
Complementing deterministic tree-walking automata

Anca Muscholl
LIAFA & CNRS, Université Paris 7, France

Mathias Samuelides
LIAFA and INRIA

Luc Segoufin
INRIA & Université Paris 11, France

September 12, 2005

Abstract

We consider various kinds ofdeterministictree-walking automata, with and without pebbles,
over ranked and unranked trees. For each such kind of automata we show that there is an equiva-
lent one which never loops. The main consequence of this result is the closure under complemen-
tation of the various types of automata we consider with a focus on the number of pebbles used in
order to complement the automata.

1 Introduction

On trees, there are two types of automata that extend automata on strings in a natural way. The best
known automaton type has a parallel (branching), one-way behavior: a run of the automaton is a
labeling of the tree by states, either in top-down or bottom-up fashion, and according to local update
rules. Branching automata appear in several variants, besides bottom-up and top-down they can be
deterministic or non-deterministic. Except for the deterministic top-down variant, the other three have
all the nice properties of the string case, namely closure under Boolean operations, determinization
(of the bottom-up variant), minimization, equivalence with monadic-second order logic, etc. These
automata are commonly calledtree automataand the family of tree languages they define is called
the class ofregular tree languages. See for instance the textbook [CDG+99] for more details.

In this paper we are interested in a second variant, namelytree-walking automata(TWA for short),
which generalize two-way string automata. Given the state the automaton has reached at a given node
and the label of that node, it switches to a new state and movesin the tree to a neighboring node
according to the transition function. It accepts when it reaches an accepting state. Thus, this variant
is sequential, in the sense that the automaton head is positioned on a single node. TWA have a non-
deterministic (NTWA) and a deterministic variant (DTWA). They have been introduced in [AU71]
and it is not hard to see that languages recognized by TWA are regular. It has been shown only
very recently that the inclusion is strict [BC05]. It has also been shown that NTWA are strictly more
powerful than DTWA [BC04].

A pebble tree-walking automaton(PTWA for short) is an extended TWA which can drop and lift
a fixed number of pebbles in the tree. In order to stay within regular tree languages the pebbles are
constrained by a stack discipline [GH96, EH99]. That is, pebbles are ordered, pebblei can be lifted
from the tree only if there is no pebblej > i present on the tree and we can drop only the smallest
available pebble. We consider two variants of PTWA. In theweaksetting (wPTWA for short), which
is the most studied one (see for instance [EH99] and [MSV03]), the last pebble can be lifted only if

1

the automaton head is currently on the corresponding node. In thestrongsetting (sPTWA for short)
the automaton can lift the last pebble from any node. This last variant has been introduced in [EH05]
and corresponds to a robust class of automata, as it capturesunary transitive closure logic on trees
[EH05]. In both cases of wPTWA and sPTWA the recognized tree languages are regular since unary
transitive logic can be simulated by monadic second-order logic.

The interest for PTWA has recently increased because of its connections with query languages
for XML. For instance they can be used to evaluate XPATH queries. A pebble is then used for each
qualifier occurring in the query. It has also been advocated in [MSV03] that PTWA have all the
navigational power of many of the existing query languages for XML. This was used in [MSV03] in
order to decide typechecking properties for XML query languages.

It is still open whether NTWA and (w/s)NPTWA are closed undercomplementation or whether
the inclusion of (w/s)PTWA in the class of regular tree languages is strict or not.

In this paper we show that alldeterministicvariants (DTWA, wDPTWA and sDPTWA) are closed
under complementation.

Recall that the acceptance condition of these automata is that an accepting state is eventually
reached. Therefore there are two reasons for rejecting a tree. Either a rejecting state is reached or the
automaton loops forever. This second case is problematic when one wants to compute an automaton
for the complement language. We show that for any DTWAA there is an equivalent DTWAA′ which
never loops. We then extend this result to wDPTWA by showing that for anyk-pebble wDPTWA
there is an equivalentk-pebble wDPTWA which never loops. Finally we consider sDPTWA but in
that case3k pebbles are used in order to remove all loops of ak-pebble sDPTWA. It remains open
whether this blow-up is unavoidable or not.

The idea of the proof is based on Sipser’s crucial observation [Sip78] that thebackward config-
uration graphof a deterministic Turing MachineM on any of its inputw is a forest. The vertices
of this graph are the configurations ofM on w, and an edgec → c′ connects two configurationsc
andc′ if c can be reached fromc′ in one step ofM . In order to remove loops, it is therefore enough
to be able to simulateM on w backwards, starting from an accepting configuration and checking all
possible paths reaching this accepting configuration untilan initial configuration is reached. This is
done by investigating the configuration tree e.g. in a depth-first-search fashion.

The difficulty is to be able to do the simulation with the limited power of finite automata. Indeed,
the backward configuration tree cannot be stored in the finitecontrol of the automaton. But it turns
out that the tree can be computed locally and on-the-fly, and this idea has been used by Sipser to solve
the 2-way string case [Sip78].

We show that this idea easily extends to tree-walking automata. It also extends to wDPTWA,
where the moves of the pebbles are local. For the sDPTWA variant, backwards simulation is a bit
more complex. Indeed, in that case an automatonA can lift the last pebble from anywhere. Therefore,
when simulatingA backwards, the previous position of the pebble before a liftmust be checked over
the whole tree. We show that this can be done still deterministically, but with the help of extra pebbles.

Note that the closure under complement of a DTWA was mentioned in section4 of [EH99].
Note also that the closure under complement of an sDPTWA immediately follows from the fact
that sDPTWA captures precisely unary deterministic transitive closure logic [EH05], the latter being
closed under complement by definition. But this approach does not yield a very efficient procedure
in term of pebbles. From [EH05] it follows that the complementation of a sDPTWA usingk pebbles
andn states is expressible using a sDPTWA with9kn pebbles, while our construction uses only3k
pebbles.

2

2 Notations and TWA

We denote the size of a finite setE by |E|. The trees we deal with in this section are finite binary
trees, with nodes labeled over the alphabetΣ. A Σ-tree t is a mapping fromNt ⊆ {0, 1}

∗ to Σ
whereNt is a finite, non empty, prefix-closed set such that for anyv ∈ Nt, v0 ∈ Nt iff v1 ∈ Nt.
We use the set Types= {ǫ, ǫl, l0, l1, ch0, ch1} to encode the possible types of a node: the rootǫ, a
left-child leaf l0, a right-child leafl1, a leaf and root at the same timeǫl, a left-child inner nodech0

or a right-child inner nodech1. For v ∈ Nt, let typet(v) denote the type of the nodev in the treet.
Let d : Nt×Nt → {↑, stay, ↓0, ↓1} be the partial function assigning↓i to pairs of the form(v, vi) for
i ∈ {0, 1}, stayto pairs of form(v, v) and↑ to pairs of the forms(vi, v), for i ∈ {0, 1}. We denote the
depth-first traversal of a tree (that is, the traversal visiting at each node, the left subtree first and then
the right subtree) byDFS and by right-left DFS the traversal that visits first the right subtree before
the left one.

Definition 1 A tree-walking automaton(TWA) overΣ-trees is a tupleA = (Q,Σ, q0, F, δ) where
Q is a finite set of states,q0 ∈ Q is the initial state,F ⊆ Q is the set of accepting states and
δ ⊆ Q× Types× Σ ×Q× {↑, stay, ↓0, ↓1} is the transition function. A TWA is calleddeterministic
(DTWA) ifδ is a function fromQ× Types× Σ to Q× {↑, stay, ↓0, ↓1}.

A configurationof A over aΣ-treet is a pair(q, v) ∈ Q×Nt indicating the current state and the

position of the head in the tree. We write(q, v)
A,t
−−→ (q′, v′) for (q, typet(v), t(v), q′, d(v, v′)) ∈ δ.

A run of A over aΣ-treet is a sequence of configurations(q0, v0), . . . , (qn, vn) satisfying for all

0 ≤ i < n, (qi, vi)
A,t
−−→ (qi+1, vi+1).

A run can be finite or infinite. A run(q0, v0) . . . (qn, vn) is acceptingif it is finite and it starts at
the root inq0 andends at the rootin a final state. A TWAA accepts a tree if it has an accepting run
over it. A set ofΣ-treesL is recognized byA if A accepts exactly the trees inL.

We consider now a DTWAA and would like to construct a DTWA for the complement ofA. A
DTWA is callednon-loopingif every run starting from the initial configuration is finite. For non-
looping DTWA, complementation is immediate as it is enough to tranform a accepting state into a
rejecting one and vice-versa. The difficulty for obtaining complementation comes from those loops.

In order to complementA, we construct a DTWAA′ that recognizes the same language asA and
such that all runs inA′ are finite.

Proposition 1 For any DTWA withn states we can construct an equivalent, non-looping DTWA with
O(n2) states.

From Proposition 1 we obtain immediately:

Theorem 1 The class of tree languages recognized by DTWA is closed under complementation.

Proof. Let A = (Q,Σ, q0, F, δ) be a DTWA that accepts the setL. We construct a DTWAA′

that accepts the complement ofL as follows. According to Proposition 1 we can assume that allruns
ofA starting in the initial configuration are finite and end at theroot. We introduce a new stateq′f that
is the final state ofA′. Then for each non final stateq ∈ Q \ F of A and for each lettera such that
δ(q, ǫ, a) is not defined, we add the transitionδ′(q, ǫ, a) = (q′f , stay). 2

We now show Proposition 1. We start with a normal form for DTWAthat will simplify the case
analysis.

3

Lemma 1 For every DTWA an equivalent DTWA with a unique final stateqf can be constructed, such
that the unique final configuration(qf , ǫ) has no successor configuration.

Proof. LetA = (Q,Σ, q0, F, δ) be a DTWA. We introduce a new stateq′f that is the unique final
state ofA′. Then we suppress all transitions that can be applied from a configuration fromF × {ǫ}.
For each stateqf in F and for each lettera ∈ Σ, transition{(qf , ǫ, a, q′f , stay)} is added.2

From now on, we will consider only DTWA that satisfy the condition of the previous lemma
and we will denote a DTWA as(Q,Σ, q0, qf , δ) instead of(Q,Σ, q0, {qf}, δ). We now define the
backward configuration graph of a DTWA. LetA = (Q,Σ, q0, qf , δ) be a DTWA and lett be a
Σ-tree.

Definition 2 Thebackward configuration graphG(A, t) is the finite graph whose vertices are the
configurationsc ofA over t such that there exists a run fromc to the final configuration(qf , ǫ) and

there is an edgec→ c′ iff c′
A,t
−−→ c.

Note that a treet is accepted byA iff the initial configuration ofA is a vertex ofG(A, t). The
following lemma is a crucial remark:

Lemma 2 ([Sip78]) LetA = (Q,Σ, q0, qf , δ) be a DTWA. For all treest, the backward configuration
graphG(A, t) is a tree with root(qf , ǫ).

Proof. From the definition of the backward configuration graph, all vertices ofG(A, t) are
reachable from(qf , ǫ) and for any vertex(q, v) there is a unique path from(qf , ǫ) to (q, v), sinceA is
deterministic and(qf , ǫ) is not a successor of any vertex ofG(A, t). 2

In order to eliminate the infinite (non-accepting) runs ofAwe construct a DTWAA′ that simulates
A backwards. On a given treet,A′ performs a DFS of the backward configuration treeG(A, t) from
the final configuration ofA, that is from the root ofG(A, t), and acceptst iff it eventually visits the
initial configuration. Note that the backward configurationtree is implicit, i.e. the DFS is simulated
on-the-fly during the traversal oft. This can be done because the backward configuration tree is
locally constructible: we can compute from a given configuration all its successorsand its unique
predecessor in the backward configuration tree.

Construction. Let A = (Q,Σ, q0, qf , δ) be a DTWA andt a tree. LetD : Nt × Nt → {↑0
, ↑1, stay, ↓0, ↓1} be the partial function assigning↑i to pairs of the forms(vi, v), for i ∈ {0, 1} and
the result ofd otherwise. Given a node(q, v) of G(A, t) with parent node(q′, w), we define itsrank
by the pair〈q,D(v,w)〉. The basic observation is that the rank of a configuration node n uniquely
determinesn among its siblings in the backward configuration tree. We fix now an arbitrary order on
Q and on the set{↑0, ↑1, stay, ↓0, ↓1}. This implies a total order on the rank (lexicographically)and
therefore a total order on the children of any node in the backward configuration tree. The DTWAA′

will perform a DFS ofG(A, t) according to this order. WheneverA′ is visiting a configuration(q, v)
of G(A, t) in the DFS, the head ofA′ is visiting the nodev of t, and the stateq is part of the current
state ofA′. The current state ofA′ also always contains the rank of the node previously visitedin
order forA′ to know which node it should go to next.

This information is maintained as follows. Assume thatA′ is currently investigating the node
n = (q, v) of G(A, t). Its head is therefore onv andq is part of the state.

There are two cases. Assume first that the noden is visited for the first time. This is the case
exactly whenn is reached from its parent node inG(A, t). ThenA′ determines the rank of the

4

first child of n as follows:A′ tries each rank〈q′,∆′〉 in increasing order. For each one it moves to
the nodew in direction opposite to∆′ and (virtually) checks usingδ and the labela of w whether
δ(q′, a) = q,∆′. If this is not the case, it goes back tov (with stateq) and tries the next rank.

The second case is when the DFS returns to noden = (q, v) from a childn′ of n of rank〈q′,∆′〉.
This rank is thus part of the current state ofA′. If 〈q′,∆′〉 is the maximal element in the rank order
thenA′ returns to the parent ofn in G(A, t). To do this,A′ simulates virtuallyA on t for one step
and obtains a new stater and a direction∆. It moves according to∆ and maintains in its state
the necessary information:r for the state of the current configuration and〈q,∆〉 for the rank of the
previously visited noden.

If 〈q′,∆′〉 is not maximal,A′ proceeds to the next child ofn by investigating all the next possibil-
ities for rank as described above.

Note that the size ofrank is bounded by5|Q| therefore the extra information stored in the states of
A′ is bounded by5|Q|2. We also need an extra bit in order to know whether the DFS goesdownwards
or upwards. Overall the number of states ofA′ is O(|Q|2).

3 Extensions

In this section we consider two extensions of Theorem 1, the first one over unranked trees and the
second one for pebble tree-walking automata.

3.1 Unranked trees

A deterministic tree-walking automaton over unranked trees (DTWAU for short) is a DTWA that runs
on unranked trees.

In this context we slightly modify the meaning of the type of anode. Recall that the set of types
is Types= {ǫ, ǫl, l0, l1, ch0, ch1}. Their meaning on unranked trees is: the rootǫ, a leftmost child leaf
l0, a rightmost child leafl1, a leaf and root at the same timeǫl, a leftmost child inner nodech0 or a
rightmost child inner nodech1. The set of moves,{↑, stay, ↓0, ↓1←,→}, should now be understood
as: move to the parent of the current node, stay in the currentnode, move to the leftmost or rightmost
child, move to the next or previous sibling.

We distinguish two models of automata, depending whether italso knows the label of the parent of
the current node or not. In the first caseδ mapsQ×Types×Σ×Σ to Q×{↑, stay, ↓0, ↓1,←,→, }, in
the second caseδ is a function fromQ×Types×Σ to Q×{↑, stay, ↓0, ↓1,←,→}. These two models
seem to differ, for instance a DTWAU of the first kind can accept all boolean circuits that evaluate to
1 in the usual way, by checking that all children of and-nodes(at leats one child of or-nodes, resp.)
evaluate to 1. This obvious algorithm does not work if the automaton is forced to visit the parent node
in order to know whether it is an and-node or an or-node, sinceit cannot record which child it came
from. Anyway, our complementation algorithm does not depend on the model.

Note first that we cannot extend directly the previous construction to DTWAU because it is not
clear how to define arank which uniquely determines a node ofG(A, t) from its siblings with a
constant memory information. Indeed, whenAmoves up in the input tree it can do so from any child.
Therefore in the backward configuration graphG(A, t) a node may have arbitrarily many children of
rank〈q, ↑〉.

However we can transform a DTWAU into an equivalent one, for which the backward configura-
tion tree has finite rank. The new DTWAU can move upwards in a tree only when it is in a leftmost

5

child node. We can enforce this property as follows: insteadof going directly upward from an arbi-
trary sonv of u to its fatheru,A′ goes to the leftmost sibling ofv and then goes tou.

In this case therank of a configuration is defined as in the DTWA case with the obvious definition
of D and it uniquely determines the siblings of a node inG(A, t) with a constant memory information.
We can therefore apply the previous construction and obtain:

Theorem 2 The class of tree languages recognized by DTWAU is closed under complementation.

3.2 Pebble automata

We now formally define TWA with pebbles (PTWA). For simplicity, we define PTWA that use a stack
discipline on the pebbles, since we are mainly interested inthis type of automaton (without such a
constraint on pebbles we can define non regular tree languages, see e.g. [GH96]).

Definition 3 Let k ≥ 0. A k-pebble PTWA is a tupleA = (Q,Σ, q0, F, δ) whereQ is a finite set of
states,q0 ∈ Q is the initial state,F ⊆ Q is the set of accepting states andδ is the transition function:

δ ⊆ Q× Types× Σ× {0, . . . , k} × {0, 1}k ×Q× {↑, stay, ↓0, ↓1, lift , drop}

A PTWA is deterministic (DPTWA), ifδ is a function fromQ× Types×Σ×{0, . . . , k} × {0, 1}k

to Q× {↑, stay, ↓0, ↓1, lift , drop}.

In this setting each pebble is assigned a number and only the highest one can be lifted or droped.
The additional components in the transition function of a DPTWA are the number of pebbles currently
present in the tree (integer from{0, . . . , k}) and the presence of pebblei at the current node (boolean
vector from{0, 1}k); the additional moves canlift the last pebble present in the tree ordrop the next
available one, according to a given strategy. A configuration of a PTWA is a tuplec = (q, v, i, x̄) ∈
Q ×Nt × {0, . . . , k} ×Nk

t describing the current stateq, the current nodev, the current number of
pebblesi and their positionsx1, . . . , xi in the tree.

We describe now thelift and thedrop move, the others being identical to the moves of a TWA.
The lift move from a configurationc = (q, v, i, x̄) yields the new configurationc′ = (q′, v′, i− 1, x̄′)
wherex′

j = xj for all j < i. Moreover, we require thatv′ = v, i.e., the head does not move. Thedrop
move from a configurationc = (q, v, i, x̄) yields the new configurationc′ = (q′, v′, i + 1, x̄′), where
x′

j = xj for all j ≤ i andxi+1 = v. Again, we require thatv = v′.
Without any further restriction, this definesstrong PTWA(sPTWA). The most studied type of

pebble automata has one further restriction [GH96, EH99, MSV03]: Thelift move is further restricted
as follows. We allow alift move only from configurationsc = (q, v, i, x̄) with v = xi, that is, the
head is currently on the highest pebble present in the tree. This kind of PTWA is calledweak PTWA
(wPTWA).

Let A be ak-pebble wDPTWA. We construct as in the DTWA case a non loopingk-pebble
wDPTWA A′ which recognizes the same language asA by simulatingA backwards. Whenever
A′ will be visiting a node(q, v, i, x̄) of G(A, t) it will have q in its state and its head will be on node
v of t with thei pebbles placed according tōx. The rank of a configuration is defined as in the DTWA
case withD mapping pairs of consecutive configurations to the set{↑0, ↑1, stay, ↓0, ↓1, lift , drop} de-
pending on the corresponding transition ofA. Because the head does not move when we lift or drop
a pebble, the rank of a configuration uniquely determines a node among its siblings inG(A, t) and it
can be stored with constant memory. Therefore we can apply the construction of Proposition 1 and
have:

6

Theorem 3 Letk ≥ 0. The class of tree languages recognized byk-pebble wDPTWA is closed under
complementation.

This idea no longer works for sDPTWA. Indeed, in that case thelast pebble can be lifted from
anywhere, therefore there can be arbitrarily many configurations of rank〈q, lift 〉 that can reach a given
configuration, depending on where the pebble was placed in the tree before thelift .

LetA be an sDPTWA andt a tree. In order to uniquely determine a configuration of thiskind we
need to know where the pebble was ont at the moment when it is lifted: given a noden = (q, v, i, x̄)
of the backward configuration treeG(A, t), with parent noden′ = (q′, w, j, ȳ), we define itsextended
rankby the triple〈q,D(n, n′), xi〉whereD is defined as before for wDPTWA andxi is the position of
the last pebblei in t (note thatxi is only needed whenD(n, n′) is a lift). The extended rank uniquely
defines a node among its siblings inG(A, t) but it can no longer be stored with constant memory.

As before we fix an order among the children inG(A, t) of a noden = (q′, w, j, ȳ) according to
their extended rank. This order is relative tow. It is based on an arbitrary order onQ, an arbitrary
order on{↑0, ↑1, stay, ↓0, ↓1, lift , drop} where lift is maximal, and an order on the nodes oft. For
technical reasons that will become clear later we fix the following order among the nodes oft, which
is relative tow: let v < v′ if during the DFS ont starting inw, nodev is visited beforev′.

We will use in the (backward) simulation some stages whereA is simulated forwards between
two distinguished nodes. In order to make this formal, we usetwo special colorsa andb (that will
correspond to the presence of certain pebbles) and letT ab be the set of trees containing exactly one
nodena of color a and one nodenb of color b (both distinguished nodes may be equal). Ifq, q′ are
states ofA andn, n′ are nodes in a treet then we denote by(q, n) the configuration ofA ont where no

pebble are present int, and by(q, n)
A,t
−−→ (q′, n′) the fact thatA can move int from the configuration

(q, n) to the configuration(q′, n′). We prove by induction onk that:

Lemma 3 LetA be ak-pebble sDPTWA andr, r′ be two states ofA. There exists a non-looping3k-

pebble sDPTWAA′ with two distinguished statesq′0, q
′
f such that for allt ∈ T ab, (r, na)

A,t
−−→ (r′, nb)

iff (q′0, na)
A′,t
−−→ (q′f , nb) .

Proof. The base casek = 0 is shown exactly as in the construction of Proposition 1 by replacing
G(A, t) with Gab

rr′(A, t), which is the backward configuration tree ofA on t with root (r′, nb) instead
of (qf , ǫ) and accepting node(r, na) instead of(q0, ǫ). As nb is distinguished, the automaton starts
from na by positioning its head onnb with stater′, then it performs the DFS onGab

rr′(A, t) from here
as in the proof of Proposition 1. Asna is also distinguished,A′ accepts and proceeds tonb as soon as
it reachesna with stater.

Letk > 0. We constructA′ fromA by constructing a sDPTWA that performs a DFS onGab
rr′(A, t)

according to the order defined above. The difficulty is to be able to go, for lift moves, from one
configuration(q, v, i, x̄) to its sibling configuration(q′, v, i, ȳ) whereyi is the successor ofxi in the
order defined above. Indeed the automaton needs to be able to transfer the pebblei from xi to yi while
staying inv (for lift moves).

AssumeA′ is currently visiting the noden = (q, v, i, x̄) of Gab
rr′(A, t). Then its head is onv, its

state containsq and the rank (not the extended rank, which is not finite) of thenode it has previously
visited, and for eachj ∈ {1, . . . , i} the pebbles(3j − 2), (3j − 1) and3j are on the nodexj . This
information is maintained as follows.

The DFS is continued as in the DTWA case by checking whether all children of an in Gab
rr′(A, t)

have been visited. If not, thenA′ computes the next possible value for the extended rank as follows: If

7

neither the current rank nor its successor is alift , thenA′ computes directly the next possible extended
rank and virtually checks whether the new configuration getsback ton when simulatingA as in the
DTWA case. If the current rank is not alift but its successor is alift , thenA′ drops the pebbles3i− 2,
3i − 1 and3i on v and virtually checks that the new configuration withxi = v gets back ton as will
be described in the next case. If yes it proceeds the DFS, if not it checks the next possible extended
rank.

Assume now that the last investigated extended rank corresponding to a configurationn1 =
(q1, v, i, ȳ) and the next possible extended rank corresponding to a configurationn2 = (q2, v, i, z̄)
both correspond to alift . Note that forj < i we havexj = yj = zj . In this case the pebbles3i − 2,
3i − 1 and3i are already placed on nodeyi of t andA′ proceeds as follows:A′ lifts both pebbles3i
and3i− 1 and drops3i− 1 onv in order to know where to come back. Note that at this point pebble
3i − 2 can no longer be lifted. It then searchest in DFS (fromv onwards) until it reaches pebble
3i− 2 onyi. It then moves to the successorzi of yi in the order ont relative tov that has been defined
earlier. It drops pebble3i on zi. The problem is now to come back tov (determined by the position
of pebble3i− 1) after placing all three pebbles3i, 3i− 1, 3i− 2 on zi.

To do thisA′ simulatesA (forwards) starting from all configurations of the form(q′′, zi, i, z̄)
for someq′′, and checks that the first time that pebblei is lifted the head is onv with stateq (that
is on pebble3i − 1). If this is not the case for any such configuration, thenA′ safely ignores the
extended rank corresponding ton2 and proceeds to the next available one by going back to pebble3i
and moving this one to the next node according to the order ont relative tov. If the check succeeds,
thenA′ goes back to nodezi (that is on pebble3i), lifts pebbles3i, 3i− 1 and3i− 2, and drops them
all onzi and then simulatesA again (forwards) until it does alift of pebblei. At this stage,A is back
on nodev and can proceed its investigation ofGab

rr′(A, t).
The remaining difficulty is thatA may loop and therefore it is unsafe to simulateA forwards.

However notice thatA needs only to be simulated from the distinguished node containing pebble3i
to the distinguished node containing pebble3i − 1 and that along this computation,A never drops
or lifts pebblei, nor the ones below (stack discipline). We fixi new colorsc1 · · · ci and constructAi

from A as follows. We remove all transitions dropping and lifting pebblesj with j ≤ i, we rename
pebblej > i by pebblej − i, and we transform any transition assuming the presence of a pebble
j ≤ i by a transition assuming the colorcj at the current node. A node of the input tree ofAi has
the new colorcj, j ≤ i, if the current pebble3j is present on that node. By constructionAi is a
k − i-pebble sDPTWA and we apply Lemma 3 by induction with the distinguished initial nodezi

(pebble3i) and terminal nodev (pebble3i − 1) and statesq′′ andq. We thus obtain an equivalent
non-looping sDPTWAA′

i using3(k − i) pebbles that is used instead ofA to simulate it forwards in
the above.

The last case is where all children ofn have been visited and we move upwards inGab
rr′(A, t) with

a lift move. Here,A′ goes to the parent node as in the wDPTWA case, and it can safelylift all three
pebbles3i, 3i− 1, and3i− 2 as they are no longer needed.2

Applying Lemma 3 with the root node for both distinguished nodes immediately yields:

Theorem 4 Let k ≥ 0. The class of tree languages recognized by sDPTWA is closed under com-
plementation. More precisely, for everyk-pebble sDPTWAA there exists a3k-pebble sDPTWA that
recognizes the complement ofL(A).

8

4 Conclusion

We have succeeded in complementingk-pebble sDPTWA using3k pebbles. It would be interesting
to know whether this can be done using onlyk pebbles or whether3k is really needed. Note however
that it is not even known whether the “strong” model is actually stronger than the “weak” one. Indeed
there is no evidence that sDPTWA accept more tree languages than wDPTWA. One can show that
for k = 1 the strong model collapses to the weak one. But this does not seem to easily extend to
k > 1. Note that this implies that complementing a1-pebble sDPTWA can be achieved using only
onepebble.

Thanks to Thomas Schwentick, Joost Engelfriet and Hendrik Jan Hoogeboom for useful discus-
sions on the topic, and to the referees for their suggestionsfor improvement.

References

[AU71] Alfred V. Aho and Jeffrey D. Ullman. Translations on acontext-free grammar.Informa-
tion and Control, 19(5):439–475, 1971.

[BC04] Mikolaj Bojanczyk and Thomas Colcombet. Tree walking automata cannot be deter-
minized. InProc. of Intl. Coll. on Automata, Languages and Programming, 2004.

[BC05] Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata do not recognize all
regular languages. InProc. ACM SIGACT Symp. on Theory of Computing, 2005.

[CDG+99] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie
Tison, and Marc Tommasi. Tree Automata Techniques and Applications. Available at
http://www.grappa.univ-lille3.fr/tata, 1999.

[EH05] Joost Engelfriet and Hendrik Jan Hoogeboom. Automata with Nested Pebbles Capture
First-Order Logic with Transitive Closure. Technical Report 05-02, Leiden Institute of
Advanced Computer Science, Leiden University, April 2005.

[EH99] Joost Engelfriet and Hendrik Jan Hoogeboom. Tree-walking pebble automata. In
J. Karhumäki, H. Maurer, G. Paun, and G. Rozenberg, editors, Jewels are forever, con-
tributions to Theoretical Computer Science in honor of ArtoSalomaa, pages 72–83.
Springer-Verlag, 1999.

[GH96] Noa Globerman and David Harel. Complexity results for two-way and multi-pebble au-
tomata and their logics.Theoretical Computer Science, 169(2):161–184, 1996.

[MSV03] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers.Journal
of Computer and System Sciences, 66(1):66–97, 2003.

[Sip78] Michael Sipser. Halting space-bounded computations. InIEEE Conf. on Foundations of
Computer Science, pages 73–74, 1978.

9

