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ABSTRACT
We survey recent results about enumerating with constant
delay the answers to a query over a database. More precisely,
we focus on the case when enumeration can be achieved
with a preprocessing running in time linear in the size of the
database, followed by an enumeration process outputting
the answers one by one with constant time between any
consecutive outputs. We survey classes of databases and
classes of queries for which this is possible. We also mention
related problems such as computing the number of answers
or sampling the set of answers.

1. INTRODUCTION
The evaluation of queries is a central problem in database
management systems. Given a query q and a database D the
evaluation of q over D consists in computing the set q(D) of
all answers to q on D. A simple observation shows that the
set q(D) may be huge, even larger than the database itself,
as it can have a number of elements of the form nl, where
n is the size of the database and l the arity of the query. It
can therefore require too many of the available resources to
compute it entirely.

There are many solutions to overcome this problem. For
instance one could imagine that a small subset of q(D) can
be quickly computed and that this subset will be enough
for the user needs. Typically one could imagine computing
the top-` most relevant answers relative to some ranking
function or to provide a sampling of q(D) relative to some
distribution. One could also imagine computing only the
number of solutions |q(D)| or providing an efficient test for
whether a given tuple belongs to q(D) or not.

We stress that our study is from the theoretical point of
view. If most of the algorithms we will mention here are
linear in the size of the database, the constant factors are
often very big, making any practical implementation diffi-
cult. However we believe the index structures designed for
making the algorithms work are interesting and, with extra

assumptions, could possibly be turned into something more
practical.

In this paper we will focus on another scenario consisting in
enumerating q(D) with constant delay. In a nutshell, this
means that there is a two-phase algorithm working as fol-
lows: a preprocessing phase that works in time linear in the
size of the database, followed by an enumeration phase out-
putting one by one all the elements of q(D) with a constant
delay between any two consecutive outputs.

The existence of a constant delay enumeration algorithm im-
poses drastic constraints. In particular, the first answer is
output after a time linear in the size of the database and
once the enumeration starts a new answer is being out-
put regularly at a speed independent from the size of the
database. Altogether, the set q(D) is entirely computed in
time f(q)(n+ |q(D)|) for some function f depending only on
q and not on D.

Without any assumptions on the database or on the query,
most queries cannot be enumerated with constant delay. For
instance we will see that the simple acyclic conjunctive query
computing the pairs of nodes at distance 2 in a graph can-
not be enumerated with constant delay unless some drastic
consequence on the asymptotic complexity of the Boolean
Matrix Multiplication problem.

The first and main part of the paper is devoted to the study
of constant delay algorithms. It is organized with one section
per query language. In a second part of the paper we will
discuss variations and related problems.

We will start with conjunctive queries, actually acyclic con-
junctive queries, in Section 3. We will see that we can char-
acterize precisely those acyclic conjunctive queries that can
be enumerated with constant delay.

We will then move on to first-order queries in Section 4.
In this case we need to restrict the class of databases. We
will see that constant delay algorithms can be obtained over
databases with bounded degree, bounded treewidth or, more
generally, “bounded expansion”.

In Section 6 we will see that, in the bounded treewidth case,
one can even enumerate monadic second-order queries with
constant delay.



The last case permitting constant delay enumeration that we
will mention in Section 5 is XPath over XML documents.

There are many variations of constant delay enumeration
that have been considered. For instance one could require
that the answers are enumerated relative to a specific order.
It turns out that the existence of constant delay enumeration
algorithm is very sensitive to the order of outputs. We will
also discuss linear or even polynomial delays in Section 7.

We will also discuss the problem of counting the number of
solutions and the problem of testing whether a given tuple
belongs to the answers set or not. It is not clear a priori
how these two problems are related to constant delay enu-
meration. However, it turns out that in the scenarios where
constant delay enumeration can be achieved, one can often
also count the number of solutions in time linear in the size
of the database and, after linear time preprocessing on the
database, one can test in constant time whether a given tu-
ple is part of the answers set. We will survey those results
in Section 7.

Finally Section 7 concludes with the very few known results
about sampling the answers set.

This survey is by no means exhaustive. It is only intended
to survey the major theoretical results concerning database
querying and enumeration. Hopefully it will convince the
reader that this is an important subject for research that still
contains many interesting and challenging open problems.

Enumeration in general, and constant delay enumeration in
particular, is a well identified subfield of algorithmics, and
many non trivial enumeration algorithms exist for problems
over graphs (like enumerating all spanning trees, all con-
nected components, all cycles etc. . . ) We will not discuss
those results at all here.

Acknowledgment: We are grateful to Cristina Sirangelo, Ar-
naud Durand, Wojtek Kazana and Yann Strozecki for their
valuable comments on earlier version of this paper.

2. PRELIMINARIES
2.1 Database as relational structures, queries
In this paper a database is a finite relational structure.

A relational signature is a tuple σ = (R1, . . . , Rl), each Ri
being a relational symbol of arity ri. A relational structure
over σ is a tuple D =

(
D,RD

1 , . . . , R
D
l

)
, where D is the

domain of D and RD
i is a subset of Dri . The number of

elements in the domain of D is denoted by |D|.

A query is a computable function associating to a database
D a relation over the domain of D. In this paper, a query
takes as input a database of a given signature σ and returns
a relation of a fixed arity, the arity of the query. A query is a
sentence if its arity is 0. The query is then either true or false
on D and defines a property of D. A query is unary if its
arity is 1. If q is a query and ā is in the image of q on D, then
we write D |= q(ā). Finally we set q(D) = {ā | D |= q(ā)}.
Note that the size of q(D) may be exponential in the arity
of q.

A query language is a class of queries. Typically it is defined
as a logical formalism such as CQ (for conjunctive queries),
FO (for first-order queries), MSO (for monadic second-order
queries), XPath and so on.

Given a query language L, the model checking problem of L
is the computational problem of given a sentence q ∈ L and
a database D, to test whether D |= q or not. The database
D is often restricted to a class C of structures. In this case
we speak of the model checking problem of L over C.

Given a query language L, the query answering problem of
L is the computational problem of, given a query q ∈ L and
a database D, to compute q(D). As for model checking, it
is often restricted to a class C of structures. In this case we
speak of the query answering problem of L over C.

The definition of the query answering and model checking
problems given above correspond to their combined complex-
ity. When the query is no longer part of the input, we speak
of their data complexity.

2.2 Model of computation
As we will deal with linear time, it is important to make
our model of computation precise. We use Random Access
Machines (RAM) with addition and uniform cost measure as
a model of computation, cf. [2]. Here are the features of this
model that are the most relevant for this paper. On an input
of size n, a RAM has a certain number of registers, each
of them containing logn bits, and the machine can modify
the content of these registers as a Turing Machine would
do, but can also use these registers for accessing directly the
memory cell pointed by the register or performing numerical
operations (typically additions) between them. An access to
memory using a register or an addition of two registers is
counted as a unit time in a RAM (i.e. counts as constant
time).

In our setting, the input will be a relational database. We
do not define precisely how databases are encoded as inputs
of a RAM machine. This is identical as for Turing Machines
and this is described in details in many textbooks, cf. [1]. It
only matters here that we can enumerate the domain or a
relation of a database in linear time. We fix for now on a
reasonable encoding of structures by words over some finite
alphabet. The size of D, denoted by ||D||, is the length of
the encoding of D.

An important observation is that the RAM model can sort
m elements of size O(logm) in time O(m logm) [26]. In
particular, we can sort the domain of D in time O(||D||), i.e.
in linear time. This fact is implicit in many of the results
below.

In the sequel when we say that the model checking problem
of L over C can be solved in linear time, we refer to the data
complexity, i.e. we mean that it can be solved in O(||D||),
where the big O may depend on q.

2.3 Parametrized complexity
The database D and the query q play different roles as input
of our problems. It is often assumed that |D| is large while
|q| is small. Hence it is useful to distinguish them in the



input of the model checking and query answering problems.
Parametrized complexity is a suitable framework for ana-
lyzing such situations. We only provide here the basics of
parametrized complexity needed for understanding this pa-
per. The interested reader is referred to the monograph [23].

In parametrized complexity, a problem is an input together
with a parameter, as a number computable from the in-
put, and a question. A typical example is the parametrized
model checking problem where the input is a database D
and a sentence q, the parameter is |q| and the problem asks
whether D |= q.

A parametrized problem is Fixed Parameter Tractable, i.e.
can be solved in FPT, if, on input of size n and parameter k,
it can be solved in time f(k)nc for some suitable computable
function f and constant c.

The idea behind this definition is that for many scenarios,
like query answering in databases, it is preferable to have an
algorithm working in 2kn2 rather than nk.

In parametrized complexity there is also a suitable notion
of reduction, called FPT-reductions. It is such that FPT is
closed under FPT-reductions. There are some hard classes
of parametrized problems, closed under FPT-reductions, con-
taining problems with no known FPT algorithms and that
are believed to be different from FPT. In parametrized com-
plexity, completeness relative to a complexity class is always
understood to be under FPT-reductions.

An important hard class is denoted W[1]. W[1] plays in
parametrized complexity the role of NP in classical com-
plexity. A typical problem which is complete for W[1] is the
parametrized model checking problem for CQ [36]. It takes
as input a database D and a sentence q ∈ CQ, as parameter
|q|, and asks whether D |= q.

Another important hard class is denoted AW[∗]. It plays
in parametrized complexity the role of PSpace in classical
complexity. A typical problem which is complete for AW[∗]
is the parametrized model checking problem for FO [36]. It
takes as input a database D and a sentence q ∈ FO, as
parameter |q|, and asks whether D |= q.

2.4 The enumeration class CONSTANT-DELAYlin

For a query q(x̄), the enumeration problem of q is, given
a database D, to output the elements of q(D) one by one
with no repetitions. The maximal time between any two
consecutive outputs of elements of q(D) is called the delay.
The following definition requires a constant time between
any two consecutive outputs.

We say that the enumeration problem of q is in the class
CONSTANT-DELAYlin if it can be solved by a RAM algorithm
which, on input D, can be decomposed into two steps:

• a precomputation phase that is performed in timeO(||D||),

• an enumeration phase that outputs q(D) with no rep-
etitions and a constant delay between two consecutive
outputs. The enumeration phase has full access to the

output of the precomputation phase but can use only
a constant total amount of extra memory1.

Before we proceed with the technical presentation of the
results, it is worth spending some time with examples.

Example 1. Consider a database schema containing a
binary relational symbol R and the query q(x, y) := ¬R(x, y).
On input D, the following simple algorithm enumerates q(D):
Go through all pairs (a, b); test if it is a fact of RD;
if so skip this pair; otherwise output it.
However, a simple complexity analysis shows that the delay
between any two outputs is not constant. There are two rea-
sons for this. First, arbitrarily long sequences of pairs can
be skipped. Second, it is not obvious how to test whether
(a, b) ∈ RD in constant time (i.e. without going through the
whole relation RD). In order to enumerate this query with
constant delay it is necessary to perform a preprocessing. We
first decide on an arbitrary linear order on the domain of D.
We then order all RD according to the lexicographical order.
Recall that with the RAM model this can be done in linear
time. We then compute for each tuple ū of RD the tuples
v̄ = f(ū) and v̄′ = g(ū) such that v̄ is the smallest (rela-
tive to the lexicographical order) element w̄ 6∈ RD such that
all tuples between ū and w̄ are in RD and v̄′ is the smallest
(relative to the lexicographical order) element w̄ ∈ RD bigger
than v̄′. These functions can be computed in linear time by a
simple pass on the ordered list of RD from its last element to
the first one. This concludes the preprocessing phase. The
enumeration phase is now trivial. We maintain two pairs
of elements of D: one is initialized with the smallest pair
according to the lexicographical order, the other one with the
smallest pair in RD. The second pair will always be pointing
to an element of RD. Assuming the current pairs are 〈ū, v̄〉,
we then do the following until ū is maximal. If ū = v̄ then
we move to 〈f(v̄), g(v̄)〉. Note that f(v̄) 6= g(v̄). If ū 6= v̄ we
output ū and replace it by its successor in the lexicographical
order without changing v̄. This algorithm is clearly constant
delay as an output is performed at least every other step. All
output tuples are clearly not in RD and the reader can check
that all skipped tuples are not in RD.

Example 2. Same schema but the query is now comput-
ing the pairs of nodes at distance 2: q(x, y) := ∃zR(x, z) ∧
R(z, y). We will see in Section 3 that it is likely that this
query cannot be enumerated with constant delay. However,
if we assume that R has degree bounded by d, then for any
node a of the graph, at most d2 nodes v are at distance 2
from u. Moreover, it is easy to see that we can compute
in linear time the function f(u) associating to u the list of
its nodes at distance 1. An extra linear pass based on the
function f computes the function g(u) associating to u the
list of its nodes at distance 2. From there the enumeration
algorithm with constant delay is trivial.

1In the literature one can sometimes find a more liberal def-
inition only requiring constant delay with no constraints on
the memory. Of course this implies that between two consec-
utive outputs the memory used is constant, but the global
memory affected could be linear in the total number of out-
puts. In our more constrained setting the enumeration algo-
rithm is essentially a finite state automaton running over the
index structure produced during the precomputation phase.



Example 3. The schema is now a binary relation R to-
gether with unary relations. We consider the class of databases
that are colored trees (for instance XML documents). Let
q(x, y) be the query returning all pairs (x, y) such that x is
blue, y is red and x is an ancestor of y. Again, going through
all pairs would yield a non-constant delay. There exists sim-
ple labeling scheme, computable in linear time, such as the
“interval scheme”, allowing to test in constant time whether
x is an ancestor of y. But that is not enough as for a blue
node x there might be many red nodes y that are not descen-
dant of x. Adding the “document order” to each node during
the preprocessing phase, together with a pointer to its near-
est red node relative to that order, solves this problem, and
yields a constant delay enumeration algorithm.

Remark 1. Notice that if the enumeration problem of q
is in CONSTANT-DELAYlin, then all answers can be output
in time O(||D||+ |q(D)|) and the first output is computed in
time linear in ||D||. In the particular case of boolean queries,
the associated model checking problem must be solvable in
time linear in ||D||.

As shown in the examples above, an enumeration algorithm,
on input D, will first build a powerful index structure during
the precomputation phase, and then use this index structure
for outputting all answers.

Notice that if the arity of q is less or equal to 1, then
|q(D)| ≤ |D| ≤ ||D||. It is then plausible that the whole
set of answers can be computed in time linear in ||D||. If
this is the case then we have a simple constant delay algo-
rithm that precomputes all answers during the precompu-
tation phase and then scans the set of answers and outputs
them one by one during the enumeration phase. In all the
scenarios described in this paper there were known linear
time algorithms for computing q(D) when q is unary. In
those scenarios enumeration becomes relevant when the ar-
ity of q is at least 2. In this case q(D) can be quadratic in
||D|| and hence can certainly not be computed within the lin-
ear time constraint of the precomputation phase. The index
structure built during the preprocessing phase is then a non
trivial object. One can also view this index structure as a
compact (of linear size) representation of the set q(D) (that
can be of polynomial size) and the enumeration algorithm
as an output streaming decompression algorithm.

Given a query language L and a class C of databases, we
say that the enumeration of L over C is in constant delay
if for any q ∈ L the enumeration problem of q over C is in
CONSTANT-DELAYlin.

Remark 2. Notice that the definition of the enumeration
of L over C is in constant delay, does not say anything about
whether the enumeration algorithm can be computed from
the query q ∈ L or not. It only specifies that for each q
an enumeration algorithm exists. If the enumeration algo-
rithm can be automatically obtained from q, we then say
that the enumeration of L is generic. This is the case for
all the scenarios described in this paper and all the practical
scenarios of database query languages known to the author.
In the generic case, it follows from Remark 1 that having an

enumeration problem for L over C in CONSTANT-DELAYlin

implies that the model checking problem for L over C is in
FPT. Hence parametrized complexity can be used to show
non membership in CONSTANT-DELAYlin. For instance if
the model checking problem for L over C is known to be
W[1]-hard, then the enumeration problem for L over C can-
not be in CONSTANT-DELAYlin, unless W[1] =FPT. We will
implicitly assume genericity in this paper.

Remark 3. The class CONSTANT-DELAYlin is not known
to be closed under boolean operations. Closure under dis-
junction is prevented by the requirement that each solution
must be output only once. There are two particular cases
when closure under disjunction can be obtained. The first
one is trivial: It assumes that we have CONSTANT-DELAYlin

algorithms for q and q′ over a class C of databases and that,
on input D ∈ C, both algorithms output the answers rela-
tive to the same linear order on all tuples (for instance the
lexicographical order). In this case a simple argument that
resembles the problem of merging two sorted lists gives a
CONSTANT-DELAYlin algorithm for q ∨ q′ over C. The sec-
ond case is more subtle. Instead of assuming a linear order
on the output tuples, it assumes that after preprocessing in
time linear in ||D||, given a tuple ā, one can test whether
D |= q(ā) in constant time. Then there is a CONSTANT-

DELAYlin algorithm for q ∨ q′ over C [39].

3. CONJUNCTIVE QUERIES
Recall that a conjunctive query (CQ) is a query of the form

q(x̄) := ∃y1 · · · yl
∧
i

Ri(z̄i)

where Ri(z̄i) is an atom of q, Ri being a relational sym-
bol and z̄i containing variables from x̄ or ȳ. As mentioned
in Section 2.3, the model checking problem of CQ is W[1]-
complete. Therefore, by Remark 2, unless W[1] =FPT, the
enumeration problem for CQ cannot be in constant delay.
For acyclic conjunctive queries (ACQ) however, the model
checking problem is known to be in FPT with a linear de-
pendency in the size of the database [42]. Therefore we can
hope for constant delay enumeration. We start by recalling
the main definitions.

A conjunctice query is said to be self-join free if for any two
atoms of the query, the associated relational symbols are
different.

A join tree for a conjunctive query q is a tree T whose nodes
are atoms of q and such that

(i) each atom of q is the label of exactly one node of T ,

(ii) for each variable x of q, the set of nodes of T in which
x occurs is connected.

A conjunctive query q is said to be acyclic if it has a join
tree. In graph theoretical terms this is equivalent to saying
that the hypergraph associated to q is α-acyclic.

The best known algorithm for evaluating a query q ∈ ACQ
runs in time |q| · ||D|| · |q(D)| [42]. This is not yet of the



form f(|q|) · (||D|| + |q(D)|) implied by any constant delay
enumeration algorithm. Actually, we will see that it is very
unlikely that constant delay enumeration can be achieved
for all queries in ACQ. Constant delay enumeration is only
obtained for a subset of ACQ called free-connex that we now
define.

An acyclic conjunctive query q(x̄) is said to be free-connex
if the query q∧R(x̄) where R is a new symbol of appropriate
arity, is acyclic2.

Consider for example the following acyclic conjunctive query:

q(x, y) = ∃u, v S(x, y, u) ∧ T (x, y, v).

It is free-connex because the following join tree shows acyclic-
ity of the extended query:

R(x, y)

S(x, y, u) T (x, y, v)

Notice that for boolean ACQ this is the usual notion of
acyclicity. For non boolean queries being free-connex is a
stronger requirement. For instance the reader can check
that the simple acyclic query

q(x, y) = ∃z S(x, z) ∧ S(z, y)

is not free-connex as the query ∃z S(x, z)∧S(z, y)∧R(x, y)
is clearly cyclic.

Theorem 1. [7] The enumeration of free-connex ACQ
over the class of all structures is in CONSTANT-DELAYlin.

The result of Theorem 1 also holds if the queries contain
inequalities (ACQ6=). In this case atoms with inequalities
are not involved when building the (generalized) join trees.
Recall that in general the evaluation of a query q ∈ ACQ6=

requires f(|q|) · ||D|| · |q(D)| steps, where f is an exponential
function [7].

It turns out that free-connexity characterizes exactly those
acyclic queries that can be enumerated in constant delay,
assuming the query is self-join free and assuming matrix
multiplication cannot be done in quadratic time.

The boolean matrix multiplication is the problem of given
two n × n matrices with boolean entries M,N to compute
their product MN . The best known algorithms so far (based
on the Coppersmith–Winograd algorithm [13]) requires more
than n2.37 steps.

Theorem 2. [7] If boolean matrix multiplication cannot
be done in quadratic time then the following are equivalent
for self-join free acyclic queries q ∈ ACQ:

1. q is free-connex

2This is not the initial definition of free-connex as given
in [7]. This presentation is from Brault-Baron [11]

2. q can be enumerated in CONSTANT-DELAYlin

3. q can be evaluated in time O(||D||+ |q(D)|).

Remark: We already mentioned that most of the results de-
scribed above extends to the case where atoms could also
be inequality statements. In the case of signed conjunctive
queries (SCQ), where atoms could be negated, under a suit-
able notion of acyclicity (somewhere between α-acyclicity
and β-acyclicity) the model checking problem was shown
to be O(n logn), where n = ||D|| (the constant factor is
polynomial in the size of the query) [11]. The same set of
acyclic queries can be enumerated with an algorithm having
a n logn preprocessing phase and logn delay [11].

4. SPARSE STRUCTURES
In this section we consider first-order queries (FO) and study
classes of databases for which enumeration can be achieved
in constant delay.

All the classes of databases considered are defined over graphs
and are generalized to arbitrary relational structures via
their Gaifman graphs.

A graph is a relational structure G = (V,E), where V is
the set of nodes and E ⊆ V 2 the set of edges (edges are
undirected, so (x, y) ∈ E implies (y, x) ∈ E). In the case
of graphs, we will write |G| to denote the number of nodes
of G (i.e. the size of V ), while we write ||G|| to denote the
number of edges of G (i.e. the size of E).

The Gaifman graph of a relational structure D is defined as
follows: the set of vertices is the domain D of D and there is
an edge (a, b) iff there exists a relation Ri and a tuple t ∈ Ri
such that both a and b occur in t.

Given a class C of graphs, the associated class C’ of databases
contains exactly all the databases whose Gaifman graphs are
in C.

4.1 Bounded degree
One way to have the model checking problem for FO with
a linear time data complexity is to restrict the structures.
For instance it is known that FO sentences can be tested in
linear time over structures with bounded degree [38].

A graph has degree less than d if each node has at most
d neighbors. A class of graphs has bounded degree if there
exists a d such that all graphs in the class have degree less
than d.

The linear time model-checking algorithm for FO over struc-
tures with bounded degree can be lifted to a enumeration
algorithm.

Theorem 3. [18, 28] The enumeration of FO over a
class of structures with bounded degree is in CONSTANT-

DELAYlin.

A key property of structures of degree d is that, for a given
r, there are only finitely many, up to isomorphism, possible



r-neighborhoods (i.e. including nodes at distance at most
r). Given a query q ∈ FO the Gaifman Locality Theorem
tells us that only the r-neighborhood types are relevant, for
a suitable value of r depending only on q. One can then show
that it is possible to recolor in linear time, hence during the
preprocessing phase, each node with its neighborhood type.
Based on these colors and the Gaifman Locality Theorem
it is then not too difficult to derive an enumeration algo-
rithm [28].

Another key property of structures of degree d is that they
can easily be encoded using bijective unary functions. More-
over, for such structures, there exists a quantifier elimination
method for FO queries [18]. Once the formula is quantifier
free, it is not too difficult to design a constant delay enu-
meration algorithm. This is the approach taken by [18].

The constants involved in the enumeration algorithms (the
constant factor in the preprocessing phase and the constant
delay in the enumeration phase) is a tower of exponential
depending on |q| in the case of [18] and is triply exponential
in |q| in the case of [28]. This latter constant factor cannot be
significantly improved: it follows from [25] that a constant
factor of only doubly exponential in the size of the formula
is not possible unless AW[∗] =FPT.

4.2 Bounded expansion
The bounded degree case can be generalized to a larger
class of structures known as bounded expansion and defined
in [33].

In order to define structures with bounded expansion we
need some terminology from graph theory.

Let G = (V,E) be a graph. For any node v ∈ V and any
r ∈ N we denote by Br(v) the r-ball around v, i.e. the set
of nodes of G that are reachable from v by paths of lengths
up to r. We say that a graph H is a r-minor of G if the
nodes v1, . . . , vk of H are also nodes of G and there exists
pairwise non-overlapping sets S1, . . . , Sk such that each Si
is a connected set of nodes of G verifying vi ∈ Si ⊆ Br(vi)
and there is an edge between vi and vj in H iff there is an
edge in G from a node of Si to a node of Sj . The set of all
r-minors of G is denoted by G∇r.

For a graph G the greatest reduced average density (grad) of
G with rank r is:

∇r(G) = max
H∈G∇r

||H||
|H| .

We say that a class C of graphs has bounded expansion if
there exists a computable function f : N→ R such that for
all graphs G ∈ C and for all r ∈ N we have:

∇r(G) ≤ f(r).

In [33] a number of definitions equivalent to bounded ex-
pansion was shown giving evidence that this class is robust.
Many known families of graphs have bounded expansion.
We list below some notable examples.

• Class of graphs with bounded degree.

• Class of graphs with bounded treewidth.

• Class of planar graphs.

• Class of graphs excluding at least one minor.

It is easy to see that this definition generalizes the bounded
degree case. If a graph G has degree bounded by d, then
||G|| ≤ d|G|. Moreover, if H is a r-minor of G then the
degree of H is at most dr. Hence ∇r(G) ≤ dr. A similar
argument explains why this definition also generalizes the
bounded treewidth case. Euler’s formula can be used to
show that planar graphs have bounded expansion.

The model checking problem of FO over classes of structures
with bounded expansion was shown to be linear in [21, 27].
This has been extended to constant delay enumeration:

Theorem 4. [29] The enumeration of FO over the class
of structures with bounded expansion is in CONSTANT-DELAYlin.

This result generalizes the bounded degree case and The-
orem 3. The index necessary for having a constant delay
algorithm is quite complicated and rely on deep graph the-
oretical constructions. Moreover, the current enumeration
algorithm with constant delay has huge hidden constants: a
tower of exponentials in the quantifier alternation depth of
the first-order query. This non-elementary constant factor is
unavoidable already on the class of unranked trees, assum-
ing FPT6=AW[∗] [25]. In comparison, recall that this factor
is triply exponential in the size of the query in the bounded
degree case [38, 28].

4.3 Nowhere dense
It turns out that the notion of bounded expansion can be
further generalized in an interesting way.

Recall the definition of G∇r as the set of all r-minors of a
graph G. Given a class C of graphs, we denote by C∇r the
set of all r-minors of all graphs of C.

To a class C of graphs we associate the following number

lim
r→∞

lim sup
H∈C∇r

log ||H||
log |H| (1)

As for any graph H we have ||H|| ≤ |H|2, the number asso-
ciated to a class C as defined in (1) is less than 2. It turns
out that this number can take exactly three possible values:
{0, 1, 2} [34].

Following [34], we say that a class of graphs is nowhere dense
if its associated number is 0 or 1. It is not difficult to see
that this definition extends the class of graphs with bounded
expansion: Assume C has bounded expansion and let f(r)
be the function bounding ∇r(G) for all G ∈ C. Then for
every graph H ∈ C∇r we have ||H|| ≤ f(r)|H|. Hence

log ||H||
log |H| ≤ 1 +

log f(r)

log |H|

and therefore (assuming C has infinitely many graphs)

lim sup
H∈C∇r

log ||H||
log |H| ≤ 1



The notion of nowhere dense also encompass any class of
graphs that locally excludes a minor or that has local bounded
treewidth. We refer to [17, 24] for precise definitions of these
notions.

It is a major open problem to know whether model check-
ing of FO over nowhere dense graphs can be done in linear
time. Actually, we don’t even know whether this can be
done in FPT. Recall that by Remark 2 this is a prerequisite
for obtaining constant delay enumeration.

Open problem 1. Is model checking of FO over the class
of nowhere dense graphs in FPT?

On the upper-bound side, we know that the model check-
ing of existential first-order formulas can be done in time
O(n1+ε), for any positive ε, where n = ||D|| [35]. It is possi-
ble to transform this model checking algorithm into an enu-
meration algorithm whose preprocessing phase is in O(n1+ε)
and whose delay is in O(nε), for any positive ε.

On the lower-bound side, one can show that if a class of
graphs is not nowhere dense, we then say it is somewhere
dense, then no FPT algorithm exists (unless W[1] =FPT).
Hence nowhere dense graphs is the maximal class of graphs
where we can hope for FPT algorithms and constant delay
enumeration.

Theorem 5. [22] If C is a somewhere dense class of graphs
closed under subgraphs, then model checking of FO (actually
existential formula suffices) is W[1]-hard.

An even stronger result was obtained in [31] assuming that
C is somewhere dense in an “effective way”. In this case
it is shown that model-checking of FO is already AW[∗]-
complete.

5. DATA TREES AND XPATH
In this section we switch to trees, actually data trees, and
the query language XPath.

A data tree is a tree whose every node carries a label from
a finite alphabet A and a datum from some infinite domain,
here N. This structure has been considered in the realm
of semistructured data, timed automata, program verifica-
tion, and generally in systems manipulating data values. In
particular data trees can model XML documents, see for
instance [9].

By XPath we refer to a fragment of XPath 1.0. It is a
two-sorted language, with path expressions (that we write
α, β) and node expressions (ϕ,ψ). Path expressions are bi-
nary relations resulting from composing the axis relations
and node expressions. The axis relations, denoted Axis, are
the usual child, parent, descendant, ancestor, next-
sibling, right-sibling, previous-sibling and left-sibling
relations. Node expressions are boolean formulas that test
a property of a node, like for example, that it has a certain
label, or that it has a child labeled a with the same data
value as an ancestor labeled b and so on. For comparing

data values, we allow any predicate in the set Relop:= {=
, 6=, <,>,≤,≥}.

The syntax of XPath is given below:

α, β :: Axis | [ϕ] | αβ | α ∪ β
ϕ, ψ :: A | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | α Relop β

We also consider an extension of XPath allowing the Kleene
star on any path expression and we denote it by regular
XPath. It’s semantics over data trees is classical and quite
intuitive. It can be found in details for instance in [10]. Typ-
ically a path expression [ϕ] selects all the pairs (u, u) such
that the node expression ϕ is true at u. A node expression
〈α〉 selects all nodes u such that there is a node v with (u, v)
selected by the path expression α. Finally a node expres-
sion α Relop β selects all nodes u such that there exist v, w
such that (u, v) is selected by the path expression α, (u,w)
is selected by the path expression β and the data values of
v, w are related accordingly to the predicate in Relop.

We view formulas of regular XPath as queries over data
trees. This query is unary and returns a set of nodes if the
formula is a node expression and it is binary and returns
pairs of nodes if the formula is a path expression.

Theorem 6. [10] The enumeration of regular XPath over
the class of data trees is in CONSTANT-DELAYlin.

It turns out that the constants involved in the algorithm
needed for enumerating regular XPath queries are not very
big. They are polynomial in the size of the query if this
query is in XPath and exponential in the size of the query
if this query is in regular XPath.

The index structure constructed during the preprocessing
phase is quite involved and builds on the one developed for
Proposition 8 of the following section.

6. STRUCTURES WITH BOUNDED TREEWIDTH
Our last scenario concerns MSO queries over structures with
bounded treewidth. The associated model checking problem
is linear by Courcelle’s theorem [14]. The notion of bounded
treewidth extends the notion of trees and its precise defini-
tion is not important for this paper. The reader is referred
to [23, chapter 11] for more details.

Recall that MSO extends FO with the possibility to quan-
tify existentially and universally over monadic second order
variables. Those variables range over sets of elements of the
input domain. By MSO query we mean here a query of
the form q(x̄) where q is in MSO and x̄ are first-order free
variables. The case where x̄ can also contain free monadic
variables has also been considered in [15, 4] but those cannot
be enumerated in CONSTANT-DELAYlin mainly because out-
putting one solution may require linear time. See Section 7.

However, when restricted to first-order free variables, con-
stant delay enumeration can be achieved. Two different in-
dex structures were proposed in the literature. Actually a
third one was also proposed in [15], but it requires a pre-
computation phase of O(n logn) to build it.



Theorem 7. [4, 30] The enumeration of MSO queries
over the class of structures with bounded treewidth is in
CONSTANT-DELAYlin.

The index structures built to prove Theorem 7 is quite com-
plex. The difficulty lies entirely in the tree case. We give
below hints on how to solve a special case, based on ideas de-
veloped in [30] as this special case is already of independent
interest.

Let L be a regular word language over an alphabet A. A
typical binary MSO query over trees is the query qL(x, y)
returning the pairs of nodes (u, v) within a tree such that u
is an ancestor of v and the labels of the nodes in the path
from u to v forms a word in L (this generalizes Example 3).

Given a tree t, there exists an index structure such that,
given two nodes u and v one can test in constant time
whether (u, v) ∈ qL(t) or not. Moreover this index structure
can be computed in time linear in ||t||. This is a nontrivial
and powerful result of Colcombet.

Proposition 8. [12] For any regular language L over an
alphabet A and any A-labeled tree t one can

• construct in time O(||t||) an index structure such that,

• for all nodes u, v of t, testing whether (u, v) ∈ qL(t) can
be done in constant time.

This is a deep result based on algebraic constructions. The
constants involved during the construction of the index and
during the constant time tests depend on the presentation
of L. They are non elementary in L if L is given as an
MSO sentence. They are exponential in L if L is given as an
automaton, even in the deterministic case. However, there
exist cases where these constants are polynomial. In partic-
ular this is the case of the basic automata model introduced
in [10] in order to capture the navigational power of XPath
and used in the proof of Theorem 6.

It turns out that the index structure built for proving Propo-
sition 8 has many other interesting consequences. In partic-
ular, a normal form for MSO queries over trees.

Proposition 9. [implicit in[12]] Over trees, every binary
MSO query q(x, y) is equivalent to a disjunction of queries
of the form ∃ȳ∀z̄ θ, where θ is a disjunction of conjunctions
of atomic predicates or unary MSO queries.

The index constructed in [30] for enumerating MSO queries
over trees builds on Proposition 9. The so called “composi-
tion method”, or a simple Ehrenfeucht-fräıssé game, shows
that any MSO query is equivalent to a boolean combination
of binary queries. For binary queries, Proposition 9 applies.
The unary MSO subformulas can be precomputed in linear
time by Courcelle’s theorem and can therefore be considered
as new colors. Hence it is enough to consider ∃ȳ∀z̄ first-order
queries. Those queries being rather simple, an induction on

the number of free variables solves the problem, see [30]. It
turns out that the constants involved for enumerating MSO
queries in Theorem 7 deviates from those of Proposition 8
only by a polynomial factor. Hence their size depends on
the presentation of the MSO query as explained above.

7. DISCUSSION
7.1 The impact of order
With the current definition of CONSTANT-DELAYlin, there is
no constraint on the order in which the solutions are output.
One could require a specific order, relevant to the context
in which the query is evaluated. For instance, if there is a
linear order on the domain of the database, one could require
that the tuples of the result are output in lexicographical
order. Another typical example is when there is a relevance
measure associated to each tuple and one would like the
solutions of the query to be output in the order of their
relevance.

Requiring a specific order when outputting the solutions of
a query may have a dramatic impact on the existence of
constant delay algorithms. This is not surprising as the in-
dex built during the preprocessing phase is designed for a
particular order.

In the presence of a linear order on the database, the enu-
meration algorithms of Theorem 3 (bounded degree) and
Theorem 4 (bounded expansion) can output the solutions in
lexicographical order. However, it is not clear how to achieve
lexicographical output in the case of MSO over bounded
treewidth (Theorem 7).

7.2 Longer delay

Delay linear in the size of the database. We could con-
sider enumeration algorithms allowing for non constant de-
lay. An interesting case is linear delay. In this setting,
the preprocessing phase remains linear in the size of the
database but the delay between any two consecutive out-
puts is now linear in the size of the database. Notice that
linear delay still implies that the associated model checking
problem is in FPT, hence CQ cannot be enumerated with
linear delay unless W[1] =FPT.

One can then consider restricting the class of structures. A
class of structures, called X-structures, has been exhibited
such that CQ can be enumerated over it with linear delay.
We will not define X-structures in this note. Typical exam-
ples are grids and trees with all XPath axis.

Theorem 10. [6]. The enumeration of CQ over X-structures
can be done with linear delay.

For acyclic conjunctive queries linear delay enumeration can
be obtained with no restriction on the structures.

Theorem 11. [7]. The enumeration of ACQ over all
structures can be done with linear delay.



Delay linear in the size of the output. A trivial case when
constant delay enumeration cannot be achieved is when the
size of one output is too big. This is for instance the case
when considering MSO formulas with monadic second-order
free variables. Then each answer is a tuple of sets of elements
of the domain and can have a size linear in the size of the
database. In constant time such an answer can not even be
written in the output tape. For such queries it is convenient
to allow a delay linear in the size of the output, but still
independent from the size of the database3. We then speak
of an output-linear delay.

The result of Theorem 7 can be generalized to this setting
(the preprocessing phase of [15] is actually not linear, but in
O(||D|| log ||D||)) .

Theorem 12. [15][4] The enumeration of MSO (allow-
ing monadic second-order free predicates) over the class of
structures with bounded treewidth can be done with output-
linear delay.

Polynomial delay. One could also allow polynomial pre-
computation and polynomial delay. This notion is maybe
less relevant in the database context. Indeed, the degree of
the polynomial could depend on the size of the query and in
this case the preprocessing phase can often precompute all
solutions. This notion is however relevant when considering
first-order queries with free second-order variables. In this
case, for Σ1-queries, polynomial delay enumeration can be
achieved [20].

7.3 Nearby problems
It turns out that the index structures build for enumera-
tion can be used with little modifications for solving several
related problems, like counting the number of solutions, or
in the presence of an order, directly pointing to the jth-
solution. We briefly survey those results here.

Counting the number of solutions. Given a query q, the
counting problem of q is the computational problem of given
a database D to compute |q(D)|. If the enumeration problem
of q is in CONSTANT-DELAYlin, then the counting problem
of q can be done in O(||D|| + |q(D)|). In particular it could
be exponential in the arity of q, but this is clearly not the
most efficient way to do this.

Given a query language L and a class C of databases, we say
that the counting problem of L over C is solvable in time
f(n) if for any q ∈ L the counting problem of q over C can
be solved in time f(||D||) on input D. Note that f does not
depend on q. There is again the genericity issue, i.e. whether
the algorithm solving the counting problem for q in time
f(n) can be computed from q. We will always assume that

3There is actually another approach which consists in having
an output tape and only modify the output tape in order to
transform the previous solution into the next one. In special
cases the delta between two consecutive solutions only affect
a constant part of the output and the enumeration can be
done with constant delay, see for instance [20].

this is the case here. In that case, if f is polynomial, then
the computational parametrized problem of given a query
q ∈ L and a database D ∈ C with |q| as a parameter to
compute |q(D)| is in the class FPT.

On structures with bounded treewidth counting can be done
in linear time for MSO queries. Note that the constant factor
is not elementary in the query size.

Theorem 13. [3] The counting problem for MSO over
the class of structures with bounded treewidth can be solved
in linear time.

Counting can also be done in linear time for first-order queries
over structures with bounded degree or bounded expansion.
For the bounded degree case this was shown in [8]. In the
bounded expansion case, which generalizes the bounded de-
gree case, this was shown in [35] for existential formulas by
reducing it to Theorem 13. The quantifier elimination meth-
ods of [22, 27, 29] then reduces the general case to this case.
A direct and simple proof that does not use Theorem 13
was given in [29]. In all cases, the constant factor is not
elementary in the query size.

Theorem 14. The counting problem for FO over the class
of structures with bounded expansion can be solved in linear
time.

In the nowhere dense case the problem was solved for ex-
istential formulas, but with a quasi linear time. We don’t
know whether this can be improved.

Theorem 15. [35] For any positive ε, the counting prob-
lem for existential first-order queries over the class of nowhere
dense structures can be solved in time O(n1+ε).

With no restrictions on the structures, counting the num-
ber of solutions of a query is a hard problem. Already for
acyclic conjunctive queries the combined complexity is #P -
complete [37] and only the quantifier free ACQ can be solved
in time linear in ||D|| [5].

For this reason, [19] introduced a new parameter named
quantified-star size. It measures “how the free variables are
spread in the formula” and bounding this parameter yields
tractable counting problem for ACQ.

Theorem 16. [19] For each number s, the counting prob-
lem for ACQ with quantified-star size bounded by s over the
class of all structures can be solved in time polynomial in
both the query and the structure.

It turns out that this parameter characterizes exactly the
class of ACQ having a tractable counting problem. If a
class of ACQ does not have a bounded quantified-star size,
then its associated counting problem is #W[1]-hard [19]. In
particular, it cannot be solved in FPT.



Testing whether a given tuple is a solution. Given a
query q and a database D, after a preprocessing on D, we
would like to be able to test efficiently whether a tuple ā
belong to q(D).

Let C be a class of databases. We say that the membership
test for q over C is constant-time modulo linear preprocessing
if for all D ∈ C it is possible to:

• construct in time O(||D||) an index structure such that,

• for all tuple ū of elements of D, testing whether ū ∈
q(D) can be done in constant time.

The following is a simple consequence of Proposition 8 and
the composition method:

Theorem 17. [12] The membership test for MSO queries
over structures with bounded treewidth is constant-time mod-
ulo linear preprocessing.

For sparse structures we can obtain the same results but for
first-order queries (the bounded degree case was considered
in [32]):

Theorem 18. [29] The membership test for FO over struc-
tures with bounded expansion is constant-time modulo linear
preprocessing.

Computing the jth solution. In this section we assume a
linear order < on all tuples, for instance the lexicographical
order for some linear order on the domain. Given a query
q, we say that Jth(q,<) is solvable in dyn(f, g) if there is
a RAM algorithm such that, on input D and j, works as
follows:

• a precomputation phase, independent of j, and work-
ing in time O(f(||D||))

• an output phase working in time O(g(||D||, j)) and out-
putting the jth element of q(D) relative to <.

This problem is interesting because it allows to perform a
sampling on q(D). Indeed, any random generation of inte-
gers can then be used to obtain a good sampling on q(D). If
the enumeration problem of q is in CONSTANT-DELAYlin and
the solutions are output in the order of <, then Jth(q,<) is
in dyn(n, j). Note that j could be polynomial in n.

In the bounded degree case we can do better:

Theorem 19. [8] For q ∈ FO, over the classes of struc-
tures with bounded degree, Jth(q,<) is in dyn(n, 1) for some
order < depending on q.

In the bounded treewidth case we can do the following:

Theorem 20. [5] For q ∈ MSO, over the classes of struc-
tures with bounded treewidth, Jth(q,<) is in dyn(n, logn) for
some order < depending on q.

It is not clear whether these two result can be proved for
the case where < is the lexicographical order on a linearly
ordered database. But even with the specific orders, these
results are useful because they allow random sampling of the
answers of a given query.

7.4 Other enumeration problems
In this abstract we focused on the problem of enumerating
the output of a query on a database. There exist many enu-
meration algorithms for various kinds of problems like enu-
merating all the solutions of a SAT instance [16], enumer-
ating monomials of a polynomial [40], enumerating perfect
matchings in bipartite graphs [41] and so on. The interested
reader is refereed to the thesis [39] for learning more about
enumerations outside of the database context.

8. CONCLUSIONS
We have survey many results about constant delay enumer-
ation and related problems. We hope that we succeeded to
convince the reader that this is a very interesting topic.

The main open problem is probably the evaluation of first-
order queries over nowhere dense structures mentioned in
Open Problem 1.

One could also consider relaxing the “no duplicate” con-
straint and enumerate conjunctive queries with the bag se-
mantic.

We would like to conclude with lower bounds. Of course
one can construct artificial problems, based on the fact that
there exist quadratic but not linear problems, that do not
admit constant delay enumeration algorithms. For the con-
crete problems mentioned in this note, the lower bounds
have been proved using complexity assumptions, either in
parametrized complexity, or for the Boolean Matrix Multi-
plication problem. But it is also plausible (i.e. there are no
known consequences in complexity theory nor in algorith-
mic) that the non existence of constant delay enumeration
algorithms could be proved with no assumptions. We believe
this is an interesting and challenging question.
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