
1

Enumeration for FOQueries over Nowhere Dense Graphs

NICOLE SCHWEIKARDT, Humboldt-Universität zu Berlin

LUC SEGOUFIN, INRIA and ENS Paris

ALEXANDRE VIGNY, Bremen University

We consider the evaluation of first-order queries over classes of databases that are nowhere dense. The notion
of nowhere dense classes was introduced by Nešetřil and Ossona de Mendez as a formalization of classes

of “sparse” graphs and generalizes many well-known classes of graphs, such as classes of bounded degree,

bounded tree-width, or bounded expansion.

It has recently been shown by Grohe, Kreutzer, and Siebertz that over nowhere dense classes of databases,

first-order sentences can be evaluated in pseudo-linear time (pseudo-linear time means that for all 𝜖 there

exists an algorithm working in time 𝑂 (𝑛1+𝜖), where 𝑛 is the size of the database).

For first-order queries of higher arities, we show that over any nowhere dense class of databases, the set

of their solutions can be enumerated with constant delay after a pseudo-linear time preprocessing. In the

same context, we also show that after a pseudo-linear time preprocessing we can, on input of a tuple, test in

constant time whether it is a solution to the query.

Additional Key Words and Phrases: constant-delay enumeration, sparse graphs, query evaluation

ACM Reference Format:
Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. 1. Enumeration for FO Queries over Nowhere Dense

Graphs. J. ACM 1, 1, Article 1 (January 1), 36 pages. https://doi.org/1

1 INTRODUCTION
Query evaluation is one of the most central tasks of a database system, and a vast amount of

literature is devoted to the complexity of this problem. Given a database D and a query 𝑞, the goal

is to compute the set 𝑞(D) of all solutions for 𝑞 over D. Unfortunately, the set 𝑞(D) might be much

bigger than the database itself, as the number of solutions may be exponential in the arity of the

query. It can therefore be insufficient to measure the complexity of answering 𝑞 on D only in terms

of the total time needed to compute the complete result set 𝑞(D). One can imagine many scenarios

to overcome this situation. We could for instance only want to compute the number of solutions or

just compute the 𝑘 most relevant solutions relative to some ranking function.

We consider here the complexity of the enumeration of the set 𝑞(D), i.e., generating one by one

all the solutions for 𝑞 on D. In this context two parameters play an important role. The first one

is the preprocessing time, i.e. the time it takes to produce the first solution. The second one is the

delay, i.e. the maximum time between the output of any two consecutive solutions. An enumeration

This is the extended version of the conference contribution [29].

Authors’ addresses: Nicole Schweikardt, Humboldt-Universität zu Berlin; Luc Segoufin, INRIA and ENS Paris; Alexandre

Vigny, Bremen University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 1 Association for Computing Machinery.

0004-5411/1/1-ART1 $15.00

https://doi.org/1

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

https://doi.org/1
https://doi.org/1

1:2 N. Schweikardt, L. Segoufin, A. Vigny

algorithm is then said to be efficient if these two parameters are small. For the delay we aim at

constant time: depending only on the query and independent from the size of the database. For

the preprocessing time an ideal goal would be linear time: linear in the size of the database with

a constant factor depending on the query. When both are achieved we say that the query can be

enumerated with constant delay after linear preprocessing.

Constant delay enumeration after linear preprocessing cannot be achieved for all queries over

all databases (this is known modulo an assumption in parameterized complexity theory, since

the evaluation of boolean FO queries is AW[∗]-complete [9]). But for restricted classes of queries

and databases, several efficient enumeration algorithms have been obtained. This is the case for

instance for free-connex acyclic conjunctive queries over arbitrary databases [4], first-order (FO)

queries over classes of databases of bounded degree [10, 20], monadic second-order (MSO) queries

over classes of databases of bounded tree-width [3, 22], and FO queries over classes of databases of

bounded expansion [21].

In some scenarios only pseudo-linear preprocessing time has been achieved. A query can be

enumerated with constant delay after pseudo-linear preprocessing if for all 𝜖 there exists an

enumeration procedure with constant delay (the constant may depend on 𝜖) and preprocessing time

in 𝑂 (||D||1+𝜖), where ||D|| denotes the size of the database. This has been achieved for FO queries

over classes of databases of low degree [11] or of local bounded expansion [30].

A special case of enumeration is when the query is boolean. In this case the preprocessing

computes the answer to the query. In order to be able to enumerate queries of a given language

efficiently, it is therefore necessary to be able to solve the boolean case efficiently.

It has been shown recently that boolean FO queries can be evaluated in pseudo-linear time over

nowhere dense classes of databases [17]. The notion of nowhere dense classes was introduced

in [26] as a formalization of classes of “sparse” graphs and generalizes all the classes mentioned

above [27] (except for the classes of low degree of [11]). Among classes of databases that are closed

under subdatabases, the nowhere dense classes are the largest possible classes enjoying efficient

evaluation of FO queries [24] (modulo an assumption in parameterized complexity theory). It has

also been shown that over nowhere dense classes of databases, counting the number of solutions

to a given FO query can be achieved in pseudo-linear time [18].

Main result. In this paper we show that enumeration of FO queries on nowhere dense classes

of databases can be done with constant delay after pseudo-linear preprocessing. This completes the

picture of the complexity of FO query evaluation on nowhere dense classes and, due to the above

mentioned result of [24], on all classes that are closed under subdatabases. We also show that for

any nowhere dense class of databases, given a FO query 𝑞 and a database D in the class, after a

pseudo-linear time preprocessing we can test in constant time whether an arbitrary input tuple

belongs to the result set 𝑞(D).

Proof method. Our algorithms for enumerating and testing are based on the following ingredi-

ents. Instead of Gaifman’s normal form (which usually serves as a starting point for algorithmic

meta-theorems) we use a normal form provided by [18]. This normal form works efficiently only in

the nowhere dense case and requires using explicit distance predicates in the formulas. However, it

has the advantage of controlling the quantifier-rank of the local formulas. Towards evaluating local

formulas we use the result that one can compute in pseudo-linear time a representative “cover” of

the database by means of neighborhoods [17]. We also make use of the game characterization of

nowhere dense classes [17] showing that any neighborhood can be decomposed in finitely many

steps. Then, a local formula is evaluated within a neighborhood of the cover by induction on the

number of remaining steps in the game until the neighborhood is trivial. The enumeration for a

combination of local formulas is then done following a scheme already present in [30]: Enumeration

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:3

is supported by precomputing pointers that allow to jump from one solution to the next one. We

use a pointer mechanism similar to the one used in [30] for the local bounded expansion case.

Technical challenges. Constant delay enumeration after pseudo-linear preprocessing was

already achieved for FO queries over classes of databases having bounded expansion [21] or local

bounded expansion [30]. The nowhere dense case is significantly harder. The bounded expansion

case was solved using a quantifier elimination procedure reducing all FO queries to the quantifier-

free ones. It seems unlikely that such a quantifier elimination procedure exists in the nowhere

dense case. Therefore, as for databases with local bounded expansion, the nowhere dense case

relies on locality arguments and the neighborhood covers needed for solving the boolean case [17].

This was enough for databases with local bounded expansion, as the neighborhoods had bounded

expansion and FO queries could then be evaluated on them. For the nowhere dense case we need a

significantly more complicated argument using further tools: the game characterization of [17] and

the Rank-Preserving Normal Form Theorem of [18].

Additional material. The main results of this article have been published first in a conference

paper [29]. The two biggest changes are the following:

• An explicit storing theorem. In the conference version of that paper and in most related work,

the use of the memory is either not optimal or not explicitly mentioned. In Section 3 we

provide a careful analysis of the amount of memory a RAM uses to store partial functions.

• A stronger statement. The proofs that FO queries can be efficiently tested and enumerated

over nowhere dense classes of graphs are replaced by a proof of a more powerful result: Our

main contribution, Theorem 2.3, states that after a pseudo-linear preprocessing, upon input

of any tuple, we can compute in constant time the smallest next solution. This generalizes

the testing problem (Corollary 2.4) and the enumeration problem (Corollary 2.5).

Organization. The rest of the paper is structured as follows. Section 2 provides basic notations.

Section 3 is devoted to the specific task of efficiently storing and retrieving the values of functions.

Section 4 introduces some needed tools and gives an overview of our proof by proving a weaker

but insightful result. Section 5 presents our main algorithm, and Section 6 concludes the paper.

2 PRELIMINARIES AND MAIN RESULT
By N we denote the non-negative integers, and we let N⩾1 := N \ {0}. By Q>0 we denote the set of

positive rationals. For𝑚,𝑛 ∈ N we let [𝑚,𝑛] := {𝑖 ∈ N |𝑚 ⩽ 𝑖 ⩽ 𝑛}, and we let [𝑚] := [0,𝑚−1].
Throughout this paper, 𝜖 will always be a positive real number, and ℓ , 𝑟 , 𝑠 , 𝑖 , 𝑗 , 𝑘 will be elements

of N. For a tuple 𝑥 of arity 𝑘 , we will write 𝑥𝑖 to denote its 𝑖-th component (for 𝑖 ∈ [1, 𝑘]).

Structures and first-order queries. A relational schema is a finite set of relation symbols,

each having an associated arity. A finite relational structure A over a relational schema consists of

a finite set, the domain of A, together with an interpretation of each relation symbol 𝑅 of arity 𝑘

of the schema as a 𝑘-ary relation over the domain, denoted 𝑅(A). A database is a finite relational
structure.

A structure B is a substructure of A if the domain of B is included in the domain of A and each

relation of B is included in the corresponding relation of A. We say that a class C of structures (or

databases) is closed under substructures (or subdatabases) if for every structure A in C and every

substructure B of A we have that B is in C.
If A is a structure with domain 𝐴 and 𝐵 ⊆ 𝐴 is a subset of its domain, we denote by A[𝐵] the

substructure ofA induced by 𝐵, i.e.,A[𝐵] is the structure B with domain 𝐵 and 𝑅(B) = 𝑅(A)∩𝐵𝑘
for each relation symbol 𝑅 of arity 𝑘 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:4 N. Schweikardt, L. Segoufin, A. Vigny

Let 𝜎 and 𝜎 ′ be relational schemas with 𝜎 ⊆ 𝜎 ′, and let A be a structure of schema 𝜎 (for short:

a 𝜎-structure). A 𝜎 ′-expansion of A is a 𝜎 ′-structure B whose domain is identical to the domain of

A and which satisfies 𝑅(B) = 𝑅(A) for all 𝑅 ∈ 𝜎 .
We fix a standard encoding of structures as input, see for example [1]. We denote by ||A|| the size

of (the encoding of) A, while |A| denotes the size |𝐴| of its domain. Without loss of generality we

assume that the domain 𝐴 comes with a linear order. If not, we arbitrarily choose one, for instance

the one induced by the encoding ofA. This order induces a lexicographical order among the tuples

over 𝐴.

A query is a first-order formula. We assume familiarity with first-order logic, FO, over relational

structures (cf., e.g., [1, 25]). We use standard syntax and semantics for FO. In particular we write

𝑞(𝑥) to denote the fact that the free variables of the query 𝑞 are exactly the variables in 𝑥 . The

length of 𝑥 is called the arity of the query. The size of a query 𝑞 is the number of symbols needed

to write down the formula and is denoted by |𝑞 |.
For a structureA, a query 𝑞(𝑥) and a tuple 𝑎 of elements ofA of the appropriate arity, we write

A |= 𝑞(𝑎) to indicate that 𝑎 is a solution for 𝑞 over A. We write 𝑞(A) to denote the set of tuples 𝑎

such that A |= 𝑞(𝑎).
A sentence is a formula with no free variables, i.e., of arity 0. It is either true or false over a

structure and therefore defines a property of structures, i.e., a boolean query. Given a relational

structure A and a sentence 𝑞, the problem of testing whether A |= 𝑞 is called the model checking
problem. Often, the problem is restricted to a particular class C of relational structures.

Model of computation and complexity. As usual when dealing with linear time, we use

Random Access Machines (RAM) with addition, multiplication, and uniform cost measure as a

model of computation.

All problems encountered in this paper have two inputs: a structureA and a query𝑞(𝑥). However,
they play different roles as ||A|| is often very large while |𝑞 | is generally small. We adopt the data

complexity point of view [33]. When we say linear time we mean in time 𝑂 (||A||), the constants
hidden behind the “big 𝑂” depending on 𝑞, on the class C of structures under investigation, and

possibly on further parameters that will be clear from the context. We say that a problem is solvable

in pseudo-linear time if, for all 𝜖 > 0, it can be solved in time 𝑂 (||A||1+𝜖). In this case, the constant

factor also depends on 𝜖 . If a subroutine of a procedure depending on 𝜖 produces an output of size

𝑂 (||A||𝜖) we will say that the output is pseudo-constant.

Distance and neighborhoods. Fix a structure A of domain 𝐴. The Gaifman graph of A is the

undirected graph whose set of vertices is 𝐴 and whose edges are the pairs {𝑎, 𝑏} such that 𝑎 and

𝑏 occur in a tuple of some relation of A. Given two elements 𝑎 and 𝑏 of 𝐴, the distance between
𝑎 and 𝑏 is the length of a shortest path between 𝑎 and 𝑏 in the Gaifman graph of A. The notion

of distance extends to tuples in the usual way, i.e., the distance between two tuples 𝑎 and 𝑏 is the

minimum of the distances between 𝑎𝑖 and 𝑏 𝑗 over all 𝑖, 𝑗 .

For a positive integer 𝑟 , we write 𝑁 A𝑟 (𝑎) for the set of all elements of𝐴 at distance at most 𝑟 from

𝑎. The 𝑟 -neighborhood of 𝑎 in A, denoted NA𝑟 (𝑎), is the substructure of A induced by 𝑁 A𝑟 (𝑎).
Similarly, for a tuple 𝑎 of arity 𝑘 we let 𝑁 A𝑟 (𝑎) :=

⋃
𝑖∈[1,𝑘] 𝑁

A
𝑟 (𝑎𝑖), and we define NA𝑟 (𝑎) as the

substructure of A induced by 𝑁 A𝑟 (𝑎).

Nowhere dense classes of undirected graphs. For an undirected graph 𝐺 = (𝑉 , 𝐸) we let
|𝐺 | = |𝑉 | and ||𝐺 || = |𝑉 | + |𝐸 |. Thus, similarly as for databases, |𝐺 | denotes the size of the graph’s
domain, and ||𝐺 || is the size of a reasonable encoding of 𝐺 .

Given two undirected graphs𝐺 and 𝐻 and an integer 𝑟 , the graph 𝐻 is said to be a shallow minor
at depth 𝑟 of 𝐺 (see [27, Section 2.1]) if 𝐻 can be obtained from 𝐺 by removing edges, removing

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:5

vertices, and contracting into a single vertex sets of vertices of radius at most 𝑟 . A class C of

undirected graphs is nowhere dense if for every integer 𝑟 there is an integer 𝑁 such that no graph

of C contains the clique with 𝑁 elements as a shallow minor at depth 𝑟 [27].

This is a robust notion, and there exist many equivalent definitions [17, 26, 27]. In particular,

[17] presented a game characterization of nowhere dense classes that we rely on in our Sections 4

and 5 (see Definition 4.5 and Theorem 4.6). A further, equivalent characterization is based on the

following notion of weak 𝑟 -accessibility. Given an undirected graph𝐺 with a linear order on its

vertices, and two of its vertices 𝑎, 𝑏, we say that 𝑏 is weakly 𝑟 -accessible from 𝑎 if there exists a path

of length at most 𝑟 between 𝑎 and 𝑏 such that 𝑏 is smaller than 𝑎 and all other vertices on the path.

A class C of undirected graphs is nowhere dense if, and only if, for all 𝑟 and 𝜖 , there is a number 𝑁 ,

such that for all graphs 𝐺 of C with |𝐺 | > 𝑁 , there is a linear order on the vertices of 𝐺 , such that

for all vertices 𝑎 of 𝐺 , the number of vertices weakly 𝑟 -accessible from 𝑎 is bounded by |𝐺 |𝜖 [27].
It is known, for example, that any class of graphs that (locally) excludes a minor or that is of

(local) bounded expansion, is nowhere dense. Nowhere dense classes are “sparse” in the following

sense:

Theorem 2.1 (Derived from [27, Theorem 4.1 (iv)]). For every nowhere dense class C of undirected
graphs there is a function 𝑓C such that for every 𝜖 > 0 and every 𝐺 in C, if |𝐺 | ⩾ 𝑓C (𝜖), then
||𝐺 || ⩽ |𝐺 |1+𝜖 .

In the special case where for all integers 𝑟 there is a constant 𝑐𝑟 such that for all graphs𝐺 of C
there is a linear order on the vertices of 𝐺 , such that for all vertices 𝑎 of 𝐺 the number of vertices

weakly 𝑟 -accessible from 𝑎 is bounded by 𝑐𝑟 , the class C is said to have bounded expansion. These
constants 𝑐𝑟 were the keys to the constant delay enumeration algorithm for FO queries over classes

of bounded expansion [21]. As we no longer have them in the nowhere dense case, we need a

different strategy.

In the above characterization of nowhere dense classes via the notion of weak 𝑟 -accessibility, we

do not require the number 𝑁 to be computable from the parameters 𝑟 and 𝜖 . When 𝑁 is computable

from 𝑟 and 𝜖 we say that the class is effectively nowhere dense. Most of the classical nowhere dense

classes of graphs, like bounded treewidth, planar graphs etc. are in fact effectively nowhere dense.

Our results will show that if C is a nowhere dense class of graphs then for all 𝜖 > 0 there is an

algorithm depending on 𝜖 satisfying some properties. If C is furthermore effectively nowhere dense,

all our algorithms will be computable from 𝜖 , hence providing a generic variant of our results.

From databases to colored graphs. We define 𝑐-colored graphs as structures over the schema

𝜎𝑐 := {𝐸,𝐶1, . . . ,𝐶𝑐 } where 𝐸 is a binary symmetrical relation and (𝐶𝑖)𝑖⩽𝑐 are unary relations. A

colored graph is a 𝑐-colored graph for some integer 𝑐 .

A class C of colored graphs is defined to be nowhere dense if the class C′ consisting of the

underlying undirected graphs of all elements of C is nowhere dense.

Our main enumeration algorithm works for FO-queries on nowhere dense classes of colored

graphs. By using standard techniques, this extends to all relational structures, as we now explain.

Given a databaseD over a schema 𝜎 , we define its adjacency graph𝐴(D) as the relational structure
whose domain is 𝐷 ∪𝑇 where 𝐷 is the domain of D and𝑇 is the set of tuples occurring in a relation

of D. We have one unary relation 𝑃𝑅 per relation 𝑅 of 𝜎 containing all tuples 𝑡 of 𝑅(D). We have 𝑘

(symmetrical) binary relations 𝐸1, . . . , 𝐸𝑘 where 𝑘 is the maximal arity of relations in 𝜎 . For 𝑎 ∈ 𝐷
and 𝑡 ∈ 𝑇 , we have 𝐴(D) |= 𝐸𝑖 (𝑎, 𝑡) if and only if the element 𝑎 is the 𝑖th element of the tuple

𝑡 . Currently, 𝐴(D) is an undirected graph with colored vertices and colored edges. With what is

following, we can build a colored graph in the sense of 𝑐-colored graph.

The colored graph version 𝐴′(D) of the adjacency graph 𝐴(D) is defined as follows.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:6 N. Schweikardt, L. Segoufin, A. Vigny

The colors of 𝐴′(D) are the “vertex colors” 𝑃𝑅 of 𝐴(D) and 𝑘 further colors (𝐶𝑖)𝑖⩽𝑘 , where 𝑘
is the maximal arity of the relations in 𝜎 . The domain of 𝐴′(D) is the domain of 𝐴(D) plus one
node per edge of 𝐴(D): For every 𝐸𝑖-edge (𝑎, 𝑡) of 𝐴(D), we add in 𝐴′(D) a new node 𝑣 of color

𝐶𝑖 and such that (𝑎, 𝑣) and (𝑣, 𝑡) are 𝐸-edges in 𝐴′(D). In particular, 𝐴′(D) is a colored graph of

schema {𝐸,𝐶1, . . . ,𝐶𝑘 , 𝑃𝑅1
, . . . , 𝑃𝑅𝑚 } if D is a database of schema 𝜎 = {𝑅1, . . . , 𝑅𝑚} consisting of𝑚

relations of maximum arity 𝑘 . Henceforth, we will identify the schema of 𝐴′(D) with the schema

𝜎𝑐 of 𝑐-colored graphs for 𝑐 = 𝑘 +𝑚.

The following lemma is classical and reduces relational structures to colored graphs.

Lemma 2.2. Let 𝜑 (𝑥) be a FO query over some schema 𝜎 and let 𝑘 be the maximal arity of the
relations of 𝜎 . In time linear in the size of 𝜑 , we can compute a FO query𝜓 (𝑥) over 𝜎𝑐 , for 𝑐 = 𝑘 + |𝜎 |,
such that for every database D over 𝜎 , 𝜑 (D) = 𝜓 (𝐴′(D)).

The lemma is an immediate consequence of the fact that

D |= 𝑅(𝑎1, . . . , 𝑎 𝑗) ⇐⇒

𝐴′(D) |= ∃𝑡
(
𝑃𝑅 (𝑡) ∧

∧
𝑖⩽ 𝑗

∃𝑧
(
𝐶𝑖 (𝑧) ∧ 𝐸 (𝑎𝑖 , 𝑧) ∧ 𝐸 (𝑧, 𝑡)

))
.

Let C be a class of relational structures.We say that C is nowhere dense if the class {𝐴′(D) |D ∈ C}
is nowhere dense. Note that because 𝐴′(D) is a 1-subdivision (i.e. an edge is transformed into a

path of length 2) of 𝐴(D), the class {𝐴′(D) | D ∈ C} is nowhere dense iff the class consisting of

the Gaifman graphs of 𝐴(D) for all D ∈ C is nowhere dense; see [27] for further details.

We could have used another definition for nowhere dense classes of structures, using their

Gaifman graphs instead of their adjacency graphs. For a fixed schema this would result in the same

notion [34, Theorem 4.3.6], but when the schema is not fixed our definition is more general [19,

Example 3.3.2].

A consequence of Lemma 2.2 is that the model checking, enumeration, counting, and testing

problems for FO-queries reduce to the colored graph case. In the remaining part of the paper we

will therefore only consider classes of colored graphs. The reader should keep in mind, though,

that the results stated over colored graphs extend to relational structures.

From the definition it follows immediately that if a class of graphs is nowhere dense then the

class of all its substructures is also nowhere dense. Moreover, the class of all its possible colorings

is also nowhere dense. Hence without loss of generality, we can assume that all nowhere dense

classes C of colored graphs considered from now on, are closed under substructures and all possible

colorings (using arbitrarily many colors).

Enumeration. An enumeration algorithm for a colored graph 𝐺 and a query 𝑞 is divided into

two consecutive phases:

• a preprocessing phase, and

• an enumeration phase, outputting one by one and without repetition the elements of the set

𝑞(𝐺).
The preprocessing time of the enumeration algorithm is the time taken by the preprocessing phase.

Its delay is the maximum time between any two consecutive outputs. One can view an enumeration

algorithm as a compression algorithm that computes a representation of 𝑞(𝐺), together with a

streaming decompression algorithm.

We aim for enumeration algorithms with constant delay and pseudo-linear preprocessing time.

By this we mean that for all 𝜖 > 0, there is a preprocessing phase working in time𝑂 (||𝐺 ||1+𝜖) and an
enumeration phase with constant delay. Note that the multiplicative constants for the preprocessing

phase and the delay may depend on 𝑞 and 𝜖 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:7

An enumeration phase with constant delay may use a constant amount of memory while

preparing the next output. Hence it may use a total amount of memory that is linear in the output

size. Our enumeration algorithms will have the property that, apart from the memory used for

storing the data structure (of pseudo-linear size) that is produced during the preprocessing phase,

the entire enumeration phase only uses a constant amount of extra memory. In other words, our

enumeration algorithm can be seen as a finite state automaton running on the index structure

produced by the preprocessing phase.

All our enumeration procedures will output their tuples in lexicographical order. We will see

that this is useful for queries in disjunctive normal form.

Our main result. We now state our main theorem. Recall that we assume a linear order on the

domain of our structures. This order induces a lexicographical order on tuples of elements that we

denote by ⩽.

Theorem 2.3. Let C be a nowhere dense class of colored graphs. There is a function 𝑓 and an
algorithm which, upon input of a colored graph𝐺 ∈ C, an 𝜖 ∈ Q>0, and a first-order query 𝑞, performs
a preprocessing in time 𝑓 (𝑞, 𝜖) · |𝐺 |1+𝜖 such that afterwards, upon input of a tuple 𝑎, we can compute
in time 𝑓 (𝑞, 𝜖) the smallest (in lexicographical order) tuple 𝑎′ such that 𝑎′ ⩾ 𝑎 and 𝑎′ ∈ 𝑞(𝐺), or an
error message in case that no such tuple 𝑎′ exists.

Furthermore, if C is effectively nowhere dense, then 𝑓 is computable.

This result both implies a constant delay enumeration and a constant time testing procedures.

Testing whether a tuple is a solution is immediate from the data structure computed in Theorem 2.3,

as it is enough to test on input 𝑎 whether the output tuple 𝑎′ is equal to 𝑎. Thus, we obtain:

Corollary 2.4 (Testing solutions). Let C be a nowhere dense class of colored graphs. There is a
function 𝑓 and an algorithm which, upon input of a colored graph𝐺 ∈ C, an 𝜖 ∈ Q>0, and a first-order
query 𝑞, performs a preprocessing in time 𝑓 (𝑞, 𝜖) · |𝐺 |1+𝜖 , such that afterwards, upon input of a tuple
𝑎, we can test whether 𝐺 |= 𝜑 (𝑎) in time 𝑓 (𝑞, 𝜖).

Furthermore, if C is effectively nowhere dense, then 𝑓 is computable.

The data structure of Theorem 2.3 also allows to enumerate the solutions with constant delay.

Indeed, once we have outputted a solution 𝑎, we derive in constant time the tuple 𝑏 which imme-

diately follows 𝑎 in the lexicographical order, and then the tuple 𝑏
′
given by Theorem 2.3 (upon

input of 𝑏) is the next solution to be outputted during the enumeration phase.

Corollary 2.5 (Enumerating solutions). Let C be a nowhere dense class of colored graphs. There
is a function 𝑓 and an algorithm which, upon input of a colored graph 𝐺 ∈ C, an 𝜖 ∈ Q>0, and a
first-order query 𝑞, performs a preprocessing in time 𝑓 (𝑞, 𝜖) · |𝐺 |1+𝜖 , such that afterwards, the set of
solutions 𝜑 (𝐺) can be enumerated with delay 𝑓 (𝑞, 𝜖) in increasing order.

Again, if C is effectively nowhere dense, then 𝑓 is computable.

3 STORING FUNCTIONS AND RETRIEVING SOLUTIONS
This section is devoted to a technical result that uses in an essential way our computational model.

We will often compute partial 𝑘-ary functions associating a value to a tuple of nodes of the input

graph. Such functions can be easily implemented in the RAM model using 𝑘-dimensional cubes

allowing to retrieve the value of 𝑓 in constant time. This requires a memory usage of 𝑂 (𝑛𝑘).
However our functions will have a domain of size pseudo-linear and can be computed in pseudo-

linear time. The following theorem states that we can use the RAM model to build a data structure

that stores our functions in a more efficient way.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:8 N. Schweikardt, L. Segoufin, A. Vigny

Theorem 3.1 (Storing Theorem). For every fixed 𝑘 ∈ N and 𝜖 > 0, there is an integer 𝑐 ∈ N such
that for every integer 𝑛 ∈ N there is a data structure that stores the value of a 𝑘-ary function 𝑓 of
domain Dom(𝑓) ⊆ [𝑛]𝑘 with:
• initialization time 𝑐 · |Dom(𝑓) | · 𝑛𝜖 ,
• update time 𝑐 · 𝑛𝜖 whenever a pair1 (𝑎, 𝑏) is added to or removed from 𝑓 ,
• lookup time 𝑐 ,
• and at any point in time, the space used by the data structure is 𝑐 · |Dom(𝑓) | · 𝑛𝜖 .

Here, lookup means that given a tuple 𝑎 ∈ [𝑛]𝑘 , the algorithm either answers 𝑏 if 𝑎 ∈ Dom(𝑓) and
𝑓 (𝑎) = 𝑏; or 𝑎′ if 𝑎 ∉ Dom(𝑓) and 𝑎′ := min{𝑥 ∈ Dom(𝑓) : 𝑥 > 𝑎}; or Null if no such tuple exists.

We stress that during the lookup procedure, the data structure may be given a tuple 𝑎 that is not

part of the domain of the function. This will heavily be used in later sections. However, other perks

of the statement will not be used. For example, we will only construct the data structure when

computing 𝑓 and then only use the lookup feature. In particular, we will never delete any tuple

from the domain of 𝑓 . Nonetheless, this result is interesting in its own. A version without updates

of that theorem has been written first in [34, Section 4.1] and is inspired from [32, Figure 1].

The data structure is not that complicated. In fact its core is a trie where each pair (key,value) is

a tuple 𝑎 in the domain of 𝑓 and its image 𝑏 = 𝑓 (𝑎). See [23, Section 6.3 Digital Searching] for more

information. In order to obtain all our features, our data structure expands the trie structure in the

two following ways. First, we have a backward relation from last child to parent. This relation helps

us navigate the structure for the update feature. Second, we have a relation linking search paths

that do not lead to a key, to the next smallest key. This relation is used for the lookup feature.

In the rest of the section, we describe the data structure together with examples. We then give

an intuition of how to obtain the desired algorithmic features. As this result is not our main

contribution, we wrote the actual proofs in a separated appendix.

3.1 Description of the data structure
Fix 𝜖 and 𝑛. Let 𝑑 := ⌈𝑛𝜖⌉ and ℎ :=

⌈
1

𝜖

⌉
. As usual, for 𝑥 ∈ Q, ⌈𝑥⌉ denotes the smallest integer 𝑦 such

that 𝑥 ⩽ 𝑦.
Every 𝑖 ∈ [𝑛] can be uniquely decomposed in base 𝑑 into a string of length ℎ whose letters are

from [0, 𝑑−1] since 𝑑ℎ ⩾ 𝑛. We arbitrarily assume that the string starts with the higher powers

of 𝑑 and ends with the lowest ones. Given all this, every tuple in [𝑛]𝑘 can be decomposed into a

string of length 𝑘ℎ whose letters are from [0, 𝑑−1]. We then associate to the function 𝑓 a partial

tree 𝑇 (𝑓) of maximal depth 𝑘ℎ and degree 𝑑 , where each node has 0 or 𝑑 children and each leaf at

depth 𝑘ℎ represents an element of the domain of 𝑓 (by looking at the sequence of child numbers in

the path from the root to that leaf). The size of 𝑇 (𝑓) is then 𝑂 (𝑛𝜖 ·|Dom(𝑓) |).
Our data structure is an encoding of 𝑇 (𝑓) with extra information in order to navigate efficiently

in the tree and to update it efficiently. As for leaves, to any node of𝑇 (𝑓) at depth 𝑖 we can associate

a string over [0, 𝑑−1] of length 𝑖 . Given a leaf of 𝑇 (𝑓) we associate a tuple 𝑏 as the smallest tuple

(in lexicographical order) of the domain of 𝑓 whose encoding has a prefix larger than the one of

the current node.

Each inner node of the tree associated to 𝑓 is represented by 𝑑 + 1 consecutive registers in our

memory each containing a pair (𝛿, 𝑟) where 𝛿 is either 0, 1 or −1 and 𝑟 is a value that will help us

navigating in the tree.

Consider an inner node 𝑥 of 𝑇 (𝑓) and assume that 𝑥 is the 𝑖𝑡ℎ child of 𝑦. Let 𝑅 be the 𝑖𝑡ℎ register

representing 𝑦 and 𝑅′ be the first register representing 𝑥 . Then the content of 𝑅 is (1, 𝑅′) and the

1
we identify 𝑓 with its graph {(𝑎,𝑏) | 𝑎 ∈ Dom(𝑓), 𝑓 (𝑎) = 𝑏 }

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:9

content of the last register representing 𝑥 contains (−1, 𝑅). This encodes the parent/child relation

of 𝑇 (𝑓). The rest of the encoding will help updating the structure efficiently.

If the 𝑗𝑡ℎ child of 𝑦 is a leaf, for 𝑗 ⩽ 𝑑 , then the content of the 𝑗𝑡ℎ register representing 𝑦 is (0, 𝑏)
where 𝑏 is the tuple associated to that leaf.

In the case when 𝑥 is at depth 𝑘ℎ−1 (i.e. all its children are leaves), for 𝑖 ⩽ 𝑑 , we set the content
of the 𝑖𝑡ℎ register representing 𝑥 as (1, 𝑓 (𝑎)) if the 𝑖𝑡ℎ leaf of 𝑥 represents a tuple 𝑎 in the domain

of 𝑓 , and as (0, 𝑏) otherwise where 𝑏 is the tuple associated to that leaf.

Finally, we have a register 𝑅0 that contains the next available (unused) register.

Our data structure is illustrated in Figure 1.

Fig. 1. An example of the data structure. In this example 𝑛 = 27, 𝜖 = 1/3, therefore 𝑑 = 𝑛𝜖 = 27
1/3 = 3 and

ℎ = 1/𝜖 = 3. The unary partial function 𝑓 is the identity function whose domain is {2, 4, 5, 19, 24, 25} and is
not defined otherwise. Note that the decomposition of 2 in base 𝑑 = 3 is 002, while 4 is 011, 5 is 012, 19 is 201
and so on. The leaves corresponding to the domain of 𝑓 are in red. The arrows are here for readability. For
instance 𝑅1 is the first register representing the root node of 𝑇 (𝑓) and its content is (1, 5) because the first
child of the root node of 𝑇 (𝑓) is not a leaf and the first register representing it is 𝑅5. Moreover the second
register representing the root node of𝑇 (𝑓) is 𝑅2 whose content is (0, 19) because the second child of the root
of 𝑇 (𝑓) is a leaf and 19 is the smallest element in the domain of 𝑓 whose decomposition starts with a 2. The
register 𝑅8 is the last register representing the first child of the root of 𝑇 (𝑓). Its content is therefore (−1, 1)
because 𝑅1 is the first register encoding the root. Finally 𝑅19 is the third register encoding the second child of
the first child of the roof of 𝑇 (𝑓). It therefore represents the number encoded by 012, i.e. 5, in the domain of
𝑓 . Its content is therefore (1, 𝑓 (5)) = (1, 5).

𝑅0 𝑅1 𝑅2 𝑅3 𝑅4

29 (1,5) (0,19) (1,10) (-1,Null)

𝑅5 𝑅6 𝑅7 𝑅8

(1,9) (1,17) (0,19) (-1,1)

𝑅9 𝑅10 𝑅11 𝑅12

(0,2) (0,2) (1,2) (-1,5)

𝑅17 𝑅18 𝑅19 𝑅20

(0,4) (1,4) (1,5) (-1,6)

𝑅13 𝑅14 𝑅15 𝑅16

(1,21) (0,24) (1,25) (-1,3)

𝑅21 𝑅22 𝑅23 𝑅24

(0,19) (1,19) (0,24) (-1,13)

𝑅25 𝑅26 𝑅27 𝑅28

(1,24) (1,25) (0,Null) (-1,15)

3.2 Proof sketch of Theorem 3.1.
Looking up information in this data structure is pretty straightforward: Given a tuple 𝑎, one can

decompose this tuple into a string of length 𝑘ℎ which precisely describes the search path for 𝑎

in the data structure 𝑇 (𝑓). This search can either fail by reaching a cell of the form (0, 𝑏) and
therefore conclude that 𝑎 is not in the domain of the stored function 𝑓 and that 𝑏 is the smallest

tuple in Dom(𝑓) greater than 𝑎. The only other possibility is that the search for 𝑎 reaches a cell of

the form (1, 𝑏) implying that 𝑎 is in the domain of 𝑓 , and that 𝑓 (𝑎) = 𝑏. All of this takes time linear

in the depth 𝑘ℎ of the tree 𝑇 (𝑓), which is constant as 𝜖 is fixed.

Adding or removing information in the data structure is somewhat trickier. Adding a tuple may

require the creation of new arrays of length 𝑑 in the structure, this is where 𝑅0 comes in handy as

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:10 N. Schweikardt, L. Segoufin, A. Vigny

it points to the end of the used memory i.e. where we can start new arrays. Removing tuples may

render some array useless (only composed of cells of the form (0, 𝑏)). While this is not an issue for

the lookup procedure, such useless array must be deleted otherwise the memory usage will not

remain linear. This is performed by copy/pasting the last array of the structure in the place used

by the array we want to get rid of. We then have to take care of the (only) cell pointing toward

the moved array, and update 𝑅0. So far, and in both case, the procedure takes time 𝑂 (𝑑 · 𝑘 · ℎ). For
the main contribution of this paper, we only use the insert and lookup procedures. The remaining

procedures, together with the complete proofs can be found in the Appendix Section 7.

4 TESTING DISTANCE QUERIES
In this section we prove a weaker version of our main result where we only consider the testing

problem of distance queries. This requires introducing several tools that will also be needed for

proving the main result.

A distance query is a binary query testing the distance within a colored graph between two

nodes. For all 𝑟 ∈ N, the query dist⩽𝑟 (𝑎, 𝑏) states that there is a path of length at most 𝑟 between 𝑎

and 𝑏.

Definition 4.1 (Distance queries). Distance queries can formally be defined by induction as follows:

dist⩽0 (𝑥,𝑦) := (𝑥 = 𝑦)
dist⩽𝑟+1 (𝑥,𝑦) := dist⩽𝑟 (𝑥,𝑦) ∨ ∃𝑧

(
𝐸 (𝑥, 𝑧) ∧ dist⩽𝑟 (𝑧,𝑦)

)
A slightly different definition can make the quantifier rank of dist⩽𝑟 equal to log(𝑟) instead of 𝑟

above, but this is not important to us. We will also make use of the following queries:

dist=𝑟 (𝑥,𝑦) := dist⩽𝑟 (𝑥,𝑦) ∧ ¬ dist⩽𝑟−1 (𝑥,𝑦)
dist>𝑟 (𝑥,𝑦) := ¬ dist⩽𝑟 (𝑥,𝑦)

Example (1-A). Consider the distance two query:

𝑞(𝑥,𝑦) := dist⩽2 (𝑥,𝑦) = ∃𝑧
(
𝐸 (𝑥, 𝑧) ∧ 𝐸 (𝑧,𝑦)

)
∨ 𝐸 (𝑥,𝑦) ∨ 𝑥 = 𝑦

In this section, we introduce notions and apply them to this example query.

The rest of the section is devoted to the proof of:

Proposition 4.2. Let C be a nowhere dense class of colored graphs. There is a function 𝑓 and an
algorithmwhich, upon input of a colored graph𝐺 ∈ C, an 𝜖 ∈ Q>0, and 𝑟 ∈ N, performs a preprocessing
in time 𝑓 (𝑟, 𝜖) · |𝐺 |1+𝜖 , such that afterwards, upon input of a tuple (𝑎, 𝑏) of nodes of 𝐺 , we can test in
time 𝑓 (𝑟, 𝜖) whether (𝑎, 𝑏) ∈ dist⩽𝑟 (𝐺).
Furthermore, if C is effectively nowhere dense, then 𝑓 is computable.

4.1 Tools for nowhere dense graphs
Since we are looking at distance queries, it is tempting to precompute the 𝑟 -neighborhoods of all

nodes. Unfortunately, this cannot be done in pseudo-linear time as the sum of the sizes of those

neighborhoods might be too big. To overcome this situation we use a neighborhood cover that
selects a small but sufficiently representative set of neighborhoods.

This notion was crucial already for obtaining a number of previous algorithmic meta-theorems,

including e.g. [12, 13, 17].

Definition 4.3 (Neighborhood cover). Given a colored graph 𝐺 and a number 𝑟 ∈ N, an 𝑟 -
neighborhood cover of 𝐺 is a collection X of subsets of the vertices 𝑉 of 𝐺 such that

∀𝑎 ∈ 𝑉 ∃𝑋 ∈ X with 𝑁𝐺
𝑟 (𝑎) ⊆ 𝑋 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:11

For 𝑟, 𝑠 ∈ N, an (𝑟, 𝑠)-neighborhood cover of 𝐺 is an 𝑟 -neighborhood cover of 𝐺 satisfying:

∀𝑋 ∈ X ∃𝑎 ∈ 𝑉 with 𝑋 ⊆ 𝑁𝐺
𝑠 (𝑎).

The number 𝑟 is called the radius of the neighborhood cover, and the sets 𝑋 ∈ X are called bags.
The degree 𝛿 (X) of the cover is the maximal number of bags that intersect at a given node, i.e.

𝛿 (X) := max

𝑎∈𝑉
|{𝑋 ∈ X | 𝑎 ∈ 𝑋 }|.

Given a neighborhood cover of radius 𝑟 of 𝐺 , for every 𝑎 ∈ 𝑉 we arbitrarily fix a bag containing

the 𝑟 -neighborhood of 𝑎 and denote it by X(𝑎).

Neighborhood covers with small degree can be computed efficiently on nowhere dense classes:

Theorem 4.4 ([17, Theorem 6.2]). Let C be a nowhere dense class of colored graphs. There is a
function 𝑓C and an algorithm that, given an 𝜖 > 0, an 𝑟 ∈ N, and a colored graph 𝐺 ∈ C whose
domain 𝑉 is larger than 𝑓C (𝑟, 𝜖), computes in time 𝑓C (𝑟, 𝜖) · |𝑉 |1+𝜖 an (𝑟, 2𝑟)-neighborhood cover of
𝐺 with degree at most |𝑉 |𝜖 . Furthermore, if C is effectively nowhere dense, then 𝑓C is computable.

In the rest of the paper, and without loss of generality modulo taking the maximum, we will use

the same function 𝑓C in order to satisfy the requirements of Theorem 4.4 and Theorem 2.1, such

that a graph with a number of vertices greater than 𝑓C (0, ·) satisfies the size bound of Theorem 2.1.

Notice that for a nowhere dense class C of colored graphs, for 𝐺 ∈ C of domain 𝑉 , for 𝜖 > 0 and a

neighborhood coverX of𝐺 with degree |𝑉 |𝜖 , the bound on the degree implies that

∑
𝑋 ∈X
|𝑋 | ⩽ |𝑉 |1+𝜖 .

As any edge of𝐺 can appear in at most |𝑉 |𝜖 distinct induced subgraphs of the form𝐺 [𝑋] we have∑
𝑋 ∈X
∥𝐺 [𝑋] ∥ ⩽ 𝑂 (|𝑉 |𝜖 · ||𝐺 ||) (1)

Given Theorem 4.4 and in view of our Storing Theorem 3.1, after some pseudo-linear preprocess-

ing we are able, given a bag 𝑋 and a node 𝑎, to test whether 𝑎 ∈ 𝑋 in constant time and, if 𝑎 ∉ 𝑋

return the smallest 𝑏, bigger than 𝑎, such that 𝑏 ∈ 𝑋 . This is achieved as follows: Let 𝑛 := |𝑉 | and
identify 𝑉 with [𝑛]. Let X = {𝑋0, . . . , 𝑋𝑚−1} be the neighborhood cover. As it is enough to have

one bag 𝑋 per element of 𝑉 , we can assume that𝑚 := |X| ⩽ 𝑛. Now we identify X with the partial

binary function 𝑓X from [𝑛]2 to {1} with (𝑖, 𝑎) ∈ Dom(𝑓X) iff 𝑖 < 𝑚 and 𝑎 ∈ 𝑋𝑖 (for all (𝑖, 𝑎) ∈ [𝑛]2).
Note that 𝛿 (X) ⩽ 𝑛𝜖 implies that |Dom(𝑓X) | ⩽ 𝑛1+𝜖 . Therefore, the Storing Theorem 3.1 yields the

claimed functionality.

Let’s get back to our running example.

Example (1-B). The radius of the relevant cover depends on the query. For our query𝑞 from Example (1-
A), we have for all nodes 𝑎, 𝑏 that

𝐺 |= 𝑞(𝑎, 𝑏) ⇐⇒ N𝐺
2
(𝑎) |= 𝑞(𝑎, 𝑏).

Therefore if we compute a (2, 4)-neighborhood cover X of 𝐺 , since 𝑁𝐺
2
(𝑎) ⊆ X(𝑎), we have that for

all nodes 𝑎 and 𝑏:

𝐺 |= 𝑞(𝑎, 𝑏) ⇐⇒ 𝑏 ∈ X(𝑎) ∧ 𝐺 [X(𝑎)] |= 𝑞(𝑎, 𝑏)
Hence, modulo a pseudo-linear preprocessing, given two elements 𝑎, 𝑏, to test whether they are at

distance ⩽ 2, it is enough to restrain our attention to the bag X(𝑎) of 𝑎. We will see later how this will
be useful.

As illustrated by our running example, we will reduce the problem from the whole graph to a bag

of the cover. The following game characterization of nowhere dense classes of colored graphs will

give us an inductive parameter that will decrease when diving within a bag, ensuring termination.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:12 N. Schweikardt, L. Segoufin, A. Vigny

Definition 4.5 (Splitter game [17, Definition 4.1]). Let 𝐺 = (𝑉 , 𝐸) be a graph and let 𝜆, 𝑟 ∈ N⩾1.
The (𝜆, 𝑟)-splitter game on 𝐺 is played by two players called Connector and Splitter, as follows. We

let 𝐺0 := 𝐺 and 𝑉0 := 𝑉 . In round 𝑖+1 of the game, Connector chooses a vertex 𝑐𝑖+1 ∈ 𝑉𝑖 . Then
Splitter picks a vertex 𝑠𝑖+1 ∈ 𝑁𝐺𝑖

𝑟 (𝑐𝑖+1). If𝑉𝑖+1 := 𝑁𝐺𝑖
𝑟 (𝑐𝑖+1) \ {𝑠𝑖+1} = ∅, then Splitter wins the game.

Otherwise, the game continues with 𝐺𝑖+1 := 𝐺𝑖 [𝑉𝑖+1]. If Splitter has not won after 𝜆 rounds, then

Connector wins.

This is not exactly the same definition as the one in [17], where several nodes can be removed

in one step, but it is easy to show that it is equivalent to it [31]. We say that Splitter wins the
(𝜆, 𝑟)-splitter game on 𝐺 if she has a winning strategy for the game. Interested readers may want

to look at [34, Section 4.2.2] to find examples of Splitter’s winning strategies for several classes of

graphs.

Theorem 4.6 ([17, Theorem 4.2]). A class C of graphs is nowhere dense if, and only if, for every
𝑟 ∈ N⩾1 there is a 𝜆(𝑟) ∈ N⩾1, such that for every 𝐺 ∈ C, Splitter wins the (𝜆(𝑟), 𝑟)-splitter game on
𝐺 .

Furthermore, if C is effectively nowhere dense, then 𝜆 is computable.

Remark 4.7. In the proof of our main theorem, we will also have to compute Splitter’s winning strategy
efficiently: 𝑠𝑖+1 should be computable from the previous moves and 𝑐𝑖+1 in time 𝑂 (||N𝐺𝑖

𝑟 (𝑐𝑖+1) ||).
This is also something that is needed in [16, 17]. However, there is a small hiccup. In Remark 4.3

of [16] and identically in Remark 4.7 from the journal version [17] it is stated that 𝑠𝑖+1 is computable
from the previous move and 𝑐𝑖+1 in time 𝑂 (||𝐺𝑖 ||), which is a weaker statement. A closer look at the
uses of these remarks indicates that the stronger version is needed and that this is actually what is
proved!

Our inductive parameter is the number of remaining rounds for Splitter before she wins the

game starting with parameters (𝜆(𝑟 ′), 𝑟 ′) when given an (𝑟 ′/2, 𝑟 ′)-neighborhood cover of 𝐺 for a

suitable number 𝑟 ′.

Example (1-C). For our running example, we have already computed a (2, 4)-neighborhood cover X
of 𝐺 . Let then 𝜆 be such that Splitter wins the (𝜆, 4)-splitter game on 𝐺 . Assume that 𝜆 = 1. Then 𝐺 is
edgeless and any naive algorithm will work. Assume now that 𝜆 > 1. Let𝑋 be a bag ofX. By definition,
there is an element 𝑐 such that 𝑋 ⊆ 𝑁𝐺

4
(𝑐). Let 𝑠𝑋 be Splitter’s answer if Connector picks 𝑐 in the

game’s first round. Then, by definition, Splitter wins the (𝜆−1, 4)-splitter game on 𝐺 [𝑁𝐺
4
(𝑐) \ {𝑠𝑋 }].

In particular, Splitter wins the (𝜆−1, 4)-splitter game on 𝐺 ′ := 𝐺 [𝑋 \ {𝑠𝑋 }]. Hence we can use an
inductive argument within 𝐺 ′. For this we compute a new query 𝑞′(𝑥,𝑦) such that for all 𝑎, 𝑏 such
that X(𝑎) = 𝑋 , 𝐺 |= 𝑞(𝑎, 𝑏) iff 𝐺 ′ |= 𝑞′(𝑎, 𝑏). Recall that we already know for such pairs 𝑎, 𝑏 that
𝐺 |= 𝑞(𝑎, 𝑏) iff𝐺 [𝑋] |= 𝑞(𝑎, 𝑏). It therefore remains to encode the removal of the node 𝑠𝑋 , and this can
be done by recoloring the nodes adjacent to 𝑠𝑋 . Let 𝑅1, 𝑅2 be new unary predicates such that:

𝑤 ∈ 𝑅1 (𝐺 ′) iff 𝐺 |= dist⩽1 (𝑤, 𝑠𝑋)
𝑤 ∈ 𝑅2 (𝐺 ′) iff 𝐺 |= dist⩽2 (𝑤, 𝑠𝑋).

The new query 𝑞′(𝑥,𝑦) is then defined as a disjunction of the following queries

𝑞(𝑥,𝑦) ∨
(
𝑅1 (𝑥) ∧ 𝑅1 (𝑦)

)
∨

(
𝑅2 (𝑥) ∧ 𝑦 = 𝑠𝑋

)
∨

(
𝑅2 (𝑦) ∧ 𝑥 = 𝑠𝑋

)
∨

(
𝑥 = 𝑠𝑋 ∧ 𝑦 = 𝑠𝑋

)
.

The first line takes care of the general case i.e. neither 𝑥 nor 𝑦 have been deleted. The first disjunction
tests whether they are still at distance 2 in the new graph, the second one tests whether the unique node
connecting 𝑥 and 𝑦 is 𝑠𝑋 . The second line deals with the cases of having one of the node deleted, 𝑦 = 𝑠𝑋

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:13

and 𝑥 = 𝑠𝑋 . As 𝑠𝑋 is not part of𝐺 ′, the case 𝑅2 (𝑥) ∧ 𝑦 = 𝑠𝑋 should be understood as: If 𝑦 = 𝑠𝑋 , simply
test whether𝐺 ′ |= 𝑅2 (𝑥). Similarly for the dual case. Last, if both have been deleted, the variables were
talking about the same node, being at distance less than two from itself.

4.2 Testing distance queries
We are now ready to prove Proposition 4.2. Let C be a nowhere dense class of colored graphs and

let 𝑟 ∈ N. We want to test efficiently whether two nodes are within distance at most 𝑟 in 𝐺 , for

some 𝐺 ∈ C. Let 𝜖 > 0.

For every 𝜆 ∈ N⩾1 let C𝜆 be the subclass of C consisting of all 𝐺 ∈ C such that Splitter wins the

(𝜆, 2𝑟)-splitter game on𝐺 . Clearly, C𝜆 ⊆ C𝜆+1 for every 𝜆. Since C is nowhere dense, by Theorem 4.6

there exists a number Λ := 𝜆(2𝑟) ∈ N such that C = CΛ. Thus,

C1 ⊆ C2 ⊆ · · · ⊆ CΛ = C.

We proceed by induction on 𝜆 and prove the result for all 𝐺 ∈ C𝜆 . The induction base for 𝜆 = 1

follows immediately, since by definition of the splitter game every 𝐺 ∈ C1 has to be edgeless,

and thus a naive algorithm works. For the induction step consider a 𝜆 ⩾ 2 and assume that

Proposition 4.2 already holds for 𝜆−1 (i.e., for all colored graphs in C𝜆−1).
Consider an arbitrary 𝐺 ∈ C𝜆 . Let 𝑛 := |𝑉 | be the size of the domain 𝑉 of 𝐺 , and let 𝛿 > 0 be

such that 3𝛿 + 2𝛿2 ⩽ 𝜖 .

4.2.1 The preprocessing phase. The preprocessing phase is composed of the following steps:

1. Let 𝑓C (·, ·) be the function provided by the neighborhood cover Theorem 4.4. If 𝑛 ⩽ 𝑓C (𝑟, 𝛿), we
use a naive algorithm to compute entirely the query result dist⩽𝑟 (𝐺) and trivially provide the

functionality claimed by Proposition 4.2.

From now on, consider the case where 𝑛 > 𝑓C (𝑟, 𝛿). Recall from Theorem 2.1 that this implies

that ||𝐺 || ⩽ 𝑂 (𝑛1+𝛿).
2. Using the algorithm provided by Theorem 4.4, and since 𝑛 > 𝑓C (𝑟, 𝛿), we compute a (𝑟, 2𝑟)-

neighborhood cover X of 𝐺 with degree at most 𝑛𝛿 . Furthermore, in the same way as in [17,

Lemma 6.10], we also compute for each 𝑋 ∈ X a list of all 𝑏 ∈ 𝑉 satisfying X(𝑏) = 𝑋 , and we

compute a node 𝑐𝑋 such that 𝑋 ⊆ 𝑁𝐺
2𝑟 (𝑐𝑋). All these relations can be efficiently stored and

retrieved with the Storing Theorem 3.1.

3. Since 𝐺 ∈ C𝜆 , we know that Splitter wins the (𝜆, 2𝑟)-splitter game on 𝐺 . For every 𝑋 ∈ X we

now compute a node 𝑠𝑋 that is Splitter’s answer if Connector plays 𝑐𝑋 in the first round of the

(𝜆, 2𝑟)-splitter game on 𝐺 . From Remark 4.7 we know that the nodes (𝑠𝑋)𝑋 ∈X can be computed

within total time 𝑂 (𝑛1+𝛿).
4. For every 𝑋 in X, we define 𝑋 ′ as 𝐺 [𝑋 \ {𝑠𝑋 }] and we compute for every 𝑖 ⩽ 𝑟 :

𝑅𝑖 (𝑋 ′) := {𝑤 | 𝐺 [𝑋] |= dist⩽𝑖 (𝑤, 𝑠𝑋)}

using a simple breadth-first search.

5. By Splitter’s choice of the node 𝑠𝑋 , we know that she wins the (𝜆−1, 2𝑟)-splitter game on 𝑋 ′

for every 𝑋 in X. Therefore, for each 𝑋 in X, we spend time 𝑂 (|𝑋 ′ |1+𝛿) for the preprocessing
obtained by induction on Proposition 4.2 for the query dist⩽𝑟 . This will allows us, given (𝑎, 𝑏)
in the domain of 𝑋 ′, to test in constant time whether (𝑎, 𝑏) ∈ dist⩽𝑟 (𝑋 ′).

This ends the preprocessing. We now show that it works in time𝑂 (𝑛1+𝜖) as desired. Step 1 takes

time 𝑂 (1) and Step 2 and 3 time 𝑂 (𝑛1+𝛿). Step 4 and 5 take, for each 𝑋 ∈ X, time 𝑂 (∥𝑋 ′∥1+𝛿)

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:14 N. Schweikardt, L. Segoufin, A. Vigny

leading to a total time:

𝑂

(∑
𝑋 ∈X
∥𝑋 ′∥1+𝛿

)
⩽ 𝑂

((∑
𝑋 ∈X
∥𝑋 ′∥

)
1+𝛿

)
⩽ 𝑂

((∑
𝑋 ∈X
∥𝐺 [𝑋] ∥

)
1+𝛿

)
⩽ 𝑂

(
(𝑛𝛿 ∥𝐺 ∥)1+𝛿

)
by (1)

⩽ 𝑂
(
(𝑛𝛿𝑛1+𝛿)1+𝛿

)
= 𝑂

(
𝑛1+3𝛿+2𝛿

2

)
⩽ 𝑂 (𝑛1+𝜖).

4.2.2 Test procedure. We are now given two nodes 𝑎 and 𝑏. We want to answer in constant time to

the question: “Is (𝑎, 𝑏) in dist⩽𝑟 (𝐺)?” After the preprocessing, in constant time we have access to

X(𝑎) and we can test whether 𝑏 is in X(𝑎). If it is not the case, then clearly (𝑎, 𝑏) ∉ dist⩽𝑟 (𝐺).
Otherwise, we have that (𝑎, 𝑏) ∈ dist⩽𝑟 (𝐺) iff (𝑎, 𝑏) ∈ dist⩽𝑟 (𝐺 [X(𝑎)]). Moreover (𝑎, 𝑏) ∈

dist⩽𝑟 (𝐺 [X(𝑎)]) if and only if one of the following is true (recall that 𝑋 ′ = 𝐺 [𝑋 \ {𝑠𝑋 }]):
• 𝑎 ≠ 𝑠𝑋 and 𝑏 ≠ 𝑠𝑋 , and 𝑋

′ |= dist⩽𝑟 (𝑎, 𝑏) ∨
∨

1⩽ 𝑖, 𝑗 ⩽𝑟−1
𝑖+𝑗⩽𝑟

(
𝑅𝑖 (𝑎) ∧ 𝑅 𝑗 (𝑏)

)
• 𝑎 ≠ 𝑠𝑋 and 𝑏 = 𝑠𝑋 , and 𝑋

′ |= 𝑅𝑟 (𝑎)
• 𝑎 = 𝑠𝑋 and 𝑏 ≠ 𝑠𝑋 , and 𝑋

′ |= 𝑅𝑟 (𝑏)
• 𝑎 = 𝑠𝑋 and 𝑏 = 𝑠𝑋 .

As we can test all of this in constant time (the test that 𝑋 ′ |= dist⩽𝑟 (𝑎, 𝑏) is done by using the

induction hypothesis for 𝜆−1 in Proposition 4.2), we are able to decide in constant time whether

(𝑎, 𝑏) ∈ dist⩽𝑟 (𝐺).
This ends the proof of Proposition 4.2.

5 COMPUTING THE NEXT SOLUTION
In this section, we finally prove Theorem 2.3. Let C be a nowhere dense class of colored graphs.

Given a colored graph 𝐺 of C and a first-order query 𝜑 we need to construct in pseudo-linear time

a data structure such that, upon input of a tuple 𝑎 we can return the first tuple 𝑏 such that 𝑏 is

greater than or equal to 𝑎 in the lexicographical order and 𝑏 is a solution to 𝜑 for 𝐺 .

For technical reasons (explained in Section 5.1.2 below) we prove the result for FO
+
queries

(rather than FO queries) and proceed by induction on their arity 𝑘 . In FO
+
we are allowed to use

atoms of the form dist(𝑥,𝑦) ⩽ 𝑑 for any constant 𝑑 , and when evaluated in a structureA, dist(𝑥,𝑦)
is interpreted as the distance between 𝑥 and 𝑦 in the Gaifman graph of A. Allowing to use these

distance-atoms does not increase the expressive power of first-order logic, as these atoms can

clearly be expressed in FO, but it will lead to a different notion of quantifier-rank.

We restate Theorem 2.3 as follows.

Theorem 5.1. For every (effectively) nowhere dense class of colored graphs C, there is a (computable)
function 𝑓1 and an algorithm which, upon input of 𝑘 ∈ N⩾1, 𝐺 ∈ C, 𝜖 ∈ Q>0, and an FO

+-query
𝜑 of arity 𝑘 , performs a preprocessing in time 𝑓1 (𝑘, |𝜑 |, 𝜖) · |𝐺 |1+𝜖 , such that afterwards, upon input
of a 𝑘-tuple 𝑎, it computes in time 𝑓1 (𝑘, |𝜑 |, 𝜖) the smallest tuple 𝑎′ ∈ 𝜑 (𝐺) such that 𝑎′ ⩾ 𝑎 in the
lexicographical order. In case that no such tuple exists, the algorithm returns Null.

The proof of Theorem 5.1 uses the following lemma.

Lemma 5.2. For every (effectively) nowhere dense class of colored graphs C, there is a (computable)
function 𝑓2 and an algorithm which, upon input of 𝑘 ∈ N⩾1, 𝐺 ∈ C, 𝜖 ∈ Q>0, and an FO

+-query 𝜑
of arity 𝑘 , performs a preprocessing in time 𝑓2 (𝑘, |𝜑 |, 𝜖) · |𝐺 |1+𝜖 , such that afterwards, upon input of
a (𝑘−1)-tuple 𝑎 and an element 𝑏, it computes in time 𝑓2 (𝑘, |𝜑 |, 𝜖) the smallest element 𝑏 ′ such that
𝑏 ′ ⩾ 𝑏 and 𝐺 |= 𝜑 (𝑎, 𝑏 ′). In case that no such 𝑏 ′ exists, the algorithm returns Null.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:15

The proofs of Theorem 5.1 and Lemma 5.2 are nested one in the other. We actually prove the

following:

• For any 𝑘 ∈ N⩾1, if Theorem 5.1 holds for 𝑘−1 and Lemma 5.2 holds for 𝑘 , then Theorem 5.1

also holds for 𝑘 .

• For any 𝑘 ∈ N⩾1, using that Theorem 5.1 and Lemma 5.2 hold for 𝑘−1, Lemma 5.2 also holds

for 𝑘 .

The first bullet is easy to prove:

Proof of the first bullet. Let C a nowhere dense class of colored graphs, 𝑘 ∈ N⩾1, 𝜖 ∈ Q>0,

𝐺 ∈ C, let 𝑉 be the domain of𝐺 , and let 𝜑 (𝑥,𝑦) be an FO
+
-query of arity 𝑘 . Let 𝜑 ′(𝑥) be the query

∃𝑦 𝜑 (𝑥,𝑦). Since Theorem 5.1 holds for 𝑘−1, we can spend time 𝑓1 (𝑘−1, |𝜑 ′ |, 𝜖) · |𝑉 |1+𝜖 to compute

the preprocessing for 𝜑 ′ on𝐺 . We also spend time 𝑓2 (𝑘, |𝜑 |, 𝜖) · |𝑉 |1+𝜖 to compute the preprocessing

of Lemma 5.2 for 𝜑 on 𝐺 .

This ends the preprocessing.

We are now given a 𝑘-tuple (𝑎, 𝑏) and we want to compute the smallest 𝑘-tuple in 𝜑 (𝐺) that is
larger than or equal to (𝑎, 𝑏) in the lexicographical order. Let 𝑏 ′ be the element computed in time

𝑓2 (𝑘, |𝜑 |, 𝜖) by the algorithm of Lemma 5.2 for 𝜑 and 𝐺 on input of 𝑎 and 𝑏. Then, the following is

true:

• If 𝑏 ′ is not Null, it is immediate to see that the desired answer is (𝑎, 𝑏 ′).
• If 𝑏 ′ is Null, let 𝑎′ be the answer computed in time 𝑓1 (𝑘−1, |𝜑 |, 𝜖) by the algorithm given by

Theorem 5.1 for 𝜑 ′ and𝐺 on input of the (𝑘 −1)-tuple 𝑎+1 (where 𝑎+1 is the tuple following 𝑎
in the lexicographical order). Let 𝑏0 be the smallest element of 𝑉 . If 𝑎′ is Null, it is immediate

to see that the desired answer is Null. If 𝑎′ is not Null, let 𝑏 ′ be the element computed in time

𝑓2 (𝑘, |𝜑 |, 𝜖) by Lemma 5.2 for 𝜑 and 𝐺 on input of 𝑎′ and 𝑏0. As 𝑎
′
is not Null, 𝑏 ′ cannot be

Null, and hence the desired answer is (𝑎′, 𝑏 ′).
Note that the algorithm works in time 𝑓1 (𝑘, |𝜑 |, 𝜖) after a preprocessing in time

𝑓1 (𝑘, |𝜑 |, 𝜖) · |𝑉 |1+𝜖 , provided that 𝑓1 (𝑘, |𝜑 |, 𝜖) > 𝑓1 (𝑘−1, |𝜑 |, 𝜖) + 2𝑓2 (𝑘, |𝜑 |, 𝜖). □

The remaining part of this section is devoted to the proof of the second bullet, which is more

involved. In what remains of this paper, for better readability, we replace 𝑓 (𝑘, |𝜑 |, 𝜖) simply by

𝑂 (·). Recall that the “big𝑂” hides these constants, which are computable as soon as C is effectively

nowhere dense.

We start by introducing additional notations and tools.

5.1 Additional tools
5.1.1 Model checking result and the unary case. Aswementioned earlier, our proofs are by induction

on 𝑘 . The cases when 𝑘 is zero, i.e. sentences, or 𝑘 is one, are an immediate consequence of the

following theorem.

Theorem 5.3 (Grohe, Kreutzer, Siebertz [17, Theorem 8.1]). Let 𝜑 be a first-order query with at
most one free variable, and let C be a nowhere dense class of colored graphs. There is an algorithm
that, on input of 𝐺 ∈ C computes 𝜑 (𝐺) in pseudo-linear time2.

We will often reference this theorem as the Model Checking Theorem or the Unary Theorem

(depending on the arity of the used query being 0 or 1).

2
Recall that this means that for all 𝜖 there is an algorithm. If moreover C is effectively nowhere dense then the algorithm

can be computed from 𝜖 . In view of similar issues in circuit complexity, the second result is said to be uniform.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:16 N. Schweikardt, L. Segoufin, A. Vigny

5.1.2 FO+, 𝑞-rank, and queries in normal form.
The first step of our algorithm is to transform the query into some normal form: we need the

queries to be local. This is usually performed using Gaifman’s Theorem [15]. After that, and as

Example 1-C suggests, in order to enumerate a query we will have to enumerate several other

queries within some bags of the neighborhood cover. This will be done by induction, and we

make sure that the new queries have a quantifier-rank not exceeding the one given by Gaifman’s

Theorem. This will be presented in Lemma 5.5. Unfortunately, these new queries are no longer

local. Furthermore, applying Gaifman’s Theorem already blew up the original quantifier-rank of

the input query. If at every step of the induction we apply Gaifman’s Theorem (which blows up

the quantifier-rank) and the mechanism of Lemma 5.5 (which blows up the locality), then the

considered radius for the Splitter game is not fixed, and the induction (on the number of rounds) is

wrecked. To overcome this issue, we reuse a stronger normal form presented in [18] that maintains

some notion of quantifier-rank. This normal form uses the logic FO
+
and the notion of 𝑞-rank that

we describe now.

Recall that in FO
+
we are allowed to use atoms of the form dist(𝑥,𝑦) ⩽𝑑 for any constant 𝑑 .

Following [17, Section 7.2], we say that a FO
+
query 𝜑 has 𝑞-rank at most ℓ , where 𝑞 and ℓ are in

N, if it has quantifier-rank at most ℓ and each distance-atom dist(𝑥,𝑦) ⩽𝑑 in the scope of 𝑖 ⩽ ℓ
quantifiers satisfies 𝑑 ⩽ (4𝑞)𝑞+ℓ−𝑖 . We also define (as in [17] and [18])

𝑓𝑞 (ℓ) := (4𝑞)𝑞+ℓ .

The use of the FO
+
notation enables a particular normal form for queries. The goal is to decompose

every query into local queries. Intuitively, it is similar to a Gaifman normal form. However, this

decomposition has the advantage of controlling the quantifier-rank of the generated local queries.

For formulating the normal form result, we need the following notation. An (𝑟, 𝑞)-independence
sentence is an FO

+
-sentence of the form

∃𝑧1 · · · ∃𝑧𝑘′
(∧
1⩽𝑖< 𝑗⩽𝑘′

dist>𝑟 ′ (𝑧𝑖 , 𝑧 𝑗) ∧
∧

1⩽𝑖⩽𝑘′

𝜓 (𝑧𝑖)
)

where 𝑘 ′ ⩽ 𝑞 and 𝑟 ′ ⩽ 𝑟 and𝜓 (𝑧) is quantifier-free.
Given a colored graph 𝐺 of domain 𝑉 and a tuple 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ 𝑉 𝑘

, for all 𝑟 ∈ N we define

the 𝑟 -distance type of 𝑎 as the undirected graph 𝜏𝐺𝑟 (𝑎) whose nodes are [1, 𝑘], and where {𝑖, 𝑗} is
an edge iff 𝐺 |= dist⩽𝑟 (𝑎𝑖 , 𝑎 𝑗). The set of all possible distance types with 𝑘 elements is denoted T𝑘 .

For a colored graph 𝐺 , a neighborhood cover X of 𝐺 , a number 𝑟 ∈ N, and a tuple 𝑎 of nodes of

𝐺 we say that a bag 𝑋 ∈ X 𝑟 -covers 𝑎 if 𝑁𝐺
𝑟 (𝑎) ⊆ 𝑋 .

Recall from Section 2 that 𝜎𝑐 is the schema of 𝑐-colored graphs, i.e., 𝜎𝑐 contains a binary relation

symbol 𝐸 and 𝑐 unary relation symbols 𝐶1, . . . ,𝐶𝑐 .

We now have provided all the notions necessary for stating the normal form of [18] that will

help us overcome the issues explained at the beginning of Section 5.1.2. Roughly speaking, this

normal form states the following. Given a 𝑐-colored graph 𝐺 and a 𝑘𝑟 -neighborhood cover X of

𝐺 , we can add a number of suitable colors to the nodes of 𝐺 , turning 𝐺 into a 𝑐 ′-colored graph

𝐺★
. These colors help us to decompose an FO

+
-formula 𝜑 (𝑥) that speaks about 𝐺 into a set 𝑆 of

very basic sentences (namely, Boolean combinations of (𝑟, 𝑞)-independence sentences) speaking
about𝐺★

and a set 𝐹 of formulas speaking about the subgraphs𝐺★[𝑋] induced by the bags 𝑋 ∈ X.
Whenever given a 𝑘-tuple 𝑎 of nodes of 𝐺 , we can decide whether 𝐺 |= 𝜑 (𝑎) by (1) determining

the 𝑟 -distance type 𝜏 of 𝑎, (2) determining the particular sentence 𝜉 of 𝑆 that fits to 𝜏 and that is

satisfied by𝐺★
, and (3) considering each connected component 𝐼 of 𝜏 and (3.1) finding the particular

formula𝜓 in 𝐹 that fits to 𝐼 , 𝜏 , and 𝜉 , (3.2) finding a bag 𝑋 ∈ X that 𝑟 -covers 𝑎𝐼 , and (3.3) checking

whether 𝐺★[𝑋] |= 𝜓 (𝑎𝐼). Thus, checking whether 𝐺 |= 𝜑 (𝑥) boils down to checking very basic

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:17

sentences in 𝐺★
along with checking the formulas𝜓 of 𝐹 “locally” in the subgraphs of 𝐺★

induced

by the bags of X. What is crucial for our application of this decomposition is that the sets 𝑆 and 𝐹

are independent of the particular graph 𝐺 and, furthermore, if 𝜑 (𝑥) has 𝑞-rank at most ℓ , then all

the formulas𝜓 in 𝐹 also have 𝑞-rank at most ℓ . Let us now turn to the precise formal statement of

this decomposition.

Theorem 5.4 (Rank-Preserving Normal Form [18, Theorem 7.1]). Let 𝑞, 𝑘 ∈ N be such that 𝑘 ⩽ 𝑞,
let ℓ := 𝑞−𝑘 , 𝑟 := 𝑓𝑞 (ℓ). For every 𝑐 ∈ N we can compute a 𝑐 ′ ⩾ 𝑐 such that the following is true for
𝜎 := 𝜎𝑐 and 𝜎★ := 𝜎𝑐′ . For every FO

+ [𝜎]-formula 𝜑 (𝑥) of 𝑞-rank at most ℓ where 𝑥 = (𝑥1, . . . , 𝑥𝑘),
and for each distance type 𝜏 ∈ T𝑘 we can compute a number𝑚𝜏 ∈ N and, for each 𝑖 ⩽ 𝑚𝜏 ,
• a Boolean combination 𝜉𝑖𝜏 of (𝑟, 𝑞)-independence sentences of schema 𝜎★ and
• for each connected component 𝐼 of 𝜏 an FO

+ [𝜎★]-formula𝜓 𝑖
𝜏,𝐼
(𝑥 𝐼) of 𝑞-rank at most ℓ

such that the following holds:

For all 𝑐-colored graphs 𝐺 and all 𝑘𝑟 -neighborhood covers X of 𝐺 , there is a 𝜎★-expansion 𝐺★ of 𝐺
(which only depends on 𝐺,X, 𝑞, ℓ) with the following properties, where 𝑉 denotes the domain of 𝐺 and
𝐺★:
(a) For all 𝑎 ∈ 𝑉 𝑘 and for 𝜏 := 𝜏𝐺𝑟 (𝑎) we have:

𝐺 |= 𝜑 (𝑎) iff there is an 𝑖 ⩽ 𝑚𝜏 that satisfies the following condition
(∗)𝑖 : 𝐺★ |= 𝜉𝑖𝜏 and for every connected component 𝐼 of 𝜏 there is an 𝑋 ∈ X that 𝑟 -covers 𝑎𝐼 and

𝐺★[𝑋] |= 𝜓 𝑖
𝜏,𝐼
(𝑎𝐼).

(b) For all 𝑎 ∈ 𝑉 𝑘 and for 𝜏 := 𝜏𝐺𝑟 (𝑎), there is at most one 𝑖 ⩽ 𝑚𝜏 such that the condition (∗)𝑖 is
satisfied.

(c) For all 𝑎 ∈ 𝑉 𝑘 , all connected components 𝐼 of 𝜏 := 𝜏𝐺𝑟 (𝑎), all 𝑋,𝑋 ′ ∈ X that both 𝑟 -cover 𝑎𝐼 , and
all 𝑖 ⩽ 𝑚𝜏 ,

𝐺★[𝑋] |= 𝜓 𝑖
𝜏,𝐼 (𝑎𝐼) ⇐⇒ 𝐺★[𝑋 ′] |= 𝜓 𝑖

𝜏,𝐼 (𝑎𝐼).
Furthermore, for every nowhere dense3 class C of colored graphs, there is an algorithm which, when
given as input a 𝐺 ∈ C, a 𝑘𝑟 -neighborhood cover X of 𝐺 of degree at most |𝑉 |𝜖 , and parameters
𝑞, ℓ ∈ N, computes 𝐺★ in time 𝑂 (|𝑉 |1+2𝜖).

5.1.3 The Removal Lemma. The following lemma generalizes the idea of Step 4 of the preprocessing

for the testing of distance queries in the proof of Proposition 4.2, where we introduced new relations

in order to cope with the removal of one node (typically, the answer of Splitter in the Splitter game).

The goal is to rewrite a query into an equivalent one when a node is removed from the colored

graph.

The lemma is present in a similar form in [18] (see Lemma 7.8); its proof is straightforward. For a

tuple 𝑎 and a set 𝐼 of indices, we denote by 𝑎𝐼 the projection of 𝑎 onto its components whose indices

belong to 𝐼 . By 𝑎\𝐼 we denote the projection of 𝑎 onto its components whose indices are not in 𝐼 .

Lemma 5.5 (Removal Lemma). There is an algorithm which takes as input numbers 𝑘, 𝑞, ℓ , 𝑐 ∈ N,
a 𝑐-colored graph 𝐺 of domain 𝑉 , a 𝑘-ary query 𝜑 (𝑧) ∈ FO

+ [𝜎𝑐] of 𝑞-rank at most ℓ , a set of free
variables 𝑦 ⊆ 𝑧, and a node 𝑠 ∈ 𝑉 , and which produces
• a number 𝑐 ′ ⩾ 𝑐 ,
• a query 𝜑 ′(𝑧 \ 𝑦) ∈ FO+ [𝜎𝑐′] of 𝑞-rank at most ℓ ,
• a graph 𝐻 that is a coloring of 𝐺 \ {𝑠} using 𝑐 ′ colors (i.e. a 𝜎𝑐′-expansion of 𝐺 \ {𝑠}),

3
Here the paper does not explicitly mention whether the result is uniform. A quick look at the proof clearly indicates that

the constants are computable if C is effectively nowhere dense. This is the case because the proof is performed by induction

on the number of rounds that Splitter needs to win the game.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:18 N. Schweikardt, L. Segoufin, A. Vigny

such that for all tuples 𝑏 over 𝑉 where {𝑖 ⩽ 𝑘 | 𝑏𝑖 = 𝑠} = {𝑖 ⩽ 𝑘 | 𝑧𝑖 ∈ 𝑦} =: 𝐼 we have

𝐺 |= 𝜑 (𝑏) ⇐⇒ 𝐻 |= 𝜑 ′(𝑏\𝐼).
Moreover, the running time of this algorithm is linear in the size of 𝐺 , and
• 𝑐 ′ only depends on 𝑐, 𝑞, ℓ ,
• 𝜑 ′ only depends on 𝑐, 𝑞, ℓ, 𝜑,𝑦,
• 𝐻 only depends on 𝑐, 𝑞, ℓ,𝐺, 𝑠 .

5.1.4 Kernel. For technical reasons, we not only want to know whether a given vertex belongs to

some bags. We also want to know whether its 𝑝-neighborhood (for some well chosen 𝑝) is included

in a given bag. This is where the following definition comes into play.

Definition 5.6 (Kernel). Let X be an 𝑟 -neighborhood cover of a colored graph 𝐺 with domain 𝑉 .

For all 𝑋 ∈ X and 𝑝 ⩽ 𝑟 , the 𝑝-kernel of 𝑋 is the set 𝐾𝑝 (𝑋) := {𝑎 ∈ 𝑉 | 𝑁𝐺
𝑝 (𝑎) ⊆ 𝑋 }.

Lemma 5.7 ([13, Lemma 8.1]). Assume X is an 𝑟 -neighborhood cover of a colored graph 𝐺 . Given a
bag 𝑋 and a number 𝑝 , we can compute 𝐾𝑝 (𝑋) in time 𝑂 (𝑝 · ||𝐺 [𝑋] ||).

Together with the Storing Theorem 3.1 this lemma shows that, after a pseudo-linear time

preprocessing we can, given a node 𝑎 and a bag 𝑋 , test in constant time whether 𝑎 belongs to the

𝑝-kernel of 𝑋 .

5.1.5 Shortcut pointers.

Example (2). Our first query example (i.e., Example (1-A)) is limited in the sense that all its solutions
satisfy the same distance type requiring that 𝑥 is close to 𝑦. We therefore consider a slightly more
complicated query:

𝑞(𝑥,𝑦) := dist>2 (𝑥,𝑦) ∧ 𝐵(𝑦)
where 𝐵 is interpreted as the set of “blue” nodes of a colored graph. The goal is, given a node 𝑎, to
enumerate all blue nodes that are at distance greater than 2 from 𝑎. As previously, we compute a
(2, 4)-neighborhood cover, and given a node 𝑎, we consider the bag 𝑋 := X(𝑎).
We then start two concurrent enumeration processes: the first one only enumerates nodes that are

within 𝑋 ; the second one enumerates those that are not in 𝑋 . The first one uses ideas previously
presented, diving into 𝐺 [𝑋 \ {𝑣}] using the query constructed by Lemma 5.5 and induction on 𝜆. We
now explain how the second one works.

Note that for every node 𝑏 outside of 𝑋 , we have dist(𝑎, 𝑏) > 2 as 𝑁𝐺
2
(𝑎) ⊆ 𝑋 . Therefore, it suffices

to enumerate all blue nodes that don’t belong to𝑋 . To do so, during the preprocessing phase we compute
for all nodes 𝑐 of 𝐺 and all bags 𝑋 ∈ X with 𝑐 ∈ 𝑋 , the smallest blue node bigger than 𝑐 that is not in
𝑋 ; let us denote this node by 𝑣 (𝑐, 𝑋). As the degree of our cover is pseudo-constant, the domain of the
function 𝑣 (·, ·) is pseudo-linear and the computation of the function can be done in pseudo-linear time
using the Storing Theorem 3.1.

However, a naive extension of this idea for queries of larger arities does not work: consider the query

𝑞(𝑥,𝑦, 𝑧) := dist>2 (𝑥, 𝑧) ∧ dist>2 (𝑦, 𝑧) ∧ 𝐵(𝑧).
Assume that, given a pair (𝑎, 𝑏) of nodes, we want to enumerate all nodes 𝑐 such that (𝑎, 𝑏, 𝑐) ∈ 𝑞(𝐺).
Given 𝑎, 𝑏 we consider the bags 𝑋 := X(𝑎) and 𝑌 := X(𝑏). Now, we have three concurrent processes,
one of them being in charge of enumerating all blue nodes that are neither in 𝑋 nor in 𝑌 . The previous
algorithm can enumerate all blue nodes that are not in 𝑋 , but some of those may be in 𝑌 . Given 𝑐
in 𝑋 ∪ 𝑌 , computing the smallest blue node 𝑐 ′ bigger than 𝑐 which falls out of 𝑋 ∪ 𝑌 , may require
quadratic time and space. Therefore, we need another approach.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:19

As previously let 𝑣 (𝑐, 𝑋,𝑌) be the smallest blue node bigger than (or equal to) 𝑐 that is neither in
𝑋 nor in 𝑌 . With our time and space constraints, it is not possible to compute and store 𝑣 (𝑐, 𝑋,𝑌) for
every tuple 𝑐, 𝑋,𝑌 . It turns out that we only need to know the result of 𝑣 to a subdomain of small
size. We will first only consider the cases where 𝑐 ∈ 𝑋 . For a given 𝑐 our assumption on the degree
of the cover implies that there would only be few such 𝑋 , but the number of 𝑌 remains too big. We
therefore further restrict ourselves to the cases where 𝑐 ∈ 𝑋 and 𝑣 (𝑐, 𝑋) ∈ 𝑌 . Now, given 𝑐 there are
few possible 𝑋 to consider and also few possible 𝑌 i.e. the domain of 𝑣 (·, ·, ·) satisfying these conditions
has a pseudo-linear size and the result of the function over this domain can be computed and stored in
pseudo-linear time.

Finally, let us explain how to use what has been computed to retrieve 𝑣 (𝑐, 𝑋,𝑌) for any tuple 𝑐, 𝑋,𝑌 .
First, we test whether 𝑐 ∈ 𝑋 and 𝑐 ∈ 𝑌 . If none are true, then 𝑣 (𝑐, 𝑋,𝑌) = 𝑐 . Second, assume that
𝑐 ∈ 𝑋 (the case 𝑐 ∈ 𝑌 is symmetrical). Then, as for the previous query, we retrieve 𝑣 (𝑐, 𝑋) and test
whether 𝑣 (𝑐, 𝑋) ∈ 𝑌 . If not, we are done as 𝑣 (𝑐, 𝑋) = 𝑣 (𝑐, 𝑋,𝑌). Otherwise we are in the specific case
where 𝑐 ∈ 𝑋 and 𝑣 (𝑐, 𝑋) ∈ 𝑌 , and 𝑣 (𝑐, 𝑋,𝑌) as been computed and can be retrieved. Lemma 5.8 below
generalizes these ideas.

The idea developed in the previous example is now made concrete is the following lemma.

Lemma 5.8 (Skip pointers [30]). For every nowhere dense4 class C of colored graphs, there is a
preprocessing algorithm with input:𝐺 ∈ C of domain𝑉 , 𝑟 ∈ N⩾1, 𝜖 ∈ Q>0, 𝑘 ∈ N, an 𝑟 -neighborhood
cover X of 𝐺 of degree at most |𝑉 |𝜖 , and 𝐿 ⊆ 𝑉 .

The preprocessing works in time 𝑂 (|𝑉 |1+𝑘𝜖) and afterwards enables us, when given a node 𝑏 and a
set 𝑆 of at most 𝑘 bags of X, to compute in constant time the node

SKIP(𝑏, 𝑆) := min

{
𝑏 ′ ∈ 𝐿 : 𝑏 ′ ⩾ 𝑏 ∧ 𝑏 ′ ∉

⋃
𝑋 ∈𝑆

𝐾𝑟 (𝑋)
}

(recall from Definition 5.6 that 𝐾𝑟 (𝑋) is the 𝑟 -kernel of 𝑋).

Proof. The lemma was proved already in [30], but in order to make the current paper a bit more

self-contained let us recapitulate the proof details here.

From now on we fix 𝜖 , 𝑟 , 𝐺 , X and 𝐿 as in the statement of the lemma.

We assume that all kernels have already been computed. This is without loss of generality modulo

a preprocessing of time 𝑂 (||𝐺 ||1+𝜖) using Lemma 5.7.

The domain of the SKIP(·, ·)-function is too big (recall that there can be a linear number of bags)

so we cannot compute it during the preprocessing phase. Fortunately, computing only a small part

of it will be good enough for our needs. For each node 𝑏 we define by induction a set SC(𝑏) of sets
of at most 𝑘 bags. We start with SC(𝑏) = ∅ and then proceed as follows.

• For all nodes 𝑏 of 𝐺 and for all bags 𝑋 in X with 𝑏 ∈ 𝐾𝑟 (𝑋), we add {𝑋 } to SC(𝑏).
• For all nodes 𝑏 of𝐺 , for all sets 𝑆 of bags fromX, and all bags𝑋 ofX, if |𝑆 | < 𝑘 and 𝑆 ∈ SC(𝑏)
and SKIP(𝑏, 𝑆) ∈ 𝐾𝑟 (𝑋), then we add {𝑆 ∪ {𝑋 }} to SC(𝑏).

In the preprocessing phase we will compute SKIP(𝑏, 𝑆) for all nodes 𝑏 of𝐺 and all sets 𝑆 ∈ SC(𝑏).
Before explaining how this can be accomplished within the desired time constraints, we first show

that this is sufficient for deriving SKIP(𝑏, 𝑆) in constant time for all nodes 𝑏 and all sets 𝑆 consisting

of at most 𝑘 bags of X.

Claim 5.9. Given a node 𝑏 of𝐺 , a set 𝑆 of at most 𝑘 bags of X, and SKIP(𝑐, 𝑆 ′) for all nodes 𝑐 > 𝑏 of
𝐺 and all sets 𝑆 ′ ∈ SC(𝑐), we can compute SKIP(𝑏, 𝑆) in constant time.
4
Note that everything in this lemma is computable from the input, even when C is not effectively nowhere dense. While

computing a neighborhood cover is in non-uniform FPT, here the neighborhood cover is part of the input.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:20 N. Schweikardt, L. Segoufin, A. Vigny

Proof. We consider two cases (testing in which case we fall can be done in constant time as the

kernels have been computed and 𝑆 has size bounded by 𝑘).

Case 1: 𝑏 ∈ 𝐿 and 𝑏 ∉
⋃
𝑋 ∈𝑆

𝐾𝑟 (𝑋). In this case, 𝑏 is SKIP(𝑏, 𝑆) and we are done.

Case 2: 𝑏 ∉ 𝐿 or 𝑏 ∈ ⋃
𝑋 ∈𝑆

𝐾𝑟 (𝑋). In this case, let 𝑐 be the smallest element of 𝐿 strictly bigger than 𝑏.

If there is no such 𝑐 , then SKIP(𝑏, 𝑆) = Null and we are done. Otherwise, we proceed as follows.

If 𝑐 ∉
⋃
𝑋 ∈𝑆

𝐾𝑟 (𝑋), then 𝑐 is SKIP(𝑏, 𝑆) and we are done. Otherwise, we know that 𝑐 ∈ 𝐾𝑟 (𝑋) for
some 𝑋 ∈ 𝑆 . Therefore {𝑋 } ∈ SC(𝑐). Let 𝑆 ′ be a maximal (w.r.t. inclusion) subset of 𝑆 in SC(𝑐).
Since {𝑋 } ∈ SC(𝑐), we know that 𝑆 ′ is non-empty.

We claim that SKIP(𝑐, 𝑆 ′) = SKIP(𝑏, 𝑆). To prove this, let us first assume for contradiction

that SKIP(𝑐, 𝑆 ′) ∈ 𝐾𝑟 (𝑌) for some 𝑌 ∈ 𝑆 . By definition, this implies that 𝑌 is not in 𝑆 ′. Hence
|𝑆 ′ | < |𝑆 | ⩽ 𝑘 . Thus, by definition of SC(𝑐) we have 𝑆 ′ ∪ {𝑌 } ∈ SC(𝑐) and 𝑆 ′ was not maximal.

Moreover, by definition of SKIP(𝑐, 𝑆 ′), every point between 𝑐 and SKIP(𝑐, 𝑆 ′) is either not in 𝐿 or

in some 𝐾𝑟 (𝑍) with 𝑍 ∈ 𝑆 ′ (and therefore 𝑍 ∈ 𝑆). As all nodes between 𝑏 and 𝑐 are not in 𝐿, the

claim follows. □

We conclude by showing that SC(𝑏) is small for all nodes 𝑏 of 𝐺 and that we can compute

efficiently SKIP(𝑏, 𝑆) for all nodes 𝑏 and all sets 𝑆 ∈ SC(𝑏).

Claim 5.10. For each node 𝑏 of 𝐺 , |SC(𝑏) | has size 𝑂 (|𝑉 |𝑘𝜖). Moreover, it is possible to compute
SKIP(𝑏, 𝑆) for all nodes 𝑏 of 𝐺 and all sets 𝑆 ∈ SC(𝑏) in time 𝑂 (|𝑉 |1+𝑘𝜖).

Proof. We start by proving the first statement, and afterwards we use Claim 5.9 to show that

we can compute these pointers inductively.

By SCℓ (𝑏) we denote the subset of SC(𝑏) of sets 𝑆 with |𝑆 | ⩽ ℓ . Let 𝑑 be the degree of the cover

X, i.e., 𝑑 ⩽ |𝑉 |𝜖 . By definition of 𝑑 , we know that |SC1 (𝑏) | ⩽ 𝑑 for all nodes 𝑏 of 𝐺 . For the same

reason, we have that |SCℓ+1 (𝑏) | is of size at most 𝑂 (𝑑 · |SCℓ (𝑏) |). Therefore, for all 𝑏 ∈ 𝑉 , we have:
|SC(𝑏) | = |SC𝑘 (𝑏) | ⩽ 𝑂 (𝑑𝑘).

We compute the pointers for𝑏 from𝑏max to𝑏min downwards, where𝑏max and𝑏min are, respectively,

the biggest and the smallest element of𝑉 . Given a node𝑏 in𝑉 , assumewe have computed SKIP(𝑐, 𝑆 ′)
for all 𝑐 > 𝑏 and 𝑆 ′ ∈ SC(𝑐). We then compute SKIP(𝑏, 𝑆) for 𝑆 ∈ SC(𝑏) using Claim 5.9.

At each step, the pointer is computed in constant time. Since there are 𝑂 (|𝑉 |1+𝑘𝜖) of them, the

time required to compute them is as desired. □

The combination of these two claims proves Lemma 5.8. □

5.2 The main algorithm
We now fix 𝑘 and assume that Theorem 5.1 and Lemma 5.2 hold for 𝑘−1. Our goal is to show that

Lemma 5.2 then holds for 𝑘 .

Let us fix an arbitrary number 𝑞 ∈ N with 𝑞 ⩾ 𝑘 , let ℓ := 𝑞−𝑘 , and let 𝑟 := 𝑓𝑞 (ℓ) = 4𝑞𝑞+ℓ . Note
that this is the same choice of parameters as for the Rank-Preserving Normal Form Theorem 5.4.

Our goal is to show that the statement of Lemma 5.2 is true for all 𝑘-ary queries 𝜑 of 𝑞-rank at

most ℓ .

For every 𝜆 ∈ N⩾1 let C𝜆 be the subclass of C consisting of all 𝐺 ∈ C such that Splitter wins

the (𝜆, 2𝑘𝑟)-Splitter game on 𝐺 . Clearly, C𝜆 ⊆ C𝜆+1 for every 𝜆. Since C is nowhere dense, by

Theorem 4.6 there exists a number Λ := 𝜆(2𝑘𝑟) ∈ N such that C = CΛ. Thus,
C1 ⊆ C2 ⊆ · · · ⊆ CΛ = C.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:21

We proceed by induction on 𝜆 and prove the result for all 𝐺 ∈ C𝜆 . The induction base for 𝜆 = 1

follows immediately, since by definition of the Splitter game every𝐺 ∈ C1 has to be edgeless, and

thus a naive algorithm works. For the induction step consider a 𝜆 ⩾ 2 and assume that the statement

of Lemma 5.2 already holds for 𝜆−1, i.e., for all colored graphs in C𝜆−1 and all 𝑘-ary queries of

𝑞-rank at most ℓ . Additionally, recall that we assume that the full statement of Theorem 5.1 and

Lemma 5.2 already holds for all queries of arity ⩽ 𝑘−1. This also implies that we can use the

statement of Corollary 2.4 for queries of arities ⩽ 𝑘−1.
We fix an 𝜖 ∈ Q>0 and an FO

+
-query 𝜑 (𝑥, 𝑥𝑘) of arity 𝑘 and 𝑞-rank at most ℓ . Here 𝑥 =

(𝑥1, . . . , 𝑥𝑘−1) is a (𝑘−1)-ary tuple of variables and 𝑥𝑘 is the 𝑘𝑡ℎ variable. Our goal throughout the

rest of this section is to provide an algorithm which upon input of a 𝐺 ∈ C𝜆 of domain 𝑉 performs

a preprocessing phase using time 𝑂 (|𝑉 |1+𝜖), such that afterwards upon input of a tuple 𝑎 ∈ 𝑉 𝑘−1

and an element 𝑎𝑘 ∈ 𝑉 , we can compute in constant time the element 𝑎′
𝑘
∈ 𝑉 such that:

• 𝐺 |= 𝜑 (𝑎, 𝑎′
𝑘
),

• 𝑎′
𝑘
⩾ 𝑎𝑘 ,

• and 𝑎′
𝑘
is minimal.

If no such element exists, we output Null.
The general idea is to build on the Rank-Preserving Normal Form Theorem (Theorem 5.4) and

reduce the computation of the query 𝜑 on𝐺 to the evaluation of another query within 𝐺 [𝑋] for
the bags 𝑋 of a neighborhood cover of 𝐺 that contains the 𝑟 -neighborhood of an element of 𝑎. In

order to do this we need to

(1) compute a 𝑘𝑟 -neighborhood cover X of 𝐺 . This can be done thanks to Theorem 4.4.

(2) Be able to test distances up to 𝑟 in order to compute the distance types 𝜏 compatible with 𝑎.

We have seen how to do this in Section 4.

(3) Check for each such 𝜏 and each 𝑖 ⩽ 𝑚𝜏 whether 𝜉
𝑖
𝜏 holds. This can be done thanks to the

Model Checking Theorem (Theorem 5.3).

(4) Let 𝐼 be a connected component of 𝜏 and 𝑖 ⩽ 𝑚𝜏 . We need to evaluate the formulas𝜓 𝑖
𝜏,𝐼

given

by the Rank-Preserving Normal Form Theorem. If 𝑘 does not belong to 𝐼 , then this is just a

matter of testing whether𝜓𝜏,𝐼 (𝑎𝐼) holds and this can be done by induction on 𝑘 .

The difficulty is the case when 𝑘 ∈ 𝐼 as 𝑎′
𝑘
is not known.

In case that 𝐽 := 𝐼 \ {𝑘} ≠ ∅, we are looking for the smallest 𝑎′
𝑘
such that𝜓 𝑖

𝜏,𝐼
(𝑎 𝐽 , 𝑎′𝑘) holds.

In this case we consider a suitable bag 𝑋 whose kernel contains at least one element from

𝑎 𝐽 , and compute the smallest suitable 𝑎′
𝑘
within 𝐺 [𝑋]. This is the difficult part, requiring an

induction on 𝜆 and whose sketch is given in the next bullet.

In case that 𝐼 = {𝑘}, we consider the bagsX(𝑎1), . . . ,X(𝑎𝑘−1), use the SKIP pointers provided

by Section 5.1.5 to compute several answer candidates, and then return the smallest of these.

(5) In order to compute the smallest suitable 𝑎′
𝑘
within 𝐺 [𝑋] we have to make sure we consider

only elements 𝑎′
𝑘
that are sufficiently far from all the elements of 𝑎 not in 𝑎𝐼 and sufficiently

close to all the elements of 𝑎𝐼 . To do this we first transform the formula 𝜓 𝑖
𝜏,𝐼

into Ψ𝑖
𝜏,𝐼 ,𝑝

by

adding sufficiently many free variables in order to include the elements of 𝑎 that fall within

𝑋 and adding clauses enforcing the necessary distance properties (note that we do not need

to consider the elements of 𝑎 not in 𝑋 as those are necessarily far from 𝑎′
𝑘
. The resulting

formula is described at Step 7 of the preprocessing phase).

It remains to find the smallest 𝑎′
𝑘
for which𝐺 [𝑋] |= Ψ𝑖

𝜏,𝐼 ,𝑝
(𝑎, 𝑎′

𝑘
). Either this is 𝑠𝑋 , the answer

of Splitter in the Splitter game when Connector plays the center 𝑐𝑋 of 𝑋 , or we can evaluate

the formula computed from Ψ𝑖
𝜏,𝐼 ,𝑝

by the Removal Lemma and evaluate it by induction on 𝜆

on a component resulting from the Splitter game.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:22 N. Schweikardt, L. Segoufin, A. Vigny

This is essentially what we do.

We first describe the preprocessing phase, then the answering procedure. While describing these,

we also provide a runtime analysis and a correctness proof.

5.2.1 The preprocessing phase. Consider the query 𝜑 (𝑥, 𝑥𝑘) with 𝑥 = (𝑥1, . . . , 𝑥𝑘−1). We choose

𝛿 > 0 such that 2𝛿 + 𝛿2 + 𝑘𝛿 ⩽ 𝜖 .
Let 𝐺 ∈ C𝜆 be the input and let 𝑛 := |𝑉 | be the size of the domain 𝑉 of 𝐺 . The preprocessing

phase is composed of the following steps:

1. Let 𝑓C (·, ·) be the function provided by Theorem 4.4. If 𝑛 ⩽ 𝑓C (2𝑘𝑟, 𝛿), we use a naive algorithm
to compute the query result 𝜑 (𝐺) and trivially provide the functionality claimed by Lemma 5.2.

From now on, consider the case where 𝑛 > 𝑓C (2𝑘𝑟, 𝛿).
Recall from Theorem 2.1 that this, without loss of generality, implies that ||𝐺 || ⩽ 𝑛1+𝛿 .

2. For every 𝑘 ′ < 𝑘 and every distance type 𝜏 ′ ∈ T𝑘′ , consider the 𝑘 ′-ary query 𝜌𝜏 ′ (𝑥1, . . . , 𝑥𝑘′)
defined as the conjunction of the formulas dist⩽𝑟 (𝑥𝑖 , 𝑥 𝑗) for all edges {𝑖, 𝑗} of 𝜏 ′ and the conjunc-
tion of the formulas ¬ dist⩽𝑟 (𝑥𝑖 , 𝑥 𝑗) for all 𝑖, 𝑗 ∈ [1, 𝑘 ′] with 𝑖 ≠ 𝑗 for which 𝜏 ′ does not contain
the edge {𝑖, 𝑗}. Note that for every 𝑎 ∈ 𝑉 𝑘′

we have 𝐺 |= 𝜌𝜏 ′ (𝑎) iff 𝜏 ′ = 𝜏𝐺𝑟 (𝑎). We spend time

𝑂 (|𝑉 |1+𝛿) to perform the preprocessing phase provided by the Proposition 4.2 for the distance

query dist⩽𝑟 (𝑧1, 𝑧2) used in the query 𝜌𝜏′ . Henceforth, for each 𝑘
′ < 𝑘 and each 𝜏 ′ ∈ T𝑘′ , this

will enable us upon input of a tuple 𝑎 ∈ 𝑉 𝑘′
, to test in constant time whether 𝐺 |= 𝜌𝜏′ (𝑎), i.e.,

whether 𝜏𝐺𝑟 (𝑎) = 𝜏 ′.
3. Using the algorithm provided by Theorem 4.4, we compute a (𝑘𝑟, 2𝑘𝑟)-neighborhood cover X

of 𝐺 with degree at most 𝑛𝛿 .

Furthermore, in the same way as in [17, Lemma 6.10], we also compute for each 𝑋 ∈ X a list of

all 𝑏 ∈ 𝑉 satisfying X(𝑏) = 𝑋 , and we compute a node 𝑐𝑋 such that 𝑋 ⊆ 𝑁𝐺
2𝑘𝑟
(𝑐𝑋).

In addition, we use Lemma 5.7 to compute for every bag 𝑋 ∈ X the 𝑟 - kernel of 𝑋 , i.e., the set

𝐾𝑟 (𝑋) = {𝑎 ∈ 𝑋 | 𝑁𝐺
𝑟 (𝑎) ⊆ 𝑋 }.

All of this can be efficiently stored and retrieved with the Storing Theorem 3.1. This can be done

in time 𝑂 (𝑛1+𝛿).
4. Let 𝜎 be the schema of 𝐺 and use the algorithm provided by the Rank-Preserving Normal Form

Theorem 5.4 upon input of 𝜑,𝐺,X to compute in time𝑂 (𝑛1+𝛿) the schema 𝜎★, the 𝜎★-expansion

𝐺★
of 𝐺 , and for each distance type 𝜏 ∈ T𝑘 the number𝑚𝜏 , the FO

+ [𝜎★]-sentences 𝜉𝑖𝜏 and the

FO
+ [𝜎★]-formulas𝜓 𝑖

𝜏,𝐼
(𝑥 𝐼) of 𝑞-rank at most ℓ , for each 𝑖 ⩽ 𝑚𝜏 and each connected component

𝐼 of 𝜏 .

Afterwards, we proceed in the same way as in [17, 18] to compute, within total time 𝑂 (𝑛1+𝛿),
for every 𝑋 ∈ X the structure𝐺★[𝑋], and we let𝐺★

𝑋
be the expansion of𝐺★[𝑋] where the new

unary relation symbol 𝐾 is interpreted by the 𝑟 - kernel 𝐾𝑟 (𝑋).
Note that 𝐺★

𝑋
has domain 𝑋 and belongs to the class C𝜆 .

5. By the Rank-Preserving Normal Form Theorem 5.4 for all 𝑎 = (𝑎1, . . . , 𝑎𝑘−1) in 𝑉 𝑘−1
and all

𝑎𝑘 ∈ 𝑉 we have that 𝐺 |= 𝜑 (𝑎, 𝑎𝑘) if and only if there is a distance type 𝜏 ∈ T𝑘 and an 𝑖 ⩽ 𝑚𝜏

such that:

(a) 𝜏 = 𝜏𝐺𝑟 (𝑎, 𝑎𝑘)
(b) 𝐺★ |= 𝜉𝑖𝜏
(c) 𝐺★[X(𝑎𝑘)] |= 𝜓 𝑖

𝜏,𝐽
(𝑎 𝐽), where 𝐽 is the connected component of 𝜏 with 𝑘 ∈ 𝐽 .

Note that for 𝑎𝑘 the bag X(𝑎𝑘) 𝑟 -covers the tuple 𝑎 𝐽 , since 𝑘 ∈ 𝐽 , 𝐽 is a connected component

of 𝜏 = 𝜏𝐺𝑟 (𝑎, 𝑎𝑘), |𝐽 | ⩽ 𝑘 , and X is a 𝑘𝑟 -neighborhood cover of 𝐺 .

(d) For all connected components 𝐼 of 𝜏 with 𝑘 ∉ 𝐼 we have 𝐺★[X(𝑎𝐼)] |= 𝜓 𝑖
𝜏,𝐼
(𝑎𝐼), where X(𝑎𝐼)

is defined to be X(𝑎min(𝐼)); note that this bag 𝑟 -covers 𝑎𝐼 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:23

Using the Model Checking Theorem 5.3, we can test in time𝑂 (𝑛1+𝛿) for every 𝜏 ∈ T𝑘 and 𝑖 ⩽ 𝑚𝜏

whether 𝐺★ |= 𝜉𝑖𝜏 .

We continue by performing the following preprocessing steps for every distance type 𝜏 ∈ T𝑘
and every number 𝑖 ⩽ 𝑚𝜏 such that 𝐺★ |= 𝜉𝑖𝜏 . If there is no such 𝜏 and 𝑖 then we can safely stop

as there is no tuple (𝑎, 𝑎𝑘) with 𝐺 |= 𝜑 (𝑎, 𝑎𝑘).

6. For every connected component 𝐼 of 𝜏 with 𝑘 ∉ 𝐼 , the query 𝜓 𝑖
𝜏,𝐼
(𝑥 𝐼) has arity ⩽ 𝑘−1. By our

induction hypothesis, the statement of Theorem 5.1 (and its corollaries) already holds for this

query. Thus, for each 𝑋 ∈ X we can use time 𝑂 (|𝑋 |1+𝛿) to perform the preprocessing phase

provided by Theorem 5.1 for the query𝜓 𝑖
𝜏,𝐼
(𝑥 𝐼) and the colored graph𝐺★

𝑋
. Using Corollary 2.4

and having performed this preprocessing will henceforth enable us, upon input of a tuple 𝑎𝐼 of

elements in 𝑋 , to test in constant time whether 𝐺★[𝑋] |= 𝜓 𝑖
𝜏,𝐼
(𝑎𝐼).

The total time taken by these preprocessing steps is of order at most∑
𝑋 ∈X
|𝑋 |1+𝛿 ⩽

(∑
𝑋 ∈X
|𝑋 |

)
1+𝛿
⩽ (𝑛1+𝛿)1+𝛿 ⩽ 𝑛1+𝜖

(here, we use that X has degree ⩽ 𝑛𝛿 , which implies that

∑
𝑋 ∈X |𝑋 | ⩽ 𝑛1+𝛿).

7. Let 𝐽 be the connected component of 𝜏 with 𝑘 ∈ 𝐽 and note that 𝑥𝑘 is the last variable in the

tuple 𝑥 𝐽 . Let 𝑧1, . . . , 𝑧𝑘−| 𝐽 | be new variables and consider for each 𝑝 ∈ {0, . . . , 𝑘−|𝐽 |} the query

Ψ𝑖
𝜏,𝐽 ,𝑝 (𝑧1, . . . , 𝑧𝑝 , 𝑥 𝐽) := 𝜓 𝑖

𝜏,𝐽 (𝑥 𝐽) ∧ 𝐾𝑟 (𝑥𝑘) ∧ 𝜌𝜏 (𝑥 𝐽) ∧
∧

𝑝′∈[1,𝑝]
dist(𝑥𝑘 , 𝑧𝑝′) > 𝑟 .

Note that the query Ψ𝑖
𝜏,𝐽 ,𝑝

has 𝑞-rank at most ℓ .

As explained in the sketch we aim at restricting the evaluation to the substructure induced by a

bag 𝑋 . The query then ensures that𝜓 𝑖
𝜏,𝐽
(𝑥 𝐽) is satisfied and that the nodes of 𝑥 that are not in

𝑥 𝐽 but fall in the bag 𝑋 are sufficiently far away from 𝑥𝑘 . Since we don’t know in advance how

many there will be, we anticipate all possibilities (by considering every 𝑝 ⩽ 𝑘−|𝐽 |). Note that
the arity of the query Ψ𝑖

𝜏,𝐽 ,𝑝
is 𝑘 for 𝑝 = 𝑘−|𝐽 |, and it is smaller than 𝑘 for smaller 𝑝 .

For every 𝑋 ∈ X we would like to provide the following functionality: Upon input of a tuple of

𝑝+|𝐽 |−1 elements 𝑐1, . . . , 𝑐𝑝 , 𝑎 𝐽 \{𝑘 } and an element 𝑎𝑘 , we want to be able to compute in constant

time the smallest 𝑎′
𝑘
in 𝑋 such that 𝐺★

𝑋
|= Ψ𝑖

𝜏,𝐽 ,𝑝
(𝑐1, . . . , 𝑐𝑝 , 𝑎 𝐽 \{𝑘 }, 𝑎′𝑘) and 𝑎

′
𝑘
⩾ 𝑎𝑘 .

But as the query’s arity 𝑝+|𝐽 | might be as large as 𝑘 , we do not have the statement of Lemma 5.2

available for this query. As a remedy, we perform the following steps 8–11 which make use of

our second inductive assumption, stating that Lemma 5.2 already holds for the class C𝜆−1 and
for queries of arity up to 𝑘 .

8. Recall that in Step 3 we have already computed for every 𝑋 in X a node 𝑐𝑋 whose 2𝑘𝑟 -

neighborhood contains 𝑋 . Since 𝐺 ∈ C𝜆 , we know that Splitter wins the (𝜆, 2𝑘𝑟)-Splitter
game on 𝐺 . For every 𝑋 ∈ X we now compute a node 𝑠𝑋 that is Splitter’s answer if Connector

plays 𝑐𝑋 in the first round of the (𝜆, 2𝑘𝑟)-Splitter game on 𝐺 . From Remark 4.7 we know that

the nodes (𝑠𝑋)𝑋 ∈X can be computed within total time 𝑂 (𝑛1+𝛿).
9. Let 𝑝 ∈ {0, . . . , 𝑘−|𝐽 |}, let 𝑘 ′ := 𝑝+|𝐽 | and let 𝑧 = (𝑧1, . . . , 𝑧𝑘′) := (𝑧1, . . . , 𝑧𝑝 , 𝑥 𝐽). Recall that
𝑘 ∈ 𝐽 and 𝑥𝑘 is the last variable of the tuple 𝑥 𝐽 , hence 𝑥𝑘 = 𝑧𝑘′ . For every set 𝑦 of variables from

𝑧, we proceed as follows. For every 𝑋 ∈ X we apply the Removal Lemma 5.5 to the colored

graph𝐺★
𝑋
, the query Ψ𝑖

𝜏,𝐽 ,𝑝
(𝑧), the variables 𝑦, and the node 𝑠𝑋 . This yields a query Ψ′𝑖𝜏,𝐽 ,𝑝,𝑦 (𝑧 \𝑦)

of 𝑞-rank at most ℓ and an expansion 𝐻★
𝑋
of 𝐺★

𝑋
\ {𝑠𝑋 } by unary predicates, such that for all

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:24 N. Schweikardt, L. Segoufin, A. Vigny

𝑘 ′-tuples 𝑏 over 𝑋 where {𝑖 ⩽ 𝑘 ′ | 𝑏𝑖 = 𝑠𝑋 } = {𝑖 ⩽ 𝑘 ′ | 𝑧𝑖 ∈ 𝑦} =: Δ we have

𝐺★
𝑋 |= Ψ𝑖

𝜏,𝐽 ,𝑝 (𝑏) ⇐⇒ 𝐻★
𝑋 |= Ψ′𝑖

𝜏,𝐽 ,𝑝,𝑦
(𝑏\Δ).

For every 𝑋 ∈ X, this takes time 𝑂 (||𝐺★
𝑋
||). Hence, the total time taken by Step (9) is in

𝑂 (∑𝑋 ∈X ||𝐺★
𝑋
||). Since a given edge (or a node) can only be found in at most 𝑛𝛿 different bags

(due to the degree of our cover), we have
∑

𝑋 ∈X ||𝐺★
𝑋
|| ⩽ 𝑛𝛿 ||𝐺 ||. Moreover, after Step 1 we know

that ||𝐺 || ⩽ 𝑛1+𝛿 . Hence, 𝑛𝛿 ||𝐺 || ⩽ 𝑛1+2𝛿 ⩽ 𝑛1+𝜖 .
10. By our choice of the node 𝑠𝑋 we know that Splitter wins the (𝜆−1, 2𝑘𝑟)-Splitter game on 𝐻★

𝑋
.

Hence, 𝐻★
𝑋
belongs to C𝜆−1, for every 𝑋 ∈ X. Using our induction hypothesis, we thus spend for

every 𝑋 time at most𝑂 (|𝑋 |1+𝛿) to perform the preprocessing phase for Lemma 5.2 on 𝐻★
𝑋
, since

the queries have arity at most 𝑘 and 𝑞-rank at most ℓ . Here, we carry this out for the queries

Ψ′𝑖
𝜏,𝐽 ,𝑝,𝑦

(𝑧 \ 𝑦), for all 𝑦 ⊆ 𝑧.
Note that henceforth, this will allow us to do the following for every 𝑋 ∈ X:
For any 𝑦 with 𝑥𝑘 ∉ 𝑦, when given an assignment 𝑎′ in 𝑋 \ {𝑠𝑋 } to the variables in 𝑧 \ (𝑦∪ {𝑥𝑘 }),
and for any element 𝑏 in 𝑋 \ {𝑠𝑋 }, we can compute in constant time the smallest 𝑏 ′ ∈ 𝑋 \ {𝑠𝑋 }
such that 𝐻★

𝑋
|= Ψ′𝑖

𝜏,𝐽 ,𝑝,𝑦
(𝑎′, 𝑏 ′) and 𝑏 ′ ⩾ 𝑏.

The total time taken for this preprocessing step is of order at most

∑
𝑋 ∈X |𝑋 |1+𝛿 ⩽ 𝑛1+𝜖 .

11. In addition of the previous step, we also spend, for every 𝑋 ∈ X, time at most 𝑂 (|𝑋 |1+𝛿) to
perform the preprocessing phase for Theorem 5.1 on𝐻★

𝑋
for every query Ψ′𝑖

𝜏,𝐽 ,𝑝,𝑦
(·), when 𝑥𝑘 ∈ 𝑦.

Since 𝑥𝑘 ∈ 𝑦, the arity of the query is at most 𝑘−1.
This allows us (using Corollary 2.4), given an assignment 𝑎′ in 𝑋 \ {𝑠𝑋 } to the variables in 𝑧 \𝑦,
to test in constant time whether 𝐻★

𝑋
|= Ψ′𝑖

𝜏,𝐽 ,𝑝,𝑦
(𝑎′).

Again, the total time taken for this preprocessing step is in 𝑂 (𝑛1+𝜖).
The next two steps are only performed when 𝐽 = {𝑘}; otherwise the preprocessing phase stops

here. Note that if 𝐽 = {𝑘}, then the tuple 𝑥 𝐽 only consists of the variable 𝑥𝑘 . Furthermore, for a

tuple 𝑎 = (𝑎1, . . . , 𝑎𝑘−1) and a node 𝑎𝑘 , the tuple 𝑎 𝐽 consists of the single element 𝑎𝑘 .

12. We compute the set

𝐿𝑖𝜏,𝐽 := { 𝑎𝑘 ∈ 𝑉 | 𝐺★[X(𝑎𝑘)] |= 𝜓 𝑖
𝜏,𝐽 (𝑎𝑘) }.

This can be achieved as follows: For each 𝑋 ∈ X use the algorithm provided by the Unary

Theorem 5.3 to compute in time 𝑂 (|𝑋 |1+𝛿) the result of the unary query𝜓 𝑖
𝜏,𝐽

on 𝐺★
𝑋
, and let 𝐿𝑋

be the intersection of this query result with the list of all elements 𝑏 with X(𝑏) = 𝑋 (recall that

we already precomputed this list in Step 3).

Furthermore, 𝐿𝑖
𝜏,𝐽

is the disjoint union of the sets 𝐿𝑋 for all 𝑋 ∈ X. It can therefore be computed

in time 𝑂 (∑
𝑋 ∈X
|𝑋 |1+𝛿) and hence in time 𝑂 (𝑛1+𝜖).

13. We compute the skip pointers with respect to the set 𝐿 := 𝐿𝑖
𝜏,𝐽

and 𝐾𝑟 (𝑋) for all 𝑋 ∈ X as in

Lemma 5.8. By Lemma 5.8 this is done in time 𝑂 (𝑛1+𝑘𝛿) and hence in time 𝑂 (𝑛1+𝜖).
This concludes the preprocessing phase, and we have argued that all preprocessing steps can be

done in total time 𝑂 (𝑛1+𝜖).

5.2.2 The answering phase. We now describe how, upon input of a tuple 𝑎 = (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝑉 𝑘−1

and an element 𝑏 := 𝑎𝑘 ∈ 𝑉 we can compute in constant time the minimal 𝑏 ′ such that

• 𝐺 |= 𝜑 (𝑎, 𝑏 ′),
• and 𝑏 ′ ⩾ 𝑎𝑘 ,

or the value Null in case that such a 𝑏 ′ does not exist.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:25

What we actually do is the following: For all possible pairs (𝜏, 𝑖), we compute in constant time

the minimal 𝑏 ′𝜏,𝑖 such that:

(a) 𝜏 = 𝜏𝐺𝑟 (𝑎, 𝑏 ′𝜏,𝑖),
(b) 𝐺★ |= 𝜉𝑖𝜏 ,
(c) 𝐺★[X(𝑏 ′𝜏,𝑖)] |= 𝜓 𝑖

𝜏,𝐽
(𝑎 𝐽 \{𝑘 }, 𝑏 ′𝜏,𝑖), where 𝐽 is the connected component of 𝜏 with 𝑘 ∈ 𝐽 ,

(d) for all connected components 𝐼 of 𝜏 with 𝑘 ∉ 𝐼 we have 𝐺★[X(𝑎𝐼)] |= 𝜓 𝑖
𝜏,𝐼
(𝑎𝐼), where X(𝑎𝐼)

denotes the bag X(𝑎min(𝐼)), and
(e) 𝑏 ′𝜏,𝑖 ⩾ 𝑎𝑘 ,

As there are only a constant number of pairs (𝜏, 𝑖), we can compute all 𝑏 ′𝜏,𝑖 and output the smallest

of them. By the Rank-Preserving Normal Form Theorem 5.4, this is the correct answer. If all of

them are equal to Null, we output Null.
From now on, we consider a fixed pair (𝜏, 𝑖), and we therefore omit the subscript (𝜏, 𝑖). Let

𝜏 ′ be the subgraph of 𝜏 induced on {1, . . . , 𝑘−1}. By the functionality provided by Step 2 of the

preprocessing phase we can test in constant time whether 𝜏𝐺𝑟 (𝑎) = 𝜏 ′. If this is not the case, we
know that for this 𝜏 , the condition of item (a) cannot be satisfied by any 𝑏 ′ ∈ 𝑉 . Therefore, we can
safely output Null.

Otherwise, i.e., if 𝜏𝐺𝑟 (𝑎) = 𝜏 ′, we proceed as follows.

By Step 5 of the preprocessing phase, we can check in constant time whether 𝐺★ |= 𝜉𝑖𝜏 . We

thus know if item (b) is satisfied. Furthermore, using the functionality provided in Step 6 of the

preprocessing phase, we can test in constant time for all connected components 𝐼 of 𝜏 with 𝑘 ∉ 𝐼 ,

whether 𝐺★[X(𝑎𝐼)] |= 𝜓 𝑖
𝜏,𝐼
(𝑎𝐼). Afterwards, we know if the item (d) is satisfied.

If one of the items (b) or (d) is not satisfied, we know that there is no matching solution for this

𝑎 and (𝜏, 𝑖), and we can therefore safely output Null.
Otherwise, i.e., if the items (b) and (d) are satisfied, we let 𝐽 be the connected component of 𝜏

with 𝑘 ∈ 𝐽 , and we proceed with the two following cases.

Case I: 𝐽 = {𝑘}.
In this case, every matching solution 𝑏 ′ for this 𝑎, this 𝑏 := 𝑎𝑘 , and this (𝜏, 𝑖) has to be of distance

greater than 𝑟 to every element in 𝑎. Consider the bags X(𝑎1), . . . ,X(𝑎𝑘−1), let 𝑘 ′ := |{X(𝑎𝜈) | 𝜈 ∈
{1, . . . , 𝑘−1}}|, and let 𝑋1, . . . , 𝑋𝑘′ be a list of these bags. Clearly, 𝑘

′ ⩽ 𝑘−1, and for each component

𝑎𝜈 of 𝑎, there is exactly one 𝜅 such that X(𝑎𝜈) = 𝑋𝜅 .

For each 𝜅 ⩽ 𝑘 ′, we have the following definitions:

- Let 𝑝𝜅 be the number of elements in {𝑎1, . . . , 𝑎𝑘−1} that belong to 𝑋𝜅 , and let

𝑐𝜅 := (𝑐𝜅,1, . . . , 𝑐𝜅,𝑝𝜅) be a list of all these elements.

- Let 𝑦 consist of the variables 𝑥𝜈 for all 𝜈 ∈ {1, . . . , 𝑘−1} such that 𝑎𝜈 = 𝑠𝑋𝜅
.

- Let 𝑐 ′𝜅 = (𝑐 ′𝜅,1, . . . , 𝑐 ′𝜅,𝑝′𝜅) be a list of all elements of 𝑐𝜅 that are not equal to 𝑠𝑋𝜅
.

- Let 𝑏𝜅 be the smallest element of 𝑋𝜅 \ {𝑠𝑋𝜅
} with 𝑏𝜅 ⩾ 𝑏, obtained using the data structure of

the Storing Theorem 3.1 when computing the neighborhood cover.

We compute the following 2𝑘 ′ + 1 answer candidates:
• For each 𝜅 ∈ {1, . . . , 𝑘 ′} we want to compute the smallest element in 𝑋𝜅 \ {𝑠𝑋𝜅

} that is far
away from all the nodes in the list 𝑐𝜅 and that is ⩾ 𝑏𝜅 .
More precisely, we define𝑏 ′𝜅 as the smallest element of𝑋𝜅\{𝑠𝑋𝜅

} such that𝐺★
𝑋𝜅
|= Ψ𝑖

𝜏,𝐽 ,𝑝𝜅
(𝑐𝜅 , 𝑏 ′𝜅)

and 𝑏 ′𝜅 ⩾ 𝑏𝜅 . Note that this is exactly the smallest node in 𝐾𝑟 (𝑋𝜅) \ {𝑠𝑋𝜅
} that satisfies the

items (a), (c) and (e) .

From the statement made at the end of Step 9 of the preprocessing phase, we know that to

compute this node 𝑏 ′𝜅 , we can use the functionality provided by Step 10 of the preprocessing

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:26 N. Schweikardt, L. Segoufin, A. Vigny

phase: For all 𝜅 ⩽ 𝑘 ′, we compute 𝑏 ′𝜅 as the smallest element in 𝑋𝜅 \ {𝑠𝑋𝜅
} such that

𝐻★
𝑋𝜅
|= Ψ′𝑖

𝜏,𝐽 ,𝑝𝜅 ,𝑦
(𝑐 ′𝜅 , 𝑏 ′𝜅) and 𝑏 ′𝜅 ⩾ 𝑏𝜅 .

• For each 𝜅 ∈ {1, . . . , 𝑘 ′} we want to check if 𝐺★
𝑋𝜅
|= Ψ𝑖

𝜏,𝐽 ,𝑝𝜅
(𝑐𝜅 , 𝑏) holds for the particular

node 𝑏 := 𝑠𝑋𝜅
. If this is the case we set 𝑏 ′′𝜅 to 𝑠𝑋𝜅

, otherwise to Null.
By the statement made at the end of Step 9 of the preprocessing phase, this check can be

performed by using the functionality provided by Step 11 of the preprocessing phase: We

simply check in constant time if 𝐻★
𝑋𝜅
|= Ψ′𝑖

𝜏,𝐽 ,𝑝𝜅 ,𝑦∪{𝑥𝑘 } (𝑐
′
𝜅).

• Using the functionality provided by Step 13 of the preprocessing phase, we compute in

constant time 𝑏 ′
0
, the smallest element of the set

{𝑏0 ∈ 𝐿 | 𝑏0 ∉
⋃
𝜅⩽𝑘′

𝐾𝑟 (𝑋𝜅) ∧ 𝑏0 ⩾ 𝑏}

where 𝐿 := 𝐿𝑖
𝜏,𝐽

is the set computed in Step 12 of the preprocessing phase.

It should be clear that every 𝑏 ′𝜅 , 𝑠𝑋𝜅
and 𝑏 ′

0
is a matching solution for 𝑎 and (𝜏, 𝑖). Let us now

argue that the smallest such matching solution for 𝑎 and (𝜏, 𝑖) (that is ⩾ 𝑏) is one of them: Note

that any matching solution 𝑏 ′ for 𝑎 and (𝜏, 𝑖) is either in the 𝑟 -kernel of one of the canonical bags

X(𝑎𝜈), and then it must be one of the 𝑏 ′𝜅 or one of the 𝑏 ′′𝜅 , or it must be 𝑏 ′
0
. Therefore, we can safely

output

𝑏 ′ := min

(
{𝑏 ′𝜅 | 𝜅 ⩽ 𝑘 ′} ∪ {𝑏 ′′𝜅 | 𝜅 ⩽ 𝑘 ′} ∪ {𝑏 ′0}

)
.

Case II: {𝑘} ⊊ 𝐽

W.l.o.g. let us assume that 1 ∈ 𝐽 and that {1, 𝑘} is an edge in 𝜏 .

Regarding item (c), note that the Rank-Preserving Normal Form Theorem 5.4 tells us that instead

of the bag X(𝑏 ′) we can use any bag 𝑋 that 𝑟 -covers 𝑎 𝐽 .

We define:

- 𝑋 := X(𝑎1). Note that every 𝑏 ∈ 𝑉 that satisfies item (a) belongs to 𝑋 and, moreover, 𝑋

𝑟 -covers 𝑎 𝐽 for 𝑎 = (𝑎1, . . . , 𝑎𝑘−1).
- Let 𝑝 be the number of elements of {𝑎1, . . . , 𝑎𝑘−1} that belong to 𝑋 but not to the tuple 𝑎 𝐽 .

Let 𝑐1, . . . , 𝑐𝑝 be the list of all these elements.

- Let 𝑐 ′
1
, . . . , 𝑐 ′

𝑝′ be the elements of 𝑐1, . . . , 𝑐𝑝 that are not equal to 𝑠𝑋 .

- Let Γ := 𝐽 \ {𝑘}.
- Let 𝑎′Γ be the tuple obtained from 𝑎Γ by removing all components whose entry is 𝑠𝑋 .

- Let 𝑦 consist of the variables 𝑥𝜈 for all 𝜈 ∈ {1, . . . , 𝑘−1} such that 𝑎𝜈 = 𝑠𝑋 .

- Let 𝑏𝑋 be the smallest element of 𝑋 \ {𝑠𝑋 } that is ⩾ 𝑎𝑘 . It is derived from the data structure

of the Storing Theorem 3.1 obtained when computing the neighborhood cover.

Since all matching 𝑏 ′ must be close to 𝑎1 in this case, it suffices to compute the following two

elements:

• We want to compute the smallest element in 𝑋 \ {𝑠𝑋 } that is far from all the nodes 𝑐1, . . . , 𝑐𝑝 .

More precisely, we want to compute the smallest 𝑏 ′ in 𝑋 that is ⩾ 𝑎𝑘 (and therefore ⩾ 𝑏𝑋)
such that

𝐺★
𝑋 |= Ψ𝑖

𝜏,𝐽 ,𝑝 (𝑐1, . . . , 𝑐𝑝 , 𝑎Γ, 𝑏
′).

Note that such a node precisely satisfies the items (a), (c) and (e).

From the statement made at the end of Step 9 of the preprocessing phase, we know that to

compute such nodes 𝑏 ′, we can use the functionality provided by Step 10 of the preprocessing

phase: We compute the smallest 𝑏 ′
1
in 𝑋 \ {𝑠𝑋 } such that 𝑏 ′

1
⩾ 𝑏𝑋 and

𝐻★
𝑋 |= Ψ′𝑖

𝜏,𝐽 ,𝑝,𝑦
(𝑐 ′

1
, . . . , 𝑐 ′𝑝′, 𝑎

′
Γ, 𝑏
′
1
).

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:27

• We also want to check if 𝐺★
𝑋
|= Ψ𝑖

𝜏,𝐽 ,𝑝
(𝑐1, . . . , 𝑐𝑝 , 𝑎Γ, 𝑏 ′2) holds for the particular node 𝑏 ′2 := 𝑠𝑋 ,

and if so, we want to output it.

From the statement made at the end of Step 9 of the preprocessing phase, we know that this

check can be performed by using the functionality provided by Step 11 of the preprocessing

phase: We simply check in constant time if

𝐻★
𝑋 |= Ψ′𝑖

𝜏,𝐽 ,𝑝,𝑦∪{𝑥𝑘 } (𝑐
′
1
, . . . , 𝑐 ′𝑝′, 𝑎

′
Γ).

The final output is 𝑏 ′ := min{𝑏 ′
1
, 𝑏 ′

2
}. This concludes the description of the answering procedure.

While describing this procedure, we have already verified that it outputs exactly the smallest 𝑏 ′ ∈ 𝑉
that is ⩾ 𝑏 and satisfies 𝐺 |= 𝜑 (𝑎, 𝑏 ′).

As we compute only a constant number of answer candidates (at most 2𝑘 + 1 for each pair (𝜏, 𝑖))
and then take the smallest of them, the correct solution is computed in constant time.

This completes the proof of Lemma 5.2 and hence also completes the proof of Theorem 5.1.

6 CONCLUSION
We have shown how to efficiently enumerate the results of first-order queries over any nowhere

dense class of databases. We achieved constant delay enumeration after a pseudo-linear time

preprocessing. We also showed that after a pseudo-linear preprocessing we can, on input of an

arbitrary tuple, test in constant time whether it is a solution to the query.

We did not mention the size of the constant factor. Already for boolean queries the constant

factor is at least a tower of exponentials whose height depends on the size of the query. Moreover,

an elementary constant factor is not achievable if the class of structures contains all trees (unless

FPT = AW[∗], cf. [14]).
Furthermore, when C is not effectively nowhere dense, the main algorithm is not even FPT. We

carefully highlighted the steps that require C to be effectively nowhere dense in order to obtain

computable constant factors.

An improvement of our work would be to extend the results to a dynamic setting that avoids

recomputing from scratch the index built during the preprocessing phase. For instance, the index

structure allowing for constant delay enumeration can be updated in constant time in the setting

of FO-queries over classes of databases of bounded degree [7] and in the setting of q-hierarchical

unions of conjunctive queries over arbitrary databases [6, 8]. In the nowhere dense case, constant

update time seems unrealistic, as already for boolean queries over trees the best we can do so far

are logarithmic time updates [5].

It seems plausible that there exists an index structure, computable in pseudo-linear time and

allowing for constant delay enumeration and logarithmic time updates. Preliminary results were

obtained in this direction for very simple structures such as words [28] and trees [2]. Generalizations

to more complex structures remains for future work.

One could finally wonder whether a linear preprocessing time can be achieved. This would in

particular imply that the model checking problem could be solved in time linear in the size of the

database. Up to now, the best time complexity for the model checking problem over nowhere dense

databases is pseudo-linear and it is an open problem whether this can be done in time linear in the

size of the input database.

7 APPENDIX: PROOFS FROM SECTION 3
This section is devoted to the proof Theorem 3.1. For ease of read, we recall the Theorem and some

parts of Section 3.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:28 N. Schweikardt, L. Segoufin, A. Vigny

Theorem (Storing Theorem). For every fixed 𝑘 ∈ N and 𝜖 > 0, there is an integer 𝑐 ∈ N such that
for every integer 𝑛 ∈ N there is a data structure that stores the value of a 𝑘-ary function 𝑓 of domain
Dom(𝑓) ⊆ [𝑛]𝑘 with:
• initialization time 𝑐 · |Dom(𝑓) | · 𝑛𝜖 ,
• update time 𝑐 · 𝑛𝜖 whenever a pair5 (𝑎, 𝑏) is added to or removed from 𝑓 ,
• lookup time 𝑐 ,
• and at any point in time, the space used by the data structure is 𝑐 · |Dom(𝑓) | · 𝑛𝜖 .

Here, lookup means that given a tuple 𝑎 ∈ [𝑛]𝑘 , the algorithm either answers 𝑏 if 𝑎 ∈ Dom(𝑓) and
𝑓 (𝑎) = 𝑏; or 𝑎′ if 𝑎 ∉ Dom(𝑓) and 𝑎′ := min{𝑥 ∈ Dom(𝑓) : 𝑥 > 𝑎}; or Null if no such tuple exists.

7.1 Description of the data structure
Fix 𝜖 and 𝑛. Let 𝑑 := ⌈𝑛𝜖⌉ and ℎ :=

⌈
1

𝜖

⌉
. As usual, for 𝑥 ∈ Q, ⌈𝑥⌉ denotes the smallest integer 𝑦 such

that 𝑥 ⩽ 𝑦.
Every 𝑖 ∈ [𝑛] can be uniquely decomposed in base 𝑑 into a string of length ℎ whose letters are

from [0, 𝑑−1] since 𝑑ℎ ⩾ 𝑛. We arbitrarily assume that the string starts with the higher powers

of 𝑑 and ends with the lowest ones. Given all this, every tuple in [𝑛]𝑘 can be decomposed into a

string of length 𝑘ℎ whose letters are from [0, 𝑑−1]. We then associate to the function 𝑓 a partial

tree 𝑇 (𝑓) of maximal depth 𝑘ℎ and degree 𝑑 , where each node has 0 or 𝑑 children and each leaf at

depth 𝑘ℎ represents an element of the domain of 𝑓 (by looking at the sequence of child numbers in

the path from the root to that leaf). The size of 𝑇 (𝑓) is then 𝑂 (𝑛𝜖 ·|Dom(𝑓) |).
Our data structure is an encoding of 𝑇 (𝑓) with extra information in order to navigate efficiently

in the tree and to update it efficiently. As for leaves, to any node of𝑇 (𝑓) at depth 𝑖 we can associate

a string over [0, 𝑑−1] of length 𝑖 . Given a leaf of 𝑇 (𝑓) we associate a tuple 𝑏 as the smallest tuple

(in lexicographical order) of the domain of 𝑓 whose encoding has a prefix larger than the one of

the current node.

Each inner node of the tree associated to 𝑓 is represented by 𝑑 + 1 consecutive registers in our

memory each containing a pair (𝛿, 𝑟) where 𝛿 is either 0, 1 or −1 and 𝑟 is a value that will help us

navigating in the tree.

Consider an inner node 𝑥 of 𝑇 (𝑓) and assume that 𝑥 is the 𝑖𝑡ℎ child of 𝑦. Let 𝑅 be the 𝑖𝑡ℎ register

representing 𝑦 and 𝑅′ be the first register representing 𝑥 . Then the content of 𝑅 is (1, 𝑅′) and the

content of the last register representing 𝑥 contains (−1, 𝑅). This encodes the parent/child relation

of 𝑇 (𝑓). The rest of the encoding will help updating the structure efficiently.

If the 𝑗𝑡ℎ child of 𝑦 is a leaf, for 𝑗 ⩽ 𝑑 , then the content of the 𝑗𝑡ℎ register representing 𝑦 is (0, 𝑏)
where 𝑏 is the tuple associated to that leaf.

In the case when 𝑥 is at depth 𝑘ℎ−1 (i.e. all its children are leaves), for 𝑖 ⩽ 𝑑 , we set the content
of the 𝑖𝑡ℎ register representing 𝑥 as (1, 𝑓 (𝑎)) if the 𝑖𝑡ℎ leaf of 𝑥 represents a tuple 𝑎 in the domain

of 𝑓 , and as (0, 𝑏) otherwise where 𝑏 is the tuple associated to that leaf.

Finally, we have a register 𝑅0 that contains the next available (unused) register.

Our data structure is illustrated in Figure 1.

7.2 Accessing the information.
7.2.1 Accessing the values of the function. Given a 𝑘-tuple 𝑎 ∈ [𝑛]𝑘 , our goal is to test whether 𝑎 is

in the domain of 𝑓 , and if so, to output 𝑓 (𝑎).
The two following procedures enable us to perform this in time 𝑂 (𝑘ℎ), hence in constant time.

Recall that 𝑑 := ⌈𝑛𝜖⌉ and ℎ :=
⌈
1

𝜖

⌉
.

5
we identify 𝑓 with its graph {(𝑎,𝑏) | 𝑎 ∈ Dom(𝑓), 𝑓 (𝑎) = 𝑏 }

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:29

We will use different registers names, 𝑅, 𝑆 , and 𝑆 ′ for a better readability. While the 𝑅 registers

store our functions, the 𝑆 and 𝑆 ′ registers can be seen as two working tapes of constant size (𝑘ℎ).

The first procedure decomposes a 𝑘-tuple into a sequence of numbers in [0, 𝑑−1] of length 𝑘ℎ. This
is a simple decomposition in base 𝑑 using Euclidean division.

Algorithm 1 Decomposition(𝑎1, . . . , 𝑎𝑘)
1: for 𝑖 = 1 to 𝑘 do ⊲ basically an Euclidean division

2: 𝐴← 𝑎𝑖
3: for 𝑗 = ℎ(𝑖 − 1) to ℎ𝑖 − 1 do
4: 𝐵 ←

⌊
𝐴
𝑑

⌋
⊲ the quotient of 𝐴/𝑑

5: 𝑆 𝑗 ← 𝐴 − 𝑑 · 𝐵 ⊲ the remainder of 𝐴/𝑑
6: 𝐴← 𝐵

7: end for
8: end for

The above procedure sets registers 𝑆0, . . . , 𝑆𝑘ℎ−1 so that:

𝑎𝑖 =

ℎ𝑖−1∑
𝑗=ℎ (𝑖−1)

𝑆 𝑗 · 𝑑 𝑗−ℎ (𝑖−1) .

The next procedure returns the value of 𝑓 (𝑎). It does so by navigating the tree structure downward
from the root using the decomposition of 𝑎 in base 𝑑 .

Algorithm 2 Access(𝑎)
1: Decomposition(𝑎) ⊲ decompose 𝑎 using registers 𝑆0, . . . , 𝑆𝑘ℎ−1
2: 𝑙 ← 1 ⊲ contains the working register

3: 𝑏𝑜𝑜𝑙 ← 1

4: 𝑖 ← 0 ⊲ the current depth

5: while 𝑖 ⩽ 𝑘ℎ − 1 & 𝑏𝑜𝑜𝑙 = 1 do
6: (𝑏𝑜𝑜𝑙, 𝑙) ← 𝑅 (𝑙+𝑆𝑖) ⊲ follow the search path

7: 𝑖 ← 𝑖 + 1
8: end while
9: Return(𝑏𝑜𝑜𝑙, 𝑙)

The procedure returns a pair (𝑏𝑜𝑜𝑙, 𝑙) of the form (1, 𝑏) or (0, 𝑎′). If the first component is 1 then

𝑏 = 𝑓 (𝑎). Otherwise 𝑎 ∉ Dom(𝑓) and 𝑎′ is the smallest tuple bigger than 𝑎 in the domain of 𝑓 .

7.2.2 Computing next and previous tuples. In order to update our data structure, it will be useful

to compute the smallest (resp. biggest) tuple that is within the domain of 𝑓 and strictly bigger

(resp. smaller) than a given 𝑎. Given any 𝑘-tuple 𝑎, we let 𝑎> := min{𝑏 ∈ Dom(𝑓) | 𝑏 > 𝑎} and
𝑎< := max{𝑏 ∈ Dom(𝑓) | 𝑏 < 𝑎}. If there is no element bigger (resp. smaller) than 𝑎 in the domain

of the function, we set 𝑎> := Null (resp. 𝑎< := Null).
Recall that Access(𝑎) returns (0, 𝑎>) when 𝑎 does not belong to the domain of 𝑓 , and (1, 𝑓 (𝑎))

otherwise. In the second case, Access(𝑎 + 1) yields the desired result, where 𝑎 + 1 is the tuple

immediately following 𝑎 in lexicographical order of [𝑛]𝑘 . Altogether the computation is performed

in time 𝑂 (𝑘ℎ), i.e. in constant time.

The computation of 𝑎< can be obtained similarly with a dual data structure using the reverse

lexicographical order instead of the lexicographical order.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:30 N. Schweikardt, L. Segoufin, A. Vigny

7.3 Initialization and insertions
It remains to compute and update our data structure. The computation will be done by inserting

tuples in the domain of 𝑓 one by one. If we can show that each insertion can be done in time𝑂 (𝑛𝜖),
then the total time for computing the data structure is 𝑂 (|Dom(𝑓) | · 𝑛𝜖) as desired. In this section

we show how an insertion can be achieved. We first initialize the data structure with an empty 𝑓

and then show how to extend its domain with one extra tuple.

The initialization is pretty straightforward. We build the root of the tree where everything points

to Null, this means creating its 𝑑 children.

Algorithm 3 Init()
1: 𝑅0 ← 𝑑 + 2 ⊲ update the total memory currently used

2: for 𝑖 = 1 to 𝑑 do
3: 𝑅𝑖 ← (0,Null)
4: end for
5: 𝑅𝑑+1 ← (−1,Null)

Adding information is, however, a bit more challenging. It requires two things: find the correct

subtree to add or remove the information, and update the content of the register with the appropriate

values.

We now show that, given a pair (𝑎, 𝑏), we can add to the data structure the information that

𝑓 (𝑎) = 𝑏 and accordingly update the data structure in time 𝑂 (𝑛𝜖).
The update procedure can be decomposed into two steps. The first one adds (𝑎, 𝑏) to the structure

using the Insert procedure described below. The second one updates the content of the relevant

registers. The main goal (an difficulty) of the second step is to update every values of the form

(0, 𝑏) that are impacted by the addition (or removal) of the tuple. This is the purpose of the Clean
subroutine, which is used both when we add and when we remove tuples. To do so, we need the

two tuples 𝑎< and 𝑎> , i.e., the biggest tuple in Dom(𝑓) that is smaller than 𝑎 and the smallest one

that is bigger than 𝑎. Recall that both 𝑎< and 𝑎> can be computed in time 𝑂 (𝑘ℎ) as explained in

Section 7.2.2. The key observation is that the cells of the form (0, 𝑏) that require an update must lie

between the search paths for 𝑎< and 𝑎> . There are few such cells: 𝑂 (𝑑𝑘ℎ).
For example, consider the data structure of Figure 1, and the case where 19 must be removed

from the domain. We first compute the surrounding elements of 19: 5 and 24. and look for the path

leading to 19. We then conclude that the array stored in cells 𝑅21 − −𝑅24 is now irrelevant. We

therefore move the content of the array 𝑅25 − −𝑅28 in place of 𝑅21 − −𝑅24. Immediately after that

we update the content of 𝑅15 that should now contain (1, 21) and 𝑅0 that should contain 25. Finally,

we look at each cell that lies between the paths going to 5 and 24, and replace the value (0, 19) by
(0, 24) in cells 𝑅7, 𝑅2, 𝑅13, and 𝑅14.

To recapitulate, the next procedure updates the tree structure by adding 𝑎 in the domain of 𝑓

and setting 𝑏 = 𝑓 (𝑎). The subroutine Decomposition gives the path in the tree leading to the leaf

coding 𝑎. If some nodes along this path are missing they will be created in a top-down fashion

when invoking the subroutine Insert. The Clean subroutines ensure that the leaves of the tree

that do not correspond to a tuple in the domain of 𝑓 do point to the closest larger tuple within the

domain of 𝑓 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:31

Algorithm 4 Add(𝑎, 𝑏)
1: Compute 𝑎< and 𝑎> ⊲ See Section 7.2.2

2: Decomposition(𝑎) ⊲ Decompose 𝑎 using register 𝑆0, . . . , 𝑆𝑘ℎ−1
3: Insert(1, 0, 𝑏) ⊲ Insert the desired leaf and its ancestors at the right places,

i.e. as specified by 𝑆0, . . . , 𝑆𝑘ℎ−1
4: Clean(𝑎<, 𝑎) ⊲ the leaf nodes between 𝑎< and 𝑎 whose content is (0, 𝑥)

should be updated in order to replace 𝑥 by 𝑎
5: Clean(𝑎, 𝑎>) ⊲ the leaf nodes between 𝑎 and 𝑎> whose content is (0, 𝑥)

should be updated in order to replace 𝑥 by 𝑎>

The main subroutine is Insert(𝑙, 𝑖, 𝑏) whose goal is to insert if necessary a new node at depth 𝑖

along the path specified by 𝑆0, . . . , 𝑆𝑘ℎ−1 in order to eventually, when 𝑖 is 𝑘ℎ − 1, set the value 𝑏 for

𝑓 (𝑎). Initially it starts with the root, 𝑖 = 0, and the first register representing the root i.e. 𝑅1 and

𝑙 = 1. This is done top-down in the obvious way. Recall that each time we create a new node we

need to created it 𝑑 siblings.

Algorithm 5 Insert(𝑙, 𝑖, 𝑏)
1: if 𝑖 = 𝑘ℎ − 1 then ⊲we are at the leaves level,

2: 𝑅𝑙+𝑆𝑖 ← (1, 𝑏) ⊲ the content of the register representing 𝑎 is set to

the value 𝑏 = 𝑓 (𝑎)
3: else
4: (𝑏𝑜𝑜𝑙, 𝑙 ′) ← 𝑅𝑙+𝑆𝑖 ⊲we look at the content of the 𝑆𝑡ℎ𝑖 register of the

current node. 𝑏𝑜𝑜𝑙 says whether there is already

an 𝑆𝑡ℎ𝑖 child in the data structure.

5: if 𝑏𝑜𝑜𝑙 = 0 then ⊲we need to create a new subtree

6: 𝑅𝑙+𝑆𝑖 ← (1, 𝑅0) ⊲we use 𝑑 new registers for that

7: 𝑙 ′← 𝑅0
8: for 𝑗 = 0 to 𝑑 − 1 do
9: 𝑅𝑅0+𝑗 ← (0, 0) ⊲ their content will get their correct value later dur-

ing the Clean procedures

10: end for
11: 𝑅𝑅0+𝑑 ← (−1, 𝑙 + 𝑆𝑖) ⊲ the last register points to the parent

12: 𝑅0 ← 𝑅0 + 𝑑 + 1 ⊲ 𝑅0 contains the last available memory

13: end if ⊲ in any case, 𝑅 (𝑙+𝑆𝑖) now contains (1, 𝑙 ′).
14: Insert(𝑙 ′, 𝑖 + 1, 𝑏) ⊲we continue down within the correct subtree

15: end if

It remains to describe the cleaning subroutine. Clean(𝑎,𝑏) is expected to replace the content of

all the leaf nodes between 𝑎 and 𝑏 of the form (0, 𝑥) by (0, 𝑏). This is done by a simple depth-first

left-first traversal of the tree, starting from 𝑎 and ending in 𝑏. There are two special cases when

𝑎 = Null and when 𝑏 = Null. Note that it is called with either Clean(𝑎<, 𝑎) or Clean(𝑎, 𝑎>) hence
at least one of its inputs, namely 𝑎 is not Null. The other input may be Null if 𝑎 is the first or last
element in the domain of 𝑓 . Notice also that by definition of 𝑎< all nodes between 𝑎< and 𝑎 are

leaves, same with 𝑎 and 𝑎> .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:32 N. Schweikardt, L. Segoufin, A. Vigny

Algorithm 6 Clean(𝑎1, 𝑎2)
1: if 𝑎1 ≠ Null Decomposition(𝑎1) ⊲ decompose 𝑎1 using registers 𝑆0, . . . , 𝑆𝑘ℎ−1
2: if 𝑎2 ≠ Null Decomposition’(𝑎2) ⊲ decompose 𝑎2 using registers 𝑆 ′

0
, . . . , 𝑆 ′

𝑘ℎ−1
3: if 𝑎1 = Null then ⊲ 𝑎2 is the first element in the domain of 𝑓

4: Fill_Left(1, 0, 𝑎2) ⊲ sets to (0, 𝑎2) the label of all nodes before the leaf
corresponding to 𝑎2

5: else if 𝑎2 = Null then ⊲ 𝑎1 is the last element in the domain of 𝑓

6: Fill_Right(1, 0,Null) ⊲ sets to (0,Null) the label of all the nodes after the
leaf corresponding to 𝑎1

7: else
8: Fill(1, 0, 𝑎2) ⊲ sets to (0, 𝑎2) the labels of all leaf nodes between

the leaves corresponding to 𝑎1 and 𝑎2
9: end if

The procedures Fill_Left, Fill_Right, and Fill use the information present in the registers

𝑆0, . . . , 𝑆𝑘ℎ−1 and 𝑆
′
0
, . . . , 𝑆 ′

𝑘ℎ−1. The procedure Fill_Right(𝑙, 𝑖, 𝑎2), which is also invoked within

Fill, assumes that 𝑎1 is in the domain of 𝑓 and the path associated to 𝑎1 has been created in the

data structure. It then sets to (0, 𝑎2) the label of all nodes that are after the leaf decomposed as

𝑆0, . . . , 𝑆𝑘ℎ−1 in the depth-first search order of the tree, starting from the node at depth 𝑖 , pointed

by 𝑅𝑙 . It is only invoked in the context where all those nodes are leaves. Hence it is enough to go

along the path specified by the 𝑆𝑖 and to set the content of all the siblings to (0, 𝑎2).

Algorithm 7 Fill_Right (𝑙, 𝑖, 𝑎2)
1: if 𝑖 < 𝑘ℎ then ⊲we are working with an inner node

2: for 𝑙 + 𝑆𝑖 < 𝑙 ′ < 𝑙 + 𝑑 do
3: 𝑅𝑙 ′ ← (0, 𝑎2) ⊲we set the appropriate value

4: end for
5: (𝑏𝑜𝑜𝑙, 𝑙) ← 𝑅𝑙+𝑆𝑖 ⊲ as 𝑎1 is in the domain, 𝑏𝑜𝑜𝑙 = 1 and 𝑙 is a pointer

6: Fill_Right(𝑙, 𝑖 + 1, 𝑎2) ⊲we continue down within the tree

7: end if

Similarly, the dual procedure Fill_Left(𝑙, 𝑖, 𝑎2) assumes that 𝑎2 is in the domain of 𝑓 and the

path associated to 𝑎2 has been created in the data structure. It then sets to (0, 𝑎2) the label of all
nodes that are before the leaf decomposed as 𝑆 ′

0
, . . . , 𝑆 ′

𝑘ℎ−1 in the depth-first search order of the

tree, starting from the node at depth 𝑖 , pointed by 𝑅𝑙 .

Algorithm 8 Fill_Left (𝑙, 𝑖, 𝑎2)
1: if 𝑖 < 𝑘ℎ then ⊲we are working with an inner node

2: for 𝑙 ⩽ 𝑙 ′ < 𝑙 + 𝑆 ′𝑖 do
3: 𝑅𝑙 ′ ← (0, 𝑎2) ⊲we set the appropriate value

4: end for
5: (𝑏𝑜𝑜𝑙, 𝑙) ← 𝑅𝑙+𝑆′

𝑖
⊲ as 𝑎2 is in the domain, 𝑏𝑜𝑜𝑙 = 1 and 𝑙 is a pointer

6: Fill_Left(𝑙, 𝑖 + 1, 𝑎2) ⊲we continue down within the tree

7: end if

Finally, we combine the above two procedures in the appropriate way. Here, Fill(𝑙, 𝑖, 𝑎) assumes

that 𝑎 is in the domain of 𝑓 and that the path associated to 𝑎 exists already. It is done by first finding

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:33

the level 𝑖 where 𝑆𝑖 and 𝑆
′
𝑖 disagree and then call FillLeft and FillRight starting from this level to

clean the corresponding subtree.

Algorithm 9 Fill (𝑙, 𝑖, 𝑎2)
1: if 𝑆𝑖 = 𝑆 ′𝑖 then ⊲we spot the first level where 𝑆𝑖 and 𝑆

′
𝑖 disagree

2: (𝑏𝑜𝑜𝑙, 𝑙 ′) ← 𝑅𝑙+𝑆𝑖
3: Fill(𝑙 ′, 𝑖 + 1, 𝑎2)
4: else ⊲ 𝑆𝑖 < 𝑆

′
𝑖

5: for 𝑙 + 𝑆𝑖 < 𝑙 ′ < 𝑙 + 𝑆 ′𝑖 do
6: 𝑅𝑙 ′ ← (0, 𝑎2) ⊲we take care correctly of the current level

7: end for
8: if 𝑖 < 𝑘ℎ then ⊲ if we are not at a leaf level, we need to set the

subtrees appropriately

9: (𝑏𝑜𝑜𝑙, 𝑙 ′) ← 𝑅𝑙+𝑆𝑖
10: Fill_Right(𝑙 ′, 𝑖 + 1, 𝑎2)
11: (𝑏𝑜𝑜𝑙, 𝑙 ′) ← 𝑅𝑙+𝑆′

𝑖

12: Fill_Left(𝑙 ′, 𝑖 + 1, 𝑎2)
13: end if
14: end if

Note that each subroutine works in time linear in 𝑘ℎ𝑑 , hence in𝑂 (𝑛𝜖). Given 𝑓 , we can therefore

create the data structure for 𝑓 in time 𝑂 (𝑛𝜖 ·|Dom(𝑓) |) as required.

7.4 Removing information
When a tuple is removed, we start in the same way as for insertion, but we apply a further operation:

deleting one or several unused subtrees to prevent the data structure to grow indefinitely.

We now show that, given a pair (𝑎, 𝑏), we can remove from the data structure the fact that 𝑎 is in

the domain of 𝑓 . This can require up to three steps. First, change the label of the leaf corresponding

to 𝑎 in the data structure. Secondly, possibly remove the subtree containing 𝑎 off the data structure.

And finally, clean the data structure between 𝑎< and 𝑎> .

Algorithm 10 Remove(𝑎)
1: Compute 𝑎< and 𝑎> ⊲ as explained above

2: Decomposition(𝑎) ⊲ decompose 𝑎 using registers 𝑆0, . . . , 𝑆𝑘ℎ−1
3: 𝑙 ← Run(1, 0) ⊲ find the node representing 𝑎 in the structure

4: Cut(𝑙) ⊲ remove possible subtrees

5: Clean(𝑎<, 𝑎>) ⊲ ensure that all pairs (0, 𝑥) of the data structure

have the right value for 𝑥

The procedure Run(𝑙, 𝑖) processes the tree structure downward returning by induction the

register for the 𝑆𝑡ℎ𝑖 child of 𝑅𝑙 . It is initially invoked with (1, 0) and eventually will return the

register of the leaf corresponding to 𝑎.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

1:34 N. Schweikardt, L. Segoufin, A. Vigny

Algorithm 11 Run(𝑙, 𝑖)
1: if 𝑖 < 𝑘ℎ − 1 then ⊲we are not at the leaves level

2: (𝑏𝑜𝑜𝑙, 𝑙 ′) ← 𝑅𝑙+𝑆𝑖 ⊲we look at the content of the 𝑆𝑡ℎ𝑖 register of the current node.

3: Run(𝑙 ′, 𝑖 + 1) ⊲we continue in the correct subtree

4: else ⊲we are at the leaves level

5: Return(𝑙)
6: end if

The procedure Cut removes the subtree of a node if it no longer contains an element in the

domain of 𝑓 . This is done bottom-up starting from a leaf corresponding to a tuple that has been

removed from the domain of 𝑓 . As we always enforce that a node has 0 or 𝑑 children we need to

check whether all siblings can be safely removed before removing the node and its siblings. We

then reuse the newly freed memory in order to optimize space.

Algorithm 12 Cut(𝑙)
1: (𝑏𝑜𝑜𝑙, 𝑖) ← (0, 0)
2: while 𝑏𝑜𝑜𝑙 ≠ −1 do ⊲We go to the last child of the current node

3: (𝑏𝑜𝑜𝑙, 𝑙 ′) ← 𝑅𝑙+𝑖
4: 𝑖 ← 𝑖 + 1
5: end while
6: 𝑙 ← 𝑙 + 𝑖 − 𝑑 − 1 ⊲We can now go to the first child

7: (𝑏𝑜𝑜𝑙, 𝑖) ← (0, 0)
8: while 𝑖 < 𝑑 & 𝑏𝑜𝑜𝑙 = 0 do ⊲ we check whether any sibling of 𝑙 contains an element in the

domain of 𝑓 , i.e. whether bool=1
9: (𝑏𝑜𝑜𝑙, 𝑙 ′) ← 𝑅𝑙+𝑖
10: 𝑖 ← 𝑖 + 1
11: end while
12: if 𝑏𝑜𝑜𝑙 = 0 then ⊲ if no, the node and its siblings can be safely removed and

their memory reused

13: (−1, 𝑙 ′) ← 𝑅𝑙+𝑑 ⊲we save the address of the parent of the current node

14: 𝑅𝑙 ′ ← (0, 0) ⊲ the value will be corrected later

15: for 0 ⩽ 𝑗 ⩽ 𝑑 do ⊲we now need to save memory, moving the nodes at the end

of the memory in place of those just deleted

16: 𝑅𝑙+𝑗 ← 𝑅 (𝑅0−(𝑑+1)+𝑗)
17: end for ⊲ it remains to change the child relation of the parent of those

nodes

18: (−1, 𝑙 ′′) ← 𝑅𝑅0−1 ⊲ 𝑙 ′′ now contains the address of their parents

19: 𝑅𝑙 ′′ ← (1, 𝑙) ⊲ the child relation is updated

20: 𝑅0 ← 𝑅0 − (𝑑 + 1) ⊲ update the last available memory

21: Cut(𝑙 ′) ⊲we start again with the parent level

22: end if

All the procedures take time𝑂 (𝑘ℎ𝑑) and are therefore in𝑂 (𝑛𝜖) as desired. This ends the appendix
presenting proof details of the Storing Theorem 3.1.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

Enumeration for FOQueries over Nowhere Dense Graphs 1:35

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, andMatthias Niewerth. Enumeration on trees with tractable combined

complexity and efficient updates. In Dan Suciu, Sebastian Skritek, and Christoph Koch, editors, Proceedings of the 38th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, pages 89–103. ACM, 2019.

[3] Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear delay. In Zoltán Ésik,

editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged,
Hungary, September 25-29, 2006, Proceedings, volume 4207 of Lecture Notes in Computer Science, pages 167–181. Springer,
2006.

[4] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries and constant delay

enumeration. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic, 21st International
Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings,
volume 4646 of Lecture Notes in Computer Science, pages 208–222. Springer, 2007.

[5] Andrey Balmin, Yannis Papakonstantinou, and Victor Vianu. Incremental validation of XML documents. ACM Trans.
Database Syst., 29(4):710–751, 2004.

[6] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive queries under updates. In

Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors, Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 303–318. ACM, 2017.

[7] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD queries under updates on bounded

degree databases. ACM Trans. Database Syst., 43(2):7:1–7:32, 2018.
[8] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs under updates and in the presence of

integrity constraints. In Benny Kimelfeld and Yael Amsterdamer, editors, 21st International Conference on Database
Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria, volume 98 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018.

[9] Rodney G. Downey, Michael R. Fellows, and Udayan Taylor. The parameterized complexity of relational database

queries and an improved characterization of W[1]. In Douglas S. Bridges, Cristian S. Calude, Jeremy Gibbons, Steve

Reeves, and Ian H. Witten, editors, First Conference of the Centre for Discrete Mathematics and Theoretical Computer
Science, DMTCS 1996, Auckland, New Zealand, December, 9-13, 1996, pages 194–213. Springer-Verlag, Singapore, 1996.

[10] Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree are computable with

constant delay. ACM Trans. Comput. Log., 8(4):21, 2007.
[11] Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating answers to first-order queries over databases

of low degree. In Richard Hull and Martin Grohe, editors, Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, pages 121–131. ACM, 2014.

[12] Markus Frick. Generalized model-checking over locally tree-decomposable classes. Theory Comput. Syst., 37(1):157–191,
2004.

[13] Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable structures. J. ACM,

48(6):1184–1206, 2001.

[14] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic revisited. Ann. Pure
Appl. Logic, 130(1-3):3–31, 2004.

[15] Haim Gaifman. On local and non-local properties. In Proceedings of the Herbrand Symposium, volume 107 of Studies in
Logic and the Foundations of Mathematics, pages 105 – 135. Elsevier, 1982.

[16] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. In

David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 89–98. ACM, 2014.

[17] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. J.
ACM, 64(3):17:1–17:32, 2017.

[18] Martin Grohe and Nicole Schweikardt. First-order query evaluation with cardinality conditions. In Proceedings of the
37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2018, Houston, TX, USA, June
10–15, 2018. ACM, 2018. Full version available at CoRR, http://arxiv.org/abs/1707.05945, 2017.

[19] Wojciech Kazana. Query evaluation with constant delay. (L’évaluation de requêtes avec un délai constant). PhD thesis,

École normale supérieure de Cachan, Paris, France, 2013.

[20] Wojciech Kazana and Luc Segoufin. First-order query evaluation on structures of bounded degree. Logical Methods in
Computer Science, 7(2), 2011.

[21] Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of structures with bounded expansion.

In Richard Hull andWenfei Fan, editors, Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages 297–308. ACM, 2013.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

http://arxiv.org/abs/1707.05945

1:36 N. Schweikardt, L. Segoufin, A. Vigny

[22] Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees. ACM Trans. Comput. Log.,
14(4):25:1–25:12, 2013.

[23] Donald Ervin Knuth. The art of computer programming, , Volume III, 2nd Edition. Addison-Wesley, 1998.

[24] Stephan Kreutzer and Anuj Dawar. Parameterized complexity of first-order logic. Electronic Colloquium on Computa-
tional Complexity (ECCC), 16:131, 2009.

[25] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer,

2004.

[26] Jaroslav Nesetril and Patrice Ossona de Mendez. First order properties on nowhere dense structures. J. Symb. Log.,
75(3):868–887, 2010.

[27] Jaroslav Nesetril and Patrice Ossona de Mendez. On nowhere dense graphs. Eur. J. Comb., 32(4):600–617, 2011.
[28] Matthias Niewerth and Luc Segoufin. Enumeration of MSO queries on strings with constant delay and logarithmic

updates. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2018, Houston, TX, USA, June 10–15, 2018. ACM, 2018.

[29] Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO queries over nowhere dense graphs. In

Jan Van den Bussche and Marcelo Arenas, editors, Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, Houston, TX, USA, June 10-15, 2018, pages 151–163. ACM, 2018.

[30] Luc Segoufin and Alexandre Vigny. Constant delay enumeration for FO queries over databases with local bounded

expansion. In Michael Benedikt and Giorgio Orsi, editors, 20th International Conference on Database Theory, ICDT
2017, March 21-24, 2017, Venice, Italy, volume 68 of LIPIcs, pages 20:1–20:16. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2017.

[31] Sebastian Siebertz. Nowhere Dense Classes of Graphs: Characterisations and Algorithmic Meta- Theorems. PhD thesis,

Technical University of Berlin, Germany, 2016.

[32] Robert Endre Tarjan and Andrew Chi-Chih Yao. Storing a sparse table. Commun. ACM, 22(11):606–611, 1979.

[33] Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Harry R. Lewis, Barbara B.

Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, Proceedings of the 14th Annual ACM Symposium on
Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 137–146. ACM, 1982.

[34] Alexandre Vigny. Query enumeration and nowhere dense graphs. (Énumération des requêtes et graphes nulle-part denses).
PhD thesis, Paris Diderot University, France, 2018.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 1.

	Abstract
	1 Introduction
	2 Preliminaries and main result
	3 Storing functions and retrieving solutions
	3.1 Description of the data structure
	3.2 Proof sketch of Theorem 3.1.

	4 Testing distance queries
	4.1 Tools for nowhere dense graphs
	4.2 Testing distance queries

	5 Computing the next solution
	5.1 Additional tools
	5.2 The main algorithm

	6 Conclusion
	7 Appendix: Proofs from Section 3
	7.1 Description of the data structure
	7.2 Accessing the information.
	7.3 Initialization and insertions
	7.4 Removing information

	References

