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ABSTRACT
Register automata have been used as a convenient model for speci-

fying and verifying database driven systems. An important problem

in such systems is to provide views that hide or restructure certain

information about the data or process, extending classical notions

of database views. In this paper we carry out a formal investigation

of views of register automata by considering simple views that

project away some of the registers. We show that classical register

automata are not able to describe such projections and introduce

more powerful register automata that are able to do so. We also

show useful properties of these automata such as closure under

projection and decidability of verifying temporal properties of their

runs.
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1 INTRODUCTION
Software systems centered around a database are pervasive in nu-

merous applications. They are encountered in areas as diverse as

electronic commerce, e-government, scientific applications, enter-

prise information systems, and business process management. Such

systems are generally governed by highly complex workflows that

involve stakeholders with very different needs and permissions. It

is therefore critical to provide users with views of the underlying
workflow, customized according to their role. Such views present

the same workflow at various levels of abstraction that expose only

the information relevant (or authorized) for a class of users.

While views are an integral part of practical workflow design,

there have been few rigorous studies of specification mechanisms

and semantics of data-drivenworkflow views. In this paper we carry

out a formal investigation of basic views that project away some of

the data as it evolves in the course of the workflow. We do so using

register automata, which have been used as a convenient model

for specifying and verifying database driven systems. Specifically,

we consider projection views that hide some of the registers of

the automaton, and possibly a portion of the database. Our main

objective is to develop mechanisms for specifying the images of
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such projection views. This would yield customized workflows that

explain to users their local views of the global workflow.

Register automata capture workflows in which a record of data

values evolves as specified by transition rules. This is essentially

the same as the popular artifact model (see related work). Each

transition rule specifies, given a current record, the set of possible

successor records. The automaton is equipped with an underlying

relational database that can be queried by the transition rules. In

addition, the automaton has a finite-state control including a Büchi

acceptance condition. A run of the automaton on a given database is

an infinite sequence of consecutive records satisfying the transition

rules and the Büchi acceptance condition.

As an informal example, consider the (simplified) workflow of a

manuscript reviewing system. The treatment of each paper might

be modeled by a set of values that evolve throughout the workflow,

identified by attributes such as paper-id, author, topic, paper-state,
reviewer, review-state. There might also be an underlying database,

with one relation holding the topic of each paper and another the

topics that each reviewer prefers to review. The transitions follow

the standard workflow for a reviewing system: a paper is submitted,

a reviewer is assigned nondeterministically based on topic, the

state of the paper transitions to under-review, the reviewers carry

out their own workflow, possibly invoving sub-reviewers, and this

proceeds until a decision is reached, possibly with a loop due to

revisions. In the register automaton model, the data values of the

attributes would be held in corresponding registers. The transitions

would specify the above stages in the processing of the paper, using

the registers and the database. While in this example one would

expect the workflow to complete in finitely many steps, its runs can

be easily made infinite, as in the formal model, by looping forever

in the final state. Note that in this scenario, some of the users might

see only a subset of the attributes. For instance, authors do not see

their reviewers or the reviewer-states. And if reviewing is double

blind, reviewers do not see the authors. These are projection views

that hide some of the registers of the automaton.

Unfortunately, register automata are not closed under projec-

tion even in the absence of a database: it is easy to construct a

register automaton whose projection view cannot be described by

another register automaton. Indeed, the problem of describing the

projections of register automata turns out to be challenging, and

a general solution remains elusive. We mainly focus in this paper

on the simpler case of register automata without a database, and

make partial progress in the case when a database is present.

Since register automata are not closed under projection, we de-

fine more powerful extended register automata. Extended automata

augment register automata with global constraints, requiring equal-

ities or inequalities among data values held in registers that may

be far apart in the run, but related using regular expressions. In the

absence of a database, we show that extended register automata
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can not only specify projections of register automata, but are them-

selves closed under projection. In terms of expressive power, we

show that extended register automata can express more than the

projections of register automata. We provide a precise character-

ization of the subclass of extended automata that are projections

of register automata. Note that being the projection of a register

automaton is a desirable property, because it means, intuitively, that

the global constraints can be enforced entirely by local transitions,

in a streaming fashion, at the cost of additional registers.

Although motivated by projection views, extended automata are

interesting in their own right, because global constraints occur nat-

urally in workflows. We show that testing emptiness of extended

automata is decidable, even when a database is present. As a con-

sequence, verification for a class of temporal properties of runs

(LTL-FO) is decidable as well.

In the presence of a database, we make partial progress in tack-

ling projections of register automata. First, we show that extended

automata are no longer able to describe projections of register au-

tomata. We identify two additional types of global constraints that

are needed in order to describe projections. The first generalizes the

inequality constraints of extended automata to inequalities of tuples
of register values (effectively introducing disjunctions of inequal-

ities). The second requires that a specified set of register values

occurring in the run be finite. We show that with these additional

features, extended register automata are able to specify projection

views of register automata where some of the registers and the

entire database are hidden.

Our results make use of a variety of techniques in logic and

automata theory, including the finite-model theory of guarded first-

order logic, and Monadic Second Order logic (MSO) on graphs and

infinite strings. The decidability of verification for extended au-

tomata relies on showing that the set of state traces (the infinite

sequences of states of their runs) is quasi-regular (an extension of

ω-regularity), and emptiness of quasi-regular languages is decid-

able [5]. This stands in contrast with register automata, for which

the set of state traces is ω-regular [19]. As a side benefit, our proof
of quasi-regularity for extended automata also provides an alter-

native, simpler proof of the ω-regularity result of [19]. Regarding

MSO, besides routine connections to (ω)-regular languages, we
use non-trivial results on properties of graphs defined by MSO on

infinite strings, as well as decidability of satisfiability on strings of

certain extensions of MSO with bounding quantifiers [5, 10].

Related work. Formalwork on database-driven systems has largely

focused on automatic verification of temporal properties. For sur-

veys of this considerable body of work, see [8, 13]. One of the most

well-studied models of data-driven workflows are artifact systems,
that are formal counterparts of IBM’s business artifacts introduced

in [20, 23]. In its simplest incarnation, an artifact system is essen-

tially a register automaton equipped with a relational database.

Research onworkflow views has traditionally focused on process-

centric specifications (e.g. [9, 16, 21, 27]). These abstract away the

data and their manipulations already in the original workflow spec-

ification. [26] considers view generation for artifact systems, but

in a limited setting in which there is no database queried by the

workflow. Abstraction operations are restricted to the special case

in which some of the boolean artifact variables, seen as states of

a finite-state automaton, are replaced with their ancestors in a hi-

erarchy of states. Views of artifacts are discussed in [18] in the

context of service interoperation hubs, a framework supporting

business collaborations. The views include both the data and the

process. The data portion of a view is essentially a select-project

view, while the process view specifies a condensation operation

in which multiple states are mapped to a single state. There is no

attempt to synthesize specifications for the images of such views.

An abstract model of workflow views, used to compare the ex-

pressiveness of different workflow models, is introduced in [1]. The

approach relies on the notion of abstract tree of runs, obtained by

applying a view to the data and transitions of the workflow. Dif-

ferent workflows are compared by defining views that map them

to a common abstraction and then using a notion of simulation

on the resulting trees of runs. As an example, this mechanism is

used to show that a particular workflow model based on XML is

more powerful than the basic artifact model relative to appropri-

ate abstractions. While the views considered are very general, the

problem of describing their images is not addressed.

In [3], collaborative workflows involving multiple users are mod-

eled using a local-as-view approach, whereby the data seen by each

user is defined by projections of database relations. The goal is to

enable users to reason about the global workflow using their own

local observations. This is further pursued in [2], using selection-

projection views, with the goal of providing runtime and static

explanations of a user’s view of the workflow. The static variant

aims to produce a workflow specification describing the user’s view,

which is somewhat similar in flavor to the goal of this paper. How-

ever, the differences in the models and the restrictions imposed in

[2] in order to obtain the specifications, render the two approaches

incomparable.

The previous work most closely related to our paper is that of

[19], which studies views of artifact systems that strip away the

data and retain just the transitions occurring in runs. The goal is to

determine under what conditions the linear-time and branching-

time views are regular. It is shown that the linear-time views of

tuple artifacts are always ω-regular, but branching-time views are

only regular under additional restrictions. The impact of data depen-

dencies (tuple and equality-generating dependencies) on regularity

of the views is also studied. The linear-time views of [19] are essen-

tially the state traces of our register automata. The proof of their

ω-regularity in [19] relies on showing that every sequence of states

satisfying a local consistency condition is in fact the state trace of

a real run. In contrast, the alternative proof in the present paper

relies on the finite-model property of a class of guarded first-order

(FO) sentences.

Organization. The paper is organized as follows. Section 2 intro-

duces basic concepts and terminology, as well as register automata.

Extended register automata are defined in Section 3, and the quasi-

regularity of their state traces is shown, leading to decidability of

verification. Closure of extended register automata under projec-

tion is shown in Section 4. In particular, this shows that extended

automata are powerful enough to specify projections of register au-

tomata. The precise fragment required to specify such projections

is characterized in Section 5. The results on projections of register

automata with a database are presented in Section 6. The paper

ends with a few concluding remarks.



2 PRELIMINARIES
After introducing some basic notation, we present the model of

register automata.

We view a database as a finite relational structure. A relational

signature, or database schema, is a finite set of relation symbols with

associated arities (non-negative integers). We also allow finitely

many constant symbols in the schema. We usually denote our

database schema by σ . We fix an infinite data domainD. A database

over σ is a mapping D that associates to each relation R ∈ σ of arity

κ a finite κ-ary relation over D, and to each constant symbol an

element of D. The active domain of a database D, denoted adom(D),
consists of all values occurring in the relations of D, together with
the constants.

We assume familiarity with first-order logic (FO) and its usual

semantics over relational structures. When querying a database

D, we will only use quantifier-free FO formulas. As usual, given

a database D, a quantifier-free FO formula φ(x̄) with variables x̄ ,
and a tuple ā of elements of D of the same arity as x̄ , we denote
by D |= φ(ā) the fact that the formula φ holds true in D with the

valuation associating ā to x̄ . We also use Monadic Second-Order

(MSO) formulas with standard semantics to express properties of

tuples of positions in an infinite string. Given an infinite stringw ,

an MSO formula ϕ(x̄) with free first-order variables x̄ , and a tuple ā
of positions ofw of the same arity as x̄ , we denote byw |= ϕ(x̄), the
fact thatw satisfies ϕ with the valuation associating ā to x̄ . Recall
that the set of strings satisfying an MSO sentence (no free variables)

forms a regular language [7].

We distinguish a subset of first order formula that we call type,
consisting of quantifier-free conjunctive formulas. As they play a

central role in this paper, we define them in detail. An atom over σ
is either an equality expression x = z or an expression of the form

R(z̄), where z̄ is a tuple of variables or constants of appropriate

arity. A literal over σ is either an atom or a negated atom, i.e ¬R(z̄)
or x , y. A σ -type over z̄ is a satisfiable conjunction of literals

over σ using variables in z̄ (we often omit σ when it is clear from

the context). A type is complete if for each m-tuple ȳ contained

in z̄ ∪ c̄ , where c̄ are the constants of σ , and each relation R of

aritym in σ , the type includes a conjunct specifying whether or

not R(ȳ) holds. Moreover, for every pair (x ,y) where x is a variable

from z̄ and y is either a variable from z̄ or a constant from c̄ , a
complete type specifies whether or not x and y are equal. Notice

that every type can be extended into a complete type and there may

be exponentially many completions of a given type. An equality

type is a special case of σ -type when σ is empty or contains only

constant symbols c̄ . An equality type over z̄ then only specifies the

(in)equality constraints among the elements in z̄ ∪ c̄ .
The following standard notation will be used in this paper. If

¯d

is a k-ary tuple and i ≤ k then
¯d[i] denotes its ith component. For

a positive integer n, we denote ⟦n⟧ = {1, . . . ,n}.
We use the usual definition for database driven register au-

tomata, see for instance [6, 25]. A register automaton A is a tuple

(k,σ ,Q, I , F ,∆) where k is the number of registers (possibly zero),

σ is a relational signature, Q a finite set of states with initial states

I and final states F , and ∆ a finite set of transitions. A transition is a

triple (p,δ ,q) where p and q are states and δ is a σ -type over x̄ ∪ ȳ,
where x̄ and ȳ are two k-tuples of distinct variables. The variables

x1 · · · xk denote the value of the k registers before the transition

is fired while y1 · · ·yk denote the value of those registers after the

transition was fired. The type δ then specifies how the registers

can change.

Let D be a database over σ . A run ρ of A over D is an infinite

sequence of triples {( ¯dn ,qn ,δn )}n≥0 where q0 ∈ I , some state in F
occurs infinitely often, and for each n ≥ 0:

• ¯dn is a k-ary tuple of elements in D,
• (qn ,δn ,qn+1) is a transition in ∆,
• δn ( ¯dn , ¯dn+1) holds in D,

For technical reasons, we also assume that for every run ρ there

are infinitely many values in D that do not occur in ρ.
For a run ρ = {( ¯dn ,qn ,δn )}n≥0 of A we consider the following:

• the register trace is { ¯dn }n≥0

• the control trace is {(qn ,δn )}n≥0

• the state trace is {qn }n≥0

For a given database D, we denote by Reg(D,A) the set of register
traces of the runs of A over D. The set of register traces of all

runs of A over all possible databases is denoted by Reg(A). The
corresponding control traces are denoted by Control(A) while the
state traces are denoted by State(A).

Recall that our main motivation in this paper is to study au-

tomata as models of workflows. In a workflow, the purpose of the

specification is to describe the evolution of data (aka registers) in

the course of the workflow, for every given database. Therefore, it is

natural to use Reg(D,A) and Reg(A) as measures of expressiveness

of our automata.

Example 1. Consider the 2-register automaton A with states q1

and q2, initial and final state q1, no database (σ is empty) and transi-
tions: {(q1,δ1,q2), (q2,δ2,q2), (q2,δ3,q1)}, where δ1 is the equality
type x1 = x2 ∧ x2 = y2, δ2 the equality type x2 = y2, and δ3 is the
equality type x2 = y2 ∧ y2 = y1. The first type, δ1, tests that the
current two registers have the same data value using x1 = x2, and
copies this value to the second register of the next position, x2 = y2.
The second type, δ2, simply propagates the value of the second register.
The third type, δ3, propagates the value of the second register and also
copies its content to the first one, y1 = y2. A typical run is of the form:

(d1d1,q1,δ1)(d2d1,q2,δ2)(d3d1,q2,δ2)(d4d1,q2,δ3)(d1d1,q1,δ1) · · ·

The control and state traces are:
Control(A) = ((q1,δ1)(q2,δ2)

∗(q2,δ3))
ω and State(A) = (q1q

+
2
)ω .

It will be useful in several of our proofs to assume that the register

automaton A is complete in the sense that in each of its transitions

the σ -type is complete. As our model is non-deterministic this can

be assumed without loss of generality in terms of expressive power.

However this may be at the cost of an exponential blow-up in the

size of the automaton.

Example 2. The register automaton of Example 1 is not complete
as, for instance, δ1 does not say anything about how the registers
compare at the next step, i.e. does not enforce any relationship between
y1 and y2. To complete it we would need to replace it with two types
δ ′

1
and δ ′′

1
containing the literals of δ1 together with y1 = y2 in the

case of δ ′
1
and y1 , y2 in the case of δ ′′

1
and replace any transition

using δ1 with two transitions, one with δ ′
1
, one with δ ′′

1
. Observe that,

because x1 = x2 = y2 hold in δ1, settling the relationship between y2



and y1 also settles all other relationships. The types δ2 and δ3 can be
completed in a similar way.

It will also be useful to assume that A is state-driven, meaning

that for each state p there is at most one δ such that (p,δ ,q) ∈ ∆ for

some q. Every automaton can be converted to a state-driven one at

the cost of a quadratic blowup: if A = (k,σ ,Q, I , F ,∆) is a register
automaton then its state-driven variant is the register automaton

A′ = (k,σ ,Q ×X , I ′, F ′,∆′) where X is the set of σ -types occuring
in ∆, I ′ is the set of pairs (p,δ ) such that p ∈ I , similarly for F ′,
the transitions are the tuples ((p,δ ),δ , (q,δ ′)) where (p,δ ,q) ∈ ∆.
Note that a state-driven automaton is not necessarily deterministic.

Observe that in a state-driven automaton, the state trace of a run

uniquely determines its control trace.

Example 3. Consider again the register automatonA of Example 1.
It is not state driven as q2 occurs in two transitions with δ2 and
δ3. Consider the register automaton A′ with three states, q1,q

′
2
,q′′

2

and transitions (q1,δ1,q
′
2
), (q1,δ1,q

′′
2
), (q′

2
,δ2,q

′
2
), (q′

2
,δ2,q

′′
2
) and

(q′′
2
,δ3,q1). It is easy to verify that A′ and A have the same register

traces.

When looking at a sequence of the form {(qn ,δn )}n≥0 canwe say

that it is actually the control trace of some register automaton? The

notion of symbolic control trace from [19], slightly adapted to our

context, provides a positive answer. Roughly speaking, a sequence

as above is a symbolic control trace of a register automaton if any

two consecutive symbols could be generated by a transition of

the automaton. More formally, let A = (k,σ ,Q, I , F ,∆), and c̄ the
constants symbols of σ .

An ω-word {(qn ,δn )}n≥0 is called a symbolic control trace of A
if (i) q0 ∈ I and there is a state in F that occur infinitely often,

(ii) for every n ≥ 0 (qn ,δn ,qn+1) ∈ ∆ and (iii) δn and δn+1 agree

on the common registers, i.e. δn |ȳ is isomorphic to δn+1 |x̄ (by the

isomorphism that maps yi to xi for i ∈ ⟦k⟧, where for a tuple z̄ of
variables, δ |z̄ is the conjunction of literals of δ using only variables

from z̄ or constants). We denote by SControl(A) the set of symbolic

control traces of A. Clearly, SControl(A) is ω-regular. It is shown
in [19] that in fact Control(A) = SControl(A). In particular, for

every complete register automaton A, the languages Control(A)
and State(A) are ω-regular languages.

3 EXTENDED REGISTER AUTOMATA
We wish to study projections of the register traces of an automa-

ton. Given a k-register automaton A, a database D, and an integer

m ≤ k , we denote by Πm (Reg(D,A)) the projection of Reg(D,A)
retaining only the values for registers 1 to m (the case where

m = 0 corresponds to projecting out all registers). Register au-

tomata are not closed under projections in the sense that there

may be nom-register automaton A′ such that for all database D,
Reg(D,A′) = Πm (Reg(D,A)). Indeed, this is the case even with no

database, as illustrated by the following.

Example 4. Consider again the register automatonA of Example 1.
Now consider the projection of the runs of A on the first register. The
register trace of these runs contain all sequence of data values such
that the initial data value of the register occurs infinitely often. This
cannot be enforced by a register automaton. Indeed, suppose towards
a contradiction that A′ is such a register automaton (which we may

assume complete). Consider the accepting run of A′ whose register
trace is d1d2d1d2 · · · . By definition, all transitions of this run contain
the equality type x1 , y1. Hence, replacing d1 by d3 everywhere
except the first position also yields an accepting run of A′. However,
d1d2d3d2d3 · · · is not a register trace in the projection.

As suggested by the above, describing projections of runs re-

quires amechanism for specifying equalities and inequalities among

register values that are no longer local to individual transitions.

The example suggests that the paths between related values in a

run could be described using regular expressions of states. To this

end, we introduce the more powerful extended register automata

model.

An extended register automaton is a pair A = (A, Σ) where A =
(k,σ ,Q, I , F ,∆) is a register automaton and Σ is a finite set of regular

expressions over Q , each denoted by e=i j or e
,
i j , where i, j ∈ ⟦k⟧.

We say that a run ρ = {( ¯dn ,qn ,δn )}n≥0 of A satisfies Σ, denoted
ρ |= Σ, if for every e=i j ∈ Σ and every e,i j ∈ Σ and 0 ≤ n1 ≤ n2, if

qn1
. . .qn2

∈ e=i j then
¯dn1
[i] = ¯dn2

[j] and if qn1
. . .qn2

∈ e,i j then
¯dn1
[i] , ¯dn2

[j]. The set of runs of A consists of the runs of A that

satisfy Σ. The set of register, control, and state traces are defined as

for register automata.

Observe that in an extended automaton A = (A, Σ) there are
two independent sources of constraints over the register values:

the local constraints enforced by the σ -type δ in a transition of

A and the global constraints Σ. Note that the global constraints

can simulate the local (in)equality constraints, so the types used in

transitions may have no (in)equalities if so desired, without loss of

expressiveness.

Example 5. Consider again Example 4. The projection of the runs
of A on its first register can be described using the extended au-
tomaton B = (B, Σ), where B is an automaton with one register,
states {p1,p2} where p1 is both initial and accepting, and transitions
{(p1,γ ,p2), (p2,γ ,p2), ((p2,γ ,p1)} where γ is the empty type, and Σ
consists of e=

11
= p1p

+
2
p1. The global constraint Σ enforces that there

is a data value d such that each time B switches to state p1 the data
value of the register is d .

Wewill see that, in the absence of a database, our extendedmodel

of register automata is powerful enough to describe the projection

of the register trace of any register automaton. This is no longer

the case when a database is present. Indeed, we will see in Section 6

that additional features are needed in this case.

We first notice that the additional expressive power of extended

register automata is only due to the global inequality constraints.

Indeed, as shown below, the global equality constraints can be

simulated using extra registers.

Proposition 6. For each extended automaton A with k registers,
there exists an extended register automaton B with no global equality
constraints such that for all databaseD,Reg(D,A) = Πk (Reg(D,B)).

Proof. Let A = (A, Σ). The general idea for constructing B =
(B, Γ) is as follows. On the first k registers, B just simulates the

transitions of A. To enforce the global equality constraints in Σ,
B uses additional registers. Consider an equality constraint e=i j ∈

Σ and let Q= be the set of states of the minimal automaton for

e=i j . In order to enforce the corresponding constraint, at any time



during the run, B nondeterministically guesses whether the current

position is involved in a global equality test using e=i j and then

verifies that the guess is correct.

In the case where the guess is “no”, B starts a simulation of the

automaton for e=i j and rejects if it ever reaches an accepting state.

In the case where the guess is “yes”, B stores the current value

of register i in a new register and also starts a simulation of the

automaton for e=i j . Whenever the automaton reaches an accepting

state, B checks that the data value stored in register j equals the
one stored in the new register. We only need finitely many registers

because it is enough to have one register per state in Q=. Indeed,
if two simulations are in the same state, the run can only proceed

if the associated registers hold the same data value. The global

constraints Γ of B are the inequality constraints of Σ, lifted to the

states of B. The Büchi acceptance condition of A is also lifted easily

to B. □

Global inequality constraints however cannot always be simu-

lated using extra registers. This is illustrated with the following

example.

Example 7. Consider an extended automaton A with only one
register and no database, whose global constraints ensure that all
register values occurring in a run are distinct. This automaton cannot
be simulated even using using extra registers. The proof of this fact
is postponed to Section 5, Example 17. We only show here that there
cannot be a 1-register automaton equivalent toA. Suppose towards a
contradiction that there is a register automatonA such that Reg(A) =
Reg(A). Consider a run ρ = {(dn ,qn ,δn )}n≥0 of A in which all
register values are distinct. Clearly, each δi must either be empty or
x1 , y1. Suppose δi is empty for some i . Then ρ ′ obtained by replacing
di+1 with di is still a run of A but not one ofA. Now suppose that all
δi are x1 , y1. Let d be a fresh data value and ρ ′ be obtained from ρ
by replacing each di by d for all even i . Again, ρ ′ is a run of A but is
not a run of A. Thus, A does not have the same register traces as A.

Adding global regular constraints seems innocuous, but it raises

several technical challenges. In particular, the result of Koutsos and

Vianu mentioned above, establishing the ω-regularity of the state

traces, no longer holds. This is shown by the following example.

Example 8. Consider an extended automaton A with only one
register and two statesp andq. The signature σ ofA contains only one
unary symbol P , hence the databases are finite sets. The transitions of
A ensure that the data value of the register is always in the domain
of the database, i.e. contains P(x1). The global constraints ofA ensure
that between any two occurrences of state p with no occurrence of
state q in between, the register values are pairwise disjoint. Hence
the state traces of A are such that there is a finite bound (the size
of the domain of the database) on the size of the longest consecutive
sequence of occurrences of p, a non ω-regular property.

Having some well-behaved characterization of the state traces

is important for deciding various properties of register automata,

such as the existence of a run, or whether all its runs satisfy prop-

erties specified in LTL or other reasonable logics. In the case of

extended register automata, we can show that the control and state

traces can be described by a well-behaved extension of ω-regular
languages introduced by Bojańczyk, called quasi-regular, for which

satisfiability over ω-words remains decidable. The quasi-regular

languages include all languages that can be defined by a sentence

of the form ∃N∀S(φ(S) → |S | < N ), where N is a natural number,

S a set variable and φ a formula in MSO, which is sufficient for our

purposes. Decidability of satisfiability of quasi-regular languages is

shown in [5]. This is significant because, as in the case of register

automata, it can be used to show decidability of a wide range of

static analysis questions. Quasi-regular languages are also shown

in [5] to be closed under union, intersection and homomorphisms.

We use here (and later) the following notation. Consider w =
{(qn ,δn )}n≥0 ∈ SControl(A). Let us represent by (x , i) the register
i in positionx . Define the equivalence relation∼Aw on the set {(x , i) |
x ≥ 0, i ∈ ⟦k⟧} as the reflexive, symmetric, transitive closure of the

equalities induced by Σ and all δn ’s. In particular if qn · · ·qm ∈ e
=
i j

for some n < m then (n, i) ∼Aw (m, j) and if xi = yj is part of δn
then (n, i) ∼Aw (n + 1, j). We denote the equivalence class of (x , i)

by [(x , i)]Aw and by Ew
A

the set of equivalence classes of ∼Aw . For

ϵ1, ϵ2 ∈ E
w
A
, define ϵ1 0

A
w ϵ2 if there exists δn or a constraint in Σ

that specifies that two members of ϵ1 and ϵ2 are not equal. If A is

state-driven, we sometimes use by slight abuse in the above notation

a state tracew instead of the induced control trace. Whenever A

is understood we omit it from the notation and use simply ∼w
, [(x , i)]w and Ew . We show the following.

Theorem 9. Given an extended register automaton A,
Control(A) and State(A) are quasi-regular.

Proof. Let A = (A, Σ) be an extended register automaton with

k-registers. We can assume that A is complete, since otherwise

the original control traces can be obtained from the corresponding

completed automaton via a homomorphism. Similarly, we show

the proof only for Control(A), since State(A) is a homomorphic

image of Control(A).
In view of Proposition 6 we assume that Σ contains only in-

equality global constraints, as equality global constraints can be

simulated using extra registers and states. Observe that the original

control traces can be recovered by a homomorphism, so quasi-

regularity is not affected.

By slight abuse, we say that an equivalence class ϵ of ∼w is in the

active domain of the database relative tow if for some (n, i) ∈ ϵ , xi
occurs in a positive relational literal of δn or yi occurs in a positive

relational literal of δn−1. We denote the set of such equivalence

classes by adomw (E
w
A
)

Consider w ∈ SControl(A). We associate to w a graph Gw as

follows. The vertices are the equivalence classes in adomw (E
w
A
).

There is an edge between ϵ1 and ϵ2 if ϵ1 0w ϵ2. Each equivalence

class ϵ can be represented by a pair (x , i) where x is the smallest

position ofw in which a member of ϵ occurs, and i it the smallest

register containing it in position x . Clearly, there is an MSO formula

that definesGw onw using the representatives of each class. Recall

that we also have an MSO formula stating that w ∈ SControl(A).
From this formula we can construct a formula witnessing quasi-

regularity, by stating that w is in SControl(A) and that there is a

bound N on the largest clique ofGw . Clearly, this can be expressed

by a formulaψ of the form ∃N∀S(φ(S) → |S | < N ). We next prove

that the language defined byψ is exactly Control(A).



One direction is clear: every word w in Control(A) is also in

SControl(A) and the largest clique ofGw is bounded by the size N
of the active domain of the database witnessing the membership of

w in Control(A). Thus,w satisfiesψ .
To show the converse, considerw = {(qn ,δn )}n≥0 inSControl(A)

satisfyingψ , with N as the bound on the largest clique of Gw . We

need to construct a finite databaseD and a run ρ ofA overD whose

control trace is w . We proceed in two stages. First, we construct

fromw a database D ′ and a run ρ ′ of A over D ′ whose control trace
is w . Next, we modify D ′ and ρ ′ in order to obtain a database D
and a run ρ over D that additionally satisfies the constraints in Σ.

We start with the case when σ contains no constants. We then

explain how the proof can be modified in order to account for

constants.

Assume now that σ contains no constant symbols and towards

the first stage, let σ ′ be the signature extending the signature σ of

A with two new relation symbols, R of arity k , and S of arity 2k .
For each σ -type δ over x̄ ∪ ȳ, let π1(δ ) be the σ -type induced by δ
on x̄ . From A we construct the following formula ΨA:∧

(p,δ ,q)∈∆

∀x̄ [R(x̄ ) ∧ π1(δ )(x̄ )
]
→

[∃ȳS (x̄ȳ) ∧ R(ȳ) ∧ δ (x̄ȳ)]
∧

∧
(p,δ ,q)∈∆

∃x̄R(x̄ ) ∧ π1(δ )(x̄ )

As our σ -types are quantifier-free formulas, ΨA is guarded in the

sense of [4] hence it has the finite model property [17]. We now

construct an infinite model I of ΨA. For every transition (p,δ ,q)
of A we add to I a tuple ¯dδ such that I |= R( ¯dδ ) ∧ π1(δ )( ¯dδ ). Once
this is done we construct the rest of I by chasing the formula ΨA:
whenever I |= R(ā) ∧ π1(δ )(ā) for some transition (p,δ ,q), we add
¯b such that I |= S(ā ¯b) ∧ R(¯b) ∧ δ (ā ¯b) by introducing fresh new

elements as needed. By construction, I |= ΨA. Because ΨA has

the finite model property, there is a finite database I∗ such that

I∗ |= ΨA.
Let D ′ be the finite database obtained by restricting I∗ to σ .

We construct by induction a run ρ ′ = {( ¯dn ,qn ,δn )}n≥0 of A over

D ′. Let αn = π1(δn ) for n ≥ 0. For the basis, set
¯d0 to any tuple

witnessing satisfaction of ∃x̄R(x̄) ∧ α0(x̄) by I∗. For the induction
step, let n > 0 and assume we have constructed

¯d0 · · · ¯dn such

that ( ¯d0,q0,δ0) · · · ( ¯dn ,qn ,δn ) forms a valid prefix of a run of A
over D ′, and D ′ |= αn ( ¯dn ). By construction, I∗ |= R( ¯dn ) ∧ αn ( ¯dn ).
Hence, there is a tuple

¯dn+1 for which I∗ |= R( ¯dn+1) ∧ S( ¯dn ¯dn+1) ∧

δn ( ¯dn ¯dn+1). Clearly, ( ¯d0,q0,δ0) · · · ( ¯dn+1,qn+1,δn+1) forms a valid

prefix of a run of A over D ′.
Let ρ ′ = {( ¯dn ,qn ,δn )}n≥0. Clearly, ρ

′
is a run of A over D ′

and its control trace is w . This completes the first stage of the

proof. Observe that this part of the proof involves A alone and

is independent of the constraints of A. As such, it provides an

alternative (and simpler) proof of the result of [19] that Control(A)
equals SControl(A) (and is therefore ω-regular) for every register

automaton A.
In the second stage, we modify the database D ′ and the run ρ ′

obtained above in order to enforce satisfaction of Σ. To this end, we
use several properties of the graph Gw constructed earlier. Since

Gw is represented by an MSO formula over an infinite string, it has

bounded clique-width (see for example Theorem 7.36 in [11]). Like

any graph of bounded clique-width, Gw is χ -bounded [15], i.e. its

chromatic number is bounded by a function of its clique number.

In our case this means that it is h(N )-colorable for some function

h which is explicit in the proof of [15]. Let д be an h(N )-coloring
function of Gw , associating to each vertex of Gw a positive integer

less or equal to h(N ) such that no vertices connected by an edge

have the same associated integer. We extend д to all equivalence

classes of ∼w as follows. If a class ϵ is in the active domain but not

occurring in an edge of Gw , let д(ϵ) = 0. If ϵ is not in the active

domain assign to it an arbitrary unique integer larger than h(N ).
We now construct a run ρ = {(ēn ,qn ,δn )}n≥0 and a database D

such that ρ is a run of A over D with the same control trace as ρ ′

but additionally satisfying Σ. Intuitively, ρ and D are obtained by

appropriately coloring data values in order to enforce inequalities.

To any position x and register i , set ēx [i] as ( ¯dx [i],д([(x , i)]w ).
This defines ρ. We construct D from D ′ as follows: whenever
R(d1, · · · ,dl ) is a fact of D

′
, then R((d1,α1), · · · , (dl ,αl )) are facts

of D for all possible values of αi ∈ ⟦h(N )⟧.
We first claim that ρ is a run of A over D. To see this it is enough

to verify that for each position x , D |= δx (ēx , ēx+1). This is imme-

diate from the construction and the fact that D ′ |= δx ( ¯dx , ¯dx+1).

We now claim that ρ verifies all constraints of Σ. Assume

wn · · ·wm ∈ e
,
i j . Then either ([(n, i)]w , [(m, j)]w ) is an edge of Gw ,

or at least one of ([(n, i)]w and [(m, j)]w ) is not in the active do-

main. In either case, д([(n, i)]w ) , д([(m, j)]w ) and ēn [i] , ēm [j] as
desired.

This completes the proof for the case when σ contains no con-

stants. We now explain how to extend it when constants are present.

Recall that from any symbolic control tracew such that the asso-

ciated graph has a bound N on its cliques, we need to construct a

finite database D and a run ρ ofA over D whose control trace isw .

We proceed as above to construct D with minor modifications

in order to cope with the constants. We modify the formula ΨA as

follows. First we restrict the conjuncts to those transitions contain-

ing only types δ occurring inw . Next, we add at the beginning of

the formula an existential quantification ∃z̄ where z̄ has arity l , the
number of constant symbols, and replace any occurrence of the

constant ci by zi . Finally the schema is modified by eliminating

the constants and adding l to the arity of all relational symbols.

Moreover, each atom R(ū) is replaced by R(ū, z̄). Observe that by
definition of symbolic control trace with constants, the isomor-

phism type of z̄ is the same throughout the trace. It then follows

that ΨA has an infinite model, constructed as above, where in addi-

tion the substructure induced on the constant symbols is induced

by the type of z̄.
Using the finite model property we therefore have a finite model

I∗ for ΨA. The database D
′
is constructed from I∗ in the obvious

way: fix arbitrarily a tuple z̄ making the formula true and associate

the constant symbols with z̄. For each symbol R of σ , the relation R
in D ′ consists of the tuples ū such that R(ū, z̄) is a fact of I∗ for the
chosen z̄.

As above, it is straightforward to verify that the database D ′

yields a run of A whose control trace isw . The remaining part of

the proof proceeds as in the case without constants, by combining

D ′ with N in order to obtain the desired database D and run ρ of



A that has control tracew and additionally satisfies the inequality

constraints. □

As noted above, the proof of Theorem 9 includes an alternative,

simpler proof of the result of [19] that for register automata, with

no global constraints, the control trace is ω-regular.
It follows from Theorem 9 that the emptiness problem is decid-

able for extended register automata. Indeed the proof of Theorem 9

is constructive and satisfiability of the corresponding formula is

decidable [5].

Corollary 10. Given an extended register automaton A, it is
decidable whether there exists a finite database D and an infinite run
ρ of A over D.

Verification of extended automata
We next briefly discuss how the quasi-regularity of the control

traces of extended register automata can be used to show decidabil-

ity of LTL-FO properties of such automata
1
, generalizing previous

results on verification of register automata (aka artifact systems)

[12, 14]. We begin by reviewing the temporal language LTL-FO.

First, LTL (linear-time temporal logic) is propositional logic aug-

mented with temporal operatorsG (always), F (eventually),X (next)

and U (until) (e.g., see [24]). Informally, Gp says that p holds at all

times in the run, Fp says that p will eventually hold, Xp says that p
holds at the next configuration, and p U q says that q will hold at

some point in the future and p holds up to that point. For example,

G(p → Fq) says that whenever p holds, q must hold sometime in

the future.

LTL-FO is an extension of LTL obtained by interpreting proposi-

tions with quantifier-free FO statements over the database schema

σ . The statements use the variables x̄ and ȳ referring to consecu-

tive registers, and in addition may use global variables, shared by

different statements and allowing to refer to other values across

the run. The global variables are universally quantified over the

entire formula.

Definition 11. Let σ be a relational signature and x̄ , ȳ, z̄ be
tuples of distinct variables, where x̄ and ȳ have arity k . An LTL-FO
sentence is an expression ∀z̄φf , where (i) φ is an LTL formula with
propositions P , and (ii) f is a mapping from P to quantifier-free FO
formulas over σ using variables in x̄ȳz̄.

The semantics of an LTL-FO sentence ξ = ∀z̄φf is defined as

follows. Let A be a extended automaton with k registers. Let ρ =
{( ¯dn ,qn ,δn )}n≥0 be a run ofA on database D. Let µ be a valuation
of z̄ into D. An FO formulaψ (x̄ , ȳ, z̄) is satisfied at position i with
valuation µ if D |= ψ ( ¯di , ¯di+1, µ(z̄)). The run ρ satisfies φf with

valuation µ if {σi }i≥0 |= φ, where σi is the truth assignment for P
in which p is true iff f (p) is satisfied at position i with valuation µ.
Finally, ρ |= ∀z̄φf if ρ |= φf with every valuation µ of z̄ into D. We

say A satisfies an LTL-FO sentence ξ , denoted A |= ξ , if ρ |= ξ for

every run ρ of A.

Note that, for the purpose of verification, the global variables

can be easily eliminated from an LTL formula ∀z̄φf . Indeed, the
global variables z̄ can be simulated by adding |z̄ | registers that are
propagated at each transition (so the value of each such register

1
Here and in some previous work, LTL-FO uses only quantifier-free FO

remains constant throughout a run). Thus, each run provides a

valuation for z̄ and the new automaton satisfies φf iff the initial

one satisfies ∀z̄φf . We assume from here on that LTL-FO formulas

have no global variables.

Observe that in a complete automaton, the control trace of a

run ρ = {( ¯dn ,qn ,δn )}n≥0 provides sufficient information to deter-

mine if the run satisfies φf . This is because at each position i , δi
provides the complete type of x̄ ∪ ȳ. This also allows extending

the semantics of φf from runs to control traces in the obvious way.

Clearly, satisfaction of φf by a control trace can be defined by an

MSO formula α(φf ). Let β be the quasi-regular formula defining

Control(A). Since MSO is closed under complement and quasi-

regular languages are closed under intersection, β ∧¬α(φf ) defines
a quasi-regular language, which is empty iff A |= φf . Thus, we
have:

Theorem 12. It is decidable, given an extended register automaton
A and an LTL-FO formula φf for A, whether A |= φf .

The precise complexity of the decision problem mentioned in

Theorem 12 is open. The current proof of Theorem 9 uses MSO

logic in order to express the fact that there is a bound on the size

of all cliques in a given graph. This clearly does not yield optimal

complexity. An obvious way to get lower complexity would be to

use an automaton of small size for expressing the same fact. This is

left for future work.

4 PROJECTIONS OF EXTENDED REGISTER
AUTOMATAWITH NO DATABASE

Characterizing projections of general register automata turns out

to be challenging. In this paper we focus, as a first step, on register

automata without an underlying database. We will show that in this

case, extended register automata are sufficient to specify projec-

tions. Moreover, they are themselves closed under projection. We

discuss in Section 6 some of the challenges raised when a database

is present.

In the remainder of the section, all (extended) automata are

assumed to be without an underlying database and the relational

signature is dropped from their definition.

We next show that extended register automata are closed under

projection.

Theorem 13. Let A be an extended register automaton with k
registers andm < k . There is an extended register automatonA ′ with
m registers such that Reg(A ′) = Πm (Reg(A)).

Proof. It is enough to prove the theorem form = k − 1 as we

can then project out the desired registers one by one.

Fix an extended register automaton A = (A, Σ), where A =
(k,Q, I , F ,∆).We construct a new extended automatonA ′ = (A′, Σ′)
with k − 1 registers recognizing the projection of the traces of A

on its first k − 1 registers. The general idea is that A′ mimics the

behavior of A on the remaining registers and Σ′ collects all global
constraints induced by the register k on the first k − 1 registers.

We can assume thatA is complete and state-driven. We can also

assume that its (in)equality constraints are consistent on all its con-

trol traces (otherwise, since this is clearly a regular property, we can

intersectA with a Büchi automaton that accepts the control traces



on which A is consistent). For each equality type δ , let δ |(k−1) be

its restriction to the first k − 1 registers. The construction of A′ will
require performing refinements of the states and transitions of A
and modifications of its acceptance condition. Intuitively, this corre-

sponds to taking the intersection of A with several automata. More

precisely, we will construct A′ = (k − 1,Q ′, I ′, F ′,∆′) for which
there is a surjective mapping α : Q ′ 7→ Q such that (p′,δ ′,q′) ∈ ∆′

iff (α(p),δ ,α(q)) ∈ ∆ and δ ′ = δ |k−1
, α(I ′) = I , and w ∈ (Q ′)ω is

accepted by A′ iff α(w) is accepted by A. In particular, State(A) is a
homomorphic image of State(A′). Observe that A′ is still complete

and state-driven (so its control and state traces are interchangeable).

We will define Σ′ so that:

(†) for each state tracew of A ′, ∼A
′

w is the restriction of ∼Aα (w )

to the first k − 1 registers, and similarly for 0A
′

w and 0Aα (w ).

where A ′ = (A′, Σ′). Suppose we have defined such Σ′. We claim

that Πk−1
(Reg(A)) = Reg(A ′). The inclusion Πk−1

(Reg(A)) ⊆
Reg(A ′) is immediate. Consider the converse. Let ρ ′ =
{( ¯d ′n ,qn ,δn |(k−1))}n≥0 be a run ofA ′. Letw be the state trace of ρ ′.

For each equivalence class ϵ ′ of ∼A
′

w , let ϵ be the equivalence class

of ∼Aα (w ) containing it. By (†), for all ϵ ′
1
, ϵ ′

2
∈ Ew
A′

, ϵ ′
1
0A

′

w ϵ ′
2
iff

ϵ1 0
A
α (w ) ϵ2. We define a mapping f : E

α (w )
A

7→ D by f (ϵ) = ¯dn [i]

if (n, i) ∈ ϵ for some position n and some i < k , and f (ϵ) is a new
fresh value if ϵ contains no class of Ew

A′
. By (†), f is well defined.

For every position x , we define ex [k] to equal f ([(x ,k)]
A
α (w )). Let

ρ = {( ¯dn ,α(qn ),δn )}n≥0 where
¯dn = ( ¯d

′
n , en ). It is immediate to

verify that ρ is a run of A. By construction, the register trace of ρ ′

and ρ agree on the first k − 1 registers.

We now show how to construct A′ and Σ′ satisfying (†). Letw ∈
Qω

and recall that a state uniquely determine the type. Consider the

reflexive, symmetric, transitive closure of the equality constraints

induced by Σ and ∆ on w . More precisely, denote w |= e=i j (x ,y) if

x ≤ y and the sequence of states from x toy is in e=i j , andw |= δ
=
i j (x)

if δx states that xi = x j , and w |= δ=i j (x ,x + 1) if δx states that

xi = yj . The inequality counterpartsw |= e,i j (x ,y),w |= δ
,
i j (x), and

w |= δ,i j (x ,x + 1) are defined similarly. Let

ψ=((x , i), (y, j)) =(x ≤ y ∧ e=i j (x ,y)) ∨ (y ≤ x ∧ e=ji (y,x))

∨ (x = y ∧ (δ=i j (x) ∨ i = j))

∨ (y = x + 1 ∧ δ=i j (x ,x + 1))

We can interpretψ=((x , i), (y, j)) over the string whose positions
are pairs (x , i) (x ≥ 0, i ∈ ⟦k⟧) in lexicographic order. Clearly,

ψ= is definable in MSO over such strings, and so is its transitive

closureψ=∗ . For fixed i and j , let φ
=
i j (x ,y) = ψ

=
∗ ((x , i), (y, j)) ∧ x ≤ y

interpreted on Qω
. We will show shortly how to extract from this

formula the desired regular expression e=i j for all i, j .We first develop

an analogous formula for inequalities. Consider the formula

φ,i j (x ,y) =
∨
l,l ′∈⟦k⟧ ∃u∃v(φ=il (x ,u) ∧ e,l l ′(u,v) ∧ φ=l ′j (v,y))

∨ ∃u(φ=il (x ,u) ∧ δ,l l ′(u) ∧ φ=l ′j (u,y))
∨ ∃u(φ=il (x ,u) ∧ δ,l l ′(u,u + 1) ∧ φ=l ′j (u + 1,y))

Intuitively, φ,i j (x ,y) specifies all inequalities implied by the initial

inequalities together with the equalities.

We next show how to extract the regular expressions e=i j and e
,
i j

from the formulas φ=i j (x ,y) and φ
,
i j (x ,y). To this end, we use the

following "folklore" lemma, that is implicit in Büchi’s initial proof

that MSO characterizes ω-regular languages [7].

Lemma 14. Given an MSO formula φ(x ,y) over Qω there exists a
Büchi automaton B reading symbols from Q and having Q ′ as set of
states, together with a finite-state automatonC reading symbols from
Q ′, such that for every word w ∈ Qω and positions x ≤ y of w we
have:w |= φ(x ,y) iff there is an accepting run of B onw such that if
w ′ is the corresponding sequence of states of B then the segment of
w ′ between positions x and y is a word accepted by C .

By applying Lemma 14 concomittantly to allφ=i j (x ,y) andφ
,
i j (x ,y)

and combining the results, we can refine the states and transitions

ofA using the automata B given by the lemma and use the automata

C for specifying each of the regular expressions e=i j and e
,
i j .

Let Σ′ consist of the e=i j and e,i j obtained above. It is straight-

forward to verify that the resulting extended automaton satis-

fies (†). □

Since register automata are special cases of extended automata,

Theorem 13 shows that extended automata are powerful enough to

specify projections of register automata, as desired. But are general

extended register automata unnecessarily powerful for describing

projections of register automata? If so, what is the subclass of

extended automata that captures precisely projections of register

automata? We answer these questions next.

5 LR-BOUNDEDNESS
As in the previous section, the automata we consider here do not

access a database, i.e. their database schema is empty. As will be

seen in Example 17, even in this limited setting, extended register

automata can produce register traces that are not the projections
of the register traces of a register automaton. We now present a

subclass of extended register automata that characterizes precisely

projections of register automata. As mentioned earlier, being the

projection of a register automaton is desirable because it means,

intuitively, that the global constraints can be enforced entirely by

local transitions, in a streaming fashion, at the cost of additional

registers.

Before stating our characterization we need some further no-

tation. We say that two extended automata A and A ′ with no

database are register-trace equivalent if Reg(A) = Reg(A ′). While

not important for this paper, we note that register-trace equivalence

is undecidable already for 1-register extended automata without

a database. Indeed, it is shown in [22] that given a (k + 1)-register

automaton A without a database (additionally equipped with ac-

cepting states) it is undecidable whether the set of finite prefixes

of Π1(Reg(A)) contains all words in D∗. This can be easily adapted

to show that it is undecidable in our model whether Π1(Reg(A))
contains all infinite words in Dω . But as shown in Theorem 13,

Π1(Reg(A)) can be specified using an extended register automa-

ton without a database, using one register. The undecidablity of

register-trace equivalence then follows.

Let A be an extended automaton with k registers. Let w ∈
Control(A). For a position h in w , let L(h) = {h′ | h′ ≤ h} and
R(h) = {h′ | h′ > h} be the set of positions of w to the left



or to the right of h. For a class ϵ ∈ Ew
A

and h ≥ 0 we denote

ϵ ⊑ L(h) if {n | (n, i) ∈ ϵ, i ∈ ⟦k⟧} ⊆ L(h) and ϵ ⊑ R(h) if
{n | (n, i) ∈ ϵ, i ∈ ⟦k⟧} ⊆ R(h). If ϵ @ L(h) and ϵ @ R(h), we
say that ϵ straddles h. By a simple pigeonhole argument, the num-

ber of such ϵ is at most ||Σ|| where ||Σ|| is the total number of states

of all the automata describing all the regular expressions in Σ.
LetGw

h be the following graph. Its set of nodes is Ew
A
. The edges

are as follows. For ϵ1, ϵ2 ∈ E
w
A

such that ϵ1 ⊑ L(h) and ϵ2 ⊑ R(h),
there is an edge between ϵ1 and ϵ2 iff ϵ1 0w ϵ2.

The graphGw
h describes all inequality constraints of Σ that must

be enforced at position h inw . Intuitively, without constraints and

finitely many registers, we have only finite memory and therefore

can enforce only finitely many such edges. However, if several

edges share the same endpoint, the same register can be used for all

of them. Hence a relevant parameter is the size of the vertex cover

of Gw
h . This justifies the next definition. Note that we do not need

to consider equality constraints as those can always be simulated

with extra registers.

Definition 15. An extended register automatonA is LR-bounded
if there exists N > 0 such that, for everyw ∈ Control(A) and h ≥ 0,
the graph Gw

h has a vertex cover of size at most N .

Observe that LR-boundedness is a syntactic notion, not pre-

served under register-trace equivalence. That is, an LR-bounded

extended register automatonA may be register-trace equivalent to

an extended automaton A ′ that is not LR-bounded, as shown next.

Example 16. LetA = (A, Σ) be a automaton with one register, no
constraints (i.e Σ = ∅), no database, one state q and one transition
(q,δ ,q), where δ is the equality type x1 , y1 enforcing that the
data value changes at each step. Clearly, A is LR-bounded since for
all w ∈ Control(A) and all positions h of w , Gw

h has a single edge
conecting the class of the current positions to the one of the next
position. Now consider the automaton A ′ = (A′, Σ′) where A′ has
two states p and q and two transitions (q,δ ,q), (p,δ ,p) with the same
equality type δ as above, together with a constraint e,
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∈ Σ′ defined

by the regular expression p+. A run of A ′ starting with state p will
generate a register trace where all values are pairwise distinct. But
this register trace is also a trace of a run of A ′ starting with state q,
which in turn is also a register trace ofA. Hence Reg(A) = Reg(A ′).
However A ′ is not LR-bounded as in a position h of a control trace of
A ′ starting with state p, all positions to the left of h are connected to
all positions to the right of h.

We will see that LR-boundedness characterizes the projections

of register automata up to register-trace equivalence. We now show

an example of an extended register automaton that is not register-
equivalent to any LR-bounded register automaton. In view of The-

orem 19, this extended automaton cannot be simulated by any

register automaton, even with additional registers.

Example 17. Consider again the extended automaton in Example
7. The automaton has one register, one state with a trivial looping
transition and a global inequality constraint ensuring that all data
values stores in the register are pairwise distinct. Suppose that there
is an LR-bounded automaton B with the same register traces. Let N
be the bound witnessing LR-boundedness. Consider a run ρ of B with
all values of its register pairwise distinct. Consider the situation at

position N + 2. Since B is LR-bounded there are positions x ,y such
x < N + 2 < y such that there is no edge between x and y in GN+2.
It is then straightforward to verify that the run ρ ′ formed from ρ
by identifying the values at position x and y is still a run of B, a
contradiction.

Before proceeding, we show that LR-boundedness is a decidable

property.

Theorem 18. It is decidable whether an extended register automa-
ton A with no access to the database is LR-bounded.

Proof. Let A = (A, Σ) be an extended register automaton with

k registers. We need to test whether there exists a bound N on the

size of vertex covers of all the Gw
h for all traces w ∈ Control(A)

and positions h ofw .

Note first that in the absence of a database, the set of control

traces of A forms an ω-regular language. This follows from the

construction in Theorem 13, that yields a finite-state automaton

after projecting away all registers.

Also observe that for each w ∈ Control(A), each equivalence

class ϵ ∈ Ew
A

can be uniquely represented by the lexicographically

minimum pair (n, i) such that register i contains an element of the

class in position n. Moreover, for each i ∈ ⟦k⟧ there is an MSO

formula αi (x) such that w |= αi (n) iff (n, i) is the representative
of some equivalence class. Using these MSO formulas one can

obtain MSO formulas ϕi j (z,x ,y) such that for eachw ∈ Control(A)
and each position h of w , w |= ϕi j (h,n,m) iff (n, i) and (j,m) are
representatives of classes forming an edge inGw

h . As we can also

express in MSO the fact that a set S is a vertex cover of some graph,

we are left to decide statements of the form:

∃N such that for all wordsw from a given ω-regular language,
∀x∃Sφ(x , S) ∧ |S | ≤ N

where φ is in MSO. It turns out that such statements belong to a

class of MSO formulas known to be decidable [10]. □

We are now ready to state the main result of this section.

Theorem 19. Let B be an extended automaton withm registers.
Reg(B) equals Πm (Reg(A)) for some register automaton A iff B is
register-trace equivalent to some LR-bounded extended automaton.

Since the proof is rather involved, we present separately the

"only-if" part and the "if" part. We start with the "only if" part of

Theorem 19.

Proposition 20. LetB be an extended automatonwithm registers.
If Reg(B) equals Πm (Reg(A)) for some register automaton A then B
is register-trace equivalent to some LR-bounded extended automaton.

Proof. We exhibit an LR-bounded extended register automaton

A such that Πm (Reg(A)) = Reg(A). Without loss of generality we

assume that A is complete and state-driven. Let k be the number of

registers of A and letm < k . We start with a few preliminaries. Let

A be an extended register automaton. We say that a mapping f
from Ew

A
toD is consistent withw inA if for all classes ϵ1, ϵ2 ∈ E

w
A
,

if ϵ1 0w ϵ2 then f (ϵ1) , f (ϵ2). The following lemma will provide

the global constraints used in the construction of A.

Lemma 21. Let A = (k,Q, I , F ,∆) be a complete and state-driven
register automaton. For all i, j ≤ k there exist regular expressions



e=i j and e
,
i j such that for all state tracesw of A, positions a ≤ b and

registers i, j ∈ ⟦k⟧, (a, i) ∼wA (b, j) iff the factor ofw between position
a and b is in e=i j and [(a, i)]w 0w [(b, j)]w iff the same factor is in
e,i j .

Proof. Let i, j ∈ ⟦k⟧. We construct a finite state automaton A
for e=i j . At any time during its run, A simulates A and remembers

in its state the set of registers whose value in the current position

must be equal to that of register i at the start of the run. The states
of A are the subsets of ⟦k⟧. The initial state of A contains only i .
For a state q of A with δ the equality type induced by q, A has a

transition (S,q,δ (S)), where δ (S) = {m | ∃l ∈ S xl = ym ∈ δ }. The
accepting states of A are all those containing j. It is immediate to

check that A has the desired properties.

We proceed similarly for e,i j . It is immediate to see that [(a, i)] 0

[(b, j)] iff there is a position c between a and b such that:

• [(a, i)] ∼ [(c, l)], [(c + 1,m)] ∼ [(b, j)], and the state q at

position c induces an equality type δ containing xl , ym , or

• [(a, i)] ∼ [(c, l)], [(c,m)] ∼ [(b, j)], and the state q at position

c induces an equality type δ containing xl , xm .

This property is easily checkable by a finite state automaton. □

Given an equality type δ , let δ |m be δ restricted to registers

[1..m]. Let Σ consist of e=i j and e,i j for i, j ∈ ⟦m⟧ as given by

Lemma 21. LetA be the extended register automaton (A′, Σ)where
A′ = (m,Q, I , F ,∆′) and ∆′ = {(q,δ |m,q′) | (q,δ ,q′) ∈ ∆}. Notice
that as A is state-driven, so is A. We first show that Reg(A) =
Πm (Reg(A)).

The inclusion Πm (Reg(A)) ⊆ Reg(A) is immediate. Consider

the converse, Reg(A) ⊆ Πm (Reg(A)). Let ρ = {( ¯d ′n ,qn ,δn |m)}n≥0

be a run of A andw be its state trace. By constructionw is also a

state trace ofA. In view of Lemma 21, ∼w
A

is the restriction of ∼wA to

[1..m]. For each equivalence class ϵ ′ of ∼w
A
, let ϵ be the equivalence

class of ∼wA containing it. From the same lemma it also follows that

for all ϵ ′
1
, ϵ ′

2
∈ Ew
A
, ϵ ′

1
0w ϵ ′

2
in A iff ϵ1 0w ϵ2 in A. Consider the

function f ′ from Ew
A

to D associating
¯d ′n [i] to the class [(n, i)]Aw

for every n ≥ 0 and i ∈ ⟦m⟧. This function is clearly consistent

with w in A. Let f be a function from EwA to D that maps every

ϵ that contains an equivalence class ϵ ′ of ∼w
A

to f ′(ϵ ′) and every

other ϵ to a fresh new data value. Clearly, f is consistent withw in

A. Let ρ ′ = {( ¯dn ,qn ,δn )}n≥0 where
¯dn [i] = f ([(n, i)]Aw ). It is easy

to verify that ρ ′ is a run of A and by construction the register trace

of ρ is the projection of the register trace of ρ ′ on [1..m].
We next show that A is LR-bounded. Let w = {(qn ,δn )}n≥0

be a control trace of A and denote wab = (qa ,δa ) . . . (qb ,δb ) for
0 ≤ a ≤ b. Let h ≥ 0. Let (ϵ1, ϵ2) be an edge in Gw

h . By Lemma

21, there exist a,b, a ≤ h < b such that (a, i) ∈ ϵ1, (b, j) ∈ ϵ2 for

some i, j ∈ ⟦k⟧ and wab ∈ e,i j . From the definition of 0Aw in the

case of register automata, it follows that there exists l ∈ ⟦k⟧ such
that either (i) [(a, i)]Aw ∼

A
w [(h, l)]

A
w and [(h, l)]Aw 0

A
w [(b, j)]

A
w or (ii)

[(a, i)]Aw 0
A
w [(h, l)]

A
w and [(h, l)]Aw ∼

A
w [(b, j)]

A
w .

LetC consist of the classes ϵ1 ⊑ L(h) for which (i) holds, together
with the classes ϵ2 ⊑ R(h) for which (ii) holds. Clearly, C is a

vertex cover of Gw
h and its size is bounded by k . Thus, A is LR-

bounded. □

We next prove the "if" part of Theorem 19.

Proposition 22. Let B be an LR-bounded extended automaton
withm registers. Then Reg(B) equals Πm (Reg(A)) for some register
automaton A.

Proof. Consider an LR-bounded register automaton B = (B, Σ).
Proposition 6 shows how global equality constraints can be simu-

lated with additional registers, so we assume that Σ does not have

global equality constraints of the form e=i j .

It remains to take care of the inequality constraints. For read-

ability, we provide the proof for the case whenm = 1 (so B has a

single register). The extension to multiple registers is straightfor-

ward. Let N be the vertex cover bound witnessing the fact that B

is LR-bounded.

We denote e,
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by e,. We also denote the equivalence class

[(n, 1)]w by [n]w forn ≥ 0 (or simply [n]whenw is understood).We

construct a register automaton A for which Reg(B) = Π1(Reg(A)).
The intuition is the following. Let {dn }n≥0 be a register trace

of B. A computation of A on {dn }n≥0 guesses an accompany-

ing control trace w = {(qn ,δn )}n≥0 of B and first checks that

ρ = {(dn ,qn ,δn )}n≥0 is a run of B. Register 1 of A is treated in

each transition identically to register 1 of B. In addition, A checks

satisfaction of the inequality constraints of Σ. To do this, extra

registers are used to carry information, for every position h ≥ 0,

about the prefix {(dn ,qn ,δn )}n≤h and to guess information about

the suffix {(dn ,qn ,δn )}n>h . At a given position that participates

in inequality constraints, A is faced with two choices: either store

the current data value in some register and then later check that

it is indeed unequal to all the data values paired with the current

position by e,, or guess, and store in the registers, a set of data

values unequal to the current one, and later check that all positions

paired with the current one have a data value in the guessed set.

The choice A will make at position h will depend on the out-degree

of h in Gw
h : if it is larger than N then it will choose the first option,

otherwise the second. LR-boundedness will guarantee that this

strategy can be enforced using a number of registers depending

only on N .

We next present more details. Recall that the construction is

shown for the case when B has a single register and no global

equality constraints (because these can be simulated with extra

registers by Proposition 6). We assume without loss of generality a

normal form on e,: if e, connects a member n of an equivalence

class ϵ1 to a member m, m > n, of another equivalence class ϵ2,

thenm is the first member of ϵ2 that is larger than n and n is the

last member of ϵ1 that is smaller thanm. Let E, = (Q,,q,
0
,α,, F,)

be a deterministic automaton accepting e,, where Q=(,) is the set

of states, q
=(,)
0

the initial state, α=(,) the transition function, and

F=(,) the set of accepting states.
For each h ≥ 0, consider the graph Ḡw

h whose edges are all pairs

(n,m) for which wnm ∈ e
,
and n ≤ h,m > h. Observe that such

an edge exists iff there are ϵ1, ϵ2 such that n ∈ ϵ1,m ∈ ϵ2, and (i)

(ϵ1, ϵ2) is an edge in Gw
h , or (ii) ϵ1 0w ϵ2 and ϵ1 or ϵ2 straddles h.

Also note that, due to the normal form for e,, for each ϵ1, ϵ2 there

is at most one corresponding edge in Ḡw
h . Since there is at most

one equivalence classes that can straddle h, it follows that Ḡw
h has

a vertex cover of size at mostM = N + 1.



Clearly, it is sufficient for A to enforce, for all h ≥ 0 all in-

equalities represented by Ḡw
h . To do so we use registers, with ad-

ditional bookkeeping information in the states. We distinguish

between two kinds of nodes in Ḡw
h : (a) nodes that have a large

out-degree and (b) nodes with a small out-degree. In the first case

A will store the data value of the node of Gw
h in its registers while

in the second case it will store the non-deterministically guessed

data values of the target nodes. Fix k > 0 (a parameter of the

construction). We use 2k registers, denoted Ra = {a1, . . . ak } and
Rb = {b1, . . .bk }. Registers in Ra hold values of nodes of type (a),

and those in Rb hold values of nodes of type (b). For register r , we
denote the value it holds by val(r ). We also use, as components

of the state of A, mappings on : Ra ∪ Rb 7→ {0, 1} (indicating, as
earlier, whether r is "occupied" or "free"), and state : Ra ∪Rb 7→ Q,

providing, for each register, an associated state. For each q ∈ Q,,
we denote reдa (q) = {r ∈ Ra | on(r ) = 1, state(r ) = q} and sim-

ilarly for reдb (q). For q ∈ Q,, let val-statea (q) be the bag of val-

ues held by the registers in reдa (q), and similarly for val-stateb (q).
At position h, val-statea (q) holds the values of current nodes of

type (a), such that for all d ∈ val-statea (q), if d was guessed at

transition n, then α,(q,
0
,wnh ) = q (the multiplicities are irrele-

vant). And val-stateb (q) represents the bag of values such that, if

d ∈ val-stateb (q) is introduced at transition n, α,(q
,
0
,wnh ) = q and

the multiplicity of d is the number of target nodes reachable from

n that occur beyond h and have value d . We additionally maintain,

as a component of the state of A, a set Q¬, ⊆ Q, of states that are
updated at each transition and are prohibited from ever reaching

an accepting state.

In a computation of A, all registers are initially available (i.e.,

on(r ) = 0 for all r ). This is easily enforced by having A reject

otherwise. In a transition from position h − 1 to h, A does the

following:

(1) for each accepting state q of Q,:
(a) if q ∈ Q¬, , reject;
(b) if dh ∈ val-statea (q), reject;
(c) if reдb (q) , ∅ and dh < val-stateb (q), reject; if reдb (q) ,
∅ and dh ∈ val-stateb (q), pick one r ∈ reдb (q) for which
val(r ) = dh , and set on(r ) = 0 (this decreases the multi-

plicity of dh in val-stateb (q)).
(d) guess whether there is another ,-match from q in the

future. For a negative guess, insert q inQ¬, , and set on(r ) =
0 for all r ∈ reдa (q). For a positive guess, either continue
or do the following ("switch" from Ra to Rb ):
• if val-stateb (q) , ∅, do nothing;

• if val-stateb (q) = ∅ pick a subset of registers r of Rb for

which on(r ) = 0 (if none exists, reject), set each on(r ) =
1, state(r ) = q, and set each val(r ) to an arbitrary value

not in val-statea (q). Moreover, set on(r ) = 0 for all r ∈
reдa (q);

(2) guess whetherh yields at least one edge in Ḡw
h . For a negative

guess, add q,
0
to Q¬, . For a positive guess, nondeterministi-

cally choose one of the following:

(i) pick a register r ∈ Ra for which on(r ) = 0 (if such exists)

and set state(r ) = q,
0
, on(r ) = 1, and val(r ) = dh ;

(ii) if val-stateb (q
,
0
) , ∅ and dh < val-stateb (q

,
0
), continue; if

val-stateb (q
,
0
) = ∅ pick a subset of registers r of Rb for

which on(r ) = 0 (if such exist), set each on(r ) = 1, state(r )
to q,

0
, and set each val(r ) to an arbitrary value different

from dh .
(3) for p ∈ Q,, let pre(p,qh ) = {q ∈ Q, | α,(q,qh ) = p}.

Reject if for some p and q1,q2 ∈ pre(p,qh ), val-stateb (q1) ,
val-stateb (q2) , ∅. Otherwise, for each p choose an arbitrary

q ∈ pre(p,qh ) for which val-stateb (q) , ∅ (if such exists),

and set on(r ) = 0 for all r ∈ reдb (q
′) for q′ ∈ pre(p,qh ),

q′ , q (this merges the bags corresponding to the states in

pre(p,qh )).
(4) for each register r ∈ Ra ∪ Rb , advance its state according to

α, on input qh ; similarly, advance each state in Q¬, .

Note that the construction of A is parameterized by k , which de-

termines its register "budget". We claim that Π1(Reg(A)) ⊆ Reg(B)
for every k , and Reg(B) ⊆ Π1(Reg(A)) for some sufficiently large

k .
Consider Π1(Reg(A)) ⊆ Reg(B). Let ρ = {( ¯dn , q̄n , ¯δn )}n≥0

be a run of A. By construction, {(dn ,qn ,δn )}n≥0 is a run of B,
where {dn }n≥0 = Π1({ ¯dn }n≥0) and w = {(qn ,δn )}n≥0 is the cor-

responding control trace of B generated by A. We need to show

that {(dn ,qn ,δn )}n≥0 satisfies Σ. Note that at each transition from

h to h + 1, A non-deterministically guesses whether h is the source

of an edge of Ḡw
h . In the case of an incorrect negative guess, the

run is guaranteed to reject by reachingQ¬, containing an accepting

state. If the guess is correct, the run rejects in these cases: (i) the

constraint corresponding to the edge is violated, or (ii) the regis-

ter budget is exceeded, or (iii) other incorrect guesses about the

computation. Thus, an accepting run guarantees satisfaction of all

constraints.

Now consider Reg(B) ⊆ Π1(Reg(A)). Let {dn }n≥0 and w =
{(qn ,δn )}n≥0 the control trace of B generated by A. We need to

show that, given a sufficiently large k , there exists a computation of

A that enforces all constraints of Σ on {(dn ,qn ,δn )}n≥0. We claim

that such a computation is guaranteed to exist for k > M2
. Consider

the computation in which the guesses at each transition from h
to h + 1 are made according to the following strategy. Consider

first the treatment of h ((2) above). If h yields no edge in Ḡw
h , make

the negative guess by inserting q,
0
in Q¬, . Otherwise, the positive

guesses are made as follows (deд(h) denotes the degree of h in Ḡw
h ):

(a) ifdeд(h) > M , take choice 2(i) (propagatedh in a free register

of Ra ).
(b) if deд(h) ≤ M , take choice 2(ii), by generating a bag of size

deд(h) containing the values of the targets nodes from h.

Now consider the choices in 1(d). Consider the values propagated

in registers of Ra that reach an accepting state q. Let deдh (q) be the
number edges from q at position h, i.e. the number of distinct words

whn for which α,(q,whn ) ∈ F
,
(n > h). If deдh (q) > M , continue.

Otherwise, "switch" from Ra to Rb . If a new bag is generated, it

contains the values of the target nodes from q at h (so its size is

deдh (q)).
With the above strategy, we claim that at each position h, (i)

the number of occupied registers of Ra is at most M and (ii) the

number of occupied registers in Rb is at mostM2
. LetV be a vertex

cover of Ḡw
h of size M . To see (i), note that for every q ∈ Q, for

which reдa (q) , ∅, deдh (q) > M . This means that every value in

Ra corresponds to a node in V . For (ii), note that every value in Rb



corresponds to a target node in Ḡw
h connected to a source node of

degree ≤ M . Clearly, the number of such target nodes is at mostM2

(if α is the number of such source nodes in V and β is the number

of such target nodes inV , then we have α + β = M and the number

of target nodes is less than β + αM , hence at mostM2
).

Altogether, the total number of registers used by A to enforce

the constraints is 2 ·M2 + 1. □

This completes the proof of Theorem 19.

6 PROJECTIONWITH A DATABASE
We have seen in the previous section that extended automata can

specify the projections of register automata with no database. In

this section we discuss some of the issues that arise when the

register automaton is equipped with a database. As we shall see,

describing projections becomes a muchmore a challenging problem.

In particular, extended automata are no longer able to specify the

projections.

Consider a register automaton with a database. One can con-

sider various notions of projection. In addition to hiding some of

the registers, one could project some of the database relations, or

hide them altogether in the projected runs. Perhaps surprisingly,

performing no projection at all on the database appears to be the

most challenging option. We illustrate this next.

Example 23. Consider a register automaton A with 2 registers and
states p and q, with initial and final state p. Its database is a binary
relation E representing edges in a graph together with a unary relation
U . There are two transitions in A: (p,δ ,q) and (q,δ ′,p). The types δ
and δ ′ enforce that the value of register 2 remains unchanged and
that the value of register 1 is always inU , i.e. both types contain x2 =

y2∧U (x1). Moreover δ contains E(x2,x1)while δ ′ contains¬E(x2,x1).
Hence the projections of runs of A on register 1 consist of infinite
sequences of nodes of the database for which there is a node in the
graph that points exactly to every even position in the sequence. This
is a property over the database that an extended register automaton
cannot express. Indeed, assume towards a contradiction that there is
an extended automaton B such that for all databases D, Reg(D,B) =
Π1(Reg(D,A)). Let D be the database consisting of the edge E(c,d0)

and the facts U (d0),U (d1), where c,d0, and d1 are distinct values.
Then the sequenced0d1d0d1d0d1 · · · is in Π1(Reg(D,A)). Hence there
is an accepting run ρ of B over D whose register trace is the above
sequence. Observe that no type in a transition of the run includes a
positive atom E(−,−) since such an atom would be false (as the only
edge is E(c,d0) and c , d0,d1). Now consider the database D ′ which
is the same as D with the edge E(c,d0) removed. Then ρ remains an
accepting run of B over D ′, since by the earlier observation, all types
at each step remain true. But the sequence is not in Π1(Reg(D ′,A)),
contradiction.

The above example is relatively simple but already suggests that

describing projections of runs may require specifying non-trivial

combinatorial properties involving both the register trace and the

database. As seen above, extended automata are unable to describe

such projections.

In this section we make partial progress by considering the

special case of projections in which the entire database is hidden,

together with some of the registers. Consider a register automaton

A = (k,σ ,Q, I , F ,∆), and m ≤ k . We denote by Πm (Reg(D,A))
the projection of Reg(D,A) retaining only the values of registers

[1..m]. We would like to describe these projections as the runs of

some register automaton without a database. More precisely, we

are looking for an automaton A with no database such that: (i) for

each database D over σ and run of A over D whose register trace

is r , there is some run of A whose register trace is Πm (r ), and (ii)

conversely, for each run of A whose register trace is r ′, there is a
database D over σ and a run of A over D whose register trace is r
and r ′ = Πm (r ). In other words, we wish to have that Reg(A) =⋃
D Πm (Reg(D,A)). To this end, we augment extended automata

with two new kinds of global constraints: finiteness contraints and

tuple inequality constraints.

Finiteness constraints. Consider again the automaton A of Ex-

ample 23. We wish to describe the sequences of values in register 1

when the database is hidden. First, the data values occurring at even

and odd positions must be disjoint. This can be enforeced by an

inequality constraint e,
11

on values at odd distance in the run. How-

ever, this is not sufficient, as it allows for infinitely many data values

in the run. In order to deal with this problem, we introduce finite-

ness constraints defined by MSO formulas φfini (x), where x is a free

variable. A run {( ¯dn ,qn ,δn )}n≥0 of a register automaton satisfies

φfini (x) if the set {
¯dm [i] | {qn }n≥0 |= φ

fin

i (m)} is finite. Allowing
only finitely many values in the run, together with the previous

constraint, is clearly sufficient for describing the projections of the

register traces of A on the first register.

Tuple inequality constraints. Consider again the register au-

tomaton A of Example 23, but now E is ternary and δ contains

E(x1,x2,y1) while δ
′
contains is negation, ¬E(x1,x2,y1). We again

wish to project away register 2. It is now allowed for a data value in

register 1 to appear in both odd and even positions within the same

run. However, if we consider an odd position α and an even position

β within a run, the tuple formed with the data values in register 1

at position α and α +1 cannot be equal to the tuple formed with the

data values in register 1 at a position β and β + 1. To deal with this,

we introduce a mechanism to specify tuple inequality constraints

as follows. A tuple inequality constraint for a register automaton A
with states Q is an MSO formula φ,

ī, j̄
(ᾱ , ¯β) over Qω

, where ᾱ and

¯β are tuples of distinct free variables of the same arity l and ī, j̄ are
tuples of registers of the same arity. The constraint is satisfied in

a run {( ¯dn ,qn ,δn )}n≥0 if for every pair of tuples (ᾱ , ¯β) such that

{qn }n≥0 |= φ
,
ī, j̄
(ᾱ , ¯β), (dα1

[i1], . . .dαl [il ]) , (dβ1
[j1], . . .dβl [jl ]).

In the extension of Example 23 with a ternary symbol E men-

tioned above, in order to describe the projections to register 1, we

would add the binary constraints φ,
11,11
(xx ′,yy′)with a formula ex-

pressing the fact that position x is odd, positiony is even, x ′ = x +1

and y′ = y + 1. Notice that the inequality constraints e,
11
, that can

be used when E is binary in order to enforce that a data value at

an even position can not be equal to a data value at a odd position,

can equivalently be enforced with a tuple inequality constraint

φ,
1,1(x ,y) whose formula express the fact that x is even and y is

odd. Similarly, every inequality constraint can be expressed as a

tuple inequality constraint of arity 1. Tuple inequality constraints

are therefore generalizations of inequality constraints.



We next define an automaton model that augments extended

automata with finiteness and tuple inequality constraints. An en-
hanced automaton is a pair (A, Σ) where A is a register automaton

and Σ is a set of equality, tuple inequality, and finiteness constraints

for A. We show the following.

Theorem 24. Let A be an automaton with k registers and schema
σ . Letm ≤ k . There is an enhanced automaton B withm registers
and no database, such that Reg(B) =

⋃
D Πm (Reg(D,A)), where

the databases D are over schema σ .

Proof. Let A = (k,σ ,Q, I , F ,∆) be a register automaton. With-

out loss of generality we can assume that A is state-driven and com-

plete. Letm ≤ k . We construct the enhanced automaton B = (B, Σ)
as follows. First, B = (m,Q, I , F ,∆′) where ∆′ = {(p,δ |m,q) |
(p,δ ,q) ∈ ∆} and δ |m denotes the restriction of δ to the first m
registers. Note that B remains complete and state-driven. We now

describe Σ. The equality constraints are constructed as done in the

absence of a database (see the proof of Theorem 13). The finite-

ness constraints are defined as follows. Letw = {qn }n≥0 be a state

trace of B (which is also a state trace of A). As A is state-driven,

qn determines the type δn such that {(qn ,δn )}n≥0 is the control

trace associated to w . For each i ∈ ⟦m⟧, φfini (x) defines the set of
positions h such that [(h, i)]Aw is in adomw (E

w
A ) (recall the defini-

tion of adomw (E
w
A ) in the proof of Theorem 9). Clearly, this can

be specified in MSO. Observe that in an actual run on database D,
the values of registers in the active domain are generally a subset

of adom(D). Indeed, D may contain values not occurring in any

register in the run.

We next explain the construction of the tuple inequality con-

straints. We use the following notation. For r ∈ {xi ,yi }, r
′ ∈

{x j ,yj } and positions n and n′, we denote (n, r ) ∼Aw (n
′, r ′) if

(un , i) ∼
A
w (un′ , j), where un = n if r = xi , un = n + 1 if r = yi , and

similarly for un′ .
Consider a control trace w = {(qn ,δn )}n≥0 of A. First, the in-

equality constraints e,i j constructed as in Theorem 13 are expressed

straightforwardly as monadic tuple inequality constraints φ,i j (α , β).

Next, we define several tuple inequality constraints for each sym-

bol R in σ . Let κ be the arity of R. Each tuple inequality constraint

φ,
ī, j̄
(ᾱ , ¯β) for R states that there exist positions n and n′ and a par-

tition {E, F } of ⟦κ⟧ such that:

• |ᾱ | = | ¯β | = |F |
• δn contains a negative literal ¬R(s1, . . . sκ )
• δn′ contains a positive literal R(r1, . . . , rκ )
• (n, sl ) ∼

A
w (n

′, rl ) for l ∈ E,

• (αl , il ) ∼
A
w (n, sl ) for l ∈ F ,

• (βl , jl ) ∼
A
w (n

′, rl ) for l ∈ F .

Clearly, the above can be stated in MSO. This means that the

positions involved can be specified using regular expressions over

the states inw .

Let Σ consist of the equality, finiteness, and tuple inequality

constraints defined above and B be (B, Σ). We claim that Reg(B) =⋃
D Πm (Reg(D,A)), where each D is over σ .
The inclusion Reg(B) ⊇

⋃
D Πm (Reg(D,A)) is simple and omit-

ted here. We next prove the converse.

We will need the following easily proven lemma. Intuitively, it

says that in a run of a register automaton on a database, the values

of registers that are not forced to be in the active domain of the

database by the control trace can be changed to values outside

the active domain of the database in any way consistent with the

(in)equalities, without affecting validity of the run on that database.

Lemma 25. Let A = (k,σ ,Q, I , F ,∆) be a register automaton and
ρ = {( ¯dn ,qn ,δn )}n≥0 a run of A over some database D. Denote byw
the control trace of ρ. Letд be a mapping from EwA toD that associates
to each ϵ ∈ adomw (E

w
A ) the value induced by ρ, and an arbitrary

value in D − adom(D) to each ϵ < adomρ (E
w
A ), such that ϵ1 0

A
w ϵ2

implies that д(ϵ1) , д(ϵ2). Consider the sequence д(ρ) obtained from
ρ by replacing ¯dn [i] with д([(n, i)]w ) (observe that д does not modify
registers whose value is in adom(D)). Then д(ρ) is a run of A on D.

Let ρ ′ = {( ¯d ′n ,qn ,δn |m)}n≥0 be a run ofB. We need to construct

a databaseD over σ and a run ρ ofA overD such that the projection

of the register trace of ρ to the first m registers is { ¯d ′n }n≥0. The

control trace of ρ will bew = {(qn ,δn )}n≥0. It remains to construct

D and the values of the registers
¯dn for each position n.

This is done as follows. From ρ ′ we construct a symbolic trace

w∗ of some register automaton A∗ over the schema σ ∗ which is

σ augmented with the set C of constants from the active domain

(this is made more precise below). Essentially, w∗ and A∗ are the
extension ofw and A to the schema σ ∗ enforcing equality with the

constants whenever necessary. By the proof of Theorem 9 there is a

finite database D∗ over the schema σ ∗ witnessing the fact that the

symbolic trace is actually a control trace via some run ρ∗ over D∗.
We then need to slightly modify D∗ and ρ∗ so that the projection of

the register trace of ρ∗ to the firstm registers is the register trace of

ρ ′. This yields the desired database and run of A over the database.

We now provide the details of the construction.

We start by defining the set of constants that are part of σ ∗. Let
C be the set of data values occurring in ρ ′ that are forced by w
to be the active domain of the database. In other words, C is the

set of data values d such that d = ¯d ′h [i] for some register i ≤ m

and some position h such that [(h, i)]Aw ∈ adom(E
A
w ). The finiteness

constraints of Γ ensure that C is finite.

We now construct a symbolic tracew∗ = {(qn ,δ
∗
n )}n≥0, where

δ∗n is defined from δn as follows.

For each δn , we denote by C(δn ) the extension of δn with the

constants C by including the following positive literals (for all

i ∈ ⟦k⟧, c ∈ C , R ∈ σ , and ¯h ⊆ x̄ ∪ ȳ ∪C):

• xi = c if (n, i) ∼
A
w (n

′, j) with j ≤ m and
¯d ′n′[j] = c

• yi = c if (n + 1, i) ∼Aw (n
′, j) with j ≤ m and

¯d ′n′[j] = c
• R(h1, . . .hκ ) if there is a partition {E, F } of ⟦k⟧ such that

hi ∈ x̄ ∪ ȳ for i ∈ E, hi is ci ∈ C for i ∈ F , and for some

position n′ there is R(r1, . . . , rκ ) ∈ δn′ such that for all i ∈ E,
(n,hi ) ∼

A
w (n

′, ri ), and for all i ∈ F , ri = ci has been derived

in δn′ by one of the previous two items.

Let δ∗n consist of C(δn ) together with the negative literals in-

duced by the complement of the above positive literals. Thus, δ∗n
is complete. To show that it is consistent, it is enough to show

consistency of the positive facts with respect to equality. Con-

sistency without constants is inherited from δn . Therefore, the
non-trivial cases are those involving constants. We illustrate with



two representative cases. For equality, we need to show, for in-

stance, that xi = c,x j = c ∈ δ∗n implies that xi = x j ∈ δ∗n
Suppose that xi , x j ∈ δ∗n . By definition, we have positions

n′
1
,n′

2
such that (n, i) ∼Aw (n

′
1
,u) with u ≤ m and

¯d ′n′
1

[u] = c and

(n, j) ∼Aw (n
′
2
,v) with v ≤ m and

¯d ′n′
2

[v] = c . By definition we

also have (n, i) 0Aw (n, j) and therefore (n′
1
,u) 0Aw (n

′
2
,v). But as

ρ ′ |= Σ, this implies (assuming that n′
1
≤ n′

2
) that qn′

1

· · ·qn′
2

∈ e,uv
contradicting the fact that

¯d ′n′
1

[u] = ¯d ′n′
2

[v] = c . The other cases are

treated similarly.

Consider now consistency of relational atoms with respect to

equality. Again, the interesting case involves the constants. As a

typical example, suppose R(x1, c2, c3),x2 = c2,x3 = c3 ∈ δ
∗
n . We

need to show that R(x1,x2,x3) ∈ δ
∗
n . Suppose towards a contradic-

tion that ¬R(x1,x2,x3) ∈ δ
∗
n . By definition of the equalities x2 =

c2,x3 = c3, there exist positions α2,α3 such that (n, 2) ∼Aw (α2, i2)

with i2 ≤ m and
¯dα2
[i2] = c2 and (n, 3) ∼

A
w (α3, i3) with i3 ≤ m and

¯dα3
[i3] = c3. By definition of R(x1, c2, c3), we have a position n′,

and registers r1, r2, r3 such that (n,x1) ∼
A
w (n

′, r1) and r2 = c2, r3 =

c3 ∈ δ
∗
n′ . By definition of the equalities r2 = c2, r3 = c3, there are

positions β2, β3 such that (n′, r2) ∼
A
w (β2, j2), (n

′, r3) ∼
A
w (β3, j3),

for j2, j3 ≤ m, and
¯dβ2
[j2] = c2,

¯dβ3
[j3] = c3. However, the inequal-

ity constraint for ¬R(x1,x2,x3) at position n, R(r1, r2, r3) at position

n′, E = {1}, F = {2, 3}, ᾱ = α2α3,
¯β = β2β3, ī = i2i3 and j̄ = j2j3,

says that ( ¯dα2
[i2], ¯dα3

[i3]) , ( ¯dβ2
[j2], ¯dβ3

[j3]), a contradiction.
Consider the sequence w∗ = {(qn ,δ

∗
n )}n≥0. We show that w∗

satisfies the conditions of a symbolic control trace with constants

C . As we have constructed the δ∗n so that they are complete and

consistent, it remains to show that δ∗n+1
is consistent with δ∗n in

the sense that δ∗n |(ȳ ∪C) is isomorphic to δ∗n+1
|(x̄ ∪C). The case

of literals without constants is inherited from w . Suppose that

yi = c ∈ δ∗n . From the definition of equality with constants, and

the fact that (n,yi ) ∼
A
w (n + 1,xi ), it follows that xi = c ∈ δ∗n+1

.

Similarly, suppose R(¯h, c̄) is part of δ∗n for
¯h ⊆ ȳ. From the fact

that (n,yi ) ∼
A
w (n + 1,xi ) for every i ∈ ⟦k⟧ it easily follows that

R(¯h(ȳ ← x̄), c̄) is part of δ∗n+1
, where

¯h(ȳ ← x̄) is obtained from
¯h

by replacing each yi with xi , as desired.
One can easily construct a register automaton A∗ over σ ∗ for

which w∗ is a symbolic control trace (the automaton simply al-

lows all transitions occurring in the sequence). By the proof of

Theorem 9, this symbolic run is actually the control trace of a

real run. Hence there is a finite database D∗ over σ ∗ and a run

ρ∗ = {( ¯dn ,qn ,δ
∗
n )}n≥0 of A∗ over D∗. Observe that by construc-

tion of the δ∗n ,
¯dn agrees with

¯d ′n on all registers with values in C ,
but may disagree on others. To fix this, we modify D∗ and ρ∗ as fol-
lows. We first ensure that adom(D∗) contains no value that occurs

in ρ ′ but is not inC by applying toD∗ and ρ∗ an appropriate isomor-

phism (note that this uses the assumption that each run leaves out

infinitely many values of D). that is the identity on C . Let D̄∗ and
ρ̄∗ = {(ēn ,qn ,δn )}n≥0 be the resulting database and run. Finally,

we can use Lemma 25 to modify {ēn }n≥0 so that it agrees with

{ ¯d ′n }n≥0 on the firstm registers. More precisely, let д be the map-

ping on EwA such that д([n, i]Aw ) = d
′
n′[j] if (n, i) ∼

A
w (n

′, j) for some

n′ and j ≤ m, andд is the identity everywhere else. Note thatд is the
identity on adomw (ρ̄

∗) (includingC). Indeed, if (n, i) ∼Aw (n
′, j) then

either ēn [i] = ¯d ′n′[j] ∈ C or [(n, i)]Aw < adomw (ρ̄
∗). The fact that д

does not modify register values in C , together with the (in)equality

constraints of Σ, ensure that д is consistent with (in)equalities. Also,

д(ϵ) ∈ D − adom(D̄∗) whenever д(ϵ) , ϵ . By Lemma 25, д(ρ̄∗) is a
run of A on D̄∗ and by construction, the projection of its register

trace on the firstm registers is the register trace of ρ ′. □

7 CONCLUSIONS
The main contribution of this paper is to gain insight into the means

needed to specify views of database-driven systems. We use as a

vehicle register automata, essentially identical to artifact systems.

We have seen that describing even very simple projection views

of register automata without a database requires the addition of

global constraints. This gave rise to extended register automata. We

showed that these have desirable properties, including decidability

of verification of LTL-FO properties. We also characterized the pre-

cise fragment of extended automata needed to specify projections

of register automata. In the absence of a database, extended regis-

ter automata are themselves closed under projection, but this fails

when a database is present. We therefore considered the additional

features needed to specify projections of register automata with a

database. While a solution to the general case remains elusive, we

addressed projection views in which the entire database is hidden

in addition to some of the registers. We showed that these views

can be specified by extended automata further augmented with

finiteness constraints and tuple inequality constraints. This gave

rise to enhanced automata.

Recent results, which we will present in the full paper, show

that the enhanced register automata model enjoys most of the nice

properties of the extended register automata model. In particu-

lar, its state and control traces remain quasi-regular, generalizing

Theorem 9. As a consequence, enhanced automata have all the

nice decidablity properties mentioned in Theorem 12. On the other

hand, Theorem 24 does not fully extend to enhanced automata.

Specifically, enhanced automata are closed under the projection

that removes the database entirely (yielding the variant of Theo-

rem 24 where k =m, but with an enhanced register automaton as

input instead of a simple register automaton). However, they are

not closed under projections that eliminate one or more registers.

The results obtained highlight the technical challenges in speci-

fying views of database driven systems. Remaining open questions

closely related to this paper include the following: (i) precise com-

plexity of our decision procedures and automata constructions, and

(ii) characterization of more general projection views that include

arbitrary projections of database relations. More broadly, richer

classes of views need to be investigated for richer models of data-

base driven systems. The difficulties encountered even in the simple

framework studied here suggest that obtaining precise specifica-

tions of such views may turn out to be a challenging goal. As a

second best, it would be useful to provide approximate descriptions

that satisfy certain tightness conditions.
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