
Regular tree languages definable in FO and in FOmod

Michael Benedikt Luc Segoufin

Abstract

We consider regular languages of labeled trees. We give an effective characterization of the
regular languages over such trees that are definable in first-order logic in the language of labeled
graphs. These languages are the analog on trees of the “locally threshold testable” languages on
strings. We show that this characterization yields a decision procedure for determining whether
a regular tree language is first-order definable: the procedure is polynomial time in the minimal
automaton presenting the regular language. We also providean algorithm for deciding whether a
regular language is definable in first-order logic supplemented with modular quantifiers.

Keywords: Tree automata, Logic

1 Introduction

This paper is concerned with the relationship between regularity (acceptance by an automaton) and
definability in first-order logic and first-order logic with counting quantifiers. Over strings this re-
lationship is well-understood. A fundamental result in formal language theory [Buc60] states that a
language of strings is regular – that is, equal to the language of strings accepted by a finite string
automaton – exactly when it is definable in monadic second-order logic (MSO) over the vocabulary
consisting of the successor relation on strings and the labels. By restricting to first-order logic (FO)
rather than MSO, we can obtain two proper subcollections of the family of regular languages. The
languages that are definable in first-order logic over the transitive closure of the successor relation and
the label predicates, which we denote FO(<), are exactly the star-free or, equivalently, the aperiodic
languages [MP71, Sch65]. The languages that are definable infirst-order logic over the successor
relation and the label predicates, which we denote by FO, correspond to locally threshold testable
languages (see [Tho97]). Using a fundamental result of Thérien and Weiss [TW85], Beauquier and
Pin [BP89] gave an algebraic characterization of the FO languages. They are exactly the languages
for which the corresponding monoid satisfies certain identities. Put another way, they show that the
monoids corresponding to FO-definable languages form a pseudo-variety within the collection of all
finite monoids. Both the characterization of FO(<)-definability via aperiodicity and the characteri-
zation of FO-definability of Beauquier and Pin lead to effective algorithms for checking whether a
regular language is FO(<) (resp. FO) definable. Straubing [Str94] provides an analogous character-
ization for the logic FOmod that extends first-order logic with quantifiers that count modulo a given
integer. A complete overview of the string case can be found in [Tho97] or in [Str94].

We now consider the situation over ranked trees – labeled trees with a fixed bound on branching.
Regularity is now defined as acceptance by a (non-deterministic top-down or deterministic bottom-
up) tree automaton, and regularity is shown to be equivalentto definability in monadic second-order
logic in the vocabulary of labeled graphs [Don70, TW68]. In this context we use FO(<) to denote
first-order logic over the labels and the transitive closureof the graph relation (that is, the descendant
relation on trees). We use FO to denote first-order logic overthe graph relation and the labels, and

1

FOmod to denote first-order logic with counting quantifiers (modulo an integer) over the graph relation
and labels. The notions of aperiodicity and star-freeness have natural extensions to the tree context,
but here FO(<) is strictly weaker than aperiodicity and star-freeness [PT93, Heu91, Pot95]. Finding a
decidable characterization of FO(<) within the regular tree languages is a longstanding open problem;
partial results (see below) are given in [EW03, BW04]. As in the string case, FO definability is known
to be strictly weaker than FO(<) definability, but surprisingly an effective characterization of FO-
definability was also lacking. [Wil96] gives an algebraic characterization and decision procedure for
the frontier testable languages, a subclass of the FO definable languages. [BW04] provides a decision
procedure for two fragments of FO(<) defined using existential path quantification; none of these
fragments exactly matches the expressiveness of FO. [EW03]gives a characterization of the FO(<)
definable languages in terms of an algebraic structure (the “syntactic pre-clone”) associated with the
language; this characterization is not known to be effective. To our knowledge, the decidability of
definability in each of these logics was also unresolved overtrees.

In this work we give an effective characterization of definability in FO over trees, ranked or un-
ranked. Over ranked trees FO still corresponds to the Local Threshold Testable (LTT) languages, but
this characterization does not yield a decision procedure.Our main result is an effective characteriza-
tion of FO within the regular tree languages that uses a set ofequivalences that preserve membership
within the language. Unlike the string case, these equivalences include preconditions requiring por-
tions of the tree to be similar “locally”. They are thus a midpoint between a definition using locally
threshold testability (which characterizes FO over rankedtrees, but which is not effective) and a
purely algebraic approach. We extend our characterizations to give characterizations of FO-definable
languages over unranked tress as well.

As an application of the characterization theorems, we showthat over strings, our results yield
a new proof of the algebraic characterization of LTT and of the decidability of membership in LTT
over strings presented in [BP89, Str94]. The current proofsof the characterization of FO in the string
case use either fundamental (and difficult) results in the theory of monoids [BP89] or difficult results
within the theory of finite categories [Str94]. Nevertheless several of the technical lemmas remain
identical in inspiration if not in notation to the earlier proofs.

We then show that our characterization theorem yields that one can decide whether a regular
language of trees is definable in FO, both over ranked and unranked trees. We show in fact that
membership in these classes can be decided in polynomial time in the size of a minimal automaton
accepting the regular language. Finally, we show that in theranked tree case our techniques and
results also yields a decision procedure for membership of aregular language in FOmod. We also state
characterizations for FOmod, both for the ranked case and the unranked case, in the same spirit as
those obtained for FO. Those characterizations yields a PTIME algorithm for testing membership in
FOmod.

Organization: Section 2 gives the basic notation for this article. Section3 states and proves the
characterization theorem for FO in the case of ranked trees.Section 4 extends to prove the charac-
terization in the unranked case. Section 6 shows how the results for strings follow from the tree case
and gives the decision procedures that follow from the characterization theorem. Section 6 provides
extensions of the results to first-order logic supplementedwith counting quantifiers. Section 7 gives
conclusions and open issues.

This paper is a journal version of our STACS’05 paper [BS05].It contains the full proofs of the
decidability results claimed in [BS05]. The exact characterization claimed in [BS05], however, was
incorrect.

2

2 Notation

Trees We fix a finite alphabetΣ, and consider trees with labels inΣ. In this paper we will deal with
two settings. In therankedsetting, we fix some integerr and considerΣ-labeled trees of rankr; that
is, each node has at mostr children. In this case, the children of any given node areordered: that is,
we can distinguish the first child, second child, and so forth. In theunrankedsetting there is no bound
on the number of children and we will always take the childrento beunordered. Finding a decidable
characterization in the unranked ordered case remains an open question.

In both cases, we use standard notation for trees. By thedescendant(resp. ancestor) relation we
mean the reflexive transitive closure of the child (resp. inverse of child) relation. We useT (Σ, r)
for the set of trees of rank at mostr with labels coming from alphabetΣ, andT (Σ, ω) for the set of
unordered trees of any finite rank with labels fromΣ. When the setting is clear, or when we assert
something that holds in all settings, we just writeT .

For treest, t′, we say thatt′ is asubtreeof t if the nodes oft′ are a subset of those oft and the
edge relation and labeling function oft′ are obtained from those oft by restricting to the nodes oft′.
Thus if t′ is a subtree oft, t′ need not contain the root oft, and leaves oft′ need not be leaves oft.
We say thatt′ is aprefixof t if t′ is a subtree oft that contains the root oft.

Given a treet and a nodex of t the subtree oft rooted atx, consisting of all the nodes oft which
are descendants ofx, is denoted byt|x. Let t be a tree andx be a node oft, thek-spill of x is the
restriction oft|x to the set of nodes oft at distance at mostk from x. Given a treet and a setS
of nodes oft, the minimum subtree oft containingS is the unique subtree whose rootr is the least
common ancestor of all nodes ofS and which contains all nodes ofS and their ancestors up tor.

Given two nodesx andx′ occurring respectively in the treest, t′ we say thatx is depth-k similar
to x′ if the k-spill of x in t is isomorphic to thek-spill of x′ in t′. Similarly two treest andt′ are
depth-k similar if their roots are depth-k similar. When we are in the ranked case, isomorphism must
preserve the order of children, but in the unranked case it need not.

A contextis an (ordered or unordered) tree with a designated (unlabeled) leaf called itsport which
acts as a hole. Given contextsC andC ′, their concatenationC ·C ′ is the context formed by identifying
the root ofC ′ with the port ofC. Concatenation of a contextC and a treet is defined similarly. Given
a treet and two nodesx, y of t such thaty is a descendant (not necessarily strict) ofx, the context
Ct[x, y) is defined fromt1 = t|x by replacingt1|y by a port.

Tree automata Regular tree languages will be represented by finite state automata. Overr-ranked
trees, a (deterministic bottom-up) tree automatonA is defined in the usual way; it has a finite set of
statesQ, a setF ⊆ Q of accepting states, and a transition functionδ associating a unique state to any
pair in (Qi × Σ) for i ≤ r.

A tree automatonA over unordered unranked trees consists of a finite set of statesQ, a setF ⊆ Q
of accepting states, an integerm and a transition functionδ associating a unique state to any pair in
(ΓQ

m × Σ) whereΓm = {= i | i < m} ∪ {≥ m}. The transition function associates a unique state to
any pair in(

⋃
i∈N Qi) × Σ. The numberm is called thetolerance of A.

As usual a runτ ofA on a treet is a function from the set of nodes oft toQ. The notion of a valid
run for ranked trees is standard. In the case of an unranked tree automaton, a runτ is valid if for any
nodex of labela ∈ Σ, such that there is a functionf ∈ ΓQ

m such thatδ(f, a) = τ(x) and, for every
q ∈ Q, the number of childreny of x such thatτ(y) = q, is consistent withf(q). Each treet has a
unique valid run. A treet is accepted byA if the valid runτ ofA ont is such that the image underτ of
the root oft is inF . Languages accepted by such automata are calledregular languages. It is folklore
that this corresponds to the usual definition over ranked andunranked trees (see also [Tho97]).

3

An automatonA with set of statesQ and a contextC induce a function fromQ toQ, sending a
stateq to the stateq′ reached byA at the root ofC assuming stateq at its port.

Logics Monadic Second Order Logic (MSO) and First Order Logic (FO) are defined over trees in
the standard way. In the case ofr-ranked trees, they will be defined over the signature containing one
unary predicatePa per lettera ∈ Σ and the tree successor relationsE1 . . . Er, whereEi(x, y) holds
if y is theith child of x. In the case of unranked trees, they are defined over the signature containing
one unary predicatePa per lettera ∈ Σ, and the tree successor relation. A tree language is said to be
regular if it is definable in MSO or, equivalently, recognized by a tree automaton.

For any formulaϕ ∈ FO, its quantifier rank qr(ϕ) is defined as the nesting depth of the quantifiers
of ϕ as usual. The elementary equivalence up to depthn is denoted by≡n: for any two treest, t′ ∈ T
we say thatt ≡n t′ if t andt′ satisfy exactly the same FO sentences of quantifier rank lessthann.

The logic FOmod extends FO by allowing formulae to be built up by the ruleψ(~y) = ∃r,qx φ(x, ~y),
wherer, q are integers withr < q. This holds in a structure(G, ~y) iff the number ofx such that
(G, ~y, x) holds is equal tor moduloq. If P is a finite set of integers we let FOmod(P) be the extension
of FO with the constructors above, where we restrictq to be inP .

3 Ranked trees

3.1 Statement of the main result

In this section we fixr ∈ N and we assume that all trees are inT (Σ, r).

Swaps Let t be a tree, andx, x′ be two nodes oft such thatx andx′ are not related by the descendant
relationship. Thehorizontal swapof t at nodesx andx′ is the treet′ constructed fromt by replacing
t|x with t|x′ and vice-versa.

Let t be a tree of roota, andx, y, x′, y′ be four nodes oft such thaty is a descendant ofx, x′ is a
descendant ofy andy′ is a descendant ofx′. Thevertical swapof t between[x, y) and[x′, y′) is the
treet′ constructed fromt as depicted in Figure 1. More formally letC = Ct[a, x), ∆1 = Ct[x, y),
∆2 = Ct[x

′, y′), ∆ = Ct[y, x
′), T = t|y′. Then notice thatt = C · ∆1 · ∆ · ∆2 · T . The treet′ is

defined ast′ = C · ∆2 · ∆ · ∆1 · T .

C
x

y

x’

y’

T

C

y

y’

T

x’

x
∆ ∆

∆2

∆1 ∆2

∆1

Figure 1: Illustration of the vertical swap

4

Guarded swaps Let k ∈ N, t ∈ T andx, y, x′, y′ be nodes oft such thaty is a descendant ofx,
x′ is a descendant ofy andy′ is a descendant ofx′. A horizontal swap at nodesx, y, x′, y′ as above
is said to bek-guardedif x andx′ are depth-k similar. A vertical swap between[x, y) and[x′, y′) is
said to bek-guardedif x andx′ are depth-k similar andy andy′ are depth-k similar.

LetL be a tree language andk be a number. We say thatL is closed underk-guarded swapsif for
every treet ∈ L and every treet′ constructed fromt by either a horizontal or a verticalk-guarded swap
thent′ is inL. Note that being closed underk-guarded swaps implies being closed underk′-guarded
swaps fork′ > k.

A regular tree languageL is said to be aperiodic if there existsl ∈ N such that for all contexts
C,∆ and every treeT ,C∆lT ∈ L iff C∆l+1T ∈ L. The least suchl is referred to as theaperiodicity
numberof L. This is just the classical notion of aperiodicity in the monoid of contexts.

Theorem 1. LetL be a regular tree language.
ThenL is definable in FO iffL is aperiodic and there exists ak such thatL is closed under

k-guarded swaps.

The “only if” direction of Theorem 1 is easy. IfL is definable in FO , thenL is aperiodic [Tho97].
It is also known that for any FO sentenceφ there is a numberk such that the truth ofφ is determined
by the number ofk-neighborhoods of each isomorphism type. The least suchk is referred to as
the locality rank of φ [Lib04]. A k-neighborhood in a graphG is the set of nodes that are within
distancek of some point inG. Sincek-guarded swaps preserve the number ofk-neighborhoods of
every isomorphism type, it follows that ifL is definable by an FO sentenceφ, thenL is closed under
k-guarded swaps, wherek is the locality rank ofφ.

The opposite direction follows from the following theorem,whose proof will be quite involved:

Theorem 2. For any regular tree languageL which is aperiodic and closed underk-guarded swaps,
there exists aK such that for anys, t ∈ T we have: s ≡K t ⇒ s ∈ L iff t ∈ L.

Before proving Theorem 2 we show how Theorem 1 follows from it. From Theorem 2 we know
that ifL is aperiodic and closed underk-guarded swaps thenL is a union of equivalence classes of≡K

for someK. Standard arguments from finite model theory (see e.g. [Lib04]) show that≡K has only
finitely many equivalence classes and that each of them is definable in FO. ThereforeL is definable
in FO as a disjunction of such formulas for the correspondingclasses.

3.2 Proof of Theorem 2

In this section we fix an aperiodic regular tree languageL with aperiodicity numberl, a numberk and
assume thatL is closed underk-guarded swaps. We also fix a deterministic bottom-up tree automaton
A for L.

Because the trees are ranked, there are only finitely many isomorphism types of trees of depth at
mostk (by the depth of a tree, we mean the maximal length of any path). We denote the set of such
isomorphism types byTk. Given a treet and a nodex of t, we writeT t

k(x) for the isomorphism type
of the k-spill of x in t, and denote it as thek-type ofx (type ofx whenk is understood from the
context). A crucial observation for the rest of the paper is that the(k + 1)-type of a node determines
thek-types of its children.

For eachτ ∈ Tk and any treet we denote by|t|τ the number of occurrences of the typeτ in t.
Given two treess, t we write s =k

d t if for all τ ∈ Tk, |s|τ = |t|τ or |s|τ , |t|τ > d (s andt have
the same number of occurrences of typeτ up to thresholdd). We writes ≤k t if for all τ ∈ Tk,

5

|s|τ ≤ |t|τ , and we writes ≤k
d t if s =k

d t ands ≤k t . If for all τ ∈ Tk, |s|τ = |t|τ then we write
s =k

∞ t.
Another fact that will be used repeatedly is that if we apply ak-guarded swap move to a treet,

there is an obvious bijection from the nodes oft to the resulting treet′ that preserves(k + 1)-types;
in particular, we havet =k+1

∞ t′.
This first lemma shows that if we have the hypothesis of Theorem 2, then we can assume thats

andt have the same number of types up to some threshold.

Lemma 1. For each numberd, there is a numberKd such thats ≡Kd t implies thats =k+1
d t and

thats, t are depth-(k + 1) similar.

Proof. ChooseKd big enough so that we can count the number of satisfiers of any(k+ 1)-type up to
thresholdd usingKd quantifiers.

The following lemma refines the previous one by showing that not only can we assume thats and
t have the same number of types up to some threshold, but that this number is always bigger int than
in s.

Lemma 2. For each numberd′ there exists a numberd such that ifs =k+1
d t then there existst′ such

thats ≤k+1
d′ t′, moreovert, t′ are depth-(k + 1) similar, andt′ ∈ L iff t ∈ L.

Proof. Assumes =k+1
d t for some large enoughd whose value will become apparent during the

proof. Letβ be the number of(k+1)-typesτ such that|t|τ < |s|τ . We prove the lemma by induction
onβ. If β = 0 this is clear. Otherwise letτ be a(k + 1)-type that occurs more times ins than int.
By hypothesisτ occurs at leastd times int.

Given two nodesx, y in a treet with y a strict descendant ofx, we writeτ [x, y) for the number of
nodes in the contextCt[x, y) that have typeτ . A τ -skeleton of lengthn is a sequencexi : 0 ≤ i ≤ n
such thatxi+1 is a strict descendant ofxi, andτ [xi, xi+1) ≥ 1 for each0 ≤ i ≤ n− 1.

We first show that for everyd1 there isd such that for every treeu, if |u|τ > d then there is a
τ -skeleton of lengthd1 in u. By the interior of a pointed tree, we mean all the nodes in it other than
the port. Choosed > (r + 1)d1 . Starting withx0 being the root ofu, we will choosexi inductively
such that the interior ofCu[xi−1, xi) has at least one node whose type inu is τ andxi has at least
(r + 1)d1−i nodes of typeτ below it. Suppose that we havex0 . . . xi. Let z1 be a descendant ofxi

of typeτ having minimal depth. If there are no nodes of typeτ in the interior ofCu[xi, z1), then we
know that there are at least(r + 1)d1−i nodes of typeτ belowz1, includingz1. Hence there is some
child of z1 having at least(r + 1)d1−(i+1) nodes of typeτ below it. Setxi+1 to be such a child. If
there is some node of typeτ in the interior ofCu[xi, z1), then there is some nodez2 strictly between
xi andz1 which has more than one child having a node of typeτ below it. Takingz2 to be the highest
such node, it is clear that one of the children ofz2 must have at least(r + 1)d1−(i+1) nodes of type
τ below it; choosexi+1 to be this node. We can verify in either case that this preserves the induction
hypothesis.

We apply this to the treet, for d1 to be chosen later on, getting aτ -skeletonxi : 0 ≤ i ≤ d1.
Let q be one more than the product of the number of(k + 1)-types and the number of states in the
automaton. The nodes in the interior of the context betweenxi andxi+q, for i ≤ d1 − q with i = 0
mod q form a sectionof t. We say that a(k + 1)-typeν is safeif |t|ν ≥ d′. A section issafeif it
contains only nodes having safe(k+ 1)-types. Because the number of sections is at least(d1/q)− 1,
we can choosed1 big enough so that at least one of them is safe. Given this choice ofd1, fix xi such
that all nodes in the interior of the context betweenxi andxi+q are safe. By the choice ofq, there are

6

a andb with i ≤ a < b < i+ q such that the run of automatonA on t reaches the same state atxa as
atxb, with xa andxb having the same(k+1)-type. Hence we can replace the contextCt[xa, xb) with
arbitrarily many copies of itself, without changing membership inL. Let t∗ be any tree resulting from
such a replacement. Sincexa andxb have the same type, performing this replacement does not change
the (k + 1)-types of any node ofCt[xa, xb), and the type of any node inCt[xa, xb) within t is the
same as the type of each of its copies int∗. Thus we have only added copies of safe types. Therefore
for any sucht∗ we havet∗ =k+1

d′ t =k+1
d′ s. Now sinceCt[xa, xb) contained an occurrence ofτ , by

adding sufficiently many copies of the context in forming ourt∗, we have reducedβ by one int∗, and
we can conclude by induction.

A tree t is k-pseudo-includedin a treet′ if there is an injective mappingh from nodes oft to
nodes oft′, sending the root oft to the root oft′, and such that: (i)h preserves types inTk, and (ii)
if x is theith child of y in t thenh(x) is a descendant of theith child of h(y) in t′. In this case the
h-pseudo-treeis the minimum prefix oft′ which containsh(t).

The next step shows that we can also assume thats is pseudo-included int. It requires only the
closure ofL underk-guarded swaps.

Lemma 3. If s ≤k+1 t ands, t are depth-(k + 1) similar then there existst′ such thats is (k + 1)-
pseudo-included int′, t′ =k+1

∞ t, t, t′ are depth-(k + 1) similar, andt′ ∈ L iff t ∈ L.

Proof. The proof is by induction. We constructt0 · · · tn ands0 . . . sn such that:t0 is t and, for all
0 ≤ i < n, ti+1 is obtained fromti using onlyk-guarded swaps,si is a prefix ofs maximal with
respect to the property thatsi is (k + 1)-pseudo-included inti, and ifsi 6= s then there exists a node
xi of s that is a child of a leaf ofsi, such thatxi ∈ si+1. Sincesi cannot keep growing forever, we
must eventually havesn = s. This implies the lemma by takingt′ = tn, using the fact thatk-guarded
swaps preserves the number of(k + 1)-types and the assumption thatL is closed underk-guarded
swaps.

By hypothesis the root ofs and the root oft have the same(k+ 1)-type. Thus we can initiate our
process by mapping the root ofs to the root oft.

Assume now that we have constructedti and si saying the inductive invariant. Thensi is a
maximal prefix ofs which is (k + 1)-pseudo-included inti by a mappingh such thath(a) = a′. If
si = s we are done. Otherwise letx be a node ofsi such that itspth child y is not insi. Let s′ be
a minimal prefix ofs which containssi andy. We show how to transformti into ti+1 so thats′ is
(k + 1)-pseudo-included inti+1. This would suffice for the induction, since we can then extend s′ to
a maximal pseudo-included prefix.

Let τ = T s
k+1(x), ν = T s

k+1(y) andx′ = h(x). By hypothesis we know that there is a nodey′ in
ti outside ofh(si) such thatT ti

k+1(y
′) = ν. Let z′ be thepth child of x′. Note thatz′ cannot be in the

h-pseudo-tree.
We distinguish several possibilities depending on the relative position ofx′ andy′. By maximality

of si we know thaty′ is not belowz′.
Assume first thaty′ is outside theh-pseudo-tree. Then it is either belowx′ or not related tox′ by

the descendant relationship. It is crucial here thath(a) = a′, as it rules out the case wherey′ occurs
aboveh(a). Becausex andx′ agree on their(k+1)-types,z′ andy′ are depth-k similar. We can apply
thek-guarded horizontal swap to these two nodes. This yields thedesired treeti+1, as we can now
extendh by settingh(y) = y′. We can verify that this yields a(k + 1)-pseudo-inclusion mapping,
since the new(k + 1)-type ofy′ remainsν.

Assume now thaty′ is inside theh-pseudo-tree. Letx1 be the deepest node insi such thatx′1 =
h(x1) is an ancestor ofy′, andx2 be the highest node insi so thaty′ is an ancestor ofx′2 = h(x2).

7

Note that the definition of pseudo-inclusion implies thatx2 is uniquely defined, and is a child ofx1.
Assume thatx2 is thejth child of x1 in s and letz′1 be thejth child of x′1 in t′i. Note thatz′1 cannot be
in the image ofh; if it were, by the definition ofx1 and the fact that pseudo-inclusion preserves the
descendant relation, we would havez′1 = y′, which would contradict the fact thaty′ is assumed not to
be in the image. There are two cases to consider.

The first case is whenx′ is a descendant ofx′2 (see Figure 2). Becauseh preserves(k + 1)-types,
z′1 andx′2 are depth-k similar and the same holds fory′ andz′. We can thus apply thek-guarded
vertical swap between[z′1, y

′) and[x′2, z
′) and obtain the desired treeti+1. We can then extendh by

settingh(y) = y′. It remains to verify that this indeed gives a(k + 1)-pseudo-inclusion mapping.
This is straightforward and left to the reader.

x1

x2

x

y

si

s

ti

x′

1

x′

2

x′

z′

1

y′

z′

ti+1

x′

1
z′

1

y′

x′

2

x′

z′

Figure 2: This illustrates the case whenx′ is a descendant ofx′2. si ands are depicted on the left.ti is
depicted in the middle. After applying thek-guarded vertical swap between[z′1, y

′) and[x′2, z
′), we

reachti+1 depicted to the right. The nodesz′1 andx′2 have the samek-types and the nodesy′ andz′

have the samek-types.

If x′ is not a descendant ofx′2 we proceed as follows. As above, we know thaty′ andz′ are
depth-k similar. If x′ is a descendant ofy′, then it would have to be a descendant ofx′2 as well, since
all pseudo-tree elements beneathy′ lie beneathx′2. Hence we knowx′ cannot be a descendant ofy′,
and soz′ is not a descendant ofy′ either. We can therefore apply thek-guarded horizontal swap toy′

andz′, obtaining an intermediate treet′i. In t′i, we have thatx′2 andz′1 are depth-k similar and we can
apply again thek-guarded horizontal swap to obtain the desired treeti+1. The mappingh is extended
by sendingy to y′, and it is immediate to see that this preserves(k + 1)-types.

An immediate corollary of Lemma 3 is:

Corollary 1. If s and t are trees that are depth-(k + 1) similar such thats =k+1
∞ t thens ∈ L iff

t ∈ L.

Proof. Apply Lemma 3 tos andt and notice that the treet′ obtained is isomorphic tos via the(k+1)-
pseudo-inclusion mappingh, as the hypothesis implies thatt′ cannot contain any extra nodes.

Let us look at where we are in the proof of Theorem 2. Given the initial treess andt satisfying the
hypotheses of the theorem, we know that we can transformt into t′′ so thats is pseudo-included int′′

by some mappingh. Thust′′ is a copy ofs plus extra contexts inserted between elements ofh(s). We
also know, by the corollary above, that if we could get the types oft′′ to match those ofs exactly, we
would be done. Our next goal will be to add these contexts tos one by one. We will use the crucial
observation that all(k + 1)-types occurring outside ofh(s) have strictly more occurrences int′′ than

8

in s, and hence must have many occurrences ins. To make the last step formal we will need further
notation and one extra lemma.

Let C be a context where the port is not the same as the root, and letλ be a function assigning a
k-type to the port ofC and a(k + 1)-type to each other node ofC. λ is said to beconsistentif there
exists a treet such that for every non-port nodex in C, the(k + 1)-type odx in C · t matchesλ(x).
A k-abstract contextis a contextC whose root is not equal to its port, supplemented with a consistent
assignment of(k+1)-types to non-ports andk-types to a port, as above. Wheneverk is clear from the
context we will refer toabstract context. We extend the basic definitions on trees to abstract contexts
in the obvious way: ifU = (C, λ) is ank-abstract context, we will refer to any node inC as a node of
U , and similarly refer to the root ofU , child relation onU , etc. Given a non-port nodex of U (i.e. a
non-port node ofC), we will refer toλ(x) as the(k+1)-type ofx, while we refer to thek-type of the
port nodep of U to meanλ(p). Given twok-abstract contextsU andV we say thatU is compatible
with V if the (k + 1)-type of the root ofV , when seen as ak-type, is thek-type of the port ofU .
Note that the compatibility relation is not symmetric. IfU andV are compatible abstract contexts
thenU · V , the concatenation ofU andV , is also an abstract context with the obvious consistent
assignment. We can also can concatenate an abstract contextwith a tree. An abstract contextU and
a treet are compatible if thek-type of the root oft is thek-type of the port ofU . In this case, the
concatenationU · t will be a tree.

A k-abstract contextU is ak-abstract loop(or justabstract loop, if k is clear) ifU is compatible
with itself. Thus ifU is an abstract loop, thenUn, the concatenation ofn copies ofU , is also an
abstract context for anyn ∈ N.

Loops will play a significant role in reducingt to s. Observe that ifh witnesses thats is (k + 1)-
pseudo-included int andy is thepth child of x in s, thenCt[z, h(y)) wherez is thepth child of h(x),
together with the obvious assignment, is an abstract loop int.

Given a treet and an abstract contextU , we say thatU is (k+1)-included in t if there is a function
fromC to t preserving theith child relation for everyi ≤ r which also preserves(k + 1)-types. We
say thatU <k+1 t if the number of occurrences of each(k + 1)-type inU is strictly less that the
number of occurrences of the same(k + 1)-type int.

We are now ready to state and prove our last technical lemma. It is very similar in spirit to
Lemma 3 and its proof follows exactly the same ideas. Howeverit differs in Lemma 3 in two crucial
respects. The hypothesis on the number of types is stronger,as we require strictly more types int than
in U . The conclusion is somewhat stronger, as we replaced pseudo-inclusion by inclusion.

Lemma 4. Let t be a tree,k a number, andU an abstract context.
If U <k+1 t then there existst′ such thatU is (k + 1)-included int′, t′ =k+1

∞ t, and,t′ ∈ L iff
t ∈ L.

Proof. The proof is similar to that of Lemma 3. It is done by inductionand requires a lengthy case
analysis.

An abstract contextU is weakly(k + 1)-pseudo-includedin a treet′ iff there is an injective
mappingh from nodes ofU to nodes oft′ that satisfies the requirements for pseudo-inclusion, except
for the requirement that the root ofU is mapped to the root oft′. We will likewise talk about weak
(k + 1)-pseudo-inclusion mappings and weak(k + 1)-pseudo-trees. The first step is to transformt′

into t′′ so that there is a weak(k + 1)-pseudo-inclusion ofU into t′′. Note that we cannot directly
apply Lemma 3 as the hypothesis on the root types was crucial.In the proof of Lemma 3 this was
reflected in the fact that ify′ is not in theh-pseudo-tree then it cannot be above the image underh of
the root ofs. Without this the proof would not go through. However with our stronger hypothesis on
the number of types, this case can now be handled.

9

Claim 1. If U <k+1 t then there exists a treet′′ such thatU is weakly(k + 1)-pseudo-included into
t′′, t′′ =k+1

∞ t, and,t′′ ∈ L iff t ∈ L.

Proof. The proof is done exactly as in the proof of Lemma 3 with the following differences. In the
base case, the image of the root ofU is now an arbitrary node oft = t1 whose type matches the type
of the root ofU ; an inclusion mapping does not demand preservation of the root. During the induction
we have constructedti and a prefixUi of U which is weakly(k + 1)-pseudo-included inti. Let a be
the root ofU . Recall the proof of Lemma 3. We have two nodesx, y ∈ s such thaty is a child ofx
and is of typeν. We also have three nodes nodesx′, y′, z′ ∈ ti, such thatx′ = h(x), z′ is a child of
x′, andy′ is a node outside ofh(Ui) of typeν. We are trying to modifyti in order to put a node of
typeν belowz′. This is done by a case analysis depending on the relative position of x′, y′ andz′. All
cases are handled as in Lemma 3 but we now need to consider one extra case which was not possible
in Lemma 3.

Assumey′ is an ancestor ofh(a). By hypothesis we know that there is ay′′ 6= y′ outside ofh(Ui)
whose type is alsoν. If we re-do the case analysis withy′′ playing the role ofy′ we are left again
with the case where bothy′ andy′′ are ancestors ofh(a). Assume without loss of generality thaty′′

is a strict descendant ofy′. Notice thatz′, y′, andy′′ are depth-k similar. We can apply thek-guarded
vertical swap to[y′, y′′) and[y′′, z′). This yields the desired treeti+1 asy′ is now thepth child of x′.
Notice that the presence ofy′′ was crucial for this step.

Using Claim 1 we can assume without loss of generality thatU is weakly(k+1)-pseudo-included
in t.

Let ∆ be the set of verticesy of U such that the parent ofy, denoted byx, is inU , and such that
h(x) andh(y) are not in a parent/child relation. Note that the nodes in∆ do not necessarily form a
subtree. Letn = |∆| andm = Σy∈∆d(y), whered(y) denotes the depth inU of y. If n = 0 we
already have a(k+1)-inclusion mapping and we are done. If not we show that it is possible to modify
h and re-arranget via swaps and obtain a new weak(k + 1)-pseudo-inclusion forU mapping with
(n′,m′) < (n,m), where< denotes the lexicographic ordering on pairs. By repeating this argument
we eventually get ak-inclusion mapping ofU into some treet′.

Assume thatn 6= 0 and takex andy such thaty ∈ ∆ is thepth child of x, and considerx′ = h(x)
andy′ = h(y). Let τ be the(k+1)-type ofx andν be the(k+1)-type ofy. By assumption we know
that there is another nodey′′ outside of the imageh(U), such that the type ofy′′ is ν. Let z′ be thepth

child of x′. Assume first thatz′ = y′′. Then the type ofz′ is ν and we aim at modifyingh by setting
h(y) to z′ while reducingn by 1. When settingh(y) to z′, h may no longer be a pseudo-inclusion
mapping, as the image byh of all the children ofy are descendants ofy′, and hence descendants of
the same child ofh(y). Let p′ be such thaty′ is a descendant of thep′th child of z′. Consider theith

child of y with i 6= p′. As theith child of z′ must have the samek-type as theith child of y′, and
as those two nodes are not related by the descendant relation, we can apply thek-guarded horizontal
swap at the corresponding nodes, placingh(yi) at the desired position. Once we have done this for all
i 6= p′ we eventually obtain ak-pseudo-inclusion mapping, as thep′th child was already well placed.

Assume now thaty′, y′′, andz′ are all distinct nodes. Notice however thatz′, y′ andy′′ are depth-k
similar. We perform a case analysis depending on the relationship betweenz′, y′, andy′′.

In the first case, we assume thaty′′ is an ancestor ofz′. We apply thek-guarded vertical swap to
[y′′, z′) and[z′, y′), obtaining a treet1. This case is depicted in Figure 3. Notice thatU is still weakly
k-pseudo-included int1 and thaty′ is now thepth child of x′. Hencen has decreased by one.

In the second case, we assume thaty′′ is a descendant ofy′. We apply thek-guarded vertical swap
to [z′, y′) and[y′, y′′), with h being modified so that if before it maps some nodew to a nodew′ that

10

x

y

s
x′

y′

y′′

z′

z′

x′

y′

y′′

t t1

Figure 3: Illustration of the first case.s is depicted on the left, withU the solid triangle within it.t
is in the middle, with the weak pseudo-image ofU depicted as a solid triangle within it. The treet1
resulting from the swap is shown on the right. Notice thaty′ becomes a child ofx′ and that no other
nodes of the weak pseudo-inclusion are affected.

is swapped, it will now mapw to the image ofw′ under the swap. Via this modificationU remains
weaklyk-pseudo-included in the new tree, and in this tree nodey′ is now thepth child of h(x), thus
decreasingn by one.

In the third case, we assume thaty′′ is not related toz′ andy′. We first applyk-guarded horizontal
swapping toy′′ andz′ and again betweeny′′ (i.e. the image ofy′′ under the previous swap: for brevity
we omit this distinction henceforth) andy′. We then modifyh by composing with the swap mappings,
giving a weakk-pseudo-inclusion in the obvious way. Again we have connected h(x) andy′ and
decreasedn by one.

In the fourth case, we assume thaty′′ is betweenz′ andy′. But then we can changeh so that
h(y) = y′′ and still get a weakk-pseudo-inclusion ofU into t′ via the newh. We then proceed as in
the second case.

The last case is wheny′′ is a descendant ofz′ but is not related toy′. If ν = τ then letz′′ be the
pth child of y′ and notice thatz′, y′ andz′′ are depth-k similar. We apply thek-guarded vertical swap
to [z′, y′) and [y′, z′′) and the reader can verify that we are done. Ifν 6= τ then by assumption we
know that there is a nodex′′ outside ofh(U) such that thek-type ofx′′ if τ . Let z′′ be thepth child of
x′′. Notice thatz′′, z′, y′ are depth-k similar. Again we have to consider several subcases.

In the first subcasez′′ is not related toz′. We apply thek-guarded horizontal swap toz′′ andz′

followed by ak-guarded horizontal swap applied toz′′ andy′. The reader can verify that this yields
a treet1 with the desired properties:y′ is now thepth child of x′ and the weakk-pseudo-inclusion
mapping is only affected there, thus decreasingn by one.

In the second subcasez′′ is a descendant ofy′. Then we apply thek-guarded vertical swap to
[z′, y′) and[y′, z′′) and obtain a tree wheren is decreased by one.

The third subcase is whenz′′ is an ancestor ofz′. Then we apply thek-guarded vertical swap to
[z′′, z′) and[z′, y′). The reader can verify thatn is decreased by one.

The fourth subcase is whenz′′ is belowz′ but not related toy′. We apply thek-guarded horizontal
swap toz′′ andy′, attachingy′ tox′′. We now modifyh by mappingx tox′′ instead ofx′. It is easy to
verify thath is still a weakk-pseudo-inclusion mapping forU . It is also easy to check that, with this
new mapping,n does not increase:y is no longer in∆ butx is now in∆, with no other nodes moving
into ∆. We remark now that with this new mappingm has decreased by one.

The last subcase is whenz′′ is betweenz′ andy′. Thenz′, z′′ andy′′ are related as in the subcase

11

above and we proceed replacingy′ with y′′.

We are now ready to complete the proof of Theorem 2.
Proof of Theorem 2:
LetQ be the set of states ofA, α = |Q| be the number of states ofA. Letβk = |Tk|. Recall thatl

is the aperiodicity number ofL, and thus for everyC, ∆, andT we haveC∆lT ∈ L iff C∆l+1T ∈ L.
Let d′ = r(βk∗r

α+1)∗l + 1. Letd be the number required in Lemma 2 ford′. LetK be the numberKd

required in Lemma 1 ford. We show thats ≡K t impliess ∈ L iff t ∈ L.
Assumes ≡K t, we show thats ∈ L iff t ∈ L. From Lemma 1 we know thats =k+1

d t and
s, t are depth-k + 1 similar. Therefore by Lemma 2 there is a treet′ such thatt′ ∈ L iff t ∈ L and
s ≤k+1

d′ t′. We can now apply Lemma 3 and obtaint′′ such thatt′′ ∈ L iff t′ ∈ L, s is (k + 1)-
pseudo-included int′′ via a mappingh, andt′′ =k+1

∞ t′ =k+1
d′ s. Therefore it suffices to prove that

s ∈ L iff t′′ ∈ L.
By constructiont′′ is h(s) plus possibly some extra contexts inserted between elements of h(s).

We will consider each of these contexts one by one, with the aim of adding them tos. Let y be the
pth child of some nodex in s such thath(y) is not a child ofh(x). Let z be thepth child of h(x). By
the definition of pseudo-inclusion, we see thath(y) is a descendant ofz andCt′′ [z, h(y)), together
with the obvious assignment is an abstract loop int′′. Let V1 · · ·Vn be the set of abstract loops that
are obtained by this process fromt′′\h(s). For eachVi and each(k + 1)-typeτ , we let|Vi|τ denote
the number of nodes inVi that have typeτ in t′′. We will “pump” s until the number of occurrences
of each(k + 1)-type exactly matches the number int′′. To achieve this, by induction, we construct
s0 · · · sn such that: (i)s0 is s, (ii) for all n ≥ i > 0, for all τ ∈ Tk+1, |si|τ = |s|τ + |V1|τ + · · ·+ |Vi|τ ,
(iii) si ∈ L iff si−1 ∈ L.

The base case is immediate. Assume the result for0 ≤ i < n, and considerV = Vi+1.
Let fV be the transition function on states associated to the context V . The first step is tominimize

the size ofV : find an abstract contextV ′ such that the function associated to the underlying context
of V ′ is fV , V ′ uses the same(k + 1)-types asV , and the size ofV ′ is bounded byrβk∗r

α+1. This
is a pumping argument. To find such aV ′, label each nodex of V with the pair(f, τ) whereτ is
the(k + 1)-type ofx in V andf is the transition function associated with the context obtained from
the underlying context ofV by removing all nodes that are not descendants ofx (if the port ofV is
not belowx, this will be a constant function). Now, whenever there is a branch inV which contains
the same label twice, we prune the section from (and including) the top node to (and excluding) the
bottom one, without affectingfV . This yields an abstract contextV ′ whose depth is bounded by
βk ∗ rα. As the rank ofV ′ is bounded byr, the total size ofV ′ is bounded byrβk∗r

α+1.
Now setU = V ′l. BecauseV ′ is an abstract loop,U is well-defined as an abstract context.

Moreover its size is bounded byr(βk∗r
α+1)∗l = d′− 1. Recall the crucial observation that all(k+ 1)-

types occurring outside ofh(s) have strictly more occurrences int′′ than ins; they thus appear at least
d′ times ins, and therefore insi. In particular, this is true of each(k+1)-type ofU , hence by the choice
of d′ we can apply Lemma 4 toU andsi and obtains′i = ∆1 · U · ∆2 for some context∆1 and tree
∆2, such thats′i ∈ L iff si ∈ L, ands′i =k+1

∞ si. We can now use the aperiodicity ofL and without
affecting membership inL obtain a trees′′i = ∆1 · V

′l · V ′ · ∆2. Now setsi+1 = ∆1 · V
′l · V · ∆2.

SincefV was the same asfV ′ , moving froms′′i to si+1 does not affect membership inL. We can
easily see that for every(k+ 1)-typeτ , |si+1|τ = |si|τ + |Vi|τ , and thus we have all the other desired
properties.

This last step is depicted in Figure 4.
Let s′ = sn. By construction we haves′ =k+1

∞ t′′ ands′ ∈ L iff s ∈ L. Theorem 2 now follows
from Corollary 1.

12

x

y

s s
′

t
′′

V

h(y)

h(x)

s
′′

s
′′

V

y

x

Figure 4: This figure depicts the last step of the proof. The top left tree iss, which isk-pseudo-
included int′′ depicted at the bottom. The extra part oft′′\h(s) is depicted in dark grey and is the
abstract contextV . The second tree in the top row representss′ after applying Lemma 4, the dark
grey parts representingU = V l. Aperiodicity adds one more copy ofV and yields the third tree in
the top row. But this tree is essentially the initial one withV added betweenx andy, as depicted by
the top right tree.

4 Unranked trees

In this section we consider unranked trees. Each node may nowhave an arbitrary number of children.
As mentioned in Section 2 we assume no order among the children of a node; in particular we cannot
speak of the first child of a node. As usual we denote byforesta set of trees.

The new difficulty of the unranked case, compared with the ranked case, is that the number of
isomorphism types of ak-spill of a node is infinite. We therefore need to relax the notion of similarity.
For any numbern we define an equivalence relation∼k

n on trees of depthk by induction onk as
follows. Let t andt′ be two trees of depthk. Let r andr′ their respective roots. In the casek = 0,
t ∼0

n t
′ if r andr′ agree on their label. Otherwiset ∼k

n t
′ if, for each classc of ∼k−1

n , the number of
children ofr in c must agree with the number of children ofr′ in c or both numbers must be bigger
thann. It is immediate to see that, for eachn, k, the equivalence relation∼k

n is of finite index. For
each nodex of a treet, the∼k

n-equivalence class of itsk-spill is called the(n, k)-typeof x. Whenn
andk are understood from the context we simply say thetypeof x. Let UTn,k be the (finite) set of
(n, k)-types. If the(n, k)-type of nodex in treet is µ, we writeUT t

n,k(x) = µ. For eachτ ∈ UTn,k

we extend the notation|t|τ , =n,k
d , and ≤n,k

d in the obvious way.
Two nodesx, y are said to be(n, k)-similar if they have the same(n, k)-type. Note that(n, k)-

similar implies(n′, k′)-similar for all n′ ≤ n andk′ ≤ k. Two trees are said to be(n, k)-similar if
their roots are(n, k)-similar.

The(n, k)-guarded swaps are defined as in the ranked case, replacing depth-k similar with(n, k)-
similar. Note that ifL is closed under(n, k)-guarded swaps then it is closed under(n′, k′)-guarded
swaps for alln′ ≥ n andk′ ≥ k.

We first focus on proving the following result, from which ourmain theorem, Theorem 5 below,
will follow easily:

13

Theorem 3. LetL be a regular language over unranked trees.
ThenL is definable in FO iffL is aperiodic and there existsn, k ∈ N such thatL is closed under

(n, k)-guarded swaps.

As with the proof of Theorem 1, one direction is easy and the other follows from the following
theorem.

Theorem 4. For any regular unranked tree languageL which is aperiodic and closed under(n, k)-
guarded swaps, there exists aK such that for anys, t ∈ T we have: s ≡K t ⇒ s ∈ L iff t ∈ L.

The proof of Theorem 4 will follow along the same lines as the proof of Theorem 2, but differs in
the technical details.

We fix an aperiodic regular tree languageL, numbersk andn and assume thatL is closed under
(n, k)-guarded swaps. We also fix a deterministic bottom-up unranked tree automatonA for L. Let
m be the tolerance ofA. Without loss of generality we can assume thatn ≥ m.

The following is an extension to the unranked setting of a sequence of lemmas that we used in the
ranked case. The first one is again immediate from the locality of FO.

Lemma 5. For each pair of numbersd, n′, there existsKd,n′ such thats ≡Kd,n′ t impliess =n′,k+1
d t

ands, t are(n′, k + 1)-similar.

Lemma 6. For each numberd′ and each numbern′ > n there exists a numberd such that if
s =n′,k+1

d t then there existst′ such thats ≤n′,k+1
d′ t′, t andt′ are(n′, k+ 1)-similar, andt′ ∈ L iff

t ∈ L.

Proof. Assumes =n′,k+1
d t for some large enoughd whose value will become apparent during the

proof. Letβ be the number of(n′, k + 1)-typesτ such that|t|τ < |s|τ . We prove the lemma by
induction onβ. If β = 0 this is clear. Otherwise letτ be a(n′, k + 1)-type that occurs more times
in s than int. By hypothesisτ occurs at leastd times int. We say that a(n′, k + 1)-typeν is safeif
|t|ν ≥ d′. A subtree in a treet is safe if all the nodes in it have safe types withint. By a subcontext of
t, we mean a set of the formCt[x, y) for x, y ∈ t. A subcontext of a treet is likewise said to be safe
if every node in it has a safe type int.

First, letd1 be big enough so that whenever we haved1 distinct subtrees of a treet then we can
find n′ of them and a stateq of A such that all the selected subtrees are safe int andA reaches stateq
at the root of each. Let#(A) be the number of states inA, and letd2 be big enough so that whenever
one has(d2/(#(A) + 1)) − 1 subcontexts of a treet there is at least one that is safe. Such ad1 and
d2 can be easily computed from the size ofA, d′, n′, andk. We now claim that anyd bigger than
(d1 + 1)d2 will suffice.

A τ -skeleton of lengthd is defined as in the ranked case. We have two cases to consider.In the
first case, every node int has at mostd1 children which have a descendant of typeτ . In this case,
since we have more than(d1 + 1)d2 nodes of typeτ , we can use the same proof as in the ranked case
to construct aτ -skeleton of lengthd2 in t. As in the ranked case, the context betweenxi andxi+#(A)

in theτ -skeleton oft, including the top node and excluding the bottom one, is called aτ -sectionof
t. Using the same argument as in the ranked case and the definition of d2, we can pump a portion of
someτ -section in the skeleton as much as we need to get the number ofnodes of typeτ in t to be
larger than the number ins. This pumping will not change the type of any prior node, so inparticular
will not impact the type of the root; thus the resulting tree is (n′, k + 1)-similar tot.

In the second case, there is some nodex in t that has more thand1 children which have a descen-
dant of typeτ . By the choice ofd1 we can find a stateq along withy1, · · · , yn′ children ofx so that

14

for eachyi, t|yi
is safe,t|yi

contains a node of typeτ , and the automatonA when run ont reaches
q at yi. Becausen′ > n ≥ m, the tolerance ofA, it is possible to add an arbitrary number of extra
copies of any oft|yi

without affecting membership inL. Each copy adds at least one node of typeτ ,
and we do this until we have enough nodes of typeτ . Again it is easy to check that pre-existing types
are preserved, so the resulting tree is(n′, k + 1)-similar tot.

We adapt the notion of pseudo-inclusion to the unranked case. A tree t is (n, k + 1)-pseudo-
includedin a treet′ if there is an injective mappingh from nodes oft to nodes oft′, sending the root
of t to the root oft′, and such that: (i)h preserves(n, k + 1)-types, (ii) if y is a child ofx in t then
h(y) is a descendant of a childz′ of h(x) in t′ such thatz′ andy have the same(n, k)-type (notice the
switch fromk+1 to k here), and (iii) ify1 andy2 are distinct children ofx in t then the least common
ancestor ofh(y1) andh(y2) in t′ is h(x) (the children ofh(x) associated toy1 andy2 are distinct).
Theh-pseudo-treeis the minimum subtree oft′ which containsh(t).

The following lemma takes care of the pseudo-inclusion step.

Lemma 7. For alld′ there existsn′ such that ifs ≤n′,k+1
d′ t ands, t are(n′, k + 1)-similar then there

existst′ such thats is (n, k + 1)-pseudo-included int′, t′ =n,k+1
d′ t, andt′ ∈ L iff t ∈ L.

Proof. We say that a typeτ ∈ UTn,k+1 is safeit it occurs more thand′ times int. A subtree oft
is safe if it contains only safe types. Letn′ be computed fromd′, n, k andm so that whenever one
considers a collection ofn′ pairwise-disjoint subtrees of some tree, then there existsa stateq of A and
at leastm of the subtrees which are safe and for which the automaton reaches stateq at the root.

As in the ranked case, the proof is done by induction. We construct t0 · · · tα ands0 · · · sα such
that: t0 is t, for all 0 ≤ i ≤ α, ti+1 ∈ L iff ti ∈ L, si is a maximal prefix ofs such thatsi is
(n′, k + 1)-pseudo-included inti, if si 6= s thensi is a prefix ofsi+1 and there exists a nodex of s
that is a child of a leaf ofsi such thatx ∈ si+1, ti+1 =n,k+1

d′ ti andti ≤n′,k+1
d′ ti+1. Sincesi cannot

keep growing forever, we must eventually havesn = s. This implies the lemma by takingt′ = tα.
By hypothesis the root ofs and the root oft have the same(n′, k + 1)-type. Thus we can initiate

our process by mapping the root ofs to the root oft.
Assume now that we have constructedti andsi, with si a maximal prefix ofs (n, k + 1)-pseudo-

included inti by the mappingh. If si = s we are done. Otherwise letx be a node ofsi which has a
child y that is not insi. Let s′ be the prefix ofs which containssi andy. We show how to transform
ti into ti+1 so thats′ is pseudo-included inti+1. This suffices for the induction, since clearlys′ can
then be extended to be maximal.

Let τ = UT s
n′,k+1(x), ν = UT s

n′,k+1(y) andx′ = h(x). By hypothesis we know that there is a

nodey′ in ti outside ofh(si) such thatUT ti
n′,k+1(y

′) = ν.
Let C be the set of children ofx that have an image underh (in particular,y is not inC). Let

C ′ be the set of children ofx′ having a descendant inh(C). We distinguish two cases depending on
whether there exists a childz′ of x′ which is(n′, k)-similar toy′ and which is not inC ′.

If such az′ exists then we are in a situation similar to the ranked case and can again use a case
analysis depending on the relative position ofz′ andy′ provide a sequence of swaps placingy′ below
z′ without affecting the current mappingh.

Unlike in the ranked case, such az′ might not exist. In this case we show that we can expand the
number of children ofx′, without affecting membership inL or violating the induction hypothesis,
introducing a nodez′ (n′, k)-similar toy′.

Let µ = UT s
n′,k(y) (note that we move fromk+ 1 to k, thereforeν impliesµ but not conversely).

Sincex andx′ have the same(n′, k + 1)-type, the number of children ofx with (n′, k)-typeµ must

15

agree with the number of children ofx′ of (n′, k)-typeµ or both numbers must be bigger thann′. Let
Cµ be the subset ofC consisting of children ofx of typeµ. LetC ′

µ be the subset ofC ′ of children
of x′ of typeµ. By definition of(n′, k + 1)-pseudo-inclusion we have that|Cµ| = |C ′

µ|. Becausey
is also of typeµ andy 6∈ Cµ, the total number of children ofx of typeµ is strictly bigger than the
total number of children ofx′ of typeµ and therefore both numbers are bigger thann′. By the choice
of n′, this implies that we can findm children ofx′ of (n′, k)-typeµ such that their subtrees are safe
and such that the automatonA reaches the same stateq on all their subtrees. By the choice ofm we
can arbitrarily duplicate each of these subtrees without affecting membership inL. Because of the
safety assumption the resulting treet′i is such thatti =n,k+1

d′ t′i. Because we have only introduced
new nodes int′i it is clear thatti ≤n′,k+1 t′i. This has introduced a new nodez′ of typeµ in t′i and we
can proceed as in the first case.

This is where the unranked case departs in organization fromthe ranked one. Indeed the proof
of Lemma 7 used pumping arguments, while the corresponding lemma in the ranked case used only
swaps. Therefore we cannot infer an unranked variant of Corollary 1. Nevertheless, the remainder
of the proof will proceed in the same spirit of the ranked proof in that extra nodes left over int from
the image ofs under a pseudo-inclusion will be removed. Since we cannot appeal to Corollary 1 as a
stopping condition, we will have to preserve the pseudo-inclusion as we perform this removal.

We extend the notion of abstract context to the unranked case. Consider a contextC whose root
is not equal to its port and a functionλ assigning a(n, k)-type to the port ofC and a(n, k + 1)-type
to each other node ofC. We sayλ is consistentif there exists a a treet such that inC · t, for every
non-port nodex in C, the(n, k + 1)-type ofx in C · t matchesλ(x), and the(n, k)-type of the port
x in C · t also matchesλ(x). An abstract(n, k + 1)-contextis a contextC supplemented with a
consistent assignmentλ. We will drop(n, k+ 1) when it is clear from context, referring simply to an
abstract context.

The notions ofcompatibilityand loop are extended to unranked abstract contexts in the obvious
way. Given a treet and an abstract contextU , the notion ofU being(n, k)-included in t is defined as
expected, as a mapping which not only preserves the(n, k)-types but also the child relation.

As in the ranked case we will need lemmas that allow us to tightly embed an abstract context into
a given tree, so that we can apply aperiodicity to remove them. To do this embedding we need the
following technical lemmas.

Given an(n, k)-typeτ , a nodex of typeτ is said to be(n, k)-thin if its k-spill can be embedded
into thek-spill of any node (in any forest) of typeτ . We have that for eachτ ∈ UTn,k there is a tree
whose root is of typeτ and is(n, k)-thin: choose thek-spill of the root such that when we calculate
the (n, k)-type, we never go beyondn when counting the number of occurrences at each depth. A
non-port nodex in an abstract context of typeτ is said to be(n, k)-thin if for any nodex′ of a treet
with typeτ and(n, k)-typeρ, the number of children ofx having typeρ is no greater than the number
of children ofx′ of typeρ.

Lemma 8. LetU be an abstract context. IfU <n,k+1 t and each nodex ∈ U , is (n, k+ 1)-thin, then
there existst′ such thatU is (n, k + 1)-included int′, t′ =n,k+1

∞ t and,t′ ∈ L iff t ∈ L.

Proof. As was the case for the ranked variant of this lemma, Lemma 4, the first step in the proof is
a weak pseudo-inclusion ofU in t, which is obtained by a refinement of Lemma 7. Recall that weak
pseudo-inclusion is a pseudo inclusion that do not require that the root is mapped to the root.

Claim 2. If U <k+1 t and every nodex ∈ U is (n, k+ 1)-thin, then there exists a treet′′ such thatU
is weakly(n, k + 1)-pseudo-included int′′, t′′ =n,k+1

∞ t, and,t′′ ∈ L iff t ∈ L.

16

Proof. The proof is done exactly as in the proof of Lemma 7 with some small differences. See also
how Claim 1 was proved using a modification of the proof of Lemma 3. Leta be the root ofU . In the
base case, the image of the root ofU is now an arbitrary node oft = t1 whose type agrees with the
type ofa; an inclusion mapping does not demand preservation of the root. During the induction we
have constructedti and a prefixUi of U which is weakly(n, k + 1)-pseudo-included inti.

Recall the proof of Lemma 7. We have two nodesx, y ∈ si such thaty is a child ofx and is of
typeν. We also have two nodes nodesx′, y′ ∈ ti, such thatx′ = h(x) andy′ is a node outside of
h(Ui) of typeν. We are trying to modifyti in order to put a node of typeν belowx′.

In the proof of Lemma 7, we distinguished two cases dependingon whether there exists a child
z′ of x′ which is(n, k)-similar toy′ and which is not inh(Ui). As we now have thatx is thin,x′ has
at least as many children asx for each type, and therefore such az′ always exists. We are therefore
in a situation similar to the ranked case and we can perform a case analysis depending on the relative
position ofx′, y′ andz′ in order to place a node of typeν belowz′ using only swaps. As no pumping
is necessary, we will eventually also havet′′ =n,k+1

∞ t.
The case analysis is done as in the proof of Lemma 7 and, as in the proof of Claim 1, one extra

case needs to be considered wheny′ is aboveh(a). This case is treated as in the proof of Claim 1.

The rest of the proof proceeds exactly as in the ranked case inthe proof of Lemma 4. We show
that the weak pseudo-inclusionh obtained in Claim 2 can be transformed into a real inclusion step
by step. Considerx, y ∈ U such thaty is a child ofx and assume thaty′ = h(y) is not a child of
x′ = h(x). We also know by assumption that there is a nodey′′ outside ofh(U) which has the same
type asy′.

Again, the fact thatx is thin implies that there is a childz′ of x′ which is (n, k)-similar to y′.
We are therefore in a situation similar to the ranked case andwe can perform the same case analysis
depending on the relative position ofx′, y′, y′′ andz′ in order to replacez′ by y′ using only swaps
and without modifying the rest of the pseudo-inclusion mapping h. The reader is now referred to the
proof of Lemma 4.

We also need a version of this lemma for forests.
Given a treet and a forestU , the notion ofU being(n, k)-included in t is defined by the existence

of an injective mapping which preserves(n, k)-types and the child relation. For a forestU and a tree
t, we say thatU <n,k t if every (n, k)-type occurring inU occurs strictly more often int.

The same argument as Lemma 8 shows:

Lemma 9. LetU be a forest. IfU <n,k+1 t and each nodex ∈ U is (n, k+ 1)-thin, then there exists
t′ such thatU is (n, k + 1)-included int′, t′ =n,k+1

∞ t and,t′ ∈ L iff t ∈ L.

We are now ready for:
Proof of Theorem 4. Letm be the tolerance ofA. Let d′ = (m+ l) ∗ α + 1 whereα is spelled out
in the proof below. Letn′ be the number required in Lemma 7 fromd′, n andk, andd be the number
required in Lemma 6 fromd′ andn′. LetK be the numberKd,n′ required in Lemma 5 ford.

We show thats ≡K t impliess ∈ L iff t ∈ L. Assumes ≡K t. From Lemma 5 we know that
s =n′,k+1

d t and thats andt are(n′, k + 1)-similar. By the choice ofd we can apply Lemma 6 and

constructt′ such thatt′ ∈ L iff t ∈ L, t′ ≤n′,k+1
d′ s, ands andt′ are(n′, k+ 1)-similar. Now we can

apply Lemma 7 and obtaint′′ such thatt′′ ∈ L iff t′ ∈ L, s is (n, k + 1)-pseudo-included int′′, and
t′′ =n,k+1

d′ t′ =n,k+1
d′ s. We show thats ∈ L iff t′′ ∈ L.

As in the ranked case we observe that by definition ofh, t′′ is h(s) plusabstract loopsinserted
between nodes ofh(s) and extrabranchesbranching off theh-pseudo-tree. The crucial observation

17

is again that all(n, k+1)-types which occur outside ofh(s) have strictly more occurrences int′′ than
in s and therefore appear at leastd′ times ins. The rest of the proof transformst′′ without affecting
membership inL in order to remove all the extra material.

We first show how to remove an extra branch. Letx′ be a node ofh(s) andy′ be a child ofx′ such
thatV = t′′|y′ is disjoint fromh(s). Let t1 be the tree constructed fromt′′ by removingV . We show
thatt1 ∈ L iff t′′ ∈ L, thus we can proceed witht1 replacingt′′. By repeating this argument we can
assume thatt′′ does not contain any extra branch.

We now prove thatt1 ∈ L iff t′′ ∈ L. Letτ be the(n, k)-type ofy′ and letCτ be the set of children
of x′ of typeτ in theh-pseudo-tree. Becauseh preserves(n, k+1)-types,Cτ is of cardinality at least
n. As in the ranked case, using simple pumping arguments, we can, without affecting membership in
L, replaceV by a treeV ′ having the following properties: (i)V ′ andV evaluate to the same state of
A, (ii) V ′ has exactly the same set of(n, k + 1)-types asV , (iii) V ′ has all its nodes(n, k + 1)-thin,
and (iv) the number of nodes ofV is bounded by a constantα easily computable fromn, k andA.
Let U be the forest consisting ofm copies ofV ′. Notice that all types occurring inV ′ occur more
frequently int′′ than ins, hence occur at leastd′ times ins and thus inh(s). Sincet1 still contains
h(s), we have that all the types inU occur at leastd′ times int1. By the choice ofd′, which is strictly
greater than|U |, we haveU <n,k+1 t1. Thus we can apply Lemma 9 toU andt1, obtaining a treet2
withm copies ofV ′ (n, k+ 1)-included in it as children of a nodez. By Lemma 9 we havet1 ∈ L iff
t2 ∈ L. As t′′ is t1 plusV , each operation which transformedt1 into t2 can be applied tot′′ yielding
a treet3 such thatt3 is t2 plusV hanging from nodex′. Moreover we havet3 ∈ L iff t′′ ∈ L. It
remains to show thatt2 ∈ L iff t3 ∈ L. Recall now thatn > m and therefore there existm siblings of
V of typeτ . We can then perform(n, k)-guarded swaps int3 in order to place them copies ofV ′ as
siblings ofV . We thus havem + 1 siblings evaluating to the same state belowx′ and thusV can be
removed without affecting membership inL. From the tree we just obtained we gett2 by reversing
the lastm swaps, showing the desired property.

We now show how to remove an abstract loop int′′ using a similar technique. LetV be an abstract
loop in t′′. Let t1 be the tree constructed fromt′′ by removingV . We show thatt1 ∈ L iff t′′ ∈ L,
thus we can proceed witht1 replacingt′′. By repeating this argument we eventually derive thatt′′ = s
showing thatt′′ ∈ L iff s ∈ L. Let V ′ be an abstract loop obtained fromV satisfying the properties
(ii),(iv) listed in the branch case above together with: (iii’) every non-port node is(n, k + 1)-thin,
and (i’) V andV ′ induce the same transition function forA; this abstract loop can be found as in the
ranked case. Apply Lemma 8 for the abstract contextU = (V ′)l andt1 yielding a treet2. Again as
t′′ is t1 plusV , the same operations that transformedt1 into t2 can be applied in order to transform
t′′ into t3. It remains to show thatt2 ∈ L iff t3 ∈ L. From t3, an extra swap appendsV after the
sequence ofl copies ofV ′ and thereforeV can be removed without affecting membership inL by
applying aperiodicity, yieldingt2.

Thek-guarded swaps are defined as in the ranked case, but requiring isomorphism of thek-spill.
We will now show the main result:

Theorem 5. Let L be a regular language over unranked trees. ThenL is definable in FO iffL is
aperiodic and there existsk ∈ N such thatL is closed underk-guarded swaps.

The theorem will follow immediately from Theorem 3 and the following proposition:

Proposition 1. For every regular languageL and everyk there is a numbern such that ifL is closed
underk-guarded swaps, then it is closed under(n, k)-guarded swaps.

Proof. To prove the proposition, we first show the following claim:

18

Claim 3. For every regular languageL there is a numbern such that for everyk if tree t1 is (n, k)-
similar to treet2, then there are treest′1, t

′
2 with t′1 depth-k similar to t′2 such thatA reaches the same

state ont′i as onti, for i = 1, 2.

Proof of the claim.Letm be the tolerance ofA, andn = m|Q|. Notice thatn is defined so that
if there aren nodes, at leastm of them will have the automatonA reach the same state. We show by
induction onk thatn suffices. Fork = 0 it is clear. To prove this fork+1, consider(n, k+1)-similar
treest1, t2. LetS be the set of(n, k)-types of the children of the root oft1 and the children of the root
of t2. For eachτ ∈ S, let t1(τ) be the number of children of the root oft1 having typeτ andt2(τ)
be the number of children of the root oft2 having typeτ . If for everyτ we havet2(τ) = t1(τ). then
we can lett′1 = t1, t′2 = t2 and we are done. For eachτ for which this is not the case, we know that
t2(τ) > n andt1(τ) > n. Assume without loss of generality thatt2(τ) > t1(τ). By the definition
of m, there are at leastm children of the root oft1 having typeτ for which the automaton reaches
the same state. Pick one of these nodesx and addt2(τ) − t1(τ) many copies of the subtree ofx as
children of the root oft1. Sincem is the tolerance ofA, this does not affect the state of the run ofA
at the root oft1. Applying induction, we can changet2 andt1 without affecting the state at the root
so that all the children of the root oft2 having typeτ are depth-k similar to one another, and each of
these are depth-k similar to the children of the root oft1 having typeτ . Doing this for eachτ ∈ S,
we end up with treest′1 andt′2 with the property that: for everyτ ∈ S all the children of the root oft1
with typeτ are depth-k similar to one another, they are all depth-k similar to every child of the root
of t′2 with typeτ and the number of such children is the same int′1 andt′2. It is clear thatt′1 andt′2 are
depth-(k + 1) similar. 2

Given the above claim, we show how Proposition 1 follows. SupposeL is closed underk-guarded
horizontal swaps. We show thatL is closed under(n, k)-guarded horizontal swaps forn given by the
claim. Givenx1, x2 in some treeT with x (n, k)-similar tox′, we lett1 = T |x1

andt2 = T |x2
. Then

t1 (n, k)-similar tot2 , and we lett′1, t
′
2 be as in the claim above fort1 andt2. For treess1 ands2, let

T [s1, s2] be the result of replacingt1 by s1 andt2 by s2 in T . We know that:
T [t1, t2] ∈ L↔ T [t′1, t

′
2] ∈ L↔ T [t′2, t

′
1] ∈ L↔ T [t2, t1] ∈ L

The first and third equivalences follow becauset′i and ti are equivalent in the automaton, and the
middle equivalence is from closure underk-guarded swaps. This proves that closure under(n, k)-
guarded horizontal swaps.

The proof for vertical swapping is similar; instead of the claim above, we show that: For every
regular languageL there is a numbern such that for everyk if contextC1 is (n, k)-similar to context
C2, then there are contextsC ′

1, C
′
2 with C ′

1 depth-k similar toC ′
2 such thatC ′

i induces the same state
function asCi for i = 1, 2.

Here two contexts are(n, k)-similar if they are(n, k)-similar as trees. The extension of the in-
ductive argument for this is left to the reader.

5 Decidability

We first show that the characterizations of Theorem 1 and Theorem 5 are generalizations of the string
case. Then we show that they lead to decision procedures for membership in FO and FOmod.

5.1 The string case

We view a string as a tree in which every node has at most one child. The child corresponds to
the successor of a node in a string. With this kind of tree, only the vertical swap can be applied.

19

Theorems 1 and 5 imply that a regular language is definable in FO iff it is aperiodic and closed under
k-guarded swaps for somek.

In the string case a similar characterization of FO says thata regular language is definable in FO
iff it is aperiodic and closed underidempotent-guarded swaps. This result was proved by Beauquier
and Pin [BP89]. We will show how this can be derived from our characterization.

We define the notion ofidempotent-guarded swaps. Fix a regular (string) languageL and a min-
imal deterministic automatonA recognizingL. Recall that a functionf is idempotentif f ◦ f = f .
A stringe is said to beidempotentif the transition function it induces is idempotent. A regular string
languageL is closed under idempotent-guarded swapsif for any string of the formuesfves′fw,
wheree andf are idempotents and different from the empty string, we have

uesfves′fw ∈ L iff ues′fvesfw ∈ L.

We show that the two notions of guarded swaps are equivalent over strings.

Theorem 6. A regular languageL over strings is closed under idempotent-guarded swaps iff it is
closed underk-guarded swaps for somek ∈ N.

Proof. One direction is simple: ifL is closed underk-guarded swaps then it is closed under idempotent-
guarded swaps. Consider a string of the formuesfves′fw, wheree andf and non-empty idempo-
tents. Then we have:

uesfves′fw ∈ L iff ueksfkveks′fkw.

Notice now that the two positions right afteru and right afterv are depth-k similar, and the same
holds for the two positions right afters and right afters′. We can then applyk-guarded swaps and get

uesfves′fw ∈ L iff ueks′fkveksfkw iff ues′fvesfw ∈ L.

We now turn to the other direction. AssumeL is regular, letA be a deterministic automaton for
L, and assumeL is closed under idempotent-guarded swaps. Letα be the number of states ofA and
takek = αα + 1. We show thatL is closed underk-guarded swaps. Recall that a stringw induces a
transition functionfA

w on the states ofA such thatfA
w (q) = q′ if, when started in stateq, q′ is the state

reached byA at the end ofw. Two stringsw andw′ areequivalent relative toL if fA
w = fA

w′ .
Consider a stringw of length greater thank. For i ≤ k let vi be the firsti letters ofw. By the

choice ofk there must bei < j < k such thatfA
vi

= fA
vj

. Let u be the string such thatvj = viu.

BecausefA
vi

= fA
vj

we have for every positive integerβ, viu
β andvj are equivalent relative toL.

Notice now that for all stringsu there existsβ such thatuβ is idempotent. Hence in any string of
length at leastk there is an idempotente that can be inserted without affecting membership inL.

Now consider a stringw and positionsx, y, x′, y′ such thatx ≤ y ≤ x′ ≤ y′ andx, x′ are depth-
k similar, andy, y′ are depth-k similar. First, consider the case in whichy is not in thek-spill of
x, x′ is not in thek-spill of y, andy′ is not in thek-spill of x′. Thusw can be decomposed into
w1 · sv · s

′w2 · sv
′ · s′w3 wheres ands′ are thek-spill s ofx andy and the “dots” mark the position

of x, y, x′, y′.
We can now apply the technique mentioned in the paragraph above and insert an idempotente

into s and an idempotentf into s′ without affecting membership inL. Thus we have

w ∈ L iff w1 · s1es2v · s
′
1fs

′
2w2 · s1es2v

′ · s′1fs
′
2w3 ∈ L.

20

We now use the closure ofL under idempotent-guarded swaps and obtain (the “dots” now indicate the
sections that are swapped):

w1s1 · es2vs
′
1f · s′2w2s1 · es2v

′s′1f · s′2w3 ∈ L iff w1s1 · es2v
′s′1f · s′2w2s1 · es2vs

′
1f · s′2w3 ∈ L.

But the latter is preciselyw1 · sv
′ · s′w2 · sv · s

′w3 as required fork-guarded swapping.
The other cases are handled similarly. We consider the case wherey is in thek-spill s of x,

x′ is not in thek-spill s′ of y, andy′ is not in thek-spill of x′. Thusw can be decomposed into
w1 · s1 · s

′w2 · sv
′ · s′w3 with s′ = s2s3 ands = s1s2.

By the argument above, we know that there is an idempotentf that can be inserted intos′ without
impacting membership inL. We have two subcases to consider depending whetherf falls in s2 or in
s3. If f can be inserted ins2 then we writes2 ast1 · t2, wheret1ft2 is equivalent relative toL with
t1t2. We thus have a decomposition ofw asw1 · s1 · t1t2s3w2 · s1t1t2v

′ · t1t2s3w3.
Using the fact thatf can be inserted, we see that:

w ∈ L iff w1s1t1 · ft2s3w2s1t1f · ft2v
′t1f · ft2s3w3 ∈ L.

Applying idempotent-guarded swapping to the blocks between copies off we get:

w ∈ L iff w1s1t1 · ft2v
′t1f · ft2s3w2s1t1f · ft2s3w3 ∈ L.

Removingf and regrouping we get:

w ∈ L iff w1 · s1t1t2v
′ · t1t2s3w2 · s1 · t1t2s3w3 ∈ L.

This shows that guarded swapping holds.
In the subcase wheref can be inserted intos3, we know there is another idempotente that can be

inserted intos = s1s2 prior to the place wheref is inserted. We now writew asw1 · t1et2t3ft4w2 ·
t1et2v

′ · t3ft4w3, and again the a swap gives the desired result.
The rest of the cases are treated similarly.

Note that Theorem 6 does not generalize to trees. In the tree case it is still true that anyk-spill,
for a sufficiently largek, will contain an idempotent, but which idempotent this is and where it can be
inserted can no longer be computed by looking only at thek-spill.

5.2 Decision Procedure

Let L be a regular tree language,A be a deterministic bottom-up automaton (ranked or unranked)
recognizingL, and letQ be the set of states ofA. In this subsection we will consider the problem of
deciding whetherL is in FO. The input of the problem isA, and thus the complexity is relative to the
size ofA. Without loss of generality,A can be taken to be minimal, since a number that is polynomial
in the size of a minimal automaton is clearly polynomial in the size of any automaton, as minimization
can be done in polynomial time.

In the string case deciding whether a regular languageL can be defined in FO is PTIME in the
size of such anA [Pin05]. Note that this is not immediate, as checking aperiodicity alone is PSPACE-
complete [CH91]. It turns out that ideas similar to [Pin05] show that membership in FO can actually
be checked in PTIME also in the tree setting. We will show this only for the rankedcase; the unranked
case is proved along the same lines.

We will first show that the aperiodicity condition in Theorem1 can be replaced by one that is
easier to check. Following the approach of [Pin96]: we replace aperiodicity by the condition(†)l:

21

there existsl such that for any contextss, x, y, any contexte that generates an idempotent function on
states of the minimal automaton, and any trees′, we have

s · (e · x · e · y · e)l · s′ ∈ L iff s · (e · x · e · y · e)l · e · x · e · s′ ∈ L.

In [Pin05] it is shown that for a regular string language thatis closed under idempotent-guarded
swaps, aperiodicity is equivalent to(†)l. More precisely, [Pin05] shows that in any finite monoid
satisfyinge · u · f · s′ · e · v · f = e · v · f · s′ · e · u · f for all idempotentse, f and arbitrary monoid
elementsu, s′, v, we have the following are equivalent: a) there isl such that the identityul = ul+1

holds and b) there isl such that the following identity holds

(e · x · e · y · e)l = (e · x · e · y · e)l · e · x · e

holds (where againe range over idempotents andx, y range over monoid elements). We apply these
results to the monoid of contexts. Observe that the proof of Theorem 6 shows that if a tree language is
closed underk-guarded vertical swaps, then it is closed under idempotent-guarded vertical swaps (the
converse holds for string languages but not for tree languages). Applying this observation, Theorem 1,
and the result of [Pin05] cited above, we see that a regular tree language is definable in FO iff there
existsk such that it is closed underk-guarded swapping and there existsl such that(†)l holds.

We will now show that one can decide in PTIME whether or not a regular tree language satisfies
(†)l. Our argument will rely on the notion of graph pattern matching, which we review here. For
the purposes of this section, apattern is a graph whose edges are labeled by variables which range
over elements ofΓ+ for some finite alphabetΓ. In addition a pattern comes with side conditions
stating which nodes of the pattern should be interpreted as distinct nodes. LetG be a graph whose
edges are labeled inΓ. Such a graphG matchesa pattern if there is a mappingf taking each variable
in the pattern to a string inΓ+ and each node of the pattern to a node ofG such that for each side
constraintp1 6= p2, f(p1) 6= f(p2), and such that whenever there is an edge fromp1 to p2 in the
pattern labeled withv, there is a path fromf(p1) to f(p2) in G whose labels yield the stringf(v).
In [CPP93] it is noted that for every fixed pattern, the problem of determining given a graph, whether
the graph matches the pattern, is in PTIME. This result was used to show that FO-definability is in
PTIME in the string case. From a minimal automatonA recognizingL one constructs an edge-labeled
graphGA = (VA, EA) as follows. The vertex setVA of GA is the set of states ofA. The transitions
EA ⊆ VA × Σ × VA are labeled with letters of the alphabetΣ of L and correspond to the transitions
of A.

q1 q2

x

y
u

u

Let P be the pattern depicted above together with the conditionq1 6= q2. It has been shown that
[CPP93]L verifies(†)l for some l iffGA does not matchP . Minimality of A is used in the left to
right direction.

This result extends to trees as follows. From an automatonA defineGA = (VA, EA) as follows.
The set of verticesVA isQ. The set of edgesEA is included inVA×Λ×VA whereΛ = Σ×

⋃
i<r Q

i×
{1 . . . r} wherer is the rank. We connect a nodep to a nodep′ via an edge(a, λ, j), whereλ is a
sequence of (at most)r states, ifδ(λ, a) = p′ where thejth state ofλ is p. That is, an edge represents
the inverse of a transition of the automaton. The same proofsas in [Pin05, CPP93] show that:

22

Lemma 10. L verifies(†)l for somel iff GA does not matchP .

Therefore we have:

Proposition 2. One can decide inPTIME (in the size of a deterministic bottom-up automaton) whether
or not a regular languageL satisfies(†)l for somel.

We now show that it is decidable in PTIME whether there existsk such thatL is closed under
k-guarded swaps. We first show that ifL is closed underk-guarded swaps then it is closed under
k′-guarded swaps wherek′ is computable fromA.

Lemma 11. Let L be a regular language. Letα be the number of states of an automaton forL and
k′ = α2 + 1. ThenL is closed underk-guarded swaps for somek iff it is closed underk′-guarded
swaps.

Proof. We show that ifL is closed underk-guarded horizontal swaps for anyk then it is closed under
k′-guarded horizontal swaps. The proof for vertical swaps is similar and is left to the reader.

Let t be a tree andx, y two nodes oft that are depth-k′ similar. We first show that we can
transformt by pumping in new subtrees so thatx, y becomek-similar in the new tree, without affecting
membership inL. Let t1 = t|x andt2 = t|y. Let f(t, x, y) be the lex-minimum of pairs of integers
(n,m) such that there is a leaf nodez in the common prefix oft1 andt2 such that its level isn and its
position ism among nodes of leveln: we know thatn is no smaller thank′. We will transformt by
pumping so thatf(t, x, y) increases.

Let P be the common prefix oft1 andt2, w be a leaf node inP witnessingf(t, x, y). Consider a
runr ofA ont. The run assigns a stateq to each node ofP when running up botht1 andt2. We assign
to each node ofP the pair of states(q, q′) such thatq is the state ofr at the corresponding node int1
while q′ is the state ofr at the corresponding node int2. By the choice ofk′, on the path from the root
tow, there must be a pair of states that repeat. Letz andz′ be two such nodes. Consider the context
C1 between the copy ofz andz′ within t1, includingz and replacingz′ by a port. Without affecting
membership inL, we can duplicateC1 in t1 as many times as we wish. Considering the contextC2,
between the copy ofz andz′ within t2 we can perform the same duplication withint2. Performing
both these duplications, we have now increased the depth ofw to be abovek without removing any
nodes fromP , thus increasingf(t, x, y).

Performing this repeatedly, we arrive at a treet′ obtained fromt by adding new sections such that
f(t′, x, y) = (k, l) for a givenk. We can now applyk-guarded swapping to switch the subtrees under
x andy in t′. We can now remove the extra sections, resulting in a tree formed from the original tree
t by swapping the subtrees underx andy, as required.

From the above it is already clear that one can decide whetherL is closed underk-guarded swaps
for somek, since one needs to check only thatL is closed underk′-guarded swaps, and for a fixedk′

checking closure under swaps is easily seen to be decidable.Below we will show a stronger result:

Theorem 7. There is an algorithm that decides, given a deterministic automaton for a regular lan-
guageL and a positive integerk, whether or notL is closed underk-guarded swaps, and which runs
in time polynomial ink and the size ofA.

We will now prove Theorem 7. We first show that deciding closure under horizontal swapping is
in PTIME.

We first note that:

23

Claim 4. There is an algorithm that, given a deterministic bottom-upautomatonA, positive integer
k, and statesq1, q2 ofA, determines whether or not there existk-similar treest1, t2 such that whenA
is run onti : i = 1, 2 it leads to stateqi at the root ofti. We writeq1 ∼k q2 when this occurs, with the
algorithm running in time polynomial ink and the size ofA.

Proof. The algorithm is simple induction, sincep ∼k q iff there is an alphabet symbola number
r′ ≤ r and statesp1 . . . pr′ , q1 . . . qr′ with pi ∼k−1 qi for eachi ≤ r′ such thatA transitions ona from
p1 . . . pr′ to p and fromq1 . . . qr′ to q.

Note that we do not claim that the algorithm is polynomial in the size ofk.
From Claim 4, we can derive our first result:

Lemma 12. Verifying that the language of trees given by a deterministic automatonA is closed under
k-guarded horizontal swapping is in PTIME in |A| andk.

Proof. It suffices to show this for a minimal automaton. We prove thisin the case of binary trees. The
extension to arbitrary ranked trees and to unranked trees isleft to the reader.

A 2-context is a tree with two distinguished leaves called ports. An automatonA and a 2-context
∆ induce a function∆A fromQ×Q toQ simulating a bottom-up evaluation.

By minimality and determinism ofA, we need to check that for all statesq1, q2, if q1 ∼k q2 then
for every 2-context∆ we have∆A(q1, q2) = ∆A(q2, q1).

From Claim 4 the lemma follows assuming that we have shown: given two statesq1 andq2 such
thatq1 ∼k q2, we can check in PTIME that for every 2-context∆ we have∆A(q1, q2) = ∆A(q2, q1).

Consider the setZ consisting of the sextuples of states(p, p1, p2, q, q1, q2) such that for some
context∆, p = ∆A(p1, p2) andq = ∆A(q1, q2). Z can be computed easily by a fixpoint algorithm.
To check the property above, we need only determine whether there is a tuple(p, q1, q2, q, q1, q2) in
Z with p 6= q andq1 ∼k q2: this can be done by a single iteration overZ. Hence the whole process
can be done in PTIME.

We now turn to deciding closure under vertical swaps, which is checked using similar ideas.
We need the following two relations among states ofA. We say thatRk(r, p1, q1, p2, q2) holds

whenever there exists a context∆ and a treet such that∆ andt agree up to depthk, ∆A(p1) = q1,
∆A(p2) = q2 andr is the state reached byA on t. We say thatSk(p1, q1, p2, q2, p

′
1, p

′
2, q

′
1, q

′
2) holds

whenever there exist two contexts∆ and∆′ such that∆ and∆′ agree up to depthk, and∆A(pi) = qi
and∆′

A(p′i) = q′i for i = 1, 2.

Claim 5. There is an algorithm that computesRk andSk that runs in time polynomial ink and size
ofA.

Proof. This is done as in Claim 4, with the extra reachability constraints being verifiable in PTIME.

We are now ready to show:

Lemma 13. There is an algorithm deciding whether or not a language ofr-ranked trees given by
automatonA is closed underk-guarded vertical swapping which takes polynomial time ink, |A|.

Proof. We use Claim 5. Considerk-guarded vertical swapping, where we restrict the nodesx, x′ to
be at leastk apart, and similarly fory, y′. Then this restrictedk-guarded vertical swapping fails iff we
can find(r, p1, q1, p2, q2) ∈ Rk and(r, p1, q2, s

′, q1, s, r, p2) ∈ Sk with s 6= s′, which can be checked

24

in PTIME onceSk andRk are computed. The cases wherex, x′ are distancei ≤ k apart ory, y′ are
distancei ≤ k are done similarly, with a variation on these equivalence relations being defined for
each of the possible distances modulok.

From Lemma 12, Lemma 13, we have Theorem 7.
From Lemma 11, Theorem 7, and Proposition 2, we conclude the following:

Theorem 8. There is aPTIME algorithm that takes a deterministic automaton for a regular language
of ranked trees and decides whether or not it is definable in FO.

The theorem also applies to unranked trees, via easy extensions of Lemma 11, Theorem 7, and
Proposition 2.

6 Modulo counting

In this section we extend the previous results to FOmod. We provide a characterization that can be
used to give a PTIME algorithm for a decision procedure. We deal here only with the case of trees of
fixed rankr, although the results can be extended to the unranked setting.

In [Str94] (See VII.3.1), the result of [BP89] is extended toa characterization of FOmod(P) on
strings, by simply replacing the aperiodicity ofLwith aperiodicitycondition - that is, that the monoid
associated withL is q-periodic. When we apply this to the monoid of contexts generated by a lan-
guage, we get that a regular tree languageL is q-periodic if:

(q-periodicity) ∃l such that∀s, u contexts, and∀t tree,s · ul · t ∈ L iff s · ul+q · t ∈ L.
Fix P ⊆ N finite and letq be the least common multiple of all numbers occurring inP . We show

that membership in FOmod(P) is decidable.
We start with giving the notion of locality relevant to FOmod. For numbersk andq, and treess

andt, we says ∼=k,n,q t if for every k-typeτ , |s|τ = |t|τ modq and|s|τ = |t|τ if either |s|τ < n or
|t|τ < n.

It is well-known that an FOmod sentence on bounded-degree structures can only count the number
of local neighborhoods up to some modulus and threshold (see, for example, [N00] Theorem 3.4).
Applying this within ranked trees, one easily obtains the following:

Proposition 3. For any fixed rankr and anyFOmod(P) sentenceφ, there are numbersk andn com-
putable fromφ andr such thatφ cannot distinguish twor-ranked treess andt with s ∼=k,n,q t.

The following simple lemma shows thatq-periodicity and closure under swaps are necessary
conditions for definability in FOmod(P).

Lemma 14. Let L be a regular tree language overr-ranked trees definable in FOmod(P). ThenL is
q-periodic and there exists ak such thatL is closed underk-guarded swaps.

Proof. Fixing k as in Proposition 3, one sees thatL is closed underk-guarded swaps, since these
preserve the number ofk-types.

The proof thatq-periodicity is necessary is done as in [Str94]: one shows bystructural induction
that all FOmod(P) formula areq-periodic where free variables are treated as sentences in aproduct
alphabet. The base case of atomic formulas follows from the result for FO, while the inductive cases
are already shown in the proof of VII.3.1 of [Str94].

The converse is also true and this is the main result of this section:

25

Theorem 9. LetL be a regular tree language.
ThenL is definable inFOmod(P) iff L is q-periodic and there exists ak such thatL is closed under

k-guarded swaps.

The proof, discussed in the Appendix, follows along the samelines as the characterizations in the
previous sections, with the additional technical difficulty that only pieces of size0 moduloq can be
added or removed.

We have the following corollary, which follows from the well-known fact that every finite monoid
is q-periodic for someq:

Corollary 2. LetL be a regular tree language.
ThenL is definable inFOmod iff there exists ak such thatL is closed underk-guarded swaps.

Based on Theorem 9 a PTIME decision procedure for testing whether a regular language is defin-
able in FOmod(P) can be obtained as in Section by combining the test forq-periodicity with the test
for vertical swaps with a suitable pattern. The details can be found in the Appendix.

The characterization above works also in the unranked case as explained in the appendix.

7 Conclusions

The main result presented here is the decidability of FO-definability in ranked trees and unordered
unranked trees. The question of characterizing FO-definability in ordered unranked trees is open.
Our decidability results for unordered unranked trees extend easily to languages given by sentences
of Monadic Second Order Logic with counting modulo quantifiers (CMSO). These languages can
be presented by a bottom-up tree automaton whose transitions can count the number of children in
a given state modulop. Again, one can get a decision procedure that is polynomial in the size of a
deterministic automaton.

We believe that our characterization (and the decidabilityresults that follow) extends toω-trees.
In addition to giving a decision procedure, the characterization here has been useful for demonstrating
that certain queries are first-order; for example, it is has been used to prove that order-invariant first-
order queries over trees are first-order expressible.

The class LT of languages is defined as for LTT but without the threshold. That is, one can check
the occurrence or absence of a pattern in a string but can no longer count the number of occurrences.
We are considering how to modify our axioms to characterize LT.

Acknowledgment: We wish to thank Jean-Eric Pin for many fruitful discussions on the word case
and Mikołaj Bojánzyk for his help on an earlier draft of this paper.

References

[BP89] D. Beauquier and J-E. Pin. Factors of words. InAutomata, Languages and Programming,
pages 63–79, 1989.

[BS05] M. Benedikt and L. Segoufin. Regular languages definable in FO. InSTACS, pages 327-
339, 2005.

[BW04] M. Bojańczyk and I. Walukiewicz. Characterizing EF and EX tree logics. Theoretical
Computer Science, 358:255–272, 2006.

26

[B07] M. Bojańczyk. A new algorithm for testing if a regular language is locally threshold testable.
To appear inInformation Processing Letters, 2007

[Buc60] J. B̈uchi. Weak second-order logic and finite automata.S. Math. Logik Gr̈undlagen Math.,
6:66–92, 1960.

[CH91] S. Cho and D T. Huynh. Finite-automaton aperiodicityis PSPACE-complete.Theoretical
Computer Science, 88(1):99–116, 1991.

[Cou90] B. Courcelle. The monadic second order logic of graphs I: recognizable sets of tinite traphs.
Information and Computation, 85:12–75, 1990.

[CPP93] J. Cohen, D. Perrin, and J-E. Pin. On the expressive power of temporal logic for finite words.
Journal of Computer and Science Systems, 46(1993):271–294, 1993.

[Don70] J. Doner. Tree acceptors and some of their applications. Journal of Computer and System
Sciences, 4:406–451, 1970.

[EW03] Z. Ésik and P. Weil. On logically defined recognizable tree languages. InFSTTCS, pages
195-207, 2003.

[Heu91] U. Heuter. First-order properties of trees, star-free expressions, and aperiodicity.Informa-
tique Th́eorique et Applications, 25:125–146, 1991.

[Lib04] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[MP71] R. McNaughton and S. Papert.Counter-free Automata. MIT Press, 1971.

[N00] J. Nurmonen. Counting modulo quantifiers on finite structures.Information and Compu-
tation, 160(1-2):62-87 2000.

[Par66] R. Parikh. On context-free languages.Journal of the ACM13(4), pages 570–581, 1966.

[Pin96] J-E. Pin. The expressive power of existential first order sentences of B̈uchi’s sequential
calculus. InProc. of Intl. Coll. on Automata, Languages and Programming, pages 300–311,
1996.

[Pin05] J-E. Pin. The expressive power of existential first order sentences of B̈uchi’s sequential
calculus.Discrete Mathematics, 291, pages 155–174, 2005.

[Pot95] A. Potthoff. First-order logic on finite trees. InTheory and Practice of Software Develop-
ment (TAPSOFT), pages 125–139, 1995.

[PT93] A. Potthoff and W. Thomas. Regular tree languages without unary symbols are star-free.
In Fundamentals of Computation Theory (FCT), pages 396–405, 1993.

[Pres] M. Presburger.̈Uber die Vollsẗandingkeit eines gewissen Systems der Arithmetic ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt Comptes Rendus du I
congr̀es de Math́ematiciens des Pays Slaves, pages 92–101, 1929.

[Sch65] M. P. Scḧutzenberger. On finite monoids having only trivial subgroups. Information and
Control, 8:190–194, 1965.

27

[Str94] H. Straubing.Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.

[Tho97] W. Thomas.Handbook of Formal Languages, volume 3, chapter 7. Springer, 1997.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata with an application to a decision
problem of second order logic.Math. Syst. Theory, 2:57–82, 1968.

[TW85] D. Thérien and A. Weiss. Graph congruences and wreath products.J. Pure and Applied
Algebra, 36:205–215, 1985.

[Wil96] T. Wilke. An algebraic characterization of frontier testable tree languages.Theoretical
Computer Science, 154(1):85–106, 1996.

8 Appendix: proofs of the modulo characterization theorems

Here we will give the proofs of the characterizations of first-order logic with counting quantifiers. As
before we start with the ranked case, to illustrate the main idea, and then we move to unranked trees.

Fix P ⊆ N finite and letq be the lcm of all numbers occurring inP . The goal of this section is to
show that replacing aperiodicity withq-periodicity in the theorems forFO gives a characterization of
FOmod(P).

8.1 Ranked trees and modulo counting

We start with the ranked tree case, fixing the rank asr for the whole section. Note first that for ranked
trees, FOmod(P) is included in MSO (this is no longer the case for unranked trees). This is because
over ranked trees, a linear order can be defined in MSO and therefore counting quantifiers can be
simulated using this order. Thus FOmod(P) defines only regular languages. We recall the statement of
Theorem 9:

LetL be a regular tree language.
ThenL is definable inFOmod(P) iff L is q-periodic and there exists ak such thatL is closed under

k-guarded swaps.
The proof thatq-periodicity is necessary is done as in [Str94]: one shows bystructural induction

that all FOmod(P) formula areq-periodic where free variables are treated as sentences in aproduct
alphabet. The base case of atomic formulas follows from the result for FO, while the inductive cases
are already shown in the proof of VII.3.1 of [Str94].

For the converse, we denote byt ≡K
q t′ the fact thatt andt′ agree on all sentences of FOmod(P)

with at mostK (first-order or modular) quantifiers. As in the case without modulo quantifiers, Theo-
rem 9 will follow immediately from:

Theorem 10. For anyk and any regular languageL which isq-periodic and closed underk-guarded
swaps, there exists aK such that for anyt, t′ ∈ T we have: t ≡K

q t′ ⇒ t ∈ L iff t′ ∈ L.

We will thus work towards the proof of Theorem 10. We follow the lines of the proof of Theo-
rem 2. FixL andk such thatL is q-periodic and closed underk-guarded swaps. Fix a deterministic
automatonA for L.

The notion ofk-spill and depth-k similar is as in the ranked case for FO. Given two treess, t we
denote bys =q,k

d t the fact that for allτ ∈ Tk, |s|τ = |t|τ or, |s|τ , |t|τ > d and|s|τ = |t|τ moduloq.

28

If in addition for all τ ∈ Tk, |s|τ ≤ |t|τ then we writes ≤q,k
d t. If for all τ ∈ Tk, |s|τ = |t|τ then we

write s =q,k
∞ t.

The first two lemmas are easy adaptations of Lemma 1 and Lemma 2to the modulo counting case.

Lemma 15. For each numberd, there exists a constantKd such thats ≡Kd
q t implies thats =q,k+1

d t
ands, t are depth-(k + 1) similar.

The lemma follows because the count moduloq of occurrences of a givenk-spill within a tree can
be expressed via an FOmod(P) sentence.

Lemma 16. For each numberd′ there exists a numberd such that ifs =q,k+1
d t then there existst′

such thats ≤q,k+1
d′ t′, andt, t′ are depth-(k + 1) similar, andt′ ∈ L iff t ∈ L.

Proof. This is proved by making a slight modification of the proof of Lemma 2. Again we proceed
by induction on the number of typesτ that are not sufficiently well-represented int′. In the inductive
step, we fix a(k + 1)-typeτ . The proof of Lemma 2 shows that we can find a pair of nodesx1, x2

with x2 a strict descendant ofx1 such thatCt[x1, x2) (that is, the set of nodes that are below or equal
to x1 and not belowx2) contains at least one node of typeτ , bothx1 andx2 have the same type, all
nodes inCt[x1, x2) have a type that is safe (i.e. occurs at leastd′ times), and the automatonA for L
reaches the same state ofx2 as onx1. If we now replaceCt[x1, x2) by α · q copies of itself, for large
enoughα, then we will have preserved the counting moduloq of occurrences of each type, have not
disturbed any unsafe type, and will have made the number of occurrences ofτ in t′ greater than the
number int.

Lemma 3 and Lemma 4 are proven using only swapping moves, hence without modifying the
occurrences of(k + 1)-types. Therefore we can make use of them in the modulo counting case. The
same holds for Corollary 1. It therefore remains to revisit the last part of the proof of Theorem 2 and
adapt it to the modulo counting case.

We are now ready to begin the proof of Theorem 10. LetQ be the set of states ofA, α = |Q|
be the number of states ofA. Let βk = |Tk+1|. Let l be theq-periodicity number ofL. Let d′ =
r(βk∗r

α+1)∗l +1. Letd be the number required in Lemma 16 ford′. LetK be the numberKd required
in Lemma 15 ford. We show thats ≡K

q t impliess ∈ L iff t ∈ L.

Assumes ≡K
q t, we show thats ∈ L iff t ∈ L. From Lemma 15 we know thats =q,k+1

d t.

Therefore by Lemma 16 there is a treet′ such thatt′ ∈ L iff t ∈ L ands ≤q,k+1
d′ t′. We can now apply

Lemma 3 and obtaint′′ such thatt′′ ∈ L iff t′ ∈ L, s is (k + 1)-pseudo-included int′′ via a mapping
h, andt′′ =q,k+1

∞ t′ =q,k+1
d′ s. Therefore it suffices to prove thats ∈ L iff t′′ ∈ L.

Once more following the proof of Theorem 2, we have by construction thatt′′ is h(s) plus loops
(of size larger than 1) inserted between nodes ofh(s). As before, all(k+1)-types which occur outside
of h(s) have strictly more occurrences int′′ than ins and therefore appear at leastd′ times ins (and
in t′′). Notice also that for each(k+ 1)-typeτ the total number of occurrences ofτ outside ofh(s) is
zero moduloq. LetV1 · · ·Vn be the sequence (in arbitrary order) of loops int′′\h(s) and letV be the
forest

⋃
1≤i≤n Vi. From the remark above we have∀τ ∈ Tk+1, |V |τ = 0 moduloq.

Before continuing we need some additional definitions. For numberj, aj-contextis a tree withj
designated leaves, which we call (generalizing the notation for contexts) ports. Given aj-contextC,
an ordering of its ports asp1, . . . , pj , and treest1 . . . tj we letC[t1, . . . , tj] denote the tree obtained
by plugging in eachti into pi. An “abstractj-context” is aj-contextC in which the root is different
from each port, supplemented with an assignmentλ of (k + 1)-types (wherek is the number fixed
above) to each non-port node and ak-type to each port node such that the assignments areconsistent:

29

there aret1 . . . tj such that for every nodex inC, the type assigned tox inC[t1, . . . , tj] matchesλ(x).
Note that this notion of consistency extends that given for abstract contexts in the FO case.

Lemma 17. There existsn′ and abstract loopsU1 · · ·Un′ , with eachUi having cardinality greater
than1, such that ifU =

⋃
1≤i≤n′ Ui we have∀τ ∈ Tk+1, q · |U |τ = |V |τ .

Proof. For each(k+1)-typeτ and eachk-typeν letατ (ν) be 1 ifν is induced byτ , 0 otherwise. For
any multisetB of (k + 1)-types and anyk-typeν, letαB(ν) beΣτ∈Tk+1

|B(τ)|ατ (ν), where|B(τ)|
is the number of occurrences ofτ in B. For τ, ν as above letβτ (ν) be the number of children of
k-typeν that a node of(k + 1)-type τ must have, and extend this to a multiset of(k + 1)-typesB
by βB(ν) = Στ∈Tk+1

|B(τ)|βτ (ν). SoαB measures how often a givenk-type occurs in a multiset of
(k + 1)-types, andβB measures how often ak-type occurs as a child in a given set of(k + 1)-types.
Finally, letγB(ν) beαB(ν) − βB(ν).

LetB be the multiset of all(k+1)-types occurring inV . BecauseV contains only abstract loops,
we have that for eachν ∈ Tk γB(ν) = 0: the occurrence of a type in the interior of one of the loops
is counted once in bothα andβ, thus contributing0 to γ, while the occurrence of a type in the root
(and hence in the port) is counted inα, but is balanced by the occurrence of that type as a port inβ.
LetB′ beB where the multiplicity of each type has been divided byq. B′ is well-defined because all
multiplicities inB are multiples ofq. Since for eachν ∈ Tk, the multiplicity of each(k+1)-type that
induces it and the multiplicity of each(k+1)-type that had it as a child are both divided byq in going
fromB toB′, γB′(ν) = 0. We will construct abstract loopsU1 · · ·Un′ such that the multiset formed
with the(k + 1)-types of nodes of

⋃
1≤i≤n′ Ui isB′.

Assume we have already constructedn1 abstract loopsU1 · · ·Un1
, and a “partially constructed

loop” – either an abstractj-contextX which we hope to extend into an abstract loop, or the “empty
abstract context” (whose underlying context has no nodes).Let B1 be the multiset of(k + 1)-types
assigned to non-port nodes ofX ∪

⋃
1≤i≤n1

Ui. We will assume inductively thatB1 is a sub-multiset
of the types inB′. LetB2 = B′ −B1, where difference of multisets is defined in the usual way.

If X is empty andB1 = B′ (i.e. B2 is empty), then we are done, sinceU1 . . . Un1
are the

required abstract loops. Otherwise we will extend the construction while decreasing the sum of the
multiplicities of types inB2.

SupposeX is empty andB1 6= B′. ThenB2 must contain at least one(k + 1)-type with positive
multiplicity. Let τ be such a(k + 1)-type, and letν1, . . . , νj be the sequence of inducedk-types of
the children of a node of(k + 1)-typeτ . We setX to be an abstractj-context containing a root node
assigned to(k + 1)-typeτ with j children, all of which are ports, with theith child assignedk-type
νi. The definition of the sequenceν1, · · · , νj implies that this is a consistent assignment.

If X is not empty and is an abstract loop, then we setUn1+1 = X and continue as above. IfX is
not empty and has no ports, thenγB1

(ν) > 0 for ν thek-type of the root ofX. Sinceγ(B′)(ν) = 0,
we haveγ(B2)(ν) < 0 and hence there is some(k + 1)-typeτ in B2 that requiresν as theith child.
We add this type as a new root ofX, appending the oldX as theith subtree while making any other
required children into ports. Again, the multiplicity ofτ in B2 is decreased.

SupposeX is not empty and is not an abstract loop. Letτ be the(k+ 1)-type assigned to the root
of X andτ ′ be thek-type induced byτ . SinceX is not an abstract loop, eitherX has a port whose
assignedk-type isν 6= τ ′, orX has more than one port of typeτ ′.

In the first case, fix such a portp and typeν. Thenγ(B1)(ν) > 0, and sinceγ(B′)(ν) = 0 this
impliesγ(B2)(ν) < 0. So there is some(k+1)-typeρwith positive multiplicity inB2 consistent with
ν. Let η1 . . . ηs be thek-types of children required byρ. Replace portp with a nodex of (k+ 1)-type
ρ, wherex will have childrenp1 . . . ps that are ports of typesη1 . . . ηs, respectively. The size of the
multiplicities of types inB2 has decreased by1, and we continue the induction.

30

In the second case,γ(B1)(τ
′) > 0, and this impliesγ(B2)(τ

′) < 0. Hence there is a(k+ 1)-type
ρ in B2 consistent withτ ′. Replace one of the ports of typeτ ′ with a nodex of typeρ, which is again
given the port children of the types required byρ, and continue inductively.

Let U =
⋃

1≤i≤n′ Ui. By construction we have∀τ ∈ Tk+1, q.|U |τ = q.|B′|τ = |B|τ = |V |τ as
required.

Fix U = {U1 · · ·Un′} as in Lemma 17. By induction we constructs0 · · · sn′ such that: (i)s0 is s,
(ii) ∀τ ∈ Tk+1 |si|τ = |s|τ + q.|U1|τ + · · · q.|Ui|τ , (iii) si ∈ L iff si−1 ∈ L.

The base case is immediate. The induction is done as in the proof of Theorem 2, firstUi is reduced
to Wi, whose size is strictly bounded byd′/l, and thenW l

i is inserted tosi−1 using Lemma 4. We
can now useq-periodicity ofL to insertq extra copies ofWi (and thereforeUi) as required. All this
is done without affecting membership inL.

Let s′ = sn. By construction we have∀τ ∈ Tk+1, |s
′|τ = |s|τ + q.|U |τ = |s|τ + |V |τ = |t′′|τ and

s′ ∈ L iff s ∈ L. Theorem 10 now follows from Corollary 1.

Theorem 9 immediately implies the following complexity bound:

Corollary 3. There is aPTIME algorithm that, given a deterministic bottom-up ranked tree automa-
ton, checks whether the corresponding tree language is definable inFOmod.

Proof. By our prior results, and the fact that every regular language isq-periodic for someq, it suffices
to check in PTIME that a language is closed underk-guarded swapping for somek. But this was
already shown in Theorem 7.

We can also show the analogous result for FOmod(P):

Theorem 11. There is aPTIME algorithm that, given a minimal deterministic bottom-up ranked tree
automaton, checks whether the corresponding tree languageis definable inFOmod(P).

Proof. By Theorem 9, we need only show that for languages that satisfy k-guarded swapping,q-
periodicity can be checked in PTIME. We use an argument modeled tightly on the string case, from
[Pin96]. The following claim was proven forq = 1 in [Pin96]:

Claim 6. For a monoid satisfyinge ·u · f · s′ · e · v · f = e · v · f · s′ · e ·u · f we haveul = ul+q holds
for somel iff

(e · x · e · y · e)κ = (e · x · e · y · e)κ · (e · x · e)q (†κ, q)
holds for someκ (where, again,e, f range over idempotents andx, y, u, v, s′ range over monoid

elements).

Proof. The proof of the claim is a simple generalization of the argument forq = 1 in [Pin96]. In one
direction, we assume(†κ, q), and proveq-periodicity by choosingω such that for allu, uω is idem-
potent, and substitutingx = u, y = e = uω. This yields the identityu(4ω+1)κ = u(4ω+1)κu(2ω+1)q,
which impliesuω+κ = uω+κ+q using idempotence ofuω. Sinceu was arbitrary, this shows thatq-
periodicity holds withl = ω + κ. In the other direction, we assumeq-periodicity and prove(†l, q).
We use the observation, proved in [Pin96], that our additional hypothesis on the monoid implies that
for any idempotente and any monoid elementsx, y we have

exeye = eyexe (∗∗)

From (**) and idempotence ofe we can derive(exeye)l(exe)q = (exe)l+q(eye)l, by repeatedly
applying(∗∗) to rewrite occurrences ofeyexe to exeye, and collapsinge2 into e.

31

Now usingq-periodicity we have(exe)l+q(eye)l = (exe)l(eye)l, and using (**) and idempotence
of ewe have(exe)l(eye)l = (exeye)l. Thus(exeye)l(exe)q = (exeye)l as required forq-periodicity.

One can decide whether(†κ, q) holds using a patternP q obtained fromP by addingq − 1 addi-
tional nodes, which withq2 form a chain of lengthq, with edges from one element of the chain to the
next labeled withx. Each element of the chain has a self-loop labeled withu associated with it, and
the last element in the chain is constrained to be distinct from q1. The notion of a graph formed from
an automaton which is to be matched against patternP q is the same as the notion forP in the FO case
for ranked trees.

8.2 Unranked trees and modulo counting

In the unranked case, the main difference is that FOmod(P) is no longer included in MSO but in
CMSO. From Courcelle [Cou90] we know that the following family of automata has exactly the same
expressive power as CMSO. The automaton is defined as for unranked trees, but each transition, in
addition to counting the number of states, up to some threshold m, reached for its children nodes,
also counts their occurrences modulo some constantq. We call themmoduloq counting automata. A
language that is defined by a moduloq counting automaton for someq, or equivalently definable in
CMSO, is calledextended-regular.

As in the unranked FO case, the difficulty is that the number ofisomorphism types of trees of
depthk is no longer finite, so we need to reason via approximation. Weextend the notion of∼k

n to
∼k,q

n in the obvious way by requiring that we count the(n, k − 1)-types of the children of a node
moduloq when above thresholdn. We refer to those as(q, n, k)-types. The notion of similarity and
guards are then extended as expected.

Again, the heart of the proof is the following intermediate result:

Theorem 12. LetL be aq-periodic extended-regular tree language.
ThenL is definable in FO iff there existsn, k such thatL is closed under(q, n, k)-guarded swaps.

Proof. (sketch) The proof is a combination of the ideas in the proof of Theorem 9 and Theorem 3. We
only give an overview here. That the conditions are necessary is proved as in Theorem 9. We now fix
q, n, k and an extended-regular tree languageL which isq-periodic (withl for the number from the
periodicity condition) and closed under(q, n, k)-swaps. We fix an automatonA recognizingL and
m very big relative to|A|, in particular above the threshold for whichA can count number of types
exactly. Again we can assumen is abovem.

The next result follows from the fact that(q, n, k)-types can be expressed in FOmod:

Lemma 18. For all numbersd and all numbersn′, there existsKd such thats ≡Kd
q t implies

s =q,n′,k+1
d t ands, t (n′, q, k + 1)-similar.

With the obvious intended meaning for the notations =q,n,k+1
d t, and using the same tools as in

Lemma 6 we have:

Lemma 19. For each numberd′ and eachn′ > n there exists a numberd such that ifs =q,n′,k+1
d t

then there existst′ such thats ≤q,n′,k+1
d′ t′, andt, t′ (n′, q, k + 1)-similar, andt′ ∈ L iff t ∈ L.

Proof. The proof follows the structure of Lemma 6. Safe(q, n, k)-types are those that occur at least
d′ times int.

32

We again have two cases to consider. In the first case, every node in t has at small (belowd1,
as defined in Lemma 6) number of children which have a descendant of typeτ . In this case, we can
construct a longτ -skeleton int. Just as in that proof, by having sections of the skeleton large enough,
we can guarantee a portion can be pumped without changing therun of the automaton, adding unsafe
types, or changing the existing type structure. By pumping amultiple ofq times, we will preserve the
moduloq class of every type, so the resulting tree is(n′, q, k + 1)-similar tot.

In the second case, there is some nodex in t that has a large number of children which have a
descendant of typeτ . Then can find a large (abovem) number of children with a descendant of type
τ which are safe and where the automatonA reaches the same state. It is now possible to duplicate
any of the subtrees of these children without affecting membership inL, changing the type ofx, or
adding unsafe types. So in particular we can add a large multiple of q copies of some child, resulting
in a tree that is(n′, q, k + 1)-similar tot.

Pseudo-inclusion is defined as in the unranked case for first-order logic. We have the obvious
extension of the pseudo-inclusion lemma:

Lemma 20. For all d′, n′ there existsn such that ifs ≤q,n,k+1
d′ t ands, t (n, q, k + 1)-similar then

there existst′ such thats is (q, n′, k + 1)-pseudo-included int′, t′ =q,n′,k+1
d′ t, andt′ ∈ L iff t ∈ L.

Proof. The proof follows the argument in Lemma 7. In that proof we considered several cases. In
most of these cases, no pumping is necessary and thus only swapping moves are used to get the desired
result. As swapping does not affect the number of(q, n, k+ 1)-types at all (and hence does not effect
their counts modulo any number), these cases also work here.When a nodex of (q, n, k + 1)-typeτ
needs to be expanded, we did so by adding a large number of copies of the subtree of a given child of
x. Using the same argument in that proof, we see that a child exists that has many siblings for which
the automaton reaches the same state and such that the subtree of the child has only safe types (that is
all types have aboved′ occurrences). We choose such a child and then add a large multiple of q copies
of the child.

For an abstract contextU and treet, U <q,n,k+1 t means that(q, n, k + 1)-types ofU occur
strictly more frequently int. The notion of inclusion and thinness is extended in the obvious way to
(q, n, k + 1)-types.

Lemma 21. LetU be an abstract context. IfU <q,n,k+1 t and each nodex ∈ U is (q, n, k + 1)-thin,
then there existst′ such thatU is (q, n, k + 1)-included int′, t′ =q,n,k+1

∞ t and,t′ ∈ L iff t ∈ L.

Proof. With the extension of the definitions in place, this follows from the same argument as in the
unranked case for FO. Note that only swapping moves were applied in the proof of Lemma 8, so the
exact number of each type (in particular, the number modulo-q of types) is preserved.

Similarly, we have the version for forests, which again follows by the same set of swapping moves
as in the FO case for unranked trees:

Lemma 22. Let U be a forest. IfU <q,n,k+1 t and each nodex ∈ U is (q, n, k + 1)-thin, then there
existst′ such thatU is (q, n, k + 1)-included int′, t′ =n,k+1

∞ t andt′ ∈ L iff t ∈ L.

Proof of Theorem 13 for unranked trees (sketch). As usual we set all the numbers to be big enough
in order to be able to apply all the previous lemmas. Startingwith two treess andt such thats ≡K

q t,
we end up with two treess andt′′ such thats is (q, n, k + 1)-pseudo-included int′′, t′′ ∈ L iff t ∈ l,
andt′′ =q,n,k+1

d′ s. We wish to show thats ∈ L iff t′′ ∈ L.

33

By constructiont′′ is h(s) plus loopsinserted between nodes ofh(s) and extrabranchesbranch-
ing off theh-pseudo-tree. As before, each(q, n, k+ 1)-type which occurs outside ofh(s) must occur
strictly more often withint′′ than ins and therefore must appear at leastd′ times ins (and int′′). Fur-
thermore for each(q, n, k+ 1)-typeτ the total number of occurrences ofτ outside ofh(s), including
both the branches and the loops, is zero moduloq. LetV l be the forest of loops occurring int′′ outside
of h(s) andV b the forest of branches occurring int′′ outside ofh(s).

As in the FO unranked case, we reduce the size ofV l andV b without affecting either membership
in L or the cardinality moduloq of each type. We can further assume that all types are(q, n, k + 1)-
thin. LetV l1 · · ·V lα be the set of loops int′′\h(s) andV b1 · · ·V bβ be the set of extra branches in
t′′\h(s). From the remark above we have∀τ ∈ Tq,n,k+1, |V |τ = 0 moduloq.

The main difference from the ranked case lies in the following lemma, replacing Lemma 17. Its
proof will be obtained by induction onV using the same ideas as in Lemma 17.

Lemma 23. There existsα′ abstract loopsUl1 . . . Ulα′ andβ′ branchesUb1 . . . Ubβ′ such that ifUl
is the multiset of(q, n, k + 1)-types occurring in all of theUli andUb is the same for theUbi, then
we have∀τ ∈ Tq,n,k+1, q · (|Ul|τ + |Ub|τ) = |V b|τ .

Proof. The functionsα andαB are defined as in the ranked case for FOmod(P). The functionβτ (ν) is
defined as the minimum number of nodes of typeν thatτ requires – note that this is the same as the
number of nodes of typeν that will occur in a thin realization ofτ . γ is α− β as in the ranked case.

Again, letB be the multiset of all(k + 1)-types occurring inV l or V b, and letB′ be the multiset
resulting from dividing all multiplicities inB by q. One significant difference is that nowγB(ν) > 0
for manyν ∈ Tk, since each branch will have the type of its root contributing toα more often then
to β within that branch. Our goal is to construct abstract loops and branches such that the multiset
formed with their(k + 1)-types is exactlyB′.

Let C(ν) = γB′(ν) for eachν ∈ Tk. Assume we have already constructedn1 abstract loops
Ul1 . . . Ulm1

andn1 branchesUb1 . . . Ubn1
, along with an abstractj-contextX (possibly empty)

which we hope to extend into either an abstract loop or branch. Let Comp be be the multiset of
(k+1)-types assigned to non-port nodes of

⋃
1≤i≤m1

Uli∪
⋃

1≤i≤n1
Ubi, and letPart be the multiset

of (k + 1)-types assigned to non-port nodes ofX. LetB1 be the union (as a multiset) ofComp and
Part, andB2 = B′−B1. We will assume inductively thatB1 is a sub-multiset of the types inB′, and
also thatγComp(ν) is at mostC(ν) for eachν ∈ Tk. This second condition is equivalent to demanding
that for everyk-typeν, ν occurs as the root of some completed branch inUb1 . . . Ubn1

no more often
thanC(ν). Note that this condition will ensure thatγB2∪Part(ν) ≥ 0 for eachν ∈ Tk.

If X is empty andB1 = B′ then we are done. IfX is an abstract loop andB1 6= B′, then we set
Ulm1+1 = X and continue. IfX is empty andB1 6= B′, then we proceed as in the ranked case: set
X by choosing an arbitrary type occurring with positive multiplicity in B2, and give it the ports that
the type requires as children. Since we do not changeComp, we do not violate the second inductive
invariant above.

SupposeX is not empty, is not an abstract loop, and has at least one port. If X has a sin-
gle port whosek-type ν does not match the inducedk-type of the root, thenγPart(ν) < 0. Since
γB2∪Part(ν) ≥ 0 by the inductive invariant, we knowγB2

(ν) > 0, which allows us to proceed as
in the ranked case, choosing a type fromB2 that inducesν, and expandingX accordingly. The case
whereX has more than one port is handled similarly.

The last case is whenX is not empty and has no ports. Letν be thek-type induced by the
(k+ 1)-type of the root ofX. If γComp(ν) < C(ν), then we can addX asUbn1

+ 1 and continue. If
γComp(ν) = C(ν), thenX has no ports to expand on, but cannot be added as a new completed branch

34

without destroying the inductive invariant. In this caseγPart∪B2
(ν) = 0, andγPart(ν) = 1, so there

is some(k+1)-typeτ inB2 that requires at least one child of typeν. ExtendX by adding a new root
of typeτ , attaching the formerX as one child and making the remaining required children ports. The
multiplicity of τ in B2 is reduced, and we can continue the induction.

We can now transforms by induction in order to insertq copies ofUli for eachi, and likewise
transformt to removeq copies of eachUbj . This is done as in the proof of Theorem 9 for loops, and
as in the unranked case of Theorem 2 for branches, working with groups of sizeq. The details are left
to the reader.

From Theorem 12 we can now show:

Theorem 13. LetL be an extended-regular tree language.
ThenL is definable in FO iff it isq-periodic and there existsk such thatL is closed underk-

guarded swaps.

Proof. Clearly, it is enough to show that closure underk-guarded swaps implies closure under(q, n, k)-
guarded swaps for sufficiently largen. This is proved as in the unranked case without modulo quan-
tifiers (Theorem 5).

A polynomial time algorithm follows for immediately for FOmod using the same techniques as in
Theorem 8.

35

