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We consider restrictions of first-order logic and of fixpoint logic in which all occurrences of negation are

required to be guarded by an atomic predicate. In terms of expressive power, the logics in question, called
GNFO and GNFP, extend the guarded fragment of first-order logic and the guarded least fixpoint logic,

respectively. They also extend the recently introduced unary negation fragments of first-order logic and of

least fixpoint logic.
We show that the satisfiability problem for GNFO and for GNFP is 2ExpTime-complete, both on arbi-

trary structures and on finite structures. We also study the complexity of the associated model checking
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model theoretically: we show that GNFO and GNFP have the tree-like model property and that GNFO has
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1. INTRODUCTION
Modal logic is well known for its “robust decidability”: not only are basic decision problems such as
satisfiability, validity and entailment decidable, but the decidability of these problems is preserved
under various natural variations and extensions to the syntax and semantics of modal logic (e.g.,
addition of fixpoint operators, backward modalities, nominals; restriction to finite structures). As
observed by Vardi [Vardi 1996], this robust decidability is intimately linked to the fact that modal
logic has a combination of three properties, namely (i) the tree model property (if a formula has a
model, it has a model which is a tree), (ii) translatability into tree automata (each formula can be
transformed into a tree automaton, or equivalently, an MSO formula, recognizing its tree models)
and, (iii) the finite model property (every satisfiable modal formula is satisfied in a finite structure).
The decidability of satisfiability for modal logic, both on arbitrary structures and on finite struc-
tures, follows immediately from these three properties. Similar arguments can be used to show the
good behavior of many extensions of modal logic, although we should note here that the two-way
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µ-calculus (the extension of modal logic with fixpoint operators and backward modalities) lacks the
finite model property, and hence the decidability of satisfiability on finite structures for this logic
involves a separate (non-trivial) argument [Bojańczyk 2003].

The properties (i), (ii) and (iii) described above can be viewed as a semantic explanation for the
robust decidability of modal logic. Given that modal logic can be viewed as a syntactic fragment
of first-order logic, it is also natural to ask for syntactic explanations: what syntactic features of
modal formulas (viewed as first-order formulas) are responsible for their good behavior? And can
we generalize modal logic, preserving these features, while at the same time dropping inessential
restrictions inherent in modal logic (such as the fact that it can only describe structures with unary
and binary relations)?

Several answers to these questions have been proposed. The first one is to consider the two vari-
able fragment of first-order logic, which is decidable and has the finite model property [Mortimer
1975]. Unfortunately, this observation does not go very far towards explaining the robust decidabil-
ity of modal logic, since it seems impossible to extend the two variable fragment with a fixpoint
mechanism while maintaining decidability [Grädel et al. 1999].

The second proposal is to consider logics with guarded quantifications. The guarded fragment
of first-order logic (GFO), introduced in [Andréka et al. 1998], consists of FO formulas in which
all quantifiers are “guarded” by atomic predicates. It has a natural extension with fixpoint operators
(GFP) that extends the two-way µ-calculus [Grädel and Walukiewicz 1999]. Both GFO and GFP
have the tree-like model property (if a formula has a model, it has one of bounded tree width),
they can be translated into tree automata (each formula can be transformed into a tree automaton
recognizing tree decompositions of its models of bounded tree width) and GFO has the finite model
property [Andréka et al. 1998; Grädel 2001]. Finite satisfiability of GFP was only recently proved
decidable in [Bárány and Bojańczyk 2012].

The third, and most recent proposal is based on unary negation. Unary negation first-order logic
(UNFO) restricts first-order logic by constraining the use of negation to subformulas having at most
one free variable (and viewing universal quantification as a defined connective). Unary negation
fixpoint (UNFP) is the natural extension of UNFO using monadic fixpoints. Again, UNFO gener-
alizes modal logic, and UNFP generalizes the two-way µ-calculus. Both UNFO and UNFP have
the tree-like model property, they can be translated into tree automata and UNFO has the finite
model property [ten Cate and Segoufin 2013]. Decidability of finite satisfiability for UNFP was also
established in [ten Cate and Segoufin 2013].

The three extensions of modal logics presented above are incomparable in terms of expressive
power. In particular there are properties expressible in UNFO that are not expressible in GFO and
vice-versa. In this paper we unify the unary negation and guarded quantification approaches by
introducing guarded-negation logics.

Guarded-negation first-order logic (GNFO) restricts FO by requiring that all occurrences of nega-
tion are of the form α∧¬φwhere the “guard” α is an atomic formula (possibly an equality statement)
containing all the free variables of φ. For instance, GNFO cannot express x 6= y but it can express
R(x, y, z)∧x 6= y. We also disallow universal quantification as a primitive connective (though a lim-
ited form of universal quantification can be expressed using existential quantification and guarded
negation). For instance, GNFO cannot express ∀x̄ R(x̄) but it can express ∀x̄ S(x̄) → R(x̄) as
∃y y = y ∧ ¬

(
∃x̄ S(x̄) ∧ ¬R(x̄)

)
. Guarded-negation fixpoint logic (GNFP) extends GNFO with a

guarded fixpoint mechanism. In terms of expressive power, GNFO forms a strict extension of both
UNFO and GFO.

We show that our guarded-negation logics have the same desirable properties as modal logics,
unary negation logics and guarded logics: Both GNFO and GNFP have the tree-like model property,
they can be translated into tree automata and GNFO has the finite model property.

More precisely, we show that the satisfiability problem for GNFO and GNFP is decidable, both
on arbitrary structures and on finite structures. These two problems are both 2ExpTime-complete,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Guarded Negation A:3

even for a fixed finite signature (in contrast the satisfiability of GFO decreases from 2ExpTime to
ExpTime when the signature is fixed).

We also study the (combined) complexity of the model checking problem of GNFO and GNFP.
The problem is PNP[O(log2 n)]-complete for GNFO. In the case of GNFP, it is hard for PNP and
contained in NPNP ∩ coNPNP. These results are obtained using a simple polynomial time reduction
to their unary negation variants, UNFO and UNFP, whose model checking was solved in [ten Cate
and Segoufin 2013]. Recall that the model checking problem of GFO is PTime-complete [Berwanger
and Grädel 2001] and that a similar gap between the upper bound and the lower bound exists for
GFP and the µ-calculus, where the complexity of model checking is known to lie between PTime
and NP ∩ coNP [Berwanger and Grädel 2001].

Next, we explore the model theory of GNFO. We define a guarded-negation variant of bisimu-
lation suitable for guarded-negation logics and most of our results build on the fact that guarded-
negation logics are invariant under guarded-negation bisimulations. The appropriateness of guarded-
negation bisimulation is illustrated by showing that GFO is exactly the fragment of first-order logic
that is invariant under guarded-negation bisimulation.

Finally, we show that our complexity results can be lifted to the clique-guarded extensions of
GNFO and GNFP, which provide a further generalization of GNFO and GNFP that subsume the
clique-guarded fragment (as well as the closely related loosely guarded fragment and packed frag-
ment) [van Benthem 1997; Marx 1999; Grädel 1999a].

The most involved result is the decidability of satisfiability on finite structures. For GNFO, we
give a reduction to testing whether a union of conjunctive queries is implied by a guarded formula,
recently shown decidable in [Bárány et al. 2014]. In the case of GNFP, we make a reduction to the
decidability of finite satisfiability of GFP, recently proved in [Bárány and Bojańczyk 2012].

An extended abstract of this paper was published in [Bárány et al. 2011]. The present paper
provides detailed proofs of the results presented there. In particular we have clarified and fixed sev-
eral issues concerning certain definitions. In addition, it contains new material concerning syntactic
variants of guarded-negation fixpoint logic, and concerning clique-guarded negation logics.

Outline of the paper. Guarded-negation first-order logic, GNFO, is presented in Section 2 and its
satisfiability is shown decidable in Section 3. The fixpoint extension of GNFO, GNFP, is introduced
in Section 4 where it is shown to be decidable via a reduction to GFP. The same reduction also
implies the finite model property of GNFO. The model checking problems of GNFO and GNFP are
studied in Section 5. A variant of bisimulation suitable for guarded-negation formulas is introduced
in Section 6, where it is also shown that GNFO is exactly those first-order formulas closed under
guarded-negation bisimulation. The tree-like model property of GNFO and GNFP is derived from
this notion. Finally, in Section 7, we extend our results to a generalization of GNFO and GNFP with
clique-guards.

2. PRELIMINARIES
Structures and formulas. We restrict our attention to relational structures. However, as we will

explain in Section 7.2, all complexity results presented in this paper generalize to the case with
constant symbols.

A (relational) signature τ is a finite set of relation symbols, each having an associated arity. By
the arity of a signature, we mean the maximal arity of its relations. A structure M over a relational
signature τ consists of a set dom(M), the domain of M , together with an interpretation RM of each
relation symbol R ∈ τ , which is a k-ary relation over dom(M), where k is the arity of R according
to τ . A structure M is said to be finite if dom(M) is finite. An expansion of a structure M over τ
is a structure M ′ over a signature σ ⊇ τ such that M and M ′ agree on their domain and on the
interpretation of all relation symbols in τ . If a tuple of elements ā from dom(M) belongs to the
interpretation of a relation symbol R, then we say that R(ā) is a fact of M . A set of elements of M
is guarded (in M ) if it is either a singleton set or there is a fact of M containing all its elements.
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A tuple of elements of M is guarded if the set of elements occurring in the tuple is guarded. We
denote by guarded(M) the set of all guarded tuples of M . If M and N are structures and ā and b̄
are tuples of elements from dom(M) and dom(N), respectively, then we say that (M, ā) and (N, b̄)
are locally isomorphic if there is a partial isomorphism f : M → N such that f(ā) = b̄.

We assume familiarity with first-order logic, FO, and least fixpoint logic, LFP, over relational
structures. We use classical syntax and semantics for FO and LFP. The size of a formula φ, denoted
by |φ|, is the number of symbols needed to write down the formula. We use the notation φ(x̄) to
indicate that the free variables of φ are exactly the variables in x̄. A sentence is a formula with
no free variable. We say that a structure M is a model of a sentence φ if M |= φ. We also write
M |= φ(ū) or (M, ū) |= φ(x̄) when a tuple ū of elements of the structure M makes the formula
φ(x̄) true in M . Finally we write |= ϕ if ϕ is true in all structures.

Conjunctive queries. A conjunctive query (CQ) is a first-order formula of the form

∃y1 · · · yl (α1 ∧ α2 ∧ . . . ∧ αn)

where each αi is an atomic formula, possibly an equality statement. A union of conjunctive queries
(UCQ) is a disjunction of CQs. A positive-existential query is a first-order formula built using
disjunction, conjunction and existential quantification only. Every positive-existential query can be
transformed in a UCQ at the cost of a possible exponential blow-up. The width of a CQ is the
number of variables occurring in it, and the width of a UCQ is the maximum width of its CQs. The
height of a UCQ is the maximum size of its CQs. In particular the height of a CQ is it size.

GNFO. We define GNFO, guarded-negation first-order logic, as the fragment of FO given by
the following grammar, where R ranges over predicate symbols, and α(x̄ȳ) is an atomic formula
(possibly an equality statement).

ϕ ::= R(x̄) | x = y | ∃x ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | α(x̄ȳ) ∧ ¬ϕ(ȳ) (1)

Hence the logic can only negate a subformula if all its free variables are “guarded” by some fact,
or if the subformula has at most one free variable (in which case one can use an equality statement
of the form x = x or y = y as the guard). For example, x 6= y is not a formula of GNFO
but R(x, y, z) ∧ x 6= y is. Notice that all positive-existential queries belong to GNFO. We write
GNFO[τ ] for the set of formulas using relation symbols in the signature τ .

We will refer to formulas of the form α(x̄ȳ) ∧ ϕ′(x̄) (where α is an atomic formula) as answer-
guarded formulas. In addition, we consider every atomic formula by itself to be an answer-guarded
formula (motivated by the fact that α(x̄) is equivalent to α(x̄) ∧ α(x̄).

We say that a formula of GNFO is in GN-normal form if, in its syntax tree, no disjunction is
directly below an existential quantifier or a conjunction, and no existential quantifier is directly
below a conjunction sign. Every GNFO formula can be brought into GN-normal form, at the cost
of an exponential increase in length and linear increase in the number of variables, by pushing out
disjunction and pushing in conjunctions using the following rewriting rules (where x′ is a variable
not occurring in ψ ∧ φ and φ[x′/x] is the formula constructed from φ by replacing all occurrences
of x by x′):

∃x (φ ∨ ψ)→ ∃x φ ∨ ∃x ψ
φ ∧ (ψ ∨ χ)→ (φ ∧ ψ) ∨ (φ ∧ χ)

(∃x φ) ∧ ψ → ∃x′ (φ[x′/x] ∧ ψ)

The appeal of the GN-normal form is that it highlights the fact that GNFO formulas can be
naturally viewed as being built up from atomic formulas using guarded negation, and unions of
conjunctive queries. Indeed, the GNFO formulas in GN-normal form are precisely generated by the
following recursive definition:

ϕ ::= R(x̄) | x = y | α(x̄ȳ) ∧ ¬ϕ(ȳ) | q[ϕ1/U1, . . . , ϕs/Us] (2)
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where q is a UCQ using relation symbols U1, . . . , Us, and ϕ1, . . . , ϕs are answer-guarded formulas
generated by the same recursive definition with the appropriate number of free variables correspond-
ing to the relation symbols they replace. Here, q[ϕ1/U1, . . . , ϕs/Us] is the result of replacing in q
all subformulas of the form Ui(x̄) with i ≤ s by ϕi(x̄).

A formula of GNFO is said to be of width k if, when brought into GN-normal form in the way
described above, it uses at most k variables (or equivalently, is built up using UCQs q of width at
most k). We denote by GNFOk all GNFO formulas of width k.

Example 2.1. Consider for example the existential positive formula

∃xy
(
R(x) ∧ ∃z T (x, y, z) ∧ ∃z′ S(x, z′)

)
.

When brought into GN-normal form it gives

∃xyzz′ R(x) ∧ T (x, y, z) ∧ S(x, z′).

and has width 4. Notice that it is also equivalent to the GNFO formula

∃xyz R(x) ∧ T (x, y, z) ∧ ¬¬(∃z S(x, z))

that is in GN-normal form and has width 3. Recall that ¬¬(∃z S(x, z)) is indeed a formula of
GNFO as it negates unary formula and those could be seen as guarded by an equality atom. In other
words it is equivalent to x = x ∧ ¬(x = x ∧ ¬(∃z S(x, z)))

GNFO extends GFO and UNFO. GNFO generalizes the unary negation logic, UNFO, studied
in [ten Cate and Segoufin 2013], which only allows the negation of formulas having at most one
free variable. It also generalizes the guarded fragment of first-order logic (GFO). The logic GFO is
the fragment of FO defined by the following grammar, where, again, α(x̄ȳz̄) is an atomic formula
(possibly an equality statement):

ϕ ::= R(x̄) | x = y | ϕ ∨ ϕ|ϕ ∧ ϕ|¬ϕ | ∃x̄ α(x̄ȳz̄) ∧ ϕ(x̄ȳ) | ∀x̄ α(x̄ȳz̄)→ ϕ(x̄ȳ)

It is straightforward to check that:

PROPOSITION 2.2. Every GFO sentence is equivalent to a GNFO sentence, via a polynomial
time transformation.

This result extends to answer-guarded formulas, however ¬R(xy) is in GFO but not expressible
in GNFO.

PROOF. Consider a GFO-sentence ϕ. Because ϕ is closed, every subformula ϑ(x̄) of ϕ with
free variables x̄ falls in the scope of an (innermost) guarded quantifier with some guard, let us
refer to it as αϑ(x̄ū). We can therefore safely replace in ϕ each negated subformula ϑ(x̄) of the
form ¬ψ(x̄) with (αϑ(x̄ū) ∧ ϑ(x̄)). Each universally quantified subformula ϑ(x̄z̄) of the form
∀ȳ α(x̄ȳz̄)→ ψ(x̄ȳ) is equivalent to ¬∃ȳ (α(x̄ȳz̄)∧¬ψ(x̄ȳ)). It can therefore be replaced in ϕ by
αϑ(x̄z̄ū) ∧ ¬ (∃ȳ α(x̄ȳz̄) ∧ ¬ψ(x̄ȳ)). Let ϕ̂ be the sentence so obtained from ϕ. By construction,
ϕ̂ is a sentence of GNFO, and it is easy to see that ϕ̂ is logically equivalent to ϕ.

The following example shows that GNFO is strictly more expressive than GFO and UNFO.

Example 2.3. The GNFO sentence δ defined as

∃xy
(
E(x, y) ∧ ¬∃uvw(E(x, u) ∧ E(u, v) ∧ E(v, w) ∧ E(w, y))

)
is not equivalent to any GFO sentence or to any UNFO sentence, even on undirected graphs. This
is because δ defines a property that is not invariant under guarded bisimulation (which, inciden-
tally, amounts to ordinary bisimulation in case of simple graphs), as can be easily verified, nor is it
invariant under “UN-bisimulation” as befits UNFO formulas, cf. [ten Cate and Segoufin 2013].
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3. THE SATISFIABILITY PROBLEM FOR GNFO
In this section we show that (finite) satisfiability for GNFO is 2EXPTIME-complete. The 2EXPTIME
lower bound follows immediately from the fact that satisfiability for UNFO is already hard for
2EXPTIME [ten Cate and Segoufin 2013; Grädel 1999b]. It holds even if the signature is fixed (recall
that when the signature is fixed the complexity of satisfiability for GFO is ExpTime-complete).

The upper bound is proved using a reduction to the problem of testing whether a GFO formula
entails (on finite structures) a UCQ. The latter problem is also known as the problem of query
answering against a GFO theory, and it has been solved in [Bárány et al. 2014]. To streamline the
presentation, we will allow the possibility of zero-ary relation symbols.

The reduction is obtained by rewriting the formula by adding new relational symbols in order to
simplify it while preserving its satisfiability status. The first step is the following lemma.

LEMMA 3.1. Given any formula ϕ(x̄) ∈ GNFO[τ ] we can construct in polynomial time a
companion formula ψ(x̄) ∈ GNFO[τ ∪ σ] of the form

ψ(x̄) = S(x̄) ∧
∧
j

∀ z̄ū Rj(z̄ū)→ qj(z̄)︸ ︷︷ ︸
ψ+

∧
∧
i

∀ z̄ū Ti(z̄ū)→ ¬pi(z̄)︸ ︷︷ ︸
ψ−

(3)

where σ is the signature (disjoint from τ ) consisting of the relation symbols S and Ti1, where the
Rj are atomic formulas, the qj’s and pi’s are positive-existential first-order formulas, width(ψ) =
width(ϕ) and such that

|= ϕ ↔ ∃σ ψ
where ∃σ is a shorthand for the existential second-order quantification of all the symbols in σ.

PROOF. Given a GNFO-formula ϕ consider an inner-most occurrence of a guarded negation
R(z̄ū) ∧ ¬q(z̄) as a subformula of ϕ. Then q(z̄) is necessarily positive existential. Let T be a new
predicate symbol of the same arity asR. We substitute T (z̄ū) in the input formula for the subformula
R(z̄ū) ∧ ¬q(z̄), and add the following as conjuncts to ψ+ and ψ−, according to their kind.

∀ z̄ū T (z̄ū)→ ¬q(z̄)
∀ z̄ū T (z̄ū)→ R(z̄ū)
∀ z̄ū R(z̄ū)→ T (z̄ū) ∨ q(z̄)

Inner-most equality-guarded negations z = u ∧ ¬q(z, u) are handled in a similar fashion. Again,
q(z, u) must be positive-existential. We choose a new unary relation symbol T , replace the sub-
formula in question by z = u ∧ T (z), and add ∀ z T (z) → ¬q[u/z] and ∀ z T (z) ∨ q[u/z] as
conjuncts to the normal form, where q[u/z] is the formula constructed from q(z, u) by replacing all
occurrences of u by z.

Proceeding in this manner from the inside-out we eliminate all guarded negations until the orig-
inal input formula is reduced to a single positive-existential formula p(x̄) (in the extended signa-
ture). Finally we replace p(x̄) with S(x̄) where S is an appropriate new predicate symbol and add
∀ x̄.S(x̄) → p(x̄) as conjunct to the normal form, which is thus finalized. It is now easy to verify
the correctness of this transformation.

In view of Lemma 3.1, it remains to reduce the satisfiability problem of formulas in the form
of (3) to the query answering problem against a GFO theory.

We may assume without loss of generality that the positive-existential formulas qj of (3) are in
prenex normal form, i.e. qj(z̄) = ∃ū ξj(z̄, v̄) for some quantifier-free positive formula ξj(z̄, v̄).
Also note that each conjunct ∀ z̄ū Ti(z̄ū) → ¬pi(z̄) of (3) is the negation of a positive-existential

1In (3) the Rj ’s and Ti’s are not necessarily distinct; moreover the size of the tuples z̄ and ū will in general vary from
predicate to predicate and are denoted here uniformly by “z̄” and “ū” only for sake of a simpler illustration.
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sentence ∃ z̄ū Ti(z̄ū) ∧ pi(z̄). Therefore, the entire ψ− of (3) can be conceived as the negation of a
single positive-existential sentence q. This leads us to the following equivalent formula.

S(x̄) ∧
∧
j

(
∀ z̄ū Rj(z̄ū)→ ∃v̄ ξj(z̄v̄)

)
︸ ︷︷ ︸

ψ+

∧ ¬
∨
i

(
∃ z̄ū Ti(z̄ū) ∧ pi(z̄)

)
︸ ︷︷ ︸

q

(4)

Observe next that without affecting satisfiability of (4) we may introduce new atoms guarding the
existential quantifiers in ψ+ thus obtaining, from ψ+, a GFO-formula

ψ∗ = S(x̄) ∧
∧
j

(
∀ z̄ū Rj(z̄ū)→ ∃v̄ Qj(z̄v̄) ∧ ξj(z̄v̄)

)
where the Qj’s are distinct new relation symbols of appropriate arity. Then, |= ψ∗ → ψ+ and,
conversely, every model of ψ+ has an expansion that is a model of ψ∗.

The entire transformation of an input GNFO-formula ϕ to the equi-satisfiable ψ∗ ∧ ¬q, with
ψ∗ in GFO and q positive existential, can be performed in polynomial time and only results in
a polynomial blowup in the signature of the latter formula. In a final transformation step, which
may require at most exponential time, the positive-existential sentence q can be converted to an
equivalent Boolean UCQ q∗. In general q∗ may be comprised of exponentially many CQs each of
size at most |q|. Summing up all the reduction steps we obtain:

PROPOSITION 3.2. Given any formula ϕ(x̄) ∈ GNFO[τ ] one can compute in exponential time
a GFO-formula ψ∗(x̄) and UCQ q∗, both over a signature τ ] {T̄}, such that

|= ϕ ←→ ∃T̄ (ψ∗ ∧ ¬ q∗ ) (5)

and such that |ψ∗| and height(q∗) are polynomial in |ϕ|.

We now summarize the main results of [Bárány et al. 2014]. Later we will build on key elements
of the construction of [Bárány et al. 2014], stated below as Lemmas 4.6 and Theorem 4.13, from
which the following Theorem 3.3 can be directly derived.

THEOREM 3.3 ([BÁRÁNY ET AL. 2014]). Given a GFO-formula ψ and a UCQ q of height h
it is decidable in time |q| · 2(h|ψ|)O(h|ψ|)

whether or not ψ ∧ ¬q is satisfiable; and if ψ ∧ ¬q has a

model then it has a finite model of size 2(h|ψ|)O(h2|ψ|)

By combining Theorem 3.3 with the estimates of Proposition 3.2 we derive the complexity of
satisfiability for GNFO, as well as its finite model property.

THEOREM 3.4.
(1) The satisfiability problem for GNFO is 2EXPTIME-complete.

(2) Every satisfiable GNFO-sentence ϕ has a finite model of size 22|ϕ|
O(1)

.

4. ADDING FIXPOINTS: THE SATISFIABILITY PROBLEM FOR GNFP
In this section, we introduce and study GNFP, which, in a nutshell, is the extension of GNFO with
guarded fixpoints. We show that both satisfiability and finite satisfiability are decidable for GNFP.

GNFP. Guarded-negation fixpoint logic, GNFP, is a syntactic fragment of least fixpoint logic
LFP, from which it inherits the semantics, cf. [Dawar and Gurevich 2002]. Recall that the syntax of
LFP assumes an infinite supply of (second-order) fixpoint variables (denoted X,Y, Z, . . .), of arbi-
trary arity. These fixpoint variables are distinct from the relation symbols that are in the relational
signature (denoted P,Q,R, S, . . .), and they serve for expressing fixpoints. Syntactically, they are
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treated on a par with the ordinary relation symbols: they can be used in the same way in formulas.
LFP then extends FO with the ability to construct formulas of the form

[µZ,z̄ φ(Ȳ , Z, z̄, ū)](x̄)

where Z is a fixpoint variable whose arity matches the length of sequences z̄ and x̄, such that Z
occurs only positive in φ (i.e., all occurrences are under an even number of negation signs).

The guarded-negation fragment of LFP, called GNFP, is defined as follows:

Definition 4.1. Formulas of GNFP[τ ], we omit the signature τ when it is clear from the context,
pertain to the following syntax:

φ ::= R(x̄) | x = y | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃xφ | α(x̄ȳ) ∧ ¬φ(x̄) |
β(ūw̄) ∧ Z(ū) | µZ,z̄[φ(Ȳ , Z, z̄) ](x̄)

where R is any relational symbol in τ , α(x̄ȳ) and β(ūw̄) are atomic τ -formulas (possibly equality
statements) and, in the last clause of the definition, the fixpoint variable Z occurs only positively in
φ(Ȳ , Z, z̄), i.e. always under an even number of negations.

Note that

— no first-order parameters (i.e., free variables other than those z̄ bound by the fixpoint operator)
are permitted in the matrix of a fixpoint operator,

— free fixpoint variables Ȳ other than Z are still allowed, enabling nesting and alternation of fix-
point definitions;

— fixpoint variables cannot be used as guards, and in fact, all atomic formulas involving fixpoint
variables must be guarded by atomic τ -formulas or equalities.

As we mentioned before, the semantics of GNFP is inherited from the logic LFP, of which it is a
fragment. We briefly recall here the semantics of the fixpoint operator. Take a formula of the form

µZ,z̄[φ(Ȳ , Z, z̄) ](x̄)

and consider any structure (M, S̄), where M is a structure over the relational signature and S̄ is a
collection of relations over the domain of M (of suitable arity) that form the interpretation for the
second-order variables Ȳ . Since Z occurs in φ only positively, φ(Ȳ , Z, z̄)](x̄) induces a monotone
operation Oφ on n-ary relations over the domain of M , where n is the arity of the fixpoint variable
Z, and where Oφ(R) = {ā | (M, S̄,R) |= φ(ā)}. By the Knaster-Tarski fixpoint theorem, this
monotone operation has a unique least-fixpoint. By definition, an n-tuple b̄ of elements of M satis-
fies the formula [µZ,z̄ φ(Ȳ , Z, z̄)](x̄) in (M, S̄) if and only if b̄ belongs to this least fixpoint. The
least fixpoint of the monotone operation Oφ is known to be the intersection of all its pre-fixpoints,
i.e.,

⋂
{R | R ⊇ Oφ(R)}, and it can be equivalently characterized as Oφκ(∅) with κ = |dom(M)|,

where Oφ0(∅) = ∅; for all successor ordinals λ + 1, Oφλ+1(∅) = Oφ(Oφλ(∅)); and for all limit
ordinals λ ≤ κ, Oφλ(∅) =

⋃
λ′<λOφ

λ′(∅).
It is worth noting that, although the relation Oλφ(∅) (for λ an ordinal) may contain unguarded

tuples, the syntax of GNFP guarantees that the relation Oλ+1
φ (∅) depends only on the τ -guarded

tuples in Oλφ(∅), and similarly for limit ordinals. In this sense, the fixpoint variables can be taken to
range over guarded relations (i.e., relations consisting of guarded tuples only).

Example 4.2. The fixpoint formula

µZ,x,y[E(x, y) ∨ ∃z (Z(x, z) ∧ E(z, y)) ](u, v)

computing the transitive closure of E is not a formula of GNFP as the matrix formula does not
guard the variables x, z occurring in Z(x, z).

The fixpoint formula
µZ,z[ y = z ∨ ∃y′(Z(y′) ∧ E(y′, y)) ](x)
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computing the connected component of y is also not a formula of GNFP as the matrix formula has
y as a parameter.

However the fixpoint formula

µZ,z[B(z) ∨ ∃y′(Z(y′) ∧ E(y′, z)) ](x)

computing the set of nodes reachable from a node in B is in GNFP as singletons are guarded by
definition.

Notes on syntax. We could have defined GNFP with different alternative syntaxes of equivalent
expressive power and varying degrees of succinctness. The variations concern how guardedness of
fixpoint predicates is enforced. Let us briefly discuss the alternatives.

An ostensibly more restrictive syntax is obtained if we require that every fixpoint formula is to
be guarded by a single atom of the base signature.

µZ,z̄[α(z̄) ∧ φ(Ȳ , Z, z̄) ](x̄) (6)

Notice how every formula of this form can be promptly rewritten in our syntax of choice as
µZ,z̄[φ

∗(Ȳ , Z, z̄) ](x̄) where φ∗ is obtained from φ by replacing in it each atom Z(ū) with the
conjunction α(ū) ∧ Z(ū). This transformation is obviously linear in the number of atoms.

In [Bárány et al. 2011] we presented GNFP using a similar pattern of fixpoint definitions

µZ,z̄[ guardedτ (z̄) ∧ φ(Ȳ , Z, z̄) ](x̄) (7)

where the clause guardedτ (z̄) is understood as a shorthand formula signifying guardedness in the
signature τ without expressly declaring any concrete guard. Notice that adding the special guarded-
ness atom to a fixpoint definition in either of the two earlier forms does not affect the meaning of the
formula but ensures compliance with this most liberal syntax. Conversely, to transcribe a formula
adhering to syntax (7) one can replace each occurrence of an atom Z(z̄) involving a fixpoint pred-
icate variable Z with the disjunction

∨
i ∃w̄iαi(w̄iz̄) ∧ Z(z̄) where

∨
i ∃w̄iαi(w̄iz̄) spells out the

definition of guardedτ (z̄). This translation too is linear for any fixed signature, but is exponential
in the maximum arity of relation symbols in the signature.

In order to show that syntax (6) does not restrict the expressive power of GNFP we shall temporar-
ily avail ourselves of a further syntactic enhancement: that of simultaneous fixpoint definitions. Let
again

∨
1≤i≤n ∃w̄iαi(w̄iz̄) be the definition of guardedness of the tuple z̄ in signature τ . To trans-

late a fixpoint definition of the form (7) into (6) notation consider first the simultaneous fixpoint
schema

µ


Z1(w̄1z̄) ← α1(w̄1z̄) ∧ φ′(Ȳ , Z̄, z̄)

...
Zn(w̄nz̄) ← αn(w̄nz̄) ∧ φ′(Ȳ , Z̄, z̄)


where now Z has been replaced with a tuple Z̄ = Z1, . . . , Zn of fixpoint variables, one for each
disjunct in the definition of guardedness, with each Zi of arity |w̄i|+ |z̄|, and where φ′ is obtained
by replacing in φ every occurrence of an atom Z(ū) with the disjunction

∨
i ∃w̄iZi(w̄iū). Notice

how the definition of each fixpoint predicate variable Zi is guarded according to the pattern (6). This
simultaneous fixpoint can be transformed using the Bekič principle, cf. e.g. [Arnold and Niwinski
2001], with a formula for each of the alternative Zi

µZi,w̄i,z̄
[
αi(w̄

iz̄) ∧ φ∗i (Ȳ , Z̄, z̄)
]

pertaining to (6). Finally, the original fixpoint formula as in (7) is rewritten to∨
i

∃ūi µZi,w̄i,z̄
[
αi(w̄

iz̄) ∧ φ∗i (Ȳ , Z̄, z̄)
]

(ūix̄)

and this rewriting is to be applied recursively to formulas with nested fixpoint definitions. Notice
how this translation of formulas from dialect (7) to dialect (6) of GNFP will thus produce exponen-
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· · · ·

· · · ·

B B

W W

? ? ? ?

B
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Fig. 1. Illustration of the example fixpoint formula

tially long formulas in terms of the number of nested fixpoints in the formula started with, even if
we fix the signature.

To illustrate this translation consider the example, over graphs with black and white edges, pro-
vided by the formula ρ(p, q) defined as

µZ,x,y

[
guarded{B,W}(x, y) ∧ (∃uv

(
B(x, u) ∧W (y, v) ∧ Z(u, v)

)
∨
(
B(x, x) ∧W (y, y)

)
)
]
(p, q)

expressing the existence of two parallel paths, one black the other white, forming a reel of conjoined
cells ending in adjacent vertices with a black and a white self-loop, respectively (cf. Figure 1). First
observe that guarded{B,W}(x, y) is equivalent to the disjunction B(x, y) ∨W (x, y) ∨ B(y, x) ∨
W (y, x) ∨ x = y. Correspondingly, we construct a simultaneous fixpoint schema consisting of five
equations:

µ


Z1(x, y) ← B(x, y) ∧ ∃uv

(
B(x, u) ∧W (y, v) ∧ (

∨
i Zi(u, v))

)
∨
(
B(x, x) ∧W (y, y)

)
Z2(x, y) ← W (x, y) ∧ ∃uv

(
B(x, u) ∧W (y, v) ∧ (

∨
i Zi(u, v))

)
∨
(
B(x, x) ∧W (y, y)

)
...


To simplify the notation and keep the example comprehensible, we will (against better knowledge)
pretend that the fixpoint schema we constructed consists only of the two formulas for Z1 and Z2

spelled out above. Then, eliminating the simultaneous fixpoint definition results in two nested fix-
point formulas, first

ζ1(p, q) = µZ1,x,y[B(x, y) ∧ ∃uv
(
B(x, u) ∧W (y, v) ∧ (Z1(u, v) ∨ ξ2(Z1, u, v))

)
∨
(
B(x, x) ∧W (y, y)

)
] (p, q)

where

ξ2(Z1, u, v) = µZ2,x̂,ŷ[W (x̂, ŷ) ∧ ∃ûv̂
(
B(x̂, û) ∧W (ŷ, v̂) ∧ (Z1(û, v̂) ∨ Z2(û, v̂)

)
∨
(
B(x̂, x̂) ∧W (ŷ, ŷ)

)
] (u, v)

and, symmetrically,

ζ2(p, q) = µZ2,x,y[W (x, y) ∧ ∃uv
(
B(x, u) ∧W (y, v) ∧ (Z1(u, v) ∨ ξ1(Z2, u, v)

)
∨
(
B(x, x) ∧W (y, y)

)
] (p, q)

where

ξ1(ZW , u, v) = µZ1,x̂,ŷ[B(x̂, ŷ) ∧ ∃ûv̂
(
B(x̂, û) ∧W (ŷ, v̂) ∧ (Z1(û, v̂) ∨ Z2(û, v̂)

)
∨
(
B(x̂, x̂) ∧W (ŷ, ŷ)

)
] (u, v)

corresponding to the cases of reels starting in a black and in a white cross edge, respectively.
Finally, the original black and white reel formula ρ(p, q) is transcribed into the equivalent for-

mula
∨
i ζi(p, q), which adheres to the most restrictive of the three alternative syntaxes for GNFP

discussed above, i.e., the syntax given in (6).
This example also illustrates the fact that allowing simultaneous fixpoint schemas in GNFP for-

mulas does not increase the expressive power of the logic (although it can facilitate more succinct
definitions).
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We have opted for the syntax of definition 4.1 because it allows for more intuitive formulas
than (6) while also avoiding a penalty of increased complexity of model checking that the most
liberal syntax (7) entails, as discussed in Section 5.

The definition of GN-normal form that we gave for GNFO formulas applies to GNFP as well.
Formulas of GNFP in GN-normal form can be naturally thought of as being built up from atomic
formulas using (i) guarded negation, (ii) unions of conjunctive queries, and (iii) fixpoint operators.
As in the case of GNFO, the width of a GNFP-formula is the number of variables it contains after
being put in GN-normal form and we let GNFPk denote the set of GNFP-formulas of width k.

GNFP extends GFP and UNFP. Syntactically, GNFP generalizes the logic UNFP studied
in [ten Cate and Segoufin 2013], which only allows the negation of formulas having at most one
free variable, and only unary fixpoints. GNFP also generalizes the guarded fragment of fixpoint
logic (GFP) [Grädel and Walukiewicz 1999], in the sense that every sentence of GFP is equivalent
to a sentence of GNFP.

Recall that GFP is the fragment of LFP obtained by extending GFO with least fixpoints: given a
formula φ(Ȳ , Z, z̄) that is positive in Z, has no free first-order variables other than z̄ and Z has arity
the number of variables in z̄, the formula µZ,z̄[φ(Ȳ , Z, z̄) ] is also a formula of GFP. Although the
occurrences of fixpoint variables are not required to be guarded, in the context of a GFP sentence,
every occurrence of an atom using a fixpoint relation is implicitly guarded, namely by the atom
guarding the closest quantifier whose scope includes the occurrence in question). This implies:

PROPOSITION 4.3. Every sentence of GFP is equivalent to a sentence of GNFP, via a polyno-
mial time transformation.

GNFP is decidable. The aim of this section is to establish the following main result.

THEOREM 4.4. It is decidable whether a sentence of GNFP has a model and whether it has a
finite model. Both of these problems are 2EXPTIME-complete.

The proof of Theorem 4.4 is a reduction to the (finite) satisfiability of GFP: given a formula of
GNFP we construct a formula of GFP whose (finite) satisfiability is equivalent to the one of the
initial formula and we then apply known results on (finite) satisfiability for GFP, namely [Grädel
and Walukiewicz 1999] for the infinite case and [Bárány and Bojańczyk 2012] for the finite case.
Before we describe the reduction, we start with some useful notation and some preliminary results
taken from [Bárány et al. 2014].

Acyclic structures, acyclic queries, and treeifications. A structure M is said to be acyclic if
it admits a guarded tree decomposition, that is, a tree decomposition each bag of which belongs to
guarded(M) [Yannakakis 1981; Flum et al. 2002]. We omit here the definition of tree decompo-
sition, which can be found e.g. in [Flum et al. 2002], as it turns out not to be important in what
follows. The above definition of acyclicity extends also to conjunctive queries. Formally, we asso-
ciate to each query q(x̄) a structure [q], called the canonical structure of q, whose nodes are the
variables occurring in q, and whose facts are the atoms of q. A conjunctive query is acyclic if its
canonical structure has a guarded tree decomposition. Acyclic conjunctive queries have been studied
extensively in database theory, and have been shown to have many desirable properties [Yannakakis
1981]. Every acyclic conjunctive query can be equivalently rewritten (in polynomial time) as a
formula of GFO built with only conjunction and existential quantification, and, conversely, every
such GFO formula can be rewritten (in polynomial time) as an acyclic conjunctive query [Flum
et al. 2002]. For instance the query ∃yzw T (x, y, z) ∧ T (x,w, z) ∧ E(x, y) is acyclic because it is
equivalent to the guarded formula ∃yz T (x, y, z) ∧ E(x, y) ∧ (∃w T (x,w, z)).

Definition 4.5 (Treeification). Given a signature τ , the τ -treeification Λτq (x̄) of a positive exis-
tential query q(x̄) over τ is the UCQ consisting of the disjunction of all those acyclic CQs over τ
(modulo renaming of bound variables) that imply q and that are minimal (in the sense that removing
any atomic formula would render it non-acyclic or not implying q).
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Lemma 4.6 below will justify this definition by showing that there are only finitely many minimal
acyclic conjunctive queries (up to logical equivalence) that imply a given query q.

First we give an example. Consider the conjunctive query q(x) defined as

∃yzw (E(x, y) ∧ E(y, z) ∧ E(z, w) ∧ E(w, x)).

Then its {E}-treeification Λ
{E}
q is the formula

E(x, x) ∨ ∃y (E(x, y) ∧ E(y, x)).

Indeed, the only minimal acyclic queries implying q(x) are obtained by identifying some of its
variables resulting in either a reflexive edge on x or a pair of inverse edges. If the signature is
{E, T}, where T is a ternary predicate, the treeification of q(x) has a number of additional disjuncts
corresponding to various triangulations of q(x), such as

∃yzw
(
T (x, y, z) ∧ T (x,w, z) ∧ E(x, y) ∧ E(y, z) ∧ E(z, w) ∧ E(w, x)

)
(which is acyclic because it is equivalent to ∃yz

(
T (x, y, z)∧E(x, y)∧E(y, z)∧∃w

(
(T (x,w, z)∧

E(z, w)∧E(w, x))
))

. It can be shown that each disjunct in the treeification of any CQ in whatever
signature contains at most three times as many atoms as the CQ itself [Bárány et al. 2014] leading
to the following observations.

LEMMA 4.6. Consider a signature τ having r many predicate symbols of maximal arity w. Let
q(x̄) be a UCQ of height h over τ . Then Λτq (x̄) has width w, size rO(h)(hw)O(hw), height O(hw),
and can be constructed in time |q|rO(h)(hw)O(hw).

These figures constitute a slight refinement of those offered in [Bárány et al. 2014, Lemma 10],
where it was shown that every disjunct T in the treeification of Q has at most c = 3 times as many
atoms as Q, whence the prenex normal form of T involves at most c|Q|w many variables and has
size O(|Q|w). In fact, one can check that c = 2 suffices and that the number of CQs of these
dimensions is at most (r(c|Q|w)w)c|Q|. Note that when writing T as a guarded formula only w
many variables are needed and the resulting formula is still of size O(|Q|w). Because each acyclic
CQ as above may occur (modulo renaming of bound variables) at most once in ΛτQ, we find that
|ΛτQ| = (r(c|Q|w)w)c|Q|O(|Q|w) = rO(|Q|)(|Q|w)O(|Q|w), the width of ΛτQ is w, and its height is
O(|Q|w).

Remark 4.7. Over acyclic structures, q and Λτq are equivalent. Indeed consider a conjunctive
query q and an acyclic structure M such that M |= q(b̄). Then there is an homomorphism f from q
to M . The image f(q) can be viewed as an acyclic conjunctive query that clearly implies q.

In general q and Λτq are not equivalent but we will use structures that are locally sufficiently
acyclic such that equivalence is achieved for small queries q. This suggests the following definition:

Definition 4.8 (Allowing for treeifications). A τ -structureM allows for treeifications of width n
if for every conjunctive query q of width n and tuple b̄ guarded in M , we have

M |= q(b̄)↔ Λτq (b̄).

We now discuss ways of obtaining structures that allow for treeifications using guarded
bisimulations. Guarded bisimulations [Andréka et al. 1998] form a fundamental tool in the
study of of guarded logics. In particular, the existence of a guarded bisimulation implies GFP-
indistinguishability [Grädel 1999a]. We briefly review guarded bisimulations and some of their
applications here. Later, in Section 6, we will introduce guarded-negation bisimulations in order to
capture, in the same way, the expressive power of GNFP.

Recall the notion of a guarded tuple and the notation guarded(M) from Section 2.
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Definition 4.9 (Guarded bisimulation). Let M,N be two structures. A guarded bisimulation
between M and N is a binary relation Z ⊆ guarded(M) × guarded(N) such that, for every pair
(ā, b̄) ∈ Z, where ā = a1, . . . , am and b̄ = b1, . . . , bn, the following conditions hold:
— (M, ā) and (N, b̄) are locally isomorphic (that is, m = n and the relation {(ai, bi) | 1 ≤ i ≤ n}

is the graph of a partial isomorphism between M and N ).
— [Forward clause] For every tuple ā′ in guarded(M) there is a tuple b̄′ in guarded(N) such that

(ā′, b̄′)) ∈ Z and, whenever a′i = ai for some i ≤ n then also b′i = bi.
— [Backward clause] For every tuple b̄′ in guarded(N) there is a tuple ā′ in guarded(M) such

that (ā′, b̄′)) ∈ Z and, whenever b′i = bi for some i ≤ n then also a′i = ai.

THEOREM 4.10 ([ANDRÉKA ET AL. 1998; GRÄDEL 1999A]).
If Z is a guarded bisimulation between structures M and N , and (ā, b̄) ∈ Z, then, for all GFP-
formulas φ(x̄), M |= φ [ā] iff N |= φ [b̄].

One important consequence of Theorem 4.10 is that GFP has the tree-like model property: every
satisfiable GFP-formula has an acyclic model. This follows from Theorem 4.10, because every
structure is guarded bisimilar to an acyclic structure [Andréka et al. 1998; Grädel 2001].

Even though every structure is guarded bisimilar to an acyclic structure, the latter is in general
infinite even if the original structure was finite. For example, let M be the structure that consists
of a directed R-cycle of length 3 (where R is a binary relation symbol). It is easy to see that every
acyclic structureM ′ that is guarded bisimilar toM must contain an infiniteR-path, and no reflexive
or symmetric R-edges. It follows that, if M ′ is finite, then it must contain some minimal directed
R-cycle of length at least 3. This shows that M ′ cannot be finite and acyclic at the same time.

To address this problem, in [Bárány et al. 2014], a construction was presented, parametrized by a
natural number n, that takes any finite structure M and produces a “weakly n-acyclic” finite com-
panion structureM (n) that is guarded bisimilar toM and that allows for treeifications of conjunctive
queries of width at most n. To state the result formally, we need the concept of guarded bisimilar
covers due to [Otto 2004], cf. [Bárány et al. 2014, Definition 1].

Definition 4.11 (Guarded bisimilar cover). A guarded bisimilar cover π : N
∼→ M is a sur-

jective homomorphism π : N → M such that the induced map {(b̄, π(b̄)) | b̄ guarded in N} is
a guarded bisimulation. A cover π : N

∼→ M is weakly k-acyclic if for every homomorphism
h : Q→ N with |Q| ≤ k the composition π◦h factors as g◦f for some homomorphisms f : Q→ T
and g : T →M where T is acyclic.

Note that, in the above, if Q is the canonical structure [q] of a CQ q and t is the acyclic CQ
such that T = [t] then we have t |= q. Therefore, in the above T can wlog. be chosen with t
corresponding to a disjunct of the treeification of q. The following is thus a straighforward corollary
of (and motivation for) the definitions involved.

FACT 4.12. If π : N
∼→M is a weakly k-acyclic guarded bisimilar cover of M then (i) M and

N have identical GFP theories and (ii) N allows for treeifications of width k.

PROOF. The first claim is a corollary of guarded bisimulation invariance of GFP. For the second
claim, consider N |= q(b̄) for some guarded tuple b̄ and a CQ q(x̄) of width at most k. Let h : [q]→
N be the homomorphism witnessing this. Then, by definition of weak k-acyclicity we have π ◦
h = g ◦ f for homomorphisms f : [q] → [t] and g : [t] → M where t is some acyclic CQ. In
particular, we have that t(x̄) |= q(x̄) and that M |= t(π(b̄)). Note that as such t can be chosen to be
minimal (in terms of number of atoms) and thus a disjunct of the treeification Λq(x̄) of q(x̄). Also,
by guarded bisimulation invariance of acyclic conjunctive queries we get that N |= t(b̄), whence
N |= Λq(b̄).

The following technical result will play a key role in our argument.
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THEOREM 4.13 ([BÁRÁNY ET AL. 2014, THEOREM 4]). For every finite relational structure
M and every n ∈ N one can effectively construct a weakly n-acyclic guarded bisimilar cover

π : M (n) ∼→ M of size |M (n)| = |M |wO(n2)

, where w is the maximal arity of the relations of M .
Furthermore, M (n) is n-conformal, meaning that every clique-guarded tuple of M (n) of size at
most n is guarded. M (n) is called the n-th Rosati cover of M .

The last assertion of Theorem 4.13 requires some explanation. We say that a tuple b̄ of elements
of a structure is clique-guarded if for every pair bi, bj ∈ b̄, bi and bj co-occur in an atomic fact.
Note that every guarded tuple is clique-guarded. The n-conformality expresses a restricted form of
the converse direction, which will be put to use later on, in Section 7.1.

Fact 4.12 asserts that weakly k-acyclic covers allow for treeifications of width k. The next lemma
identifies conditions under which this key property extends to suitable expansions of the base struc-
ture and of the cover. Below we use this observation in our inductive argument for Lemma 4.16
concerning GNFP-formulas with free fixpoint variables.

Say that Z ⊆ Mr is a guarded relation over M if every tuple ā ∈ Z is guarded in M . Given
a cover π : N

∼→ M , say that a guarded relation W ⊆ Nr is π-saturated if W = π−1(π(W )) ∩
guarded(N), viz. if W = π−1(Z) ∩ guarded(N) for some guarded relation Z over M .

LEMMA 4.14. Consider a weakly (wnw)-acyclic guarded bisimulation cover π : N
∼→ M

of some relational τ -structure M , where w is the maximal arity of the relation symbols in the
signature τ .2 Let Z1, . . . , Zt be guarded relations over M and for each 1 ≤ i ≤ t let Wi =
π−1(Zi) ∩ guarded(N). Then (N,W1, . . . ,Wt) allows for treeifications of width n.

PROOF. We write N̂ for (N,W1, . . . ,Wt) and M̂ for (M,Z1, . . . , Zt). Let τ denote the sig-
nature of N and M and σ the signature of N̂ and M̂ . We first observe that π remains a guarded
bisimilar cover from N̂ to M̂ . This is an immediate consequence of the fact that the Zi are guarded
relations and the Wi are π-saturated.

Consider now a conjunctive query q(x̄) of width n in the signature σ and a guarded tuple b̄ of
elements of N̂ such that N̂ |= q(b̄). We need to show that N̂ |= Λσq (b̄).

Let h : [q], x̄→ N̂ , b̄ be a homomorphism witnessing N̂ |= q(b̄). Consider an atom α of q whose
symbol is in σ \ τ . Its image by h is a tuple c̄ from Wl for l as specified by α. Since by assumption
the relations Wl are guarded in N , c̄ is guarded by a tuple d̄ occurring in some relation R of N .

Let R(z̄) be a new atom such that for all i, zi is the smallest variable yj of α such that h(yj) = di
or let zi be a fresh new variable if there is no such yj . We denote this atom by α[h, τ ]. Let Q be
the query in the signature τ constructed from q by omitting all its atoms α whose symbol is in
σ \ τ , replacing each by α[h, τ ], and by quantifying existentially all the fresh new variables. By
construction, h can be extended to a homomorphism H : ([Q], x̄)→ (N, b̄).

Wlog. we may assume that the atoms α of q being replaced are pairwise incomparable, so that no
one is contained inside another (otherwise we may freely omit the replacement of the smaller one
from Q). Also note that the assumptions of the lemma imply that each Wi is of arity at most w. The
number of (maximal) atoms α of q thus being replaced is no more than nw, so that Q has at most
that many replacement atoms α[h, τ ], each contributing at most w − 1 new variables. The width of
Q is therefore not greater than the original n plus (w − 1)nw, not more than wnw.

Let q′ be the conjunctive query in the signature σ obtained by adding to q the conjunct α[h, τ ]
for all (maximal) σ \ τ -atoms α and quantifying existentially all the fresh new variables. Note that
q′ implies Q and also implies q, that [q′] has the same domain as [Q] and that H also witnesses
N̂ |= q′(b̄). Our aim is to show N̂ |= Λσq′(b̄) from which N̂ |= Λσq (b̄) will follow trivially.

2A slightly more meticulous argument operating at the level of the underlying hypergraphs, as in [Bárány et al. 2014], would
allow one to accurately establish the tight weak acylicity bound of n in place of the (wnw) stated here.
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Let ā = π(b̄). By construction we haveH ′ = π ◦H maps [Q], x̄ intoM, ā. By virtue of Fact 4.12
it holds that M |= ΛτQ(ā), witnessed by a homomorphism G′ : [T ], x̄→M, ā, with T a disjunct of
ΛτQ such that H ′ = G′ ◦ F for some F : [Q(x̄)]→ [T (x̄)].

Let t′ be constructed from T by adding to T the conjunct F (α) for every atom α ∈ σ \ τ in q
(hence also in q′). By construction t′ remains acyclic and F : [q′(x̄)]→ [t′(x̄)], which means that t′

implies q′. Recall that H also witnesses the fact that N̂ |= q′(b̄) and therefore H ′ witnesses the fact
that M̂ |= q′(ā). AsH ′ = G′ ◦F and F : [q′(x̄)]→ [t′(x̄)], it must be the case thatG′ witnesses the
fact that M̂ |= t′(ā). Altogether we have shown that t′(x̄) is an acyclic CQ that implies q′(x̄) and
that is satisfied in M̂ by ā. Therefore G′ ◦F witnesses M̂ |= Λσq′(ā). As Λσq′ is acyclic it is invariant

under guarded bisimulation and, therefore, from M̂ |= Λσq′(ā) we get N̂ |= Λσq′(b̄) as desired.

Reduction to (finite) satisfiability for GFP. Let ϕ be any given GNFP sentence. As a first step,
we compute its GN-normal form ϕ̃. Note that ϕ̃ has the following dimensions: |ϕ̃| = 2O(|ϕ|),
width(ϕ̃) = O(|ϕ|), and ϕ̃ is built up using only UCQs of height at most |ϕ| (as well as guarded
negations and fixpoint operators) as in (2).

Next, essentially, our reduction transforms all UCQs occurring in ϕ̃ to their treeifications. For
every k ≥ 1, and for every relational signature τ consisting of at most k-ary relations, we define a
translation η from GNFPk[τ ] formulas in GN-normal form to GFPk[τ ] {Ck}] formulas, where Ck
is a new symbol of arity k, by structural recursion, using the following rules.

η(R(x̄) ) = R(x̄) (a)

η(α(x̄ȳ) ∧ Z(x̄) ) = α(x̄ȳ) ∧ Z(x̄) (b)

η(α(x̄ȳ) ∧ ¬ψ(x̄) ) = α(x̄ȳ) ∧ ¬ η(ψ(x̄)) (c)

η(µZ,z̄[ψ(Ȳ , Z, z̄) ] ) = µZ,z̄[ η(ψ(Ȳ , Z, z̄)) ] (d)

η( q[φ1/U1, . . . , φs/Us] ) = Λ
τ]{U1,...,Us,Ck}
q [η(φ1)/U1, . . . , η(φs)/Us] (e)

where in (e) q is a UCQ of signature {U1, . . . , Us} disjoint from τ ] {Ȳ , Ck} and φ1, . . . , φs ∈
GNFPk[τ ] {Ȳ }], where Ȳ enumerates the free fixpoint variables occurring in any of the φi’s, each
φi being a guarded formula.

By (2) all formulas in GN-normal form can be decomposed as in (a)–(e) and we have the follow-
ing bounds on the translation η.

LEMMA 4.15. For every GNFPk-formula ϕ with GN-normal form ϕ̃ we have |η(ϕ̃)| =

2(k|ϕ|)O(1)

and η(ϕ̃) can be computed within this time bound and its width remains k.

PROOF. To establish the bound |η(ϕ̃)| = 2(k|ϕ|)O(1)

we proceed via structural induction on ϕ
following the definition of the translation η according to the cases (a)-(e) and using as invariant the
claim |η(ψ̃)| ≤ 2c|τ |k

2|ψ|3 , where c is an appropriate constant to be fixed later. The claim of the
lemma follows assuming wlog. that |τ | ≤ |ϕ|.

Irrespective of c this bound trivially holds for all atomic formulas whether based on a τ -
predicate (a) or a fixpoint variable (b). It is also plain to see that assuming |η(ψ̃)| = 2c|τ |k

2|ψ|3

the same bound holds for (c) all guarded-negation formulas of the form α(x̄ȳ) ∧ ¬ψ(x̄), as well
as for (d) least fixpoint formulas µZ,z̄[ψ(Ȳ , Z, z̄) ]. In each of these cases η(ψ̃) is computable in
2(k|ψ|)O(1)

-time, assuming the same for the relevant subformulas of ψ.
The remaining case is when ϕ̃ is q[φ̃1/U1, . . . , φ̃s/Us] for q a UCQ and φ1, . . . , φs subformulas

of ϕ. We have already noted that the height h of q is no more than |ϕ|, and the same holds for s too.
Further, by design we know that the maximum arity of the predicates among τ ] {U1, . . . , Us, Ck}
is k. Therefore, using Lemma 4.6, we have |Λτ]{U1,...,Us,Ck}

q | = (|τ | + s + 1)O(h)(kh)O(kh) ≤
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2c|τ |(k|ϕ|)
2

for some constant c. By the induction hypothesis for each 1 ≤ i ≤ s we have |η(φ̃i)| ≤
2ck

2|φi|3 . Let l = maxi|φi| < |ψ|. Then the size of η(ϕ̃), obtained by substituting φ̃i forUi for every
1 ≤ i ≤ s in Λ

τ]{U1,...,Us,Ck}
q , is bounded by 2c|τ |(k|ϕ|)

2 · 2c|τ |k2l3 ≤ 2c|τ |k
2|ϕ|2(l+1) ≤ 2c|τ |k

2|ϕ|3 .
That η(ϕ̃) can be computed in the stated time bound also for ϕ of type (e) follows similarly using
Lemma 4.6.

The following key lemma attests to the correctness of our reduction. It is proved by structural
induction on formulas, while relying on Theorem 4.13 and Lemma 4.14 to deal with the cases (d)
and (e) of the translation, respectively.

LEMMA 4.16. Let π : N
∼→ M be a weakly (wkw)-acyclic guarded bisimulation cover

of a τ ] {Ck}-structure M , where w is the maximal arity of the symbols of τ ] {Ck} and let
φ(Ȳ , x̄) ∈ GNFPk[τ ] be a formula in GN-normal form with free fixpoint variables Ȳ . Then for
every interpretation of Ȳ by π-saturated3 guarded relations W̄ on N and for every guarded tuple b̄
in N we have:

(N, W̄ ) |= η(φ)(b̄)↔ φ(b̄) .

PROOF. We proceed by induction on the structure of φ, wlog. in GN-normal form. The base
case is trivial since φ = η(φ) for all atomic formulas. Moreover, the claim trivially distributes
over positive Boolean combinations. It is equally clear that if the claim holds for some ψ then it
also holds for φ(x̄ȳ) = α(x̄ȳ) ∧ ¬ψ(x̄) (note that the guard α(x̄ȳ) ensures that the equivalence
η(ψ)(x̄)↔ ψ(x̄) is only ever used for guarded instantiations of x̄.)

Consider the case of φ = q[φ1/U1, . . . , φs/Us](Ȳ , x̄) where q is a UCQ of width k and each of
the φi is an answer-guarded formula. According to Lemma 4.14, π : (N, W̄ )

∼→ (M,π(W̄ )) is a
guarded bisimilar cover allowing for treeifications of width k. For each 1 ≤ i ≤ s let Ti = {b̄ |
(N, W̄ ) |= η(φi)(b̄)} be the relation defined by η(φi) on (N, W̄ ). As φi is answer-guarded, Ti is
a guarded relation on (N, W̄ ) hence also on N and, by guarded-bisimulation invariance of η(φi),
for all guarded tuples b̄ of N we have (N, W̄ ) |= η(φi)(b̄) ⇐⇒ (M,π(W̄ )) |= η(φi)(π(b̄)). It
follows that each Ti is a π-saturated guarded relation and so, by Lemma 4.14 again, π : (N, T̄ )

∼→
(M,π(T̄ )) is a guarded bisimilar cover allowing for treeifications of width k. Therefore, as q has
width k, for every guarded tuple b̄ of (N, T̄ ) we have that (N, T̄ ) |= q(b̄)↔ Λτ

′

q (b̄), where τ ′ = τ ]
{U1, . . . , Us, Ck}. All in all we have (N, W̄ ) |= q[η(φ̄)/Ū ](b̄)↔ Λτ

′

q [η(φ̄)/Ū ](b̄) for all guarded b̄.
Finally, by the induction hypothesis, for each φi and b̄ a guarded tuple (N, W̄ ) |= φi(b̄)↔ η(φi)(b̄),
hence (N, W̄ ) |= φ(b̄)↔ q[φ̄/Ū ](b̄)↔ q[η(φ̄)/Ū ](b̄)↔ Λτ

′

q [η(φ̄)/Ū ](b̄)↔ η(φ)(b̄), as needed.
Consider now the case of φ = µZ,z̄[ψ(Ȳ , Z, z̄)] and, accordingly, η(φ) = [µZ,z̄; η(ψ)(Ȳ , Z, z̄)].

Let (Uα)α and (V α)α be the relations obtained at the respective transfinite stages of the inductive
fixpoint computation of ψ(z̄) and by η(ψ)(z̄), respectively. In other words, U0 = V 0 = ∅,

Uα+1 = {ā | (N, W̄ , Ŭα) |= ψ(ā)} and V α+1 = {ā | (N, W̄ , V̆ α) |= η(ψ)(ā)}
for all ordinals α, moreover, Uλ =

⋃
α<λ U

α and V λ =
⋃
α<λ V

α for limit ordinals λ. Here
Ŭα = Uα∩guarded(N) and V̆ α = V α∩guarded(N) denote the guarded interior of Uα and V α,
respectively.

Observe that guarded-bisimulation invariance of η(ψ) implies that V̆ α = π−1(π(V̆ α)) ∩
guarded(N) for all ordinals α. So assuming Ŭα = V̆ α for some α, Ŭα is π-saturated and thus
we can apply the induction hypothesis of the claim of this lemma for the structurally simpler for-
mula ψ and the assignment mapping Ȳ to ¯̆

W and Z to Ŭα to establish Ŭα+1 = V̆ α+1. Thus it
follows by transfinite induction (the limit case being entirely trivial) that Ŭα = V̆ α for all ordinals

3recall that a guarded relation W on the cover N is π-saturated if W = π−1(π(W )) ∩ guarded(N)
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α, whence also
⋃
α Ŭ

α =
⋃
α V̆

α. In other words, the guarded interiors of the least fixpoints defined
by φ and by η(φ) on (N, W̄ ) do coincide as claimed.

THEOREM 4.17. A GNFPk-sentence ϕ̃ in GN-normal form is satisfiable (in the finite) if, and
only if, η(ϕ̃) ∈ GFPk is satisfiable (in the finite).

PROOF. It is easy to see that for every model M of ϕ̃ its expansion (M,Ck) is a model of η(ϕ̃),
where Ck is the complete k-ary relation on M . Indeed, for every positive subformula ψ(x̄) as in (e)
above and for every

M |= ψ[φ1/U1, . . . , φs/Us](ā) (8)

there is a CQ ∃ȳ Q(x̄ȳ), a disjunct of the CNF of ψ, such that Q is a conjunction of {U1, . . . , Us}-
atoms and |x̄| + |ȳ| ≤ k and M |= Q[φ1/U1, . . . , φs/Us](āb̄) for some b̄ ∈ M |ȳ|. Although Q
need not be acyclic Λ

τ]{U1,...,Us,Ck}
ψ (x̄) does contain as a disjunct the acyclic conjunctive query

∃ȳ Ck(x̄ȳ) ∧Q(x̄ȳ). Therefore, given the interpretation of Ck, we have

(M,Ck) |= Λ
τ]{U1,...,Us,Ck}
ψ [η(φ1)/U1, . . . , η(φs)/Us](ā) (9)

and the converse implication (9)⇒(8) holds by definition of treeification. Using the equivalence of
(8) and (9) it is straightforward to verify by induction on formulas that (M,Ck) |= η(ϕ)(ā) iff
M |= ϕ(ā) for all ā.

Conversely, consider some M a model of η(ϕ̃) and its (wkw)-th Rosati cover M (wkw), equally a
model of η(ϕ̃), where w is the maximum of the width of τ and k. Lemma 4.16 proves that M (wkw)

is, in fact, a model of ϕ̃, and we know from Theorem 4.13 that if M is finite then so is M (wkw).

Both satisfiability [Grädel and Walukiewicz 1999] and finite satisfiability [Bárány and Bojańczyk
2012] of GFP sentences have been shown decidable in time 2O(nww), where n is the length of the
input formula and w is its width4. Starting with a GNFPk sentence ϕ whose GN-normal form is ϕ̃,
we get from Lemma 4.15 that |η(ϕ̃)| = 2(k|ϕ|)O(1)

and that η(ϕ̃) is computable within that same
time bound, but its width remains k. Theorem 4.4 now follows from these bounds via Theorem 4.17.

5. MODEL CHECKING FOR GNFO AND GNFP
In this section we study the combined complexity of the model checking problems for GNFO and
GNFP, where the input consists of a sentence and a structure and the goal is to decide whether
the sentence is true on the structure. For the unary negation cases, it was shown in [ten Cate and
Segoufin 2013] that the model checking problem for UNFO is PNP[O(log2 n)]-complete, and that the
model checking problem for UNFP is in NPNP ∩ coNPNP and PNP-hard. We show that these upper-
bounds also apply to GNFO and GNFP. The proof is a reduction to formulas with unary negations
by constructing an incidence structure.

THEOREM 5.1. The model checking problem for GNFO is PNP[O(log2 n)]-complete.
For GNFP it is in NPNP ∩ coNPNP and hard for PNP.

PROOF. The lower bounds are immediate as UNFO is a fragment of GNFO and UNFP is a
fragment of GNFP. For the upper bounds we reduce the model checking problem for GNFO (resp.
GNFP) to the model checking problem for UNFO (resp. UNFP).

Given a relational structure M and a sentence φ of GNFP we construct in polynomial time a
relational structure M ′ and a sentence φ′ of UNFP such that φ′ is in UNFO if φ is in GNFO and

M |= φ iff M ′ |= φ′. (10)

4The width as defined in [Grädel and Walukiewicz 1999; Bárány and Bojańczyk 2012] is the maximal number of free
variables occurring in a subformula. This number is of course bounded by the width as defined in this paper.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.
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The structure M ′ is an extension of M essentially representing M together with its incidence
structure. M ′ contains one new element per fact of M . For each relation symbol R of the signature
ofM , we add a new unary symbolPR interpreted as the set of all facts ofM involving the relationR.
Finally we add a new binary relation symbol ER,i for each relation R of the signature of M and
number i between 1 and the arity of R, interpreted as the binary relation that relates each new
element y denoting a fact R(x̄) of M to xi. The construction of M ′ is clearly in polynomial time.

When φ is in GNFO, the formula φ′ is constructed from φ by first replacing each subformula
R(z̄) ∧ ¬ψ(x̄), where x̄ ⊆ z̄ with:

∃yPR(y) ∧
∧
i

ER,i(y, zi) ∧ ¬
(
∃x̄
∧
i

ER,αi(y, xi) ∧ ψ(x̄)
)

where αi is such that xi = zαi .
In the case where φ is in GNFP we further extend the structure constructed above by adding

the following for each subformula ξ(z̄) occurring in φ and of the form β(z̄) ∧ Z(x̄), where Z is
a fixpoint predicate variable (recall that according to our syntactic restrictions this means x̄ ⊆ z̄):
we have a new unary predicate Pξ interpreted with new elements, one per fact of M in β. Finally,
for each i between 1 and the arity of Z, we have a new binary relation Eξ,i interpreted as the pairs
(v, uj) where v represents the fact β(ū) and j is such that zj is the variable in position i within
Z(x̄). This concludes the construction of M ′.

For the construction of φ′, we first do as in the GNFO case. Moreover, we have one extra unary
fixpoint predicate Pz per fixpoint predicate Z occurring in φ and we replace each subformula ξ(z̄)
of the form β(z̄) ∧ Z(x̄) by

∃yPξ(y) ∧ PZ(y) ∧
∧
i

Eξ,i(y, xi)

and each fixpoint subformula µZ,z̄[φ(Ȳ , Z, z̄) ](x̄) by

∃y µPZ ,z[φ(PY , PZ , z) ](y) ∧
∨
ξ

(
Pξ(y) ∧

∧
i

Eξ,i(y, xi)
)
.

In both cases the construction of ψ′ and M ′ are clearly in polynomial time. The reader can now
verify that (10) holds.

Remark 5.2. If we had opted for the alternative syntax that does not explicitly declare any con-
crete guard but instead uses the clause guardedτ as in (7), then the complexity of the model check-
ing problem would be higher. Indeed it is not difficult to show that in this case it becomes Exp-
Time-complete. The reason is that if the maximal arity of the relational predicates of the signature
is k then there are exponentially many, in k, potential guards (in other words predicates Pξ in the
construction above, accounting for the number of permutations of variables in a k-ary atom).

With this in mind we encode the model checking problem for a single-rule Datalog program
(SIRUP) into the model checking problem of this alternative syntax of GNFP. The former is known
to be ExpTime-complete [Gottlob and Papadimitriou 2003]. Given a structureM and a SIRUP φ we
introduce a new extra relation whose arity is the number of elements of M and containing a single
tuple that enumerates all elements of M . The fixpoint formula φ is then trivially guarded by this
new relation (no need to guard negations because there is no negation in Datalog).

For the upper-bound, given a structure M and a sentence φ of GNFP, we first compute in a new
relation, in exponential time, all guarded tuples of M and then evaluate φ as in Theorem 5.1. The
total time is exponential, for the algorithm underlying Theorem 5.1 is polynomial in the size of M .

6. EXPRESSIVE POWER OF GNFO AND GNFP
In this section, we develop an appropriate notion of bisimulation for GNFO and GNFP, and use it
to characterize the expressive power of GNFO.
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Recall the notions of guarded tuples and the notation guarded(M) from Section 2. For a number
k, we say that a tuple is k-guarded if it is guarded by a fact of M using at most k elements of M .
We denote by guardedk(M) the set of all k-guarded tuples of M .

Definition 6.1. Let M,N be two structures. A GN-bisimulation (resp. a GN-bisimulation of
width k ≥ 1) is a binary relation Z ⊆ guarded(M) × guarded(N) (resp. Z ⊆ guardedk(M) ×
guardedk(N)) such that the following hold for every pair (ā, b̄) ∈ Z, where ā = a1, . . . , am and
b̄ = b1, . . . , bn
— (M, ā) and (N, b̄) are locally isomorphic (and in particular, m = n)
— [Forward clause] For every finite set X ⊆ dom(M) (resp. X ⊆ dom(M) and |X| ≤ k) there

is a partial homomorphism h : M → N whose domain is X , such that h(ai) = bi for all ai in
X , and such that for every ā′ ∈ guarded(M) (resp. ā′ ∈ guardedk(M)) consisting of elements
in the domain of h, the pair (ā′, h(ā′)) belongs to Z.

— [Backward clause] Likewise in the other direction, where X ⊆ dom(N).

Note that if X above is restricted to guarded sets then we obtain a definition of guarded bisimu-
lation. We write M ≈GN N if there is a non-empty GN-bisimulation between M and N and write
M ≈kGN N if the GN-bisimulation has width k. Notice that M ≈GN N implies that M ≈kGN N
for all k.

It is not difficult to see that the existence of a GN-bisimulation implies indistinguishability by
GNFP sentences, and that the existence of a GN-bisimulation of width k implies indistinguishability
in GNFPk.

PROPOSITION 6.2. For k ≥ 1, ifM ≈kGN N thenM andN satisfy the same GNFPk sentences.
In particular, if M ≈GN N then M and N satisfy the same GNFP sentences.

PROOF. The proof is by induction on the nesting of fixpoints and existential quantification in the
formula. We assume without loss of generality that all formulas are in GN-normal form. It is conve-
nient to state the induction hypothesis for formulas φ(x̄) with several free second-order variables.
The induction hypothesis then becomes: for all formulas φ(x̄, Ȳ ), and for all GN-bisimulation Z
of width k between (M, P̄ ) and (N, Q̄), and all pair (ā, b̄) ∈ Z, we have (M, P̄ , ā) |= φ iff
(N, Q̄, b̄) |= φ. We show only the important cases of the inductive step. LetM,N be two structures,
Z be a GN-bisimulation of width k between M and N , P̄ and Q̄ be valuations of Ȳ respectively on
M and N , and (ā, b̄) ∈ Z.

— φ(x̄, Ȳ ) starts with an existential quantifier. Then, by definition of GN-normal form, φ is of the
form q[ϕ1/U1, . . . , ϕs/Us] for some UCQ q and each ϕi is an answer-guarded formula also of
the form ϕi(ȳ, Ȳ ). Let z1, . . . , zn be the existentially quantified variables of q and let m = |x̄|.
In particular m+ n ≤ k.
First, suppose (M, P̄ , ā) |= φ. Let {c1, . . . , cn} be the quantified elements of M witnessing the
truth of φ and let X = {c1, . . . , cn} ∪ {a1, · · · , am}. By the definition of GN-bisimulation,
there is a partial homomorphism h : M → N of domain X such that h(ā) = b̄ and such that
(ū, h(ū)) ∈ Z for all k-guarded tuple ū ⊆ X . For each i, let ūi be the subset of X making
ϕi true on (M, P̄ ). As ϕi is answer-guarded and belongs of GNFOk, ūi is k-guarded. There-
fore, as by induction hypothesis, (M, P̄ , ūi) |= ϕi(ȳ, Ȳ ) iff (N, Q̄, h(ūi)) |= ϕi(ȳ, Ȳ ), we
have (N, Q̄, h(ūi)) |= ϕi(ȳ, Ȳ ). Hence the assignment that sends z1, . . . , zn to h(c1), . . . , h(cn)
makes φ true on (N, Q̄, b̄).
The opposite direction, from (N, Q̄, b̄) |= φ to (M, P̄ , ā) |= φ, is symmetric.

— φ(x̄, Ȳ ) is any Boolean combination of formulas of the form ψ(ȳ, Ȳ ), the result is immediate
from the induction hypothesis.

— φ(x̄, Ȳ ) is of the form µZ,z̄[ψ(Z, Ȳ , z̄) ](x̄). We proceed by induction on the fixpoint iterations.
Let Oψ,(M,P̄ ) and Oψ,(N,Q̄) be the monotone set-operations induced by ψ on subsets of the
domain of (M, P̄ ) and (N, Q̄), respectively, and let κ = max{|M |, |N |}. Recall that the
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least fixpoint of Oψ,(M,P̄ ) is equal to Oψ,(M,P̄ )
κ(∅), and similarly for the least fixpoint of

Oψ,(N,Q̄). A straightforward transfinite induction shows that, for all ordinals λ, and for all
(ā, b̄) ∈ Z, ā ∈ Oψ,(M,P̄ )

λ(∅) if and only if b̄ ∈ Oψ,(N,Q̄)
λ(∅). We conclude that (M, P̄ , ā) |=

µZ,z̄[ψ(Z, Ȳ , z̄) ](x̄) if and only if (N, Q̄, b̄) |= µZ,z̄[ψ(Z, Ȳ , z̄) ](x̄).

In fact, over arbitrary structures, GN-bisimulation invariance can be used to characterize GNFO.

THEOREM 6.3. GNFO is the ≈GN -invariant fragment of FO, and for all k ≥ 1, GNFOk is the
≈kGN -invariant fragment of FO on arbitrary structures.

The finite variant of Theorem 6.3, showing that GNFOk captures the ≈kGN -invariant fragment of
FO on finite structures has recently been established in [Otto 2012].

PROOF. We prove the hard direction, which uses the technique of ω-saturated structures from
classical model theory (cf. [Hodges 1993]). We give the proof for the case of GNFOk. The argument
for full GNFO is identical. Let φ be any sentence of FO invariant under GN-bisimulations of width k.
We want to show that φ is equivalent to a GNFOk-sentence. By a well known argument using Com-
pactness, it is enough to show that, whenever two structures agree on all formulas of GNFOk, they
agree on φ. Hence, suppose M and N satisfy the same sentences of GNFOk. Without loss of gener-
ality we can assume thatM andN are ω-saturated. DefineZ ⊆ guardedk(M)×guardedk(N) as the
set of all k-guarded pairs (ā, b̄) such that (M, ā) and (N, b̄) satisfy the same GNFOk-formulas. We
claim that Z is a non-empty GN-bisimulation of width k. As φ is invariant under GN-bisimulations
of width k this implies that M and N agree on φ and concludes the proof of the lemma.

That Z is a GN-bisimulation of width k follows immediately from the following lemma where we
write (M, ā) ≡GNFOk (N, b̄) (resp. (M, ā) ≡GNFO (N, b̄)) if for all φ ∈ GNFOk (resp. φ ∈ GNFO)
we have M |= φ(ā) iff N |= φ(b̄):

LEMMA 6.4. For all ω-saturated structures M and N the following hold.
(1) The relation {(ā, b̄) ∈ guarded(M) × guarded(N) | (M, ā) ≡GNFO (N, b̄)} is a GN-

bisimulation.
(2) The relation {(ā, b̄) ∈ guardedk(M) × guardedk(N) | (M, ā) ≡GNFOk (N, b̄)} is a GN-

bisimulation of width k.

PROOF. We prove the second claim. The proof of the first claim is similar. Let Z = {(ā, b̄) ∈
guardedk(M)× guardedk(N) | (M, ā) ≡GNFOk (N, b̄)}. Clearly, Z consists of locally isomorphic
pairs of tuples. We show that Z satisfies the forward clause, the proof of the backward clause is
analogous.

Suppose (c̄, d̄) ∈ Z and let X ⊆ dom(M) with |X| ≤ k. For simplicity, assume c̄ ⊆ X (the
general case is similar). Thus, let X = {c1, · · · cl, cl+1, . . . , cn} with c̄ = (c1, · · · , cl) and n ≤ k.
Let T [x1, . . . , xn] be the set of all formulas φ(x1, . . . , xn) that are positive Boolean combinations
of (i) atomic formulas or (ii) formula of the form α(ȳ) ∧ ¬ψ(ȳ) where ψ is in GNFOk and α is an
atomic formula (possibly an equality statement), and that are true in (M, c1, . . . , cn). We view T
as an n-type with l parameters. It is not hard to see that every finite subset T ′ ⊆ T is realized in
N under some assignment that sends (x1, · · · , xl) to d̄. Indeed, notice that ∃xl+1 . . . xn(

∧
T ′) is a

formula of GNFOk true at (M, c̄) and therefore it is also true at (N, d̄) by hypothesis. Since N is ω-
saturated (and treating T as an n-type with parameter d̄), it follows that the entire set T [x1, . . . , xn]
is realized inN under an assignment g that sends (x1, · · · , xl) to d̄. Let h be the mapping sending ci
to g(xi). As T contains all atomic formulas, then h is a homomorphism. Moreover, as T contains all
formula of the form α(ȳ)∧¬ψ(ȳ), for all c̄′ in guardedk(M) with c̄′ ⊆ X we have (M, c̄′) ≡GNFOk

(N,h(c̄′)). By definition of Z this implies (c̄′, h(c̄′)) ∈ Z.
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That Z is non-empty follows from ω-saturation: consider ā ∈ guardedk(M) and let Σ(x̄) be the
set of all GNFOk formulas true for ā. Every finite subset Σ′ ⊆ Σ(x̄) is realized in N (notice that
∃x̄
∧

Σ′ is a sentence of GNFOk that is true in M , and hence in N ). Therefore, by ω-saturation,
the entire set Σ(x̄) is realized by an element b̄ in N , and hence (ā, b̄) ∈ Z, which implies that Z is
non-empty.

Based on the definition of GN-bisimulation (of width k) it is straightforward to define GN-
unraveling (of width k) as an operation constructing from any given structure M a (k-acyclic)
companion M∗ ≡GNFOk M . This provides a natural route for demonstrating the tree-like model
property of GNFP. We leave this as an exercise, instead, take a short-cut via the reduction to the
guarded fragment introduced in Section 4.

THEOREM 6.5. GNFP has the tree-like model property.

PROOF. Consider a model M of a GNFPk-sentence ϕ. Recall Section 4 and the reduction from
GNFP to GFP. We can assume without loss of generality thatM contains the relation Ck containing
all k tuples on M . In this case M is also a model for η(ϕ), where η(ϕ) is the GFP formula con-
structed in section 4. LetM∗ be the guarded unraveling ofM of width k (cf. e.g. [Grädel 1999a] for
the relevant definitions). It is straightforward to verify that M∗ is a k-guarded bisimilar cover of M ,
that M∗ has tree width at most k, and that M∗ is acyclic (in particular, weakly l-acyclic as a cover
of M for every l ∈ N). Therefore, by Lemma 4.16 we have M∗ |= η(ϕ) iff M∗ |= ϕ. By guarded
bisimulation we also have M∗ |= η(ϕ) iff M |= η(ϕ). Altogether this shows that M∗ |= ϕ.

7. FURTHER EXTENSIONS
7.1. Clique-Guarded Negation
We now consider a further generalization of GNFO called CGNFP, taking inspiration from the
clique-guarded fragment. CGNFP is defined just like GNFP except that we allow clique-guards in
the place of guards. We say that a conjunction of atomic formulas α clique-guards x̄ if for every pair
xi, xj ∈ x̄, α includes a conjunct in which both xi and xj appear (in other words, the co-occurrence
graph for the variables in x̄ is a clique).

The formulas of CGNFP are generated by the following grammar:

φ ::= R(x̄) | x=y | α(x̄, ȳ) ∧X(x̄) | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃xφ | α(x̄, ȳ) ∧ ¬φ(x̄) |
µZ,z̄[φ(Ȳ , Z, z̄) ](x̄)

where α(x̄, ȳ) is a conjunction of atoms that clique-guards x̄. The fixpoint-free fragment of CGNFP
is called CGNFO, and we use the notation CGNFP[τ ] or CGNFO[τ ] when restricting to formulas in
a particular signature τ . As in the case of GNFO and GNFP, in the above inductive definition, we
can equivalently replace the clauses for conjunction, disjunction and existential quantification by a
single clause for unions of conjunctive queries. As in the case of GNFP this provides a normal form
that is used to define formulas of width k, denoted CGNFPk.

In this section, we show that CGNFO and CGNFP behave similarly to GNFO and GNFP, in
terms of the complexity of satisfiability, and in terms of the finite model property. To prove this, we
will make use the fact that the n-th Rosati cover M (n) of a structure M is n-conformal (cf. The-
orem 4.13). Recall that we call a structure M n-conformal (where n ≥ 1) if every n-tuple that is
clique-guarded in M is in fact guarded in M . Using this fact, it turns out that our results for GNFO
and GNFP can be lifted to CGNFO and CGNFP without much effort.

THEOREM 7.1.

(1) The satisfiability problem for CGNFO and for CGNFP is 2ExpTime-complete.
(2) CGNFO has the finite model property.

Theorem 7.1 generalizes prior decidability results for the loosely guarded fragment [van Benthem
1997], the packed fragment [Marx 1999], and the clique-guarded fragment [Grädel 1999a], which
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are all subsumed in CGNFO (for sentences). The finite model property for these fragments was first
established in [Hodkinson 2002].

In the remainder of this section, we explain how Theorem 7.1 is proved.
We extend our translation from GNFP into GFP to a translation from CGNFP into GFP. With a

slight abuse of notation, we use the same symbol η also to denote this extension of the translation.
For every k ≥ 1, and for every relational signature τ consisting of at most k-ary relations, we define
a translation η from CGNFPk[τ ] formulas in normal form to GFPk[τ ] {Ck}] formulas, where Ck
is a new symbol of arity k, by structural recursion, using the following rules.

η(R(x̄) ) = R(x̄) (a)

η(α(x̄ȳ) ∧ Z(x̄) ) = α(x̄ȳ) ∧ Z(x̄) (b)

η(α(x̄ȳ) ∧ ¬ψ(x̄) ) = α(x̄ȳ) ∧ ¬ η(ψ(x̄)) (c)

η(µZ,z̄[ψ(Ȳ , Z, z̄) ] ) = µZ,z̄[η(ψ(Ȳ , Z, z̄)) ] (d)

η( q[φ1/U1, . . . , φs/Us] ) = Λ
τ]{U1,...,Us,Ck}
q [η(φ1)/U1, . . . , η(φs)/Us] (e)

where in (e) q is a UCQ of signature {U1, . . . , Us} disjoint from τ ] {Ȳ , Ck} and φ1, . . . , φs ∈
GNFPk[τ ] {Ȳ }], where Ȳ enumerates the free fixpoint variables occurring in any of the φi’s, each
φi being a answer-clique-guarded formula, and such that q[φ1/U1, . . . , φs/Us] is a subformula of
ϕ̃.

Recall Theorem 4.17, which states that the translation η(·) from GNFP to GFP is satisfiability
preserving. The proof involved passing from a structure M to its (wkw)-th Rosati cover M (wkw),
which is (wkw)-acyclic, and applying Lemma 4.16. Lemma 4.16, in turn, was proved by induction,
where the inductive hypothesis was stated in terms of guarded tuples and guarded relations. Using
the (wkw)-conformality of M (wkw), which gives us that every clique-guarded (wkw)-tuple is in
fact a guarded tuple, the same arguments apply for clique guarded tuples and therefore when the
input is in CGNFP. In this way, we get the following analogue of Theorem 4.17.

THEOREM 7.2. A CGNFPk-formula ϕ̃ in normal form is satisfiable (in the finite) if, and only
if, the GFPk-formula η(ϕ̃) is satisfiable (in the finite).

Moreover, the same complexity analysis applies as in the case of GNFP. In particular, Theo-
rem 7.2 implies that satisfiability is 2Exp-complete for CGNFP. Furthermore, observe that the
translation η maps CGNFO formulas to GFO formulas. Therefore, Theorem 7.2 also establishes
the finite model property for CGNFO.

7.2. Constant Symbols
Although our definition of GNFO, and of GNFP, does not include constant symbols, they can be
added without affecting any of our complexity results. This can be shown using the same technique
that was used in [Grädel 1999b] in the context of the guarded fragment. For the sake of complete-
ness, we explain here how this technique can be applied to CGNFP-sentences (the same argument
works also for CGNFP-formulas with free variables).

By a CGNFP-sentence with constants we mean a CGNFP-formula where, in addition, constant
symbols may freely be used in atomic subformulas (and there is no restriction on the use of constant
symbols in negated subformulas).

PROPOSITION 7.3. Given any CGNFP-sentence φ with constant symbols, we can construct in
polynomial time a CGNFP-sentence φ′ without constant symbols, such that φ and φ′ are equi-
satisfiable, both in the finite and over arbitrary structures.

PROOF. Let φ be any CGNFP-sentence over a signature σ = {R1, . . . , Rn, c1, . . . , ck}. Con-
sider the relational signature τ = {R′1, . . . , R′n}, where the arity of each new relation symbol R′i
is the arity of Ri plus k. Fix fresh variables z1, . . . , zk corresponding to the constants c1, . . . , ck.
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Finally, let φ∗(z1, . . . , zk) be the CGNFP-formula over τ obtained from φ by (i) replacing ev-
ery occurrence of a constant symbol ci by the corresponding variable zi, and, subsequently, (ii)
replacing every relational atomic formula Rj(x1, . . . , xm) by Rj(x1, . . . , xm, z1, . . . , zk). Note
that φ∗(z1, . . . , zk) is indeed a CGNFP-formula. This follows from the fact that φ was a CGNFP-
formula, and the fact z1, . . . , zk occur in every atomic subformula of φ∗(z1, . . . , zk).

We show that φ and φ∗(z1, . . . , zk) are equi-satisfiable, both in the finite and in the infinite.
Indeed, every model M of φ gives rise to a strucure M ′ over the same domain and such that for

each relation symbol Ri ∈ σ we have R′i
M ′

= RMi × {cM1 } × · · · × {cMk }. It is then immediate to
check that M ′ |= φ∗(cM1 , . . . , cMk ).

Conversely, if M ′ |= φ∗(u1, . . . , uk) for some u1, . . . , uk ∈ dom(M ′), then M |= φ, where, for
each m-ary relation symbol Ri, RMi = {(a1, . . . , am) | (a1, . . . , am, u1, . . . , uk) ∈ R′i

M ′} and
and where cMj = uj .

Finally, we can turn φ∗ into a sentence by existentially quantifying out z1, . . . , zk.

The same argument also applies to the model checking problem (as the construction of the model
M ′ from M given in the above proof is polynomial).

8. DISCUSSION
We have provided a logical framework generalizing both GFO and UNFO while preserving their
nice properties, in particular decidability of satisfiability. Our results on satisfiability carry over to
the validity and entailment problems for GNFO, and likewise for GNFP, as these problems are all
reducible to each other. For instance, a GNFO entailment φ(x̄ȳ) |= ψ(x̄z̄) holds if, and only if, for
a fresh relation R of appropriate arity ∃x̄ȳz̄(φ(x̄ȳ) ∧R(x̄ȳz̄) ∧ ¬ψ(x̄z̄))) is not satisfiable.

Another immediate consequence of our results is that query answering for unions of conjunc-
tive queries with respect to guarded-negation fixpoint theories (i.e., the analogue of Theorem 3.3
replacing GFO by GNFP) is decidable and 2ExpTime-complete.

It would be tempting to further generalize by including the two variable fragment of FO (FO2).
Unfortunately this would lead to undecidability. Actually a simple combination of FO2 with UNFO
already yields undecidability as FO2 can express the fact that a relation correspond to inequality
(by ∀x, y (R(x, y)↔ x 6= y)) and the extension of UNFO with inequality is undecidable [ten Cate
and Segoufin 2013]. Similarly, unconstrained universal quantification leads to undecidability, since
every subformula of the form ¬ψ(x̄) can be trivially guarded using a fresh relation R(x̄), adding
∀x̄ Rx̄ as a conjunct to the main formula.

Since the publication of the conference proceedings version of the present paper, a number of new
results and applications of guarded-negation logics have been established. In particular, in [Bárány
et al. 2012], it was shown that boundedness is decidable for guarded-negation datalog; in [Bárány
et al. 2013], GNFO was shown to satisfy Craig interpolation as well as various model-theoretic
preservation theorems; and in [Bárány et al. 2013] and [Bienvenu et al. 2013], open-world query
answering and query rewritability were studied for database queries and constraints specified in
GNFO.
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