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Abstract

We consider regular languages of labeled trees. We givefactigé characterization of the
regular languages over such trees that are definable irofilet-logic in the language of labeled
graphs. These languages are the analog on trees of thelyltwashold testable” languages on
strings. We show that this characterization yields a degigrocedure for determining whether
a regular tree language is first-order definable: the praeeduypolynomial time in the minimal
automaton presenting the regular language. We also pravigdgorithm for deciding whether a
regular language is definable in first-order logic supplelegwith modular quantifiers.
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1 Introduction

This paper is concerned with the relationship between aggyl(acceptance by an automaton) and
definability in first-order logic and first-order logic wittoanting quantifiers. Over strings this re-
lationship is well-understood. A fundamental result inni@at language theory [Buc60] states that a
language of strings is regular — that is, equal to the langudgstrings accepted by a finite string
automaton — exactly when it is definable in monadic second@rdogic (MSO) over the vocabulary
consisting of the successor relation on strings and thddalBg restricting to first-order logic (FO)
rather than MSO, we can obtain two proper subcollectionfeffamily of regular languages. The
languages that are definable in first-order logic over thesitie closure of the successor relation and
the label predicates, which we denote EQ)(are exactly the star-free or, equivalently, the apedodi
languages [MP71, Sch65]. The languages that are definalfilestiorder logic over the successor
relation and the label predicates, which we denote by FQespond to locally threshold testable
languages (see [Tho97]). Using a fundamental result &fi€h and Weiss [TW85], Beauquier and
Pin [BP89] gave an algebraic characterization of the FOUaggs. They are exactly the languages
for which the corresponding monoid satisfies certain idiexsti Put another way, they show that the
monoids corresponding to FO-definable languages form adpseariety within the collection of all
finite monoids. Both the characterization of RQ{definability via aperiodicity and the characteri-
zation of FO-definability of Beauquier and Pin lead to effgxtlgorithms for checking whether a
regular language is FQ() (resp. FO) definable. Straubing [Str94] provides an aralsgharacter-
ization for the logic FQ,.4 that extends first-order logic with quantifiers that countulo a given
integer. A complete overview of the string case can be foarfd@ho97] or in [Stro4].

We now consider the situation over ranked trees — labeled tréth a fixed bound on branching.
Regularity is now defined as acceptance by a (non-detericitig-down or deterministic bottom-
up) tree automaton, and regularity is shown to be equivatedefinability in monadic second-order
logic in the vocabulary of labeled graphs [Don70, TW68]. listcontext we use F&() to denote
first-order logic over the labels and the transitive closafrhe graph relation (that is, the descendant
relation on trees). We use FO to denote first-order logic tvergraph relation and the labels, and



FO,,..q to denote first-order logic with counting quantifiers (mamah integer) over the graph relation
and labels. The notions of aperiodicity and star-freenase Inatural extensions to the tree context,
but here FOK) is strictly weaker than aperiodicity and star-freene§9[R Heu91, Pot95]. Finding a
decidable characterization of FQYwithin the regular tree languages is a longstanding opeblem;
partial results (see below) are given in [EW03, BW04]. Adhe string case, FO definability is known
to be strictly weaker than F&() definability, but surprisingly an effective charactetiaa of FO-
definability was also lacking. [Wil96] gives an algebrai@ccterization and decision procedure for
the frontier testable languages, a subclass of the FO dédilmtyuages. [BWO04] provides a decision
procedure for two fragments of FQJ defined using existential path quantification; none of ¢hes
fragments exactly matches the expressiveness of FO. [EWI08% a characterization of the FQY
definable languages in terms of an algebraic structure éyetéctic pre-clone”) associated with the
language; this characterization is not known to be effectiVo our knowledge, the decidability of
definability in each of these logics was also unresolved trees.

In this work we give an effective characterization of defifipbin FO over trees, ranked or un-
ranked. Over ranked trees FO still corresponds to the Loeedshold Testable (LTT) languages, but
this characterization does not yield a decision procedDte.main result is an effective characteriza-
tion of FO within the regular tree languages that uses a sequif/alences that preserve membership
within the language. Unlike the string case, these equieae include preconditions requiring por-
tions of the tree to be similar “locally”. They are thus a nodg between a definition using locally
threshold testability (which characterizes FO over rankeds, but which is not effective) and a
purely algebraic approach. We extend our characterizatmgive characterizations of FO-definable
languages over unranked tress as well.

As an application of the characterization theorems, we dihatvover strings, our results yield
a new proof of the algebraic characterization of LTT and ef decidability of membership in LTT
over strings presented in [BP89, Str94]. The current probthe characterization of FO in the string
case use either fundamental (and difficult) results in tkemy of monoids [BP89] or difficult results
within the theory of finite categories [Str94]. Neverthalesgveral of the technical lemmas remain
identical in inspiration if not in notation to the earliergofs.

We then show that our characterization theorem vyields that@an decide whether a regular
language of trees is definable in FO, both over ranked andhkadatrees. We show in fact that
membership in these classes can be decided in polynomialitirthe size of a minimal automaton
accepting the regular language. Finally, we show that inrtimked tree case our techniques and
results also yields a decision procedure for membership@dalar language in FQ,;. We also state
characterizations for FQ,4, both for the ranked case and the unranked case, in the sariteasp
those obtained for FO. Those characterizations yields iavP &lgorithm for testing membership in
FOi0d-

Organization: Section 2 gives the basic notation for this article. SecBmtates and proves the
characterization theorem for FO in the case of ranked tr8estion 4 extends to prove the charac-
terization in the unranked case. Section 6 shows how thétsdsustrings follow from the tree case
and gives the decision procedures that follow from the atarezation theorem. Section 6 provides
extensions of the results to first-order logic supplementigidl counting quantifiers. Section 7 gives
conclusions and open issues.

This paper is a journal version of our STACS’05 paper [BS06¢ontains the full proofs of the
decidability results claimed in [BS05]. The exact charéettion claimed in [BS05], however, was
incorrect.



2 Notation

Trees We fix a finite alphabet, and consider trees with labelsh In this paper we will deal with
two settings. In theankedsetting, we fix some integerand consideb-labeled trees of rank; that
is, each node has at masthildren. In this case, the children of any given nodeadered that is,
we can distinguish the first child, second child, and so fdritheunrankedsetting there is no bound
on the number of children and we will always take the childeheunordered Finding a decidable
characterization in the unranked ordered case remainsenaestion.

In both cases, we use standard notation for trees. Bydlseendanfresp. ancestor) relation we
mean the reflexive transitive closure of the child (resp.eise of child) relation. We usg (%, r)
for the set of trees of rank at mastvith labels coming from alphabeét, and7 (X, w) for the set of
unordered trees of any finite rank with labels frain When the setting is clear, or when we assert
something that holds in all settings, we just write

For trees, t/, we say that’ is asubtreeof ¢ if the nodes oft’ are a subset of those ofand the
edge relation and labeling function dfare obtained from those oty restricting to the nodes of.
Thus ift’ is a subtree of, ' need not contain the root of and leaves of need not be leaves of
We say that' is aprefixof ¢ if ¢’ is a subtree of that contains the root af

Given a tree and a node: of ¢ the subtree of rooted atr, consisting of all the nodes ofwhich
are descendants af is denoted by|,. Lett be a tree and be a node ot, the k-spill of z is the
restriction oft|, to the set of nodes of at distance at most from z. Given a tree and a setS
of nodes oft, the minimum subtree aof containingsS is the unique subtree whose roois the least
common ancestor of all nodes 8fand which contains all nodes §fand their ancestors up to

Given two nodes andz’ occurring respectively in the treést’ we say thatr is depthk similar
to 2’ if the k-spill of z in ¢ is isomorphic to thé:-spill of 2’ in ¢'. Similarly two treest andt’ are
depth% similar if their roots are deptk-similar. When we are in the ranked case, isomorphism must
preserve the order of children, but in the unranked caseeit net.

A contextis an (ordered or unordered) tree with a designated (urddptdaf called itport which
acts as a hole. Given contextsand(’, their concatenatio@’- C’ is the context formed by identifying
the root ofC’ with the port ofC'. Concatenation of a conte&t and a tree is defined similarly. Given
a treet and two nodes:, y of ¢ such thaty is a descendant (not necessarily strictjrpthe context
Ct[z,y) is defined fromt; = t|, by replacingt|, by a port.

Treeautomata Regular tree languages will be represented by finite statereata. Over-ranked
trees, a (deterministic bottom-up) tree automatois defined in the usual way; it has a finite set of
stateq), a setF’ C @ of accepting states, and a transition functdassociating a unique state to any
pairin (Q' x ¥) fori < r.

A tree automatom over unordered unranked trees consists of a finite set @sgfat setl’ C
of accepting states, an integerand a transition function associating a unique state to any pair in
(T x %) wherel',, = {= i | i < m} U{> m}. The transition function associates a unique state to
any pair in({J,c y Q") x . The numbern is called thetolerance of A.

As usual a run- of A on a tree is a function from the set of nodestfo ). The notion of a valid
run for ranked trees is standard. In the case of an unran&edatrtomaton, a runis valid if for any
nodez of labela € X, such that there is a functiohe T'% such tha#(f,a) = 7(x) and, for every
g € @, the number of childrep of = such thatr(y) = ¢, is consistent withf(¢). Each tree has a
unique valid run. A tree is accepted bw if the valid runt of A ont is such that the image undeof
the root oft is in F'. Languages accepted by such automata are ca¢pdar languagesilt is folklore
that this corresponds to the usual definition over rankeduananked trees (see also [Tho97]).
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An automatonA with set of states) and a context” induce a function frong) to @, sending a
stateq to the state/ reached byA at the root ofC assuming state at its port.

Logics Monadic Second Order Logic (MSO) and First Order Logic (FE&) defined over trees in
the standard way. In the caserefanked trees, they will be defined over the signature coimgione
unary predicatd’, per lettera € X and the tree successor relatidis. . . E,, whereE;(z,y) holds

if y is thei*” child of z. In the case of unranked trees, they are defined over thetsmgrzontaining
one unary predicat®, per lettera € 3, and the tree successor relation. A tree language is sarl to b
regularif it is definable in MSO or, equivalently, recognized by aeteaitomaton.

For any formulap € FO, its quantifier rank gif) is defined as the nesting depth of the quantifiers
of ¢ as usual. The elementary equivalence up to depsidenoted by=": for any two trees,t' € 7
we say that =" ¢’ if ¢t andt’ satisfy exactly the same FO sentences of quantifier rankhass:.

The logic FQ,,.q extends FO by allowing formulae to be built up by the rulg) = 3" ¢(z, ¥),
wherer, g are integers with- < ¢. This holds in a structuréG, ¢) iff the number ofx such that
(G, ¥, =) holds is equal te modulog. If P is afinite set of integers we let EQ,p) be the extension
of FO with the constructors above, where we restyit be inP.

3 Ranked trees

3.1 Statement of the main result

In this section we fix- € N and we assume that all trees ar/if®, ).

Swaps Lett be atree, and, 2’ be two nodes of such that: andz’ are not related by the descendant
relationship. Thénorizontal swapof ¢ at nodesr andz’ is the treet’ constructed front by replacing
t| with ¢|,» and vice-versa.

Lett be a tree of root, andzx, y, 2/, ¢’ be four nodes of such thaty is a descendant af, 2’ is a
descendant of andy’ is a descendant of . Thevertical swapof ¢t betweenz, y) and[z/, ') is the
treet’ constructed front as depicted in Figure 1. More formally 1€t = Ci[a, z), A1 = Ci[z,y),

Ao = Cy[2',y'), A = Cily,2’), T = t|,. Then notice that = C' - A - A- Ay - T. The treet’ is
definedasg’ =C - Ay - A-A; - T.
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2
7
.\

B o

Figure 1: lllustration of the vertical swap



Guarded swaps Letk € N, t € 7 andx,y, 2,3 be nodes of such thaty is a descendant af,
x’ is a descendant aof andy/’ is a descendant af . A horizontal swap at nodes, y, ', 1y’ as above
is said to bek-guardedif x andx’ are depthk similar. A vertical swap between, y) and[z’, ¢/) is
said to bek-guardedif » andz’ are depthk similar andy andy’ are depthk similar.

Let L be a tree language aidbe a number. We say thétis closed undek-guarded swap# for
every treg € L and every tre¢ constructed front by either a horizontal or a verticatguarded swap
thent’ is in L. Note that being closed undkrguarded swaps implies being closed undeguarded
swaps fork’ > k.

A regular tree languageé is said to be aperiodic if there exidtse N such that for all contexts
C, A and every tred', CA'T € Liff CA*'T e L. The least suchis referred to as thaperiodicity
numberof L. This is just the classical notion of aperiodicity in the ro@hof contexts.

Theorem 1. Let L be a regular tree language.
Then L is definable in FO iffL is aperiodic and there exists fa such thatL is closed under
k-guarded swaps.

The “only if” direction of Theorem 1 is easy. If is definable in FO , the# is aperiodic [Tho97].
It is also known that for any FO sentengéhere is a numbet such that the truth ob is determined
by the number of-neighborhoods of each isomorphism type. The least duhreferred to as
the locality rank of ¢ [Lib04]. A k-neighborhood in a graply’ is the set of nodes that are within
distancek of some point inG. Sincek-guarded swaps preserve the numbek-afeighborhoods of
every isomorphism type, it follows that if is definable by an FO sentengethenL is closed under
k-guarded swaps, whefeis the locality rank ofp.

The opposite direction follows from the following theoremhose proof will be quite involved:

Theorem 2. For any regular tree languagé which is aperiodic and closed undérguarded swaps,
there exists & such that for any, ¢ € 7 we have: s=5Xt¢t = seL iff teL.

Before proving Theorem 2 we show how Theorem 1 follows fronfiom Theorem 2 we know
that if L is aperiodic and closed underguarded swaps thdhis a union of equivalence classes=of
for someK. Standard arguments from finite model theory (see e.g. A])oghow that=" has only
finitely many equivalence classes and that each of them isat@é in FO. Thereforé, is definable
in FO as a disjunction of such formulas for the correspondiagses.

3.2 Proof of Theorem 2

In this section we fix an aperiodic regular tree languageith aperiodicity numbet, a numbelk and
assume thak is closed undek-guarded swaps. We also fix a deterministic bottom-up tréenaaton
A for L.

Because the trees are ranked, there are only finitely manyoigghism types of trees of depth at
mostk (by the depth of a tree, we mean the maximal length of any p&te)denote the set of such
isomorphism types b¥j. Given a tre¢ and a node: of ¢, we writeT}.(z) for the isomorphism type
of the k-spill of x in ¢, and denote it as the-type of x (type of x whenk is understood from the
context). A crucial observation for the rest of the papeh& the(k + 1)-type of a node determines
the k-types of its children.

For eachr € 7; and any tree we denote byt|, the number of occurrences of the typén ¢.
Given two treess, t we write s =% ¢ if for all 7 € 7y, |s|; = |t|; or |s|,, |t|- > d (s andt have
the same number of occurrences of typap to thresholdl). We writes <* ¢ if for all 7 € 73,



s> < |t|-, and we writes <% ¢if s =k tands <* t.|Ifforall 7 € 7y, |s|, = [t|, then we write
s :’éo t.

Another fact that will be used repeatedly is that if we apphk~guarded swap move to a trée
there is an obvious bijection from the nodes @b the resulting tre¢ that preservegk + 1)-types;
in particular, we have =F+1 ¢,

This first lemma shows that if we have the hypothesis of Thed2ethen we can assume that
andt have the same number of types up to some threshold.

Lemma 1. For each numbe, there is a numbek,; such thats =/« ¢ implies thats =™ ¢ and
thats, ¢t are depthtk + 1) similar.

Proof. ChooseK; big enough so that we can count the number of satisfiers offamyl )-type up to
threshold? using K; quantifiers. O

The following lemma refines the previous one by showing tiehbmly can we assume thaand
t have the same number of types up to some threshold, but thaiutimber is always bigger inthan
in s.

Lemma 2. For each numbet’ there exists a numbersuch thatifs =" ¢ then there exist& such
thats g’;,“ t', moreovet, t’ are depthtk + 1) similar, andt’ € Liff t € L.

Proof. Assumes :fl“ t for some large enougtl whose value will become apparent during the
proof. Let3 be the number ofk + 1)-typesr such thatt|, < |s|-. We prove the lemma by induction
on . If B = 0 this is clear. Otherwise let be a(k + 1)-type that occurs more times inthan int.

By hypothesig occurs at least times int.

Given two nodes:, y in a treet with y a strict descendant of, we writer|[x, y) for the number of
nodes in the context,[z, y) that have type-. A T-skeleton of length is a sequence; : 0 < i <n
such thatr; 1, is a strict descendant af, andr[z;, z;+1) > 1 foreach0 <i <mn — 1.

We first show that for every; there isd such that for every tree, if |u|, > d then there is a
T-skeleton of lengthl; in u. By theinterior of a pointed tree, we mean all the nodes in it other than
the port. Chooséd > (r + 1)%. Starting withz, being the root of:, we will chooser; inductively
such that the interior of’, [z;—1, z;) has at least one node whose typeuiis 7 andz; has at least
(r+ 1)d1*" nodes of typer below it. Suppose that we hawg ... z;. Letz; be a descendant af;
of typer having minimal depth. If there are no nodes of typia the interior ofC,, [x;, z1), then we
know that there are at leagt + 1)%~¢ nodes of type- below 1, includingz;. Hence there is some
child of z; having at leastr + 1)“~(+1) nodes of typer below it. Setz;,; to be such a child. If
there is some node of typein the interior ofC,,[x;, z1), then there is some node strictly between
x; andz; which has more than one child having a node of tygeelow it. Takingz, to be the highest
such node, it is clear that one of the childrerzgfmust have at least- + 1)%—(+1) nodes of type
7 below it; chooser; 11 to be this node. We can verify in either case that this presstve induction
hypothesis.

We apply this to the treg for d; to be chosen later on, gettingraskeletonz; : 0 < i < d;.
Let ¢ be one more than the product of the numbef/oft- 1)-types and the number of states in the
automaton. The nodes in the interior of the context betwgeamdx;,, for i < d; — g withi =0
mod ¢ form asectionof t. We say that dk + 1)-typev is safeif |¢t|, > d'. A section issafeif it
contains only nodes having sdfe+ 1)-types. Because the number of sections is at leasy) — 1,
we can choosé; big enough so that at least one of them is safe. Given thicehaid,, fix x; such
that all nodes in the interior of the context betwegmndz;,, are safe. By the choice qf there are



a andb with i < a < b < i + ¢ such that the run of automatehont¢ reaches the same statergtas
atxy, with =, andx;, having the samék + 1)-type. Hence we can replace the cont€xt:,,, ;) with
arbitrarily many copies of itself, without changing memgiep in L. Lett* be any tree resulting from
such a replacement. Singg andzx; have the same type, performing this replacement does nogeha
the (k + 1)-types of any node of’[x,, x;), and the type of any node i@i;[z,, ;) within ¢ is the
same as the type of each of its copie#*inThus we have only added copies of safe types. Therefore
for any such* we haver* =k ¢ =R 5. Now sinceCy[z,, 21) contained an occurrence of by
adding sufficiently many copies of the context in forming 6ymwe have reduced by one int*, and

we can conclude by induction. O

A treet is k-pseudo-includedh a treet’ if there is an injective mapping from nodes oft to
nodes oft’, sending the root of to the root oft’, and such that: (i} preserves types iff;, and (ii)
if z is thes®” child of y in ¢ thenh(z) is a descendant of thé&" child of h(y) in t'. In this case the
h-pseudo-treés the minimum prefix of’ which containg(t).

The next step shows that we can also assumestisapseudo-included in. It requires only the
closure ofL underk-guarded swaps.

Lemma3. If s <¥*! ¢ ands,t are depthtk + 1) similar then there existé such thats is (k + 1)-
pseudo-included ir, ¢/ :’gjl t, t,t" are depthtk + 1) similar, andt’ € Liff t € L.

Proof. The proof is by induction. We construty- - - ¢, andsy . .. s, such that:ty is ¢ and, for all
0 < i < n, t;41 is obtained fromt; using onlyk-guarded swaps;; is a prefix ofs maximal with
respect to the property thatis (k + 1)-pseudo-included in;, and ifs; # s then there exists a node
x; of s that is a child of a leaf o§;, such thatr; € s;11. Sinces; cannot keep growing forever, we
must eventually have, = s. This implies the lemma by taking = ¢,,, using the fact that-guarded
swaps preserves the number(&f+ 1)-types and the assumption thatis closed undek-guarded
swaps.

By hypothesis the root of and the root of have the samé + 1)-type. Thus we can initiate our
process by mapping the root eto the root oft.

Assume now that we have constructgdand s; saying the inductive invariant. The#) is a
maximal prefix ofs which is (k + 1)-pseudo-included im; by a mapping: such thati(a) = o’. If
s; = s we are done. Otherwise letbe a node of; such that it child y is not ins;. Lets’ be
a minimal prefix ofs which containss; andy. We show how to transforrty into ¢;,; so thats’ is
(k + 1)-pseudo-included in; 1. This would suffice for the induction, since we can then edtério
a maximal pseudo-included prefix.

Letr =T, ,(z), v = T;;,,(y) andz’ = h(z). By hypothesis we know that there is a naden
t; outside ofh(s;) such thaT,i;l(y’) = v. Let 2 be thep!” child of 2. Note that:’ cannot be in the
h-pseudo-tree.

We distinguish several possibilities depending on theik&gosition ofz’ andy’. By maximality
of s; we know that,’ is not below:’.

Assume first that/ is outside the:-pseudo-tree. Then it is either belawor not related ta’ by
the descendant relationship. It is crucial here fhat) = o/, as it rules out the case wheyeoccurs
aboveh(a). Because: andx’ agree on theifk + 1)-types,z’ andy’ are depthk similar. We can apply
the k-guarded horizontal swap to these two nodes. This yieldsitis@ed tree; ., as we can now
extendh by settingh(y) = 3. We can verify that this yields & + 1)-pseudo-inclusion mapping,
since the newk + 1)-type ofy’ remainsv.

Assume now thay/’ is inside theh-pseudo-tree. Let; be the deepest node i such thatt) =
h(z1) is an ancestor of’, andzs be the highest node isy so thaty’ is an ancestor af), = h(z3).
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Note that the definition of pseudo-inclusion implies thatis uniquely defined, and is a child af .
Assume that, is thej" child of z; in s and letz] be thej" child of 2} in .. Note thatz| cannot be
in the image ofh; if it were, by the definition ofr; and the fact that pseudo-inclusion preserves the
descendant relation, we would hase= y’, which would contradict the fact that is assumed not to
be in the image. There are two cases to consider.

The first case is wher' is a descendant af, (see Figure 2). Becaugepreservegk + 1)-types,
z1 andz/, are depthk similar and the same holds fgf andz’. We can thus apply thg-guarded
vertical swap betweefx}, y’) and[z), ') and obtain the desired treg ;. We can then extent by
settingh(y) = ¥'. It remains to verify that this indeed gives& + 1)-pseudo-inclusion mapping.
This is straightforward and left to the reader.

Figure 2: This illustrates the case whefnis a descendant aof,. s; ands are depicted on the left; is
depicted in the middle. After applying theguarded vertical swap betweér{, ') and[z), 2’), we
reacht;; depicted to the right. The node$ andz/, have the samg-types and the nodeg andz’
have the samg-types.

If 2/ is not a descendant af, we proceed as follows. As above, we know thatand 2’ are
depth% similar. If 2" is a descendant af , then it would have to be a descendant:bfas well, since
all pseudo-tree elements benegtlie beneath:,. Hence we know:’ cannot be a descendantgf
and soz’ is not a descendant gf either. We can therefore apply theguarded horizontal swap 9
andz’, obtaining an intermediate tree In ¢, we have that’, andz| are depthk similar and we can
apply again thé:-guarded horizontal swap to obtain the desired tfee The mapping: is extended
by sendingy to 3/, and it is immediate to see that this preserifes- 1)-types. O

An immediate corollary of Lemma 3 is:

Corollary 1. If s andt are trees that are depttk + 1) similar such thats =**1 ¢ thens ¢ L iff
te L.

Proof. Apply Lemma 3 tos and¢ and notice that the trgéobtained is isomorphic tevia the(k+1)-
pseudo-inclusion mappinig as the hypothesis implies thiatcannot contain any extra nodes. [J

Let us look at where we are in the proof of Theorem 2. Givenntit&l treess andt satisfying the
hypotheses of the theorem, we know that we can transfanto ¢ so thats is pseudo-included it/
by some mapping. Thust” is a copy ofs plus extra contexts inserted between elements of. We
also know, by the corollary above, that if we could get theeypft” to match those of exactly, we
would be done. Our next goal will be to add these contextsdoe by one. We will use the crucial
observation that allk + 1)-types occurring outside @f(s) have strictly more occurrencesidfithan
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in s, and hence must have many occurrences ifio make the last step formal we will need further
notation and one extra lemma.

Let C be a context where the port is not the same as the root, andleta function assigning a
k-type to the port of” and a(k + 1)-type to each other node 6f. \ is said to beconsistentf there
exists a tree such that for every non-port nodein C, the (k + 1)-type odz in C' - ¢t matches\(x).

A k-abstract contexis a context_' whose root is not equal to its port, supplemented with a ctesi
assignment ofk + 1)-types to non-ports anrtypes to a port, as above. Whene¥kes clear from the
context we will refer taabstract contextWe extend the basic definitions on trees to abstract cantext
in the obvious way: it/ = (C, \) is ank-abstract context, we will refer to any nodeGhas a node of

U, and similarly refer to the root df/, child relation onl/, etc. Given a non-port nodeof U (i.e. a
non-port node of”), we will refer to\(x) as the(k + 1)-type ofx, while we refer to the:-type of the
port nodep of U to mean\(p). Given twok-abstract contexts’ andV” we say that/ is compatible
with V' if the (k + 1)-type of the root ofl’, when seen as &-type, is thek-type of the port ofU.
Note that the compatibility relation is not symmetric. Ufand V' are compatible abstract contexts
thenU - V, the concatenation d andV/, is also an abstract context with the obvious consistent
assignment. We can also can concatenate an abstract caittesttree. An abstract contekt and

a treet are compatible if thé-type of the root oft is the k-type of the port ofU. In this case, the
concatenatio/ - t will be a tree.

A k-abstract context/ is ak-abstract loop(or justabstract loopif & is clear) if U is compatible
with itself. Thus ifU is an abstract loop, theli™, the concatenation ot copies ofU, is also an
abstract context for any € N.

Loops will play a significant role in reducingo s. Observe that if. witnesses that is (k + 1)-
pseudo-included inandy is thep!” child of = in s, thenC;[z, h(y)) wherez is thep child of h(x),
together with the obvious assignment, is an abstract loap in

Given atree and an abstract contelt, we say that/ is (k+1)-includedin ¢ if there is a function
from C to ¢ preserving the'” child relation for everyi < r which also preserves: + 1)-types. We
say thatU <, t if the number of occurrences of eath + 1)-type inU is strictly less that the
number of occurrences of the safite+ 1)-type int.

We are now ready to state and prove our last technical lemr& viery similar in spirit to
Lemma 3 and its proof follows exactly the same ideas. Howi\differs in Lemma 3 in two crucial
respects. The hypothesis on the number of types is stroamgere require strictly more typesirnhan
in U. The conclusion is somewhat stronger, as we replaced psealdision by inclusion.

Lemma4. Lett be atreek a number, and/ an abstract context.
If U <1 t then there exists such that’ is (k + 1)-included int/, ' =K1 ¢, and,t’ € L iff
te L.

Proof. The proof is similar to that of Lemma 3. It is done by inductamd requires a lengthy case
analysis.

An abstract context/ is weakly (k + 1)-pseudo-includedn a treet’ iff there is an injective
mappingh from nodes ofJ to nodes of’ that satisfies the requirements for pseudo-inclusion,pxce
for the requirement that the root 6f is mapped to the root af. We will likewise talk about weak
(k 4+ 1)-pseudo-inclusion mappings and we@k+ 1)-pseudo-trees. The first step is to transfafm
into ¢” so that there is a wealk + 1)-pseudo-inclusion ot/ into t”. Note that we cannot directly
apply Lemma 3 as the hypothesis on the root types was cruciahe proof of Lemma 3 this was
reflected in the fact that if’ is not in theh-pseudo-tree then it cannot be above the image ulhadér
the root ofs. Without this the proof would not go through. However withr stronger hypothesis on
the number of types, this case can now be handled.
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Claim 1. If U <y t then there exists a tre such that is weakly(k + 1)-pseudo-included into
t", " =kl ¢ and,t” € Lifft € L.

Proof. The proof is done exactly as in the proof of Lemma 3 with théofeing differences. In the
base case, the image of the root.bfs now an arbitrary node af= ¢; whose type matches the type
of the root ofU; an inclusion mapping does not demand preservation of thte Buring the induction
we have constructeq] and a prefix/; of U which is weakly(k + 1)-pseudo-included in;. Leta be
the root ofU. Recall the proof of Lemma 3. We have two nodeg € s such thaty is a child ofx
and is of typev. We also have three nodes nodégy/, 2’ € t;, such that’ = h(x), 2’ is a child of
«’, andy’ is a node outside di(U;) of typer. We are trying to modifyt; in order to put a node of
typev belowz’. This is done by a case analysis depending on the relativegrosf =, ¢’ andz’. All
cases are handled as in Lemma 3 but we now need to considextoaease which was not possible
in Lemma 3.

Assumey’ is an ancestor dfi(a). By hypothesis we know that there ig/a +# ' outside ofh(U;)
whose type is also. If we re-do the case analysis witlf playing the role ofy’ we are left again
with the case where bot}i andy” are ancestors df(a). Assume without loss of generality thglt
is a strict descendant gf. Notice thatz’, ¢/, andy” are depthk similar. We can apply thé-guarded
vertical swap tdy’,y”) and[y”, 2'). This yields the desired treg, ; asy’ is now thep'” child of .
Notice that the presence gf was crucial for this step. O

Using Claim 1 we can assume without loss of generalitythetweakly(k + 1)-pseudo-included
int.

Let A be the set of verticeg of U such that the parent gf, denoted byz, is in U, and such that
h(z) andh(y) are not in a parent/child relation. Note that the nodeA ido not necessarily form a
subtree. Let = |A] andm = X,cad(y), whered(y) denotes the depth i@ of y. If n = 0 we
already have &k + 1)-inclusion mapping and we are done. If not we show that it ssfie to modify
h and re-arrange via swaps and obtain a new weék + 1)-pseudo-inclusion fot/ mapping with
(n',m') < (n,m), where< denotes the lexicographic ordering on pairs. By repeatirggargument
we eventually get &-inclusion mapping of/ into some tree’.

Assume that # 0 and taker andy such that € A is thep®™ child of z, and consides’ = h(z)
andy’ = h(y). Lett be the(k + 1)-type ofz andv be the(k + 1)-type ofy. By assumption we know
that there is another nodé outside of the image(U), such that the type of’ is v. Let 2’ be thep!”
child of /. Assume first that’ = ¢”. Then the type o’ is v and we aim at modifying by setting
h(y) to 2’ while reducingn by 1. When settindi(y) to 2/, h may no longer be a pseudo-inclusion
mapping, as the image byof all the children ofy are descendants gf, and hence descendants of
the same child of(y). Letp’ be such thay/ is a descendant of thé" child of 2’. Consider the®”
child of y with i # p/. As thei’* child of 2’ must have the samietype as the'” child of 3/, and
as those two nodes are not related by the descendant relataran apply thé-guarded horizontal
swap at the corresponding nodes, pladifg;) at the desired position. Once we have done this for all
i # p’ we eventually obtain &-pseudo-inclusion mapping, as thé" child was already well placed.

Assume now thay’, yy”, andz’ are all distinct nodes. Notice however thaty’ andy” are depthk
similar. We perform a case analysis depending on the rektip between’, 3/, andy”.

In the first case, we assume thdtis an ancestor of’. We apply thek-guarded vertical swap to
[y",2") and[7’,y), obtaining a tree;. This case is depicted in Figure 3. Notice thais still weakly
k-pseudo-included ity and thaty’ is now thep!” child of 2’. Hencen has decreased by one.

In the second case, we assume fais a descendant @f . We apply thek-guarded vertical swap
to [2/,y') and[y’,y"), with h being modified so that if before it maps some nedt® a nodew’ that
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Figure 3: lllustration of the first case.is depicted on the left, witlh/ the solid triangle within it.z
is in the middle, with the weak pseudo-imageldflepicted as a solid triangle within it. The trge
resulting from the swap is shown on the right. Notice tfidtecomes a child af’ and that no other
nodes of the weak pseudo-inclusion are affected.

is swapped, it will now mapv to the image ofw’ under the swap. Via this modificatidi remains
weakly k-pseudo-included in the new tree, and in this tree ngds now thep!” child of h(x), thus
decreasing: by one.

In the third case, we assume thydtis not related ta’ andy’. We first applyk-guarded horizontal
swapping ta/” andz’ and again betweeyt’ (i.e. the image of/’ under the previous swap: for brevity
we omit this distinction henceforth) apd We then modifyh by composing with the swap mappings,
giving a weakk-pseudo-inclusion in the obvious way. Again we have coretettz) andy’ and
decreased by one.

In the fourth case, we assume thdtis between:’ andy’. But then we can change so that
h(y) = y" and still get a weak-pseudo-inclusion of into ¢’ via the newh. We then proceed as in
the second case.

The last case is wheyt’ is a descendant af but is not related tg/. If v = 7 then letz” be the
p'* child of 4/ and notice that’, 4/ andz" are depthk similar. We apply the:-guarded vertical swap
to [2/,y') and[y/, z”") and the reader can verify that we are donev K 7 then by assumption we
know that there is a node’ outside ofh(U) such that thé:-type of2” if 7. Let 2" be thep'” child of
z”. Notice that”, 2/, 3/ are depthk similar. Again we have to consider several subcases.

In the first subcase” is not related ta’. We apply thek-guarded horizontal swap td’ and 2’
followed by ak-guarded horizontal swap applied 46 andy’. The reader can verify that this yields
a treet; with the desired properties/’ is now thep" child of 2/ and the weak-pseudo-inclusion
mapping is only affected there, thus decreasiriy one.

In the second subcas€ is a descendant of . Then we apply thé-guarded vertical swap to
[2/,y") and[y’, 2") and obtain a tree whereis decreased by one.

The third subcase is whetf is an ancestor of’. Then we apply thé-guarded vertical swap to
[2",2") and[Z’,y’). The reader can verify thatis decreased by one.

The fourth subcase is whefi is below:’ but not related tg’. We apply thek-guarded horizontal
swap toz” andy/, attachingy’ to z”. We now modifyh by mappingr to 2” instead ofr’. Itis easy to
verify thath is still a weakk-pseudo-inclusion mapping fdr. It is also easy to check that, with this
new mappingyn does not increasey.is no longer inA butz is now inA, with no other nodes moving
into A. We remark now that with this new mappinghas decreased by one.

The last subcase is whefi is between:’ andy’. Thenz/, 2’ andy” are related as in the subcase
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above and we proceed replacigigwith ”. O

We are now ready to complete the proof of Theorem 2.

Proof of Theorem 2:

Let @ be the set of states of, a = |@Q| be the number of states df. Let 5, = |7;|. Recall that
is the aperiodicity number df, and thus for everg’, A, andT we haveCA!T € Liff CAYIT ¢ L.
Letd = r(Per®+D+ 4 1 | etd be the number required in Lemma 2 f6r Let K be the numbeK;
required in Lemma 1 fod. We show thats =X ¢ impliess € Liff t € L.

Assumes =X ¢, we show that € L iff t € L. From Lemma 1 we know that =" ¢ and
s,t are depthk + 1 similar. Therefore by Lemma 2 there is a trésuch that’ € L iff t € L and
s g’;,“ t’. We can now apply Lemma 3 and obtaihsuch that” € L iff ¢’ € L, sis (k + 1)-
pseudo-included in’ via a mapping:, andt” =F+1 ¢/ :’;,’Ll s. Therefore it suffices to prove that
seLifft" e L.

By construction” is h(s) plus possibly some extra contexts inserted between elsnoéhfs).
We will consider each of these contexts one by one, with theafiadding them te. Lety be the
p'" child of some node: in s such that:(y) is not a child ofh(z). Let z be thep'” child of h(z). By
the definition of pseudo-inclusion, we see thay) is a descendant of andCy |z, h(y)), together
with the obvious assignment is an abstract loop’inLet V; - - - V,, be the set of abstract loops that
are obtained by this process fraff\h(s). For each; and eachk + 1)-typer, we let|V;|, denote
the number of nodes ii; that have type- in t”. We will “pump” s until the number of occurrences
of each(k + 1)-type exactly matches the numbertih To achieve this, by induction, we construct
S - -+ sy SUch that: (s is s, (i) forall n > i > 0, forall 7 € Ty11, [si|r = |s|-+ Vil 4+ -+ |Vil7,
(iii) s; € Liff s,_1 € L.

The base case is immediate. Assume the result fori < n, and consideV = V;, ;.

Let fi- be the transition function on states associated to the xoViteThe first step is toninimize
the size ofl/: find an abstract conteXt’ such that the function associated to the underlying context
of V'is fy,, V' uses the samg: + 1)-types asl/, and the size of”’ is bounded by-%*"*+1, This
is a pumping argument. To find suchd, label each node of V' with the pair(f, ) wherer is
the (k + 1)-type ofx in V and f is the transition function associated with the context imlete from
the underlying context oF by removing all nodes that are not descendants (f the port of V' is
not belowz, this will be a constant function). Now, whenever there isanioh in1” which contains
the same label twice, we prune the section from (and incg)dime top node to (and excluding) the
bottom one, without affectingy. This yields an abstract contekt whose depth is bounded by
Br * . As the rank ofi”’ is bounded by, the total size 0¥/’ is bounded by-?x*“+1,

Now setU = V’'. Becausd/’ is an abstract loopl/ is well-defined as an abstract context.
Moreover its size is bounded §’+**+1)* — @’ — 1. Recall the crucial observation that &+ 1)-
types occurring outside @f(s) have strictly more occurrencestithan ins; they thus appear at least
d' times ins, and therefore in;. In particular, this is true of eadlt+1)-type of U, hence by the choice
of d’ we can apply Lemma 4 t&' ands; and obtains; = A; - U - A, for some context\; and tree
Ao, such that!, € Liff s; € L, ands, =k+1 s;. We can now use the aperiodicity ffand without
affecting membership il obtain a trees] = A; - V'LV Ay, Now sets;1 1 = Ay - ViV A,
Since fyy was the same af,/, moving froms/ to s;4; does not affect membership in We can
easily see that for every + 1)-typer, |s;+1|- = |si|- + |Vi|-, and thus we have all the other desired
properties.

This last step is depicted in Figure 4.

Lets’ = s,. By construction we have =F+! " ands’ € Liff s € L. Theorem 2 now follows
from Corollary 1.
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Figure 4: This figure depicts the last step of the proof. Thelédt tree iss, which is k-pseudo-
included int” depicted at the bottom. The extra partt6f/(s) is depicted in dark grey and is the
abstract context/. The second tree in the top row represetitafter applying Lemma 4, the dark
grey parts representirig = V!. Aperiodicity adds one more copy &f and yields the third tree in
the top row. But this tree is essentially the initial one withadded between andy, as depicted by
the top right tree.

4 Unranked trees

In this section we consider unranked trees. Each node mayawe/an arbitrary number of children.
As mentioned in Section 2 we assume no order among the chitdr@ node; in particular we cannot
speak of the first child of a node. As usual we denotédogsta set of trees.

The new difficulty of the unranked case, compared with thé&edrcase, is that the number of
isomorphism types of &-spill of a node is infinite. We therefore need to relax théorobf similarity.
For any number we define an equivalence relatiesf on trees of deptlt by induction onk as
follows. Lett andt’ be two trees of depth. Letr andr’ their respective roots. In the cake= 0,

t ~9 ' if  andr’ agree on their label. Otherwige-* t' if, for each clasg of ~£~1, the number of
children ofr in ¢ must agree with the number of childrensdfin ¢ or both numbers must be bigger
thann. Itis immediate to see that, for eaehk, the equivalence relation’ is of finite index. For
each noder of a treet, the~F-equivalence class of its-spill is called the(n, k)-typeof z. Whenn
andk are understood from the context we simply saytieof x. Let U7, ; be the (finite) set of
(n, k)-types. If the(n, k)-type of noder in treet is u, we writeUT;iyk(x) = p. Foreachr € U7,

_nk

we extend the notatiofi|,, =, ,and gg’k in the obvious way.

Two nodesr, y are said to bén, k)-similar if they have the samg, k)-type. Note thatn, k)-
similar implies(n/, k’)-similar for alln’ < n andk’ < k. Two trees are said to ke, k)-similar if
their roots ardn, k)-similar.

The(n, k)-guarded swaps are defined as in the ranked case, replagtigidgimilar with (n, k)-
similar. Note that ifL is closed unde(n, k)-guarded swaps then it is closed undef, £’)-guarded
swaps for alln’ > n andk’ > k.

We first focus on proving the following result, from which auain theorem, Theorem 5 below,
will follow easily:
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Theorem 3. Let L be a regular language over unranked trees.
ThenL is definable in FO iff.. is aperiodic and there exists, &k € N such thatl is closed under
(n, k)-guarded swaps.

As with the proof of Theorem 1, one direction is easy and timemwtollows from the following
theorem.

Theorem 4. For any regular unranked tree languadewhich is aperiodic and closed undéu, k)-
guarded swaps, there existgé@such thatforany,t € Twehave: s=Kt = sec L iff te L.

The proof of Theorem 4 will follow along the same lines as thmopof Theorem 2, but differs in
the technical details.

We fix an aperiodic regular tree languafienumberst andn and assume thdt is closed under
(n, k)-guarded swaps. We also fix a deterministic bottom-up uredniee automatod for L. Let
m be the tolerance ofl. Without loss of generality we can assume that m.

The following is an extension to the unranked setting of aieage of lemmas that we used in the

ranked case. The first one is again immediate from the lgaafliFO.
Lemma5. For each pair of numbers »/, there existd(, ,, such that =Kan ¢ impliess :Zl’k“ t
ands, t are(n’, k + 1)-similar.

Lemma 6. For each numbed’ and each number’ > n there exists a numbet such that if

s =K1 { then there exists such that <" "™ ¢/t and’ are(n’, k + 1)-similar, and’ € L iff
te L.
Proof. Assumes :Z"k“ t for some large enougdi whose value will become apparent during the

proof. Let3 be the number ofn’, k + 1)-typest such thaflt|, < |s|,. We prove the lemma by
induction ong. If 5 = 0 this is clear. Otherwise let be a(n’, k + 1)-type that occurs more times
in s than int. By hypothesig occurs at least times int. We say that dn/, k + 1)-typev is safeif
|t|, > d’. A subtree in a treeis safe if all the nodes in it have safe types withiBy a subcontext of
t, we mean a set of the for@, [z, y) for z,y € ¢t. A subcontext of a treeis likewise said to be safe
if every node in it has a safe typein

First, letd; be big enough so that whenever we hdyelistinct subtrees of a treethen we can
find n’ of them and a state of A such that all the selected subtrees are safeamd A reaches statg
at the root of each. Let(A) be the number of states i, and letd, be big enough so that whenever
one hagds/(#(A) + 1)) — 1 subcontexts of a treethere is at least one that is safe. Such and
dy can be easily computed from the sizeAfd’, n’, andk. We now claim that anyl bigger than
(d1 + 1)% will suffice.

A 1-skeleton of lengthl is defined as in the ranked case. We have two cases to considee
first case, every node ihhas at mostl; children which have a descendant of typeln this case,
since we have more thaa; + 1)d2 nodes of type-, we can use the same proof as in the ranked case
to construct ar-skeleton of lengthls in ¢. As in the ranked case, the context betweeandz; 4 4)
in the 7-skeleton oft, including the top node and excluding the bottom one, issdadi~-sectionof
t. Using the same argument as in the ranked case and the defioiti,, we can pump a portion of
somer-section in the skeleton as much as we need to get the numipexdes of typer in ¢t to be
larger than the number i This pumping will not change the type of any prior node, sparticular
will not impact the type of the root; thus the resulting tre&i’, k + 1)-similar tot¢.

In the second case, there is some nodie ¢ that has more thag children which have a descen-
dant of typer. By the choice ofl; we can find a state along withy, - - - , y,,» children ofz so that
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for eachy;, t|,, is safe,t|,, contains a node of type, and the automatod when run ont reaches

q aty;. Because)’ > n > m, the tolerance of4, it is possible to add an arbitrary number of extra
copies of any ot|,, without affecting membership ih. Each copy adds at least one node of type
and we do this until we have enough nodes of typAgain it is easy to check that pre-existing types
are preserved, so the resulting tre€i§ k + 1)-similar tot. O

We adapt the notion of pseudo-inclusion to the unranked.casteet is (n,k + 1)-pseudo-
includedin a treet’ if there is an injective mapping from nodes of to nodes ot’, sending the root
of ¢ to the root oft’, and such that: (i preservesn, k + 1)-types, (i) if y is a child ofz in ¢ then
h(y) is a descendant of a child of h(x) in ¢’ such that’ andy have the samén, k)-type (notice the
switch fromk + 1 to k& here), and (iii) ify; andy- are distinct children of in ¢ then the least common
ancestor ofi(y;) andh(ys) in ¢’ is h(x) (the children ofh(z) associated tg; andys are distinct).
The h-pseudo-treés the minimum subtree af which containgi(t).

The following lemma takes care of the pseudo-inclusion.step

Lemma 7. For alld’ there exist3’ such that ifs ggf’k“ t ands, t are(n’, k + 1)-similar then there

existst’ such thats is (n, k + 1)-pseudo-included it ¢/ :Z;’ngl t,andt’ e Liff t € L.

Proof. We say that a type € U7, ;. is safeit it occurs more than!’ times int. A subtree oft
is safe if it contains only safe types. Letbe computed frond’, n, k andm so that whenever one
considers a collection af’ pairwise-disjoint subtrees of some tree, then there eaistate; of A and
at leastmn of the subtrees which are safe and for which the automatahesastate at the root.

As in the ranked case, the proof is done by induction. We coaisty - - - t, andsg - - - s, such
that: tgist, forall 0 < i < «, t;11 € Liff t; € L, s; is a maximal prefix ofs such thats; is
(n', k + 1)-pseudo-included im;, if s; # s thens; is a prefix ofs; 1 and there exists a nodeof s
that is a child of a leaf of; such thatr € s;11, t;is1 =" ;andt; <**! ¢;,,. Sinces; cannot
keep growing forever, we must eventually haye= s. This implies the lemma by taking = ¢,

By hypothesis the root of and the root of have the samé’, k + 1)-type. Thus we can initiate
our process by mapping the root©fo the root oft.

Assume now that we have constructednds;, with s; a maximal prefix of (n, k 4+ 1)-pseudo-
included int; by the mapping:. If s; = s we are done. Otherwise letbe a node o§; which has a
child y that is not ins;. Let s’ be the prefix ofs which containss; andy. We show how to transform
t; into ¢;11 so thats’ is pseudo-included in;; . This suffices for the induction, since cleadycan
then be extended to be maximal.

Let7 = UT; .y (z), v = UT} ;. (y) anda’ = h(z). By hypothesis we know that there is a
nodey’ in ¢; outside ofh(s;) such thali'T);; , .\ (y/) = v.

Let C be the set of children of that have an image undér(in particular,y is not inC). Let
C’ be the set of children of’ having a descendant in(C'). We distinguish two cases depending on
whether there exists a child of 2’ which is(»/, k)-similar toy’ and which is not irC".

If such az’ exists then we are in a situation similar to the ranked cadecan again use a case
analysis depending on the relative positior:oéndy’ provide a sequence of swaps placijidpelow
2" without affecting the current mappirig

Unlike in the ranked case, suchramight not exist. In this case we show that we can expand the
number of children ofe’, without affecting membership ih or violating the induction hypothesis,
introducing a node’ (n/, k)-similar toy’.

Lety = UT,, ;. (y) (note that we move from + 1 to &, thereforev implies . but not conversely).
Sincex andz’ have the samén/, k + 1)-type, the number of children of with (n/, k)-type 1 must
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agree with the number of children of of (n’, k)-type . or both numbers must be bigger thahn Let

C,, be the subset of' consisting of children of of type ... Let C/Q be the subset of” of children

of 2’ of type . By definition of (', k + 1)-pseudo-inclusion we have tht,,| = |C},|. Because

is also of typeu andy ¢ C),, the total number of children of of type x is strictly bigger than the
total number of children aof’ of type . and therefore both numbers are bigger tharBy the choice
of n/, this implies that we can findh children ofz’ of (n/, k)-type 1. such that their subtrees are safe
and such that the automatehreaches the same staten all their subtrees. By the choice af we
can arbitrarily duplicate each of these subtrees withdecthg membership id.. Because of the
safety assumption the resulting tréds such that; :Z;,""’Jrl t;. Because we have only introduced
new nodes it} it is clear thatt; <™**+1 ¢/. This has introduced a new nogdeof type . in t, and we
can proceed as in the first case. O

This is where the unranked case departs in organization fnemnanked one. Indeed the proof
of Lemma 7 used pumping arguments, while the correspondimgnla in the ranked case used only
swaps. Therefore we cannot infer an unranked variant of doyal. Nevertheless, the remainder
of the proof will proceed in the same spirit of the ranked piadhat extra nodes left over infrom
the image of under a pseudo-inclusion will be removed. Since we cannmeao Corollary 1 as a
stopping condition, we will have to preserve the pseuddusion as we perform this removal.

We extend the notion of abstract context to the unranked ¢agmesider a contex@” whose root
is not equal to its port and a functionassigning dn, k)-type to the port of” and a(n, k + 1)-type
to each other node @f'. We say) is consistenif there exists a a treesuch that inC' - ¢, for every
non-port noder in C, the (n, k + 1)-type ofx in C - t matches\(z), and the(n, k)-type of the port
xz in C - t also matches\(z). An abstract(n, k 4+ 1)-contextis a contextC' supplemented with a
consistent assignment We will drop (n, k + 1) when it is clear from context, referring simply to an
abstract context.

The notions oftcompatibilityandloop are extended to unranked abstract contexts in the obvious
way. Given a tree and an abstract contekt, the notion ofU being(n, k)-included in ¢ is defined as
expected, as a mapping which not only preservesithg)-types but also the child relation.

As in the ranked case we will need lemmas that allow us toltighthbed an abstract context into
a given tree, so that we can apply aperiodicity to remove th&mndo this embedding we need the
following technical lemmas.

Given an(n, k)-type 7, a noder of type is said to bgn, k)-thin if its k-spill can be embedded
into the&-spill of any node (in any forest) of type We have that for each € U7, ;, there is a tree
whose root is of type and is(n, k)-thin: choose thé-spill of the root such that when we calculate
the (n, k)-type, we never go beyond when counting the number of occurrences at each depth. A
non-port noder in an abstract context of typeis said to ben, k)-thin if for any nodex’ of a treet
with typer and(n, k)-type p, the number of children of having typep is no greater than the number
of children ofz’ of type p.

Lemma8. LetU be an abstract context. If <,, ;41 t and each node € U, is (n, k + 1)-thin, then
there exists’ such that/ is (n, k + 1)-included int/, ¢' =%*"! ¢tand,t’ € Liff t € L.

Proof. As was the case for the ranked variant of this lemma, Lemmbesfitst step in the proof is
a weak pseudo-inclusion éf in ¢, which is obtained by a refinement of Lemma 7. Recall that weak
pseudo-inclusion is a pseudo inclusion that do not regbagthe root is mapped to the root.

Claim 2. If U <44 t and every node € U is (n, k + 1)-thin, then there exists a tre¢é such that/
is weakly(n, k + 1)-pseudo-included in’, ¢/ =%" ¢ and,t” € Lifft € L.
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Proof. The proof is done exactly as in the proof of Lemma 7 with somalkdifferences. See also
how Claim 1 was proved using a modification of the proof of LearnLeta be the root ofJ. In the
base case, the image of the rootldis now an arbitrary node af = ¢, whose type agrees with the
type of a; an inclusion mapping does not demand preservation of thie Buring the induction we
have constructet) and a prefixJ; of U which is weakly(n, k + 1)-pseudo-included in;.

Recall the proof of Lemma 7. We have two nodeg € s; such thaty is a child ofz and is of
typerv. We also have two nodes nodesy’ € t;, such thatt’ = h(z) andy’ is a node outside of
h(U;) of typev. We are trying to modify; in order to put a node of type belowz’.

In the proof of Lemma 7, we distinguished two cases depenaimghether there exists a child
2" of 2’ which is (n, k)-similar toy’ and which is not im(U;). As we now have that is thin, z’ has
at least as many children asfor each type, and therefore such’/aalways exists. We are therefore
in a situation similar to the ranked case and we can perforasa analysis depending on the relative
position ofz’, 3/ andz’ in order to place a node of typebelow 2" using only swaps. As no pumping
is necessary, we will eventually also hat\’/e:&;’€+1 t.

The case analysis is done as in the proof of Lemma 7 and, as iprthof of Claim 1, one extra
case needs to be considered wheis aboveh(a). This case is treated as in the proof of Claim L]

The rest of the proof proceeds exactly as in the ranked cade iproof of Lemma 4. We show
that the weak pseudo-inclusi@gnobtained in Claim 2 can be transformed into a real inclusiep s
by step. Considet,y € U such thaty is a child ofz and assume that = h(y) is not a child of
2’ = h(z). We also know by assumption that there is a ngdleutside ofh(U) which has the same
type asy’.

Again, the fact that: is thin implies that there is a child of 2’ which is (n, k)-similar toy/’.

We are therefore in a situation similar to the ranked casessndan perform the same case analysis
depending on the relative position of, v/, 4" andz’ in order to replace’ by 3’ using only swaps
and without modifying the rest of the pseudo-inclusion mag. The reader is now referred to the
proof of Lemma 4. O

We also need a version of this lemma for forests.

Given atree¢ and a forest, the notion ofU being(n, k)-included in ¢ is defined by the existence
of an injective mapping which preserves, k)-types and the child relation. For a foréstand a tree
t, we say that/' <,, , t if every (n, k)-type occurring inJ occurs strictly more often in

The same argument as Lemma 8 shows:

Lemma9. LetU be aforest. U <, ;41 t and each node € U is (n, k + 1)-thin, then there exists
¢ such that’ is (n, k + 1)-included int/, ' =%*"! tand,t' € Liff t € L.

We are now ready for:
Proof of Theorem 4. Let m be the tolerance ofl. Letd’ = (m + 1) * « + 1 wherea is spelled out
in the proof below. Let)’ be the number required in Lemma 7 frefpn andk, andd be the number
required in Lemma 6 fromd’ andn’. Let K be the numbe¥, ,» required in Lemma 5 fodl.

We show thats =X ¢ impliess € L iff t € L. Assumes =X t. From Lemma 5 we know that
S :Zl’k“ t and thats andt are(n/, k + 1)-similar. By the choice ofl we can apply Lemma 6 and

construct’ such that’ € Liff t € L, ¢ gg,/’k“ s, ands andt’ are(n’, k + 1)-similar. Now we can
apply Lemma 7 and obtaitf such that” € Liff ¢ € L, sis (n, k + 1)-pseudo-included ir”’, and
¢ =k =k s We show thas € L iff ¢ € L.

As in the ranked case we observe that by definition,of’ is h(s) plusabstract loopsnserted

between nodes 0f(s) and extrébranchesbranching off theh-pseudo-tree. The crucial observation
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is again that al(n, k& + 1)-types which occur outside @f(s) have strictly more occurrencestfithan
in s and therefore appear at leaétimes ins. The rest of the proof transform$ without affecting
membership irL in order to remove all the extra material.

We first show how to remove an extra branch. Lebe a node oh(s) andy’ be a child ofz’ such
thatV” = ¢"|,/ is disjoint fromh(s). Lett; be the tree constructed frotfi by removingV. We show
thatt; € Liff ¢/ € L, thus we can proceed with replacingt”. By repeating this argument we can
assume that’ does not contain any extra branch.

We now prove that; € Liff t” € L. Lett be the(n, k)-type ofy’ and letC'. be the set of children
of 2’ of typer in the h-pseudo-tree. Becausepreservesn, k + 1)-types,C; is of cardinality at least
n. As in the ranked case, using simple pumping arguments, meagthout affecting membership in
L, replaceV by a treeV’ having the following properties: (iy’ andV evaluate to the same state of
A, (ii) V' has exactly the same set(@f, k + 1)-types ad/, (iii) V' has all its nodes$n, k + 1)-thin,
and (iv) the number of nodes &f is bounded by a constanteasily computable from, & and A.
Let U be the forest consisting of. copies ofV’. Notice that all types occurring i’ occur more
frequently int” than ins, hence occur at least times ins and thus inh(s). Sincet; still contains
h(s), we have that all the types Il occur at least’ times int;. By the choice ofl’, which is strictly
greater thanU|, we havelU' <,, ;+1 t1. Thus we can apply Lemma 9 t6 and¢,, obtaining a tree,
with m copies ofV’’ (n, k + 1)-included in it as children of a node By Lemma 9 we have, € L iff
to € L. Ast” ist; plusV, each operation which transformedinto ¢, can be applied td’ yielding
a treets such thatts is to plusV hanging from node’. Moreover we haves € L iff ¢/ € L. It
remains to show that € L iff 3 € L. Recall now that: > m and therefore there exist siblings of
V of typer. We can then perforrn, k)-guarded swaps ity in order to place the: copies of//’ as
siblings of V. We thus haven + 1 siblings evaluating to the same state belgvand thusl” can be
removed without affecting membership In From the tree we just obtained we getby reversing
the lastm swaps, showing the desired property.

We now show how to remove an abstract loop'imising a similar technique. L&t be an abstract
loop int”. Lett; be the tree constructed frotti by removingV. We show that, € L iff t” € L,
thus we can proceed with replacingt”. By repeating this argument we eventually derive tHat s
showing that” € L iff s € L. LetV’ be an abstract loop obtained frdrhsatisfying the properties
(ii),(iv) listed in the branch case above together withi’)(&very non-port node ign, k£ + 1)-thin,
and (i") V andV” induce the same transition function fdr this abstract loop can be found as in the
ranked case. Apply Lemma 8 for the abstract contéxt (V’)! andt, yielding a treet,. Again as
t" is t; plusV, the same operations that transformedhto ¢, can be applied in order to transform
t" into t3. It remains to show that, € L iff t3 € L. Fromts, an extra swap appends after the
sequence of copies ofl/’ and thereford” can be removed without affecting membershiplily
applying aperiodicity, yieldings. O

The k-guarded swaps are defined as in the ranked case, but regisoimorphism of thé:-spill.
We will now show the main result:

Theorem 5. Let L be a regular language over unranked trees. THeis definable in FO iffL is
aperiodic and there exists € N such thatl is closed undek-guarded swaps.

The theorem will follow immediately from Theorem 3 and thédwing proposition:

Proposition 1. For every regular languagé and everyk there is a numben such that ifL is closed
underk-guarded swaps, then it is closed under k)-guarded swaps.

Proof. To prove the proposition, we first show the following claim:
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Claim 3. For every regular languagé there is a number such that for every: if tree ¢; is (n, k)-
similar to treet,, then there are tree, t/, with ¢} depth# similar to ¢}, such that4 reaches the same
state oy as ont;, fori =1, 2.

Proof of the claim.Let m be the tolerance o, andn = m|Q|. Notice thatn is defined so that
if there aren nodes, at least: of them will have the automataa reach the same state. We show by
induction onk thatn suffices. Fok = 0 itis clear. To prove this fok + 1, consider(n, k + 1)-similar
treest;, to. LetS be the set ofn, k)-types of the children of the root of and the children of the root
of to. For eachr € S, lett;(7) be the number of children of the root &f having typer andta(7)
be the number of children of the root &f having typer. If for every r we havety(7) = t1(7). then
we can let| = ¢, t, = t2 and we are done. For eactfor which this is not the case, we know that
to(7) > nandti(7) > n. Assume without loss of generality that(7) > ¢,(7). By the definition
of m, there are at least: children of the root o, having typer for which the automaton reaches
the same state. Pick one of these nadesd addiz(7) — t1(7) many copies of the subtree ofas
children of the root of;. Sincem is the tolerance ofi, this does not affect the state of the rundf
at the root oft;. Applying induction, we can change andt; without affecting the state at the root
so that all the children of the root of having typer are depthk similar to one another, and each of
these are depth-similar to the children of the root @f having typer. Doing this for each- € S,
we end up with trees, andt,, with the property that: for every € S all the children of the root of;
with type 7 are depthk similar to one another, they are all degilsimilar to every child of the root
of t}, with typer and the number of such children is the samé# iandt,. It is clear that) andt/, are
depth{k + 1) similar. O

Given the above claim, we show how Proposition 1 follows. [figel is closed undek-guarded
horizontal swaps. We show thatis closed undefn, k)-guarded horizontal swaps fergiven by the
claim. Givenzy, x5 in some tred” with z (n, k)-similar tox’, we lett; = T|,, andty = T|,,. Then
t1 (n, k)-similar tot, , and we let’, t, be as in the claim above for andt,. For treess; andss, let
T[s1, s2] be the result of replacing by s; andts by sz in T'. We know that:

T[ty,t2) € L T[t),th] € L « T[th,t}] € L < Tta,t1] € L
The first and third equivalences follow becau$endt; are equivalent in the automaton, and the
middle equivalence is from closure undeguarded swaps. This proves that closure ur{def)-
guarded horizontal swaps.

The proof for vertical swapping is similar; instead of thaiol above, we show that: For every
regular languagé there is a numbet such that for every: if contextC is (n, k)-similar to context
Cs, then there are contex€?, C?, with C] depth% similar to C%, such thatC} induces the same state
function asC; fori =1, 2.

Here two contexts arén, k)-similar if they are(n, k)-similar as trees. The extension of the in-
ductive argument for this is left to the reader. O

5 Decidability

We first show that the characterizations of Theorem 1 and fEme® are generalizations of the string
case. Then we show that they lead to decision proceduresdimr@rship in FO and Q...

5.1 Thestring case

We view a string as a tree in which every node has at most oné. cfihe child corresponds to
the successor of a node in a string. With this kind of treey ¢né vertical swap can be applied.
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Theorems 1 and 5 imply that a regular language is definabl®iiffft is aperiodic and closed under
k-guarded swaps for sonie

In the string case a similar characterization of FO saysdhagular language is definable in FO
iff it is aperiodic and closed undélempotent-guarded swap$his result was proved by Beauquier
and Pin [BP89]. We will show how this can be derived from owaretcterization.

We define the notion alempotent-guarded swapBix a regular (string) languagle and a min-
imal deterministic automatoA recognizingL. Recall that a functiorf is idempotentf fo f = f.
A string e is said to badempotenif the transition function it induces is idempotent. A regustring
languageL is closed under idempotent-guarded swailpfor any string of the formues fves’ fw,
wheree and f are idempotents and different from the empty string, we have

uesfves' fw € Liff ues’ fvesfw € L.

We show that the two notions of guarded swaps are equivalentsirings.

Theorem 6. A regular languagel. over strings is closed under idempotent-guarded swaps idf i
closed undek-guarded swaps for sormiec N.

Proof. One direction is simple: if. is closed undet-guarded swaps then it is closed under idempotent-
guarded swaps. Consider a string of the fares fves’ fw, wheree and f and non-empty idempo-
tents. Then we have:

uesfves' fw e L iff ueFsfFvers frw.

Notice now that the two positions right afterand right afterw are depthk similar, and the same
holds for the two positions right afterand right afters’. We can then appli-guarded swaps and get

uesfves' fw e L iff ueFs' fFveFsfrw iff ues' fvesfw e L.

We now turn to the other direction. Assumses regular, letd be a deterministic automaton for
L, and assumé is closed under idempotent-guarded swaps.d.be the number of states df and
takek = a® 4+ 1. We show that. is closed undek-guarded swaps. Recall that a striagnduces a
transition functionf/! on the states afl such thatf(¢) = ¢’ if, when started in statg, ¢’ is the state
reached byA at the end ofv. Two stringsw andw’ areequivalent relative td. if f2 = f;j/.

Consider a stringv of length greater thah. Fori < k let v; be the first; letters ofw. By the
choice ofk there must bé < j < k such thatf;! = f;}. Letu be the string such that; = v;u.
Becausefj} = f;; we have for every positive integer, v;u® andv; are equivalent relative té.
Notice now that for all strings, there exists? such that” is idempotent. Hence in any string of
length at leask there is an idempotemrtthat can be inserted without affecting membershig in

Now consider a stringy and positions:, i, 2/, 3/ such thatr < y < 2’ < ¢/ andz, 2’ are depth-
k similar, andy, 1y’ are depthk similar. First, consider the case in whighis not in thek-spill of
x, 2’ is not in thek-spill of i, andy’ is not in thek-spill of 2’. Thusw can be decomposed into
wy - sv - s'wy - sv' - s'wg wheres ands’ are thek-spill s of z andy and the “dots” mark the position
of z,y,2',y.

We can now apply the technique mentioned in the paragrapteatied insert an idempoteat
into s and an idempotent into s’ without affecting membership ih. Thus we have

we L iff wy-siesqu- 8/1f5/2w2 - s1esov’ - s’1f5/2w3 € L.
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We now use the closure éfunder idempotent-guarded swaps and obtain (the “dots” ndigate the
sections that are swapped):

w1871 - esws'lf . S/2w281 . eszv/sllf . s'2w3 e L iff wysy- eszv/sllf . séwgsl . 682U8/1f . s'2w3 € L.

But the latter is precisely; - sv’ - s'ws - sv - s'ws as required fok-guarded swapping.

The other cases are handled similarly. We consider the caseew is in the k-spill s of z,
z’ is not in thek-spill s’ of y, andy’ is not in thek-spill of /. Thusw can be decomposed into
wy - 81 - s'wy - sV’ - s'ws with 8’ = s953 ands = s7s9.

By the argument above, we know that there is an idempdgtémat can be inserted intd without
impacting membership ih. We have two subcases to consider depending whetfadls in s, or in
s3. If f can be inserted iR, then we writes, ast; - to, wherety ft, is equivalent relative td with
t1t2. We thus have a decompositionwfasw; - sy - t1tasgws - s1t1tov’ - t1taszws.

Using the fact thaf can be inserted, we see that:

w e L iff w181t - ft283w281t1f . ftg?)/tlf . ft233w3 e L.

Applying idempotent-guarded swapping to the blocks betwepies off we get:

w e L iff w181t - ftgv/tlf . ft283w281t1f . ft233w3 e L.

Removingf and regrouping we get:

we L iff w1 - Sltltgvl s t1tosswsg - 81 - titossws € L.

This shows that guarded swapping holds.

In the subcase whergcan be inserted inte;, we know there is another idempoterthat can be
inserted intos = s1s9 prior to the place wher¢ is inserted. We now writey asw; - t1etats ftqws -
tietov’ - t3 ftaws, and again the a swap gives the desired result.

The rest of the cases are treated similarly. O

Note that Theorem 6 does not generalize to trees. In the & itis still true that ang-spill,
for a sufficiently larget, will contain an idempotent, but which idempotent this isl arhere it can be
inserted can no longer be computed by looking only attspill.

5.2 Decision Procedure

Let L be a regular tree languagd, be a deterministic bottom-up automaton (ranked or unranked
recognizingL, and let() be the set of states of. In this subsection we will consider the problem of
deciding whethel. is in FO. The input of the problem i4, and thus the complexity is relative to the
size of A. Without loss of generalityd can be taken to be minimal, since a number that is polynomial
in the size of a minimal automaton is clearly polynomial ia #ize of any automaton, as minimization
can be done in polynomial time.

In the string case deciding whether a regular languagan be defined in FO is RWE in the
size of such am [Pin05]. Note that this is not immediate, as checking ajkcity alone is PSACE
complete [CH91]. It turns out that ideas similar to [PinOBbw that membership in FO can actually
be checked in PIME also in the tree setting. We will show this only for the rankede; the unranked
case is proved along the same lines.

We will first show that the aperiodicity condition in Theorelrcan be replaced by one that is
easier to check. Following the approach of [Pin96]: we replaperiodicity by the conditiofi)!:
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there existg such that for any contexts x, y, any contexe that generates an idempotent function on
states of the minimal automaton, and any treeve have

s-(e-x-ey-el-s el iff s-(e-x-e-y-e)l-exz-e-s €L.

In [Pin05] it is shown that for a regular string language fisatlosed under idempotent-guarded
swaps, aperiodicity is equivalent {9)/. More precisely, [Pin05] shows that in any finite monoid
satisfyinge-u- f-s"-e-v-f=e-v-f-s-e-u- fforall idempotents, f and arbitrary monoid
elements., s, v, we have the following are equivalent: a) theré ich that the identity! = u!*!
holds and b) there issuch that the following identity holds

(e.x.e.y.e)l:(e.x.e.y.e)l.e.x.e
holds (where agaia range over idempotents andy range over monoid elements). We apply these
results to the monoid of contexts. Observe that the proohefofem 6 shows that if a tree language is
closed undek-guarded vertical swaps, then it is closed under idempajaatded vertical swaps (the
converse holds for string languages but not for tree langslad\pplying this observation, Theorem 1,
and the result of [Pin05] cited above, we see that a regudarlanguage is definable in FO iff there
existsk such that it is closed undérguarded swapping and there exisssich that 1)l holds.

We will now show that one can decide in RME whether or not a regular tree language satisfies
(t)I. Our argument will rely on the notion of graph pattern matghiwhich we review here. For
the purposes of this sectionpatternis a graph whose edges are labeled by variables which range
over elements of' ™ for some finite alphabef. In addition a pattern comes with side conditions
stating which nodes of the pattern should be interpretedséimct nodes. Leti be a graph whose
edges are labeled in. Such a grapli- matchesa pattern if there is a mappinftaking each variable
in the pattern to a string it and each node of the pattern to a node5o$uch that for each side
constraintp; # p2, f(p1) # f(p2), and such that whenever there is an edge fganto ps in the
pattern labeled with, there is a path fronf(p;) to f(p2) in G whose labels yield the strinfj(v).

In [CPP93] itis noted that for every fixed pattern, the prablef determining given a graph, whether
the graph matches the pattern, is inIRE. This result was used to show that FO-definability is in
PTIME in the string case. From a minimal automatbnecognizingl one constructs an edge-labeled
graphG 4 = (V4, E4) as follows. The vertex séty of G 4 is the set of states ol. The transitions
E4 C Vi x 3 x Vy are labeled with letters of the alphalieof L and correspond to the transitions
of A.

X
(D@

Let P be the pattern depicted above together with the conditiog: ¢». It has been shown that
[CPP93]L verifies (1)l for some | iff G4 does not matct”. Minimality of A is used in the left to
right direction.

This result extends to trees as follows. From an automdtdefineG 4 = (V4, E4) as follows.
The set of vertice¥4 is Q. The set of edgeB 4 is included inVy x A x Vs whereA = X xJ; ., Q' x
{1...r} wherer is the rank. We connect a nogeto a nodep’ via an edg€a, )\, j), where\ is a
sequence of (at most)states, iff(\, a) = p’ where thej*" state of\ is p. That is, an edge represents
the inverse of a transition of the automaton. The same pamiis [Pin05, CPP93] show that:
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Lemma 10. L verifies(1)l for somel iff G 4 does not matct®.
Therefore we have:

Proposition 2. One can decide iR TIME (in the size of a deterministic bottom-up automaton) wirethe
or not a regular languagd. satisfiegt)! for some/.

We now show that it is decidable in PME whether there exists such thatl is closed under
k-guarded swaps. We first show thatl/ifis closed undek-guarded swaps then it is closed under
k’-guarded swaps wheké is computable from.

Lemma 11. Let L be a regular language. Latbe the number of states of an automatonficand
k' = o® + 1. ThenL is closed undek-guarded swaps for sonieiff it is closed underk’-guarded
swaps.

Proof. We show that ifZ is closed undek-guarded horizontal swaps for akyhen it is closed under
k’-guarded horizontal swaps. The proof for vertical swapiisiar and is left to the reader.

Let ¢t be a tree and:, y two nodes oft that are depttk’ similar. We first show that we can
transform by pumping in new subtrees so thaty becomek-similar in the new tree, without affecting
membership inL. Lett; = t|, andty = t|,. Let f(¢,z,y) be the lex-minimum of pairs of integers
(n,m) such that there is a leaf noden the common prefix of; and¢s such that its level is and its
position ism among nodes of level: we know that: is no smaller that’. We will transform¢ by
pumping so thaf (¢, z, y) increases.

Let P be the common prefix of, andtq, w be a leaf node P witnessingf (¢, =, y). Consider a
runr of A ont. The run assigns a stajéo each node oP when running up both, andt,. We assign
to each node oP the pair of state$q, ¢') such thay is the state of at the corresponding node ipn
while ¢’ is the state of at the corresponding nodedn By the choice of’, on the path from the root
to w, there must be a pair of states that repeat.-Labdz’ be two such nodes. Consider the context
C; between the copy of andz’ within ¢1, including > and replacing’ by a port. Without affecting
membership in., we can duplicat€’; in ¢; as many times as we wish. Considering the cont&xt
between the copy of andz’ within ¢5 we can perform the same duplication within Performing
both these duplications, we have now increased the depihtofbe above: without removing any
nodes fromP, thus increasing (¢, x, y).

Performing this repeatedly, we arrive at a tteebtained fromt by adding new sections such that
f(t',z,y) = (k,1) for a givenk. We can now apply-guarded swapping to switch the subtrees under
x andy in ¢’. We can now remove the extra sections, resulting in a treaddrfrom the original tree
t by swapping the subtrees undeandy, as required. O

From the above it is already clear that one can decide whétigeclosed undek-guarded swaps
for somek, since one needs to check only tiais closed undek’-guarded swaps, and for a fixét
checking closure under swaps is easily seen to be decidadlew we will show a stronger result:

Theorem 7. There is an algorithm that decides, given a deterministimeaton for a regular lan-
guageL and a positive integek, whether or notL is closed undek-guarded swaps, and which runs
in time polynomial ink and the size ofl.

We will now prove Theorem 7. We first show that deciding clesunder horizontal swapping is
in PTIME.
We first note that:
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Claim 4. There is an algorithm that, given a deterministic bottomawpomatonA, positive integer
k, and stateg;, ¢» of A, determines whether or not there exissimilar treesty, ¢t such that whem
isrunont; : ¢ = 1,2 it leads to statey; at the root oft;. We writeq; ~;, g2 when this occurs, with the
algorithm running in time polynomial ik and the size ofl.

Proof. The algorithm is simple induction, singe ~;, ¢ iff there is an alphabet symbal number
r’ < randstateg; ...p.,q1 ...q- With p; ~,_1 ¢; for eachi < r’ such thatA transitions or: from
p1...pw topandfromg; ...q t0g. O

Note that we do not claim that the algorithm is polynomialiie size ofk.
From Claim 4, we can derive our first result:

Lemma12. Verifying that the language of trees given by a determioistitomatory is closed under
k-guarded horizontal swapping is in ME in |A| andk.

Proof. It suffices to show this for a minimal automaton. We prove iihe case of binary trees. The
extension to arbitrary ranked trees and to unranked trdef i the reader.

A 2-context is a tree with two distinguished leaves calledgp0An automatom and a 2-context
A induce a functiomA 4 from @ x @ to @ simulating a bottom-up evaluation.

By minimality and determinism ofl, we need to check that for all stat@s qo, if ¢1 ~i ¢o then
for every 2-context\ we haveA 4(q1, ¢2) = Aa(q2, q1)-

From Claim 4 the lemma follows assuming that we have showrergiwo stateg; andg, such
thatq; ~x g2, we can check in PIME that for every 2-contexf\ we haveA 4(q1, ¢2) = A a(q2, q1)-

Consider the sef consisting of the sextuples of stat@s p1, p2, ¢, 1, g2) such that for some
contextA, p = Ax(p1,p2) andg = Aa(q1,q2). Z can be computed easily by a fixpoint algorithm.
To check the property above, we need only determine whelieee tis a tuplép, ¢1, g2, 4, ¢1, g2) In
Z with p # g andq; ~ g¢2: this can be done by a single iteration over Hence the whole process
can be done in PIME. O

We now turn to deciding closure under vertical swaps, wisathiecked using similar ideas.

We need the following two relations among statesAofWe say thatRy(r, p1, g1, p2, g2) holds
whenever there exists a conteXtand a tree¢ such thatA andt¢ agree up to depth, A4(p1) = ¢1,
A 4(p2) = g2 andr is the state reached by ont. We say thatS,.(p1, q1, p2, g2, P}, Ph, ¢}, ¢) holds
whenever there exist two contexdsandA’ such thatA andA’ agree up to depth, andA 4 (p;) = ¢
andA/, (p}) = ¢} fori =1, 2.

Claim 5. There is an algorithm that computég, and Sy that runs in time polynomial ik and size
of A.

Proof. This is done as in Claim 4, with the extra reachability caaists being verifiable in PIME.
O

We are now ready to show:

Lemma 13. There is an algorithm deciding whether or not a language-i@nked trees given by
automatord is closed undek-guarded vertical swapping which takes polynomial timéipA|.

Proof. We use Claim 5. Considérguarded vertical swapping, where we restrict the nades to
be at leask apart, and similarly foy, 3y'. Then this restricted-guarded vertical swapping fails iff we
can find(r, p1, q1,p2,q2) € R and(r, p1, q2, 8, q1, 8,7, p2) € Si With s # ', which can be checked
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in PTIME onceS;, and Ry, are computed. The cases whete’ are distance < k apart ory,y’ are
distancei < k are done similarly, with a variation on these equivalendations being defined for
each of the possible distances modklo O

From Lemma 12, Lemma 13, we have Theorem 7.
From Lemma 11, Theorem 7, and Proposition 2, we concludeolimving:

Theorem 8. There is aP TIME algorithm that takes a deterministic automaton for a regldaguage
of ranked trees and decides whether or not it is definable in FO

The theorem also applies to unranked trees, via easy eatensf Lemma 11, Theorem 7, and
Proposition 2.

6 Modulo counting

In this section we extend the previous results tg,59 We provide a characterization that can be
used to give a PiME algorithm for a decision procedure. We deal here only withdase of trees of
fixed rankr, although the results can be extended to the unrankedgsettin

In [Stro4] (See VII.3.1), the result of [BP89] is extendedat@haracterization of FQ,;p) on
strings, by simply replacing the aperiodicity biwith a periodicitycondition - that is, that the monoid
associated withl is g-periodic. When we apply this to the monoid of contexts gatest by a lan-
guage, we get that a regular tree language g-periodic if:

(¢-periodicity) 31 such that/s, u contexts, and/t tree,s - u! -t € L iff s-u!t9.t € L.

Fix P C N finite and letg be the least common multiple of all numbers occurring’inVe show
that membership in FQ,; p) is decidable.

We start with giving the notion of locality relevant to Q). For numbers: andg, and trees
andt, we says =, , t if for every k-typer, |s|; = |t|; modq and|s|, = |t|, if either|s|, < n or
[t|- < n.

It is well-known that an FQ,,; sentence on bounded-degree structures can only countitiigenu
of local neighborhoods up to some modulus and threshold {seexample, [NOO] Theorem 3.4).
Applying this within ranked trees, one easily obtains tHWing:

Proposition 3. For any fixed rank and anyFO,,,qp) sentence, there are numbers andn com-
putable fromp andr such thatp cannot distinguish twe-ranked trees; andt with s =, , , t.

The following simple lemma shows thatperiodicity and closure under swaps are necessary
conditions for definability in FQ,.4(p)-

Lemma 14. Let L be a regular tree language overanked trees definable in £Q;p). ThenL is
g-periodic and there existskasuch thatl is closed undek-guarded swaps.

Proof. Fixing k£ as in Proposition 3, one sees thais closed undek-guarded swaps, since these
preserve the number éftypes.

The proof thay-periodicity is necessary is done as in [Str94]. one showsthyctural induction
that all FQ,,,q(p) formula areq-periodic where free variables are treated as sentencepriodact
alphabet. The base case of atomic formulas follows froméhalt for FO, while the inductive cases
are already shown in the proof of VII.3.1 of [Str94]. O

The converse is also true and this is the main result of tltiscse
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Theorem 9. Let L be a regular tree language.
ThenL is definable irFO,,,,q(p) iff L is g-periodic and there exists/asuch thatl. is closed under
k-guarded swaps.

The proof, discussed in the Appendix, follows along the shnes as the characterizations in the
previous sections, with the additional technical diffigutat only pieces of size@ modulog can be
added or removed.

We have the following corollary, which follows from the wédhown fact that every finite monoid
is g-periodic for somey:

Corollary 2. Let L be a regular tree language.
ThenL is definable inFO,,,q iff there exists & such thatl is closed undek-guarded swaps.

Based on Theorem 9 a PME decision procedure for testing whether a regular languadefin-
able in FQ,,4p) can be obtained as in Section by combining the testfperiodicity with the test
for vertical swaps with a suitable pattern. The details cafolind in the Appendix.

The characterization above works also in the unranked caseained in the appendix.

7 Conclusions

The main result presented here is the decidability of FOadéflity in ranked trees and unordered
unranked trees. The question of characterizing FO-defitabi ordered unranked trees is open.
Our decidability results for unordered unranked treesrekeasily to languages given by sentences
of Monadic Second Order Logic with counting modulo quam#i€CMSQO). These languages can
be presented by a bottom-up tree automaton whose trarssiteom count the number of children in
a given state modulp. Again, one can get a decision procedure that is polynomi#ié size of a
deterministic automaton.

We believe that our characterization (and the decidabiéigults that follow) extends to-trees.
In addition to giving a decision procedure, the charactidn here has been useful for demonstrating
that certain queries are first-order; for example, it is hesnbused to prove that order-invariant first-
order queries over trees are first-order expressible.

The class LT of languages is defined as for LTT but without kineshold. That is, one can check
the occurrence or absence of a pattern in a string but camgeia@ount the number of occurrences.
We are considering how to modify our axioms to characterize L

Acknowledgment: We wish to thank Jean-Eric Pin for many fruitful discussiam the word case
and Mikotaj Bojahzyk for his help on an earlier draft of this paper.
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8 Appendix: proofs of the modulo characterization theorems

Here we will give the proofs of the characterizations of fosder logic with counting quantifiers. As
before we start with the ranked case, to illustrate the nthén,iand then we move to unranked trees.

Fix P C N finite and letg be the lcm of all numbers occurring i. The goal of this section is to
show that replacing aperiodicity witgaperiodicity in the theorems faf O gives a characterization of

FOpod(P)-

8.1 Ranked treesand modulo counting

We start with the ranked tree case, fixing the rank g the whole section. Note first that for ranked
trees, FQ,o4(p) is included in MSO (this is no longer the case for unrankedsyeThis is because
over ranked trees, a linear order can be defined in MSO andftitercounting quantifiers can be
simulated using this order. Thus FQyp) defines only regular languages. We recall the statement of
Theorem 9:

Let L be a regular tree language.

ThenL is definable irFO,,,,q(p) iff L is ¢g-periodic and there exists/asuch thatl. is closed under
k-guarded swaps.

The proof thay-periodicity is necessary is done as in [Str94]: one showsthyctural induction
that all FQ,,,q(p) formula areq-periodic where free variables are treated as sentencepriodaict
alphabet. The base case of atomic formulas follows fromekalt for FO, while the inductive cases
are already shown in the proof of VII1.3.1 of [Str94].

For the converse, we denote byzf t' the fact that andt’ agree on all sentences of EQyp)
with at mostK (first-order or modular) quantifiers. As in the case withoodulo quantifiers, Theo-
rem 9 will follow immediately from:

Theorem 10. For anyk and any regular languagé which isg-periodic and closed undér-guarded
swaps, there exists & such that for any, ¢ € 7 we have: ¢ Ef ' = telL iff t'elL.

We will thus work towards the proof of Theorem 10. We follovefines of the proof of Theo-
rem 2. FixL andk such thatL is ¢g-periodic and closed undérguarded swaps. Fix a deterministic
automatorA for L.

The notion ofk-spill and depthk similar is as in the ranked case for FO. Given two tregswve
denote bys :g’k t the fact that for all- € 7y, |s|- = |t|- or, |s|-, |[t| > d and|s|; = |t|- modulog.
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If in addition for all T € 7%, [s|, < [t|; then we writes gg’k t. Ifforall 7 € 7y, |s|- = |t|- then we
write s =% ¢.

The first two lemmas are easy adaptations of Lemma 1 and Lento@ modulo counting case.

Lemma 15. For each numbet, there exists a constaft; such thats =< ¢ implies thats =0kt

ands, ¢t are depthtk + 1) similar.

The lemma follows because the count modutaf occurrences of a givekrspill within a tree can
be expressed via an £Q;p) sentence.

Lemma 16. For each numbed’ there exists a numbet such that ifs =%"*" ¢ then there exist#

such thats gg;k“ ', andt, t’ are depth% + 1) similar, andt’ € Liff t € L.

Proof. This is proved by making a slight modification of the proof afrhma 2. Again we proceed
by induction on the number of typesthat are not sufficiently well-represented:inin the inductive
step, we fix ak + 1)-type 7. The proof of Lemma 2 shows that we can find a pair of nades:
with x5 a strict descendant af; such thatC,[z;, z2) (that is, the set of nodes that are below or equal
to z1 and not belowrs) contains at least one node of typgbothx; andx, have the same type, all
nodes inC}[x1, z2) have a type that is safe (i.e. occurs at leAdimes), and the automatot for L
reaches the same statezofas onz;. If we now replace”;[z1, z2) by « - ¢ copies of itself, for large
enougha, then we will have preserved the counting modaglof occurrences of each type, have not
disturbed any unsafe type, and will have made the numberafroences of- in ¢’ greater than the
number int. O

Lemma 3 and Lemma 4 are proven using only swapping moves ghagiticout modifying the
occurrences ofk + 1)-types. Therefore we can make use of them in the modulo auyinése. The
same holds for Corollary 1. It therefore remains to revisit fast part of the proof of Theorem 2 and
adapt it to the modulo counting case.

We are now ready to begin the proof of Theorem 10. Qdbe the set of states of, a = |Q|
be the number of states af. Let 8, = |7x.1|. Let! be theg-periodicity number ofL. Letd =
rBexr®+1xl 4 1 | etd be the number required in Lemma 16 fr Let K be the numbek,; required
in Lemma 15 ford. We show that =X t impliess € L iff ¢t € L.

Assumes Eé( t, we show thats € L iff t € L. From Lemma 15 we know tha=t:‘jl”‘ZJrl t.

Therefore by Lemma 16 there is a tiésuch that’ € L iff ¢ € L ands gfl;k’“ t’. We can now apply
Lemma 3 and obtair’ such that” € Liff ¢ € L, sis (k + 1)-pseudo-included it” via a mapping
h, andt” =41 ¢ =2+ 5 Therefore it suffices to prove thate L iff ¢/ € L.

Once more following the proof of Theorem 2, we have by comsion thatt” is h(s) plus loops
(of size larger than 1) inserted between nodes(ej. As before, all k+1)-types which occur outside
of h(s) have strictly more occurrencesifithan ins and therefore appear at le@times ins (and
in t"). Notice also that for eactk + 1)-type the total number of occurrencesobutside ofh(s) is
zero modulay. LetV; - - -V, be the sequence (in arbitrary order) of loop#/ifi(s) and letV be the
forest| J, ., ,, Vi. From the remark above we have € 7., |V | = 0 modulog.

Before continuing we need some additional definitions. Foniber;, a j-contextis a tree withj
designated leaves, which we call (generalizing the natdtio contexts) ports. Given gcontextC,
an ordering of its ports asi, ..., p;, and trees; ...t; we letC[ty, ..., t;] denote the tree obtained
by plugging in eaclt; into p;,. An “abstractj-context” is aj-contextC' in which the root is different
from each port, supplemented with an assignmeof (k + 1)-types (wheret is the number fixed
above) to each non-port node anf-type to each port node such that the assignmentsarsistent
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there are; . .. ¢; such that for every nodein C, the type assigned toin C'[t1, . . ., t;| matches\(x).
Note that this notion of consistency extends that given istract contexts in the FO case.

Lemma 17. There exists:’ and abstract loop# - - - U,,/, with eachU; having cardinality greater
thanl, such that iU = U, ., U; we havevr € Ty 11,q - [U|. = |V].

Proof. For each’k + 1)-typer and eaclk-typev let o (v) be 1ifv is induced byr, O otherwise. For
any multisetB of (k + 1)-types and any-typev, letag(v) be ¥, e, ., |B(7)|a-(v), where| B(7)|

is the number of occurrences ofin B. For 7, v as above lef-(v) be the number of children of
k-type v that a node ofk + 1)-type 7 must have, and extend this to a multiset bf+ 1)-typesB
by B5(v) = Yre7,,, | B(7)|B-(v). Soap measures how often a givéntype occurs in a multiset of
(k + 1)-types, and3p measures how often/atype occurs as a child in a given set(éf+ 1)-types.
Finally, letys(v) beagp(v) — Bp(v).

Let B be the multiset of al{k + 1)-types occurring it. Becausé’ contains only abstract loops,
we have that for each € 7;; yp(v) = 0: the occurrence of a type in the interior of one of the loops
is counted once in bothr and 3, thus contributing to +, while the occurrence of a type in the root
(and hence in the port) is counteddn but is balanced by the occurrence of that type as a pgft in
Let B’ be B where the multiplicity of each type has been divided;bys’ is well-defined because all
multiplicities in B are multiples of;. Since for eaclv € 7, the multiplicity of each & + 1)-type that
induces it and the multiplicity of eadt + 1)-type that had it as a child are both divideddin going
from B to B’, yp/(v) = 0. We will construct abstract loogds, - - - U, such that the multiset formed
with the (k + 1)-types of nodes dfJ, ., U; is B’.

Assume we have already constructedabstract loopd/; - - - U,,, and a “partially constructed
loop” — either an abstragtcontextX which we hope to extend into an abstract loop, or the “empty
abstract context” (whose underlying context has no nodest) B, be the multiset of & + 1)-types
assigned to non-port nodes &fuU U1gigm U,. We will assume inductively tha®; is a sub-multiset
of the types inB’. Let B, = B’ — By, where difference of multisets is defined in the usual way.

If X is empty andB; = B’ (i.e. By is empty), then we are done, sintg...U,, are the
required abstract loops. Otherwise we will extend the gotibn while decreasing the sum of the
multiplicities of types inBs.

SupposeX is empty andB; # B’. ThenB; must contain at least orié + 1)-type with positive
multiplicity. Let 7 be such gk + 1)-type, and let, ..., v; be the sequence of inducéetypes of
the children of a node aft + 1)-typer. We setX to be an abstragtcontext containing a root node
assigned tqk + 1)-type  with j children, all of which are ports, with th#&" child assigned:-type
v;. The definition of the sequence, - - - , v; implies that this is a consistent assignment.

If X is not empty and is an abstract loop, then welggt,; = X and continue as above. X is
not empty and has no ports, thep, (v) > 0 for v the k-type of the root ofX. Sincey(B’)(v) = 0,
we havey(Bz)(v) < 0 and hence there is sonik + 1)-typer in B, that requires as thei” child.
We add this type as a new root &f, appending the ol as thei*” subtree while making any other
required children into ports. Again, the multiplicity ofin B, is decreased.

SupposeX is not empty and is not an abstract loop. kdie the(k + 1)-type assigned to the root
of X andr’ be thek-type induced by-. SinceX is not an abstract loop, eithéf has a port whose
assignedk-type isv # 7/, or X has more than one port of typé

In the first case, fix such a pagstand typev. Then~(B;)(v) > 0, and sincey(B’)(v) = 0 this
implies~(Bz2)(v) < 0. So there is somg: + 1)-type p with positive multiplicity in By consistent with
v. Letn; ...ns be thek-types of children required by. Replace porp with a noder of (k + 1)-type
p, wherex will have childrenp; ... ps that are ports of types; . .. n,, respectively. The size of the
multiplicities of types inBy has decreased Hy and we continue the induction.
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In the second case{B;)(7’) > 0, and this impliesy(B)(7') < 0. Hence there is & + 1)-type
p in By consistent withr’. Replace one of the ports of typéwith a noder of type p, which is again
given the port children of the types required fyand continue inductively.

LetU = J,<;<,y Ui- By construction we haver € 7;1,¢.|U|; = ¢.|B'|; = |B|; = |V|; as
required. o O

FixU = {U;---U,} asin Lemma 17. By induction we construgt: - - s,,» such that: (i)so is s,
(i) V7 € Tyt1 Isilr = Isl- + ¢.|Utlr + -~ q.|Uil+, (iii) s; € Liff 5,1 € L.

The base case isimmediate. The induction is done as in tioé gfidheorem 2, first/; is reduced
to W;, whose size is strictly bounded h¥/!, and thenWil is inserted tos;_; using Lemma 4. We
can now usey-periodicity of L to insertq extra copies ofV; (and thereford/;) as required. All this
is done without affecting membershipin

Lets’ = s,. By construction we havér € 7.1, |s|: = |s|- +q¢.|U|- = |s|- + |V |- = |¢"|; and
s’ € Liff s € L. Theorem 10 now follows from Corollary 1. O

Theorem 9 immediately implies the following complexity il

Corollary 3. There is aPTIME algorithm that, given a deterministic bottom-up rankeckteaitoma-
ton, checks whether the corresponding tree language isatdénnFO,,, ...

Proof. By our prior results, and the fact that every regular languag-periodic for some, it suffices
to check in PTME that a language is closed undeguarded swapping for some But this was
already shown in Theorem 7. O

We can also show the analogous result for,5Qp):

Theorem 11. There is aP TIME algorithm that, given a minimal deterministic bottom-umkad tree
automaton, checks whether the corresponding tree langisaggfinable irFO,,,,q(p)-

Proof. By Theorem 9, we need only show that for languages that gatisfuarded swapping;-
periodicity can be checked in PME. We use an argument modeled tightly on the string case, from
[Pin96]. The following claim was proven far= 1 in [Pin96]:

Claim 6. For a monoid satisfying-u-f-s'-e-v-f=e-v-f-5 -e-u- f we haveu! = v!*9 holds
for some iff

(e-x-e-y-e)fi=(e-x-ey-e)f-(e-x-e)!  (r0q)

holds for some: (where, againg, f range over idempotents andy, u, v, s’ range over monoid
elements).

Proof. The proof of the claim is a simple generalization of the argotforg = 1 in [Pin96]. In one
direction, we assumgfx, q), and proveg-periodicity by choosingv such that for alk;, v~ is idem-
potent, and substituting = u,y = e = u*. This yields the identity, (4« t1)r = ¢ (do+1)ry (2w+1)g
which impliesu“** = u****¢ using idempotence af“. Sinceu was arbitrary, this shows that
periodicity holds withl = w + k. In the other direction, we assumeperiodicity and provefi, q).
We use the observation, proved in [Pin96], that our addititwypothesis on the monoid implies that
for any idempotent and any monoid elemenis y we have

ereye = eyexe (k)

From (**) and idempotence of we can derivéexzeye)! (exe)? = (exe)t9(eye)!, by repeatedly
applying () to rewrite occurrences efjexe to exeye, and collapsing? into e.
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Now usingg-periodicity we havéexe)*9(eye)! = (exe)!(eye)!, and using (**) and idempotence
of e we have(exe)! (eye) = (exeye)'. Thus(exeye)!(exe)? = (exeye)! as required fog-periodicity.
O

One can decide whethéfx, ¢) holds using a patter®? obtained fromP by addingg — 1 addi-
tional nodes, which witly, form a chain of lengtly, with edges from one element of the chain to the
next labeled withe. Each element of the chain has a self-loop labeled widssociated with it, and
the last element in the chain is constrained to be distimehfy;. The notion of a graph formed from
an automaton which is to be matched against paf®¥ris the same as the notion féYin the FO case
for ranked trees. O

8.2 Unranked trees and modulo counting

In the unranked case, the main difference is thaf,FQr) is no longer included in MSO but in
CMSO. From Courcelle [Cou90] we know that the following finhaf automata has exactly the same
expressive power as CMSO. The automaton is defined as fonkeutarees, but each transition, in
addition to counting the number of states, up to some thitdshg reached for its children nodes,
also counts their occurrences modulo some congtaie call themmodulog counting automataA
language that is defined by a modyl@ounting automaton for somg or equivalently definable in
CMSO, is callecextended-regular

As in the unranked FO case, the difficulty is that the numbdsaorphism types of trees of
depthk is no longer finite, so we need to reason via approximation.extend the notion of-* to
~"® in the obvious way by requiring that we count the & — 1)-types of the children of a node
modulog when above threshold. We refer to those agy, n, k)-types. The notion of similarity and
guards are then extended as expected.

Again, the heart of the proof is the following intermediagsult:

Theorem 12. Let L be ag-periodic extended-regular tree language.
ThenL is definable in FO iff there exists k such thatL is closed undefq, n, k)-guarded swaps.

Proof. (sketch) The proof is a combination of the ideas in the pré@h@orem 9 and Theorem 3. We
only give an overview here. That the conditions are necgssgroved as in Theorem 9. We now fix
q,n, k and an extended-regular tree langudgehich is g-periodic (withi for the number from the
periodicity condition) and closed undéy, n, k)-swaps. We fix an automata# recognizingL and
m very big relative tg A|, in particular above the threshold for whighcan count number of types
exactly. Again we can assumeis abovem.

The next result follows from the fact thég, n, k)-types can be expressed in FQ:

Lemma 18. For all numbersd and all numbers:/, there existsK; such thats szd t implies

s =4" " pands, t (n/, g, k + 1)-similar.

With the obvious intended meaning for the notatiar:netg’"”“+1 t, and using the same tools as in

Lemma 6 we have:
Lemma 19. For each numbed’ and eac’ > n there exists a numbet such that ifs :3’”"’““ t
then there existg such thats gg;""k“ t', andt,t' (n’,q,k + 1)-similar, andt’ € L iff t € L.

Proof. The proof follows the structure of Lemma 6. Sa&fen, k)-types are those that occur at least
d' times int.

32



We again have two cases to consider. In the first case, evely ing has at small (belowd,
as defined in Lemma 6) number of children which have a desc¢mddyper. In this case, we can
construct a long-skeleton int. Just as in that proof, by having sections of the skeletayelanough,
we can guarantee a portion can be pumped without changirrgnhef the automaton, adding unsafe
types, or changing the existing type structure. By pumpingudiple of g times, we will preserve the
modulogq class of every type, so the resulting treéns ¢, k + 1)-similar tot.

In the second case, there is some noda t that has a large number of children which have a
descendant of type. Then can find a large (above) number of children with a descendant of type
7 which are safe and where the automatbneaches the same state. It is now possible to duplicate
any of the subtrees of these children without affecting mensitip inL, changing the type af, or
adding unsafe types. So in particular we can add a largeptautif ¢ copies of some child, resulting
in atree thatign’, ¢, k + 1)-similar tot. O

Pseudo-inclusion is defined as in the unranked case forofidgtr logic. We have the obvious
extension of the pseudo-inclusion lemma:

Lemma 20. For all d’,n’ there exist: such that ifs gg’,”’k“ t ands,t (n,q, k + 1)-similar then
there exists’ such thats is (¢, n’, k + 1)-pseudo-included i#f, ¢/ :fl;”/”“rl t,andt’ € Liff t € L.

Proof. The proof follows the argument in Lemma 7. In that proof wegidared several cases. In
most of these cases, no pumping is necessary and thus orgpisiganoves are used to get the desired
result. As swapping does not affect the numbefqf., k + 1)-types at all (and hence does not effect
their counts modulo any number), these cases also work Wéten a node: of (¢, n, k + 1)-typer
needs to be expanded, we did so by adding a large humber afscopihe subtree of a given child of
x. Using the same argument in that proof, we see that a chikdssttiat has many siblings for which
the automaton reaches the same state and such that theesaftitre child has only safe types (that is
all types have abové occurrences). We choose such a child and then add a largipl@oltq copies

of the child. O

For an abstract contexf and treet, U <, 41 t means thatg,n, k + 1)-types ofU occur
strictly more frequently int. The notion of inclusion and thinness is extended in the @lwivay to
(g,n, k + 1)-types.

Lemma 21. LetU be an abstract context. If <, ,, »41 ¢t and each node € U is (¢, n, k + 1)-thin,
then there exists such that’ is (¢, n, k + 1)-included int’, ¢/ =4k yand,t € Liff t € L.

Proof. With the extension of the definitions in place, this followsrh the same argument as in the
unranked case for FO. Note that only swapping moves weréeapipl the proof of Lemma 8, so the
exact number of each type (in particular, the number modwbtypes) is preserved. O

Similarly, we have the version for forests, which againdais by the same set of swapping moves
as in the FO case for unranked trees:

Lemma 22. LetU be aforest. U <, x+1 t and each node € U is (¢, n, k + 1)-thin, then there
existst’ such that is (¢, n, k + 1)-included int’, ¢/ :&’““ tandt’ € Liff t € L.

Proof of Theorem 13 for unranked trees (sketch). As usual we set all the numbers to be big enough
in order to be able to apply all the previous lemmas. Stastiitly two treess and¢ such thats zf t,

we end up with two trees andt” such thats is (¢, n, k + 1)-pseudo-included i/, ¢ € Liff t € [,
andt” =51 5. We wish to show that € L iff ¢” € L.
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By constructiort” is h(s) plusloopsinserted between nodes bfs) and extrébranchesbranch-
ing off the h-pseudo-tree. As before, ea@h n, k + 1)-type which occurs outside &f(s) must occur
strictly more often withint” than ins and therefore must appear at ledisimes ins (and int”). Fur-
thermore for eaclig, n, k + 1)-type the total number of occurrencesobutside ofh(s), including
both the branches and the loops, is zero mogulaoet V1 be the forest of loops occurring iff outside
of h(s) andV'b the forest of branches occurringdtoutside ofh(s).

As in the FO unranked case, we reduce the siZéladndV b without affecting either membership
in L or the cardinality modulg of each type. We can further assume that all typegare, k& + 1)-
thin. LetV{; --- Vi, be the set of loops i\ h(s) andV'b; - - - Vb be the set of extra branches in
t"\h(s). From the remark above we have € 7, ;+1, |V|- = 0 modulog.

The main difference from the ranked case lies in the follgttemma, replacing Lemma 17. Its
proof will be obtained by induction ol using the same ideas as in Lemma 17.

Lemma 23. There existsy’ abstract loop$/l; ... Ul, andg’ branched/b; ... Ubg such that ifU]
is the multiset of(¢, n, k + 1)-types occurring in all of thé&/[; andUb is the same for thé&/b;, then
we havevr € 7, k11, ¢ - (Ul + |Ub|;) = |Vb],.

Proof. The functionsx andap are defined as in the ranked case for,EQ py. The functions. (v) is
defined as the minimum number of nodes of typhat r requires — note that this is the same as the
number of nodes of type that will occur in a thin realization of. - is o — 3 as in the ranked case.

Again, let B be the multiset of al({k + 1)-types occurring i/ or Vb, and letB’ be the multiset
resulting from dividing all multiplicities inB by ¢q. One significant difference is that noyg (v) > 0
for manyv € 7, since each branch will have the type of its root contrititima: more often then
to 8 within that branch. Our goal is to construct abstract loapd lranches such that the multiset
formed with their(k + 1)-types is exacthyB'.

Let C(v) = vyp/(v) for eachr € 7;,. Assume we have already constructedabstract loops
Uly...Ul,, andn; branched/b; ...Ub,,, along with an abstract-contextX (possibly empty)
which we hope to extend into either an abstract loop or branat Comp be be the multiset of
(k+1)-types assigned to non-port nodes of_ ., Ul;UU,<;<,,, Ubi, and letPart be the multiset
of (k + 1)-types assigned to non-port nodesXf Let B, be the union (as a multiset) 6fornp and
Part,andBy = B’ — By. We will assume inductively thds, is a sub-multiset of the types i#/, and
also thatycomy () is at mostC'(v) for eachv € 7;,. This second condition is equivalent to demanding
that for everyk-typev, v occurs as the root of some completed brandibn. . . Ub,, no more often
thanC(v). Note that this condition will ensure that, pa,: () > 0 for eachr € 7.

If X is empty andB; = B’ then we are done. IX is an abstract loop anBl; # B’, then we set
Ulm,+1 = X and continue. IfX is empty andB; # B’, then we proceed as in the ranked case: set
X by choosing an arbitrary type occurring with positive mulltity in Bs, and give it the ports that
the type requires as children. Since we do not charigep, we do not violate the second inductive
invariant above.

SupposeX is not empty, is not an abstract loop, and has at least one pbtkK has a sin-
gle port whosek-type v does not match the inducedtype of the root, thenp,,+(v) < 0. Since
vB,uPart(v) > 0 by the inductive invariant, we knowg, () > 0, which allows us to proceed as
in the ranked case, choosing a type frémthat induces/, and expandind( accordingly. The case
whereX has more than one port is handled similarly.

The last case is wheX is not empty and has no ports. Letbe thek-type induced by the
(k + 1)-type of the root ofX. If ycomp(v) < C(v), then we can ad&” asUb,,, + 1 and continue. If
Ycomp(v) = C(v), thenX has no ports to expand on, but cannot be added as a new codipiateh
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without destroying the inductive invariant. In this cas€,.up,(v) = 0, andvyp.+(v) = 1, so there
is some(k + 1)-typer in B that requires at least one child of typeExtendX by adding a new root
of typer, attaching the formekK as one child and making the remaining required childrerspditie
multiplicity of 7 in Bs is reduced, and we can continue the induction. O

We can now transform by induction in order to inserf copies ofUl; for eachi, and likewise
transformt to removeg copies of eaclt/b;. This is done as in the proof of Theorem 9 for loops, and
as in the unranked case of Theorem 2 for branches, workifggsitups of size. The details are left
to the reader. O

From Theorem 12 we can now show:

Theorem 13. Let L be an extended-regular tree language.
ThenL is definable in FO iff it isg-periodic and there exists such thatL is closed undek-
guarded swaps.

Proof. Clearly, itis enough to show that closure unéleguarded swaps implies closure unégm, k)-
guarded swaps for sufficiently large This is proved as in the unranked case without modulo quan-
tifiers (Theorem 5). O

A polynomial time algorithm follows for immediately for FEQ 4 using the same techniques as in
Theorem 8.
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