
FIRST-ORDER QUERY EVALUATION ON STRUCTURES OF BOUNDED

DEGREE

WOJCIECH KAZANA AND LUC SEGOUFIN

INRIA and ENS Cachan
e-mail address: kazana@lsv.ens-cachan.fr

INRIA and ENS Cachan
e-mail address: see http://pages.saclay.inria.fr/luc.segoufin/

Abstract. We consider the enumeration problem of first-order queries over structures of
bounded degree. In [3] it was shown that this problem is in Constant-Delaylin. An
enumeration problem belongs to Constant-Delaylin if for an input of size n it can be
solved by:

• an O(n) precomputation phase building an index structure,
• followed by a phase enumerating the answers with no repetition and a constant delay

between two consecutive outputs.
In this article we give a different proof of this result based on Gaifman’s locality theorem
for first-order logic. Moreover, the constants we obtain yield a total evaluation time that
is triply exponential in the size of the input formula, matching the complexity of the best
known evaluation algorithms.

1. Introduction.

Model checking is the problem of testing whether a given sentence is true in a given model.
It’s a classical problem in many areas of computer science, in particular in verification. If
the formula is no longer a sentence but has free variables then we are faced with the query
evaluation problem. In this case the goal is to compute all the answers of a given query on a
given database.

As for model checking, query evaluation is a problem often requiring a time at least
exponential in the size of the query. Even worse, the evaluation often requires a time of the

1998 ACM Subject Classification: F.4.1,F.1.3.
Key words and phrases: First-order, query evaluation, enumeration, constant delay.
This work has been partially funded by the European Research Council under the European Community’s

Seventh Framework Programme (FP7/2007-2013) / ERC grant Webdam, agreement 226513. http://webdam.

inria.fr/ .
We acknowledge the financial support of the Future and Emerging Technologies (FET) programme within

the Seventh Framework Programme for Research of the European Commission, under the FET-Open grant
agreement FOX, number FP7-ICT-233599.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© W. Kazana and L. Segoufin
Creative Commons

1

http://pages.saclay.inria.fr/luc.segoufin/
http://webdam.inria.fr/
http://webdam.inria.fr/

2 W. KAZANA AND L. SEGOUFIN

form nO(k), where n is the size of the database and k the size of the query. This is dramatic,
even for small k, when the database is huge.

However there are restrictions on the structures that make things easier. For instance
MSO sentences can be tested in time linear in n over structures of bounded tree-width [2]
and MSO queries can be evaluated in time linear in n+m, where m is the size of the output
of the query (note that m could be exponential in the number of free variables of the query,
and hence in k) [4].

In this paper we are concerned with first-order logic (FO) and structures of bounded
degree. In this case the model checking problem for FO sentences is known to be linear
in n [9]. Moreover, the constant factor is at most triply exponential in the size k of the
formula [5]. This last algorithm easily extends to query evaluation obtaining an algorithm
working in time f(k)(n+m) where f is a triply exponential function.

As we already mentioned, the size m of the output may be exponential in the arity of the
formula and therefore may still be large. In many applications enumerating all the answers
may already consume too many of the allowed resources. In this case it may be appropriate
to first output a small subset of the answers and then, on demand, output a subsequent small
number of answers and so on until all possible answers have been exhausted. To make this
even more attractive it is preferable to be able to minimize the time necessary to output the
first answers and, from a given set of answers, also minimize the time necessary to output the
next set of answers - this second time interval is known as the delay.

We say that a query can be evaluated in linear time and constant delay if there exists an
algorithm consisting of a preprocessing phase taking time linear in n which is then followed
by an output phase printing the answers one by one, with no repetition and with a constant
delay between each output. Notice that if a linear time and constant delay algorithm exists
then the time needed for the total query evaluation problem is bounded by f(k)(n + m)
for some function f . Hence this is indeed a restriction of the linear time query evaluation
algorithms mentioned above. From the best of our knowledge it is not yet known whether a
bound f(k)(n+m) for some function f on a query evaluation problem implies the existence
of a linear time and constant delay enumeration algorithm. We conjecture this is not the
case.

It was shown in [3] that linear time constant delay query evaluation algorithms could be
obtained for FO queries over structures of bounded degree, hence improving the results of [9]
and [5].

The proof of [3] is based on an intricate quantifier elimination method. In this paper
we provide a different proof of this result based on Gaifman Locality of FO queries. Our
algorithm can be seen as an extension of the algorithm of [5] to queries. However the index
structure built during the preprocessing phase is more complicated than the one of [5] in order
to obtain the constant delay enumeration. Moreover, our constant factor is triply exponential
in the size of the formula, while it is not clear whether the constant factor obtained in [3] is
elementary. Note that the triply exponential constant factor cannot be significantly improved:
it is shown in [5] that a constant factor only doubly exponential in the size of the formula
is not possible unless the parametrized complexity class AW[∗] collapses to the parametrized
class FPT.

FIRST-ORDER QUERY EVALUATION ON STRUCTURES OF BOUNDED DEGREE 3

2. Definitions.

2.1. Gaifman locality and first-order logic. A relational signature is a tuple σ = (R1, . . . , Rl),
each Ri being a relation symbol of arity ri. A relational structure over σ is a tuple A =(
A,RA1 , . . . , R

A
l

)
, where A = {a1, . . . , am} is the set of elements of A and RAi is a subset of

Ari . We fix a reasonable encoding of structures by words over some finite alphabet. The size
of A is denoted by ||A|| and is the length of the encoding of A.

The Gaifman graph of a relational structure A, denoted by G(A), is defined as follows:
the set of vertices of G(A) is A and there is an edge (a, b) in G(A) iff there exists a relation Ri
and a tuple t ∈ Ri such that both a and b occur in t. Given a, b ∈ A, the distance between a
and b, denoted δ(a, b), is the length of a shortest path between a and b in G(A) or∞ if a and
b are not connected. The distance between two tuples ā = (a1, . . . , ak) and b̄ = (b1, . . . , bl) of
A, denoted δ(ā, b̄), is the min{δ(ai, bj) : 1 ≤ i ≤ k, 1 ≤ j ≤ l}. For a given r ∈ N and a given
tuple of elements ā of some structure A, we denote by Nr(ā) the set of all elements in A such
that their distance from ā is less or equal to r. The r-neighborhood of ā, denoted as Nr(ā), is
the substructure of A induced by Nr(ā) and expanded with one constant for each element of
ā. Given two tuples of elements ā and b̄ we say that they have the same r-neighborhood type,
written Nr(ā) ' Nr(b̄), if there is an isomorphism between Nr(ā) and Nr(b̄).

We consider first-order logic (FO) built from atomic formulas of the form x = y or
Ri(x1, . . . , xri) for some relation Ri and closed under the usual Boolean connectives (¬,∨,∧)
and existential and universal quantifications (∃,∀). When writing φ(x̄) we always mean that
x̄ are exactly the free variables of φ. Given a structure A and a tuple ā of elements of A, we
write A |= φ(ā) if the formula φ is true in A after replacing its free variables with ā. As usual
|φ| denotes the size of φ.

We are now ready to state Gaifman locality for FO.

Theorem 2.1 (Gaifman Locality Theorem [7]). For any first-order formula φ(x̄), for every
structure A and tuples ā, b̄, we have Nr(ā) ' Nr(b̄) implies A |= φ(ā) iff A |= φ(b̄), where

r = 2|φ|.

Given d ∈ N, a structure is said to be d-degree-bounded, if the degree of the Gaifman
graph is bounded by d. The following nice algorithmic property of d-degree-bounded struc-
tures can be proved using Theorem 2.1.

Theorem 2.2 ([9, 5]). Fix d ∈ N. The problem of whether a given d-degree-bounded structure

A satisfies a given first-order sentence φ is decidable in time 222
|φ|O(1)

||A||.

2.2. Model of computation and Constant-Delaylin class. We use Random Access Ma-
chines (RAM) with addition and uniform cost measure as a model of computation. For further
details on this model and its use in logic see [3].

An enumeration problem is a binary relation. Given an enumeration problem R and an
input x, a solution for x is a y such that (x, y) ∈ R. An enumeration problem R induces a
computational problem as follows: Given an input x, output all its solutions. An enumeration
problem is in the class Constant-Delaylin if on input x it can be decomposed into two steps:

• a precomputation phase that is performed in time O(|x|),

4 W. KAZANA AND L. SEGOUFIN

• an enumeration phase that outputs all the solutions for x with no repetition and a
constant delay between two consecutive outputs. The enumeration phase has full
access to the output of the precomputation phase but can use only a constant total
amount of extra memory.

In particular if R is in Constant-Delaylin then the enumeration problem R can be solved
in time O(|x|+ |{y : R(x, y)}|). From the best of our knowledge it is not known whether the
converse is true or not. We conjecture that it is not. More details about Constant-Delaylin
can be found in [3].

We are interested in the following enumeration problem for φ(x̄) ∈ FO and d ∈ N:

Enumd(φ) = {(x, y) : x is a d-degree-bounded structure A, y is a tuple ā of elements of A
and A |= φ(ā)}

We further denote by φ(A) the set {ā : A |= φ(ā)} and by |φ(A)| the cardinality of this
set. We show that Enumd(φ) is in Constant-Delaylin.

Theorem 2.3 ([3]). There is an algorithm that for all d ∈ N, all φ ∈ FO and all d-degree-

bounded structures A enumerates φ(A) with a precomputation phase taking time 222
|φ|O(1)

·||A||
and a delay during the enumeration phase that is triply exponential in |φ|. In particular, for
all d ∈ N and all φ ∈ FO the enumeration problem Enumd(φ) is in Constant-Delaylin.
Moreover, if the domain of A is linearly ordered, the algorithm enumerates φ(A) in increasing
order relative to the induced lexicographical order on tuples.

Hence the total query evaluation induced by the enumeration procedure of Theorem 2.3 is

in time 222
|φ|O(1)

(||A||+ |φ(A)|) thus matching the model checking complexity of Theorem 2.2.
Our proof of Theorem 2.3 is based on Gaifman Locality Theorem while the proof of [3] uses
a quantifier elimination procedure (see also [8] for a similar argument). Note that it is not
clear from the proof of [3] that their algorithm is triply exponential in the size of the formula.

3. FO query evaluation.

In this section we assume d ∈ N to be fixed and all our structures are d-degree bounded.
A formula φ(x̄) with k free variables x̄ = x1 . . . xk is said to be connected around x1 if

φ(x̄) logically implies that x2, . . . , xk are in the (rk)-neighborhood of x1 for r = 2|φ|.
Let Trk be the set of all isomorphism types of (rk)-neighborhoods of single elements,

i.e. the isomorphism types of structures of the form Nrk(a) for some element a of some
structure A. By (rk)-neighborhood-type of an element a we mean the isomorphism type of
its (rk)-neighborhood. Because our structures are d-degree-bounded each (rk)-neighborhood
has at most drk elements. For each τ ∈ Trk we denote by µτ (x) the fact that the (rk)-
neighborhood-type of x is τ . For each type in Trk we fix a representative for the corresponding
(rk)-neighborhood and fix a linear order among its elements. This way, we can speak of the
first, second,. . . , element of an (rk)-neighborhood. For technical reasons, we actually fix a
linear order for each l-neighborhood for l ≤ rk such that (i) it is compatible with the distance
from the center of the neighborhood: the center is first, then come all the elements at distance
1, then all elements at distance 2 and so on. . . and (ii) the order of a (l+ 1)-type is consistent
with the order on the induced l-type.

FIRST-ORDER QUERY EVALUATION ON STRUCTURES OF BOUNDED DEGREE 5

For some sequence F = {α2, . . . , αm} of (m− 1) elements from [1, . . . , drk], we write x̄ =
F (x1) for the fact that, for j ∈ {2, . . . ,m}, xj is the αj-th element of the (rk)-neighborhood
of x1. Let Fmrk be the set of all possible such F . Let Frk =

⋃
1≤m≤k Fmrk.

For a given x̄ = x1 . . . xk a r-partition of x̄ is a set of pairs {(C1, F1), . . . , (Cm, Fm)} such

that ∅ 6= Ci ⊆ x̄,
⋃

1≤i≤mCi = {x1, . . . , xk}, Ci ∩ Cj = ∅ for i 6= j, and Fi ∈ F |Ci|rk . For a

given r-partition C of x̄ and (Ci, Fi) ∈ C we write x̄i to represent variables from Ci, x
i
1 to

represent the first variable from Ci, x
i
2 to represent second variable and so on.

For a given r-partition C = {(C1, F1), . . . , (Cm, Fm)} of x̄ by DivCr (x̄) we mean a con-
junction of formulas saying that Nr(x̄

i) ∩ Nr(x̄
j) = ∅ for all 1 ≤ i 6= j ≤ m and formulas∧

(Ci,Fi)∈C x̄
i = Fi(x

i
1). Note that the latter part implies that x̄i is connected around xi1.

The following is an immediate consequence of Theorem 2.1.

Lemma 3.1. Fix a structure A. Then any formula φ(x̄) with k free variables is equivalent
over A to a formula of the form∨

C∈Cr(x̄)

DivCr (x̄) ∧
∨

(τ1,...,τ|C|)∈SC

∧
i≤|C|

µτi(x
i
1)

 (3.1)

where r = 2|φ|, Cr(x̄) is the set of all r-partitions of x̄, and SC ⊆ (Trk)|C| is finite.

Proof. Let φ(x̄) be a formula with k free variables and r = 2|φ|. As in the statement of this
lemma, we denote by Cr(x̄) the set of all partitions C = {(C1, F1), . . . , (Cm, Fm)} of x̄ with

Ci =
{
xi1, . . . , x

i
|Ci|

}
.

By taking all possible r-partitions over x̄ we see that φ(x̄) is equivalent to:∨
C∈Cr(x̄)

(
DivCr (x̄) ∧ φ(x̄)

)
Let ā be a tuple of A such that A |= φ(ā). Thus there exists C ∈ Cr(x̄), such that

A |= DivCr (ā)∧ φ(ā). As DivCr induces that variables from each Ci for some (Ci, Fi) ∈ C are
connected, the r-neighborhood of each āi is completely included into the (rk)-neighborhood
of ai1. Let m = |C|. For 1 ≤ i ≤ m let τi be the rk-neighborhood-type of ai1. We now
take SC as the set of all such tuples (τ1, . . . , τm) for all tuples ā and all r-partitions C such
that A |= DivCr (ā)∧ φ(ā). By construction we have φ(x̄) implies (3.1). The reverse inclusion
is an immediate consequence of Gaifman Locality Theorem: When DivCr (ā) holds, Nr(āi)
is induced by Nrk(ai1) = τi and Fi. Moreover, Nr(ā) is the disjoint union of Nr(āi) and is
therefore induced by C.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Fix a formula φ(x̄) with k free variables. Let A be a structure. Let

r = 2|φ|. By Lemma 3.1, φ(x̄) is equivalent over A to a formula of the form given by (3.1).
We assume that A comes with a linear order over its elements. If not, we use the linear order
induced by the encoding of A.

Intuitively the precomputation phase determines the disjunction given by (3.1) and pre-
computes the (rk)-neighborhoods of each element of A. The fact that this can be done in
time linear in ||A|| and triply exponential in |φ| will make use of Theorem 2.2.

6 W. KAZANA AND L. SEGOUFIN

In a first step, for each i ≤ rk we precompute the pairs of nodes at distance i. In other
words, for each a in A, we compute the set of elements b such that δ(a, b) = i. This can easily
be done in time linear in rk · ||A|| by induction on i: during the base case we compute the
Gaifman graph of A and then we perform the classical computation of the transitive closure
of this graph up to depth rk.

In a second step, the precomputation phase computes for each element a of A its (rk)-
neighborhood: for each element a of A, we compute its (rk)-neighborhood-type and for all
i ≤ drk a pointer from a to the i-th element of its (rk)-neighborhood. We use an induction
on the radius of the neighborhood to achieve this goal within the desired time constraints.

As 0-neighborhoods all share the same isomorphism type and have just one pointer to
their centers, the induction base is obvious. So let’s assume that in linear time in the size of
A we have computed all l-neighborhoods for all nodes. With one more linear pass we now
compute the (l+ 1)-neighborhoods. Fix a ∈ A. From the first step, we have all the elements
of A at distance l + 1 from a. As we already have computed the l-neighborhood, it remains
to try all possible orders among those elements and test isomorphism with the ordered types
we have initially fixed.

There are at most dl+1 nodes at distance l + 1 and l < rk. Hence the number of orders
we need to test is bounded by (drk)!. Once the order is fixed we try all possible (rk)-
neighborhood-types that we have initially fixed (there are |Trk| possibilities) and then test
that the two orders induce an isomorphism (each test simply requires going through all tuples
of the neighborhood). Let s(r, k, d) be the maximal size of a (rk)-neighborhood. Thus this
step is altogether achieved in time O((drk)! · |Trk| · s(r, k, d)) which is triply exponential in |φ|
because r = 2|φ|, |Trk| = O(2s(r,k,d)) and s(r, k, d) = O(drk|σ|).

During the third step of the precomputation we determine the (rk)-neighborhood-types
that are relevant for φ over A. Fix a r-partition C = {(C1, F1), . . . , (Cm, Fm)} of Cr(x̄) and a

sequence τ1, . . . , τm ∈ Trk. This sequence is relevant for C if A |= ∃x̄
[
DivCr (x̄) ∧

∧
j µτj (x

j
1)
]
∧

φ(x̄). Notice that the tests of the form µτj (x
j
1) have been precomputed during the second

step and can therefore now be treated as unary symbols. Similarly the tests DivCr (x̄) can be
expressed using the graph computed during the first phase. Altogether, the first and second

phase has replaced
[
DivCr (x̄) ∧

∧
j µτj (x

j
1)
]

with a formula of size polynomial in k. Hence

we can apply Theorem 2.2 in order to test whether the sequence is relevant for C in time
linear in ||A|| and triply exponential in the size of the formula. We do this for all possible C,

investigating at most (|Trk|)k = 222
O(|φ|)

cases. The number of possible C is the number of
possible splits of k variables into disjoint and nonempty subsets multiplied by (|Frk|)k, which

altogether is again 222
O(|φ|)

. For each C we store a list of all sequences relevant for it. We call
a r-partition C relevant if that list is nonempty.

The fourth step of the precomputation phase orders, for each τ ∈ Trk, the elements of
A having that particular (rk)-neighborhood-type and stores a pointer from one element to
the next one according to the linear order on the elements of A. To do that, we just need
to enumerate through all the elements in A, in the order provided by the linear order on its
elements, and, using information obtained in the second step, add each of them to a proper
list. In order to do this we need to be able to sort a set of elements in linear time and this
can be done in our RAM model as explained in [6].

The rest of the proof is an induction on the number k of free variables in φ.

FIRST-ORDER QUERY EVALUATION ON STRUCTURES OF BOUNDED DEGREE 7

Fix relevant r-partition C = {(C1, F1), . . . , (Cm, Fm)} in Cr(x̄). We show how to enu-
merate in lexicographical order, with no repetition, constant memory and constant delay, all

the tuples ā such that A, ā |= DivCr (x̄) ∧
∨
i

∧
j µτij (x

ij
1). The result will then follow from the

following simple lemma, whose proof consist in merging two ordered lists.

Lemma 3.2 ([1]). If there is a linear order < such that R,R′ are in Constant-Delaylin and
both output their answers in increasing order relative to <, then R∪R′ is also in Constant-
Delaylin and the answers can be enumerated in increasing order relative to <.

The base case k = 1 is trivial: since k = 1, it must be the case that also m = 1 and
recall that the fourth step of the precomputation phase already computed the desired list of
all elements of type τ1. Assume now that we have the desired enumeration procedure for
formulas with less than k free variables and we want to extend it to the ones with k free
variables.

Without loss of generality assume that the most significant variable of x̄ is in the first
variable of x̄1, that the most significant variable of x̄ \ x̄1 is the first variable of x̄2 and so on.

Let x̄′ = C1∪ . . .∪Cm−1 and x̄′′ = Cm. Consider query ψ(x̄′) = ∃x̄′′DivCr (x̄)∧
∨
i

∧
j µτij (x

ij
1).

It has less free variables than φ and so the inductive hypothesis holds for it.
The last step of the precomputation phase performs the precomputation phase as given

by the inductive hypothesis for ψ.
Altogether we have a precomputation phase of the desired properties: it works in time

linear in |A| and triply exponential in |φ|. We now turn to the enumeration phase.
We simultaneously do the following for each sequence τ1, . . . , τm relevant for C and use

Lemma 3.2 to avoid duplicate answers.
Fix τ1, . . . , τm relevant for C. We enumerate, by induction, the solutions for ψ and recall

that ψ implies DivC
′

r (x̄) ∧
∨
i

∧
j µτij (x

ij
1), where C ′ is C with (Cm, Fm) removed. For each

solution b̄ obtained by induction, using the precomputed pointers, we nest the enumeration
of all elements am of A whose (rk)-neighborhood-type is τm. For each such element let
ām = Fm(am). Given am whose (rk)-neighborhood-type is τm, we check whether Nr(ā

m)
intersects with Nr(b̄) or not (recall that this information has been precomputed during the
first phase and therefore requires only constant time). If it does not, we have a solution b̄, ām

for φ because of (3.1). If it does then we move to the next element whose (rk)-neighborhood-
type is τm. Notice that the size of Nr(b̄) is bounded by kdr and ām is r-connected around

a1 (thus included in Nrk(am)), hence the length of false hits is bounded by kdr(k+1). From
the definition of ψ, for each b̄ we are certain to find at least one matching ām that gives us a
solution b̄, ām to φ. Altogether we get the desired constant delay for the enumeration process.

The enumeration phase needs to process all possible r-partitions C and all relevant se-
quences of Trk, i.e. a number of cases triply exponential in |φ|. For a fixed sequence τ1, . . . , τm
relevant for C the output is clearly returned in lexicographical order and Lemma 3.2 justifies
that it is also the case for the enumeration procedure for φ. Altogether this yields a procedure
linear in the size of the output and triply exponential in |φ|.

4. Conclusion

We have given a new proof of the linear time and constant delay enumeration problem of
first-order queries over structures of bounded degree. Our procedure is based on Gaifman’s

8 W. KAZANA AND L. SEGOUFIN

locality theorem for first-order logic and our constants are triply exponential in the size of the
query, and therefore induces the known complexity of the associated model checking problem.

Acknowledgement

The authors wish to thank Dietrich Kuske and the anonymous referees for their construc-
tive comments on earlier versions of this paper.

References

[1] Guillaume Bagan. Algorithmes et complexité des problèmes d’énumération pour l’évaluation de requêtes
logiques. PhD thesis, Université de Caen, 2009.

[2] Bruno Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pages 193–242. 1990.

[3] Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree are computable
with constant delay. ACM Trans. on Computational Logic (ToCL), 8(4), 2007.

[4] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J. of the ACM,
49(6):716–752, 2002.

[5] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic revisited.
Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

[6] Etienne Grandjean. Sorting, Linear Time and the Satisfiability Problem. Annals of Mathematics and Ar-
tificial Intelligence, 16:183–236, 1996.

[7] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
[8] Steven Lindell. A Normal Form for First-Order Logic over Doubly-Linked Data Structures. Int. J. Found.

Comput. Sci., 19(1):205–217, 2008.
[9] Detlef Seese. Linear Time Computable Problems and First-Order Descriptions. Mathematical Structures in

Computer Science, 6(6):505–526, 1996.

	1. Introduction.
	2. Definitions.
	2.1. Gaifman locality and first-order logic.
	2.2. Model of computation and Constant-Delaylin class.

	3. FO query evaluation.
	4. Conclusion
	Acknowledgement
	References

