
Complexity of pebble tree-walking automata

Mathias Samuelides and Luc Segoufin

LIAFA, Paris 7 INRIA, Paris 11

Abstract. We consider tree-walking automata using k pebbles. The
pebbles are either strong (can be lifted from anywhere) or weak (can be
lifted only when the automaton is on it). For each k, we give the precise
complexities of the problems of emptiness and inclusion of tree-walking
automata using k pebbles.

1 Introduction

There are two natural ways to extend the classical finite state string automata
on finite binary trees.

In the first one, which is the most studied one in the literature (see for
instance [5]), the automata have parallel control and process the tree bottom-
up. It forms a robust class of automata (it has minimization and determinization)
and the class of languages accepted by them enjoys most of the nice properties
of the string case. For instance it is closed under all Boolean operations and
it corresponds to MSO definability. Tree languages accepted by bottom-up tree
automata are called regular.

The second kind of tree automata has only one control. It is a sort of se-
quential automaton which moves from node to node in a tree, along its edges.
They are called tree-walking automata and, in a sense, generalize the notion of
two-way string automata by making use of all possible directions allowed in a
tree [1, 10]. However they are not determinizable [2] and have a rather weak ex-
pressive power [3]. For this reason pebble tree automata were introduced in [7] as
a model with an interesting intermediate expressive power between tree-walking
automata and bottom-up tree automata. A pebble tree automaton is a tree-
walking automaton with a finite set {1, . . . , k} of pebbles which it can drop at
and lift from a node. There is a stack discipline restriction though: pebble i can
only be dropped at the current node if pebbles i + 1, . . . , k are already on the
tree. Likewise, if pebbles i, . . . , k are on the tree only pebble i can be lifted. In
the first model of pebble automata the pebbles were only allowed to be lifted
by the automaton when its head is on it, but recently, in order to capture logics
with transitive closure on trees, a stronger model of pebble automata was intro-
duced in [9]. In the strong model pebbles are viewed as pointers and can be lifted
from everywhere. Perhaps surprisingly, in [4] it was shown that the two models
of pebble tree automata have the same expressive power. More precisely it was
shown that for each k and each pebble tree automaton using k pebbles with the
strong behavior, there exists a pebble tree automaton using k pebbles with the



weak behavior accepting the same tree language. However the current transla-
tion yields an automaton whose size is a tower of k− 1 exponents. It seems, but
this has not been proved yet, that pebble tree automata using k strong pebbles
are (k−1)-exponentially more succinct than pebble tree automata using k weak
pebbles.

It is still conceivable that the class of pebble automata forms a robust class
of tree languages. The main open issues are whether they are determinizable and
whether they are closed under complement (the former would imply the later as
mentioned in [14]). If they would be closed under complement, the family of tree
languages accepted by pebble automata would also correspond to definability
in unary transitive closure logic on trees [7]. The recent new interest in this
family comes from their close relationship with some aspects of XML languages:
They are a building block of pebble transducers which were used to capture XML
transformations (cf. [13, 11]).

In this paper we study the complexity of emptiness test for pebble automata
and the complexity of testing whether one pebble automaton is included into
another.

From each pebble automaton, weak or strong, it is easy to compute an equiv-
alent MSO formula [7]. This shows that they define only regular tree languages
and immediately yields a non-elementary test for emptiness and inclusion. This
non-elementary complexity is unavoidable as shown in [13].

We are interested in the problem when k, the number of pebbles, is fixed and
not part of the input. Emptiness and inclusion for tree-walking automata (the
case k = 0) are exptime-complete. The upper-bound follows from the exponen-
tial time transformations of tree-walking automata and their complement into
top-down tree automata given in [6, 16]. The lower-bound is implicit in [15]. For
k > 0, we extend these results and show that both emptiness and inclusion are
k-exptime-complete. For each k, we prove the upper-bounds using the strong
model and the lower-bounds using the weak and deterministic model. Therefore
all variants considered here yield k-exptime-complete problems.

The upper-bounds are proved by constructing, in time k-exponential, a bottom-
up tree automaton for the language recognized by a tree-walking automata using
k-pebbles and another one for the complement language. This is done by induc-
tion on the number of pebbles using an intermediate model which combines a
tree-walking behavior with a bottom-up one. This induction is quite simple in
the case where all pebbles have a weak behavior. In this case the subrun between
the drop and the lift of the last pebble starts and ends at the same node and
can therefore be replaced by a regular test. It is then possible to remove the
last pebble by computing a product automaton. In the case of strong pebbles,
subruns start and end at different nodes of the tree, and this complicates the
construction.

The lower-bounds are proved by simulating a run of an alternating Turing
machine using (k − 1)-expspace by a deterministic pebble automaton using k

pebbles with weak behaviors.

2



For each k, the complexities obtained for strong and weak pebble automata
are the same. However we conjecture that pebble automaton using k strong
pebbles is (k − 1)-exponentially more succinct than pebble automaton using
k weak pebbles. Therefore the strong model is more interesting as it achieves
similar performances in terms of expressive power and of complexity but with a
more succinct presentation.

When restricted to string models, our results show that both emptiness and
inclusion for pebble automata using k pebbles are (k − 1)-expspace-complete.
Pebble string automata were already studied in [12] where it was shown that a
pebble string automaton using k weak pebbles is k-exponentially more succinct
than an one-way finite state automaton (the use of pebbles in [12] is actually
even more restricted than the weak behavior mentioned above). The coding for
proving our lower bounds is inspired from this result.

2 Definitions

The trees we consider are finite binary trees, with nodes labeled over a finite
alphabet Σ. We insist that each internal node (non-leaf node) has exactly two
children. A set of trees over a given alphabet is called a tree language.

Definition 2.1. A bottom-up automaton B is a tuple (Σ, Q, q0, F, δ), where
Q is a finite set of states, Σ is a finite alphabet, q0 is the initial state, F is the
set of accepting states and δ ⊆ (Σ × Q × Q) × Q is the transition relation.

A run of a bottom-up automaton B on a tree t is a function ρ from the set of
nodes of t to Q such that for every node x of label σ,

– If x is a leaf, then ((σ, q0, q0), ρ(x)) ∈ δ.
– If x has two children x1 and x2, then ((σ, ρ(x1), ρ(x2)), ρ(x)) ∈ δ.

A run of B on t is accepting, and the tree t is accepted by B, if the state at the
root is accepting. The family of tree languages defined by bottom-up automata
is called the class of regular tree languages.

Pebble tree automata. Informally a pebble tree automaton walks through its
input tree from node to node along its edges. Additionally it has a fixed set
of pebbles, numbered from 1 to k that it can place in the tree. At each time,
pebbles i, · · · , k are placed on some nodes of the tree, for some i. In one step
the automaton can stay at the current node, move to its parent , to its left or to
its right child, or it can lift pebble i or place pebble i − 1 on the current node.
Which of these transitions can be applied depends on the current state, the set
of pebbles at the current node, the label and the type of the current node (root,
left or right child and leaf or internal node).

We consider two kinds of pebble automata which differ in the way they can
lift the pebble. In the weak model a pebble can be lifted only if it is on the
current node. In the strong model this restriction does not apply.

3



Remark: In both models the placement of the pebbles follows a stack disci-
pline: only the pebble with the number i can be lifted and only the pebble with
number i − 1 can be placed. This restriction is essential as otherwise we would
obtain k-head automata that recognize non-regular tree languages.

We turn to the formal definition of pebble automata. The set types =
{r, 0, 1} × {l, i} describes the possible types of a node. Here, r stands for the
root, 0 for a left child, 1 for a right child, l for a leaf and i for an internal node.
We indicate the possible kinds of moves of a pebble automaton by elements of
the set moves = {ǫ, ↑,ւ,ց, lift, drop}, where informally ↑ stands for ’move to
parent’, ǫ stands for ’stay’, ւ stands for ’move to the left child’ and ց stands
for ’move to the right child’. Clearly drop refers to dropping a pebble and lift to
lifting a pebble. Finally if S is a set then P(S) denotes the powerset of S.

Definition 2.2. A pebble tree automaton using k pebbles is a tuple A =
(Σ, Q, I, F, δ), where Q is a finite set of states, I, F ⊆ Q are respectively the set
of initial and terminal states and δ is the transition relation of the form

δ ⊆
(

Q × types× {1, . . . , k + 1} × P({1, · · · , k}) × Σ
)

× (Q × moves)

A tuple (q, β, i, S, σ, q′, m) ∈ δ means that if A is in state q with pebbles i, · · · , k

on the tree, the current node contains exactly the pebbles from S, has type β

and is labeled by σ then A can enter state q′ and move according to m.
A pebble set of A is a set P ⊆ {1, · · · , k}. For a tree t, a P -pebble assignment

is a function which maps each j ∈ P to a node in t. For 0 ≤ i ≤ k, an i-

configuration c of A on t is a tuple (x, q, f), where x is a node, q a state
and f an {i + 1, · · · , k}-pebble assignment. In this case x is called the current
node, q the current state and f the current pebble assignment. We also write

(x, q, xi+1, · · · , xk) if f(j) = xj for each j ≥ i + 1. We write c
A,t
−−→ c′ when A

can make a (single step) transition from the configuration c to c′ according to

its transition relation. The relation
A,t
−−→ is defined in the obvious way following

the intuition described above for δ. However in the weak model of pebble tree
automata there is a restriction on the lift-operation: a lift transition can be
applied to an i-configuration (x, q, f) only if f(i + 1) = x, i.e., if pebble i + 1 is
on the current node. In the strong model this restriction does not hold. A run

is a nonempty sequence c1, · · · , cl of configurations such that cj
A,t
−−→ cj+1 holds

for each j < l. We write c
A,t ∗
−−−→ c′ when there is a run of A from c to c′.

Instead of having a set of accepting states and acceptance at the root as
usual, we assume that a walking automaton has a set of terminal states. Once
a terminal state is reached, the automaton immediately stops walking the tree.
When the automaton is used as an acceptor for trees, we further assume a
partition of the terminal states into accepting and rejecting ones (note that the
automaton always rejects if no terminal state is ever reached). As an acceptor
for tree languages, this hypothesis does not make any difference as it is always
possible to go back to the root of the tree once a terminal state is reached.

A pebble tree automaton is deterministic if δ is a partial function from
Q × types× {1, · · · , k + 1} × P({1, · · · , k}) × Σ to Q × moves.

4



We use PAk to denote the (strong) pebble automata using k pebbles, wPAk

the weak pebble automata using k pebbles, DPAk and wDPAk for the cor-
responding deterministic automata. By default we assume the strong case. A
pebble automaton without pebbles is just a tree-walking automaton. We write
TWA and DTWA for PA0 and DPA0.

Complexities. In this paper k-exptime refers to the set of problems solvable by a
Turing machine using a time which is a tower of k exponentials of a polynomial
in the size of its input. In order to avoid a case analysis we sometime write
0-exptime for ptime. Similarly we define k-expspace with 0-expspace for
pspace.

3 From pebble automaton to bottom-up automaton

Given A ∈ PAk we construct in this section a bottom-up tree automaton B
recognizing the same language as A and a bottom-up tree automaton C recog-
nizing the language of trees rejected by A. The constructions are performed in
k-exptime. They are done by induction on k. During the induction we shall
make use of the following intermediate model of automata which combines a
tree-walking behavior with a bottom-up one.

Intuitively a wPABUk is a wPAk that can simulate a bottom-up automaton
while placing its last pebble on the current node. More formally we have:

Definition 3.1. A wPABUk is a pair (A,B) where

– B is a (non deterministic) bottom-up automaton on Σ × P({1, · · · , k})
– A is a wPAk such that the transitions that drop pebble 1 are of the form

(QA × types× {2} × P({2, · · · , k}) × Σ × QB) × (QA × {drop})

where QA and QB are the set of states of A and B.

A wPABUk (A,B) behaves like a pebble tree automaton until it wants to
drop pebble 1. When it drops pebble 1, it immediately simulates B on the current
pebbled tree and resumes its walking behavior with a state which depends on
the state reached by B at the root of the tree as specified by the transition above.

More formally, for 0 ≤ i ≤ k, an i-configuration of (A,B) on a tree t is a
tuple (x, q, f) where x is a node of t, q a state of A and f an {i + 1, · · · , k}-
pebble assignment. Let t be a tree, x a node of t of type τ and of label a and
let c = (x, q, f) and c′ = (x′, q′, f ′) be i-configurations of (A,B). A single step

transition c
(A,B),t
−−−−−→ c′ of (A,B) is defined as c

A,t
−−→ c′ if A does not drop pebble

1 while making the transition step from c to c′. Otherwise we must have x′ = x,
f ′ = f ∪ {(1, x)} and ((q, τ, 2, f−1(x), a, qb), (q

′, drop)) is a transition of (A,B)
where qb is the state accessed by a run of B at the root of the pebbled tree (t, f ′).

In order to handle the strong behaviors of pebbles we need to extend this
definition. The idea is to use BU∗ automata instead of bottom-up automata.
Intuitively a BU∗ automaton is a bottom-up automaton that can select a node.
More formally this means:

5



Definition 3.2. A BU∗ automaton is a tuple (Q, q0, Qf , Q′, δ) such that Q′ ⊆ Q

and (Q, q0, Qf , δ) is a bottom-up tree automaton such that for each tree t and
each accepting run ρ on t there is an unique node x ∈ t with ρ(x) ∈ Q′.

A PABU∗
k is like a wPABUk but the pebble tree automaton part is strong

and the bottom-up part is a BU∗. When dropping the last pebble, the pebble
automaton simulates the bottom-up part and resumes its run at the node selected
by the BU∗ automaton by lifting the last pebble. More formally this gives:

Definition 3.3. A PABU∗
k is a pair (A,B) where

– B is a (non deterministic) BU∗ on Σ × P({1, · · · , k})
– A is a PAk such that the transitions dropping and lifting the last pebble are

replaced by transitions of the form

(QA × types× {2} × P({2, · · · , k}) × Σ × QfB) × QA

where QA is the set of states of A and QfB is the set of accepting states of B.

More formally, for 1 ≤ i ≤ k, an i-configuration of (A,B) is a tuple (x, q, f)
where x is a node, q a state of A and f an {i + 1, · · · , k}-pebble assignment.

Let t be a tree, x be a node of t of type τ and of label a and let c = (x, q, f) and

c′ = (x′, q′, f ′) be configurations of (A,B). A single step transition c
(A,B),t
−−−−−→ c′

of (A,B) is defined as c
A,t
−−→ c′ if A does not drop pebble 1 while making the

transition step from c to c′. Otherwise we must have f ′ = f , x′ is the node
selected by B on the pebbled tree (t, f ∪ {(1, x)}) and ((q, τ, 2, f−1(x), a, qb), q

′)
is a transition of (A,B) where qb is the state accessed by a run of B at the root
of the pebbled tree (t, f ∪ {(1, x)}).

A node x in a tree t is a marked node if x is the unique node of t having the
type or pebble assignment of x. If m is the marking type or pebble assignment,
we then say that t is marked by m, and that x is the m-node of t. For instance
a tree is always marked by its root. At any moment during the run of a tree-
walking automaton, a tree is marked by any of the pebbles which are currently
dropped.

Given a PABU∗
k (A,B) and a BU∗ C, we say that C simulates exactly (A,B)

on trees marked by m if: (i) each set of pairs of states of A is an accepting state of
C, (ii) for each tree t marked by node u, C reaches the root of t after selecting node

v, in an accepting state qf = {(q, q′) | (q, u, )
(A,B),t ∗
−−−−−−→ (q′, v, ), q′ is terminal}.

In other words the state reached by C at the root contains exactly the beginning
and the ending states of all the terminating runs of A between nodes u and v.
Note that this implies that C is unambiguous once the choice of v is made.

In a sense, our first lemma below extends the result of [6, 16] for TWA, and
translates a wPABU1 and its complement into a bottom-up automaton. This
is done with the same complexity bounds as for TWA: One exponential. The
proof can be found in the appendix. The idea is classical, the bottom-up tree
automaton has to compute all possible loops of the tree-walking automaton while
moving up the tree. The main new difficulty is to take care of the loops which
involve the use of the pebble.

6



Lemma 3.4. Let (A,B) be a wPABU1. For any marking m, we can construct
in time exponential in |(A,B)|, C ∈ BU∗ such that C simulates exactly (A,B) on
trees marked by m.

We now extend the previous lemma to the strong pebble case. This is done
by reducing the strong pebble case to the weak pebble one. Given two walking
automata A and B we say that B simulates exactly A if (i) the set of states of
A is included into the set of states of B, (ii) for all tree t and all nodes u and

v of t we have (u, q, )
A,t
−−→ (v, q′, ) iff (u, q, )

B,t
−−→ (v, q′, ) for all pair (q, q′) of

states of A.

Lemma 3.5. Given (A,B) ∈ PABU∗
1, we can construct in polynomial time

(A′,B′) in wPABU1 simulating exactly (A,B).

Proof. The idea is as follows, A′ will simulate A until the pebble is dropped.
Then A′ will move step by step the pebble in the tree until it reaches the position
where the pebble is lifted. The difficulty is that A′ cannot find out which node
is selected by B, until A′ is on that node, and that as soon as A′ moves the
pebble, the simulation of B is no longer valid. To cope with this situation, A′

will maintain extra information in its state and only simulate B partially.
Assume now that A drops the pebble on the node xd, evaluates B and resumes

its run from node xl after lifting the pebble. Let QB be the set of states of B.
We show how to simulate this behavior using a wPABU1 (A′,B′). On the

tree t there is an unique path from xd to xl. The goal of A′ is to transfer step by
step the pebble on that path. To do this, at any time, assuming its pebble is on
position x in the path, it will remember in its state (i) the state qr reached by
B at the root of the tree when it was simulated by A, (ii) the state qx reached
by B on the current node x when it was simulated by A, and (iii) the direction
from x to the next node on the path from xd to xl.

This information is computed and maintained using B′.
To do this B′ will do the following. It first guesses a state qx ∈ QB and a

direction ∆ ∈ { DownLeft, DownRight, UpRight, UpLeft, Init, Here},
which are expected to match those currently stored in the state of A′ (A′ will
verify this in the next step), except for the first time where ∆ is Init. We then
distinguish three cases:

– Case 1: ∆ is Init. Then B′ simulates B and ends in a state containing: qx

the state reached by B at the position of the pebble, ∆′ ∈ { DownLeft,

DownRight, UpRight, UpLeft, Here} the direction from the pebble to
the selected node and qr the state reached by B at the root. Note that ∆′

could be Here if the selected position is the current position of the pebble.
– Case 2: ∆ is UpRight (the case UpLeft is similar).

In this case, B′ simulates B unless it reaches x (marked by the pebble).
When x is reached, if B already selected its node in the left subtree of x,
then B′ rejects. Otherwise, the current state is ignored and B′ recomputes
the current state assuming the state qx at the left child of x. It remembers the
new state q′x and the direction ∆′ from x to the selected node and resumes

7



its simulation of B. At the root B′ ends in a state containing qx, ∆ and the
state reached by B at the root during the current simulation together with
q′x and ∆′.

– Case 3: ∆ is DownRight (the case DownLeft is similar).

In this case B′ simulates B until it reaches x. When x is reached B′ knows
whether a node has been indeed selected in the right subtree of x. If this is
not the case, or if the current state is not qx, it rejects. If this is the case,
B′ remembers the state q′x B has reached at the right child of x and also the
direction ∆′ from this right child to the node xl. At the root B′ accepts in a
state containing qx and ∆ together with the state reached by B at the root
during the current simulation together with q′x and ∆′.

We can now define A′. A′ simulates A until the pebble is dropped at position
xd. At position xd, when the pebble is first dropped it simulates B′, verifies that
B′ indeed guessed the Init case and stores the output of B′ in its state. It then
does the following until a Here case is reached. It moves the pebble one step
according to ∆, simulates B′, verifies that the guessed values of B′ are consistent
with what it currently has in its state. If not it rejects, if yes it updates those
values according to the output of B′. When B′ outputs Here then A′ lifts the
pebble and resumes the simulation of A. �

We are now ready for the main induction loop.

Lemma 3.6. Let (A,B) in PABU∗
k . Let m be any marking. We can construct

in time k-exponential in |(A,B)|, a BU∗ C that simulates exactly (A,B) on trees
marked by m.

Proof. This is done by induction on n. The case k = 1 is given by combining
Lemma 3.5 with Lemma 3.4. Assume now that the lemma is proved for k and we
will prove it for k+1. Let A′ be the PA1 defined from A as follows. The states of
A′ are all the states of A corresponding to configurations where all the pebbles
k, · · · , 2 are dropped. The transitions of A′ are all the transitions of A restricted
to the states of A′. The terminal states of A′ are exactly those that lift pebble
2. The marking is the position of pebble 2. Then (A′,B) and (A,B) have exactly
the same runs from a node u where pebble 2 is dropped to a node v where it is
next lifted. From Lemma 3.5 we obtain (A′′,B′) in wPABU1 simulating exactly
(A′,B) assuming pebbles k, · · · , 2 are already on the tree. Now by Lemma 3.4 we
obtain in exponential time a BU∗ automaton C′ that simulates exactly (A′′,B′)
on trees marked by pebble 2, assuming pebbles k, · · · , 2 are already on the tree.
Let now (A′′′, C′) be the PABU∗

k−1 defined from A as follows. The states of A′′′

are all the states of A corresponding to all configurations where pebble 1 is not
dropped. The terminal states of A′′′ are the terminal states of A. The transitions
of A′′′ are all the transitions of A restricted to the states of A′′′ where all the
transitions dropping pebble 2 are now replaced by a simulation of C′. It is easy
to verify that (A′′′, C′) simulates exactly (A,B), and we obtain the desired C by
induction. �

8



Theorem 3.7. Let A in PAk. We can construct in time k-exponential in |A|
a bottom-up automaton C accepting the same language as A and a bottom-up
automaton C accepting the complement of the language accepted by A.

Proof. We shall make use of this lemma which shows that we can always assume
that the last pebble is weak. Its proof is a straightforward adaptation of the
proof of Lemma 3.5.

Lemma 3.8. Let A be in PAk. We can construct in time polynomial in |A| an
automaton B ∈ PAk accepting the same tree language as A and such that the
pebble 1 of B is weak.

Let A in PAk. Let A′ in PAk recognizing the same language as A but with
pebble 1 weak as given by Lemma 3.8. Let A′′ be the wPA1 defined from A′ as
follows. The states of A′′ are all the states of A′ corresponding to configurations
where all the pebbles n, · · · , 2 are dropped. The transitions of A′′ are all the
transitions of A′ restricted to states of A′′. The terminal states of A′′ are exactly
those that lift pebble 2. Let B be the trivial bottom-up tree automaton with only
one state that does nothing. Then (A′′,B) is a wPABU1 having the same runs
as A′ from a node u where pebble 2 is dropped to a node v where it is next
lifted. Now by Lemma 3.4 we obtain in exponential time a BU∗ automaton C′

that simulates exactly (A′′,B) on trees marked by pebble 2. Let now (A′′′, C′)
be the PABU∗

k−1 defined from A as follows. The states of A′′′ are all the states
of A corresponding to all configurations where pebble 1 is not dropped. The
terminal states of A′′′ are the terminal states of A. The transitions of A′′′ are
all the transitions of A restricted to the states of A′′′ where all the transitions
dropping pebble 2 are now replaced with a simulation of C′. It is easy to verify
that (A′′′, C′) simulates exactly A. Let D be the BU∗ obtained by applying
Lemma 3.6 on trees marked by the root. Note that D always marks the root and
therefore can be seen as a bottom-up tree automaton. By construction of D, the
state reached by D at the root of any input tree contains exactly all the pair
(q, q′) so that if A starts at the root in state q then it comes back at the root in
state q′. It is now immediate to define C and C from D by choosing appropriately
the set of accepting states. �

The emptiness problem for pebble tree automata is the problem of check-
ing, given a pebble tree automaton, whether it accepts at least one tree. The
inclusion problem for pebble tree automata is the problem of checking, given
two tree automata A and B whether any tree accepted by A is also accepted
by B. As the emptiness problem for bottom-up tree automata is in ptime we
immediately derive from Theorem 3.7 an upper-bound for the emptiness and
inclusion problems for PA, and therefore for wPA.

Theorem 3.9. Let k > 0. The emptiness and the inclusion problems for PAk

are in k-exptime.

9



4 Lower bounds

In this section we show that the complexities obtained previously are tight. We
actually prove a stronger result as we show that the lower bounds already hold
in the weak pebble model and with deterministic control.

For k > 0, let exp(k, n) be the function defined by exp(1, n) = 2n and
exp(k, n) = 2exp(k−1,n). A k-number of size n is defined recursively as follows.
If k = 1 it is a tree formed by a root of label ♯ followed by a unary tree forming
a sequence of n bits, defining a number from 0 to 2n − 1 (this tree can be made
binary by adding enough dummy extra nodes). For k > 1 it is a tree t having
the following properties: (i) The root of t is labeled by ♯, (ii) The path from the
root of t to the rightmost leaf (excluding the root) contains exactly exp(k−1, n)
nodes having label in {0, 1}. This path will be called: rightmost branch, (iii)
The left child of each node x of the rightmost branch is a (k − 1)-number that
encodes the distance from ♯ to x (the topmost branching node is assumed to
have distance zero from ♯).

We can easily see that the exp(k − 1, n) bits in the rightmost branch in t

define a number from 0 to exp(k, n) − 1.
In the rest of this section we blur the distinction between the root of a k-

number and the integer it encodes. We will make use of the following terminology.
If x is a k-number, the nodes of the rightmost branch of x are called the bits

of x. For each such bit, the (k − 1)-number branching off that node is called a
position of x.

Let f be a function associating to a node x of a tree t a set f(x) of nodes of t.
Such a function f is said to be determined if there is a DTWA with a specific
state qS such that, when started at x in a tree t, it sequentially investigates
all the nodes in f(x), being in state qS at a node y iff y ∈ f(x). Typically
determined functions are the set of positions of the k-number which is located
immediately above or below x. In the following we will only use very simple
determined functions f . In particular the size of the DTWA involved has a size
which will not depend on the parameters k and n.

The main technical lemma is the following one which is inspired by the suc-
cinctness result of [12].

Lemma 4.1. Let n > 0 and k > 0.

1. There exists a wDPA(k−1), of size polynomial in n, such that when started
on a node x of a tree t, it returns to x in a state which is accepting iff the
subtree rooted in x forms a k-number of size n.

2. For each determined function f , there exists a wDPAk, of size polynomial
in n, such that when started on a marked node x of a tree t, it returns to x

in a state which is accepting iff there is a node y ∈ f(x) such that x and y

form the same k-number of size n.
3. There exists a wDPAk, of size polynomial in n, such that when started on

a node x of a tree t, it returns to x in a state which is accepting iff the k-
number of size n rooted at the left child of x is the successor of the k-number
of size n rooted at the left child of the right child of x.

10



Proof. Fix n > 0. All items are proved simultaneously by induction on k. For
point 2 let A{ be the DTWA for f .

If k = 1, point 1 is clear. The automaton uses n states to check that the
tree has the correct depth and then comes back to the initial place. For point 2,
the automaton successively drops the pebble on each node y of the set of nodes
in f(x) using A{, simulates the automaton obtained for point 1 to check that
the subtrees of x and y are indeed 1-number. Once this is done it processes the
subtrees of x and y bit per bit, going back and forth between x and y (recall
that x is marked by hypothesis and that y is marked by the pebble), checking
for equality. The current position being processed is stored in the state and this
requires O(n) states. For point 3 the pebble is dropped on the appropriate child
of x and we proceed as for point 2, simulating addition with 1 instead of checking
equality.

Assume now that k > 1. Consider point 1. By induction it is easy to verify
with a wDPA(k−2) that the subtree rooted in x has the right shape: it starts with
a ♯ and is a sequence of (k − 1)-number. It remains to check that this sequence
codes all (k − 1)-number in the order from 0 to exp(k − 1, n)− 1. For each node
y of the rightmost branch of x the automaton drops pebble k on y and simulates
the wDPA(k−1) obtained from point 3 by induction in order to verify that the
positions of y and of the right child of y are successive (k − 1)-number. Once
this is done for each bit y of x the automaton goes back to x by going up in the
tree until a ♯ is found.

Consider now point 2. The automaton first checks by induction that x is the
root of a k-number. Then for each node y ∈ f(x) it does the following. It first
checks whether y is the root of k-number and if this is the case it drops pebble k

successively on each position z of y. Let g be the function which associates to z

the set of positions of x. It is easy to see that g is determined by the deterministic
automaton which from z goes back to x, which is marked, and then successively
investigates all position of x by going down to the right child. By induction on
point 2 the automaton can find with the remaining k − 1 pebbles, among the
positions of x, the one with the same (k − 1)-number as z and checks that the
associated bits are equal. If the bits are different the automaton comes back to
z, lifts pebble k and moves back to y by going up until it finds a ♯ and then
proceeds with the next node of f(x). If the bits match the automaton comes
back to z, lifts pebble k and proceeds with the next bit of y. Once all bits of y

are processed successfully, it goes back to x and accepts.
Consider finally point 3. This is done as is point 2 above with the following

differences. The set of nodes f(x) is a singleton and the node x does not have to
be marked anymore as it can be recover from the position of pebble k. Moreover,
instead of checking equality of two (k − 1)-number the automaton simulates
addition with 1. �

Using this lemma the coding of alternating Turing machines is rather straight-
forward.

Theorem 4.2. Let k ≥ 1. The emptiness problem (and hence the inclusion
problem) for wDPAk (and hence for PAk) is k-exptime-hard.

11



In the case of alternating pebble tree automata, it is possible to reduce the
number of pebbles used in Lemma 4.1 by one. Indeed in the case k = 1, the second
item (and therefore also the third one) can be performed by non-deterministically
move to a node y of f(x) and then split into n parallel computations that bitwise
check that the subtrees of x and y are the same: the jth computation walks to
the jth bit of the subtree of y, stores the bit, walks to the marked node x and
then to the jth bit of the subtree of x. Therefore the emptiness problem for
altrernating pebble tree automata using k pebbles is (k + 1)-exptime-hard. A
matching upper-bound has been obtained in [8] and therefore this problem is
(k + 1)-exptime-complete.

5 Discussion

It is not too hard to see that when restricted to strings, the techniques developed
in this paper imply:

Theorem 5.1. For k ≥ 1 (the case k = 0 is equivalent to the case k = 1).

1. The emptiness and inclusion problems for wDPAk over strings are (k − 1)-
expspace-hard.

2. The emptiness and inclusion problems for PAk over strings are in (k − 1)-
expspace.

Over trees our result and the one of [4] show that both the weak model
and the strong model of pebble have the same expressive power and the same
complexities. We believe that pebble tree automata using k strong pebbles are
(k − 1)-exponentially more succinct than pebble tree automata using k weak
pebbles. It would be interesting to settle this issue.

Acknowledgment. We thanks Joost Engelfriet for his comments and in
particular pointing to us the extension to the alternating case.

References

1. A. V. Aho, J. D. Ullman. Translations on a Context-Free Grammar. In Information

and Control, 19(5): 439-475, 1971.
2. M. Bojańczyk and T. Colcombet. Tree-Walking Automata Cannot Be Determinized.

In Theor. Comput. Sci., 350(2-3): 164-173, 2006.
3. M. Bojańczyk and T. Colcombet. Tree-walking automata do not recognize all regular

languages. In STOC, 2005.
4. M. Bojańczyk, M. Samuelides, T. Schwentick, L. Segoufin. Expressive power of

pebble automata. In ICALP, 2006.
5. H. Comon et al. Tree Automata Techniques and Applications. Available at

http://www.grappa.univ-lille3.fr/tata
6. S.S. Cosmadakis, H. Gaifman, P.C. Kanellakis, M.Y. Vardi. Decidable Optimization

Problems for Database Logic Programs. In STOC, 1988.
7. J. Engelfriet and H.J. Hoogeboom. Tree-walking pebble automata. In Jewels are

forever, (J. Karhumäki et al., eds.), Springer-Verlag, 72-83, 1999.

12



8. J. Engelfriet. The complexity of typechecking tree-walking tree transducers. Tech-
nical Report 2008-01, Leiden Institute of Advanced Computer Science, Leiden Uni-
versity, 2008.

9. J. Engelfriet and H.J. Hoogeboom. Nested Pebbles and Transitive Closure. In
STACS, 2006.

10. J. Engelfriet, H.J. Hoogeboom, J.-P.Van Best. Trips on Trees. In Acta Cybern.

14(1): 51-64, 1999.
11. J. Engelfriet, S. Maneth. A comparison of pebble tree transducers with macro tree

transducers. In Acta Inf. 39(9): 613-698, 2003.
12. N. Globerman, D. Harel Complexity Results for Two-Way and Multi-Pebble Au-

tomata and their Logics. In Theor. Comput. Sci., 169(2): 161-184, 1996.
13. T. Milo, D. Suciu and V. Vianu. Typechecking for XML transformers. In J.

Comput. Syst. Sci., 66(1): 66-97, 2003.
14. A. Muscholl, M. Samuelides and L. Segoufin. Complementing deterministic tree-

walking automata. In IPL, 99(1): 33-39, 2006.
15. F. Neven. Extensions of Attribute Grammars for Structured Documents Queries.

In DBPL, 1999.
16. M.Y. Vardi. A note on the reduction of two-way automata to one-way automata.

In IPL, 30: 261-264, 1989.

13



Appendix: Missing proofs

Lemma 3.4. Let (A,B) be a wPABU1. For any marking m, we can construct
in exptime C ∈ BU∗ such that C simulates exactly (A,B) on trees marked by
m.

Proof. (sketch)
Given a tree t and a node x of t, we denote by tx the subtree of t rooted at x.

Let ∗ be a new symbol not in Σ. A context is a tree over Σ ∪ (Σ ×{∗}), where
the label with ∗ occurs only once at a leaf. This unique leaf whose label contains
∗ is called the port of the context. We denote by Γt,x the context resulting from
t by removing all proper descendants of x and adding ∗ to the label of x.

Let B be a bottom-up automaton, t a tree and Γ a context. The evaluation
of B on t is the set of all states reached by B at the root of t. The transition
relation of B on Γ is the set of pairs of states (q, q′) such that B associates the
state q′ to the root of Γ if the port of Γ is labeled by state q.

Let a be a letter of Σ, δ the transition relation of B, Q′ ⊆ QB be a subset of
states of B and R ⊆ QB × QB, we denote by Compo(a, R, Q′) the set of pairs

{(q1, q2) ∈ QB × QB|∃q3 ∈ Q′, ∃q4 ∈ δ(a, q1, q3) and (q4, q2) ∈ R}

and by Compo(Q′, a, R) the set of pairs

{(q1, q2) ∈ QB × QB|∃q3 ∈ Q′, ∃q4 ∈ δ(a, q3, q1) and (q4, q2) ∈ R}

Remark: Let t be a tree, x an internal node of t labeled by the letter a, more-
over, let x1 and x2 be respectively the left and right child of x. If Q′ is the evalu-
ation of B on tx2

and R the transition relation of B on Γt,x then Compo(a, R, Q′)
is the transition relation of B on Γt,x1

and if Q′ is the evaluation of B on tx1

and R the transition relation of B on Γt,x then Compo(Q′, a, R) is the transition
relation of B on Γt,x2

.
Let P ⊆ {1, · · · , k} be a pebble set. A P -pebbled tree is a tree t with

an associated P -pebbled assignment. A pebbled tree is a P -pebbled tree, for
some P . We usually do not explicitly denote f . Analogous notions are defined for
contexts. Given a tree t and a node x of t, we denote by t•x the {1}-pebbled tree
tx with the pebble on x and Γ •

t,x the {1}-pebbled context Γt,x with the pebble
on x.

Let (A,B) be a wPABU1 and t a tree.
A 0-configuration of A is a tuple (x, q, x1) where q ∈ QA is the current state,

x is the current node and x1 the position of the pebble. An 1-configuration is
a pair (x, q) where q ∈ QA is the current state and x is the current node. For
i ∈ {0, 1} an i-run is a run from an i-configuration to an i-configuration in which
pebble i + 1 is never lifted. An i-loop is an i-run from a configuration (x, p, f)
to a configuration (x, q, f). Therefore an i-loop is determined by the source
configuration and the target state q. An i-loop is an i-tree-loop if it involves no
i-configuration outside tx, it is an i-context-loop if it involves no i-configuration
outside Γt,x.

14



Let t be a tree marked by m and u its m-node. The automaton C that we
construct in this proof will guess a position v in t and simulate all runs of A from
u to v. To this end it will maintain in its state the expected position of v and
all the loops of A in the subtree below the current position. It will also guess all
the loops of A in the context around the current node. Even though those loops
are guessed the automaton can always make sure the guesses are correct while
moving up the tree. In the end, at the root of the tree, the automaton will then
be able to have exactly all the runs of A from u to v.

More formally, when at a node x, C contains in its state the following infor-
mation:

– the expected (or known) positions of u and v relative to x,
– the evaluation q(x) of B on tx,
– the evaluation q′(x) of B on t•x,
– the set τ (x) ⊆ QA × QA of all the 0-tree-loops of A in tx,
– the set τ ′(x) ⊆ QA × QA of all the 0-tree-loops of A in t•x,
– the set R(x) ⊆ QA × QA of all the 1-tree-loops of (A,B) in tx.

Furthermore, at x, C also guesses and stores in its state, the following infor-
mation:

– the type of x and the expected positions of u and v relative to x.
– the set c(x) ⊆ QB × QB of the transition relation of B on the context Γt,x,
– the set γ(x) ⊆ QA × QA of all the 0-context loops of A in Γt,x,
– the set γ′(x) ⊆ QA × QA of all the 0-context loops of A in Γ •

t,x,
– the set S(x) ⊆ QA × QA of all the 1-context loops of (A,B) in Γt,x.

All the guessed information above, except for the position of v is going to be
verified as correct later up in the tree. At the root, C will have chosen a position
for v and will be able to verify that all other choices were correctly guessed.

Using R(x) and S(x), C computes and maintains in its state the set T (x) ⊆
QA × QA such that:

– if u and v are not descendant of x, T (x) is empty
– if u is a descendant of x and v is not a descendant of x, T (x) is the set of

1-runs of (A,B) from u to x.
– if v is a descendant of x and if u is not a descendant of x, T (x), is the set of

the 1-runs of (A,B) from x to v.
– if u and v are both descendants of x, T (x) is the set of the 1-runs from u to

v.

Thus at the root of t, the restriction of T (x) to QA × QfA
gives the desired

result.
The automaton C computes all the relations above bottom-up from the leaves

to the root as follows. The case where x is a leaf is completely obvious. If x is
an internal node, let a be its label and let x1 and x2 be respectively the left and
right child of x. Assuming the relations have been computed for x1 and x2, C
computes the ones of x as follows.

15



– q(x) and q′(x) are computed by simulating B.
– c(x) is guessed and C checks that it is consistent with the previous guessed

values of c and q, for example, C checks that c(x1) = Compo(a, c(x), q(x2))
– τ (x) is computed easily from the current label, τ (x1), and τ (x2). τ ′(x) is

computed similarly.
– γ(x) is guessed and C checks that γ(x) is consistent with the 0-tree-loops

and 0-context-loops computed at x1 and x2. Thus at the root C can make
sure all guesses where appropriate. γ′(x) is computed similarly.

– Similarly, R(x) is computed by combining (i) 1-tree-loops of R(x1) (ii) 1-
tree-loops of R(x2) and (iii) a drop on x that depends on q′(x) and c(x)
followed by a sequence of 0-loops in τ ′(x) ∪ γ′(x) and a lift.

– S(x) is guessed and C checks that it is consistent with S(x1), S(x2) and
all other relations. For example, C checks that S(x1) corresponds to the
combination of (i) context 1-loops of S(x) (ii) tree 1-loops of R(x2) (iii)
a drop on x1 that depends on q′(x1) and c(x1) followed by a sequence of
0-loops in τ ′(x1) ∪ γ′(x1) and a lift.

– T (x) is easy to maintain using the above relations once the positions of u

and v relative to x are known.

It is clear that the size of C is exponential in (A,B) and it can be verified
that it has the indented behavior. �

Theorem 4.2. Let k ≥ 1. The emptiness problem (and hence the inclusion
problem) for wDPAk is k-exptime-hard.

Proof. For DTWA, and hence wDPA1, exptime-hardness was already implicit
in [15] (it can be also obtained by adapting the proof below). Therefore we now
assume k ≥ 2.

We simulate an alternating Turing machine using space exp(k−1, n) on input
of size n with a wDPAk. This implies the theorem.

More precisely given an alternating Turing machine M running in space
exp(k − 1, n) on an input w of size n, we construct AM ∈ wDPAk such that
the trees accepted by AM encode accepting runs of M. A configuration of M
is encoded as a k-number. That is each bit of the k-number codes the bit of
the same position in the tape. The position of the head and the current state of
the configuration are coded by extending slightly (with no harm) the notion of
k-number by adding the label q to the bit of the position where the head is.

A run of M is encoded by concatenating the configurations for existential
moves and using the branching structure of the tree for universal moves.

We now construct AM accepting exactly the accepting runs of M on input w.
First AM checks that the tree has the right form: (i) it is built as a combination of
k-number with only one position containing a state (ii) configurations containing
an existential state are followed by an unique configuration, (iii) configurations
containing an universal state are followed by two configurations, and (iv) all
configurations with no successor are accepting and the initial configuration codes
w. (i) can be done with k− 1 pebbles as shown in Lemma 4.1, (ii), (iii), and (iv)
are immediate.

16



Once this is done it remains to check that two successive configurations are
valid transitions of M. This is done as follows. AM considers successively each
configuration by doing a complete traversal of the tree. For each configuration it
does the following. It successively marks each position of the tape by dropping
pebble k on the corresponding (k− 1)-number. Let f be the function that maps
x to the set of positions of the configuration occurring above x. This function is
determined by a DTWA which goes up in the tree until it sees the symbol ♯ and
then successively traverses the tree upward in state qS until it sees the next ♯

symbol. Then it uses the k − 1 remaining pebbles to find the matching position
in the preceding configuration by using part 2 of Lemma 4.1. It then checks that
the bits pointed by this two (k− 1)-number are equal if none contains a state or
behave according to a transition of M otherwise. �

Theorem 5.1. For k ≥ 1 (the case k = 0 is equivalent to the case k = 1).

1. The emptiness and inclusion problems for wDPAk over strings are (k − 1)-
expspace-hard.

2. The emptiness and inclusion problems for PAk over strings are in (k − 1)-
expspace.

Proof. The lower bound is immediate from Theorem 4.2. Indeed the notion of k-
number can also be encoded as a string corresponding to an appropriate sequence
of pairs (bit,position). However the tree branching structure was necessary in
order to encode the alternating behavior of a Turing machine. Without the
branches we can only encode non-deterministic behavior. Hence the lower bound.

For the upper-bound we proceed as follows. Assume k > 1. Let A be in PAk.
By iterating on Lemma 3.5 and Lemma 3.4 as in the proof of Lemma 3.6, one
can construct in (k − 1)exptime C ∈ PABU∗

1 equivalent to A. Note that in the
string case, C is nothing else but a PA1. To conclude the proof it is therefore
sufficient to prove that emptiness of C can be checked in pspace. This is exactly
the case k = 1.

Assume now that k = 1. By Lemma 3.5 we can assume wlog that A is
in wPA1. Consider now the proof of Lemma 3.4 constructing from A a one-way
string automaton C equivalent to A. Instead of constructing C explicitly and then
checking for the existence of a path from the initial state to an accepting state,
we simulate C on the fly, storing the current state of C in memory, and computing
one of its successors on the fly. Each state of C having a size polynomial in A,
this can be done in npspace =pspace. �

17


