition of Rn+m which is cylindric over Rn.
Furthermore, every cell in the projection π(C̃) is a cell of Ĉ. Next, fix a cell A in π(C̃). Let ~a,~b ∈ A.
Assume that for two cells C1, C2 of C̃, we have C1

~a ∩ cl(C
2
~a) 6= ∅. Since C

i = Ci
0∩ (A×R

m) for some

cell Ci
0 of C in the same cylinder over Rn, we have C1

~b
∩ cl(C2

~b
) 6= ∅ as ~a and ~b satisfy all the same

formulae βσ,θ. Thus, C
1
~a ∩ cl(C2

~a) 6= ∅ iff C
1
~b
∩ cl(C2

~b
) 6= ∅. The proof that C1

~a ∩ cl(C2
~a) ∩ cl(C3

~a) 6= ∅

iff C1
~b
∩ cl(C2

~b
) ∩ cl(C3

~b
) 6= ∅ for any C1, C2, C3 ∈ C̃ is identical. This shows that C̃ is adjacency

preserving over Rn. It is immediate from its definition and the previous paragraph that first-order
descriptions of its cells can be effectively found as soon asM is decidable. This completes the proof
of d), and the lemma. ✷

3.2 Closure theorem

We now prove the closure result for topological properties. Formally, a topological property Top

is a collection {T1, . . . , Tn, . . .} where Tn is a family of sets in Rn such that if X ∈ Tn, then for
each homeomorphism h of Rn, h(X) ∈ Tn. For example, Top could express the property of being
connected, being closed, being of dimension n − 1, containing exactly one hole, etc. When the
dimension n is clear from the context, we write X ∈ Top instead of X ∈ Tn.

For a set T of topological properties, we define the language FO(Ω)+T by extending the definition
of FO(Ω) with the following rule: if ϕ(~x, ~y) is a query, then ψ(~x) ≡ Top ~y. ϕ(~x, ~y) is a query. The
semantic is as follows: D |= ψ(~a) iff ϕ(~a,D) ∈ Top. Recall that ϕ(~a,D) = {~b | D |= ϕ(~a,~b)}. For
Ω being (+,−, 0, 1, <) or (+, ·, 0, 1, <) we use the notation FO + Lin+ T and FO + Poly+ T.

For instance, the query “is the intersection of regions R and S connected” could be written as
C~x. R(~x) ∧ S(~x) (where we denote the property of being connected by C). To illustrate the use of
free variables, consider a set S ⊆ R3. Then the query ϕ(x) ≡ C(y, z). S(x, y, z) returns the set of
all c ∈ R for which the intersection of S with the plane x = c is a connected set.

We say that the data complexity of FO(Ω) + T is PTIMET if FO(Ω) + T queries can be evaluated
in polynomial time in the size of the database, assuming an oracle that can test each Top ∈ T in
constant time.

Theorem 3 Let T be any set of topological properties. Then FO + Lin + T,FO + Poly + T and
FO(Ω) + T are closed, for 〈R,Ω〉 an o-minimal expansion of the real field. Furthermore, the data
complexity of FO + Lin+ T and FO + Poly+ T is PTIMET.

Proof. The result is by a simple induction on the formulae. The only case to prove is ψ(~x) ≡
Top ~y. ϕ(~x, ~y) for Top ∈ T. Let ~x and ~y be of length n and m, resp. On a definable database D, by
induction, ϕ(~x, ~y) gives us a definable set S ⊆ Rn×Rm. By Lemma 2, there exists a decomposition
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C of Rn+m into finitely many definable cells which is trivial over Rn and such that S is a union
of cells of C. Let C′ be the projection of C onto Rn, and C a cell in C′. By triviality, for every
~a,~b ∈ C, it is the case that S~a and S~b are homeomorphic, and thus they agree on Top. Therefore,
the output of ψ on D is a union of (finitely) many cells in C′; since each cell is definable, the output
is definable, too.

To get the complexity bound for FO + Lin + T and FO + Poly + T, we show by induction that
for each query ϕ, there exists a number k such that the complexity of evaluating ϕ on D is O(Nk),
where N is the size of a given representation of D (assuming Top can tested in constant time).
Again, the only case to consider is that of ψ(~x) ≡ Top ~y. ϕ(~x, ~y), as others follow from the standard
bounds on quantifier-elimination. Given S = ϕ(D) computed in O(Nk), we can find, by Lemma 2,
a trivial decomposition C in time polynomial in Nk. Since the projection operation is polynomial
for a fixed dimension, we get that for some k1 that depends only on ϕ, we can construct both C and
C′ in time O(Nk1). We next select a point ~a in each cell of C′ and construct the fiber S~a. This can
be done in polynomial time, too (indeed, cell decomposition algorithms already return a point from
each cell when they produce a decomposition [10, 8], and then one substitutes those representative
points for ~x in the definition of S). Finally, for each cell we test in constant time if the fiber S~a is
in Top. Thus, the total complexity is polynomial in N , with the exponent depending on ψ only.
This completes the proof. ✷

Now consider the case when T consists of just the property C (being a connected set). As connec-
tivity of semi-algebraic sets can be tested in polynomial time (for a fixed dimension) [17], the proof
of the complexity bounds in Theorem 3 implies the following.

Corollary 4 FO+Lin+C and FO+Poly+C are closed, and the queries they define have PTIME
data complexity. ✷

3.3 Topological queries and connected components

So far we have seen closure and tractability for languages which add the CONNECTED operator men-
tioned in the introduction. We now deal with the CONNECTS-TO operator; that is, with computing
connected components. In fact, we treat a more general case of non-boolean topological queries in
the context of polynomial constraints.

Let T be a map from subsets of Rm to subsets of in Rmk. We call T topological if for any home-
omorphism h : Rm → Rm and any (~x1, . . . , ~xk) ∈ T (S), for S ⊆ R

m, we have (h(~x1), . . . , h(~xk)) ∈
T (h(S)). For example, the mapping Conn : 2R

m

→ 2R
m×Rm

such that (~x1, ~x2) ∈ Conn(S) iff ~x1, ~x2
are in the same connected component of S, is topological. We say that T is definable if T (S) is a
definable set for every definable set S. As connected components of a set definable in an o-minimal
structure on R are definable [35], the topological query Conn is definable over such structures.

Let T : 2R
m

→ 2R
mk

be a topological query. We define the language FO(Ω) + T by extending the
definition of FO(Ω) with the following rule: if ϕ(~x, ~y) is a query with ~y having length m, then we
get a new query ψ(~x, ~y1, . . . , ~yk) ≡ T~y. ϕ(~x, ~y), with all ~yis having length m. The semantic is as
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follows:
D |= ψ(~a,~b1, . . . ,~bk) iff (~b1, . . . ,~bk) ∈ T (ϕ(~a,D)).

For example, if ϕ(D), for ϕ(~x, ~y), is a set S ⊆ Rn+m, and ψ(~x, ~y1, ~y2) ≡ Conn~y. ϕ, then D |=
ψ(~a,~b1,~b2) iff ~b1 and ~b2 are in the same connected component of S~a.

In the semi-algebraic case or in any o-minimal expansion, the Local Triviality Theorem used in the
proof of Lemma 2 can also be used to prove the following:

Theorem 5 For every definable topological map T , FO+Poly+T is closed. Moreover, FO(Ω)+T
is closed, whenever 〈R,Ω〉 is an o-minimal expansion of the real field.

Proof. As usual this is proved by induction on the structure of the formulae. We only need to
prove the case of ψ(~x, ~y1, . . . , ~yk) ≡ T~y. ϕ(~x, ~y). Assume ϕ defines S ⊆ Rn×Rm: S = {(~a,~b) | D |=
ϕ(~a,~b)}. By Lemma 2, there exists a decomposition C trivial over Rn. Let C1, . . . , Cp be all the
cells in the projection of C onto Rn. The proof of b) in Lemma 2 (which is just an application of
Local Triviality) shows that for every i, and every ~a,~b ∈ Ci, there is a definable homeomorphism
hi
~a,~b

: Rm → Rm such that hi
~a,~b

(S~a) = S~b. Since T is topological, it implies that (~e1, . . . , ~ek) ∈ T (S~a)

if and only if (hi
~a,~b

(~e1), . . . , h
i

~a,~b
(~ek)) ∈ T (S~b).

Since each cell Ci is a definable set, it has a definable representative ~ci ∈ Ci [35]. Thus, a tuple
(~a,~b1, . . . ,~bk) is in ψ(D) iff for i ∈ 1, . . . , p such that ~a is in Ci, the following holds:

∃(~e1, . . . , ~ek) ∈ T (S~ci)
k
∧

j=1

~bj = hi~ci,~a(~ej)

Since S~ci is definable, and hi~ci,~a is a definable homeomorphism, T (S~ci) is definable, which implies
that ψ(D) is a definable set, and proves closure. ✷

We note in passing that the fact that T produces a definable output on a definable input by no
means implies closure. For example, the convex hull operator preserves semi-linearity, but when
added to FO+Lin, gives it the full power of FO+Poly [2]. One can find definable operators that,
when added to FO+Poly, define non-semi-algebraic sets (e.g., given two sets X and Y in Rn,
return the one with the larger volume).

Since Conn is definable and topological (over the real field and its o-minimal expansions), we
conclude from Theorem 5 that FO + Poly + Conn is closed. However, the proof above cannot
possibly be extended to FO + Lin. Indeed, we used not only the triviality of the partition which
is guaranteed by Lemma 2, but also the fact that homeomorphisms between fibers are definable.
This latter condition fails over 〈R,+,−, 0, 1, <〉. Nevertheless, we can show that FO+ Lin+ Conn

is closed.

Proposition 6 FO+Lin+Conn is closed; that is, it defines a semi-linear output on a semi-linear
input. Furthermore, FO + Lin+ Conn queries have PTIME data complexity.
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Proof. The proof is by induction on the formulae, with only the case of applying the Conn operator
being nontrivial. Suppose we are given ϕ(~x, ~y) which defines, on a semi-linear database D, a semi-
linear set S ⊆ Rn × Rm. We must show that the set S′ ⊆ Rn × Rm × Rm of triples (~a,~b2,~b2) such
that ~b1 and ~b2 are in the same connected component of S~a, is semi-linear, and can be computed in
time polynomial in the size of a given representation of S (assuming n and m fixed). For this, we
use Lemma 2. We compute in PTIME a decomposition C of Rn+m, which is trivial over Rn, such
that the signs of all the functions used in the representation of S remain constant on each cell.

Let C be a cell in π(C), where π : Rn+m → Rn is the natural projection. Let C1, . . . , Ck be all the
cells in the cylinder C × Rm. We know from the proof of Lemma 2 that for any ~a,~b, Ci

~a adj Cj
~a
iff

Ci
~b
adj Cj

~b
iff Ci adj Cj where X adj Y means X ∩ cl(Y ) 6= ∅ or Y ∩ cl(X) 6= ∅. We let GC be a

graph with the set of nodes being the indices of the cells among C1, . . . , Ck that belong to S, and
edges (i, j) for every Ci adj Cj . Let K1, . . . ,Kp be the connected components of GC . Define PC

~a as

p
⋃

l=1

((
⋃

i∈Kl

Ci
~a)× (

⋃

i∈Kl

Ci
~a)) ⊆ Rm × Rm

for ~a ∈ C, and let

S′ =
⋃

C∈π(C)

⋃

~a∈C

{~a} × PC
~a ⊆ Rn × Rm × Rm.

It is known [35] that the sets of the form (
⋃

i∈Kl
Ci) are exactly the connected components of

S ∩ (C × Rm). It thus follows from the above that the sets of the form (
⋃

i∈Kl
Ci
~a) are exactly the

connected components of S~a, and hence S′ is the result of Conn~x. ϕ. By converting the above into
a FO definition, we obtain PTIME data complexity as the number of quantifiers only depends on
n and m.

✷

We note that the results on closure under topological operators and Conn leave something to be
desired. First, the proof of Theorem 5 does not produce a complexity bound, as it is not immediately
clear how hard it is to compute definable homeomorphisms between fibers. We will see in the next
section that the data complexity is PTIME (Corollary 15). The proof for FO+Lin, although giving
us tractability, is rather ad-hoc, and slight modification of a query may require an entirely different
proof of closure.

We now want to find a single language that captures the properties that are of interest for applica-
tions, which has a small number of constructors, and which has a uniform evaluation method over
all queries. Such a language is presented in the next section.

4 Path Logic

Our goal is to present a unifying query language for expressing reachability and connectivity queries.
The language is based on the concept of a path and allows to express properties of paths with respect
to given sets in the Euclidean space Rn. For now, let us think of a path as a continuous curve in
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Rn. For example, to express that a set S ⊆ Rn is connected we would say “for all ~x, ~y ∈ S there
exists a path such that for all points p on this path which appear between ~x and ~y we have p ∈ S”.
Formally, we would write this in the form

∀~x∀~y
(

(

S(~x) ∧ S(~y)
)

−→

EP ∃p∃q
(

p = ~x ∧ q = ~y ∧ ∀r((p < r ∧ r < q)→ S(r))
)

)

.

Let us try to decode this formula: The first line is just first-order, its obvious meaning is “for all
tuples ~x, ~y ∈ Rn which are both contained in S we have.” Then EP in the second line says “there
exists a path,” i.e. a continuous curve in Rn. We shall assume that all paths have a starting point;
that is, they are continuous maps f : R+ → Rn where R+ = {r ∈ R | r ≥ 0}. Next we quantify
over a new type of variables, path variables p, q, r, which range over the points of the path. We say
that “there exist points p, q on the path such that p equals ~x and q equals ~y (if we consider them as
points of Rn), and all points r between p and q are contained in S.” Here the order in “between”
is just the natural order on R. So formally the meaning of the second line of our formula is

∃t, u ∈ R+

(

f(t) = ~x ∧ f(u) = ~y ∧ ∀v ∈ (t, u) f(v) ∈ S
)

.

Similarly, we can formulate statements “for all paths” by using a universal quantifier AP instead
of EP .

Before we give the formal definition of the syntax and semantics of our logic, let us give one more
intuitive example. The following query defines the set of all ~y ∈ R2 such that if one wants to go
from a point in Portugal (P ⊆ R2) to ~y on land (L) then one has to go through Spain (S) and then
France (F ):

∀~x
(

P (~x) −→

AP
(

(

∀pL(p) ∧ ∃p∃q(p < q ∧ p = ~x ∧ q = ~y)
)

→

∃r∃s
(

p < r < s < q ∧ S(r) ∧ F (s)
)

)

.

Thus the query returns, for example, all points ~y in France, Germany, and Italy, but no points in
Spain or England.

In Subsection 4.1, we formally define the path logic LPATH. In Subsection 4.2, we give more
examples and analyze the expressive power. In Subsection 4.3, we show that LPATH is closed and
tractable over polynomial and linear constraints (more generally, the closure is shown for o-minimal
structures). In the subsequent section, 5, we give an application of path logic to hybrid systems.

4.1 Definition of the path logic

Formulas in the logic may have two sorts of variables, element variables x, y, . . . and path variables
p, q, . . . There are also two kinds of formulae: state formulae and path formulae. Associated with
each path formula is an arity n ≥ 1. (An n-ary path formula speaks about a path in Rn.)
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Syntax Given a database schema SC and a structure M = 〈R,Ω〉, formulae of LPATH(Ω) are
defined inductively as follows:

1. Every FO + Ω formula ϕ is a state formula.

2. State formulae are closed under the Boolean connectives ∨,∧,¬, and quantification ∃, ∀.

3. If ϕ is a state formula, ~x = (x1, . . . , xn) is an n-tuple of element variables, and p is a path
variable, then ϕ[p← ~x] is a path formula of arity n.

4. If n ≥ 1 and p, q are path variables, then p = q, p < q, and p > q are path formulas of arity
n. (To be formally correct, we should write p =n q, p <n q, or p >n q for the n-ary versions
of these formulae, but we can safely omit this.)

5. Path formulae of the same arity are closed under the Boolean connectives ∨,∧,¬.

6. If ϕ is a path formula and p a path variable, then ∃p ϕ and ∀p ϕ are path formulae of the
same arity as ϕ.

7. If ϕ is a path formula without free path variables, then EPϕ and APϕ are state formulae.

To make the last point of the definition precise, we have to define the set FVp(ψ) of free path
variables of a formula ψ: If ψ ≡ ϕ[p ← ~x] then FVp(ψ) = {p}. For the other types of path
formulas, FVp is defined in the usual way, for example FVp(p < q) = {p, q}, FVp(ϕ1 ∨ ϕ2) =
FVp(ϕ1) ∪ FVp(ϕ2), and FVp(∃pϕ) = FVp(ϕ) \ {p}. If ψ is a state formula, then FVp(ψ) = ∅.

This completes the definition of the syntax of LPATH(Ω). When Ω = (+,−, 0, 1, <), we use the
notation LPATH(Lin) for LPATH(Ω); for Ω = (+, ·, 0, 1, <), we use the notation LPATH(Poly).

We shall usually write p = ~y instead of (~x = ~y)[p← ~x]. Similarly, if R is a relation name, then we
shall write R(p) instead of R(~x)[p← ~x]. (We have already used these conventions in the examples
at the beginning of this section.)

To be able to define the semantics, we also have to define the set FVe(ψ) of free element variables of a
formula ψ: If ψ is an FO+Ω-formula, then FVe(ψ) is the set of free variables of ψ defined in the usual
way. Similarly, if ψ is a Boolean combination of two state or path formulas, then we apply the usual
rules to define FVe(ψ). If ψ ∈ {∃xϕ, ∀xϕ} (for an element variable x) then FVe(ψ) = FVe(ϕ)\{x}.
If ψ ∈ {∃pϕ, ∀pϕ} (for a state variable p) then FVe(ψ) = FVe(ϕ). If ψ ∈ {EPϕ,APϕ} then
FVe(ψ) = FVe(ϕ). Finally, if ψ ≡ ϕ[p← (x1, . . . , xn)] then FVe(ψ) = FVe(ϕ) \ {x1, . . . , xn}.

Semantics In our informal discussion starting this section we defined a path in Rn to be an
arbitrary continuous mapping P : R+ → Rn. However, continuous functions can oscillate very
wildly, and including pathological curves may lead to counterintuitive truth values for sentences.
Therefore, we define our semantics with respect to the set of non-zeno paths, which are reasonably
smooth and can only oscillate mildly. Formally, given an o-minimal structure M, we say that a
path P : R+ → Rn is non-zeno with respect toM if for any set X ⊆ Rn definable in any o-minimal
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expansion of M, the set P−1(X) = {t | P (t) ∈ X} is a union (not necessarily finite) of intervals,
and the set of endpoints of those intervals is discrete.

For example, every semi-algebraic path is non-zeno with respect to Rlin and R. Another typical
class of non-zeno paths can be obtained as follows: Let R be partitioned into intervals I1, I2, . . .
(which could be open or closed on each side) such that for some ǫ > 0, the length of each Ij is at
least ǫ. Let P : R+ → Rn be piece-wise semi-algebraic with respect to this partition; that is, P
is continuous and its restriction to each Ij is semi-algebraic. Then P is non-zeno with respect to
Rlin and R. An example is given by P : R+ → R2 defined as P (x) = (x, x − ⌊x⌋) if ⌊x⌋ is even,
and P (x) = (x, ⌈x⌉ − x) if ⌊x⌋ is odd. An example of a path that is non-zeno with respect to Rlin

and R, but not piecewise semi-algebraic, is the path s : R → R2 defined by s(x) := (x, sin(x)).
An example of a path which is not non-zeno with respect Rlin and R is the path defined by
s(x) := (x, x sin(1/x)).

We now give the formal definition of the semantics of LPATH(Ω). Whereas for state formulas
the satisfaction relation is defined with respect to databases D in the usual way, the satisfaction
relation for path formulas is defined with respect to pairs (D,P ) consisting of a database D and a
non-zeno path P .

The cases of FO + Ω formulae, as well as first-order quantification and Boolean connectives are
standard.

For an n-ary path formula ψ(p, ~y) ≡ ϕ(~x, ~y)[p← ~x], a database D, a non-zeno path P : R+ → Rn,
a t ∈ R+, and a tuple ~a ∈ Rm with m = |~y|, we have (D,P ) |= ψ(t,~a) iff D |= ϕ(P (t),~a). For
ϕ(p, q) ≡ (pθq), with θ ∈ {<,=, >}, we define (D,P ) |= ϕ(t, t′) iff tθt′. Finally, D |= EPϕ(~a) iff
there exists a non-zeno path P such that (D,P ) |= ϕ(~a).

This completes the definition of the semantics of LPATH.

We close this section with an example that shows why we have to be very careful in defining a
path logic that is closed and decidable. Note that in formulae ϕ[p← ~x], only one path variable can
get instantiated. Intuitively, this corresponds to coloring a path with previously defined regions.
The following example shows why one cannot bind two path variables at the same time, i.e. admit
formulas of the form ϕ[p← ~x, q ← ~y] (with the obvious meaning).

Example 7 Let α(x1, x2) ≡ (x2 = 0). Then the path formula

β(p, q) ≡
(

α[p← ~x] ∧ α[q ← ~x] ∧ p < q

∧¬∃r
(

α[r ← ~x] ∧ p < r ∧ r < q
)

)

says that p and q are two consecutive intersections of a path with the x1-axis. Now let

γ(x1, x2, y1, y2) ≡ (x2 = 0) ∧ (y2 = 0) ∧ (y1 = x1 + 1)

and consider the formula

ϕ(z) ≡ EP
(

∃p∃q
(

p = (0, 0) ∧ q = (0, z) ∧ p < q
)

∧∀p∀q
(

β(p, q)→ γ[p← ~x, q ← ~y]
)

)

.
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It says that there is a path from (0, 0) to (z, 0) in R2 such that two consecutive points of the form
(x1, 0), (x2, 0) on this path must satisfy x2 = x1 + 1. Hence, ϕ(z) holds iff z is a positive integer,
while N is not a semi-algebraic set.

4.2 Expressive power

In this section we collect a few facts we know about the expressive power of LPATH. We have
indicated that CONNECTED and CONNECTS-TO can be expressed: for example, to test that ~x, ~y are
in the same connected component of R, one writes

(

R(~x) ∧ R(~y)
)

∧ EP
(

∀p R(p) ∧ ∃p1(p1 =
~x) ∧ ∃p2(p2 = ~y)

)

.

As another example, we show how to test if a region R ⊆ R2 is simply connected . Intuitively, R
being simply connected means there are no holes in it (formally, a connected region R is simply
connected if every closed curve in it is homotopic to a single point). Note that it is easy to check
if a connected region R has a hole: either R2 \R is bounded, or this is not the case, and there are
points ~x, ~y such that every path from ~x to ~y intersects R. Clearly, this can be expressed in LPATH.

The example above is an instance of a general result, saying that the language LPATH is quite
expressive when it comes to topological queries in 2-dimensional space. Proposition 8 below can
be used to express many more 2-dimensional topological queries. Note that this is particularly
relevant in geographical information systems, which most often deal with 2-dimensional data.

With every 2-dimensional spatial database instance D, one can associate a finite structure I(D), its
topological invariant [28]. I(D) captures the topological information about D, which means that
two instances D and D′ are homeomorphic if, and only if, I(D) and I(D′) are isomorphic. We now
show the definability of I(D) in LPATH.

Proposition 8 The topological invariant of semi-linear or semi-algebraic 2-dimensional spatial
database instances is definable in LPATH. More precisely, the topological invariant of semi-linear
instances is definable in LPATH(Lin), and the topological invariant of semi-algebraic instances is
definable in LPATH(Poly).

Proof : We briefly recall the definition of topological invariant. The reader is referred to [28, 33]
for a more precise description. Given a spatial instance D over a database schema Reg containing
only binary relations, a cell partition of D is a partition of R2 into finitely many connected subsets
called cells such that each relation of D is a (finite) union of cells. The topological invariant I(D)
is roughly a finite description of the maximal cell partition of D. It is a finite structure consisting
of the following relations (their meaning is explained intuitively):

1. A unary relation C, providing the cells of dimension 0, 1, 2, and a distinguished cell of
dimension 0 called the exterior-cell.

2. A unary function Dim, which associates a dimension to each cell.

3. A binary relation Adjacent providing the topological adjacency relationship between the cells.
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4. For each region name p ∈ Reg, a unary relation p providing the set of cells contained in region
p.

5. Orientation is a 5-ary relation providing the clockwise and counterclockwise orientation of
edges incident to each cell of dimension 0. More precisely, (+, v, e1, e2, e3) ∈ Orientation iff
v is a cell of dimension 0, e1, e2, e3 are cells of dimension 1 incident to v, and e2 lies between
e1 and e3 in the clockwise order on the incident cells of v, and (−, v, e1, e2, e3) ∈ Orientation
iff v is a cell of dimension 0, e1, e2, e3 are cells incident to v, and e2 lies between e1 and e3 in
the counterclockwise order on the incident cells of v (one can use 0 and 1 to code + and −).

Let inv(Reg) denote the above schema. We want to prove that, given a semi-algebraic or semi-linear
instance D over Reg, there exists a formula in LPATH that gives I(D), the topological invariant
over D.

We start by giving the definition of cells as an equivalence relation E over points of R2: two points
p and p′ are in E iff they are in the same cell of the topological invariant. (Cells themselves can be
defined from E, as any semi-linear or semi-algebraic equivalence relation has a FO-definable set of
representatives [35].)

The cells of dimension 0 are non-regular points and can be defined in FO(<).

A cell of dimension 1 is a connected set of points with the same boundary cone type (cone
type as defined in [22, 33], a boundary cone type is the cone type of a point that lies on the
common boundary of several region of Reg). The fact that two points p and p′ have the same
boundary cone type is expressible in FO(<); this follows from [22, 24, 33]. From the definition
of topological invariant we know that, two points p and p′ are in the same 1-dimensional cell
iff they have the same boundary cone type c and if there exists a path P from p to p′ such
that all the points q in P have the same boundary cone type c (in particular, there is no
non-regular point in P ). This can be expressed in LPATH.

A 2-dimensional cell is a connected set of points having the same trivial full cone type. The
set of points having the same full cone type is definable in FO(<) and therefore its connected
components are definable in LPATH.

The function Dim which associates to each point the dimension of the cell it belongs to is easily
derived from the cone type of each cell (non-regular, boundary or full) and this is definable in
FO(<).

The adjacency relationship is given as a binary relationship A over points in R2 : A(p, p′) iff the
cell of p is topologically adjacent to the cell of p′. As we have seen before, the cells of p and p′ are
definable in LPATH (the cell of p is the set of points q such that E(p, q)), and testing for adjacency
is FO(<). Therefore A is LPATH definable.

We now show how to define the relation Orientation in LPATH. From the above we know how to
check in LPATH that v is a cell of dimension 0, e1, e2, e3 are cells of dimension 1 and that e1, e2, e3
are adjacent to v. If this is the case, it can be checked in LPATH whether e2 lies between e1 and
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e3 in the clockwise (counterclockwise) order on the incidents cells of v in the following way. For
each sufficiently small square S with center v, let v1, v2, v3 be the intersection of the edges e1, e2, e3
with S. It suffices to check that, in S, v2 lies between v1 and v3 in the clockwise (counterclockwise)
order. This can be done in FO(<) by considering all the possible cases corresponding to which
sides of S vis lie on.

✷

In the following section, we will see that every LPATH-query is computable in polynomial time.
We do not believe that the converse is true, although proving this remains open. LPATH seems to
be closer to NL (non-deterministic logarithmic space) than to PTIME. The following proposition
may illustrate this:

Proposition 9 Every query on finite constraint databases that is computable in NL is expressible
in LPATH.

Proof : Directed reachability is the following query: given a directed graph G, compute the set of
all pairs (v, w) of vertices of G such that there is a path from v to w. It was proved in [19] that
directed reachability is complete for NL under first-order reductions. Since it can easily be seen
that the class of finite database queries definable in LPATH is closed under first-order reductions,
it suffices to prove that directed reachability is expressible in LPATH.

Finite directed graphs are represented by a finite subset V ⊆ R and a finite set E ⊆ V 2 ⊆ R2. Note
first that the following formula, intuitively saying that there exists a path from x to y such that
for all successive z1, z2 ∈ V appearing on this path we have E(z1, z2) is not an LPATH-formula:

EP
(

∃p1∃p2(p1 = x ∧ p2 = y) ∧

∀q1∀q2
(

(V (q1) ∧ V (q2) ∧ ¬∃q3(V (q3) ∧ q1 < q3 ∧ q3 < q2))

→ E(z1, z2)[z1 ← q1, z2 ← q2]
)

)

.

(The reason that this is not an LPATH-formula is that we are not allowed to substitute both z1
and z2 in E(z1, z2) by path variables.)

To find an LPATH-formula expressing directed reachability, we first define a topological represen-
tation of the input graph in R3. Then undirected reachability can be defined in the same way as
topological connectivity. In a second step, we use two additional predicates to encode the direction
of the edges.

For a ∈ R we let ā := (a, 0, 0). For a pair (a, b) ∈ R2 we let (a, b) be the curve in R3 connecting
the following points by straight line segments: ā, (a, b, 0), (a, b, a), (b, b, a), (b, 0, a), b̄. It is easy to
define a formula γ(x, y, ~z) ∈ FO(<) such that for all a, b ∈ R, ~c ∈ R3 we have 〈R, <〉 |= γ(a, b,~c) if,
and only if, ~c appears on the curve (a, b). Observe that for all a, b, a′, b′ ∈ R the curves (a, b) and
(a′, b′) intersect if, and only if, either a = a′ or b = b′.

For a directed graph G = (V,E) with V ⊆ R we let V̄ := {ā | a ∈ V } and Ē :=
⋃

(a,b)∈E (a, b).

Clearly, there are formulae ϕV (~z), ϕE(~z) in FO over < and E, V defining the sets V̄ , Ē, respectively.

21



Note that for all a, b ∈ V there is an path from a to b in the undirected graph underlying G if, and
only if, there is a path in R3 from ā to b̄ that is contained in Ē.

To encode the direction of the edges we define two new sets Tail := {(a, b, 0) ∈ R3 | (a, b) ∈ E} and
Head := {(b, 0, a) ∈ R3 | (a, b) ∈ E}. Let ϕTail(~z), ϕHead(~z) in FO over <,E, V be formulas defining
these sets.

To express that there is a directed path from a to b we say that there is a path in R3 such that a
occurs before b on this path, and every point of V̄ on this path that is not the final point is followed
by a point in Tail, every point in Tail is followed by a point in Head, and every point in Head is
followed by a point in V̄ . To formalize this in LPATH, we let

ϕEmpty(q1, q2) = ∀q3
(

(

q1 < q3 ∧ q3 < q2)
)

→ ¬
(

ϕV (q3) ∨ ϕTail(q3) ∨ ϕHead(q3)
)

)

.

Then the following LPATH-formula defines directed reachability:

V (x) ∧ V (y) ∧EP
(

∃p1∃p2
(

p1 = (x, 0, 0) ∧ p2 = (y, 0, 0) ∧ p1 ≤ p2
)

∧∀q1
(

(ϕV (q1) ∧ ∃q2 q1 < q2)→ ∃q2(ϕTail(q2) ∧ ϕEmpty(q1, q2))
)

∧∀q1(ϕTail(q1)→ ∃q2(ϕHead(q2) ∧ ϕEmpty(q1, q2))
)

∧∀q1(ϕHead(q1)→ ∃q2(ϕV (q2) ∧ ϕEmpty(q1, q2))
)

)

.

✷

Of course this proposition is only a small step towards an understanding of the expressive power of
LPATH. We would like to prove the converse statement that every LPATH-query on finite instances
is computable in NL. Unfortunately, this seems to be quite difficult. One approach would be to
prove a collapse result saying that generic LPATH-queries on finite structures are all expressible
in some finitary path logic, and then use results from finite model theory. It is not clear how to
extend first-order collapse results to LPATH, however.

Another difficult problem is to compare the expressive power of LPATH with that of the various
extensions of FO by the connectivity quantifiers. We believe that directed reachability in finite
graphs is not expressible in FO + Poly + Conn, but this appears to be very hard to prove, even
under the complexity theoretic assumption that undirected reachability is not NL-complete.

4.3 Query evaluation: Closure and complexity

While LPATH can express a great deal of reachability queries in constraint databases, it is not
immediately clear whether it is either closed or tractable. Indeed, we saw in Example 7 that if
one extends LPATH by allowing new binary predicates on path variables, the resulting logic is
neither closed nor decidable. We now show that LPATH has very desirable closure and tractability
properties for domains relevant in spatial applications. More precisely, we say that LPATH(Ω)

• is decidable if for every definable (in 〈R,Ω〉) database D, and every state sentence Φ, it is
decidable whether D |= Φ;
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• is closed if for every definable database and every state formula ϕ(~x), the set {~a | D |= ϕ(~a)}
is definable;

• admits effective query evaluation (of data complexity C) if in addition a formula defining
the set {~a | D |= ϕ(~a)} can be effectively obtained (and the complexity of obtaining such a
formula is C in terms of the size of the database D).

Our goal is to prove the following result.

Theorem 10 Let M = 〈R,Ω〉 be o-minimal and decidable. Then LPATH(Ω) is closed and decid-
able. Furthermore, if M admits effective quantifier-elimination, then LPATH(Ω) admits effective
query evaluation, and for LPATH(Lin) and LPATH(Poly) the data complexity is PTIME.

Proof. We prove the theorem in two steps: we first show that an LPATH query can be transformed
into a “discrete path query” in which instead of quantifying over any point in a path P , we quantify
only over components of the path with respect to some discretization of the path. In the second
step we show that these discrete path queries can be evaluated on a database by model-checking
the adjacency structure of the appropriate cell-decomposition.

We start by making the first step more precise, by introducing a restricted logic that will be used
as a normal form.

Let A = {A1 . . . Ak} be some finite collection of Ω-definable sets in Rn. Fix a non-zeno path
P : R+ → Rn. For r, s ∈ R+, we say that r and s agree on A if P (r) ∈ Ai ⇔ P (s) ∈ Ai for all
i = 1, . . . , k. We say that r, s ∈ R+ are A-equivalent (and write r =A s) if there is an open interval
I such that r, s ∈ I, and all r′, s′ ∈ I agree on A. We write r <A s if r < s and r 6=A s. Note that
the equivalence classes of =A are either open intervals or single points.

Now suppose we have a finite collection of LPATH(Ω) state formulae A = {A1(~x, ~y) . . . Ak(~x, ~y)},
each of arity n+m.

We now introduce a new path formula p <A(~y) q with free path variables p, q and free element
variables ~y = (y1, . . . , ym), which holds in a database interpreting the predicates in A by Ω-definable
sets X1 . . . Xk, for a non-zeno path P in Rn, path elements p0, q0 and ~c ∈ R

m exactly when p0 <X q0
where X = {Xi

~c}. Recall that Xi
~c = {~b | (~b,~c) ∈ Xi} ⊆ Rn. Similarly we introduce the formula

=A(~y) saying two path variables are in the same equivalence class modulo A(~y). Clearly, this can
be expressed as queries in LPATH(Ω) as well.

We consider a language L−
PATH

(Ω) that is built up as follows. For a finite collection A = {Ai(~x, ~y)}
of first-order formulae (over Ω and the schema predicates) we have new atomic formulae:

• For every path variable p of arity the same as that of ~x, Ai(~y)([p]A) is an atomic formula with
p and ~y free, with meaning the same as Ai(p← ~x, ~y).

• For every path variable p with arity the same as that of ~x, we have a formula O(p,A(~x, ~y), ~y),
with free variables p and ~y meaning that the equivalence class of p under =A(~y) is an open
interval. If free element variables are clear from the context, we use the abbreviation O([p]A).
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Similarly, we have formulae C([p]A),CO([p]A),OC([p]A), meaning that the equivalence class
of p under =A(~y) is closed, open on right and closed on left, closed on right open on left,
respectively.

We also have a formula S(p,A(~x, ~y), ~y) (abbreviated as S([p]A) if ~y is understood), meaning
that the equivalence class of p under =A(~y) consists of a single element.

• For path variables p and q of the appropriate arity, we have formulae [p]A <A(~y) [q]A with
p, q and ~y free, and with the meaning the same as p <A(~y) q. We also have the formula
[p]A =A(~y) [q]A.

We choose the abbreviations to underline the key point about these new atomic formulae, which is
that they all talk only about the equivalence class of a path variable p.

As constructors of L−
PATH

(Ω), we have only boolean operators (where the set A must be the same
in each operand) and path-variable quantification. Neither path quantification EP nor element
quantification is present.

It is clear that every query in L−
PATH

(Ω) can be expressed in LPATH(Ω). We now reduce the

expressivity of LPATH to that of L−
PATH

.

With A(~x, ~y) a collection of first-order formulae as above, and p a path variable, let FirstA(p) be
a new formula that says p is the first element in the path in its A equivalence class. Similarly let
LastA(p) mean that p is the last element in the path in the A equivalence class of p. The next
lemma explains exactly what an open formula of LPATH can say about a set of path variables.

Lemma 11 Suppose ϕ(~p, ~w) is an LPATH(Ω) path formula (where ~p are path variables and ~w are
element variables) that has no occurrences of EP . Then from ϕ we can effectively find a collection
A of first-order formulae and a formula ϕ′ that is equivalent to ϕ (on every database and every
non-zeno path), and such that ϕ′ is a boolean combination of formulae of L−

PATH
and atomic

formulae pi <A pj, FirstA(pi), and LastA(pi). In particular, if ϕ has no free path-variables, then
it is equivalent to a formula of L−

PATH
(Ω).

Proof of Lemma 11. We show this by induction on formula complexity. For atomic formulae of
the form p1 < p2, this is clear. We consider the induction step. The steps for conjunction and
disjunction simply involves combining statements about A and B equivalence classes for formula
sets A and B to statements about equivalence classes modulo AB = A ∪ B. For example the
induction step for conjunction reduces to taking a formula ϕ(p1, . . . pn, ~y) that is a boolean combi-
nation of ϕi([p1]A, . . . [pk]A), FirstA(pi), LastA(pi), and a formula γ that is a boolean combination
of γi([p1]B, . . . [pk]B), FirstB(pi), LastB(pi), and writing it in terms of formulae mentioning only
equivalence modulo AB. Here A and B are collections of formulae with free variables ~x, ~y, and the
formulae ϕi may have path variable quantifications in them.

We can do this simply by transforming the atomic formulae. For example, p =A q is transformed
to
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∀r ([p] ≤AB [r] ≤AB [q] ∨ [q] ≤AB [r] ≤AB [p])
→

∧

iAi([r]AB)↔ Ai([q]AB) ∧ Ai([r]AB)↔ Ai([p]AB).

Here we use abbreviation [p] ≤AB [r] for [p] <AB [r] ∨ [p] =AB [r]. The transformations for [p] <A [q]
and Ai([p]) are also straightforward.

The formula O([p]A) is equivalent to

∃q, r













(O([q]AB) ∨OC([q]AB))
∧ (O([r]AB) ∨CO([r]AB))
∧ (q =A p =A r)
∧ ∀q′ (q′ <AB q → (¬(q′ =A p)))
∧ ∀r′ (r′ >AB r → (¬(r′ =A p)))













,

which can then be converted to the proper form, since we have seen above how to convert formulae
using the relation =A on path variables. The other interval types are similar, as are FirstA and
LastA.

For path variable substitution, suppose we have χ(p, ~y) ≡ ϕ(p ← ~x, ~y), where ϕ(~x, ~y) is a state
formula. Since we assume ϕ to have no quantifications of the form EP , ϕ must be first-order, and
hence χ is certainly in L−

PATH
, since it is χ([p]A), where A consists of only χ(~x, ~y).

The last step is existential path variable quantification. Suppose we have a formula
∃p1ϕ(p1, p2, . . . pk, ~y). By induction, ϕ is a Boolean combination of L−

PATH
formulae, inequali-

ties among the pi, and FirstA(pi) and LastA(pi) statements. By combining sets, we can assume
that these last statements all refer to the same set of formulas Ai(~x, ~y). Without loss of generality,
ϕ is

∨

i

(ϕi([p1]A, . . . , [pk]A) ∧ ti(p1, . . . , pk),

where A = {Ai(~x, ~y)} is a collection of first-order formulae, ϕi is a statement about the ordering and
interval types of equivalence classes, and the Ai labels of equivalence classes, while ti is a simple
ordering statement about ~p, giving inequalities between them and which ones are first in their
equivalence classes. We may assume w.l.o.g. that ϕi completely specifies the ordering relations <A

that hold among the (equivalence classes of) pj ’s. Note that since < refines <A, we can assume
that the < ordering given in ti is consistent with the ordering <A given in ϕi (otherwise, we can
eliminate this disjunct).

Let S be the collection of i such that ϕi specifies p1 to be equivalent to some other pj with j > 1.
For i ∈ S, let δ(i) be any 1 < j ≤ k such that p1 is specified to be equivalent to pj .

For i 6∈ S, the formula ∃p1ϕi([p1]A, . . . , [pk]A) ∧ ti(p1, . . . , pk) is equivalent to
∃p1ϕi([p1]A, . . . , [pk]A) ∧ t′i(p2, . . . , pk), where t′i is obtained from ti by eliminating all in-
equalities involving p1. This is true because the <A inequalities involving p1 in ϕi already imply
the inequalities involving p1 in ti.
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For i in S, the formula ∃p1ϕi([p1]A, . . . , [pk]A) ∧ ti(p1, . . . , pk) is equivalent to

ϕi([pδ(i)]A, . . . , [pk]A) ∧ ∃p1 (p1 =A pδ(i) ∧ ti(p1, . . . pk)).

Furthermore, ∃p1 (p1 =A pδ(i) ∧ ti(p1, . . . pk)) can be converted into an atomic formula t′i(p2 . . . pn),
due to the fact that ϕi specifies the interval type (closed, open, etc.) of [pδ(i)]A, and each interval
type has quantifier elimination in the language <,First ,Last (although for some of the interval
types, First or Last may be equivalent to false). This is true because Dense Linear Order without
endpoints is known to have effective quantifier elimination in the language of order, and Dense
Linear Order with endpoints has quantifier elimination in the language of order with constants for
endpoints [9].

Thus, ∃p1ϕ(p1, . . . , pk) is a disjunct of formulae, each of which is equivalent to a boolean combina-
tion of L−

PATH
formulae and inequalities of the form pi < pj . This complete the proof of Lemma

11. ✷

Our next lemma shows that L−
PATH

formulae can be evaluated effectively.

Lemma 12 For every L−
PATH

(Ω) query ϕ(~x), where the ~x are free element variables, and there
are no free path variables, and for every Ω-definable database D, there is a first-order Ω-formula
ϕD(~x) such that for every ~a, D |= EPϕ(~a) iffM |= ϕD(~a).

If M is decidable, then ϕD can be found effectively from ϕ and D, and if M is either Rlin or R,
then for every fixed ϕ, ϕD can be found in polynomial time in the representation of D.

Proof of Lemma 12. Let A = {Ai(~x, ~y) | i ≤ K} be the set of formulae over Ω (unioned with
the schema) which are used in ϕ. For any Ω-definable database D, we construct a family of finite
discrete structures parameterized by ~y.

We do it as follows. Let AD
i be {(~a,~b) | D |= Ai(~a,~b)}. Applying Lemma 2, we find an adjacency-

preserving cell-decomposition B = {B1, . . . , BN}, which is cylindric over the ~y coordinates, such
that each AD

i is a union of cells. Define an equivalence relation ≡ on R|~y| by letting ~b ≡ ~c iff ~b and
~c are in the same cell of the projection of B onto the ~y coordinates. It follows from the definition
of adjacency preservation that the following are true for ~b ≡ ~c.

• For all i ≤ N , Bi
~b
6= ∅ iff Bi

~c 6= ∅.

• For all i, j ≤ N , Bi
~b
Adj Bj

~b
iff Bi

~c Adj B
j
~c
, where E Adj F means cl(E) ∩ F 6= ∅.

• For all i, j, k ≤ N , we have T (Bi
~b
, Bj

~b
, Bk

~b
) iff T (Bi

~c, B
j
~c
, Bk

~c ), where T (E,F,G) means E ∩

cl(F ) ∩ cl(G) 6= ∅.

For every ~b, we form the adjacency structure of ~b, which is a labeled multi-graph whose nodes are all
of the nonempty sets of the form Bi

~b
, with two binary relations, C and O, where C is the adjacency

relation Adj defined above, and O is the inverse of the adjacency relation, and one ternary relation

26



T , where T is the ternary adjacency relation defined above. Nodes are labeled according to which
Ai(~x,~b) are satisfied in the node (necessarily by all elements of the node or by none).

Note that the equivalence relation above partitions the ~y plane according to the isomorphism type
of the adjacency structure. Hence the set of ~ys corresponding to any collection of isomorphism
types is definable.

Given an adjacency structure, an adjacency path is a sequence of pairs 〈〈N(i), E(i)〉 | i ∈ N〉, where
N(i) is a node and E(i) is an edge (either an O edge or a C edge) out of node N(i). We first show
the following.

Claim 13 If ~c ≡ ~d, then they agree on EPϕ; that is, EPϕ(~c) holds iff EPϕ(~d) holds.

Proof of Claim 13. Suppose we have ~c ≡ ~d. Then the adjacency structures of ~c and ~d are isomorphic
(with the natural isomorphism that sends Bi

~c to Bi
~d
). Suppose we are given a non-zeno path P

that witnesses that EPϕ(~c). Then (by non-zeno-ness) P is the union of Pi on intervals Ii, where
Ii is a maximal subinterval on which P is contained in a particular component M(i) of the cell
decomposition. P maps into a path P ′ running through the adjacency graph of ~c, by taking M(i)s
to be the sequence of components hit by P , and with the edge associated to M(i) being an O if Ii
is closed on the right and C if Ii is open on the right. Since the adjacency graph of ~d is isomorphic
to that of ~c, there is a corresponding path Q′ = 〈〈N(i), X(i)〉 | i ∈ N〉 through the adjacency graph
of ~d with the same edges X(i) = O or C as in P ′ and the same node labels, and also such that for
every i, j, k, T (M(i),M(j),M(k)) holds iff T (N(i), N(j), N(k)) holds.

We now have to build a non-zeno path Q in Euclidean space corresponding to Q′. We will define
Q as

⋃

nQn where the partial functions Qn with domain Jn will be defined inductively below. We
will preserve the following properties in the construction:

• If P ′
n = 〈M(n), X〉, where X = C or O, then Qn takes all its values in N(n).

• If P ′
n = 〈M(n), O〉, then the domain Jn of Qn is closed on the right and the value of Qn at

the right endpoint is in the closure of N(n+ 1).

• If P ′
n = 〈M(n), C〉, then the domain Jn is open on the right and the limit of the path Qn as

we approach the right endpoint is in N(n+ 1).

• In, the domain of the n-th component of the path P , is a singleton, iff Jn, the domain of Qn,
is a singleton.

• Suppose In is open on the right, and the right-hand limit of Pn is the same as the left-hand
limit of Pn+2 (that is, In+1 is a singleton). Then Jn is open on the right, and the right
hand-limit of Qn is in N(n+ 2).

Inductive construction. Suppose we have constructed Q1 . . . Qn−1, and now want to construct Jn
and Qn. There are several cases to consider, depending on whether the edge from Q′

n−1 to Q′
n was

O or C, and depending on whether In and In+1 are singletons or not.
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Case 1. Suppose we have P ′
n−1 = 〈M(n − 1), C〉, P ′

n = 〈M(n), O〉, In is not a singleton, and In+1

is not a singleton.

Then by construction Jn−1 is open on the right with some right endpoint l, and the path Qn−1

converges to some point x in N(n) as the domain element goes to l. Since there is an O edge from
N(n) to N(n+ 1) (which follows since this is preserved from P ′ to Q′ by assumption), there must
be some point y in N(n) that is in the closure of N(n + 1). Let Qn be any smooth path on a
nondegenerate closed interval going from x to y that remains in N(n). Such a path exists since
N(n) is connected. In fact, by the curve selection lemma [35], it can be chosen to be definable in
M. The domain can be made nondegenerate even if x = y, by making the path constant.

Case 2. Suppose we have P ′
n−1 = 〈M(n − 1), C〉, Q′

n = 〈M(n), O〉, In is a singleton, and (hence)
In+1 is not a singleton.

Then by construction Jn−1 is open on the right with some right endpoint l, and the path Qn−1

converges to some point x in N(n) as the domain element goes to l. Since In is a singleton it
must further be true (by the inductive assumption on this construction) that x is in the closure of
N(n+ 1). Let Qn map the single point l to x.

Case 3. Suppose we have P ′
n−1 = 〈M(n− 1), C〉, P ′

n = 〈M(n), C〉, and In+1 is a singleton.

Then by construction Jn−1 is open on the right with some right endpoint l, and the path Qn−1

converges to some point x in N(n) as the domain element goes to l. Since there is a C edge from
M(n) toM(n+1), the same must be true for N(n) and N(n+1). Since In+1 is a singleton, it must
be that the value of Pn+1 on In+1 is in M(n+ 1) and in the closure of both M(n) and M(n+ 2).
Hence there must be a point y in N(n+1) that is in the closure of both N(n) and N(n+2) (since
the paths P ′ and Q′ had the same type with respect to the ternary relation T ). Let Qn be any
path in N(n) from a half-open interval that begins at x and converges toward y. Such a path exists
since N(n) is connected and y is in the closure of N(n) (and again can be taken to be definable).

Case 4. Suppose we have P ′
n−1 = 〈M(n− 1), C〉, P ′

n = 〈M(n), C〉, and In+1 is not a singleton.

This is similar to Case 3, but simpler, since we do not have to ensure that Qn converges to a point
in the closure of N(n+ 2).

Case 5. Suppose we have P ′
n−1 = 〈M(n− 1), O〉, P ′

n = 〈M(n), C〉, and In+1 is a singleton.

We have that Jn−1 is closed on the right, and the value x of Q(n−1) at the right endpoint is in the
closure of N(n). Since In+1 is a singleton, we must have T holding of M(n),M(n+ 1),M(n+ 2),
hence also of N(n), N(n+ 1), N(n+ 2), so there is a point y in N(n+ 1) which is in N(n) closure
and N(n+ 2) closure. Let Qn be a path converging to x on the left and to y on the right.

Case 6. Suppose we have P ′
n−1 = 〈M(n− 1), O〉, P ′

n = 〈M(n), C〉, and In+1 is not a singleton.

This is similar to Case 5, but simpler, since we have no obligations to fulfill on the right endpoint
y.

Case 7. Suppose we have P ′
n−1 = 〈M(n − 1), O〉, P ′

n = 〈M(n), O〉 (hence In is not a singleton),
and In+1 is a singleton.
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In this case we know inductively that the domain of Qn−1 is closed on the right, and that the value
of Qn−1 at the right endpoint is in the closure of N(n). Furthermore, we know, as in the previous
arguments, that there is some point y in N(n+1) that is in the closure of both N(n) and N(n+2).
Take Qn to be a path that converges to x on the right and y on the left.

Case 8. Suppose we have P ′
n−1 = 〈M(n − 1), O〉, P ′

n = 〈M(n), O〉 (hence In is not a singleton),
and In+1 is not a singleton.

This is similar to Case 7.

In the above, it is clear that by making the intervals appropriately wide, and making each path
component Qn definable (which can be done, since connected definable sets are definable connected
[35]), the resulting path Q can be made to be non-zeno. We now want to verify that Q also witnesses
that EPϕ(~d), using that P witnesses EPϕ(~c). This follows easily from the fact that L−

PATH
can

only describe properties of equivalence classes of elements (Lemma 11). This completes the proof
of the claim. ✷

Given Claim 13, and the fact that each adjacency type is described by a first-order formula, we
conclude that that on D, the formula EPϕ is equivalent to a first-order formula. Hence we have
completed the proof of the first part of Lemma 12.

It remains to show how we can find out effectively (in polynomial time in the linear and polynomial
constraint cases) which adjacency structures correspond to vectors ~y realizing EPϕ on D. Since
in the linear or polynomial cases the adjacency structures are of polynomial size in the complexity
of D (see Lemma 2), and can be produced from D in polynomial time, the problem reduces to the
following. Given ϕ and an adjacency structure AS , determine efficiently in the size of AS whether
EPϕ holds on all ~y with adjacency type AS or none of the ~y with that type.

We now show how to do this. From AS , we will form a Kripke structure K(AS ) composed of all
five-tuples (B,X,E,X ′, F ) where B,E, F are cells in AS and X,X ′ are transitions (O or C) from
AS where (B,E) ∈ X and (E,F ) ∈ X ′. The binary relation G of the Kripke structure relates any
two tuples (B,X,E,X ′, F ) and (E,X ′, F,X ′′, H). We add to this an extra copy τ ′ of each tuple τ
of the form (B,C,E,O, F ) where E ∩ cl(B) ∩ cl(F ) 6= ∅. This tuple τ ′ has the same transitions in
and out of it as τ does. We also add nodes of the form (START , H,X, I), where H and I are cells
and X is a transition in AS . For nodes τ of the form (START , H,O, I), we add a copy τ ′. Both τ
and τ ′ transition to those nodes of the form (I,X ′, J, Y ′,K), and have no nodes transitioning into
them.

We next define a finite alphabet Σ that consists of symbols Lij , with i ∈ {1, 2, 3} and 1 ≤ j ≤ K =|
A |, LCO , LOC , LCC , LOO , Lsng , Lnsng , LSTART , LSTART ,O and LSTART ,C .

We now show how to label nodes in K(AS ) by symbols in Σ. In a tuple (B,X,E,X ′, F ), we refer
to B as the first, E as the second, and F as the third cell in it. We start by labeling a tuple
depending on what elements of the original partition are satisfied by its cells. That is, label a tuple
with Lij , i ≤ 3, j ≤ K exactly when the ith cell in the tuple is in Aj . Label elements of the form
(START , H,O, I) with L2j exactly when H is in Aj and with L3j when I is in Aj . We have a
label LCO for each tuple of the form (B,C,E,O, F ), and similarly for labels LOC , LCC , and LOO .
For each tuple τ of the form (B,C,E,O, F ) where E ∩ cl(B) ∩ cl(F ) 6= ∅, we label τ ′ with Lsng
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and τ with Lnsng . For each tuple τ of the form (START , H,O, I), we label τ ′ with Lsng and τ
with Lnsng . Finally, we label each tuple of the form (START , H,X, I) with LSTART . We label
(START , H,O, I) with LSTART ,O and (START , H,C, I) with LSTART ,C .

We convert ϕ into a first-order formula ϕ′ over ω-words in Σ∗ with the language < unioned with the
label alphabet Σ. We can assume that there are no occurrences of =A, since they can be reduced
to <A. We translate atomic formulae [p] <A [p′] as

(p < p′) ∧
∨

i

(¬L2i(p)↔ L2i(p
′)).

We translate the formula OC([p]A) by

∃p′∃p′′
(

p′ < p < p′′ ∧ (LOC (p
′) ∨ LOO(p

′)) ∧ (LOC (p
′′) ∨ LCC (p

′′))∧

∀q (p′ ≤ q ≤ p′′ →
∧

i(L2i(q)↔ L2i(p)))
)

and similarly for other interval types (analogously to the proof of the conjunction step in Lemma
11).

We translate the formula S([p]A) into the disjunction of the formula

Lsng(p) ∧
∨

j

¬(L1j(p)↔ L2j(p)) ∧
∨

j

¬(L3j(p)↔ L2j(p))

with
LSTART (p) ∧

∨

j

¬(L2j(p)↔ L3j(p)).

Finally, we translate statements Aj([p]A) by the corresponding labels L2j(p). Now a straightforward
modification of the proof of Claim 13 shows the following.

Claim 14 For every vector ~c, if AS is the adjacency structure formed from ~c, then there is a
path through K(AS ) from some initial point of the form (START , B,X,E), such that the ω-word
corresponding to the path satisfies ϕ′ iff EPϕ(~c) is satisfied.

Proof of Claim 14. Given a path P that witnesses EPϕ(~c), take the quotient path through AS .
Then form a path P ′ through K(AS ) as follows: take the sequence of tuples hit on the quotient
path through AS , with the caveat that if an A-equivalence class E in the quotient is a singleton,
we choose the tuple (B,C,E,O, F ) that is labeled with Lsng . Otherwise we always choose the
path through tuples not labeled with Lsng . We then modify this path by taking the initial tuple
(B,X,E, Y, F ) encountered on the path through AS and adding before it one of the two tuples
in K(AS ) corresponding to (START , B,X,E): we take τ ′ if the initial equivalence class in the
quotient path though AS is a singleton (in which case, that singleton must have been contained in
cell B), and take τ otherwise.

30



For t ∈ R+, let δ(t) be the element in P ′ corresponding to P (t). More precisely, δ(t) is the
appropriate element (B,X,E, Y, F ), where E is the cell containing the P (t), or the appropriate
element (START , E,X, F ) in the case that P (t) is in the initial component E. Using the definition
of the translation above, we see that atomic formulae on path elements P (t) are satisfied exactly
when the translation of those formulae holds of δ(t), which proves one direction of the claim.

Now suppose conversely that we have a path P ′ through K(AS ) that begins with an element of
the required form. Clearly, this path corresponds to a path through AS . Now, from this path we
construct a non-zeno path P just as in the proof of Claim 13. The only modification is this: we
decide whether or not to make a particular path element Pn a singleton based on whether in the
original path through K(AS ), the corresponding element was labeled with Lsng . This completes
the proof of Claim 14.

The formula ϕ′ can now be translated into a Büchi Automata BA, and one now needs to check
whether the product of K(AS ) and BA has an accepting path, which can be done in polynomial
time (see, e.g. [36]) in the size of K(AS ) with the size of BA being fixed. Since the size of K(AS ) is
polynomial in the size of the cell decomposition that gives rise to AS , Lemma 2 implies decidability
for decidable o-minimal structures, and polynomial time data complexity for Rlin and R. This
completes the proof of Lemma 12.

Proof of Theorem 10. We finally prove closure and effective query evaluation by induction on the
complexity of the formula ϕ. Clearly, atomic state formulae can be evaluated effectively if Ω is
decidable, and in polynomial time in the polynomial and linear constraint cases. The induction
step for boolean connectives is clear. In the inductive step for existential element quantification,
closure and effectivity are immediate, and polynomial time data complexity follows from known
results in constraint databases [25]. The interesting case is where we have a query of the form
EPψ(~y). By the induction hypothesis, we can assume that every proper state subformula ψi of ψ
can be evaluated (effectively, ifM is decidable, and in polynomial time, in the polynomial or linear
case). By replacing all maximal proper state subformulae with predicate symbols, we can consider
ψ as a query over the outputs of these subformulae and thus can assume that ψ has no existential
path quantifiers within it. By Lemma 11, ψ can be transformed into an L−

PATH
query ψ′ over

these predicates, and by Lemma 12, EPψ′ can be converted into a first-order formula (effectively,
for decidable M, and in polynomial time, for polynomial and linear constraints). This completes
the inductive proof. ✷

Remark. The proof can be simplified in the semi-linear case, where one does not need to consider
the T relation among cells. Indeed, the proof of Lemma 2, a), implies that for fibers of three cells,
C1
~a , C

2
~a , C

3
~a , one has C1

~a ∩ cl(C
2
~a) ∩ cl(C

3
~a) 6= ∅ iff C

1
~a ∩ cl(C

2
~a) 6= ∅ and C

1
~a ∩ cl(C

3
~a) 6= ∅. Thus, T can

be reconstructed from C and O edges of the adjacency structure, which simplifies the construction
of the Kripke structure K(AS ).

✷

Note that the proofs in Subsection 3.3 established tractability of FO + Lin + Conn but not FO +
Poly+ Conn. Since connected components are definable in LPATH(Poly), we conclude now:

Corollary 15 FO + Poly+ Conn queries have PTIME data complexity. ✷
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5 Model-checking for hybrid systems

We mentioned that our logic LPATH has been inspired by temporal logics used in the model-
checking approach to automated verification of finite-state reactive systems. Recent work on real-
time and hybrid systems includes a number of formalisms for expressing reachability properties
of infinite state systems defined from real parameters [18]. We now show that our results can
be applied in this area. More precisely, we show that the model-checking problem for linear time
temporal logic LTL for one class of hybrid systems, the o-minimal hybrid systems of [26, 27]
is decidable and, furthermore, tractable, if the dimension of the hybrid systems is fixed. It is
straightforward to extend our approach to the branching time temporal logics CTL and CTL∗.

A hybrid system (cf. [18, 26]) of dimension n is a tuple H = (S, S0, SF , F, E, I,G,R), where

• S = Q× Rn, where Q is a finite set, is the state space,

• S0 ⊆ S is the set of initial states,

• SF ⊆ S is the set of final states,

• F : S → Rn assigns to each q ∈ Q a vector field F (q, ·),

• E ⊆ Q×Q is a set of discrete transitions,

• I : Q→ 2R
n

assigns to each q ∈ Q a set I(q) called the invariant of q,

• G : E → 2R
n

assigns to each discrete transition e = (q1, q2) ∈ E a set G(e) ⊆ I(q1) called the
guard of e,

• R : E → 2R
n

assigns to each discrete transition e = (q1, q2) ∈ E a set R(e) ⊆ I(q2) called the
reset of e.

Associated with the hybrid system H is a ternary transition relation →⊆ S× (E ∪{c})×S, where
c is a new symbol not contained in E. We write s

e
→ s′ instead of (s, e, s′) ∈→. We have two kinds

of transitions:

• Discrete Transitions: (q, ~x)
e
→ (q′, ~x′) iff e = (q, q′) ∈ E and ~x ∈ G(e), ~x′ ∈ R(e).

• Continuous Transitions: (q, ~x)
c
→ (q′, ~x′) iff q = q′ and there exists a δ ≥ 0 and a curve

x : [0, δ]→ Rn such that x(0) = ~x, x(δ) = ~x′ and for every t ∈ [0, δ] it satisfies ẋ(t) = F (q, x(t))
and x(t) ∈ I(q).

We assume that our hybrid systems are non-blocking, that is, for every state s ∈ S there is an
e ∈ E ∪ {c} and a state s′ such that s

e
→ s′.

A trajectory of H is a sequence s1e1s2e2 . . . such that for all i ≥ 1 we have si
ei→ si+1.

An interpreted hybrid system of signature Σ = {π1, . . . , πm} consists of a hybrid system H and a
mapping Π that assigns to each state s ∈ S a subset of Σ. Then Π associates with each trajectory
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τ = s1e1s2e2 . . . of H an ω-word Π(τ) := Π(s1)Π(s2) . . . over the alphabet 2Σ. We assume that the
reader is familiar with the linear time temporal logic LTL (interpreted over ω-words), see [11]. The
LTL-model checking problem for hybrid systems is defined as follows:

Input: An interpreted hybrid system (H,Π)
and an LTL-formula ϕ.

Problem: Decide if for every trajectory τ of H
the word Π(τ) satisfies ϕ.

LetM be an o-minimal structure over the reals. A hybrid system H = (S, S0, SF , F, E, I,G,R) is
M-definable if Q ⊆ R is a definable set1 and the sets S0, SF , the mappings I,G,R, and the relation
T := {(q, ~x, ~y) | (q, ~x)

c
→ (q, ~y)} are definable inM. A hybrid system is o-minimal if it is definable

in some o-minimal structure over R. An interpreted hybrid system (H,Π) is M-definable if H is
M-definable, and for every π in the signature, the set Π−1(π) is definable.

Theorem 16 Let M = 〈R,Ω〉 be such that its expansion with +, ·, 0, 1 is a decidable o-minimal
structure. Then the restriction of the LTL-model-checking problem for hybrid systems to M-
definable interpreted hybrid systems is decidable.

Furthermore, if M = Rlin or R, for every fixed LTL-formula ϕ and n ≥ 1, the restriction of the
LTL-model-checking problem problem toM-definable interpreted hybrid systems of dimension n can
be solved in PTIME.

Proof. Without loss of generality we can assume thatM is an expansion of the real field. We fix
a dimension n and a signature Σ := {π1, . . . , πm}. Let σ := {<,P1, . . . , Pm}, where P1, . . . , Pm are
unary relation symbols. When we speak of a hybrid system in the following, we always assume it
to beM-definable and n-dimensional. When we speak of an interpreted hybrid system (H,Π), we
also assume it to beM-definable and of signature Σ.

We consider interpreted hybrid systems as database instances over the schema SC :=
{Q,S0, SF , T, E, I,G,R,R1, . . . , Rm}, where Q is unary, S0, SF are (n + 1)-ary, T is (2n + 1)-ary,
E is binary, I is (n+ 1)-ary, G,R are (n+ 2)-ary, and R1, . . . , Rm are (n+ 1)-ary.

We shall prove that for every LTL-formula ϕ there is an LPATH-formula ϕ∗ such that for every
interpreted hybrid system (H,Π) we have (H,Π) |= ϕ∗ if, and only if, for every trajectory τ of H
the ω-word Π(τ) satisfies ϕ. Furthermore, the translation ϕ 7→ ϕ∗ is effective, uniformly over all n
and all vocabularies.

It is well-known that every LTL-formula ϕ of signature Σ can effectively be transformed into an
equivalent FO[σ]-sentence ϕ′. What we actually show in the following is how to translate an FO[σ]-
sentence ϕ into an LPATH-formula ϕ∗ such that for every interpreted hybrid system (H,Π) we
have (H,Π) |= ϕ if, and only if, there exists a trajectory τ of H such that the word Π(τ) satisfies
ϕ(x). Clearly, this is sufficient.

At first sight it seems very simple: We just let ϕ∗ be a formula of the form EPϕ′, where ϕ′ is more

1We assume that there exists a finite set of card(Q) definable constants. This is certainly true for all structures of
practical interest like Rlin and R; otherwise one can restate the definition by talking about definability of the fibers
of S, SF , T, etc. over q for each q ∈ Q.
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or less the same as our original ϕ. The path whose existence we state by EP is supposed to be the
state-sequence of a “run” of the hybrid system. Of course this simple-minded approach does not
work, mainly for the following reasons:

1. Because of the discrete transitions, a run of a hybrid system is not a continuous curve.

2. In a continuous transition the hybrid system moves along an integral curve of some vector
field F (q, ·) that originated at some point ~x ∈ Rn. However, in a path-formula we cannot say
that our path is on such a curve (unless we treat ~x as a parameter).

3. A trajectory is only a discrete abstraction of a run of the hybrid system.

Despite these problems, we will follow the basic idea.

We start by formally defining a run of a hybrid system H = (S, S0, SF , F, E, I,G,R): It is a
sequence (ri, xi, r

′
i)i≥1 of triples such that for all i ≥ 1 either xi = ∅ and ri = r′i or ri = (q, ~x),

r′i = (q, ~x′) and xi : [0, δ]→ Rn is a curve such that xi(0) = ~x, xi(δ) = ~x′ and for every t ∈ [0, δ] it
satisfies ẋi(t) = F (q, xi(t)) and xi(t) ∈ I(q). Furthermore, for all i ≥ 1 there is a discrete transition
r′i

e
→ ri+1 (for an e ∈ E).

Let us forget about hybrid systems for a moment and just talk about arbitrary runs and trajectories.
Let a run be a sequence (ri, xi, r

′
i)i≥1, where ri, r

′
i ∈ R

n+1 and either xi = ∅ and ri = ri′ or ri = (q, ~x),
r′i = (q, ~x′) and xi : [0, δ]→ Rn for some δ > 0 and xi(0) = ~x, xi(δ) = ~x′. Similarly, let a trajectory
be a sequence (si, ei)i≥1 where si ∈ R

n+1 and ei ∈ {e, c}.

We say that a trajectory (si, ei)i≥1 is consistent with a run (ri, xi, r
′
i)i≥1 if there is a mapping

f : N→ N such that f(1) = 1, s1 = r1, and for all i ≥ 1 we have:

• If ei = e then f(i+ 1) = f(i) + 1, si = r′
f(i) and si+1 = rf(i+1).

• If ei = c then f(i + 1) = f(i) and, assuming that rf(i) = (q, ~x) for some q ∈ R, ~x ∈ Rn and
xf(i) : [0, δ]→ R, there are t < t′ ∈ [0, δ] such that si = (q, xf(i)(t)) and s

′
i = (q, xf(i)(t

′)).

Let r ≥ 1; r is going to be the quantifier rank of the input-formula ϕ(x). In the following, let
words be structures W of some vocabulary ν consisting of the binary relation symbol < that is
always interpreted as a linear order of the universe and finitely many unary relation symbols. In
particular, let an ω-word be a word whose universe is N. A subword of a word W is a substructure
V of W such that if W has a first-element then V has the same first element and if W has a last
element then V has the same last element.

The r-type of a word W of vocabulary ν is the set of all FO[ν]-sentences of quantifier-rank at most
r it satisfies. Note that there are only finitely many r-types of a fixed vocabulary.

Lemma 17 There is a computable function f : N → N such that the following holds: Let r ≥ 1
and W,W ′ be words of vocabulary σ whose universes are closed intervals in R such that W and W ′
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have the same f(r)-type. Then for every finite subword V of W there is a finite subword V ′ of W ′

such that V and V ′ have the same r-type (and vice versa).

Moreover, every FO[σ]-sentence ψ of quantifier-rank at most r can be effectively transformed into
a set Θ(ψ) of f(r)-types such that for every word W whose universe is a closed interval in R we
have: The f(r)-type of W is contained in Θ(ψ) if, and only if, there is a finite subword V of W
that satisfies ψ.

Proof Sketch: Choose f(r) such that every finite word V of length greater than f(r) has a subword
V − of length at most f(r) such that V and V − have the same r-type. The existence of such an f
follows from the fact that first-order definable languages are regular. The rest is easy.

Now suppose we are given a mapping Π : Rn+1 → 2Σ. For a triple (r, x, r′), where r = (q, ~x), r′ =
(q, ~x′) with q ∈ R, ~x, ~x′ ∈ Rn and x : [0, δ]→ Rn we letW (r, xi, r

′) be the word of vocabulary σ with
universe [0, δ] and Pi := {t ∈ [0, δ] | πi ∈ Π(q, x(t))}. The r-abstraction of a run ρ = (ri, xi, r

′
i)i≥1

is the sequence ρr = (ri,Θi, r
′
i)i≥1, where for all i ≥ 1 we have:

• If xi = ∅ then Θi = ∅.

• If xi : [0, δ] → Rn, then Θi is the f(r)-type of the word W (ri, xi, r
′
i). Here f is taken from

Lemma 17.

Let σ+ be the extension of the vocabulary σ that contains a new unary relation symbol PΘ for every
f(r)-type Θ of vocabulary σ. We let Π(ρr) be the ω-word W with PW

i := {j | πi ∈ Π(rj) and Θj =
∅} (for 1 ≤ i ≤ m) and PΘ := {j | Θj = Θ} (for every f(r)-type Θ). For a trajectory τ = (si, ei)i≥1

we let Π(τ) be the ω-word (Π(si))i≥1.

The following lemma is a generalization of Lemma 17 that is proved using “Feferman-Vaught”-type
arguments (See chapter 6 of [9]) and the fact that for every f(r)-type Θ there is a FO-sentence θ
of quantifier-rank f(r) such that a word satisfies θ if, and only if, its r-type is Θ.

Lemma 18 Let f be as in Lemma 17. Let ρ, ρ′ be runs such that Π(ρr) and Π(ρ′r) have the same
r-type. Then for every trajectory τ consistent with ρ there is a trajectory τ ′ consistent with ρ′ such
that Π(τ) and Π(τ ′) have the same r-type.

Moreover, every FO[σ]-sentence ψ of quantifier-rank at most r can be effectively transformed into
an FO[σ+]-sentence ψ+ such that for every run ρ we have: The word Π(ρr) satisfies ψ+ if, and
only if, there is a trajectory τ consistent with ρ such that Π(τ) satisfies ψ.

We now return to hybrid systems. Remember that we wanted to translate a given FO[σ]-sentence ϕ
to an LPATH-sentence ϕ∗ such that for every interpreted hybrid system (H,Π) we have (H,Π) |= ϕ∗

if, and only if, there is a trajectory τ of H such that Π(τ) satisfies ϕ.

Applying Lemma 18, we first translate ϕ to a sentence ϕ+. In the remaining proof we show how
to translate ϕ+ to an LPATH-sentence ϕ∗ such that for every interpreted hybrid system (H,Π) we
have (H,Π) |= ϕ∗ if, and only if, there is a run ρ of H such that Π(ρr) satisfies ϕ

+. What we have
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gained is that we have “filtered out” the continuous transitions and now only have to deal with a
sequence of discrete transitions.

Let Θ1, . . . ,Θl be an enumeration of all f(r)-types of vocabulary σ. We can interpret the r-
abstraction of a run as a sequence of tuples (s, t, s′) ∈ R2n+3, where we replace the Θ either by
t := 0 if Θ = ∅ or by t := i if Θ = Θi. How can we express that such a sequence is the r-abstraction
of a run?

We call a tuple (s, t, s′) ∈ R2n+3 good (with respect to an interpreted hybrid system (H,Π)) if
s, s′ ∈ S and either t = 0 and s = s′ or s

c
→ s′ via a curve x : [0, δ] → Rn such that the f(r)-type

of the word W (s, x, s′) is Θt. The first thing we do is define an LPATH-formula χ such that for
every interpreted hybrid system (H,Π) and ~z ∈ R2n+3 we have (H,Π) |= χ(~z) if, and only if, ~z is
good. Let θt be an FO[σ]-formula defining the type Θt. Recall that T := {(q, ~x, ~y) | (q, ~x)

c
→ (q, ~y)}

is definable. Then the following formula says that (q, ~x)
c
→ (q′, ~x′) via a curve x : [0, δ]→ Rn such

that the f(r)-type of W ((q, ~x), x, (q′, ~x′)) is Θt:

ξ(q, ~x, q′~x′) := (q = q′) ∧EP
(

∃p(p = ~x ∧ ∀p′′ p ≤ p′′)

∧∃p′(p′ = ~x′ ∧ ∀p′′ p′′ ≤ p′)
∧∀p′′

(

T (q, ~x, ~y) ∧ I(q, ~y)
)

[p′′ ← ~y]

∧ θ′t

)

,

where θ′t is the formula obtained from θt by replacing all variables by path variables and every
atomic subformula Pi(p) by Ri(q, ~y)[p← ~y]. Given the formula ξ, it is easy to define the desired χ
defining the good tuples.

It will be convenient to make the following assumption for every hybrid system H:

(*) All e, e′ ∈ E ⊆ R2 are linearly independent (i.e. we do not have λe = e′ for any
λ ∈ R).

(If this assumption does not hold, we can code the discrete transitions by elements of R3 in such
a way that the additional component guarantees that they are pairwise linearly independent. This
causes the dimension of our path to be R2n+7, but otherwise the proof goes through.)

Let H be a hybrid system. We model r-abstractions of runs of H by paths in R2n+6.

For s1, s
′
1, s2, s

′
2 ∈ S, t, t

′ ∈ R, and e ∈ E we write (s1, t, s
′
1)

e
→ (s2, t, ~s

′
2) if (s1, t, s

′
1), (s2, t

′, ~s′2) are

good and s′1
e
→ s2 in H.

For all ~z, ~z′ ∈ R2n+3 and e ∈ E such that ~z
e
→ ~z′ we let γ(e, ~z, ~z′) be the curve connecting the

following points in R2n+6 by straight-line segments:

(0, 0, ~z), (e, 1, ~z), (e, 2, ~z), (e, 2, ~z′), (e, 3, ~z′), (0, 0, ~z′).

(Recall that E ⊆ R2, so these points are indeed (2n+6)-tuples. The third place in these tuples will
be used to encode the direction of the transitions). Let γ◦(e, ~z, ~z′) denote the interior of γ(e, ~z, ~z′),
i.e. the curve obtained from γ(e, ~z, ~z′) by removing its endpoints.
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For every transition e ∈ E we let

Γ◦(e) :=
⋃

~z
e
→~z′

γ◦(e, ~z, ~z′),

and we let Γ◦ :=
⋃

e∈E Γ◦(e). By our assumption (*), for e 6= f ∈ E we have Γ◦(e)∩Γ◦(f) = ∅, and
every path from a point in Γ◦(e) to a point in Γ◦(f) intersects R2n+6 \ (Γ◦(e) ∪ Γ◦(f)). (In other
words, there is no connected component C of Γ◦ such that there are e 6= f ∈ E with C ∩Γ◦(e) 6= ∅
and C ∩ Γ◦(f) 6= ∅.)

Note that Γ◦ = Γ◦(H,Π) is definable in LPATH, that is, there is an LPATH-formula η such that
for every interpreted hybrid system (H,Π) and ~v ∈ R2n+6 we have (H,Π) |= η(~v) if, an only if,
~v ∈ Γ◦.

Suppose for a moment that
e
→ is symmetric and reflexive for all e ∈ E. Then for all ~z, ~z′ ∈ T we

have ~z
e
→ ~z′ if, and only if, there is a path β from (0, 0, 0, ~z) to (0, 0, 0, ~z′) such that the interior β◦

of β is contained in Γ◦(e). (To prove this we use that fact that there is no coupling between the
initial and final state of a discrete transition, that is, that (q, ~x1)

e
→ (q′, ~x′1) and (q, ~x2)

e
→ (q′, ~x′2)

implies (q, ~x1)
e
→ (q′, ~x′2).) It follows that there exists an e ∈ E such that ~z

e
→ ~z′ iff there is a path

β from (0, 0, ~z) to (0, 0, ~z′) such that β◦ ⊆ Γ◦.

Since in general
e
→ is not symmetric and reflexive, we have to encode the direction of the transitions.

To do this, we define three sets

GOOD := {0} × {0} × {0} × {~z ∈ R2n+3 | ~z good},
TAIL := (R2 × {1} × R2n+3) ∩ Γ◦,

HEAD := (R2 × {3} × R2n+3) ∩ Γ◦,
REST := Γ◦ \ (TAIL ∪HEAD).

Since the good tuples and the set Γ◦ are definable in LPATH, these sets are also definable.

To say that there is a run ρ such that Π(ρr) satisfies ϕ
+ we say that there exists a path α ⊆ R2n+6

with the following properties:

• α starts in a point in GOOD.

• Whenever a point in GOOD appears on α, it is followed by an interval in REST and then by
a point in TAIL.

• Whenever a point in TAIL appears on α, it is followed by an interval in REST and then by
a point in HEAD.

• Whenever a point in HEAD appears on α, it is followed by an interval in REST and then by
a point in GOOD.

• The ω-word of vocabulary σ+ with universe α ∩GOOD and

Pi := {(0, 0, 0, s, t, s
′) ∈ GOOD | t = 0 and πi ∈ Π(s)} (for 1 ≤ i ≤ m),

PΘi
:= {(0, 0, 0, s, t, s′) ∈ GOOD | t = i} (for 1 ≤ i ≤ l)

satisfies ϕ+.
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The existence of such a path can be expressed in LPATH.

There is one case that we have missed so far: It could be that after some point a trajectory does
no more discrete transitions. Then the corresponding run would be a finite sequence. But this case
can easily be included, using an analogue of Lemma 17 for ω-words. We omit the details.

✷

6 Conclusion

Reachability between points in a region is a fundamental notion in spatial reasoning. From previous
work it appeared that incorporating reachability into a spatial language might be fundamentally
incompatible with the use of constraint-based representations. Our first results here showed that
this is not the case. Instead of attempting to approach connectivity through the use of some
discrete recursion mechanism, we added reachability and other topological operators directly, and
showed that this leads to closed languages. We then tackled the question of getting tractable,
closed languages that can express the reachability queries of interest. The language LPATH has
a lot of what one wants in a spatial query language. In addition to the positive results on the
data complexity, expressiveness, and closure, we think LPATH is interesting as a synthesis of the
temporal languages for verification of discrete systems with first-order constraint query languages.

Although we approached LPATH from the point of view of spatial databases, it could also be seen
as a general language for stating path properties of systems that are defined from semi-algebraic
or semi-linear objects. Because of this, it is possible to compare it with languages for specifying
properties of real-time or hybrid systems. We gave an example of how to model one specification
formalism for hybrid systems within LPATH.

We do not claim that LPATH is a practical query language for connectivity queries in spatial
databases – it still remains to find a more natural syntax, and to get query evaluation algorithms
that run tractably on real applications. In addition, we do not have many results on the expressivity
of LPATH (beyond the PTIME complexity bound), and we know even less about languages FO+T.
We conjecture that FO + C  FO + Conn  LPATH, but we know of no techniques for proving
separation results of this kind.

Remark C. Giannella and D. Van Gucht independently discovered the closure of FO + Lin and
FO + Poly under connectivity operators C and Conn [14] (our Corollary 4, Proposition 6, and a
remark preceding that Proposition). Their proof uses cylindrical algebraic decomposition instead
of Local Triviality, and consequently cannot show the closure under all topological properties as we
do here.
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discussions.

38



References

[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] F. Afrati, S. Cosmadakis, S. Grumbach and G. Kuper. Linear vs. polynomial constraints
in database query languages. In Proceedings of Conference on Principles and Practice of
Constraint Programming, Springer Verlag, 1994, pages 181–192.

[3] R. Benedetti and J.-J. Risler. Real Algebraic and Semi-algebraic Sets. Hermann, Paris, 1990.

[4] M. Benedikt, G. Dong, L. Libkin and L. Wong. Relational expressive power of constraint query
languages. Journal of the ACM, 45 (1998), 1–34.

[5] M. Benedikt and L. Libkin. Relational queries over interpreted structures. Journal of the
ACM, 47 (2000), 644–680.

[6] M. Ben-Or, D. Kozen and J. Reif. The complexity of elementary algebra and geometry. JCSS
32 (1986), 251–264.

[7] J. Bochnak, M. Coste, M.-F. Roy. Real Algebraic Geometry. Springer Verlag, 1998.

[8] B.F. Caviness and J.R. Johnson, Eds. Quantifier Elimination and Cylindrical Algebraic De-
composition. Springer Verlag, 1998.

[9] C.C. Chang and H.J. Keisler. Model Theory. North Holland, 1990.

[10] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decom-
position. In Autom. Theor. Form. Lang, Springer LNCS 33, Springer Verlag, Berlin, 1975,
134–183.

[11] E. A. Emerson. Temporal and modal logic. Chapter 16 of Volume B of Handbook of Theoretical
Computer Science, Elsevier, 1990.

[12] F. Geerts and B. Kuijpers. Expressing topological connectivity of spatial databases. In
Database Progr. Languages, Springer LNCS vol. 1949, 1999, pages 224–238.

[13] F. Geerts and B. Kuijpers. Linear approximation of planar spatial databases using transitive-
closure logic. In ACM Symp. on Principles of Database Systems, ACM Press, 2000, pages
126–135.

[14] C. Giannella and D. Van Gucht. Adding a path connectedness operator to FO + poly (linear).
Technical Report, Indiana Univ., Nov. 1999.
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