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ABSTRACT

We consider the enumeration of MSO queries over strings under
updates. For each MSO query we build an index structure enjoying
the following properties: The index structure can be constructed in
linear time, it can be updated in logarithmic time and it allows for
constant delay time enumeration.

This improves from the previous known index structures al-
lowing for constant delay enumeration that would need to be re-
constructed from scratch, hence in linear time, in the presence of
updates.

We allow relabeling updates, insertion of individual labels and
removal of individual labels.
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1 INTRODUCTION

Query evaluation is a central task in databases and a vast literature
is devoted to the study of its complexity. In particular computing the
whole set of answers may be too demanding in terms of resources
of the system as the set of answers may be much larger than the
database itself.

There are many possibilities to overcome this problem: comput-
ing the “best” answers, returning the number of answers, sampling,
enumerating. . . .

In this paper we view the query evaluation problem as an enu-
meration problem consisting in generating the answers one by one
with some regularity. We try to achieve two goals. The first goal is
to output the first solution as quickly as possible. The second goal
is to have a small delay between any two consecutive solutions. An
enumeration algorithm is then often divided into two parts: the
preprocessing phase, before the first output, and the enumerating

phase, when the solutions are generated. The time needed before
outputting the first solution is called the preprocessing time. During
the preprocessing phase the system produces an index structure
that can be used by the second phase. The second phase consists in
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navigating within the index structure as fast as possible in order to
compute the next solution from the current one.

Another interesting point of view is to think of the preprocessing
phase as a builder of a compact representation of the output while
the enumerating phase is a streaming decompression algorithm.

When viewing the query evaluation problem as an enumeration
problem, the best we can hope for is a linear preprocessing time
and a constant time delay. This of course cannot be always achieved
but has been obtained in many interesting scenarios, MSO queries
evaluated over structures of bounded treewidth [4, 16], FO queries
over structures of bounded degree [11, 14], or over structures of low
degree [12], or over structures of bounded expansion [15], XPath
queries over XML documents [8]. . .

However all these results suffer from one limitation: if an update
is made on the database the index structure built during the pre-
processing phase has to be reconstructed completely from scratch.
This issue has been addressed in two cases: FO queries and struc-
tures of bounded degree [7] and hierarchical conjunctive queries
and arbitrary finite relational structures [6]. In these cases the in-
dex structure can be updated in constant time upon insertion and
deletion of a tuple.

In this paper we also tackle this update issue and exhibit a new
index that can be computed in linear time during the preprocessing
phase, allows for constant-delay enumeration and can be updated
in logarithmic time.

We considerMSO queries over strings (equivalently,MSO queries
over structures of bounded pathwidth). Our index structure can be
updated in logarithmic time upon the following updates: relabeling,
insertion and removal of individual nodes.

As mentioned above, we already know index structures, com-
putable in linear time, that permit constant delay enumeration
for MSO queries over trees (or equivalently structures of bounded
treewidth) [4, 16]. But it seems unlikely that those index structures
can be updated in logarithmic time upon very simple updates such
as relabeling a node.

This update issue has been considered in the Boolean case for
MSO queries over words by [5]. Given an MSO Boolean query and
an input word they construct in linear time an index structure
such that, given the index structure, one can tell in constant time
whether the input words satisfies or not the MSO query and more-
over, the index structure can be modified in logarithmic time upon
updates that can be either relabeling of a position of the word or
adding/deleting a node at the beginning or end of the word. The
same paper obtains similar results over trees but with a logarithmic
square time for updating the index structure.

This result has been extended to non Boolean queries in [18] but
with a non constant delay. In that paper, given an MSO query and
a word they compute in linear time an index structure that allows
for enumeration with logarithmic time delay and logarithmic time
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updates. For trees the complexity becomes logarithmic square delay
and update time.

Our result improves on that by providing an index structure
that can be computed in linear time, allows for constant delay
enumeration and logarithmic time updates.

For this we use a new index structure that is completely different
from those of [5, 16, 18]. Ours is based on Krohn-Rhodes theory.
This theory says that any regular language (hence any Boolean
MSO query) can be decomposed into a cascade of simple languages
that are either “reset automaton” or “permutation automaton”. In
a reset automaton each input letter either induces the state of the
automaton or does not change the state at all. In a permutation
automaton each letter induces a permutation of the state of the
automaton. The composition of these basic blocks is the wreath
product [19].

Our index structure is constructed by induction on the cascade
of reset and permutation automata used in the definition of the
MSO query. For each block we show how to compose it with the
previous one while maintaining the constant delay enumeration
and logarithmic time update property. To demonstrate our index
structure, we will use the following query.

Example 1.1 (Running Example). Let Φ(x ) be an MSO query

that selects all positions x of a string v , such that in the prefix of v up

to x the number of b’s between the first position of label a and x is

even.

It is unclear whether our proof method can be extended to trees,
as there are only preliminary results on Krohn-Rhodes like decom-
positions for trees [9]. We give a small discussion of these results
in the conclusion.

Structure of the Paper

After giving the basic definitions in Section 2, we reduce the general
problem to the special case of unary MSO formulas in Section 3. In
Section 4, we prove a restricted variant of our main theorem that
only deals with relabeling updates. This proof uses a data structure
for string manipulation, whose implementation details are provided
in Section 5. We explain how our algorithm and data structure can
be extended to handle insertion and removal updates in Section 6
and conclude in Section 7.

2 PRELIMINARIES

Strings

We consider strings over a finite alphabet Σ. Let v ∈ Σ∗ be some
string over Σ, then vi denotes the label of v at position i and v[i, j]
denotes the substring starting at position i up to position j.

For two strings v and w of the same length n, the join v ▷◁
w is defined as (v1,w1) . . . (vn ,wn ). The joined string uses the
alphabet Σv × Σw , where Σv and Σw are the alphabets of v andw ,
respectively.

Automata

A (deterministic, finite) automaton (DFA)A is a tuple (Q, Σ,δ ,q0, F ),
whereQ is a set of states, δ : Q × Σ→ Q is a transition function, q0
is the initial state, and F is the set of accepting states.

By δ∗ we denote the extension of δ to strings, i.e., δ∗ (q,w ) is the
state that can be reached from q by readingw . We define the size
of an automaton to be the number of its states.

The language L(A) accepted byA is the set {w | δ∗ (q0,w ) ∈ F }.
A regular language is a language that can be recognized by a finite
automaton.

Let δ be the transition function of an automaton with Q as set
of states. For each symbol σ , δσ : Q → Q denotes the induced
transition function q 7→ δ (q,σ ).

We call an automaton a reset automaton, if for each symbol σ ,
δσ is either the identity on Q or a constant function.

We call an automaton a permutation automaton, if for each sym-
bol σ , δσ is a permutation of Q . Each permutation automaton has
an associated group G = (G, ⊙,1) and an associated input homo-
morphism h : Σ → G, such that G = Q and δ (q,σ ) = q ⊙ h(σ ) for
each q ∈ Q .

The terms reset automaton and permutation automaton were
introduced by [19].

Transducer

A transducerT is a tuple (Q, Σ,Λ,δ , λ,q0), whereQ , Σ, δ , and q0 are
defined as in a DFA, Λ is a finite output alphabet and λ : Q × Σ→ Λ
is an output function.

For a transducerT , we let [T ] be its input-output function, induc-
tively defined by [T ](ε ) = ε and [T ](va) = [T ](v )λ(δ∗ (q0,v ),a). If
the transducer T is clear from the context we allow to write v↑ to
denote [T ](v ).

Given an automaton A = (Q, Σ,δ ,q0, F ), we denote by AT the
transducer that uses the same transitions as the automaton and
outputs at every position the read symbol and the current state, i.e.,
AT = (Q, Σ, Σ ×Q,δ , λ,q0) with λ(q,σ ) = (σ ,q).

We denote a transducer as a reset transducer, if it results from a
reset automaton. Likewise we use the term permutation transducer.

Cascade Product

Let A1 = (Q1, Σ,δ1,q1, F1) and A2 = (Q2, Σ × Q1,δ2,q2, F2) be
automata. Then the cascade product A1 ◦ A2 is defined as the
automaton

(Q1 ×Q2, Σ,δ , (q1,q2), F1 × F2) ,

where δ ((p,q),a) = (δ1 (p,a),δ2 (q, (a,p))).
The cascade product of n automata is defined as multiplication

from the left, i.e.,

A1 ◦ · · · ◦ An
def
=

((
· · · (A1 ◦ A2) · · ·

)
◦ An−1

)
◦ An .

It will be convenient to view the cascade product A1 ◦ A2 as a
composition of the associated transducers. Indeed it follows from
the definitions that we can test whether a string v ∈ Σ∗ is accepted
byA1◦A2 by reading the last letter of [AT

2 ]([AT
1 ](v )): it has to be

of the form (a,q1,q2) with δ1 (q1,a) ∈ F1 and δ2 (q2, (a,q1)) ∈ F2.
We therefore denote by AT

1 ◦ A
T
2 the corresponding composition

of transducers.
We note that the operation ()T distributes over the cascade prod-

uct, i.e.,

(A1 ◦ · · · ◦ An )
T = AT

1 ◦ · · · ◦ A
T
n .
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Figure 1: Automaton A for Φ(x ) from Example 1.1
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Figure 2: Krohn-Rhodes decomposition of A

Krohn-Rhodes Theorem

Theorem 2.1 ([17, 19]). Let A be a DFA. Then there exists a

cascade A1 ◦ · · · ◦ An of automata, such that

• L(A1 ◦ · · · ◦ An ) = L(A); and
• each Ai is either a reset automaton or a permutation automa-

ton.

The original theorem by Krohn and Rhodes [17] was formulated
over monoids and uses the wreath product instead of automata
cascades. The version depicted above using cascades is byMaler [19]
who also shows that the construction of A1, . . . ,An is effective.

In terms of transducers Krohn-Rhodes Theorem implies that
recognition by an automaton A can be decided by checking the
last letter of the output of a composition of transducers computed
fromA, each of the transducers being either a reset or permutation
automaton.

Example 2.1. The query Φ from Example 1.1 can be answered

using the automaton A depicted in Figure 1 by running A on the

input string and returning all nodes visited by A in state q1.
In Figure 2 is depicted the Krohn-Rhodes decomposition of A. The

automaton A1 = (Σ,Q1,δ1,qε , {qa }) checks whether the prefix has
an a, while the automaton A2 = (Σ × Q1,δ2,q0, {q0}) counts the
number of b’s modulo 2. Note, that A2 only counts b’s after A1 has

read the first a, as it only changes state on input symbol (b,qa ) and
not on (b,qε ). It is easy to verify that A = A1 ◦ A2. The automaton

A1 is a reset automaton, as the labels b and c are self loops on all

states while the labels a is a reset label that changes the state to qa
(regardless of the previous state). The automatonA2 is a permutation

automaton, as the label (b,qa ) permutes both states, while all other

labels perform the identity permutation.

Queries and enumeration

In this paper a query is a formula of monadic second order logic
(MSO) with only first-order free variables. The signature of MSO
queries on strings uses as universe all positions in a string, a linear
order < over the positions and for each symbol a, a unary relation
Ra that contains exactly those positions labeled a. In the following,

we use the relations ≤, ≥, > and = that can be derived from < in
the usual manner and we identify Ra with a, i.e., we write a(x ) to
denote that position x is labeled a.

It is well known that over words, sentences of MSO correspond
to regular languages. In the non Boolean case the answers of the
query are the tuples of positions making the formula true.

We say that a query q can be enumerated using linear preprocess-
ing time and constant delay over a class of databases (in this paper
strings) if there exists an algorithm working in two consecutive
phases given a database D in the class:
• a preprocessing phase, computing in linear time1 an index
structure;
• an enumeration phase, outputting one by one and without
repetitions the set of answers to q over D with a constant
time delay between any two consecutive outputs.

If moreover the intermediate index structure can be updated
in logarithmic time upon an update of the databases we say that
the enumeration algorithm has logarithmic time for updates. We
consider the following updates: relabeling of a position, insertion
and removal of individual positions.

3 REDUCTION TO THE UNARY CASE

In this section we reduce the problem to the unary case. Given a
procedure that can enumerate unary MSO queries in lexicographic
order with constant delay and logarithmic updates after linear pre-
processing time, we show how to extend it to arbitraryMSO queries.
This is based on classical composition lemmas for MSO over words
and a normal form forMSO due to Simon’s factorization forests.

We assume that from any unary MSO query ψ and any string
v we can have, after a pre-processing time linear in |v |, a function
next(ψ ,x ) that computes from any position x of v the smallest
position y > x such that v |= ψ (y) in constant time. Moreover this
function can be maintained in logarithmic time upon updates. We
will see in Section 4 how this can be achieved. Our goal in this
section is to extend the unary case to arbitraryMSO queries.

3.1 Monomials: simple binaryMSO queries

We first lift the unary case to simple binary queries that are called
monomials.

A monomial over a finite alphabet A is a regular expression of
the form a0A∗1a1A∗2 · · ·A

∗
mam where the ai are in A and the Ai are

subset of A. They define binary queries over words v in A∗: the set
of pairs of positions (x ,y) such that the factor between x and y is
in the language defined by the regular expression.

We will use the following properties of monomials

Proposition 3.1. Let Ψ = a0A∗1 · · ·A
∗
mam be a monomial query

and (x1,y1), (x2,y2), and (x3,y3) be answers to Ψ on a stringv . Then
the following statements are true:

(a) Monotonicity 1: yi = min{z | v |= Ψ(xi , z)} and x1 ≤ x2 imply

y1 ≤ y2
(b) Monotonicity 2: yi = max{z | v |= Ψ(xi , z)} and x1 ≤ x2 imply

y1 ≤ y2
(c) Continuity: x1 = x3 and y1 ≤ y2 ≤ y3 imply v |= Ψ(x1,y2)

1We use the RAM model of computation, which is standard when dealing with linear
time.



Proof. We start with (a). Towards a contradiction, assume y2 <
y1. Let z1

1, . . . , z
1
m be positions attesting that v |= Ψ(x1,y1), i.e.,

vz1
i
= ai for i ∈ [0,m] and v[z1

i +1,z1
i+1−1] ∈ A

∗
i+1 for i ∈ [0,m − 1].

Let analogously z2
1, . . . , z

2
m be positions attestingv |= Ψ(x2,y2). Let

k be the smallest number such that z1
k ≥ z2

k (exists becausey2 < y1).
As v[z1

k−1+1,z1
k−1] ∈ A

∗
k , we can conclude that v[z1

k−1+1,z2
k−1] ∈ A

∗
k

and therefore the positions

z1
1, . . . , z

1
k−1, z

2
k , . . . , z

2
m

are attesting v |= Ψ(x1,y2). Hence y1 ≤ y2, a contradiction.
We now prove (b). Towards a contradiction, assume y2 < y1.
Let z1

1, . . . , z
1
m be positions attesting that v |= Ψ(x1,y1), i.e.,

vz1
i
= ai for i ∈ [0,m] and v[z1

i +1,z1
i+1−1] ∈ A

∗
i+1 for i ∈ [0,m − 1].

Let analogously z2
1, . . . , z

2
m be positions attestingv |= Ψ(x2,y2). Let

k be the smallest number such that z1
k ≥ z2

k (exists becausey2 < y1).
As v[z1

k−1+1,z1
k−1] ∈ A

∗
k , we can conclude that v[z1

k−1+1,z2
k−1] ∈ A

∗
k

and therefore the positions

z2
1, . . . , z

2
k−1, z

1
k , . . . , z

1
m

are attesting v |= Ψ(x2,y1). Hence y1 ≤ y2, a contradiction.
It remains to prove (c). We consider two cases depending on the

relative position of x1 and x2.
Assume x1 ≤ x2. If y2 = y3 we are done. So assume y2 < y3.

The construction of the proof of (a) then gives a witness for v |=
Ψ(x1,y2) as desired.

Assume now x2 ≤ x1. If y2 = y1 we are done. So assume y1 < y2.
The construction of the proof of (b) then gives a witness for v |=
Ψ(x1,y2) as desired. □

Given a monomial query Ψ and a string v , call “blue” a position
of the set of the first projection of the answers to Ψ on v and “red”
a position of the set of the second projection. Hence Ψ returns a
subset of the pairs of blue-red nodes. Positions are naturally ordered
by the order on v . The proposition says that given a blue node, the
set of red nodes that forms a solution with it forms a segment
among the red nodes (continuity). Moreover this segment shifts to
the right when we move from one blue node to the next one to its
right (monotonicity).

This justifies the following unaryMSO queries associated to any
monomial Ψ:

Ψ1 (x ) = ∃y Ψ(x ,y)

Ψ2 (y) = ∃x Ψ(x ,y)

Ψmin
2 (y) = ∃x

[
Ψ(x ,y) ∧ ∀y′ < y ¬Ψ(x ,y′)

]

Ψmax
2 (y) = ∃x

[
Ψ(x ,y) ∧ ∀y′ > y ¬Ψ(x ,y′)

]

Ψ∗1 (x ) = ∃y
[
Ψ(x ,y) ∧ (∀y′ < y ¬Ψ(x ,y′)) ∧

∀x ′ < x [Ψ1 (x
′) → ∃y′′ < y Ψ(x ′,y′′)]

]

Ψ∗∗1 (x ) = ∃y
[
Ψ(x ,y) ∧ (∀y′ > y ¬Ψ(x ,y′)) ∧

∀x ′ < x [Ψ1 (x
′) → ¬Ψ(x ′,y)]

]

The first two queries compute the blue and red nodes. The third
and forth queries compute the set of red nodes that are minimal
(resp. maximal) for some blue node. The fifth and sixth query return

Algorithm 1 Enumerate Monomial

1: function next(x ,y,ymin,ymax)
2: if y < ymax then

3: y ← next(Ψ2,y)
4: else if x < xmax then

5: x ← next(Ψ1,x )
6: if Ψ∗1 (x ) then ymin ← next(Ψmin

2 ,ymin)
7: if Ψ∗∗1 (x ) then ymax ← next(Ψmax

2 ,ymax)
8: y ← ymin

9: output(x ,y)

those blue nodes that induce a strict shift of their associated red
segment.

We now show how to enumerate monomial queries assuming
we can enumerate their associated unary MSO queries. The lexi-
cographically smallest solution can simply be computed by taking
the smallest blue node with its associated minimal red node. These
nodes can be obtained in constant time, as we assume that unary
queries can be enumerated lexicographically. The enumeration
of the remaining solutions is based on the function described in
Algorithm 1. Given a solution (x ,y) this function computes in con-
stant time the next solution. The enumeration is then trivial. The
algorithm assumes that we have precomputed a global constant
called xmax denoting the maximal blue node. It also maintains two
variables ymin and ymax containing the minimal and maximal y
associated to the current solution x .

We note that the calls to next in the Algorithm are enumerating
the unary MSO formulas Ψ1, Ψ2, Ψmin

2 , and Ψmax
2 . They are not

recursive calls.
We first show that the algorithm is correct. If the test of line 2 is

true then it follows from Proposition 3.1(c), that the next solution
is indeed computed by line 3. Otherwise the next solution is the
next blue node and the next minimal associated red node. Line 5
computes the next blue node and line 6 computes the associate
minimal red nodes. It is either the current one or the next one as
shown by Proposition 3.1(a). It remains to updates value of ymax
and this is done by line 7. It’s correct because of Proposition 3.1(b).

We now argue that it can be implemented to work in constant
time. The only difficulty are the tests Ψ∗1 and Ψ∗∗1 in lines 6 and 7.
These tests can be done in constant time by making use of the fact
that we go through the blue nodes in increasing order, as we assume
that enumeration of unary queries can be done lexicographically.
We argue for Ψ∗1 (x ), the tests for Ψ

∗∗
1 can be eliminated in the same

way.
In order to perform the test Ψ∗1 (x ) we add an extra variable x∗

that we initialize with the second value2 satisfying Ψ∗1 . We then
replace the test Ψ∗1 (x ) with x = x∗. If the test is true then we replace
x∗ with next(Ψ∗1 ,x∗) before proceeding. If the test is not true, then
x < x∗, and we are sure that Ψ∗1 is not true.

Finally note that there is no extra preprocessing. The only pre-
processing is the one of the unary queries associated to Ψ. And
those can be updated in logarithmic time. This solves the monomial
case. Notice that the enumeration is done in lexicographical order.

2The first value satisfying Ψ∗1 is the first blue node.



3.2 From monomials to arbitraryMSO queries.

Of course monomials are definable inMSO. It turns out that, modulo
recoloring, MSO queries are essentially Boolean combination of
monomials. This observation is a simple consequence of a result by
Colcombet and has been used in several places, for instance [16].
For the sake of completeness we sketch the proof below. All details
are present in [16].

Adding unary MSO interpretation to monomials. We note that
the enumeration procedure for monomials presented in Section 3.1
immediately extends to monomials where each letter is interpreted
as a unaryMSO query. That is, a(x ) should be understood as ϕa (x )
for some unary MSO query ϕa , or in more detail, a monomial
a0A∗1a1A∗2 · · ·A

∗
mam should be understood as the formula that says

that there are positions x0 < x1 < · · · < xm , such that ϕai (xi )
holds for each i and every position y between xi−1 and xi satisfies
ϕa (y) for some a ∈ Ai . Indeed none of the proofs in Section 3.1
relies on the fact that a is a letter but just on the fact that it is a
property of the current position.

From monomials to binary queries. This is a key step that follows
from Colcombet’s normal form of MSO over words [10]. This result
says that any binary MSO query is equivalent, over words, to a
query of the form ∃ȳ∀z̄θ where θ is a Boolean combination of atoms
of the form a(x ) or x < y and unary MSO formulas. It is then easy
to see that such formulas are union of monomials with unary MSO
interpretations for letters [3, 21]. See [16] for details.

Each monomial of the union can be enumerated lexicographi-
cally with constant delay and logarithmic updates from Section 3.1.
Because the enumeration is lexicographic, the whole union can also
be enumerated with constant delay (folklore, see for instance [13]).
The enumeration stores the last seen result for each monomial of
the union and always outputs the smallest of these results.

From binary queries to arbitrary queries. This is a simple conse-
quence of the Composition Lemma: any MSO query over words is
a union of conjunctions of binary queries. Each conjunct induces
a linear order constraint among all variables. Hence the union is
strict, i.e. no answer can be an answer of two disjuncts, and each
disjunct can be treated separately. Furthermore we can assume that
each disjunct involves consecutive variables in the linear order. We
therefore have an induced linear order among the formulas of the
conjunct that can be treated lexicographically one by one using the
procedure described above.

Altogether this shows that once the unary case is solved, any
MSO query can be enumerated with constant delay and logarithmic
updates after a linear pre-processing phase.

4 ENUMERATION OF UNARY QUERIES

In this section we consider only relabeling updates and give an
enumeration algorithm for unaryMSO queries. We use a data struc-
ture allowing for constant delay enumeration and logarithmic time
updates. We only give in this section a high level description of the
data structure with its main features. In Section 5 we provide the
technical details of its implementation. In Section 6 we will see how
to handle the remaining updates such as insertions and removals.
It turns out that relabeling is the hardest case.

Theorem 4.1. On strings, unary MSO queries can be enumerated

using linear preprocessing time, constant delay and logarithmic time

for relabeling updates.

As usual when dealing with MSO formula, the constants are
non-elementary in the size of the formula. In order to get better
constants one needs to use equivalent but more verbose query
languages.

The rest of this section is devoted to the proof of Theorem 4.1.
The first step is to decompose a unary MSO query into regular
languages. This is based on the following folklore result3:

Lemma 4.2. To any unaryMSO query Ψ(x ) there exists a finite set
I and Boolean MSO formulas Φi, left and Φi,right for i ∈ I such that

for every word v of length n and any position a of v we have

v |= Ψ(a) iff

∨
i ∈I

(
v[1,a] |= Φi, left ∧v[a,n] |= Φi,right

)
.

Because Boolean MSO formulas define regular languages, we
view the Φi, left and Φi,right as regular languages. Because regular
languages are closed under Boolean operations, we can further
assume in Lemma 4.2 that the union is disjoint. We can therefore
treat each component of the disjunct separately as this will not give
any duplicate during the enumeration phase. In the following we
assume that we work with a unary MSO query Ψ(x ), given as a
pair (Φleft,Φright) of regular languages as in Lemma 4.2.

In Subsection 4.1, we provide a data structure allowing for con-
stant delay enumeration and logarithmic time updates for the unary
query returning those positions x such that initial segment up to x
belongs to the regular language Φleft. The case of Φright is mostly
symmetric to the previous one and is briefly described in Section 4.2.
The data structure representing Ψ(x ) is essentially a cross-product
of the previous two structures. In Subsection 4.4 we sum up and
give the proof of Theorem 4.1.

For our example query Φ(x ), Lemma 4.2 yields exactly one pair of

languages, where the left language is the language defined by the

automaton A of Figure 1 and the right language accepts every string,

as Φ(x ) does not care which symbols occur to the right of x .

4.1 Data structure for Φleft

Let AT
1 ◦ · · · ◦ A

T
m be the transducers decomposing the regular

language Φleft as given by Theorem 2.1. By construction, each trans-
ducer is either a reset transducer or a permutation transducer. We
assume that Ai has Qi as set of states, δi as transition function,
Σi as alphabet and, in the case of permutation transducer, Gi as
associated group and hi as associated homomorphism function
Σi → Gi .

The general idea is as follows. Given an input string v our data
structure maintains its cascade images by the various transducers,
i.e. AT

1 (v ), AT
2 (AT

1 (v )) and so on. We view each string as a layer,
the bottom layer being v , the bottom but one layer being AT

1 (v )

and the top layer beingAT
m (· · · (AT

1 (v )) · · · ). For each string in the
data structure, we make sure we can enumerate with constant delay
all positions having a label from a fixed set of labels. Applying this
to the top string and to the accepting states yields the constant delay
enumeration. Updates are propagated bottom-up. The relabeling
3It can be proved using a simple Ehrenfeucht-Fraïssé game argument.



update on Sℓ−1: vi ← σ v[i, j] ← w[i, j]

for every q ∈ Qℓ : v
q
i ← (σ ,q) v

q
[i, j] ← w

q
[i, j]

v↑i ← (σ , projectQℓ
(v↑i )) v↑[i, j] ← w↑[i, j]

v↑[i+1,kvi ] ← v
pvi+1
[i+1,kvi ] v↑[i,kvi ] ← v

pvi
[i,kvi ]

v↑[j+1,kvj+1] ← v
pwj+1
[j+1,kvj+1]

for every д ∈ Gℓ : v
д
i ← (σ , projectGℓ

(vд )) v
д
[i, j] ← w

д⊙д2
[i, j]

v
д
[i+1,n] ← v

д⊙д1
[i+1,n] v

д
[j+1,n] ← v

д⊙д3
[j+1,n]

where
• kvi

def
= first position of a reset label in v after i

• pvi
def
= δ (projectQℓ

(v↑i−1),vi−1)

• д1
def
= hℓ (v[1,i−1]) ⊙ hℓ (σ ) ⊙ hℓ (v[1,i])

−1

• д2
def
= hℓ (v[1,i−1]) ⊙ hℓ (w[1,i−1])

−1

• д3
def
= hℓ (v[1,i−1]) ⊙ hℓ (w[i, j]) ⊙ hℓ (v[1, j])

−1

Table 1: How updates are propagated from layer Sℓ−1 to layer Sℓ . Top: Update in in a string v of Sℓ−1. Middle: Update if Sℓ is a
reset layer. Bottom: Update if Sℓ is a permutation layer.

of the bottom layer may require various updates to the next layer
which in turns may require significant changes to the next layer
and so on. We cope with this problem as follows: we enrich the data
structure with several string at each layer, intuitively each added
string contains a precomputation of one of the expected changes,
and we allow for internal updates slightly more complicated than
just relabeling.

We now turn to the details. To each ℓ ≤ m we associate the layer
set Sℓ defined by induction assuming S0 contains exactly one string
vinput, which is the current input string:

Sℓ ={v
↑ | v ∈ Sℓ−1} ∪ {v

q | v ∈ Sℓ−1,q ∈ Qℓ }

if AT
ℓ is a reset transducer

Sℓ ={v
д | v ∈ Sℓ−1,д ∈ Gℓ }

if AT
ℓ is a permutation transducer

Here, for v = σ1 . . . σn , vq is the string (σ1,q) . . . (σn ,q) for each
q ∈ Qℓ and vд is the string vд = (σ1,д1) . . . (σn ,дn ) with д1 = д
and дi+1 = δℓ (дi ,αi ).

We note that for permutation layers, v↑ = v1, hence each layer
ℓ contains the image by AT

ℓ
of all strings of the previous layer.

Notice that all Sℓ can be easily computed in linear preprocessing
time.

In our running example, we thus have three layers, S0, the lowest one
containing the input string, S1, the middle one associated to the reset

automaton A1 from Figure 2, and S2, the upper one, associated with
the permutation automaton A2 from Figure 2.

We will illustrate our algorithm with the string u = cbabcb. In this

case, initially S0 contains the string u, S1 initially contains the three

strings

u↑ = (c,qε ) (b,qε ) (a,qε ) (b,qa ) (c,qa ) (b,qa ) ,

and

uq = (c,q) (b,q) (a,q) (b,q) (c,q) (b,q) for q ∈ {qε ,qa } .

We allow the following updates on the strings in Sℓ :

Definition 4.3 (Update Operations). Here,v andw are strings

from Sℓ , and i and j are positions.

• relabel: vi ← σ

• replace: v[i, j] ← w[i, j]

The relabel operations changes the label at position i to σ , while
the replace operation replaces the substring of v from position i
to position j (inclusive) with the substring that resides inw at the
same position.

In our running example we will consider an update u1 ← a that

changes the first position of u to label a.

Furthermore, the data structure allows the following queries:

Definition 4.4 (String qery operations).
• searchlabel→ (v, i, Σ′), searchlabel← (v, i, Σ′)
• enumerate(v, Σ′)

The searchlabel operation returns the biggest (smallest) position in v
with some label σ ∈ Σ′ that is equal or larger (equal or smaller) than

i . The enumerate operation enumerates all positions in v with some

label σ ∈ Σ′.

We show in Section 5, how these operations (except enumerate)
can be implemented to take only logarithmic time. Furthermore, we
will show that enumerate works with constant delay. Obviously,
each layer has to react to any of the updates listed in Definition 4.3
from the previous layer. To ensure overall logarithmic time updates,
each layer may do only constantly many updates for each update of
the previous level. We show how this is done in the remaining part
of this section. The propagation of the updates are summarized in
Table 1. In the table we use projectQℓ

to denote the projection of
some symbol to its component from Qℓ , i.e., keeping only the state
from automaton Aℓ and disregarding all other information. The
projection is extended from symbols to strings in the obvious way.

Reset layer. Assume AT
ℓ
is a reset transducer and that a relabel

vi ← σ is performed on a string v of Sℓ−1. In order to update Sℓ
we need to do the following: First we need to change the label at
position i of all strings of Sℓ that are derived from v . Second we
need to make sure that the states of v↑ are modified appropriately.
To do this let p be the state reached byAT

ℓ
onv at position i (which

can be recovered using projectQℓ
(v↑i )) as in Table 1). Let q be the

state δℓ (p,σ ) (denoted pvi+1 in Table 1). Notice that q is the new
state of the transducer AT

ℓ
at position i + 1 after reading σ in state

p. Because AT
ℓ
is a reset transducer this state remains unchanged

until a reset letter is read. Let j be this position (denoted kvi in



Table 1). Notice that j can be computed from our data structure
using the query searchlabel→ (v, i, Σ′) where Σ′ contains all reset
letters of AT

ℓ
. Notice that because AT

ℓ
is a reset transducer, all

positions of v↑ before i and after j are unaffected by the update
on v . Hence Sℓ is correctly updated by the sequence of updates
depicted in Table 1: vui ← (σ ,u) for all u ∈ Qℓ , v

↑

i ← (σ ,q), and
v↑[i+1, j] ← v

q
[i+1, j]. This illustrates the need for the replace update

as the interval [i + 1, j] may be large.

The update u1 ← a from our running example, yields the relabel
updates u

qε
1 ← (a,qε ), u

qa
1 ← (a,qa ), and u

↑

1 ← (a,qε ), and the

replace update u↑[2,3] ← u
qa
[2,3], as position 3 is the next position after

1 with the reset label a.

Permutation layer. Assume now that AT
ℓ
is a permutation trans-

ducer and that a relabel vi ← σ is performed on a string v of Sℓ−1.
In order to update Sℓ we need to do the following: First we need
to change the label at position i of all strings in Sℓ that are derived
from v . Second we need to make sure that the states of each such
strings are updated starting from position i + 1. This second opera-
tion can be done using the fact thatGℓ is a group and that we have
already computed vд for all д ∈ Gℓ . Let дσ = hℓ (σ ) be the group
element associated to σ . Let дi be the group element reached by
AT

ℓ
at position i when running on v starting in the identity state.

The new next state of AT
ℓ
at position i + 1 is now ддiдσ and the

remaining states can be computed by resuming the computation
from there. Notice now that ддiдσ is also the state reached at po-
sition i + 1 by AT

ℓ
on v before the update when starting in state

h = ддiдσ (дiдa )
−1. Hence all the remaining computation is already

present in vh . The updates of Sℓ can therefore be done using re-
place operations: vд[i+1,n] ← vддiдσ (дiдa )

−1
for each д ∈ Gℓ . We

note that all these replacements should be done in parallel, effec-
tively permuting the suffixes of the strings. The operations can be
serialized using an additional string vtemp ∈ Sℓ that that allows for
cyclic exchanges.

The relabel u1 ← a from our running example has triggered (among

others) the relabel update u↑1 ← (a,qε ) on S1. This update triggers

in particular the relabel updates u↑,q0
1 ← (a,qε ,q0). As this shift the

count of a from the second position, we obtain the new computation

by reading the string u↑,q1
from the second position: u

↑,q0
[2,n] ← u

↑,q1
[2,n].

In parallel we perform a similar change on u↑,q1

The remaining cases are treated similarly and are depicted in
Table 1 showing:

Proposition 4.5. The updates given in Table 1 are correct.

Notice that that one update of Sℓ−1 triggers a constant number
of updates in Sℓ . The total number of updates is thus independent
from the length of the strings but exponential in the number of
layers.

This concludes the description of our data structure for Φleft.
Assuming the data structure can implement the operations of Defi-
nition 4.4 in logarithmic time, we have seen that the structure can
be updated in logarithmic time. Moreover the output string of the
last layer associates to each position i of the current input string

the state of the automata equivalent to Φleft that is reached when
running from the initial position of the string.

4.2 Data structure for Φright

For the Boolean query Φright, and its decomposition into transduc-
ers, we compute a similar structure. Our goal is here to have at any
position information that allows us to determine whether the suffix
is in the language defined by Φright.

For this we mirror what we have done in the previous subsection.
We consider the mirror language consisting of all strings w such
that when read from right to left the sequence belongs to Φright.

We then proceed as in the previous subsection except that all
transducers given by Krohn-Rhodes theorem now read the string
from right to left. In particular, when updating reset layers, we have
to search the next reset state to the left using searchlabel← instead
of searchlabel→.

4.3 Join Layer

From Sections 4.1 and 4.2 we obtain two data structures Sleft and
Sright that can be updated in logarithmic time. Here, Sleft and Sright
refer to the topmost layer of each structure. We add in this section
on top of them a new layer S▷◁ that combines both of them.

If v and w are two strings of length n we define v ▷◁ w as the
string of length n over the product alphabet where each position
contains the labels of v andw at this position.

We define S▷◁ = {v ▷◁ w | v ∈ Sleft,w ∈ Sright}. We note that S▷◁
can be computed in time linear in n. We now describe how we react
to an update in Sleft or Sright. By symmetry we only consider the
case where the update occurs in Sleft.

vi ← σ (v ▷◁ w )i ← (σ ,wi )
v[i, j] ← w[i, j] (v ▷◁ w )[i, j] ← (w ▷◁ u)[i, j]
It is straightforward to verify that the updates are correct wrt.

the definition of S▷◁ .

4.4 Putting Everything Together

It is now straightforward to prove Theorem 4.1.

Proof. Let Ψ(x ) be a MSO unary query. By Lemma 4.2 we
can assume without loss of generality that Ψ(x ) consists in a pair
(Φleft,Φright) where Φleft and Φright are regular languages and Ψ(x )
returns all the positions i of a word such that the prefix is in Φleft
and the suffix is in Φright.

Given a stringv we build from it the data structure of Sections 4.1
to 4.3. It follows from these sections that this structure can be built
in time linear in the size ofv and can be updated in time logarithmic
in the size of v . It remains to show that it allows for constant delay
enumeration.

For this, by construction of the structure, each position i of
the output string of the data structure contains the state of the
automata for Φleft when executed from the beginning of the string
and the state of mirror of Φright when executed from the end of the
string. Let ΣX be the set of all labels that indicate that the position
should be in the output of Φ(x ). Using enumerate(v ′, ΣX ) we can
enumerate all positions satisfying Φ(x ), where v ′ is the output
string of the data structure. □
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Figure 3: Datastructure representing two strings v and w af-

ter the operation v[4,6] ← w[4,6].

5 STRING MANIPULATION DATA

STRUCTURE

In this section we describe a data structure that can perform the
operations used in the high-level algorithm we presented in the
previous section. We split this description into two parts: First, we
specify a basic data structure that supports all operations except
enumeration.4 Afterwards, we describe an advanced data structure
that is an extension of the basic data structure and additionally
supports constant delay enumeration.

5.1 Basic Data Structure

In order to simplify the presentation we assume that the length of
each string is n = 2k for some natural number k . We represent a
stringv by a full binary tree tv of height k . The string is represented
at the leaves. Each leaf node x has
• an alphabet label σ (x );
• an integer pos(x ) from [1,n] identifying its position in the
string.

Each inner node x has
• a label lab(x ) ∈ 2Σ denoting the set of all labels used by the
leaves below x ,
• two pointers ↙(x ) and ↘(x ) for the left and right child,
respectively,
• the interval [i, j] of the positions of the leaves below x .

A set S of strings is then represented by an acyclic graph contain-
ing a tree tv for each string v ∈ S . We note that nodes of the graph
can be part of several strings. However, if a leaf node is part of two
strings tv and tw , then it will always be in the same position pos(x )
in v and w and vpos(x ) = wpos(x ) = σ (x ). If some inner node x is
part of two strings v andw , then it represents the same substring
in both strings.

In Figure 3, we depict the data structure S for two stringv andw
that share some leaf nodes and one inner node. This is exactly the
data structure, our algorithm would produce after the operation
v[4,6] ← w[4,6] is applied to two strings that did not share any
nodes before.

Note that given a node x we can easily compute the path from
the root to x . Moreover it is possible to test whether x is part of
some tree tv in logarithmic time looking at its associated interval
[i, j] and then following the corresponding path starting from the
root of tv .

4Actually, the basic data structure allows for enumeration, but with logarithmic delay,
while we need constant delay.

Given all strings in S , the data structure is initialized in linear
time by computing a separate tree tv for each string v .

We now explain how the structure evolves after each update
operation and how each operation can be performed within the
desired time constraints.

In order to prove formal correctness, we make sure the data
structure satisfies the following invariants that should hold for
each string v ∈ S before and after each operation. In the following
tv is the binary tree representing v and x1, . . . ,xn are the leaves of
tv from left to right.
(inv1) v = σ (x1) . . . σ (xn );
(inv2) for each inner node x of tv , lab(x ) contains exactly those

symbols of Σ that are used by the leaves below x ;
Wemake sure that the initialization enforces the invariants (inv1)

and (inv2). We now shortly describe how we can handle the “read”
operations, before we describe how to handle the update operations.

5.2 Read Operations

The operation searchlabel→ (v, i, Σ′) is implemented as follows:
Compute the path from the root of tv to xi , the leaf representing
vi . If σ (xi ) ∈ Σ′, return xi . Otherwise go up from xi until visiting a
node x , where xi is in the left subtree and the right subtree contains
some σ ′ ∈ Σ′, i.e. Σ′ ∩ lab(↘(x )) , ∅. Find the leftmost leaf y in
the subtree rooted at↘(x ) such that σ (y) ∈ Σ′ using the labels of
the inner nodes.

The operation searchlabel← (v, i, Σ′) is fully symmetric. The op-
eration enumerate(v, Σ′) can be implemented with logarithmic
delay using searchlabel→. A constant delay implementation is de-
scribed below in Section 5.4.

5.3 Updates

The operations changing the data structure will all use the following
three steps. Only the details of these steps (especially the second
step) are different.
1. Ensure that inner nodes whose child pointers or labels change

are only used by one tree.
2. Do the actual update by changing the child pointers of some

inner nodes and possibly adding a new leaf node.
3. Update the labels of inner nodes5.

The first step ensures that for all unchanged strings, their tree
structures will not change. Therefore the invariants (inv1) and (inv2)
are maintained for them.

For this first step we introduce an operation isolate(v,x ) that
takes as argument a string v and a node x of tv . For each y in the
path from x to the root of tv , if y also belongs to tw forw , v , then
it creates a fresh copy of y and changes the pointers such that tv
uses this new copy (all other trees are unchanged.) For a set X of
nodes, isolate(v,X ) performs the operation isolate(v,x ) for each
x ∈ X .

The second step reestablishes the invariant (inv1) for changed
strings. The implementation details differ for the different update
operations.

The third step reestablishes (inv2) for changed strings. It essen-
tially consist in label changes.

5We never change labels of leaf nodes.



We now describe the individual update operations and argue
that each operation maintains all invariants.

•We start with the relabel operation vi ← σ .
Let xi be the leaf representing vi in tv . We do the following

operations:
1. isolate(v, parent(xi ))
2. Change the child pointer in parent(xi ) to point to a new node
yi labeled σ .

3. Update the set of used symbols in the ancestors of parent(xi ).
It is easy to see that invariants (inv1) and (inv2) are maintained.

The runtime is logarithmic, as each step can be implemented in
logarithmic time.

•We continue with the replace operation v[i, j] ← w[i, j].
Let Xv

[i, j] be the set of all inner nodes x of tv such that the
interval associated to x is included in [i, j] and is maximal with
respect to this property: the interval associated to the parent of x is
not included in [i, j]. It is straightforward to check that all nodes in
Xv

[i, j] are either on the path from the root to vi or on the path from
the root to vj . Hence Xv

[i, j] contains at most logarithmically many
nodes of tv (Xv

[i, j] contains at most two nodes per depth level) and
can be computed in logarithmic time.

Let f : Xv
[i, j] → Xw

[i, j] be the bijection between Xv
[i, j] and X

w
[i, j]

that connects nodes whose subtrees represent the same interval.
The update consists of the following steps:

1. isolate(v,Xv
[i, j])

2. for each node x ∈ Xv
[i, j], replace the pointer to x in parent(x )

by a pointer to f (x ).
3. Update the set of used symbols in the ancestors of the nodes in

Xv
[i, j].

All the operations can be performed in logarithmic time. Once
we have computed the paths (and corresponding paths in all other
strings of S to determine which nodes need to be isolated in Step 1),
all required updates to inner nodes of tv can be done in constant
time per node. Note that all affected nodes are in Xv

[i, j] or ancestors
of those nodes, thus all affected nodes are on the paths from the
root to vi and to vj .

It is also easy to check that the operations maintain invari-
ants (inv1) and (inv2).

This finishes the description of the basic data structure.

5.4 Advanced Data Structure

The basic data structure is all we need for the lower layers of our
data structure. However for enumeration of S▷◁ , we need one more
operation: enumerate. We note that the list of labels that should be
enumerated is fixed and known in advance. Therefore, we provide
an implementation that enumerates exactly those positions of a
string v , that are labeled by some symbol from a fixed set ΣX .

Wewrite x →v y to denote that the nodey should be enumerated
after node x when enumerating v , i.e., x ,y ∈ tv , σ (x ),σ (y) ∈ ΣX ,
pos(x ) < pos(y), and there is no z ∈ tv with σ (z) ∈ ΣX and
pos(x ) < pos(z) < pos(y).

The basic idea of our implementation is that for each pair of leaf
nodes x ,y with x →v y for some string v , we add a pointer from x

to y. Using these pointers, the enumerate operation can be easily
implemented.

The difficulty is to maintain those pointers in logarithmic time.
There are essentially two problems. First, a leaf node can be part of
several trees and therefore requires several pointers, we then need
a way to choose which one we need to follow. Second, a replace
operation v[i, j] ← w[i, j] can insert linearly many leaves from a
tree tw into a tree tv . It is not possible to update the pointers of all
these leaves during an update. Therefore, somehow, the existing
pointers of tw have to be used when enumerating the stringv in the
interval [i, j]. However, when leaving this interval, the enumerating
algorithm should not follow pointers from tw any more, but has to
continue in tv .

Our idea to solve this problem is to give priorities to pointers. For
instance after a v[i, j] ← w[i, j] operation, when enumerating v , the
algorithm should by default follow the pointers of v and only use
pointers ofw when those for v are not available, giving priority to
the v-pointers. Hence during the replace operation v[i, j] ← w[i, j],
we just add a v-pointer from the last ΣX -node of v before position
i to the first ΣX -node of w in the interval [i, j], and another v-
pointer to the last ΣX -node of w in the interval [i, j] pointing to
the first ΣX -node of v after position j . This way, v can be correctly
enumerated after the replace update.

However, we still need to refine our solution. Consider the se-
quence of updates v[i, j] ← w[i, j], v[i, j] ← u[i, j], v[i,k] ← w[i,k]
with k > j. After the second replace, there is a dangling v-pointer
left at the node x in position j of w that is not currently used by
v . This pointer will confuse the enumeration algorithm after x is
reinserted into v by the last replace operation. Unfortunately, we
cannot simply remove all dangling pointers after a replace, because
there can be many of them. Thus we need a way of invalidating
old pointers, which leads us to the following definition, where each
pointer carries some information about the pointers that should be
followed during the further enumeration.

We associate to each leaf node x a set of pointers pointers(x ).
We denote by source(p) and target(p), the source and target of the
pointer p. In particular if p ∈ pointers(x ) then its source is x . We
associate to each pointer p a label which consists of a set of pointers,
denoted label(p). The idea of the label is as follows. By default,
label(p) contains exactly one pointer, which is the next pointer
to use after outputting the target of p. After a replace operation
v[i, j] ← w[i, j], label(p) may contain two pointers p1, p2, where p1
is the next pointer to follow (pointing to some node ofw), and p2 is
some pointer pointing back to some node inv at the end of interval
[i, j]. Once the enumeration reaches source(p2) it should follows
p2 and no other pointers with that source.

We add dummy nodes before and after each string that are la-
beled with some label from ΣX and are never modified. We use
these dummy nodes to avoid all case distinction regarding whether
a node is the first or the last one in a string carrying some label from
ΣX . The first node of each string v will always contain a pointer
to the first real ΣX -position of v . The last real ΣX -position of v
always points to the dummy node at the end.

We use the notation p = x
{p1, ...,pk }
−−−−−−−−−→ y to denote that pointer

p points from node x to node y and has label(p) = {p1, . . . ,pk }.



Algorithm 2 Enumerate String
The internal state consists of
• x ▷ the last visited node
• P = {p1, . . . ,pk } ▷ a set of pointers

1: function startEnumerate(v)
2: x ← xv
3: P ← pointers(xv )

4: function next
5: p ← p′ s.t. p′ ∈ P and source(p′) = x
6: x ← target(p)
7: P ← P \ {p}
8: P ← P ∪ {q ∈ label(p) | ∀r ∈ P . q < r }
9: output(pos(x ))

• • • • • • •w
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Figure 4: Example showing the use of pointers in the ad-

vanced data structure

The label is omitted if it is not relevant. We write p < r to denote
pos(source(p)) < pos(source(r )).

The advanced data structure is initialized just as the basic struc-

ture. Afterwards, a pointer px = x
{py }
−−−−→ y is added for each pair of

leaf nodes x ,y that satisfy x →v y for some v .
Before explaining how we maintain those pointers, let’s have a

look at the enumeration algorithm, Algorithm 2, to see the indented
meaning of the labels. During the enumeration of v , while visiting
the node x , the algorithm maintain a set P , called P (v,x ) in the
sequel, that contains a set of pointers, all with different sources,
that we must follow later during the enumeration. In particular
P (x ,v ) always contains a pointer p with source x that provides the
next element to output. When switching from x to y the program
removes p from P (v,x ) (line 7) and adds all q ∈ label(p) to P , if
the source of q has a smaller position than the positions of all
sources of nodes already in P (v,x ), enforcing a stack discipline
in P (v,x ) (line 8). Later, we show that each P (v,x ) and therefore
the set P in Algorithm 2 has constant size. We let p (v,x ) be the
maximal entry of P (v,x ), i.e., the pointer with the rightmost source
node. Intuitively, p (v,x ) is the pointer that ultimately returns to
the string v , even after many replace updates. In the extreme case,
it just points to the dummy node at the end of v .

Example 5.1. In Figure 4, we depicted the relevant pointers of

three strings u, v , and w after the operations v[3,5] ← w[3,5] and
u[2,4] ← v[2,4]. Each pointer has a pointer identifier below and the set

label above the arrow For the node marked x in the figure, we obtain

P (x ,w ) = {3}, P (x ,v ) = {3, 9}, and P (x ,u) = {3, 12}.
It becomes clear from the example, why we filter the pointers in

Line 8 of Algorithm 2. Otherwise, P (x ,u) would contain the pointer

Algorithm 3 Clean Pointers

1: function clean(x )
2: V ← {v | x ∈ tv }
3: for v ∈ V do

4: y ← searchlabel→ (v, pos(x ) + 1, ΣX )

5: pv ← x
P (y,v )
−−−−−−→ y

6: q ← q′ s.t. max(label(q′)) = p (x ,v )
7: in label(q) replace p (x ,v ) by pv
8: pointers(x ) ← {pv | v ∈ V }

9, a pointer never reached by the enumeration, as the enumeration

follows pointer 12, which occurs before pointer 9.

The correctness of the enumeration follows from and depends
on the following invariant:
(inv3) For every two nodes x ,y with x →v y for some v there is a

pointer x −→ y in P (x ,v ).
Before we explain the update algorithm, we introduce an impor-

tant helper function. Algorithm 3 takes a leaf node x and changes
the pointers in such a way, that each string v with x ∈ tv uses
a different pointer towards the next node. This way, subsequent
changes to some pointer of x will affect only one string, allowing
updates without interfering with other strings. Furthermore, Algo-
rithm 3 ensures that the number of pointers leaving x is bounded
by |S |.

Algorithm 3 relies on the following invariant:
(inv4) For each x with σ (x ) ∈ ΣX and each two strings v,w with

x ∈ tv and x ∈ tw it holds that p (v,x ) , p (w,x ).
Algorithm 3 replacesp (v,x ) in the pointer that introducedp (v,x )

into P (v,x ) by pv , which is the correct pointer to follow when at x .
This replacement ensures that P (x ,v ) contains onlypv . Algorithm 3
sets label(pv ) such that P (v,y) is not changed and the enumeration
can safely resume from y.

Note that it is not obvious at this point how to compute P (v,x )
and max(label(q)) = p (x ,v ) in constant time. We will see how this
can be achieved.

Example 5.2. To understand Algorithm 3, we again look at Figure 4

and study the changes introduced by the call clean(x ). The algorithm

introduces a new pointer pv = x
{9,4}
−−−−→ y for v and replaces the 9

in label(8) by pv . Similarly, it introduces new pointers pu and pw .
The effect for the enumeration of v is, that pv is used instead of 3.
The set P (v,y) is unchanged as the 9 is reintroduced by pointer pv .
An update to v that requires the pointer leaving x to be changed to a

different node can now be done without interfering with the strings u
andw .

We now present the update algorithms for relabel and replace
updates. We use the notation p ← q to denote that the target node
and label set of pointer p is changed to those of pointer q.

Algorithm 4 starts just like in the basic data structure. After-
wards it adjusts the pointers as needed. In both cases (relabel and
replace), it first searches the position x preceding the update and
uses Algorithm 3 to ensure that each pointer is only used by one
string. If the updated part of the string (interval [i, j] with j = i in



Algorithm 4 Update Advanced Data structure

1: function relabel(v, i,σ )
2: update tv as in basic data structure
3: x ← searchlabel← (v, i − 1, ΣX )
4: x ′ ← searchlabel→ (v, i + 1, ΣX )
5: clean(x)
6: if σ ∈ ΣX then

7: y ← leaf of v at position i

8: pointers(y) ← {y
P (v,x ′)
−−−−−−−→ x ′}

9: p (v,x ) ← x
pointers(y )
−−−−−−−−−→ y

10: function replace(v,w, i, j)
11: update tv as in basic data structure
12: x ← searchlabel← (v, i − 1, ΣX )
13: x ′ ← searchlabel→ (v, j + 1, ΣX )
14: clean(x)
15: if w[i, j] ∩ ΣX , ∅ then

16: y ← searchlabel→ (w, i, ΣX )
17: y′ ← searchlabel← (w, j, ΣX )

18: q ← y′
P (v,x ′)
−−−−−−−→ x ′

19: p (v,x ) ← x
{p∈P (w,y ) | p<q }∪{q }
−−−−−−−−−−−−−−−−−−−−→ y

20: pointers(y′) ← pointers(y′) ∪ {q}
21: clean(y’)

the case of relabel) does not contain any label from ΣX , Algorithm 3
already adjusts the pointer leaving x to the next position x ′ after
[i, j] that has some label from ΣX . Otherwise, it changes the pointer
to point to the first position in [i, j] with a matching label and adds
an additional pointer pointing to x ′ from the last position in [i, j]
with a matching label. Adding the pointer to x ′ is trivial in the
case of relabel, as it leaves from a new node only used by v . The
call clean(y′) ensures that the number of pointers leaving y′ is
bounded by |S |.

While it is easy to see that for each node x , |pointers(x ) | is
bounded by |S |, this is not the case for the sets P (x ,v ). Unfortunately
there exist some bad update sequences that allow P (x ,v ) to grow to
linear size. To not add even more complexity to the data structure,
our solution here is to show that such bad update sequences do not
appear for S▷◁ , as used in Section 4.

Lemma 5.1. In S▷◁ , for each v and and x , |P (v,x ) | is bounded by
|S▷◁ |.

Proof sketch. We call a pointer p a v-pointer, if it was added
on the behalf of v : as pointer pv in Algorithm 3, or in Algorithm 4,
during an update of string v .

It can be shown that P (v,x ) can only get twov-pointers, if there
is a replace operation v[i, j] ← w[i, j], after some node of v was
already introduced intow by a sequence of replace operations, as
in this case P (w,y) could already contain a v-pointer, while the
v-pointer q is added in Line 19 of Algorithm 4.

From the definition of the high-level algorithm in Section 4, we
can conclude that for all sequences of replace operations that copy
some node from v tow that are followed by a replace that copies
some nodes fromw to v it holds that j is always equal to n. In this

case, P (w,y) cannot contain av-pointer, as this pointer would point
to the dummy node at the end ofv , which is never part of the string
w . □

A detailed proof is given in Appendix A. It remains to show that
the invariants (inv3) and (inv4) always hold and the algorithms run
in the given time constraints. We start with the invariants.

Proposition 5.2. Invariants (inv3) and (inv4) are satisfied after
initialization of the data structure and the Algorithms 2, 3, and 4 do

not alter the invariants.

Proof sketch. It is easy to verify that the invariants hold after
initialization, as each node is only used by one string. Furthermore,
Algorithm 2 does not modify the data structure and thus also does
not alter the invariants.

Algorithms 3 and 4 satisfy, that for each string v and node x ,
where p (v,x ) changes, it is changed to a new pointer, only used by
v . Therefore, (inv4) is preserved.

It remains to show that (inv3) is preserved, which can be done
by a careful analysis on the changes of the sets P (v,x ) implied by
the algorithms. □

Proposition 5.3. Initialization can be done in linear time, Algo-

rithm 2 can be implemented with constant delay and initialization,

and Algorithms 3 and 4 can be implemented to use only logarithmic

time.

Proof. It is easy to see that the initialization works in linear
time and the enumeration works with constant delay. We remind
that P is bounded by a constant.

Towards the runtime of Algorithms 3 and 4, we observe that the
crucial parts are to compute q in Line 6 of Algorithm 3 and the
computation of the sets P (x ,v ).

To compute q, we just store a reference to the pointer q together
with the pointer p (x ,v ). This reference is updated whenever a
pointer is inserted to our data structure, i.e., in Line 8 of Algorithm 3
and Lines 8, 9, 19, and 20 of Algorithm 4.

Towards a logarithmic time lookup of P (v,x ) we add an interval
tree for each string v that contains for each pointer p used in tv an
entry ([i, j],p) describing the interval [i, j], such that p is contained
in each P (v,x ) with pos(x ) ∈ [i, j]. To compute P (v,x ), one has to
lookup all entries ([i, j],p) with pos(x ) ∈ [i, j]. □

Altogether, we have shown that the data structure can be imple-
mented with constant delay enumeration, logarithmic update time,
and logarithmic time for searchlabel queries.

6 LABEL INSERTIONS AND REMOVALS

We have described how we can handle relabeling updates. This
can be generalized to other updates such as node insertions and
removals. W.l.o.g., we can assume that all our regular languages
have a neutral letter e that is not used in the original alphabet. We
then implement the insertion of a node by first inserting a node of
label e and then relabeling that node. We do likewise for removals.

It remains to describe how an insertion of a node of label e can
be implemented in our data structure. We only sketch the main
ideas in this long abstract.



Recall from Section 5 that the data structure has one tree tv for
each string v ∈ S . For simplicity we assumed that the trees were
full binary trees. However, for the correctness of the implementa-
tion (and the runtime requirements), we only need the following
properties:
• the trees are binary trees;
• the depth is bounded logarithmically in the length of the
strings;
• every tree has the same structure, i.e., for each pair v,w ∈ S
it holds that for each node in tv there exists a node in tw
that represents the same string interval.

When inserting or deleting a node we need to make sure that
the depth remains logarithmic, measured in the size of the new tree.
Using the classical rebalancing operations of [1], we can ensure that
at any time, the depth is bounded above by logφ (n + 2), where φ is
the golden ratio. In order to preserve the third item, we rebalance
all the trees of S in parallel.

We also need to change the information contained in all nodes:
the label and the associated interval. As it is not possible to update
the interval associated to each node x , we replace that information
with the number of leaf nodes below x . This information can easily
be updated in logarithmic time during an insertion or remove oper-
ation and is enough for our needs. In particular, using the number
of leaves information, one can compute the position of each node
in logarithmic time.

Consider now the label associated to each nodex .When inserting
a neutral letter at position i in the input string, all its images in all
layers need to be updated. Fortunately, because the letter is neutral,
this only modifies the position i in all layers6 Hence, for all strings
u in S we need to modify the label of the node at position i and the
label of all its ancestors in tu . This can be done in logarithmic time.

To be able to enumerate node positions, we also store together
with each pointer x

m
−−→ y its length, i.e., the number of skipped

nodes. Given a node x together with its position i , it is trivial to
compute the position of y using this length information.

To update the length information after an insertion or removal
at position i , the algorithm computes x = searchlabel← (v, i, ΣX )
for each v and updates the pointers leaving v as needed.

Applying the modifications described in this section to the data
structure of Section 5 and extending the algorithm described in
Section 4 to allow insertion and removal of neutral letters yields
the following theorem.

Theorem 6.1. On strings, unary MSO queries can be enumerated

using linear preprocessing time, constant delay and logarithmic time

for updates that relabel, insert, or remove a single position.

7 CONCLUSION

We have exhibited a data structure that can be computed in linear
time, can be updated in logarithmic time and allow for constant
delay enumeration of MSO queries over words. By interpretation
it immediately extends to structures of bounded path-width.

6A label indicating that the input string (in the lowest layer) has a neutral label will
keep each transducer in its current state. The neighbouring positions depend only
on the labels of the lower layers (at the same position) and the state (which does not
change). Thus they are unmodified.

The next step would be to extend it to trees. For MSO queries
over trees the best known results are those of [18] with a data struc-
ture that can be updated in logarithmic square time and allow for
logarithmic square delay enumeration. Current work [20] enhances
the techniques of [18] to allow for logarithmic updates and loga-
rithmic delay. Another recent paper [2] provides a data structure
that allows for constant delay enumeration. The downside is that
it is only known how to update this structure for relabel updates,
i.e., insertion or deletion of a leaf requires to recompute the data
structure from scratch.

In order to extend our technique to trees, yielding a data structure
that allows for constant delay enumeration and logarithmic updates
(relabel, insertion/deletion of leaves), we would need an equivalent
to Krohn-Rhodes Theorem, decomposing any regular tree language
into a cascade of basic regular languages. Unfortunately Krohn-
Rhodes theory is not ready yet over trees. Preliminary results exists.
In particular it seems that the cascade decomposition obtained in [9]
for CTL queries, with a building block similar to reset automata,
combined with our method, would yield a structure computable
in linear time, allowing for logarithmic time updates and constant
delay enumeration of CTL queries over trees.

Finally we note that, unlike previous index structures used for
constant delay enumeration of MSO queries [16], our index struc-
ture cannot answer in constant time whether a given tuple is a
solution or not. It seems plausible that there exists a trade-off be-
tween this feature and efficient update.
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A PROOF OF LEMMA 5.1

In this appendix, we provide a detailed proof for the following
Lemma:

Lemma 5.1. In S▷◁ , for each v and and x , |P (v,x ) | is bounded by
|S▷◁ |.

Before we proof the lemma, we need some additional tools. First,
we provide an inductive definition of some preorder ≲S▷◁ over the
strings in S▷◁ . We write

• v ∼ w to denote v ≲ w andw ≲ v ; and
• v � w to denote v ≲ w and notw ≲ v .

The preorders for the layers of the left and the right structure
are inductively defined as follows:

• ≲S0 is the trivial preorder over the singleton S0.
• If Sℓ ∈ R, then ≲Sℓ is the smallest preorder that satisfies
– v↑ �Sℓ v

q for all q ∈ Qℓ and all v ∈ Sℓ−1; and
– vq ≲Sℓ wq and v↑ ≲Sℓ w↑ for all q ∈ Qℓ and all v,w ∈
Sℓ−1 with v ≲Sℓ−1 w .

• If Sℓ ∈ P, then ≲Sℓ is the smallest preorder that satisfies
– vд1 ∼ vд2 for all д1,д2 ∈ Gℓ and all v ∈ Sℓ−1; and
– vд ≲Sℓ−1 wд for all д ∈ Gℓ and all v,w ∈ Sℓ−1 with
v ≲Sℓ−1 w .

The preorder for the join layer is defined by

≲S▷◁= {((v ▷◁ w ), (v ′ ▷◁ w ′)) | v ≲Sleft v
′ andw ≲Sright w

′} ,

where Sleft and Sright are the topmost layers of the left and right
structure, respectively.

The following lemma states a property of the high-level algo-
rithm that we need to show Lemma 5.1.

Lemma A.1. For each replace updatev[i, j] ← w[i, j] in S▷◁ it holds
that

(a) v ≲S▷◁ w ; and

(b) if v ∼S▷◁ w then j = n.

Proof. In the following, the superscript x can stand for any
symbol from ↑, Qℓ , and Gℓ , depending on whether AT

ℓ
is a reset

transducer or a permutation transducer.
Using Table 1 and the inductive definition of �S , an easy in-

ductive argument yields that (a) holds. We note that the update
v[i, j] ← w[i, j] in Sℓ−1 implies that v ≲Sℓ−1 w by induction hypoth-
esis, and thus vx ≲Sℓ w

x by the definition of ≲Sℓ .
Similarly, it can be verified that (b) holds. If vx ∼Sℓ wx , then

by definition of ≲Sℓ we have that v ∼Sℓ−1 w . Using the induction
hypothesis, we get j = n. □

We say a pointer is a v-pointer, if it is added on behalf of string
v in the initialization, in Algorithm 3, or in Algorithm 4 when
changing string v .

Now we can prove Lemma 5.1. We will show that the following
invariant is always satisfied, which directly yields the statement of
Lemma 5.1.
(inv5) For all strings v,w ∈ S▷◁ and all nodes x ∈ tv , it holds that

• if v ≲S▷◁ w and v , w , P (v,x ) contains at most one
w-pointer;
• if not v ≲S▷◁ w , P (v,x ) contains now-pointer;
• P (v,x ) contains at most two v-pointers;
• if P (v,x ) contains twov-pointers, then one of them points
to the dummy node at the end of v ; and
• p (v,x ) always is a v-pointer.

It is easy to verify that (inv5) holds after initialization, as each
set P (v,x ) contains exactly one pointer, which is a v-pointer.

We now have a look at all operations that change pointers and
the implied changes to the P-sets. We start with Algorithm 3.

The pointer pv computed in Line 5 and assigned in Line 8
does not change any set P (u, z), as label(pv ) is chosen to main-
tain P (u,x ′). Furthermore, the only change of Line 7 to the sets
P (x ,v ) is that it replaces one v-pointer by a different v-pointer.
Thus the invariant is preserved by Algorithm 3.

We now look at Algorithm 4.
The pointer added in Line 9, ensures that the set P (v,x ′) does

not change. Similarly, the set label(q) of the pointer q defined in
Line 18 is computed such that P (v,x ′) does not change. We note
that these pointers are not used by any other strings.

The pointer change in Line 8 yields, that P (v,y) contains exactly
the pointer added in Line 9, which is a v-pointer. The line does
not change other P-sets. Altogether, relabel updates preserve the
invariant.

It remains to look at the pointers added in Line 19. As, by (inv5),
P (w,y) does not contain twou-pointers for any stringu, it is enough
to show that either
• P (w,y) has no v-pointer; or
• the v-pointer p in P (w,y) satisfies q < v , where q is the
pointer defined in Line 18.

Here, we use Lemma A.1. If v �S▷◁ w , then P (w,y) has no v-
pointer. Otherwise, by Lemma A.1, the replace operation satisfies
j = n. Therefore, thew-pointer of P (w,y) that points to the last node
of w (if P (w,y) has two w-pointers) will not show up in P (v,y).
Furthermore, the v-pointer introduced in Line 20, points to the
dummy node of v . Altogether (inv5) is preserved.
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