
Order independent temporal properties

Nicole Bidoit ∗ Sandra De Amo † Luc Segoufin ‡

July 2, 2020

Contact : Nicole Bidoit

LRI UMR 8623 CNRS - Bat 490

Université de Paris Sud,

91405 Orsay Cedex, France

email : bidoit@lri.fr

Abstract

The paper investigates temporal properties that are invariant with respect to the
temporal ordering and that are expressible by temporal query languages either explicit
like FO(≤) or implicit like TL. In the case of an explicit time representation, these
“order invariant” temporal properties are simply those expressible in the language
FO(=). In the case of an implicit time representation, we introduce a new language,
TL(Ei) that captures exactly these properties. The expressive power of the language
TL(Ei) is characterized via a game à la Ehrenfeucht-Fräıssé.

This provides another proof, using a more classical technique, that the implicit
temporal language TL is strictly less expressive than the explicit temporal language
FO(≤). This alternative proof is interesting by itself and opens new perspectives in
the investigation of results of the same kind for more expressive implicit temporal
languages than TL.
Keywords: database, expressiveness, query languages, temporal logic.

∗LRI UMR 8623 CNRS- Bat 490, Université de Paris Sud, 91405 Orsay Cedex, France, bidoit@lri.fr
†Depart. of Computer Science, Federal University of Uberlândia, Uberlândia, MG, Brazil, deamo@ufu.br.

The author was supported by an individual research grant from CNPq (Brazil) and in part by the program
Capes-Cofecub 301/00-1

‡INRIA-Rocquencourt, BP 105, 78153 Le Chesney Cedex, France, Luc.Segoufin@inria.fr

1

1 Introduction

It is well-known that the choice between an implicit and explicit representation of time
in a temporal data model does not affect the meaning of the information stored in a
temporal database [2, 5, 18]. However, one cannot state the same about temporal query
languages. Following an implicit time representation approach, a temporal database
is defined as a finite sequence of instances which can be interpreted as the evolution
of the database states during its lifetime; on the other hand, following an explicit time
representation approach, tuples in a relation are timestamped and time can represent,
for instance, the valid date associated to the information in the real world (valid time)
or the date this information has been entered into the database (transaction time).
We notice that in both approaches, the underlying temporal structure is linear. Al-
though non linear time (branching time) is potentially applicable to database problems
like version management or workflows, we concentrate on temporal domains that are
linearly ordered sets.

In the context of an implicit time representation, the linear temporal logic TL, with
connectives Until Since Next Previous, and its extensions are the basic formalisms
underlying query languages specification [7, 10]. When time is explicitly represented,
queries are specified using the standard relational query languages [3] with built-in
linear order on the timestamps. One of these languages, the relational calculus with
timestamps (i.e., the first-order theory of linear order), denoted by FO(≤), provides a
natural formalism to specify queries in the explicit perspective.

The comparison between the two approaches was done in [1, 2, 20, 12] where many
fragments (restriction on the quantifier prefix as in [20]) and extensions (more temporal
connectives as in [2, 1]) of the logics presented above are studied and compared. Their
motivations ranged from obtaining decidability for satisfiability ([20]) or separating
query language in term of expressiveness ([2, 1]).

In this paper we focus on TL and FO(≤). In particular the work of [1, 2] has shed
new light on their relative expressiveness as temporal query languages: surprisingly,
TL is strictly less expressive than FO(≤), in particular TL is unable to express the
existence of two identical states in the temporal database, while this property is easily
expressible in FO(≤). These results are of major interest and stand in contrast with
the propositional case. In [11, 14], the notion of a complete temporal language is
introduced via equivalence with FO(≤) and the authors show that propositional TL is
complete.

The fact that TL is strictly less expressive than FO(≤) has clearly stimulated subse-
quent research work in proposing implicit and explicit query languages more expressible
than TL. For instance, [1, 2] propose a hierarchy of implicit and explicit temporal lan-
guages which, it is worth to remark, are either strictly less expressive or strictly more
expressive than FO(≤). [5] has introduced another hierarchy of implicit temporal lan-
guages, with the purpose of proving the following open problem: Is there a complete
implicit temporal query language ? Investigations aiming at solving this problem are
motivated, as pointed out in [8], by the simplicity and computational advantages of
temporal logic which make it especially attractive as a query language for temporal
databases. Indeed, because the references to time are hidden, queries are formulated

2

in an abstract, representation-independent way. Furthermore, temporal logic and the
first-order theory of linear order have very different complexity properties : for in-
stance, the satisfiability problem for propositional TL (given a propositional formula
p is there a model for p ?) is PSPACE-complete ([19]) whereas the same problem for
first-order theory is non elementary ([17]).

It is important at this point, to make some brief comments about the technique
employed in [1, 2] in order to prove that TL is strictly less expressive than FO(≤). This
technique is based on communication protocols [15]. Intuitively, a communication
protocol involves two partners exchanging information in order to prove or discover
something. Each partner is in possession of some amount of information and is able to
execute calculations. By exchanging messages, the two partners can inform each other
of partial results of these calculations. Their messages take the form of finite relations.
The calculations carried out by one partner can only involve the information he/she
owned at the beginning of the communication process or the one he/she obtained
from messages exchanged with his/her partner. Thus, the execution of a protocol is
essentially characterized by a series of messages exchanged between the two partners. A
protocol may be designed to test some property over the initial dataset. The number
of messages exchanged during the protocol execution measures, in some extent, the
communication complexity of the property. The proof we are interested in can be
outlined as follows: (1) it can be shown that all properties expressible in TL have a
constant communication complexity (does not depend on the size of the dataset); (2)
the property consisting in verifying the existence of two distinct states in a temporal
database has a non-constant communication complexity (roughly speaking, in order to
be verified, this property requires a number of messages which depends on the number
of states in the temporal instance). So, TL cannot express this property which, on the
other hand, can be easily formulated in FO(≤).

In this paper, we propose a different proof of this same result, but using a more
classical technique based on games à la Ehrenfeucht-Fräıssé. Nevertheless, the proof
we present does not follow the direct proof schema used to show, for instance, that
graph connectivity is not a first order property: (1) characterize elementary equivalence
restricted to formulas of quantifier depth r by a game with r moves ; (2) find a connected
graph and a non-connected one and a winning strategy over these two structures,
implying that they cannot be distinguished by first order formulas. Concerning the
language TL, developing a similar proof schema is not an easy task due to the fact that
the time order structure is linear and discrete. We notice, for instance, that in [18],
a technique of games à la Ehrenfeucht-Fräıssé is successfully used mainly because the
time order considered is dense.

Our proof that TL is strictly less expressive than FO(≤) can be outlined as follows.
First, we notice that the witness property used in [1, 2, 18], “are there two identical
states in the database?”, which we call twin henceforth, is order independent, in the
sense that its verification on a temporal database does not depend on the particular
ordering of its states. As a matter of fact, the communication protocol technique de-
scribed above takes advantage of this aspect of the twin property, since the temporal
database is viewed by the two partners as a set of instances rather than a sequence
of instances. We denote by FO(=) the fragment of FO(≤) which includes neither the

3

order predicate ≤ nor temporal constants. Next, we introduce an implicit temporal
query language, denoted by TL(Ei) and its explicit counterpart in FO(=), denoted by
FOtl(=), and show that they correspond exactly to the order independent properties
expressible in TL. The proof of this result is quite complex and requires a strong no-
tion of order independence involving finite and infinite instances, since a well-known
counterexample given by Y. Gurevich (see exercise 17.27 in [3]) guarantees the exis-
tence of an order independent (with respect to finite instances) property expressible
in TL which is not expressible in FO(=) (therefore, not expressible in TL(Ei)). After
establishing these syntactic (implicit and explicit) characterizations of the order inde-
pendent properties expressible in TL, we show, via a game à la Ehrenfeucht-Fräıssé for
TL(Ei), that this restricted temporal language is unable to express the twin property.
We conclude that twin is not expressible in TL since it is order independent.

The most important contribution of this paper consists in (1) the syntactic char-
acterization of the order independent properties expressible in TL via the restricted
temporal language TL(Ei), which by itself sheds new light on the expressiveness of
implicit temporal query languages and (2) the alternative proof schema it provides, al-
lowing the use of a more classical tool to show a known result on relative expressiveness
of temporal query languages.

Paper Organization: In section 2, we briefly recall the definitions of the query
languages TL and FO(≤) and present some well-known results which give the neces-
sary background for understanding the problem we propose. Section 3 introduces the
implicit temporal language TL(Ei) and its explicit counterpart FOtl(=), and show that
TL(Ei) and FOtl(=) correspond exactly to the order independent properties express-
ible in TL. Section 4 develops a game à la Ehrenfeucht-Fräıssé in order to show that
twin is not expressible in TL(Ei). Finally, we conclude the paper by discussing the
perspectives of using this technique to solve some similar inexpressiveness problems.

2 Preliminaries

In the following, we consider a (static) database schema R and a unique domain Dom.
The timestamp of R, denoted Rts is obtained from R by adding a new attribute T to
each relation of R. This temporal attribute ranges over the temporal domain which is
usually N+ in this paper.

An implicit temporal (finite) instance I over R, is a (finite) sequence (I1,I2,. . .,In)
of (finite) instances over R which domain is a (finite) subset of Dom.

I1 is called the initial state of I, In its final state, and for each i, Ii is called the
state of I at instant i.

An explicit temporal instance is a finite instance over Rts where, for each tuple, the
temporal attribute ranges over N+ while the remaining attributes range over Dom.

To each implicit temporal instance I corresponds an explicit temporal instance Its

and vice versa. Figure 2 shows the two alternative approaches for time representation.

The query language TL. The linear temporal logic TL [10] is a well-known
formalism for specifying queries in an implicit time approach. The syntax of TL over a

4

I1 I2 I3

R A

a

b

c

R A

b

d

R A

a

c

d

The implicit temporal instance I.

Rts A T

a 1
b 1
c 1
b 2
d 2
a 3
c 3
d 3

The explicit tempral instance Its

Figure 1: Implicit and explicit time representations

database schema R is obtained using the formation rules for standard first order logic
over R together with the additional formation rule:

• if ϕ1 et ϕ2 are formulas then ϕ1 Until ϕ2, ϕ1 Since ϕ2, Next ϕ1 and
Previous ϕ1 are formulas.

Given a temporal instance I = (I1,. . .,In) over R, and a TL formula ϕ over R, the
active domain of I, denoted by Adom(I), is the set of elements of Dom appearing
in Ii(R), for some R ∈ R and some i ∈ {1, . . . , n}. As for the relational calculus,
different kinds of problems (“unsafe queries”) may arise if the conventional definitions
from linear temporal logic are adapted directly to the current context (see [3] for a
discussion). We opt here for restricting variables to range over the active domain of
the input temporal database.

In the following, we briefly recall the (active domain) semantics of a TL formula ϕ
over an implicit temporal instance I.

Definition 2.1 (Semantics of TL) The truth of ϕ over I at instant i ∈ {1, . . . , n},
given the valuation ν of the free variables of ϕ ranging over Adom(I), denoted [I,i,ν]
|=tl ϕ, is defined as follows:

[I, i, ν] |=tl R(x1, . . . , xk) if (ν(x1), ν(x2), . . . , ν(xk)) ∈ Ii(R).

If ϕ is a boolean combination of formulas or a quantification (∃, ∀) of a formula
then the definition is as usual.

[I,i,ν] |=tl ϕ1 Until ϕ2 iff there exists j > i such that [I,j,ν] |=tl ϕ2 and for each
k such that i ≤ k < j, [I,k,ν] |=tl ϕ1.

[I,i,ν] |=tl ϕ1 Since ϕ2 iff there exists j < i such that [I,j,ν] |=tl ϕ2 and for each
k such that j < k ≤ i, [I,k,ν] |=tl ϕ1.

[I,i,ν] |=tl Next ϕ1 iff i < n and [I,i+ 1,ν] |=tl ϕ1.

[I,i,ν] |=tl Previous ϕ1 iff i > 1 and [I,i− 1,ν] |=tl ϕ1.

It is sometimes convenient to use the following derived temporal modalities:

F ϕ1 ≡ true Until ϕ1 (“sometimes in the future ϕ1”),

G ϕ1 ≡ ¬ F¬ϕ1 (“always in the future ϕ1”)

P ϕ1 ≡ true Since ϕ1 (“sometimes in the past ϕ1”),

H ϕ1 ≡ ¬ P¬ϕ1 (“always in the past ϕ1”),

5

Historically TL has been used as an implicit temporal query language by evaluating
its formulas at the initial time. We will use this notion together with a more general one
where the instant of evaluation is not specified and thus can be used as a parameter for
the output. Recall that, in the following definition, ~x denotes a sequence of variables
and the valuations ν always ranges over the active domain of the temporal instance.

Definition 2.2 (Query in TL) A query Q in TL over a database schema R is speci-
fied by an expression of the form {(~x) | ϕ(~x)} where ϕ(~x) is a formula of TL over
R with free variables ~x. The answer of Q over a temporal instance I is the relation
Q(I)={ν(~x) | [I,1,ν] |=tl ϕ(~x), ν a valuation of ~x ranging over Adom(I)}.

Definition 2.3 (Extended query in TL∗) A query Q in TL∗ over a database sche-
ma R is specified by an expression of the form {(~x, t) | ϕ(~x)} where ϕ(~x) is a formula
of TL over R with free variables ~x. The answer of Q over a temporal instance I is the
relation Q(I)={(ν(~x), i) | [I,i,ν] |=tl ϕ(~x), ν a valuation of ~x ranging over Adom(I)}.

The query language FO(≤). A natural query language over timestamp temporal
databases is obtained by considering the first order logic over Rts with two kinds
of variables: temporal variables (denoted by t, u, v, s) and data variables (denoted by
x, y, z, w). The language signature contains also the binary predicate ≤ which is defined
only for temporal variables and which is interpreted by a linear order over the temporal
active domain included in N+.

In order to make a fair comparison with TL (respectively TL∗) we will consider
queries whose answers contain only data values and no free temporal variables (resp.
one temporal variable). The corresponding language is denoted by FO(≤) (respectively
FO∗(≤)).

Definition 2.4 (Query in FO(≤)) A query in FO(≤) over R is an expression of the
form {(~x) | φ(~x)}, where φ(~x) is a formula of FO(≤) over Rts where the free variables
~x are data variables. The answer of Q evaluated on a timestamp temporal instance Its

is defined as for relational calculus, where valuations of variables range over the active
domain of Its.

Definition 2.5 (Extended query in FO∗(≤)) A query in FO∗(≤) over R is an ex-
pression of the form {(~x, t) | φ(~x, t)}, where φ(~x, t) is a formula of FO∗(≤) over Rts

where the free variables ~x are data variables. The answer of Q evaluated on a times-
tamp temporal instance Ist is defined as for relational calculus, where valuations of
variables range over the active domain of Ist.

In the following, FO(=) and FO∗(=) denote the restriction of the previous query
languages where the predicate ≤ and the temporal constants are not allowed. Thus,
the only possible atomic formulas involving temporal variables are those of the form
t = s, where both t, s are temporal variables.

Example 2.6 Let R and I be the database schema and temporal instance of figure 1.
The TL query {(x) | R(x) ∧ F R(x)} evaluated on I returns {a, b, c}. The TL∗ query

6

{(x, t) | R(x) ∧ F R(x)} evaluated on I returns {(a, 1), (b, 1), (c, 1), (d, 2)}. These
queries can be equivalently expressed in FO(≤) and FO∗(≤) by the expressions {(x) |
∃t(first(t)∧Rts(x, t)∧∃s(t < s∧Rts(x, s)))} and {(x, t) | Rts(x, t)∧∃s(t < s∧Rts(x, s))}
respectively. The formulas t < s and t > s are abbreviations for t ≤ s ∧ t 6= s and
s ≤ t ∧ s 6= t respectively and the formula first(t) is an abbreviation for ¬∃u(u < t).

Definition 2.7 (Global and Initial Equivalence) Two formulas are said to be glob-
ally equivalent if the corresponding extended queries are equivalent. They are initially
equivalent if the corresponding queries are equivalent.

Known results concerning TL and FO(≤). In [11] and in [14] it is shown that,
in the propositional case, TL and FO(≤) are globally equivalent, which means that the
query languages TL∗ and FO∗(≤) have the same expressive power. This implies initial
equivalence between TL∗ and FO∗(≤), which simply means that the query languages
TL and FO(≤) have the same expressive power.

However, [1, 2] have proved that in the first order case, the equivalence between
TL and FO(≤) does not hold, and so, these query languages have different expressive
power.

Theorem 2.8 [1, 2] TL (FO(≤)

The property separating TL from FO(≤), which we call twin, checks if the input
temporal instance contains two identical states. This property can be expressed in
FO(≤) by ∃i∃j(i 6= j ∧ ∀x[Sst(x, i) ↔ Sst(x, j)]) and its satisfiability does not depend
on the ordering of the states I1, I2, . . . , In in I. The technique employed in [1, 2] in
order to prove that twin is not expressible in TL is based on communication protocols
[15]. In section 4, we will prove the same result using a more classical technique
based on Ehrenfeucht-Fräıssé’s games. In order to do so, we will first give a syntactic
characterization of the order independent properties expressible in TL. This is the main
issue of the next section.

3 The temporal query language TL(Ei)

In this section we introduce a very simple implicit temporal language which deals with
an (implicit) temporal instance I as a set of states rather than a sequence of states. In
other words, this language completely ignores the ordering of the states in a temporal
instance.

The main result of this section (Theorem 3.15) guarantees that this language, de-
noted by TL(Ei), expresses exactly the properties of TL which are order independent.
It contains an enumerable set of operators Ei (i ≥ 1). Intuitively, a formula Eiϕ

expresses that there exists i distinct states satisfying ϕ.

Definition 3.1 [Syntax] We define the language TL∗(Ei) by adding the following
extra rule to the usual formation rules of first order logic:

• If ϕ is a formula then Eiϕ is a formula for any i ∈ N.

7

The formulas of TL(Ei) are the formulas of the form Eiϕ where ϕ is in TL∗(Ei).

[Semantics] Given a temporal instance I=(I1,. . ., In), an instant j and a valuation ν
of the variables ,

• [I,j,ν] |=tl E
iϕ if and only if there exists i distinct instants j1, . . . , ji, such

that [I,jk,ν] |=tl ϕ for each k ∈ {1, . . . , i}.

The notions of a TL(Ei) query, TL∗(Ei) query and their answers are defined as for TL
and TL∗ queries (definition 2.2 and 2.3).

For instance, the query E2∃xR(x) evaluated on a temporal instance I, expresses
the existence of two states in I with non-empty set R.

We will need later on the following definitions:

Definition 3.2 The quantifier temporal rank of a formula ϕ of TL∗(Ei), denoted by
qtr(ϕ), is defined as: (i) qtr(ϕ) = 0 if ϕ is atomic; (ii) qtr(ϕ1 ∧ ϕ2) = max{ qtr(ϕ1),
qtr(ϕ2) }; (iii) qtr(¬ϕ) = qtr(ϕ); (iv) qtr(∃xϕ) = qtr(ϕ)+1; (v) qtr(Eiϕ1) = qtr(ϕ1)
+ 1. The width of a TL∗(Ei) formula, denoted by wth(ϕ), is defined in the same way
except for (v) wth(Eiϕ1)= max{i, wth(ϕ1)}.

For instance, consider the formula ϕ = ∃xE2(∀yE3(R(x, y))). In this case, we have:
qtr(ϕ) = 4 and wth(ϕ) = 3.

The following proposition is an immediate consequence of definition 3.1:

Proposition 3.3 Let ϕ be a formula of TL(Ei). Let I = (I1, I2, . . . , In) be a temporal
instance, i ∈ {1, . . . , n} and ν a valuation of variables. Then:

[I, i, ν] |=tl ϕ⇐⇒ ∀k, 1 ≤ k ≤ n, [I, k, ν] |=tl ϕ

The following proposition establishes, as expected, that the language TL(Ei) is a
sublanguage of both TL and FO(=).

Proposition 3.4 TL∗(Ei) ⊆ TL∗ ∩ FO∗(=), i.e., for each formula ϕ ∈ TL∗(Ei) there
exists a formula ϕtl ∈ TL∗ (respectively a formula ϕfo ∈ FO∗(=)) such that ϕ is
equivalent to ϕtl (respectively to ϕfo).

Proof : The proof of the inclusion TL∗(Ei) ⊆ FO∗(=) does not present any difficulty
and relies on the natural translation of TL∗(Ei) formulas into FO∗(=). Next, we
prove that TL∗(Ei) ⊆ TL∗. This is achieved by induction on the structure of TL∗(Ei)
formulas. For the initial step and the induction steps refering to boolean combinations
and quantification of TL∗(Ei) formulas, the proof is straightforward. Let ϕ = Eiψ,
where ψ is a TL∗(Ei) formula. Without loss of generality, we consider the case where
i = 2, the other cases can be treated in a similar way. By the induction hypothesis, ψ is
equivalent to a TL∗ formula ψtl. It is easy to check that ϕ is equivalent to the following
TL∗ formula: (ψtl∧Fψtl)∨(ψtl∧Pψtl)∨(F (ψtl∧Fψtl))∨(Fψtl∧Pψtl)∨(P (ψtl∧Pψtl)).

�

8

Next, we will characterize the fragment of FO∗(≤) and FO∗(=) which are equivalent
to TL∗ and TL∗(Ei) respectively. In order to do this, let us consider the language
FO∗

tl(≤) that is the set of FO∗(≤) formulas such that each of their subformulas in the
scope of a data quantifier has at most one free temporal variable. For instance, the
formula ∃i∃j(i 6= j ∧ ∀x[Sst(x, i) ↔ Sst(x, j)]) does not belong to FO∗

tl(≤), because
its subformula [Sst(x, i) ↔ Sst(x, j)] lies in the scope of the data quantifier ∀x and
has two free temporal variables i and j. In the same way, we can define the language
FO∗

tl(=) as a sublanguage of FO∗(=).
The following theorem gives the desired syntactic characterization of the fragments

of FO∗(≤) and FO∗(=) equivalent to the implicit temporal languages TL∗ and TL∗(Ei)
respectively. Note that part (1) of the following theorem was independently obtained
in [12] and was used in order to show decidability of the satisfiability problem for the
monadic fragment of TL.

Theorem 3.5
(1) TL∗ and FO∗

tl(≤) are equivalent.
(2) TL∗(Ei) and FO∗

tl(=) are equivalent.

The proof of Theorem 3.5 will make use of two intermediate results. The first one
has been shown in [14, 11] and establishes that the propositional fragment of TL∗ is
equivalent to FO∗(≤) (without data variables). The second one (lemma 3.6) establishes
a similar equivalence between the propositional fragment of TL∗(Ei) and FO∗(=).

Lemma 3.6 Propositional TL∗(Ei) is equivalent to FO∗(=).

Proof : (⊆) follows from Proposition 3.4. We thus concentrate on the proof of (⊇).
Let p1, . . . , pk be the propositions in the signature of TL∗(Ei). Because we don’t
have access to the order here, a temporal instance can be viewed as a set of states,
instead of a sequence of states as in the general setting. For each state I, its type
is the tuple (u1, . . . , uk), where ui is the truth value of proposition pi at state I, for
i ∈ {1, . . . , k}. Let Θ be the set of all possible types, thus the cardinality of Θ is 2k.
Because each state is fully characterized by its type, a temporal instance I (with no
order) is thus characterized by a function αI from Θ to N which associates to each
type τ the number of states of type τ in I. For each type τ , it is naturally associated a
propositional formula φτ : for instance, if τ = (1, 0, 0, 1) then φτ = p1 ∧¬p2 ∧¬p3 ∧ p4.
So, if τ is the type of a state I then φτ is true at a state J if and only if J = I.

Now let ϕ ∈ FO∗(=). Assume without loss of generality that ϕ never quantifies
twice over the same variable name. Let r be the number of variables occurring in
ϕ. From classical finite model theory we know that first order formulas with only r
variables can only count up to r without the presence of an order [9]. Let Ar be the
finite set of pairs (I, i) where I = (I1, ..., In) is a temporal instance such that a given
type τ never occurs more than r times (∀τ ∈ Θ αI(τ) ≤ r) and i ∈ {1, . . . , n}. For

each pair (I, i) of Ar, let ψI,i be the formula of TL∗(Ei): τi ∧
∧

τ∈Θ

EαI(τ)φτ , where τi

is the type of state Ii.

9

Let A1
r (respectively A

2
r) be the subset of Ar of pairs (I, i) such that ϕ is true (resp.

false) on I at instant i. Consider the following formula ψ of TL∗(Ei):

∨

(I,i)∈A1
r

ψI,i ∧
∧

(I,i)∈A2
r

¬ψI,i

It is easy to verify that ψ and ϕ agree on all pairs (I, i) in Ar. We have already
seen that ϕ can count the multiplicity of an occurrence of a type only up to r. It is
easy to verify that this is also the case for each ψI,i constructed above and therefore
for ψ. We will show that ϕ and ψ agree on all pairs (I,i) (and not only on those
in Ar). Indeed, if I = (I1, . . . , In) is a temporal instance, consider Ir = (J1, . . . , Jm)
the temporal instance which contains exactly the same types as in I with the same
multiplicity if this one is less than r and r otherwise (αIr(τ) = min{r, αI(τ)}). For
instance, if I = (I, J, J) and r = 1 then I1 = (I, J). Let i ∈ {1, . . . , n}. Then,
there exists j ∈ {1, . . . ,m} such that (a) [I, i] |=tl ψ if and only if [Ir, j] |=tl ψ and (b)
[I, i] |= ϕ if and only if [Ir, j] |= ϕ 1 (we take j such that Jj = Ii). Because (Ir, j) ∈ Ar,
ψ and ϕ have the same truth value on (Ir, j). Thus they have the same truth value on
(I, i). This proves the Lemma. �

Remark 3.7 Note that the proof of the Lemma 3.6 shows that the formula of FO∗(=)
with r variables are equivalent to a formula of TL∗(Ei) of quantifier temporal rank 1
and width r. This fact will be needed later on.

Proof of Theorem 3.5: The inclusion of TL∗ into FO∗
tl(≤) is easily proved by con-

sidering the natural translation of a TL∗ formula into a FO∗(≤) formula. The same
argument can be used to show that TL∗(Ei) is included in FO∗

tl(=). Let us prove
the inclusion FO∗

tl(=) ⊆ TL∗(Ei). This proof is by induction on the quantifier-data
depth of a formula f(t, ~x) in FO∗

tl(=) which is defined as follows: (i) qdd(f) = 0 if f is
atomic; (ii) qdd(f ∧ g) = max{qdd(f),qdd(g)}; (iii) qdd(¬f) = qdd(f); (iv) qdd(∃tf)
= qdd(f) if t is a temporal variable; (v) qdd(∃xf) = 1 + qdd(f) if x is a data variable.
Initial step: Let qdd(f) = 0 (f does not contain any data quantifier). We apply the fol-
lowing transformations on f : atomic formulas of the form R(s, ~z) are replaced by unary
predicates R~z(s) and atomic formulas of the form (y1 = y2) or (y = a) are replaced by
unary predicates EQy1=y2(t) and EQy1=a(t) respectively. Remind that t is the only
free variable of f and that the interpretations of the equality predicate involving data
variables or constants and the interpretation of constants are time-invariant (in the
database context). After this transformation, we obtain a formula ϕ(t) of FO∗(=). By
Lemma 3.6, there exists a propositional TL∗(Ei) formula θ which is equivalent to ϕ(t).
Now, the “propositions” R~z, EQy1=y2 and EQy1=a in θ are replaced by the correspond-
ing atomic formula R(~z), (y1 = y2) and (y1 = a). In this way, we obtain a formula θf
in in TL∗(Ei) which is equivalent to f .

1In order to obtain (b), it is important to recall that formulas in FO∗(=) have no constant symbols.
Indeed, if ϕ is the formula (t = 3 ∧ p(t)) and I = (I, I, I) and p is true at state I then [I, 3] |= ϕ but
[I, i] 6|= ϕ, for i 6= 3. So, if r < 3, there is no i ∈ {1, 2} such that [I, 3] |= ϕ if and only if [Ir, i] |= ϕ.

10

∧∃y

∨

∀w

R(s, x, w)

P (s, x, y)
∀z

T (t, x, z)

Q(s, x)

∃s

R
1
x(s)

R
2
x(t)

Qx(s)

∧

Figure 2: Transformation of the FO∗
tl
(=) formula f(t, x) into the FO∗(=) formula ϕ(t)

Induction step: Suppose the inclusion holds for formulas with quantifier-data depth
≤ n and let f(t, ~x) = Q1y1 . . . Qmymg(t, ~x) ∈ FO∗

tl(=) with qdd(f) = n + 1, where
m ≥ 0, t is a temporal variable, ~x are the free data variables of f , Qi are quantifiers
(∃ or ∀) and y1 . . . ym are data variables included in ~x.
Case 1: m = 0 - Let us consider the data-quantified subformulas of f , which are
formulas of the form ∃xh(s, x, ~y), where s is a temporal variable, x is a data variable
and ~y is a set of data variables. We say that a data-quantified subformula h1 is
maximal if it is not a subformula of another data-quantified subformula h2 with h1 6=
h2. For each maximal data-quantified subformula ∃xh(s, x, ~y) of f we associate a new
relational symbol R, with arity equal to the number of variables in ~y. We replace the
maximal data-quantified subformulas ∃xh(s, x, ~y) of f by the corresponding atomic
formulas R(s, ~y). The maximal data-quantified subformulas of f with no free temporal
variable are replaced in the same way, by an atomic formula R(t, ~y). So, after this
transformation we obtain a FO∗

tl(=) formula f ′ with qdd(f ′) = 0. In this case, we have
already shown that there exists a TL∗(Ei) formula θf ′ which is equivalent to f ′. Figure
2 illustrates the idea: the FO∗

tl(=) formula f(t, x) = ∃s(∃y(∀wR(s, w, z)∨ S(s, x, y))∧
∀zT (t, x, z) ∧ Q(s, x)) transforms into a FO∗(=) formula ϕ(t) = ∃s(R1

x(s) ∧ R2
x(t) ∧

Qx(s)), which is equivalent to a propositional TL∗(Ei) formula.
Let us consider each maximal data-quantified subformula ∃xh(s, x, ~y) of f . It is

clear that qdd(h(s, x, ~y)) = n. Applying the induction hypothesis on h(s, x, ~y), we
obtain an equivalent TL∗(Ei) formula θh(x, ~y). So, ∃xh(s, x, ~y) is equivalent to the
TL∗(Ei)formula ∃xθh(x, ~y). Now, we replace the “propositions” R~y in θf ′ (which
“encapsulates” the maximal data-quantified subformulas) by the equivalent TL∗(Ei)
formulas. In this way, we obtain a formula θf in TL∗(Ei) which is equivalent to f .
Case 2: m > 0 - From Case 1, we know that there exists θg ∈ TL∗(Ei) which is
equivalent to g. Then Qy1 . . . Qymθg is equivalent to f .

The proof of the other inclusion FO∗
tl(≤) ⊆ TL∗ is obtained in the same way, using

the Lemma 3.6 instead of Kamp’s Theorem. �

Remark 3.8 The proof of Theorem 3.5 showed the importance of blocks of temporal
variables in the translation, a block being defined as a set of temporal variables quan-
tified between two data quantifications. Remark 3.7 and the same induction as in the

11

proof of Theorem 3.5 shows that a formula of FO∗
tl(=) is translated into a formula

of TL∗(Ei) whose width corresponds to the maximal size of blocks in the formula and
whose quantifier temporal rank is counted in the standard way but adding one for each
block instead of the full size of the block.

Corollary 3.9 The explicit query languages FOtl(≤) and FOtl(=) are (initially) equiv-
alent to the implicit query languages TL and TL(Ei) respectively.

Proof : The equivalence between FOtl(≤) and TL follows immediately from Theorem
3.5 (a) and the inclusion TL(Ei) ⊆ FOtl(=) relies on the natural translation of TL(Ei)
formulas into FOtl(=). Conversely, let f be a FOtl(=) query. We define the maximal
temporal quantified subformulas of f in a similar way as we have defined the maximal
data quantified subformulas in the proof of Theorem 3.5. From Theorem 3.5(b), each
such formula ∃tg(t, ~x) is globally equivalent to E1ϕ, where ϕ is a TL∗(Ei) formula.
Then, it is clear that f is globally equivalent to a formula ψ in the closure of TL(Ei)
with respect to the boolean combinations and quantification. Notice that ψ is not
necessarily in TL(Ei). By applying Proposition 3.3 to the formula ψ, we conclude that
f is initially equivalent to the TL(Ei) formula E1ψ. �

Corollary 3.9 provides a syntactic characterization of the queries in FO(≤) and
FO(=) which are equivalent to queries in TL and TL(Ei) respectively. We are going
to use this syntactic characterization in order to prove the main result of this section,
Theorem 3.15, establishing that TL(Ei) corresponds exactly to the order independent
properties expressible in TL.

We start by a semantic characterization of the properties expressible in TL which
are order independent. Intuitively this means that the property is not affected by a
reordering of the states of a temporal instance. We do not take the standard definition
of order independence which consists of being unaffected by a reordering over a finite
temporal instance. Instead we consider a stronger variant which requires the property
to be also unaffected by a reordering over infinite instances. The reason for this is
detailed below.

Definition 3.10 A property P is said to be order independent if, for any temporal
instance (finite or infinite) I = (Ii)i∈V and for any bijection s of V , we have: I satisfies
P iff Is satisfies P, where Is = (Is(i))i∈V .

An important condition for being order independent is that it should be the case
for both finite and infinite instances. Infinite means here that the temporal instance
may contain infinitely many states, each of them being possibly over an infinite active
domain. With the weaker notion of order independence which only considers finite
instances, Theorem 3.15 stating that the order independent properties expressible in
TL are exactly the ones expressible in TL(Ei) doesn’t hold as we now show.

Gurevich gave an example of a query which is generic, expressible in FO(≤), but
not in FO(=) (see exercise 17.27 in [3]). In this context, the genericity of a query
corresponds to invariance up to isomorphisms over finite databases but it can easily be
modified in order to give an order independent TL query as follows:

12

Example 3.11 Consider (finite) implicit temporal instances over the database schema
containing only one unary relation S. Recall that each such an instance is a finite
sequence I = (Ii)i∈V of finite states. For each non-empty subset W of states, an
element xW of the active domain of S is called a witness for W if ∀i ∈ V xW ∈ Ii(S)
iff Ii ∈ W . Consider the temporal instance depicted in Figure 3. It has a witness for
each subset of {I1, I2, I3}. Indeed a is a witness for {I1} because it is in S only in the
first state, c is a witness of {I3}, f is a witness for {I1, I3}, and so on.

S

a

d

f

g

S

b

d

e

g

S

c

e

f

g

I = I1 I2 I3

Figure 3: An instance satisfying q1 but not q2

Consider the TL(Ei) query q1 which says that for each non-empty subset W of V
there exists a witness xW . The query q1 can be expressed in TL(Ei) by establishing
that: (1) all singletonsW have a witness and (2) the set of (finite) sets of states having
a witness is closed under finite union. This is done as follows.

1. ¬E1(∀x[E2(S(x)) ∨ ¬S(x)])

2. ∀x ∀y ∃z ¬E1(¬(S(z) ↔ (S(x) ∨ S(y)))

For example it is easy to verify that the instance depicted in Figure 3 verifies q1.
Consider now the query q of TL which selects the implicit temporal instances satisfying
q1 and having an even number of states. This can be done by adding to q1 the query q2
which checks for the existence of a witness for the subset containing exactly one state
out of two in the order given by the sequence (i.e. the subset {I1, I3, . . . , ...}). The
query q2 can be expressed in TL by:

∃x[S(x) ∧Next(¬S(x)) ∧ G(S(x) ↔ Next(¬S(x)))]

It can be verified that the instance of Figure 3 does not satisfy q2. For instance,
f cannot be a valuation for x: it is clear that I1 |= S(f), I2 |= ¬S(f) and I3 |=
S(f). But, because S(f) ↔ Next(¬S(f)) has to be verified at I3 then I3 must verify
Next(¬S(f)). However, this is not the case, since there is no state Ii with i > 3.

Notice first that the query q = q1 ∧ q2 is order independent (in the weak sense).
Indeed q1 insure that there is a witness for each subset which is a finite union of
singleton. For finite instances it thus insure the existence of a witness for any subset.
This first characteristic is trivially order independent. Therefore, if a temporal instance
has an even number of states, no matter how we reorder them, there will always be a
witness for the subset containing all the states of even position.

Because q checks for a parity condition, a standard Ehrenfeucht-Fräıssé’s games
argument shows that q cannot be expressed in FO(=) and therefore in TL(Ei).

13

Notice now that q is not order independent in the strong sense. Indeed q1 only
guarantees the existence of a witness for each finite subset. If the temporal instance
is infinite it does not imply the existence of a witness for any subset. To see that q is
indeed not order independent in the strong sense consider the following example.

Let (Vi)i∈N+ be an enumeration of the finite subsets of N+ such that V1 corresponds
to the emptyset. Let W be the subset of all odd numbers.

Consider the following infinite temporal instance I = (Ii)i∈N+ over the domain
(xi,j)i∈N+,j∈{0,1}, such that Ik |= S(xi,0) iff k ∈ Vi and Ik |= S(xi,1) iff k ∈ Vi or k is
odd. Intuitively I is constructed in such a way that xi,0 is a witness for the finite set
Vi and xi,1 a witness for the set W ∪ Vi.

Notice first that I satisfies q2 because x1,1 is a possible valuation for x in q2. By
construction I contains a witness for exactly each subset U which is either finite or the
union of W with a finite set. Thus I satisfy q1 and therefore q.

Consider now the infinite temporal instance J = (I1, I3, I2, I4, I5, I7, I6, I8 . . .). It
can be checked that J does not satisfy q2 and therefore q. Thus q is not order inde-
pendent in the strong sense.

If the notion of genericity is extended in order to indicate invariance up to isomor-
phisms over any (finite or infinite) databases, it is folklore knowledge (as a consequence
of Craig Interpolation Theorem, [6]) that FO(≤) and FO(=) express exactly the same
extended generic queries.

As we will use exactly the same ideas we recall here how the above result can be
proved.

Theorem 3.12 [Folklore] Let P be an extended generic query expressible in FO(≤).
Then P is expressible in FO(=).

Proof: The proof is by contradiction. Assume that there is a query f expressible
in FO(≤) which is extended generic and not expressible in FO(=). Let lin(R) be a
FO(R) formula expressing the fact that R is a binary predicate corresponding to a
linear order. Let f1(R) be the following FO(R) formula lin(R)∧ f(R) and let f2(S) be
the following FO(S) formula: lin(S) → f(S), where f(R) is the formula obtained from
f after replacing in it all occurrences of the symbol ≤ by R. Because f is extended
generic, we have for any (finite or infinite) instance:

I |= ∃R f1(R) → ∀S f2(S).

We now need the following Lemma which is an equivalent rephrasing of Craig
Interpolation Theorem [6].

Lemma 3.13 [Craig Interpolation Theorem] Let f ∈ FO(R) and g ∈ FO(S) be such
that ∃R f(R) |= ∀S g(S). Then there exists h ∈ FO(=) such that:

∃R f(R) |= h and h |= ∀S g(S).

We have seen above that f1 and f2 satisfy the premises of Lemma 3.13 and thus
there exists h in FO(=) such that for all temporal instances (finite or infinite) I we

14

have: (i) I |= ∃R f1(R) → h and (ii) I |= h→ ∀S f2(S). We now prove that f(≤)
and h actually define the same property. Indeed, let I be any instance and assume that
I satisfies f(≤), then I satisfies ∃R f1(R) (the order ≤ of I being a valid assignment
for R). From (i) we conclude that I satisfies h. Assume now that I satisfies h, from
(ii) we conclude that I satisfies ∀S f2(S) and, in particular, f2(≤) is true in I and
therefore I satisfies f(≤).

This prove the theorem. �

We are looking for a variant of Theorem 3.12 for order independent queries, TL
and TL(Ei). Recall from Corollary 3.9 that TL is equivalent to FOtl(≤) and that
TL(Ei) is equivalent to FOtl(=). Moreover the linearity of a relation R can also be
expressed in FOtl(=) thus the proof of Theorem 3.12 can be readily applied to show
that the order independent queries of FOtl(≤) are expressible in FOtl(=) as long as a
Craig Interpolation Theorem (Lemma 3.13) holds for FOtl. This Craig Interpolation
Theorem could be prove using an adaptation of the standard case to our special setting.
But it turns out that this result also falls into a more general picture. Indeed [4]
showed that, in general, Craig interpolation holds for a logic L as long as there exists a
precise characterization of the logic using Ehrenfeucht-Fräıssé games such that winning
strategies can be expressed in the logic. We will prove such a characterization in
Theorem 4.5 of Section 4. From Theorem 4.5 and [4] we thus have:

Lemma 3.14 Let f ∈ FOtl(R) and g ∈ FOtl(S) be such that ∃R f(R) |= ∀S g(S).
Then there exists h ∈ FOtl(=) such that:

∃R f(R) |= h and h |= ∀S g(S).

Lemma 3.14 and Corollary 3.9 immediately yield:

Theorem 3.15 Let P be an order independent property expressible in TL. Then P
is expressible in TL(Ei).

Corollary 3.16 TL(Ei) ≡ TL ∩ FO(=).

Proof: The inclusion from left to right follows immediately from Proposition 3.4. For
the converse inclusion: Let f be a property expressible in TL and in FO(=). Because
f is expressible in FO(=), f is order independent. As f is also expressible in TL,
Theorem 3.15 applies and we can conclude that f is expressible in TL(Ei). �

4 TL(Ei) Expressiveness

This section is devoted to investigating the expressive power of the query language
TL(Ei). We will establish that this language is unable to express all order independent
properties. Because of Theorem 3.15 stating that order independent properties in TL
are in TL(Ei), it will moreover provide a new proof that TL is strictly less expressive
than FO(≤).

The main result of this section states that:

15

Theorem 4.1
TL(Ei) (FO(=) and more precisely,
the query twin cannot be expressed in TL(Ei).

As a matter of fact, we will prove that the query twin cannot be expressed in
TL∗(Ei). Recall that the formulas in TL∗(Ei) are build using the first order rules plus
the Ei modalities without restriction concerning the encapsulation under Ei modalities
that holds for the language TL(Ei). In order to prove this result, we develop a technique
à la Ehrenfeucht-Fräıssé based on two-player games. Ehrenfeucht-Fräıssé’s games [9]
offer an elegant alternative semantics for first order logic and provide a methodology
for proving that a property is not definable in classical first order logic.

Next, we proceed in a very classical manner to the presentation of two-player
games for our temporal language TL∗(Ei). We then show that these games charac-
terize TL∗(Ei) definable properties: two temporal instances can be distinguished by a
TL∗(Ei) property if and only if these two instances can be distinguished by our games.
Our games, called T-games, are in fact very similar to Ehrenfeucht-Fräıssé’s games.
We just need to modify and add rules in order to take into account the modalities Ei

of the temporal language TL∗(Ei).
From now on, we use the following objects:

• I = (I1, . . ., In) and J = (J1, . . ., Jm) are two temporal instances over the same
vocabulary (same schema), whose domains are respectively domI and domJ .

• ~a = (a1, . . . , as), respectively ~b = (b1, . . . , bs) are two vectors of s elements of
domI , respectively domJ .

• ~x = (x1, . . . , xs) is a vector of s variables.

• intI , respectively intJ are the sets of indices {1, . . . , n}, respectively {1, . . . ,m}.

• i0 and j0 are indices in intI , respectively intJ .

A T-game is played by two-players. One of the player is called the spoiler and the
other one is named the duplicator. They play with two kinds of pebbles: a bunch
(sufficiently many) of pairs (p1, q1), . . . , (pk, qk) of data pebbles and one pair (tI , tJ) of
temporal pebbles. One move of the game consists of either a data move (d-move) or a
temporal move (t-move).

Data move: The spoiler chooses a pair of data pebbles (pi, qi) and either places
the pebble pi on an element of domI or places the pebble qi on an element of domJ .
Then, in the first case, the duplicator ought to answer (in J) by placing the pebble
qi on an element of domJ and alternatively in the second case by placing the pebble
pi on an element of domI . Thus at the end of the d-move the pair of data pebbles
(pi, qi) is instantiated with a pair (a, b) of domI×domJ . Note that d-moves of T-games
are exactly the moves described in Ehrenfeucht-Fräıssé’s games for classical first order
logic.

Temporal move of width w: This move is decomposed in two steps. (Step 1)
The spoiler chooses to play in I (respectively in J). He picks a sequence (i1, . . . , iw) of

16

w distinct integers in intI (respectively in intJ). The duplicator is then obliged to play
in the opposite instance and picks a sequence (j1, . . . , jw) of w distinct integers in intJ
(respectively in intI). Note here that none of the sequences are required to be ordered.
(Step 2) Finally, the spoiler makes the choice of a pair (ik, jk) of integers which becomes
the instantiation of the temporal pebbles (tI , tJ). Note that, sometimes it may be im-
possible to play a t-move of width w. This may happen when the length of one of the
instances I or J is less than w. Such a situation is refered to as an uncompleted t-move.

In general, for a T-game, some data pebbles (of course pairs of pebbles) could be
placed before any round is started. It is also assumed that each round of a T-game al-
ways starts with an instantiation (i0,j0) of the temporal pebbles. TGr(I, i0,~a,J , j0,~b)
denotes a T-game played with r + s pairs of data pebbles, in r moves and such that
the temporal pebbles are initialized by (i0,j0), and for i = 1..s, the data pebbles pairs
(pi, qi) are initialized by (ai, bi).

Let us now explain how a round of such a T-game is played by the spoiler and the
duplicator. A round is a sequence of at most r moves, each move is either a d-move or
a t-move as described above and the sequence satisfies the following restrictions:

• Restriction on d-moves: If a move is the dth d-move of the round then it
instantiates the (s + d)th data pairs of pebbles. Note that the spoiler is forced
to choose a new pair of data pebbles at each d-move. Because one has reserved
sufficiently many pairs (r + s) of data pebbles, a round may be composed of d-
moves only. But in general, it can happen that at the end of a round some pairs
of data pebbles have not been used.

• Winning completed moves: After a move is completed, assume that the in-
stantiation of (tI , tJ) is (i, j) and that (a1, b1), . . . , (as+d, bs+d) are all the instan-
tiations of the played data pebbles (meaning that d d-moves have been played
already). Let us denote α the mapping defined over {al | l = 1 . . . (s + d)} by
α(al) = bl. The duplicator wins the current move if the mapping α is a partial
isomorphism of the states Ii and Jj .

• Uncompleted t-moves: An uncompleted t-move is a winning move for the
spoiler and thus a loosing move for the duplicator.

• Next move: If the duplicator wins the move then the round can continue if the
number of moves already played is strictly less than r.

The duplicator wins a round of the T-game TGr(I, i0,~a,J , j0,~b) if the round ter-
minates after r moves and the last move is a winning move for the duplicator. It should
be clear that the only case where a round of a T-game ends before r moves have been
played is when the duplicator looses a move.

The duplicator has a winning strategy for the game TGr(I, i0,~a,J , j0,~b) if he/she
is able to win all possible rounds. A winning strategy for the duplicator is denoted
by (I, i0,~a) ∼r (J , j0,~b). It is quite easy to show from the definition of the T-games
that the relation ∼r is an equivalence relation. Intuitively, the equivalence (I, i0,~a)
∼r (J , j0,~b) indicates that the temporal instances I and J cannot be distinguished
by looking at several instants and focussing only on restricted sets of constants, the

17

observation starting at the instant i0 with the elements ~a for the temporal instance I
and at the instant j0 with the elements ~b for the temporal instance J .

In the following, we may need to restrict the width of the temporal moves of a
T-game to be bounded. We write (I, i0,~a) ∼

w
r (J , j0,~b) to denote that the duplicator

has a winning strategy for the game TGw
r (I, i0,~a,J , j0,

~b) whose t-moves have a width
less or equal to w.

Example 4.2 Let us consider2 the binary relational schema R and the two states I
and J depicted as graphs in figure 4. If we consider the temporal instances I = (I)
and J = (J), it is quite trivial to see that the duplicator has a winning startegy for
the T-Game TG2(I, 1, ,J , 1,) which is played in two moves, all data pebbles being
off the board before each round. However, the duplicator has no winning strategy for
the T-game TG3(I, 1, ,J , 1,) with three moves. Indeed, let us consider the round
starting by the two d-moves (1,1), (2,2). Then assume that the spoiler places the data
pebble p3 over 3 in I. The duplicator is unable to answer appropriately because (1,2),
(2,3) and (3,1) are “edges” in I but there is no a ∈ domJ such that (1,2), (2,a) and
(a, 1) are in J .

4

5

6

1

2

3

1 2

3

45

6

I J

Figure 4: Two states for our running example

Let us now consider the temporal instances I = (I,I,J ,I) and J = (I,J ,I,J). It
is not difficult to check that the duplicator has a winning strategy for the T-game
TG3(I, 1, ,J , 1,) because even in a situation where for instance the initial move is a
t-move of width 4 and where the duplicator is forced by the spoiler to put a state I
in correspondence with a state J , by the first part of the example, we can infer that
the duplicator has a winning strategy for the following 2 moves. Let us detail the first
t-move: the spoiler starts by picking the 4 instants (1, 2, 3, 4) in I; the duplicator
answers by the 4 instants (1, 3, 2, 4); finally the spoiler chooses to instantiate the time
pebbles with the pair (4,4). If the two following moves are d-moves, the duplicator
has a winning strategy. Of course, he/she has a wining strategy for the two following
moves.

However, considering the T-game TG4(I, 1, ,J , 1,) with 4 moves, leads to a win-
ning strategy but this time for the spoiler. Indeed, the duplicator maintains a winning
strategy for the T-game TG2

4(I, , 1,J , 1,) that is, when restricting the width of t-
moves to be 1 or 2. But as soon as t-moves of width 3 are allowed, during an initial

2This example is adapted from [13].

18

t-move, the spoiler is able to force the duplicator to put a state I in correspondence
with a state J and then, by the first part of the example, we know that the duplicator
has no winning strategy for the 3 moves that remain to be played if these moves are
d-moves.

We now turn to the fundamental relationship between our T-games and the tempo-
ral language TL∗(Ei). As a matter of fact, we establish that the equivalence relation∼w

r

characterizes the elementary equivalence ≡w
r of instances with respect to the language

TL∗(Ei).

Definition 4.3 The temporal instances I and J are w
r -equivalent with respect to ~a,

~b and with respect to the instants i0, j0, and we write (I, i0, ~a) ≡w
r (J , j0, ~b) iff for

all formula ϕ in TL∗(Ei) such that qtr(ϕ) ≤ r and wth(ϕ) ≤ w, we have:

[I, i0, ν~a] |=tl ϕ iff [J , j0, ν~b] |=tl ϕ

where the valuations ν~a and ν~b are defined by ν~a(xl) = al, respectively ν~b(xl) = bl.

The relationship between the duplicator having a winning strategy for a T-game
TGw

r played over two temporal instances I and J and the equivalence of these two
temporal instances with respect to TL∗(Ei) formulas having a quantifier temporal rank
bounded by r and a width bounded by w will be formally established by Theorem 4.5.
The purpose of the following example is to illustrate this relationship.

Example 4.4 For instance, as we have seen in the second part of example 4.2, (I, 1,)
6∼3

4 (J , 1,). Indeed, the spoiler’s winning strategy summarized in this example can be
viewed as playing the following formula F :

E3(∃x1∃x2∃x3(R(x1, x2) ∧R(x2, x3) ∧R(x3, x1)))

Note that the quantifier temporal rank of this sentence is 4 and its width is 3. Note
of course that (I, 1,) 6≡3

4 (J , 1,), because [I, 1] |=tl F and [J , 1] 6|=tl F .

In order to establish the relationship between equivalence of temporal structures and
winning strategies for certain T-games, we need an intermediate technical tool which
is a slight variant of the Hintikka formulas [9]. The T-Hintikka formulas Φ~a,i0

ρ,w [I](~x, t),
associated with the temporal instance I and the vector ~a at time points i0 with free
variables ~x, t, are intended to capture all FO∗

tl(=) formulas which are satisfied by I at
i0 given the valuation ν~a of the free variables ~x. These formulas are inductively defined
as follows:

• Φ~a,i0
0,w [I](~x, t) is the conjunction of all atomic formulas φ(~x, t) such that [I, i0, ν~a]

|= φ(~x, t).
• for ρ ≥ 1:

Φ~a,i0
ρ,w [I](~x, t) = Φ~a,i0

ρ−1,w[I](~x, t)
∧

a∈domI

∃xs+1Φ
~aa,i0
ρ−1,w[I](~xxs+1, t)

19

∧ ∀xs+1

∨

a∈domI

Φ~aa,i0
ρ−1,w[I](~xxs+1, t)

∧ Ψ~a
ρ,w[I](~x, t) ∧ Ψ

′~a
ρ,w[I](~x, t)

where:

Ψ~a
ρ,w[I](~x, t) =

∧

k≤w

∧

6‖n
1
(i1···ik)

∃t1 · · · tk
∧

u 6=v

tu 6= tv ∧
∧

j≤k

Φ
~a,ij
ρ−1,w[I](~x, tj), and

Ψ
′~a
ρ,w[I](~x, t) =

∧

k≤w

∀t1 · · · tk
∧

u 6=v

tu 6= tv →
∧

6‖n
1
(i1···ik)

∧

j≤k

Φ
~a,ij
ρ−1,w[I](~x, tj)

with
∧

6‖n
1
(i1···ik)

denoting “k distinct integers i1..ik in [1..n]”.

It is rather immediate to show that the T-Hintikka formulas Φ~a,i0
ρ,w [I](~x, t) is indeed

in FO∗
tl(=) and that [I, i0, ν~a] |= Φ~a,i0

ρ,w [I](~x, i0). Note also that it is quite immediate
to show that [I, i, ν~a] |= Ψ~a

ρ,w[I](~x, t), for all i. Finally note that by Theorem 3.5

and remark 3.8 the formula Φ~a,i0
ρ,w [I](~x, t) is equivalent to a TL∗(Ei) formula whose

quantifier temporal rank is less or equal to ρ, and whose width is less or equal to w.
Therefore, in the following, we will use Φ~a,i0

ρ,w indistinctly to denote a formula of FO∗
tl(=)

or TL∗(Ei).
Finally, we have all necessary ingredients to state the following important result:

Theorem 4.5 The following statements are equivalent:

1. (I, i0, ~a) ∼
w
r (J , j0, ~b)

2. (I, i0, ~a) ≡
w
r (J , j0, ~b)

3. [J , j0, ν~b] |=tl Φ
~a,i0
r,w [I](~x)

Proof of theorem 4.5:
We are going to prove successively that [2. ⇒ 3.], [3. ⇒ 1.], and [1. ⇒ 2.].

[2. ⇒ 3.] It is quite immediate to derive that [J , j0, ν~b] |=tl Φ
~a,i0
r,w [I](~x) from the

hypothesis (I, i0, ~a) ≡
w
r (J , j0, ~b) simply, because by definition of Φ~a,i0

r,w [I](~x), we have

that [I, i0, ~a] |=tl Φ
~a,i0
r,w [I](~x) and Φ~a,i0

r,w [I](~x), as a TL∗(Ei) formula, has the desired
temporal quantifier rank and width.
[3. ⇒ 1.] We proceed by induction on the number µ of moves.
Initial case: Assume that [J , j0, ν~b] |=tl Φ

~a,i0
0,w [I](~x). It is then obvious that the du-

plicator has a winning strategy for the 0-move game TGw
0 (I, i0, ~a, J , j0, ~b) because

our assumption entails that the states Ii0 and Ij0 are equivalent for first order formulas
without quantifiers.

Induction Step: Suppose that [3. ⇒ 1.] has been proved for µ < r and assume
that [#] [J , j0, ν~b] |=tl Φ

~a,i0
r,w [I](~x). Let us consider the T-game TGw

r (I, i0, ~a, J , j0,
~b). Two cases arise:

20

[case 1] The first move is a t-move. Assume that the spoiler plays in I and picks
the sequence of distinct instants (i1,. . .,iv) where v ≤ w. Because of the assumption
[#], we have that [J , j0, ν~b] |=tl Ψ

~a
r,w[I](~x). Thus, by definition, there exists a sequence

of distinct instants (j1,. . .,jv) such that ∀ℓ ∈ {j1, . . . , jv}, [J , jℓ, ν~b] |=tl Φ
~a,iℓ
ρ−1,w[I](~x).

Thus the duplicator’s answer to the spoiler is {j1, . . . , jv}. Assume that during the
second phase of the t-move, the spoiler makes the choice to put the temporal pebbles
tI and tJ over the instants iℓ and jℓ. This t-move is a winning move for the duplica-
tor because, by construction of the duplicator’s answer, we have that [J , jℓ, ν~b] |=tl

Φ~a,iℓ
r−1,w[I](~x). At this point, the induction hypothesis tells us that the duplicator has

a winning strategy for the T-game TGw
r−1(I, iℓ, ~a, J , jℓ, ~b) and allows us to conclude

that the duplicator has a winning strategy for the T-game TGw
r (I, i0, ~a, J , j0, ~b).

Assume now that the spoiler plays in the temporal instance J and picks the sequence
of distinct instants (j1,. . .,jv) where v ≤ w. Because of the assumption [#], we have
that [J , j0, ν~b] |=tl Ψ

′~a
r,w[I](~x). Thus, by definition, one of the disjuncts must be true

and this gives a sequence of distinct instants (i1,· · ·,iv) such that ∀ℓ ∈ {j1, . . . , jv},

[J , jℓ, ν~b] |=tl Φ
~a,iℓ
ρ−1,w[I](~x) and we conclude as above that this is indeed a winning

strategy.
[case 2] Suppose now that the first move is a d-move. Assume that the spoiler

plays over I and places the pebble ps+1 over a. Let us consider the T-Hintikka formula
Φ~aa,i0
r−1,w[I](~xxs+1) associated with I. By definition of Φ~a,i0

r,w [I](~x) and by our assumption

[#], we can infer that [J , j0, ν~b] |=tl ∃xs+1Φ
~aa,i0
r−1,w[I](~xxs+1). This allows the duplicator

to choose a constant b such that [J , ν~bb, j0] |=tl Φ
~aa,i0
r−1,w[I](~xxs+1). and to win the move.

At this point, the induction hypothesis tells us that the duplicator has a winning
strategy for the T-game TGw

r−1(I, i0, ~aa, J , j0, ~bb) and thus he/she has a winning

strategy for the T-game TGw
r (I, i0, ~a, J , j0, ~b).

Assume now that the spoiler plays over J and places the pebble qs+1 over b. Because
of the assumption [#], we have that [J , j0, ν~b] |=tl ∀xs+1

∨
a∈domI

Φ~aa,i0
ρ−1,w[I](~xxs+1)

and thus there exists an element a such that [J , j0, ν~bb] |=tl Φ
~aa,i0
ρ−1,w[I](~xxs+1). Let this

element a be the duplicator’s answer to win the move. At this point, the induction
hypothesis leads to conclude that the duplicator has a winning strategy for the T-game
TGw

r (I, i0, ~a, J , j0, ~b).

[1. ⇒ 2.] We obviously proceed by induction on the number ρ of moves.
Initial step: Immediate.
Induction step: We now assume that [1. ⇒ 2.] has been proved for ρ < r and suppose
that (I, i0, ~a) ∼

w
r (J , j0, ~b). In order to prove that (I, i0, ~a) ≡

w
r (J , j0, ~b), we proceed

by contradiction and assume that there exists a formula Ψ with qtr(Ψ)=r such that [I,
i0, ν~a] |=tl Ψ and [J , j0, ν~b] 6|=tl Ψ. First assume that Ψ is ∃xs+1ψ with qtr(ψ)=r− 1.
This case is rather simple and treated as in the proof for the classical first order logic.
Now assume that Ψ is Evψ. The spoiler is starting a t-move by selecting a sequence of
v distinct indices (i1, . . . , iv) of I such that [I, iℓ, ν~a] |=tl ψ for ℓ = 1..v. Of course, the
duplicator prepares an answer (j1, . . . , jv) of v distincts indices of J and because [J ,
j0, ν~b] 6|=tl Ψ the spoiler is able to complete the move by a choice of (if , jf) such that
[I, if , ν~a] |=tl ψ and [J , jf , ν~b] 6|=tl ψ. However because the duplicator has a winning

21

strategy for the T-game TGw
r (J , i0, ~a, J , j0, ~b), he/she has a winning strategy for the

T-game TGw
r−1(I, if , ~a, J , jf , ~b). More precisely, this entails (by induction hypoth-

esis) that we have both (I, if , ν~a) ∼w
r−1 (J , jf , ν~b) and (I, if , ~a) ≡w

r−1 (J , jf , ~b).
This is a contradiction with the fact that [I, if , ν~a] |=tl ψ and [J , jf , ν~b] 6|=tl ψ. �

The previous theorem is quite powerful because, as in the framework of classical
first order logic, it provides a methodology for determining what cannot be said in the
temporal language TL∗(Ei). Basically, in order to show that a property P cannot be
expressed by a formula in TL∗(Ei), it is sufficient to show, for each w and for each r,
that there exists two temporal instances Iw

r and J w
r such that, on the one hand Iw

r

satisfies the property P and J w
r does not, and on the other hand Iw

r and J w
r cannot

be distinguished by a T-game TGw
r (i.e. Iw

r ∼w
r J w

r). This methodology is developed
for establishing the following:

Lemma 4.6 The twin property is not TL∗(Ei) definable, and thus it is not TL(Ei)
definable.

Proof: Let us fix both w and r for the rest of the presentation of this proof. The
temporal instances that are constructed now are closely related to the ones used by
Toman and Niwinski in [18]. In the sequel, we consider a set S = {1, . . . , 2k + 1}, for
k sufficiently big, together with the following pairs of temporal instances I and J (for
the sake of readability, we do not insert the indices w and r but the reader should keep
in mind that these indices are parameters for building our temporal instances):

• I is an enumeration of the (k+1)-subsets 3 of S with exactly two occurrences of
each subset. Note that, by definition of I, we have that [I, t] |=tl twin, for any t.

• J is an enumeration of the k-subsets and (k+1)-subsets of S, this time with
exactly one occurrence of each subset. Note that, by construction, we have that
[J , t] 6|=tl twin, for any t.

For instance, if k = 1, S = {1, 2, 3}, a possible temporal instance I is
{1, 2}, {1, 3}, {2, 3}, {1, 2}, {1, 3}, {2, 3} and a possible temporal instance J is
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}.
Although it not very important for the remaining, the reader may notice that the

temporal instances I and J have the same number of states because of
(

2k + 1
k

)

=
(

2k + 1
k + 1

)

.

We are now going to show that these two temporal instances cannot be distinguished
by the T-game TGw

r . For the time being, we only assume that k is big enough. The
exact condition on k will be given later.

In order to show that (I, i0,) ∼w
r (J , j0,) that is, in order to exhibit a winning

strategy for the duplicator playing the T-game TGw
r (I, i0, , J , j0,), we assume

that g moves of a round have been successfully played by the duplicator. Consider
that d moves among these g moves are d-moves and thus d pairs of data pebbles are
instantiated with the pairs of elements (a1, b1), . . ., (ad, bd) on the one hand and the

3a i-subset is a subset of cardinality i

22

temporal pair of pebbles is instantiated with (i, j). Let us examine the two possible
cases for the next (g+1)th move.

[case 1]: The spoiler chooses to play a d-move in I (the dual move in J would
be treated in a similar way). Consider that the spoiler places the pebble pd+1 on the
element ad+1 of S. Then the duplicator is going to answer with an element bd+1 that
he/she will carefully choose such that ad+1 ∈ Ii iff bd+1 ∈ Jj . Because of the cardinality
of S, he/she is always able to make to such a choice.

[case 1]: The spoiler chooses to play a t-move in I and starts by providing v

distinct instants i1, . . . , iv with v ≤ w. The duplicator is then going to answer as
follows. First, he/she considers the set of states of I corresponding to the choice of
the spoiler. Let us assume that this set is E={Ii1 , . . ., Iiv}. Next, he/she builds the
equivalence classes of E induced by the equivalence relation ∂ defined by It ∂ It′ iff
It ∩ {a1, . . . , ad}=It′ ∩ {a1, . . . , ad}. Intuitively, It and It′ are in the same equivalence
class if they share the same “played” elements in I. The reader can notice here that
the maximal number of equivalent states (or the maximal cardinality of an equivalence
class) is less or equal to v and thus to w. Let us denote E1, . . . , Ez the partition of E
induced by ∂. Each class Eℓ is characterized by the set It ∩ {a1, . . . , ad} where It ∈ Eℓ

and that set is enumerated as ah1
. . . ahℓ

. The cardinality of Eℓ is denoted cℓ (notice
that, cℓ ≤ w). Then, for a class Eℓ, the duplicator is going to select cℓ states K in
J such that K ∩ {b1, . . . , bd} = {bh1

, . . . , bhℓ
}. This choice entails that each of the cℓ

states K is partially isomorphic to any of the instance in the equivalence class Eℓ. This
choice can always be done as soon as the cardinality of the set S on which is based
the construction of I and J is big enough. The cardinality 2k+1 of S is determined
to satisfy the following: the number of subsets of S including u fixed elements and
excluding p − u other fixed elements is greater or equal to w + 1 for p = 1 · · · r and

u = 1 · · · p. This is insured as soon as k satisfies
(

2k + 1− r

k − r

)

≥ w + 1.

Of course, because of the construction of the duplicator’s answer, the second step
of the t-move leads to a winning move for the duplicator. �

Corollary 4.7 The twin property cannot be expressed in TL.

Proof: Indeed, if we assume that the property twin can be expressed in TL then The-
orem 3.15 entails that twin can be expressed in TL(Ei), since it is order independent.
This is a contradiction with the fact that twin cannot be defined in TL∗(Ei). �

5 Conclusion

The alternative proof schema provided for showing that TL is strictly less expressive
than FO(<) via the syntactic characterization of the order independent properties ex-
pressible in TL, seems to open a new direction for similar results concerning other
temporal languages as a matter of fact temporal languages that are more expressive
than TL. For instance, in [5], the implicit query language RNTL has been introduced
and proved to be more expressive than TL. This language is obtained from TL by
adding two new temporal modalities ℵ et ℜ. The operator ℵ, which has been inde-
pendently introduced in [16], restricts the scope of the usual TL past operators Since

23

and Prev. Usually, the evaluation of the past operators in a TL formula ϕ is made by
considering the initial instant 1 as the (unique) origin of time. However, when evaluat-
ing a RNTL formula of the form ℵ(ϕ) at an instant t, a new origin of time is created:
the instant t of evaluation becomes the starting point with respect to which the past
operators of ϕ will be evaluated. The time interval going from 1 to t is temporally
“forgotten”. The operator ℜ plays a dual role by restoring the time fragments which
have been “forgotten” when evaluating subformulas containing ℵ. We will not present
here the temporal language RNTL in detail, but only remind some important results
concerning its expressive power [5].

First, RNTL is able to express the twin property. By the way, this property can be
expressed in NTL, a sublanguage of RNTL, obtained by adding only the operator ℵ to
TL. In fact, the NTL formula expressing twin is the following:

FℵF (∀x(S(x) ↔ P (First ∧ S(x))))

where First is the formula ¬Prev true.
Despite being conjectured in [5], the equivalence between RNTL and FO(≤) remains

an open problem. We think that, using a proof schema similar to the one proposed
in the present paper, it is possible to show that RNTL is strictly less expressive than
FO(≤). The property which seems to be the candidate to separate these two languages
is gen-twin, stating that “each state has a twin”. This property can easily be expressed
in FO(≤) by the formula ∀i∃j(i 6= j ∧∀x[Sst(x, i) ↔ Sst(x, j)]). In order to prove that
this property cannot be expressed in RNTL, we would have to introduce a counterpart
of the language TL(Ei) with respect to RNTL, that is, a language L which expresses
exactly the order independent properties of RNTL. And then, we would have to develop
a technique based on Ehrenfeucht-Fräıssé’s games, in order to show that the order
independent property gen-twin is not expressible in the language L.

References

[1] Abiteboul, S., Herr, L. and Van den Bussche J.: Temporal Connectives Versus Ex-
plicit Timestamps in Temporal Query Languages, In Recent Advances in Temporal
Databases, S. Clifford and A. Tuzhilin, Eds, Springer Verlag (1995) 43–60.

[2] Abiteboul, S., Herr, L. and Van den Bussche, J.: Temporal Connectives Versus
Explicit Timestamps to Query Temporal Databases. JCSS 58(1): 54-68 (1999).

[3] Abiteboul, S., Hull, R. and Vianu, V.: Foundations of Databases, Addison-Wesley
(1995).

[4] Barwise, J. and Benthem, J.: Interpolation, Preservation, and Pebble games. J.
Symbolic Logic, 64:2, pp 881–903, 1999.

[5] Bidoit, N. and De Amo, S.: Implicit temporal query languages : towards complete-
ness, FST&TCS, Chennai, India, LNCS Vol. 1738, 1999, pp 245-257.

[6] Chang, C. and Keisler, H.: Model Theory, North Holland, (1990).

[7] Chomicki, J.: Temporal Query Languages: a survey, Temporal Logic, First Int.
conf., LNAI 827 (1994) 506–534.

24

[8] Chomicki, J. and Toman, D.: Temporal Logic in Information Systems, Logics for
Databases and Information Systems (1998) 31-70.

[9] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.

[10] Emerson, E. A.: Temporal and Modal Logic, In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Semantics, Jan van Leeuwen, Ed.,
Elsevier Science Publishers (1990) 995–1072.

[11] Gabbay, D., M., Pnueli, A., Shelah, S., and Stavi, J.: On the Temporal Basis of
Fairness, Symposium on Principles of Programming Languages, (1980) 163–173.

[12] Hodkinson I., Wolter F., and Zakharyaschev M.: Decidable fragments of first-order
temporal logics, Annals of Pure and Applied Logic 106, 2000, 85 - 134.

[13] Immerman, N.: Descriptive Complexity. Springer Graduate Texts in Computer
Science, (1999).

[14] H.W. Kamp: Tense Logic and the Theory of Linear Order, PhD thesis, University
of California, Los Angeles (1968).

[15] Kushilevitz, E., and Nisan, N.: Communication Complexity, Cambridge Univer-
sity Press, 1996.

[16] Laroussinie, L., and Schnoebelen, Ph.: A hierarchy of temporal logics with past,
TCS, 148, 2, (1995) 303–324.

[17] Meyer, A.R.: Weak monadic second order theory of successor is not elementary
recursive. In Proceedings Logic Colloquium, Lecture Notes in Mathematics, Vol.
453, pp. 132–154, Springer-Verlag, 1975.

[18] Niwinski, D. and Toman, D.: First Order Queries over Temporal Databases Inex-
pressible in Temporal Logic, EDBT (1996) 307–324.

[19] Sistla, A.P., and Clarke, E.M.: The complexity of proposicional linear temporal
logic. Journal of the ACM, 32(3) : 733–749, July 1985.

[20] Sturm H. and Wolter F.: First-order expressivity for S5-models: modals vs. two-
sorted languages. Journal of Philosophical Logic 30, 2001, 571 - 591.

[21] Wolper, P.: Temporal Logic can be more expressive. Information and Control, 56,
72–99, 1983.

25

